# State of New Mexico Energy, Minerals and Natural Resources Department

Susana Martinez Governor

David Martin **Cabinet Secretary** 

**Tony Delfin Deputy Cabinet Secretary**  David R. Catanach, Division Director **Oil Conservation Division** 



New Mexico Oil Conservation Division approval and conditions listed below are made in accordance with OCD Rule 19.15.7.11 and are in addition to the actions approved by BLM on the following <u>3160-3</u> APD form.

Operator Signature Date: 11-12-15 Well information; , Well Name and Number Kimbeto Wash Unit # 789 H Operator

API#<u>30-045-35733</u>, Section<u>30</u>, Township<u>23</u> (N/S, Range 09 E/W)

Conditions of Approval: (See the below checked and handwritten conditions)

- Notify Aztec OCD 24hrs prior to casing & cement.
- Hold C-104 for directional survey & "As Drilled" Plat
- Hold C-104 for NSL, NSP, DHC 0
- Spacing rule violation. Operator must follow up with change of status notification on other well 0 to be shut in or abandoned
- Regarding the use of a pit, closed loop system or below grade tank, the operator must comply 0 with the following as applicable:
  - A pit requires a complete C-144 be submitted and approved prior to the construction or use of the pit, pursuant to 19.15.17.8.A
  - A closed loop system requires notification prior to use, pursuant to 19.15.17.9.A
  - A below grade tank requires a registration be filed prior to the construction or use of the below grade tank, pursuant to 19.15.17.8.C
- Once the well is spud, to prevent ground water contamination through whole or partial conduits 0 from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string
- Submit Gas Capture Plan form prior to spudding or initiating recompletion operations
- Regarding Hydraulic Fracturing, review EPA Underground Injection Control Guidance 84

Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system.

Well-bore communication is regulated under 19.15.29 NMAC. This requires well-bore Communication to be reported in accordance with 19.15.29.8.

NMOCD Approved by Signature

Date

1220 South St. Francis Drive . Santa Fe. New Mexico 87505 Phone (505) 476-3460 • Fax (505) 476-3462 • www.emnrd.state.nm.us/ocd



| 2                                                                                                                                                                              |                                                                                                                      |                                                                   |                                                                               |                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------|
| Form 3160-3<br>(September 2001)                                                                                                                                                | OIL CONS. DI                                                                                                         | V DIST. 3                                                         | FORM APPRO<br>OMB No. 1004-                                                   | VED<br>0136                                                  |
| RECEIVED UN<br>DEPARTME<br>BUREAU OF                                                                                                                                           | VITED STATES<br>ENT OF THE INTERIOR<br>F LAND MANAGEMENT                                                             | 2016 5. L                                                         | Expires January 3<br>.ease Serial No.<br>JMNM 117577                          | 1, 2004                                                      |
| APPLICATION FOR P                                                                                                                                                              | ERMIT TO DRILL OR REENTER                                                                                            | 6. I                                                              | f Indian, Allottee or Tri                                                     | be Name                                                      |
| a. Type of Working DRILL<br>Bureau of Land Management<br>b. Type of Well: Ø Oil Well Gas Well                                                                                  | REENTER      Other     Single Zone     Mult                                                                          | 7. 11<br>K<br>8. L<br>tiple Zone                                  | f Unit or CA Agreement,<br>imbeto Wash Unit<br>ease Name and Well No.         | , Name and No.                                               |
| . Name of Operator                                                                                                                                                             |                                                                                                                      | 9. A                                                              | PI Well No.                                                                   | ~~~~                                                         |
| WPX Energy Production, LLC                                                                                                                                                     | 21 Diana Marchada ana andal                                                                                          | 3                                                                 | 0-045-0                                                                       | 5133                                                         |
| P.O. Pox 640 Actes NM 97410                                                                                                                                                    | 30. Phone No. (Include drea code)                                                                                    | 10. F                                                             | ield and Pool, or Explor                                                      | atory                                                        |
| <ol> <li>Location of Well (Report location clearly and in a<br/>At surface 660' FNL &amp; 464' FWL, sec 30, T2:<br/>At proposed prod. zone 330' FSL &amp; 621' FEL,</li> </ol> | accordance with any State requirements. *)<br>(3N, R9W<br>, sec 30 T23N, R9W                                         | 11. S<br>S<br>B                                                   | ec., T., R., M., or Blk. a<br>HL: Sec 30, T23N, R9V<br>BHL: Sec 30, T23N, R9V | nd Survey or Area<br>W<br>W                                  |
| Distance in miles and direction from nearest town                                                                                                                              | /n or post office*                                                                                                   | 12. C                                                             | county or Parish                                                              | 13. State                                                    |
| From intersection US Hwy & 550 US Hwy 64 i                                                                                                                                     | in Bloomfield NM, South 35.9 miles to Mile Marker 115                                                                | 5.7 5                                                             | San Juan                                                                      | NM                                                           |
| <ul> <li>Distance from proposed*</li> <li>location to nearest<br/>property or lease line, ft.</li> <li>(Also to nearest drig, unit line, if any) 464,</li> </ul>               | 16. No. of Acres in lease                                                                                            | 17. Spacing Unit of 640.46-Acres                                  | dedicated to this well                                                        |                                                              |
| Distance from proposed location*<br>to nearest well, drilling, completed,<br>applied for, on this lease, ft. 20'                                                               | 19. Proposed Depth<br>10873' MD / 4366' TVD                                                                          | 20. BLM/BIA Bor                                                   | nd No. on file                                                                |                                                              |
| . Elevations (Show whether DF, KDB, RT, GL, e                                                                                                                                  | etc.) 22. Approximate date work will s                                                                               | start* 23. E                                                      | Estimated duration                                                            |                                                              |
| 6596' GR                                                                                                                                                                       | December 1, 2015                                                                                                     | 1                                                                 | month                                                                         |                                                              |
| A Surface Use Plan (if the location is on Nation<br>SUPO shall be filed with the appropriate Fores                                                                             | al Forest System Lands, the<br>Service Office).<br>5. Operator certific<br>6. Such other site<br>authorized offic    | cation.<br>specific information<br>er.                            | n and/or plans as may                                                         | be required by the                                           |
| . Signature                                                                                                                                                                    | Name (Printed/Typed)<br>Marie E. Jaramillo                                                                           |                                                                   | Date<br>11/12/                                                                | /15                                                          |
| ermit Technician III<br>proved by (Signature)                                                                                                                                  | Name (Printed/Typed)                                                                                                 |                                                                   | Date                                                                          | 4/14/1                                                       |
| le AFM                                                                                                                                                                         | Office FF?                                                                                                           | 2                                                                 |                                                                               |                                                              |
| plication approval does not warrant or certify that the<br>erations thereon.<br>nditions of approval, if any, are attached.                                                    | he applicant holds legal or equitable title to those rights in                                                       | n the subject lease wl                                            | hich would entitle the ap                                                     | plicant to conduct                                           |
| de 18 U.S.C. Section 1001 and Title 43 U.S.C. Sec<br>ates any false, fictitious or fraudulent statements or r<br>instructions on reverse)                                      | ction 1212, make it a crime for any person knowingly an<br>representations as to any matter within its jurisdiction. | nd willfully to make t                                            | to any department or age                                                      | ency of the United                                           |
| PX Energy Production, LLC, proposes to develop the                                                                                                                             | the Basin Mancos formation at the above described locat                                                              | ion in accordance wit                                             | th the attached drilling a                                                    | ind surface use                                              |
| e well pad surface is under jurisdiction of BLM and                                                                                                                            | d is on lease and will be twinned with the KWU #787H a                                                               | and KWU #791H.                                                    |                                                                               |                                                              |
| s location has been archaeologically surveyed by V                                                                                                                             | Western Cultural Resources. Copies of their report have                                                              | been submitted direct                                             | tly to the BLM, FIMO, I                                                       | BIA and NNHPD.                                               |
| e new access of 220.5' of BLM is Onlease access re                                                                                                                             | oad will be built and permitted via the APD.                                                                         |                                                                   |                                                                               |                                                              |
| new 11827.2' BLM on lease & 9677' IA on lease w                                                                                                                                | vell connect pipeline will be built and permitted via the                                                            | POF THIS                                                          | This action is                                                                |                                                              |
| DRILLING OPERATIONS<br>AUTHORIZED ARE SUBJECT TO<br>COMPLIANCE WITH ATTACHED<br>"GENERAL REQUIREMENTS"                                                                         | ACTION DOES NOT RELIEVE THE I<br>OPERATOR FROM OBTAINING AN<br>AUTHORIZATION REQUIRED FOR                            | LESSE <mark>E AND</mark><br>Y OTHE <b>R</b><br>OPERATI <b>ONS</b> | and procedural rev<br>43 CFR 3165.3 and<br>pursuant to 43 CFR                 | ect to technical<br>liew pursuant to<br>d appeal<br>& 3165,4 |

"GENERAL REQUIREMENTS"

KP

AUTHORIZATION REQUIRED FOR ON FEDERAL AND INDIAN LANDS NMOCDR



## WPX Energy

### **Operations Plan**

(Note: This procedure will be adjusted onsite based upon actual conditions)

| Date:               | November 12, 2015   | Field:     | <b>Basin Mancos</b> |
|---------------------|---------------------|------------|---------------------|
| Well Name:          | KWU #789H           | Surface:   | BLM                 |
| SH Location:        | NWNW Sec 30 23N-09W | Elevation: | 6596' GR            |
| <b>BH Location:</b> | SESE Sec 30 23N-09W | Minerals:  | BLM                 |

Measured Depth: 10,873.11

## I. GEOLOGY: SURFACE FORMATION - OJO ALAMO/ KIRKLAND

| NAME                    | MD   | TVD  | NAME          | MD        | TVD      |
|-------------------------|------|------|---------------|-----------|----------|
|                         |      |      | 19 10 3 3/14  |           |          |
| OJO ALAMO               | 151  | 151  | POINT LOOKOUT | 3190      | 3138     |
| KIRTLAND                | 359  | 359  | MANCOS        | 3382      | 3325     |
| PICTURED CLIFFS 735 735 |      | 735  | GALLUP        | 3739      | 3674     |
| LEWIS                   | 847  | 846  | KICKOFF POINT | 4,507.12  | 4,326.76 |
| CHACRA                  | 1110 | 1105 | TOP TARGET    | 4671      | 4401     |
| CLIFF HOUSE             | 2210 | 2180 | LANDING POINT | 4,908.57  | 4,442.00 |
| MENEFEE                 | 2260 | 2229 | BASE TARGET   | 4,908.57  | 4,442.00 |
|                         |      |      | TD            | 10,873.11 | 4,366.00 |

A. FORMATION TOPS (GL)

B. MUD LOGGING PROGRAM: Mudlogger on location from surface csg to TD.

C. LOGGING PROGRAM: LWD GR from surface casing to TD.

D. <u>NATURAL GAUGES</u>: Gauge any noticeable increases in gas flow. Record all gauges in Tour book and on morning reports.

## II. DRILLING

A. **MUD PROGRAM:** LSND mud (WBM) will be used to drill the 12-1/4" Surface hole, the 8 ¾" Directional Vertical hole, and the curve portion of the wellbore. A LSND (WBM) or (OBM) will be used to drill the lateral portion of well. Treat for lost circulation as necessary. Obtain 100% returns prior to cementing. Notify Engineering of any mud losses.

B. <u>BOP TESTING</u>: While drill pipe is in use, the pipe rams and the blind rams will be function tested once each trip. The anticipated reservoir is expected to be less than 1300 psi, so the BOPE will be tested to 250 psi (Low) for 5 minutes and 1500 psi (High) for 10 minutes. Pressure test surface casing to 600 psi for 30 minutes and intermediate casing to 1500 psi for 30 minutes. Utilize a BOPE Testing Unit with a recording chart and appropriate test plug for testing. The drum brakes will be inspected and tested each tour. All tests and inspections will be recorded in the tour book as to time and results.

# III. MATERIALS

# A. CASING PROGRAM:

| CASING TYPE  | OH SIZE (IN) | DEPTH (MD)          | CSG SIZE | WEIGHT   | GRADE          | CONN |
|--------------|--------------|---------------------|----------|----------|----------------|------|
| SURFACE      | 12.25"       | 320'                | 9.625"   | 36 LBS   | J-55 or equiv  | STC  |
| INTERMEDIATE | 8.75"        | 4,908.57            | 7"       | 23 LBS   | J-55 or equiv  | LTC  |
| PRODUCTION   | 6.125"       | 4758.57 - 10,873.11 | 4.5"     | 11.6 LBS | P-110 or equiv | LTC  |
| TIE BACK     | 6.125"       | Surf 4758.57        | 4.5"     | 11.6 LBS | P-110 or equiv | LTC  |

## B. FLOAT EQUIPMENT:

1. <u>SURFACE CASING</u>: 9-5/8" notched regular pattern guide shoe. Run (1) standard centralizer on each of the bottom (4) joints of Surface Casing.

2. <u>INTERMEDIATE CASING</u>: 7" cement nose guide shoe with a self-fill insert float. Place float collar one joint above the shoe. Install (1) centralizer on each of the bottom (3) joints and one standard centralizer every (3) joints to 2,500 ft. Run (1) centralizer at 2,500 ft., 2,300ft., 2,000ft., 1,500 ft., and 1,000 ft.

3. <u>PRODUCTION LINER</u>: Run 4-1/2" Liner with cement nose guide Float Shoe + 2jts. of 4-1/2" casing + Landing Collar + 4-1/2" pup joint + 1 RSI (Sliding Sleeve) positioned inside the 330ft Hard line. Centralizer program will be determined by Wellbore condition and when Lateral is evaluated by Geoscientists and Reservoir Engineers. Set seals on Liner Hanger. Test TOL to 1500 psi for 15 minutes.

### C. CEMENTING:

#### (Note: Volumes may be adjusted onsite due to actual conditions)

- <u>1. Surface</u> 5 bbl Fresh Water Spacer, 100 sx (160 cu.ft.) of 14.5 ppg Type I-II (Neat G) + 20% Fly Ash cement w/ 7.41 gal/sack mix water ratio @ 1.61 cu ft/sx yield. Calculated @ volume + 50% excess. WOC 12 hours. Test csg to 600psi. Total Volume: (160 cu-ft/100 sx/ Bbls).TOC at Surface.
- 2.Intermediate
   20 bbl (112 cu-ft) Mud Flush III spacer + Lead: +/- 700 sx Foamed 50/50 Poz Cement. 13.0 ppg + 0.1% Halad 766 + 0.2% Versaset + 1.5% Chem-Foamer 760 (Yield :1.43 cu-ft/ sk. / Vol: 1001 cu-ft / 178.3 Bbls.) + TAIL: 100 sx 13.5 #/gal. + 0.2% Versaset + 0.15% HALAD-766 (Yield: 1.28 cu-ft / sk / Vol: 128 cu-ft / 22.8 Bbls.). + Fresh Water Displacement (1,362 cu-ft / +/- 242 Bbls) + 100 sx Top-Out Cement Premium: Yield: (1.17 cu-ft/ sk / (Vol: 117 cu-ft / 20.8 Bbls). WOC 12 hrs. Test Casing to 1500 PSI for 30 minutes. Total Cement Volume: (900 sx / 1246 cu-ft / 222 bbls). Mix with +/- 84,000 SCF Nitrogen. TOC at surface.
- 3. PROD. LINER: Spacer #1:10 bbl (56.cu-ft) Water Spacer. Spacer #2: 40 bbl 9.5 ppg (224.6 cu-ft) Tuned Spacer III. Spacer #3: 10 bbl Water Spacer. Lead Cement: Extencem ™ System. Yield 1.36 cuft/sk 13.3 ppg (599 sx /815 cuft /145 bbls). Tail Spacer: 20 BBL of MMCR. Displacement: Displace w/ +/- 140 bbl Fr Water. Total Cement (599 sx /815bbls).

## I. COMPLETION

A. CBL

Run CCL for perforating

### A. PRESSURE TEST

1. Pressure test 4-1/2" casing to 4500 psi max, hold at 1500 psi for 30 minutes. Increase pressure to Open RSI sleeves.

### B. STIMULATION

1. Stimulate with approximately 2,805,000# 20/40 mesh sand and 340,000# 16/30 mesh sand in 619,113 gallons water with 42,696 mscf N2 for 17 stages.

- 2. Isolate stages with flow through frac plug.
- 3. Drill out frac plugs and flowback lateral.

### C. RUNNING TUBING

1. <u>Production Tubing:</u> Run 2-7/8", 6.5#, J-55, EUE tubing with a SN on top of bottom joint. Land tubing near Top of Liner.

• Although this horizontal well will be drilled past the applicable setbacks, an unorthodox location application is not required because the completed interval in this well, as defined by 19.15.16.7 B(1) NMAC,will be entirely within the applicable setbacks. This approach complies with all applicable rules, including 19.15.16.14 A(3) NMAC, 19.15.16.14 B(2) NMAC, 19.15.16.15 B(2)NMAC, and 19.15.16.15. B(4) NMAC.

### NOTE:

### **Proposed Operations:**

A 4-1/2" 11.6# P-110 Liner will be run to TD and landed +/- 150 ft. into the 7" 23# K-55 Intermediate casing with a Liner Hanger and pack-off assembly then cemented to top of liner hanger.

After cementing and TOL clean up operations are complete, the TOL will be tested to 1500 psi (per BLM).

# **WPX Energy**

T23N R9W KWU 2309-30D KWU 2309-30D #789H - Slot A1

Wellbore #1

4

Plan: Design #1 16Oct15 sam

# **Standard Planning Report**

22 October, 2015

## WPX

## Planning Report

| Database:<br>Company:<br>Project:<br>Site:<br>Well:<br>Wellbore:<br>Design:                                                                                                                                                            | COM<br>WPX<br>T23N<br>KWU<br>KWU<br>Wellt<br>Desig                                                                      | COMPASS<br>WPX Energy<br>T23N R9W<br>KWU 2309-30D<br>KWU 2309-30D #789H<br>Wellbore #1<br>Design #1 16Oct15 sam                                                     |                                                                                                                                                                                   |                                                                                                                                   | Local Co-ordinate Reference:       Well KWU 2309-30D #789H (A1) - Slot A1         TVD Reference:       GL @ 6596.00usft (Original Well Elev)         MD Reference:       GL @ 6596.00usft (Original Well Elev)         North Reference:       True         Survey Calculation Method:       Minimum Curvature |                                                                                                                                          |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                               |                                                                                |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|
| Project                                                                                                                                                                                                                                | T23N                                                                                                                    | R9W                                                                                                                                                                 |                                                                                                                                                                                   | WELL COLOR                                                                                                                        |                                                                                                                                                                                                                                                                                                               |                                                                                                                                          | a zacas                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                               | PLAN STREET                                                                    |  |  |
| Map System:<br>Geo Datum:<br>Map Zone:                                                                                                                                                                                                 | US Stat<br>NAD 19<br>New Me                                                                                             | te Plane 1927 (<br>27 (NADCON (<br>axico West 300)                                                                                                                  | Exact solution)<br>CONUS)<br>3                                                                                                                                                    |                                                                                                                                   | System Da                                                                                                                                                                                                                                                                                                     | atum:                                                                                                                                    | М                                                                                                                                                | ean Sea Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               |                                                                                |  |  |
| Site                                                                                                                                                                                                                                   | KWU                                                                                                                     | 2309-30D                                                                                                                                                            |                                                                                                                                                                                   |                                                                                                                                   |                                                                                                                                                                                                                                                                                                               |                                                                                                                                          |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                               |                                                                                |  |  |
| Site Position:<br>From:<br>Position Uncer                                                                                                                                                                                              | Ma<br>tainty:                                                                                                           | ip<br>0.0                                                                                                                                                           | North<br>Eastin<br>0 usft Slot R                                                                                                                                                  | ing:<br>ng:<br>tadius:                                                                                                            | 1,893<br>498                                                                                                                                                                                                                                                                                                  | 3,257.11 usft<br>3,977.22 usft<br>13.200 in                                                                                              | Latitude:<br>Longitude:<br>Grid Converg                                                                                                          | gence:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                               | 36.203340<br>-107.836800<br>0.00 °                                             |  |  |
| Well                                                                                                                                                                                                                                   | KWU 2                                                                                                                   | 2309-30D #789                                                                                                                                                       | H - Slot A1                                                                                                                                                                       | 1000                                                                                                                              | 120100                                                                                                                                                                                                                                                                                                        |                                                                                                                                          | 1. 1. 2. 3                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1000 800                                                                                                                      |                                                                                |  |  |
| Well Position                                                                                                                                                                                                                          | +N/-S<br>+E/-W                                                                                                          | 0.<br>0.                                                                                                                                                            | 00 usft No<br>00 usft Ea                                                                                                                                                          | orthing:<br>asting:                                                                                                               |                                                                                                                                                                                                                                                                                                               | 1,893,257.11<br>498,977.22                                                                                                               | usft Lat                                                                                                                                         | itude:<br>ngitude:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                               | 36.203340<br>-107.836800                                                       |  |  |
| Position Uncer                                                                                                                                                                                                                         | tainty                                                                                                                  | 0.                                                                                                                                                                  | 00 usft W                                                                                                                                                                         | ellhead Elevati                                                                                                                   | ion:                                                                                                                                                                                                                                                                                                          | 0.00                                                                                                                                     | usft Gro                                                                                                                                         | ound Level:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6,596.00 us                                                                                                                   |                                                                                |  |  |
|                                                                                                                                                                                                                                        |                                                                                                                         |                                                                                                                                                                     |                                                                                                                                                                                   |                                                                                                                                   |                                                                                                                                                                                                                                                                                                               |                                                                                                                                          |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                               |                                                                                |  |  |
| Wellbore                                                                                                                                                                                                                               | Wellb                                                                                                                   | ore #1                                                                                                                                                              |                                                                                                                                                                                   |                                                                                                                                   | State State                                                                                                                                                                                                                                                                                                   |                                                                                                                                          | 19-07                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | State and                                                                                                                     |                                                                                |  |  |
| Wellbore                                                                                                                                                                                                                               | Wellb                                                                                                                   | ore #1                                                                                                                                                              |                                                                                                                                                                                   |                                                                                                                                   |                                                                                                                                                                                                                                                                                                               |                                                                                                                                          |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                               |                                                                                |  |  |
| Wellbore<br>Magnetics                                                                                                                                                                                                                  | Wellb                                                                                                                   | ore #1<br>odel Name                                                                                                                                                 | Sampl                                                                                                                                                                             | e Date                                                                                                                            | Declina<br>(°)                                                                                                                                                                                                                                                                                                | ation                                                                                                                                    | Dip A<br>(                                                                                                                                       | ۸ngle<br>°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Field                                                                                                                         | Strength<br>(nT)                                                               |  |  |
| Wellbore<br>Magnetics                                                                                                                                                                                                                  | Wellb                                                                                                                   | ore #1<br>odel Name<br>IGRF200510                                                                                                                                   | Sampl                                                                                                                                                                             | e Date<br>12/31/2009                                                                                                              | Declina<br>(°)                                                                                                                                                                                                                                                                                                | <b>ation</b><br>10.02                                                                                                                    | Dip A<br>(                                                                                                                                       | Angle<br>*)<br>63.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Field                                                                                                                         | Strength<br>InT)<br>50,589                                                     |  |  |
| Wellbore<br>Magnetics<br>Design                                                                                                                                                                                                        | Wellbo<br>Me<br>Desigr                                                                                                  | ore #1<br>odel Name<br>IGRF200510<br>n #1 16Oct15 se                                                                                                                | Sampi<br>1<br>am                                                                                                                                                                  | e Date<br>12/31/2009                                                                                                              | Deciin:<br>(*)                                                                                                                                                                                                                                                                                                | ation<br>10.02                                                                                                                           | Dip A<br>(                                                                                                                                       | Angle<br>")<br>63.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Field                                                                                                                         | Strength<br>(nT)<br>50,589                                                     |  |  |
| Wellbore<br>Magnetics<br>Design<br>Audit Notes:                                                                                                                                                                                        | Wellbo<br>Ma<br>Design                                                                                                  | ore #1<br>odel Name<br>IGRF200510<br>1 #1 16Oct15 se                                                                                                                | Sampl<br>1<br>am                                                                                                                                                                  | e Date<br>12/31/2009                                                                                                              | Decilina<br>(°)                                                                                                                                                                                                                                                                                               | ation<br>10.02                                                                                                                           | Dip A<br>(                                                                                                                                       | Angle<br>")<br>63.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Field<br>(                                                                                                                    | Strength<br>InT)<br>50,589                                                     |  |  |
| Wellbore<br>Magnetics<br>Design<br>Audit Notes:<br>Version:                                                                                                                                                                            | Wellb<br>Ma<br>Desigr                                                                                                   | ore #1<br>odel Name<br>IGRF200510<br>n #1 16Oct15 se                                                                                                                | Sampl<br>1<br>am<br>Phase                                                                                                                                                         | e Date<br>12/31/2009<br>e: Pi                                                                                                     | Declina<br>(*)                                                                                                                                                                                                                                                                                                | ation<br>10.02<br>Tie                                                                                                                    | Dip A<br>(                                                                                                                                       | Angle<br>")<br>63.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Field (                                                                                                                       | Strength<br>(nT)<br>50,589                                                     |  |  |
| Wellbore<br>Magnetics<br>Design<br>Audit Notes:<br>Version:<br>Version:                                                                                                                                                                | Wellb<br>Me<br>Design                                                                                                   | ore #1<br>odel Name<br>IGRF200510<br>n #1 16Oct15 se                                                                                                                | Sampi<br>am<br>Phase<br>Depth From (T)                                                                                                                                            | e Date<br>12/31/2009<br>e: Pi<br>/D)                                                                                              | Declin:<br>(*)<br>LAN<br>+N/-S                                                                                                                                                                                                                                                                                | ation<br>10.02<br>Tie<br>+E                                                                                                              | Dip A<br>('<br>On Depth:                                                                                                                         | Angle<br>*)<br>63.03<br>Dim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Field<br>(<br>0.00<br>ection                                                                                                  | Strength<br>(nT)<br>50,589                                                     |  |  |
| Wellbore<br>Magnetics<br>Design<br>Audit Notes:<br>Version:<br>Vertical Section                                                                                                                                                        | Wellb<br>Ma<br>Design                                                                                                   | ore #1<br>odel Name<br>IGRF200510<br>n #1 16Oct15 se                                                                                                                | Sampl<br>am<br>Phase<br>Depth From (TV<br>(usft)<br>0.00                                                                                                                          | e Date<br>12/31/2009<br>e: Pl<br>/D)                                                                                              | Declina<br>(*)<br>LAN<br>+N/-S<br>(usft)<br>0.00                                                                                                                                                                                                                                                              | ation<br>10.02<br>Tie<br>+E<br>(u<br>0.                                                                                                  | Dip A<br>('<br>o On Depth:<br>2-W<br>sft)<br>.00                                                                                                 | Angle<br>*)<br>63.03<br>Dim<br>(be:<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Field<br>(<br>0.00<br>ection<br>aring)<br>35.46                                                                               | Strength<br>(nT)<br>50,589                                                     |  |  |
| Wellbore<br>Magnetics<br>Design<br>Audit Notes:<br>Version:<br>Vertical Section                                                                                                                                                        | Wellb<br>Me<br>Design                                                                                                   | ore #1<br>odel Name<br>IGRF200510<br>n #1 16Oct15 se                                                                                                                | Sampi<br>am<br>Phase<br>Depth From (TV<br>(usft)<br>0.00                                                                                                                          | e Date<br>12/31/2009<br>e: Pi<br>/D)                                                                                              | Declina<br>(*)<br>LAN<br>+N/-S<br>(usft)<br>0.00                                                                                                                                                                                                                                                              | ation<br>10.02<br>Tie<br>+E<br>(u<br>0.                                                                                                  | Dip A<br>(1<br>e On Depth:<br>E/-W<br>sft)<br>00                                                                                                 | Angle<br>*)<br>63.03<br>Din<br>(be:<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Field<br>0.00<br>ection<br>aring)<br>35.46                                                                                    | Strength<br>(nT)<br>50,589                                                     |  |  |
| Wellbore<br>Magnetics<br>Design<br>Audit Notes:<br>Version:<br>Vertical Section<br>Plan Sections<br>Measured<br>Depth<br>(usft)                                                                                                        | Wellb<br>M<br>Design<br>n:<br>Inclination<br>(*)                                                                        | ore #1<br>odel Name<br>IGRF200510<br>n #1 16Oct15 se<br>E<br>Azimuth<br>(bearing)                                                                                   | Sampl<br>am<br>Phase<br>Depth From (TV<br>(usft)<br>0.00<br>Vertical<br>Depth<br>(usft)                                                                                           | e Date<br>12/31/2009<br>e: Pl<br>/D)<br>+N/-S<br>(usft)                                                                           | Declina<br>(*)<br>LAN<br>+N/-S<br>(usft)<br>0.00<br>+E/-W<br>(usft)                                                                                                                                                                                                                                           | ation<br>10.02<br>Tie<br>+E<br>(u<br>0.<br>Dogleg<br>Rate<br>(*/100usft)                                                                 | Dip A<br>(1<br>e On Depth:<br>2/-W<br>sft)<br>.00<br>Build<br>Rate<br>(*/100usft)                                                                | Angle<br>*)<br>63.03<br>Din<br>(be<br>13<br>Turn<br>Rate<br>("/100usft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Field<br>(<br>0.00<br>ection<br>aring)<br>35.46<br>TFO<br>(*)                                                                 | Strength<br>(nT)<br>50,589<br>Target                                           |  |  |
| Wellbore<br>Magnetics<br>Design<br>Audit Notes:<br>Version:<br>Vertical Section<br>Plan Sections<br>Measured<br>Depth<br>(usft)<br>0.00                                                                                                | Wellb<br>M<br>Design<br>n:<br>Inclination<br>(°)<br>0.00                                                                | ore #1<br>odel Name<br>IGRF200510<br>n #1 16Oct15 se<br>E<br>Azimuth<br>(bearing)<br>0.00                                                                           | Sampl<br>am<br>Phase<br>Depth From (TV<br>(usft)<br>0.00<br>Vertical<br>Depth<br>(usft)<br>0.00                                                                                   | e Date<br>12/31/2009<br>e: Pi<br>/D)<br>+N/-S<br>(usft)<br>0.00                                                                   | Declin:<br>(*)<br>LAN<br>+N/-S<br>(usft)<br>0.00<br>+E/-W<br>(usft)<br>0.00                                                                                                                                                                                                                                   | ation<br>10.02<br>Tie<br>+E<br>(u<br>0.<br>Dogleg<br>Rate<br>(*/100usft)<br>0.00                                                         | Dip A<br>(1)<br>0 On Depth:<br>(2-W<br>sft)<br>00<br>Build<br>Rate<br>(*/100usft)<br>0.00                                                        | Angle<br>*)<br>63.03<br>Dim<br>(be<br>13<br>Turn<br>Rate<br>(*/100usft)<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Field (<br>0.00<br>ection<br>aring)<br>35.46<br>TFO<br>(")<br>0.00                                                            | Strength<br>(nT)<br>50,589<br>Target                                           |  |  |
| Wellbore<br>Magnetics<br>Design<br>Audit Notes:<br>Version:<br>Vertical Section<br>Plan Sections<br>Measured<br>Depth<br>(usft)<br>0.00<br>500.00                                                                                      | Wellb<br>Ma<br>Design<br>n:<br>Inclination<br>(°)<br>0.00<br>0.00                                                       | ore #1<br>odel Name<br>IGRF200510<br>n #1 16Oct15 se<br>E<br>Azimuth<br>(bearing)<br>0.00<br>0.00                                                                   | Sampl<br>am<br>Phase<br>Depth From (TV<br>(usft)<br>0.00<br>Vertical<br>Depth<br>(usft)<br>0.00<br>500.00                                                                         | e Date<br>12/31/2009<br>e: Pi<br>/D)<br>+N/-S<br>(usft)<br>0.00<br>0.00                                                           | Declina<br>(*)<br>LAN<br>+N/-S<br>(usft)<br>0.00<br>+E/-W<br>(usft)<br>0.00<br>0.00                                                                                                                                                                                                                           | ation<br>10.02<br>Tie<br>+E<br>(u<br>0.<br>Dogleg<br>Rate<br>(*/100usft)<br>0.00<br>0.00                                                 | Dip A<br>(1)<br>0 On Depth:<br>(2-W<br>sft)<br>.00<br>Build<br>Rate<br>(*/100usft)<br>0.00<br>0.00                                               | Angle<br>*)<br>63.03<br>Dim<br>(be<br>13<br>Turn<br>Rate<br>(*/100usft)<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Field<br>0.00<br>ection<br>aring)<br>35.46<br>TFO<br>(°)<br>0.00<br>0.00                                                      | Strength<br>(nT)<br>50,589<br>Target                                           |  |  |
| Wellbore<br>Magnetics<br>Design<br>Audit Notes:<br>Version:<br>Vertical Section<br>Plan Sections<br>Measured<br>Depth<br>(usft)<br>0.00<br>500.00<br>1,114.03                                                                          | Wellb<br>Ma<br>Design<br>n:<br>Inclination<br>(*)<br>0.00<br>0.00<br>12.28                                              | ore #1<br>odel Name<br>IGRF200510<br>1#1 16Oct15 se<br>E<br>Azimuth<br>(bearing)<br>0.00<br>0.00<br>0.00<br>312.21                                                  | Sampl<br>am<br>Phase<br>Depth From (TV<br>(usft)<br>0.00<br>Vertical<br>Depth<br>(usft)<br>0.00<br>500.00<br>1,109.34                                                             | e Date<br>12/31/2009<br>e: Pi<br>/D)<br>+N/-S<br>(usft)<br>0.00<br>0.00<br>0.00<br>44.05                                          | Declina<br>(*)<br>LAN<br>+N/-S<br>(usft)<br>0.00<br>+E/-W<br>(usft)<br>0.00<br>0.00<br>-48.55                                                                                                                                                                                                                 | ation<br>10.02<br>Tie<br>+E<br>(u<br>0.<br>Dogleg<br>Rate<br>(*/100usft)<br>0.00<br>0.00<br>2.00                                         | Dip A<br>(1)<br>0 On Depth:<br>5/-W<br>sft)<br>.00<br>Build<br>Rate<br>(*/100usft)<br>0.00<br>0.00<br>0.00<br>2.00                               | Angle<br>)<br>63.03<br>Dim<br>(be<br>13<br>Turn<br>Rate<br>("/100usft)<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Field<br>(<br>0.00<br>ection<br>aring)<br>35.46<br>TFO<br>(')<br>0.00<br>0.00<br>0.00<br>312.21                               | Strength<br>(nT)<br>50,589<br>Target                                           |  |  |
| Wellbore<br>Magnetics<br>Design<br>Audit Notes:<br>Version:<br>Vertical Section<br>Plan Sections<br>Measured<br>Depth<br>(usft)<br>0.00<br>500.00<br>1,114.03<br>3,704.16                                                              | Wellb<br>Ma<br>Design<br>n:<br>Inclination<br>(°)<br>0.00<br>0.00<br>12.28<br>12.28                                     | ore #1<br>odel Name<br>IGRF200510<br>1#1 16Oct15 se<br>E<br>Azimuth<br>(bearing)<br>0.00<br>0.00<br>0.00<br>312.21<br>312.21                                        | Sampl<br>am<br>Phase<br>Depth From (TV<br>(usft)<br>0.00<br>Vertical<br>Depth<br>(usft)<br>0.00<br>500.00<br>1,109.34<br>3,640.20                                                 | e Date<br>12/31/2009<br>e: Pl<br>/D)<br>+N/-S<br>(usft)<br>0.00<br>0.00<br>0.00<br>44.05<br>414.22                                | Declina<br>(*)<br>LAN<br>+N/-S<br>(usft)<br>0.00<br>+E/-W<br>(usft)<br>0.00<br>0.00<br>0.00<br>-48.55<br>-456.58                                                                                                                                                                                              | ation<br>10.02<br>Tie<br>+E<br>(u<br>0.<br>Dogleg<br>Rate<br>(*/100usft)<br>0.00<br>0.00<br>2.00<br>0.00                                 | Dip A<br>(1)<br>0 On Depth:<br>5/-W<br>sft)<br>.00<br>Build<br>Rate<br>(*/100usft)<br>0.00<br>0.00<br>0.00<br>0.00                               | Angle<br>)<br>63.03<br>Dim<br>(be<br>13<br>Turn<br>Rate<br>('/100usft)<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Field<br>0.00<br>ection<br>aring)<br>35.46<br>TFO<br>(*)<br>0.00<br>0.00<br>0.00<br>312.21<br>0.00                            | Strength<br>(nT)<br>50,589<br>Target                                           |  |  |
| Wellbore<br>Magnetics<br>Design<br>Audit Notes:<br>Version:<br>Vertical Section<br>Plan Sections<br>Measured<br>Depth<br>(usft)<br>0.00<br>500.00<br>1,114.03<br>3,704.16<br>4,507.12                                                  | Wellb<br>Ma<br>Design<br>n:<br>Inclination<br>(*)<br>0.00<br>0.00<br>12.28<br>12.28<br>60.00                            | ore #1<br>odel Name<br>IGRF200510<br>1#1 16Oct15 set<br>#1 16Oct15 set<br>E<br>Azimuth<br>(bearing)<br>0.00<br>0.00<br>0.00<br>312.21<br>312.21<br>135.12           | Sampl<br>am<br>Phase<br>Pepth From (TV<br>(usft)<br>0.00<br>Vertical<br>Depth<br>(usft)<br>0.00<br>500.00<br>1,109.34<br>3,640.20<br>4,326.76                                     | e Date<br>12/31/2009<br>e: PI<br>/D)<br>+N/-S<br>(usft)<br>0.00<br>0.00<br>44.05<br>414.22<br>195.42                              | Declina<br>(*)<br>LAN<br>+N/-S<br>(usft)<br>0.00<br>+E/-W<br>(usft)<br>0.00<br>0.00<br>-48.55<br>-456.58<br>-245.77                                                                                                                                                                                           | ation<br>10.02<br>Tie<br>+E<br>(u<br>0.<br>Dogleg<br>Rate<br>(*/100usft)<br>0.00<br>0.00<br>2.00<br>0.00<br>9.00                         | Dip A<br>(1)<br>0 On Depth:<br>5/-W<br>sft)<br>.00<br>Build<br>Rate<br>(*/100usft)<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00               | Angle<br>)<br>63.03<br>Dim<br>(be<br>13<br>Turn<br>Rate<br>(°/100usft)<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Field<br>0.00<br>ection<br>aring)<br>35.46<br>TFO<br>(*)<br>0.00<br>0.00<br>0.00<br>0.00<br>312.21<br>0.00<br>-177.36         | Strength<br>(nT)<br>50,589<br>Target<br>Start 60 tan #789H                     |  |  |
| Wellbore<br>Magnetics<br>Design<br>Audit Notes:<br>Version:<br>Vertical Section<br>Plan Sections<br>Measured<br>Depth<br>(usft)<br>0.00<br>500.00<br>1,114.03<br>3,704.16<br>4,507.12<br>4,567.12                                      | Wellb<br>Ma<br>Design<br>n:<br>Inclination<br>(*)<br>0.00<br>0.00<br>12.28<br>12.28<br>60.00<br>60.00                   | ore #1<br>odel Name<br>IGRF200510<br>1#1 16Oct15 set<br>#1 16Oct15 set<br>E<br>Azimuth<br>(bearing)<br>0.00<br>0.00<br>0.00<br>312.21<br>312.21<br>135.12<br>135.12 | Sampl<br>am<br>Phase<br>Pepth From (TV<br>(usft)<br>0.00<br>Vertical<br>Depth<br>(usft)<br>0.00<br>500.00<br>1,109.34<br>3,640.20<br>4,326.76<br>4,356.76                         | e Date<br>12/31/2009<br>e: PI<br>/D)<br>+N/-S<br>(usft)<br>0.00<br>0.00<br>0.00<br>44.05<br>414.22<br>195.42<br>158.60            | Declina<br>(*)<br>LAN<br>+N/-S<br>(usft)<br>0.00<br>+E/-W<br>(usft)<br>0.00<br>0.00<br>-48.55<br>-456.58<br>-245.77<br>-209.10                                                                                                                                                                                | ation<br>10.02<br>Tie<br>+E<br>(u<br>0.<br>Dogleg<br>Rate<br>(*/100usft)<br>0.00<br>0.00<br>2.00<br>0.00<br>9.00<br>0.00                 | Dip A<br>(1)<br>0 On Depth:<br>5/-W<br>sft)<br>.00<br>Build<br>Rate<br>(*/100usft)<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00               | Angle<br>)<br>63.03<br>Dim<br>(be<br>13<br>Turn<br>Rate<br>(°/100usft)<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00      | Field<br>0.00<br>ection<br>aring)<br>35.46<br>TFO<br>(')<br>0.00<br>0.00<br>0.00<br>312.21<br>0.00<br>-177.36<br>0.00         | Strength<br>(nT)<br>50,589<br>Target<br>Start 60 tan #789H<br>End 60 tan #789H |  |  |
| Wellbore<br>Magnetics<br>Design<br>Audit Notes:<br>Version:<br>Vertical Section<br>Plan Sections<br>Measured<br>Depth<br>(usft)<br>0.00<br>500.00<br>1,114.03<br>3,704.16<br>4,507.12<br>4,567.12                                      | Wellb<br>Ma<br>Design<br>n:<br>Inclination<br>(°)<br>0.00<br>0.00<br>12.28<br>12.28<br>60.00<br>60.00<br>75.67          | ore #1<br>odel Name<br>IGRF200510<br>1#1 16Oct15 set<br>Azimuth<br>(bearing)<br>0.00<br>0.00<br>0.00<br>312.21<br>312.21<br>135.12<br>135.12<br>135.12              | Sampl<br>am<br>Phase<br>Pepth From (TV<br>(usft)<br>0.00<br>Vertical<br>Depth<br>(usft)<br>0.00<br>500.00<br>1,109.34<br>3,640.20<br>4,326.76<br>4,356.76<br>4,422.23             | e Date<br>12/31/2009<br>e: Pl<br>/D)<br>+N/-S<br>(usft)<br>0.00<br>0.00<br>44.05<br>414.22<br>195.42<br>158.60<br>44.73           | Declina<br>(*)<br>LAN<br>+N/-S<br>(usft)<br>0.00<br>+E/-W<br>(usft)<br>0.00<br>0.00<br>-48.55<br>-456.58<br>-245.77<br>-209.10<br>-95.71                                                                                                                                                                      | ation<br>10.02<br>Tie<br>+E<br>(u<br>0.<br>Dogleg<br>Rate<br>(*/100usft)<br>0.00<br>0.00<br>2.00<br>0.00<br>9.00                         | Dip A<br>(1)<br>0 On Depth:<br>2/-W<br>sft)<br>.00<br>Build<br>Rate<br>(*/100usft)<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0. | Angle<br>)<br>63.03<br>Dim<br>(be<br>13<br>Turn<br>Rate<br>('/100usft)<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0 | Field<br>0.00<br>ection<br>aring)<br>35.46<br>TFO<br>(')<br>0.00<br>0.00<br>312.21<br>0.00<br>-177.36<br>0.00<br>0.00         | Strength<br>(nT)<br>50,589<br>Target<br>Start 60 tan #789H<br>End 60 tan #789H |  |  |
| Wellbore<br>Magnetics<br>Magnetics<br>Design<br>Audit Notes:<br>Version:<br>Vertical Section<br>Plan Sections<br>Measured<br>Depth<br>(usft)<br>0.00<br>500.00<br>1,114.03<br>3,704.16<br>4,507.12<br>4,567.12<br>4,741.19<br>4,908.57 | Wellb<br>Ma<br>Design<br>n:<br>Inclination<br>(°)<br>0.00<br>0.00<br>12.28<br>12.28<br>60.00<br>60.00<br>75.67<br>90.73 | Azimuth<br>(bearing)<br>0.00<br>0.00<br>0.12.21<br>0.12.12<br>0.00<br>0.00<br>0.0                                                                                   | Sampl<br>am<br>Phase<br>Pepth From (TV<br>(usft)<br>0.00<br>Vertical<br>Depth<br>(usft)<br>0.00<br>500.00<br>1,109.34<br>3,640.20<br>4,326.76<br>4,356.76<br>4,422.23<br>4,442.00 | e Date<br>12/31/2009<br>e: Pl<br>/D)<br>+N/-S<br>(usft)<br>0.00<br>0.00<br>44.05<br>414.22<br>195.42<br>158.60<br>44.73<br>-72.70 | Declina<br>(*)<br>LAN<br>+N/-S<br>(usft)<br>0.00<br>+E/-W<br>(usft)<br>0.00<br>0.00<br>-48.55<br>-456.58<br>-245.77<br>-209.10<br>-95.71<br>21.23                                                                                                                                                             | ation<br>10.02<br>Tie<br>+E<br>(u<br>0.<br>Dogleg<br>Rate<br>(*/100usft)<br>0.00<br>0.00<br>2.00<br>0.00<br>9.00<br>9.00<br>9.00<br>9.00 | Dip A<br>(1)<br>0 On Depth:<br>(2-W<br>sft)<br>.00<br>Build<br>Rate<br>(*/100usft)<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0. | Angle<br>)<br>63.03<br>Dim<br>(be<br>13<br>Turn<br>Rate<br>('/100usft)<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0 | Field<br>0.00<br>ection<br>aring)<br>35.46<br>TFO<br>(')<br>0.00<br>0.00<br>312.21<br>0.00<br>-177.36<br>0.00<br>0.00<br>0.00 | Strength<br>(nT)<br>50,589<br>Target<br>Start 60 tan #789H<br>End 60 tan #789H |  |  |

2

# WPX

## Planning Report

| Database: | COMPASS               | Local Co-ordinate Reference: | Well KWU 2309-30D #789H (A1) - Slot A1 |
|-----------|-----------------------|------------------------------|----------------------------------------|
| Company:  | WPX Energy            | TVD Reference:               | GL @ 6596.00usft (Original Well Elev)  |
| Project:  | T23N R9W              | MD Reference:                | GL @ 6596.00usft (Original Well Elev)  |
| Site:     | KWU 2309-30D          | North Reference:             | True                                   |
| Well:     | KWU 2309-30D #789H    | Survey Calculation Method:   | Minimum Curvature                      |
| Wellbore: | Wellbore #1           |                              |                                        |
| Design:   | Design #1 16Oct15 sam |                              |                                        |

Planned Survey

1

| Depth<br>(usft) | Inclination<br>(°) | Azimuth<br>(bearing) | Depth<br>(usft) | +N/-S<br>(usft) | +E/-W<br>(usft) | Section<br>(usft) | Rate<br>(°/100usft) | Rate<br>(°/100usft)   | Rate<br>(°/100usft)  |
|-----------------|--------------------|----------------------|-----------------|-----------------|-----------------|-------------------|---------------------|-----------------------|----------------------|
| 0.00            | 0.00               | 0.00                 | 0.00            | 0.00            | 0.00            | 0.00              | 0.00                | 0.00                  | 0.0                  |
| 320.00          | 0.00               | 0.00                 | 320.00          | 0.00            | 0.00            | 0.00              | 0.00                | 0.00                  | 0.0                  |
| 9 5/8"          |                    |                      |                 |                 |                 |                   |                     |                       |                      |
| 500.00          | 0.00               | 0.00                 | 500.00          | 0.00            | 0.00            | 0.00              | 0.00                | 0.00                  | 0.0                  |
| Start Build 2.  | .00                |                      |                 |                 |                 |                   |                     |                       |                      |
| 1,000.00        | 10.00              | 312.21               | 997.47          | 29.24           | -32.23          | -43.45            | 2.00                | 2.00                  | 0.0                  |
| 1,114.03        | 12.28              | 312.21               | 1,109.34        | 44.05           | -48.55          | -65.45            | 2.00                | 2.00                  | 0.0                  |
| Hold 12.28 In   | clination          |                      |                 |                 |                 |                   |                     |                       |                      |
| 1,500.00        | 12.28              | 312.21               | 1,486.48        | 99.21           | -109.35         | -147.41           | 0.00                | 0.00                  | 0.0                  |
| 2,000.00        | 12.28              | 312.21               | 1,975.04        | 170.66          | -188.12         | -253.59           | 0.00                | 0.00                  | 0.0                  |
| 2,500.00        | 12.28              | 312.21               | 2,463.59        | 242.12          | -266.89         | -359.77           | 0.00                | 0.00                  | 0.0                  |
| 3,000.00        | 12.28              | 312.21               | 2,952.15        | 313.58          | -345.65         | -465.95           | 0.00                | 0.00                  | 0.0                  |
| 3,500.00        | 12.28              | 312.21               | 3,440.71        | 385.04          | -424.42         | -572.13           | 0.00                | 0.00                  | 0.0                  |
| 3,704,16        | 12.28              | 312.21               | 3,640.20        | 414.22          | -456.58         | -615.48           | 0.00                | 0.00                  | 0.0                  |
| Start Build D   | LS 9.00 TFO -17    | 7.36                 | A CONTRACTOR    |                 |                 |                   |                     |                       |                      |
| 4,000.00        | 14.37              | 136.99               | 3,933.32        | 408.41          | -454.81         | -610.11           | 9.00                | 0.71                  | -59.2                |
| 4,500.00        | 59.36              | 135.13               | 4,323.17        | 199.78          | -250.11         | -317.82           | 9.00                | 9.00                  | -0.3                 |
| 4,507.12        | 60.00              | 135.12               | 4,326.76        | 195.42          | -245.77         | -311.67           | 9.00                | 9.00                  | -0.1                 |
| Hold 60.00 In   | clination          |                      |                 |                 |                 |                   |                     |                       |                      |
| 4,567.12        | 60.00              | 135.12               | 4,356.76        | 158.60          | -209.10         | -259.71           | 0.00                | 0.00                  | 0.0                  |
| Start Build Di  | LS 9.00 TFO 0.0    | 0                    |                 |                 |                 |                   |                     |                       |                      |
| 4,741.19        | 75.67              | 135.12               | 4,422.23        | 44.73           | -95.71          | -99.01            | 9.00                | 9.00                  | 0.0                  |
| Start DLS 9.0   | 0 TFO 0.00         |                      |                 |                 |                 |                   |                     |                       |                      |
| 4,908.57        | 90.73              | 135.12               | 4,442.00        | -72.70          | 21.23           | 66.71             | 9.00                | 9.00                  | 0.0                  |
| POE at 90.73    | Inc 135.12 deg     |                      |                 |                 |                 |                   |                     |                       |                      |
| 4,909.00        | 90.73              | 135.12               | 4,441.99        | -73.00          | 21.53           | 67.14             | 0.00                | 0.00                  | 0.0                  |
| 7"              |                    |                      |                 |                 |                 |                   |                     |                       |                      |
| 5,000.00        | 90.73              | 135.12               | 4,440.84        | -137.48         | 85.74           | 158.13            | 0.00                | 0.00                  | 0.0                  |
| 5,500.00        | 90.73              | 135.12               | 4,434.46        | -491.74         | 438.52          | 658.08            | 0.00                | 0.00                  | 0.0                  |
| 6.000.00        | 90,73              | 135.12               | 4,428.09        | -846.01         | 791.31          | 1,158.03          | 0.00                | 0.00                  | 0.0                  |
| 6,500.00        | 90.73              | 135.12               | 4,421.72        | -1,200.27       | 1,144.09        | 1,657.98          | 0.00                | 0.00                  | 0.0                  |
| 7,000.00        | 90.73              | 135.12               | 4,415.35        | -1,554.54       | 1,496.87        | 2,157.93          | 0.00                | 0.00                  | 0.0                  |
| 7,500.00        | 90.73              | 135.12               | 4,408.98        | -1,908.81       | 1,849.65        | 2,657.88          | 0.00                | 0.00                  | 0.0                  |
| 8,000.00        | 90.73              | 135.12               | 4,402.61        | -2,263.07       | 2,202.44        | 3,157.83          | 0.00                | 0.00                  | 0.0                  |
| 8,500.00        | 90.73              | 135.12               | 4,396.24        | -2,617.34       | 2,555.22        | 3,657.78          | 0.00                | 0.00                  | 0.0                  |
| 9,000.00        | 90,73              | 135.12               | 4,389.87        | -2,971.60       | 2,908.00        | 4,157.73          | 0.00                | 0.00                  | 0.0                  |
| 9,500.00        | 90.73              | 135.12               | 4,383.50        | -3,325.87       | 3,260.78        | 4,657.69          | 0.00                | 0.00                  | 0.0                  |
| 10,000.00       | 90.73              | 135.12               | 4,377.13        | -3,680.13       | 3,613.57        | 5,157.64          | 0.00                | 0.00                  | 0.0                  |
| 10,500.00       | 90.73              | 135.12               | 4,370.75        | -4,034.40       | 3,966.35        | 5,657.59          | 0.00                | 0.00                  | 0.0                  |
| 10.873.11       | 90,73              | 135,12               | 4,366.00        | -4,298.76       | 4,229.60        | 6,030,66          | 0.00                | 0.00                  | 0.0                  |
|                 |                    |                      |                 |                 |                 |                   |                     | and the second second | a to set to set to t |

## WPX

## Planning Report

| Database: COMPASS<br>Company: WPX Energy<br>Project: T23N R9W<br>Site: KWU 2309-30D<br>Well: KWU 2309-30D #789H |                  |                      |               |                 | Local Co-or<br>TVD Refere<br>MD Referen<br>North Refer | rdinate Reference:<br>ince:<br>ince:<br>rence:<br>substice Method: | Well KWU<br>GL @ 659<br>GL @ 659<br>True<br>Minimum ( | Well KWU 2309-30D #789H (A1) - Slot A1<br>GL @ 6596.00usft (Original Well Elev)<br>GL @ 6596.00usft (Original Well Elev)<br>True |             |  |
|-----------------------------------------------------------------------------------------------------------------|------------------|----------------------|---------------|-----------------|--------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| Wellbore:                                                                                                       | Wellbore #1      | 00 #10311            |               |                 | Survey Can                                             | culation method.                                                   | Withingth                                             |                                                                                                                                  |             |  |
| Design:                                                                                                         | Design #1 16     | Oct15 sam            |               | Section 1       | 是你!」是很快                                                |                                                                    |                                                       |                                                                                                                                  |             |  |
| Design Targets                                                                                                  |                  |                      | 16 198 J      | less and        |                                                        |                                                                    | and the second                                        | I The plan is                                                                                                                    |             |  |
| Target Name<br>- hit/miss target<br>- Shape                                                                     | Dip Angle<br>(°) | Dip Dir.<br>(bearing | TVD<br>(usft) | +N/-S<br>(usft) | +E/-W<br>(usft)                                        | Northing<br>(usft)                                                 | Easting<br>(usft)                                     | Latitude                                                                                                                         | Longitude   |  |
| Start 60 tan #789H<br>- plan hits target ca<br>- Point                                                          | 0.00<br>anter    | 0.00                 | 4,326.76      | 195.42          | -245.77                                                | 1,893,452.54                                                       | 498,731.46                                            | 36.203877                                                                                                                        | -107.837633 |  |
| End 60 tan #789H<br>- plan hits target ce<br>- Point                                                            | 0.00<br>enter    | 0.00                 | 4,356.76      | 158.60          | -209.10                                                | 1,893,415.72                                                       | 498,768.13                                            | 36.203776                                                                                                                        | -107.837509 |  |
| BHL 789H<br>- plan hits target ce<br>- Point                                                                    | 0.00<br>anter    | 0.00                 | 4,366.00      | -4,298.76       | 4,229.60                                               | 1,888,958.20                                                       | 503,206.67                                            | 36.191530                                                                                                                        | -107.822466 |  |
| POE 789H<br>- plan hits target ce<br>- Point                                                                    | 0.00<br>enter    | 0.00                 | 4,442.00      | -72.70          | 21.23                                                  | 1,893,184.41                                                       | 498,998.45                                            | 36.203140                                                                                                                        | -107.836728 |  |

## Casing Points

J

| Measured<br>Depth<br>(usft) | Vertical<br>Depth<br>(usft) |        | Name | Casing<br>Diameter<br>(in) | Hole<br>Diameter<br>(in) |  |
|-----------------------------|-----------------------------|--------|------|----------------------------|--------------------------|--|
| 320.00                      | 320.00                      | 9 5/8" |      | 9.625                      | 12.250                   |  |
| 4,909.00                    | 4,441.99                    | 7"     |      | 7.000                      | 8.750                    |  |

### Plan Annotations

| Measured        | Vertical Local Coordinates |                 | Vertical        | Local Coordinates                |  |  |
|-----------------|----------------------------|-----------------|-----------------|----------------------------------|--|--|
| Depth<br>(usft) | Depth<br>(usft)            | +N/-S<br>(usft) | +E/-W<br>(usft) | Comment                          |  |  |
| 500.00          | 500.00                     | 0.00            | 0.00            | Start Build 2.00                 |  |  |
| 1,114.03        | 1,109.34                   | 44.05           | -48.55          | Hold 12.28 Inclination           |  |  |
| 3,704.16        | 3,640.20                   | 414.22          | -456.58         | Start Build DLS 9.00 TFO -177.36 |  |  |
| 4,507.12        | 4,326.76                   | 195.42          | -245.77         | Hold 60.00 Inclination           |  |  |
| 4,567.12        | 4,356.76                   | 158.60          | -209.10         | Start Build DLS 9.00 TFO 0.00    |  |  |
| 4,741.19        | 4,422.23                   | 44.73           | -95.71          | Start DLS 9.00 TFO 0.00          |  |  |
| 4,908.57        | 4,442.00                   | -72.70          | 21.23           | POE at 90.73 Inc 135.12 deg      |  |  |
| 10,873.11       | 4,366.00                   | -4,298.76       | 4,229.60        | TD at 10873.11                   |  |  |



10 feet at the southwest corner, and a cut of 5 feet at the southeast corner to create a level well pad. No additional surfacing materials will be required for construction.

- 4. As determined during the onsite on September 30, 2015, the following best management practices will be implemented:
  - a. Diversions will be installed upon reclamation.
  - b. No additional fill would be required to construct the pad.
  - c. A 24-inch culvert will be required at the beginning of the proposed access road.
- 5. All project activities will be confined to permitted areas only.
- Construction equipment may include chain saws, a brush hog, scraper, maintainer, excavator, and a dozer.
- 7. If drilling has not been initiated on the well pad within 120 days of the well pad being constructed, the operator will consult with the BLM to address a site-stabilization plan.
- **D.** Production Facilities
  - As practical, access will be a teardrop-shaped road through the production area so that the center may be revegetated.
  - Within 90 days of installation, production facilities would be painted Juniper Green to blend with the natural color of the landscape and would be located, to the extent practical, to reasonably minimize visual impact.
  - Berms will be constructed around all storage facilities sufficient in size to contain the storage capacity of tanks. Berm walls will be compacted with appropriate equipment to assure containment.

After the completion phases and pipeline installation, portions of the project area not needed for operation will be reclaimed. When the wells are plugged, final reclamation will occur within the remainder of the project area. Reclamation is described in detail in the Reclamation Plan (Appendix C).

## 7.0 Methods for Handling Waste

## A. Cuttings

- Drilling operations will utilize a closed-loop system. Drilling of the horizontal laterals will be accomplished with water-based mud. All cuttings will be placed in roll-off bins and hauled to a commercial disposal facility or land farm. WPX will follow Onshore Oil and Gas Order No. 1 regarding the placement, operation, and removal of closed-loop systems. No blow pit will be used.
- 2. Closed-loop tanks will be adequately sized for containment of all fluids.
- B. Drilling Fluids
  - Drilling fluids will be stored onsite in above-ground storage tanks. Upon termination of drilling operations, the drilling fluids will be recycled and transferred to other permitted closed-loop systems or returned to the vendor for reuse, as practical. All residual fluids will be hauled to a commercial disposal facility.
- C. Spills
  - Any spills of non-freshwater fluids will be immediately cleaned up and removed to an approved disposal site.
- D. Sewage
  - Portable toilets will be provided and maintained during construction, as needed (see Figure 4 in Appendix B for the location of toilets).

### Directions from the Intersection of US Hwy 550 & US Hwy 64

J

### in Bloomfield, NM to WPX Energy Production, LLC KWU #789H

### 660' FNL & 464' FWL, Section 30, T23N, R9W, N.M.P.M., San Juan County, NM

### Latitude: 36.203353°N Longitude: 107.837417°W Datum: NAD1983

From the intersection of US Hwy 550 & US Hwy 64 in Bloomfield, NM, travel Southerly on US Hwy 550 for 35.9 miles to Mile Marker 115.7;

Go Right (South-westerly) @ Nageezi Post Office on County Road #7800 for 0.4 miles to 4-way intersection:

Go Right (North-westerly) remaining on paved County Road #7800 for 3.6 miles to where pavement ends;

Go Straight (South-westerly) continuing on dirt portion of County Road #7800 for 1.2 miles to fork in roadway;

Go Left (Southerly) which is straight for 3.0 miles to begin proposed access on right-hand side of County Road #7800 which continues for 220.5' to staked WPX KWU #789H location.

