District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party HILCOrp Energy Company	OGRID 372171	
Contact Name Lindsay Dumas	Contact Telephone 832-839 - 4585	
Contact email LDUMASE hilcorp. Wm	Incident # (assigned by OCD) NCS 907738902	
Contact mailing address 1111 TVAVIS St. Houston, Tx 77002		

Location of Release Source

Latitude 36.62576

Longitude - 107.33431

(NAD 83 in decimal degrees to 5 decimal places)

Site Name San Juan 28-5 # 81M	Site Type Well site
Date Release Discovered 8/27/18	API# (if applicable) 30 - 039 - 29555

Unit Letter	Section	Township	Range	County	
M	24	28N	05W	Rio Arriba	NMOCD

Surface Owner: State 🖾 Federal 🗌 Tribal 🗌 Private (Name: _____

MAR 2 2 2019

Nature and Volume of Release

DISTRICT III

Material	(s) Released (Select all that apply and attach calculations or specific	justification for the volumes provided below)
Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls) 38 bbls	Volume Recovered (bbls) 386615
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release BETT	Corrosion	

C 141	State of New Marian			
form C-141	State of New Mexico		Incident ID	
age 2	On Conservation Division		District RP	
			Application ID	
			Application ID	
Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the response 19.15.29.7(A)(1) an a volume, Uxcluding	nsible party consider unauthor gases, of 2	this a major release? ized velease 25 barrels c	e of or more.
If YES, was immediate in Yes, by Lisa H	otice given to the OCD? By whom? To when the Jim Gins Wold,	iom? When and by v Cory Sinith,	vhat means (phone, e Vanessa Fié	mail, etc)? Ids; and
Whitney mon	MUSCHUM) BY BINAL OKLIT	OF 2.52pr).	
	Initial Re	esponse		
The responsible	varty must undertake the following actions immediate!	ly unless they could create	a safety hazard that would	l result in injury
Per 19.15.29.8 B. (4) NM has begun, please attach a within a lined containmen	ase has been stopped. s been secured to protect human health and we been contained via the use of berms or d coverable materials have been removed and d above have not been undertaken, explain v DUE HAVE blen COMPLE AC the responsible party may commence re a narrative of actions to date. If remedial of that area (see 19.15.29.11(A)(5)(a) NMAC), p	the environment. likes, absorbent pads, d managed appropriat why: t-ed. emediation immediate efforts have been suc- please attach all inform	or other containmentely.	f a release. If remediation or if the release occurred osure evaluation.
I hereby certify that the infor regulations all operators are public health or the environm failed to adequately investiga addition, OCD acceptance of and/or regulations.	mation given above is true and complete to the l required to report and/or file certain release notif nent. The acceptance of a C-141 report by the O ate and remediate contamination that pose a three f a C-141 report does not relieve the operator of the file operator o	best of my knowledge a fications and perform co OCD does not relieve the at to groundwater, surfa responsibility for comp	nd understand that purs prrective actions for rele c operator of liability sh ice water, human health liance with any other fe	suant to OCD rules and eases which may endanger rould their operations have nor the environment. In ederal, state, or local laws
Printed Name: 110050	iy Dumas	Title: Envino	omental sp	pecialist
Signature Linchau	Bumas	Date: 🔊 9/4/	18	
email: 1)11Mas@	hilcorp.com	Telephone: <u>832</u>	-839-458	5
OCD Only				
Received by:		Date:		

Lindsay Dumas

From:	Lisa Hunter
Sent:	Monday, August 27, 2018 2:52 PM
То:	jim.griswold@state.nm.us; Smith, Cory, EMNRD; 'Fields, Vanessa, EMNRD'; Thomas, Leigh
Cc:	Lindsay Dumas
Subject:	Release Notification - San Jua 28-5 Unit 81M - Produced Water 38bbls

All -

This is notification that at approximately 9:15 a.m. today, August 27, 2018, it was discovered that a Below Grade Tank on the San Juan 28-5 Unit 81M, API# 30039295550000, Lat. 36.62583, Long. -107.33365, UL: M, Sec. 26, T28N, R05W released 38bbls of Produced Water into the cribbing – 38 bbls plus rain water was recovered.

Lindsay Dumas, Environmental (281-794-9159) will follow up with a C-141 and remediation plans.

Thank you.

Lisa Hunter

Field Safety Specialist Hilcorp Energy – L48 West 382 Road 3100 Aztec, NM 87410 Lhunter@Hilcorp.com

505.486.9494

"If your actions inspire others to dream more, learn more, do more and become more, you are a leader." - John Quincy Adams Form C-141 Page 3

State of New Mexico **Oil Conservation Division**

Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	331' (ft hos)
what is the sharlowest depin to groundwater beneath the area affected by the release.	(11085)
Did this release impact groundwater or surface water?	Yes 🕅 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	Yes 🕅 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗋 Yes 🕅 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	Yes 🕅 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	Yes 🕅 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	Yes 🗹 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🖾 No
Are the lateral extents of the release within 300 feet of a wetland?	Yes 🔀 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🔀 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗆 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗆 Yes 🗹 No
Did the release impact areas not on an exploration, development, production, or storage site?	Yes 🖄 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. Field data

Data table of soil contaminant concentration data

Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release

Boring or excavation logs

Photographs including date and GIS information

- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Form C-141 Page 4	State of New Mexico Oil Conservation Division	Incident IDDistrict RPFacility IDApplication ID
I hereby certify that the inf regulations all operators are public health or the environ failed to adequately investi addition, OCD acceptance and/or regulations.	ormation given above is true and complete to the e required to report and/or file certain release no nment. The acceptance of a C-141 report by the gate and remediate contamination that pose a the of a C-141 report does not relieve the operator o	e best of my knowledge and understand that pursuant to OCD rules and stifications and perform corrective actions for releases which may endanger OCD does not relieve the operator of liability should their operations have reat to groundwater, surface water, human health or the environment. In of responsibility for compliance with any other federal, state, or local laws
Printed Name: LINdso Signature: Lindso email: LDUMasco	4 Dumas 4 Dumas hilcorp.com	_ Title: <u>Environmental Specialist</u> Date: <u>9-4-18</u> Telephone: <u>832-839-4585</u>
OCD Only Received by:		Date:

Form C-141 Page 6 State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC

Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name: Undsay Dumas Titl	: Environmental Specialist
Signature: maday ang Date	3-19-19
email: UDUMASC ALCOrp. Com Teler	hone: 832-839-4585
OCD Only	
Received by:	Date: 3/22/19
Closure approval by the OCD does not relieve the responsible party of liab	ility should their operations have failed to adequately investigate and
remediate contamination that poses a threat to groundwater, surface water,	human health, or the environment nor does not relieve the responsible
party of compliance with any other rederal, state, of local laws and/of regi	liations.
I'mme / /	
Closure Approved by:	Date:/4/19
Printed Name:	Title: Environmental Spec

Scaled Map

🛨 Impacted Area

Depth to water determination

New Mexico Office of the State Engineer Point of Diversion Summary

			(quarters are) (quarters are	smalles	NE 3=S	tt' 4=SE)	(NAD83 U	TM in meters)	
Well Tag	POD	Number	Q64 Q16 Q	16 Q4 Sec		c Tws Rng		Y	
	SJ O	0047		28	28N	05W	288558	4056700*	•
Driller Lic	ense:		Driller Com	pany:					
Driller Na	me:	CONLEY COX							
Drill Start	Date:	07/30/1953	Drill Finish	Date:	0	8 04/1953	Pl	ug Date:	
Log File Date: 01/13/1954		01/13/1954	PCW Rev D	ate:			Se	urce:	Shallow
Pump Type:		Pipe Discha	rge Siz	e:		Es	Estimated Yield:		
Casing Siz	te:	7.00	Depth Well:		4	65 feet	D	epth Water:	265 feet
	Wate	er Bearing Stratific	ations:	Top	Botton	Descrip	otion		
				140	18:	Sandsto	ne Grave	Conglome	rate
				200	24	Sandsto	ne Grave	Conglome	rate
		Casing Perfo	rations:	Тор	Botton	1			
				140	18:	5			
				200	24	5			

San Juan 28-5 #81M elevation: 6733'

POD elevation: 6667'

Estimated GW at location: ~331'

*UTM location was derived from PLSS - see Help

as data is furnished by the NMOSETSC and is accepted by the recipient with the expressed understanding that the OSETSC make no warranties, expressed or implied, meaning the accuracy, completeness, reliability, unability, or suitability for any particular purpose of the data

9/4/18 9:47 AM

POINT OF DIVERSION SUMMARY

		(quarters : (quarters	are smalle	1=NE 3=ST est to largest	(14=SE)	AD83 UT	[M in meters)		
Well Tag POD SJ 00	Number 0036	Q64 Q1	6 Q4 S	ec Tws 28 28N	Rng 05W 28	X 8156	¥ 4056298* 🌍		
Driller License:		Driller C	ompany	:					-
Driller Name:	CONLEY COX								
Drill Start Date:	06/27/1953	Drill Fini	sh Date	. 06	27 1953	Plu	g Date:		
Log File Date:	01/13/1954	PCW Ret	Date:			Sou	arce:	Shallow	
Pump Type:		Pipe Disc	harge S	ize:		Est	imated Yield:	30 GPM	
Casing Size:	7.00	Depth We	ell:	30	3 feet	De	pth Water:	243 feet	
Wate	r Bearing Stratific	ations:	Top	Bottom	Description	n			-
			60	100	Sandstone	Gravel	Conglomerate		
			200	240	Sandstone	Gravel	Conglomerate		
			260	285	Sandstone	Gravel	Conglomerate		-
	Casing Perfo	rations:	Тор	Bottom					
			60	100					
			200	240					
			260	285					

San Juan 28-5 #81M elevation: 6733'

POD elevation: 6567'

Estimated GW at location: ~409'

		of Marty	100
	1		
		5	and the second
		2	с
	WHICH PARTY.	COLUMN 14	
111	-17 11-		in the

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW****** in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD been rep) O=orpha C=the fil closed)	has laced, med, le is		(qui (qui	arte	rs are	1=NV	V 2=NE est to lar	3=\$W 4=\$! rgest) (?	E) NAD\$3 UTM	l in m	eters)	(In	feet)	
POD Number	Code	POD Sub- basin	County	Q Q 64 10	Q	Sec	Tws	Rng	x	Y		DistanceDep	thWellDe	Water C	Vater
SJ 00036		SJ	RA		3	28	28N	05W	288156	4056298*	•	0	303	243	60
SJ 00047		SJ	RA			28	28N	05W	288558	4056700*	٩	568	465	265	200
<u>\$7.00199</u>		SJ	SJ	1	2	03	27N	05W	290409	4053971*	0	3238	1840		
										A	verag	e Depth to Wate	r.	254 fe	et
												Minimum Dep	th	243 fe	et
												Maximum Dep	th:	265 fe	et
Record Count: 3															
UTMNAD83 Radiu	s Search (in	meters):												
Easting (X): 288	8156		North	ing (1):	4056	298			Radius: 35	500				
+ITA floorden men derived	A DT CC														

"UTAL location was derived from PLSS - see fleip

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

9/4/18 9:50 AM

WATER COLUMN AVERAGE DEPTH TO WATER

Determination of water sources and significant watercourses within ½ mile of the lateral extent of the release

Topographic/Aerial Maps

1920 W. Villa Maria, Ste. 205 Bryan, Texas 77807 979.324.2139 www.teamtimberwolf.com

October 19, 2018

Ms. Lindsay Dumas Environmental Specialist Hilcorp Energy Company 1111 Travis Street Houston, Texas 77002

Re: Site Assessment Report San Juan 28-5 No. 81M Hilcorp Energy Company Rio Arriba County, New Mexico

Dear Ms. Dumas:

At the request of Hilcorp Energy Company (Hilcorp), Timberwolf Environmental, LLC (Timberwolf) presents this report to document site assessment activities at the San Juan 28-5 No. 81M (Site). The Site is located approximately 36.6 miles east southeast of Bloomfield, in Rio Arriba County, New Mexico (Figures 1-3).

Environmental Setting

The Site is situated on BLM land. The area consists of sparse vegetative cover comprised primarily of scrub brush. Average elevation at the Site is approximately 6,745 feet (ft) above mean sea level. The nearest surface water is an intermittent stream located approximately 495 ft west-southwest of the Site. During the field investigation, the stream was dry. Groundwater is expected to be greater than 100 ft below ground surface (bgs).

According to the U.S. Department of Agriculture – Natural Resources Conservation Service (USDA-NRCS), the Site soil consists of the rock outcrop of Vessilla-Menefee complex, 15 to 40 percent slopes. The surface layer consists of sand, underlain by a layer of sandy loam with sandstone inclusions encountered from 6 to approximately 20 inches bgs. Native salinity of the soil is nonsaline to very slightly saline (0.0 to 2.0 millimhos per centimeter (mmhos/cm)).

Overview

The Site is a multi-well upstream oil and gas facility. Surface equipment at the Site includes: two wellheads, two separators, two oil tanks, one below-grade storage tank ("pit-tank"), and gas meters.

On 08/27/18, a corrosion-related release from the pit-tank was discovered at the Site. Released fluids were comprised of produced water. All released fluids were contained by the pit. Recovery activities included vacuuming; approximately 38 bbls of produced water were recovered. The tank was taken out of service and removed from the pit during initial recovery efforts.

Field reports identified the area within the pit as the primary area of concern (AOC). Constituents of concern (COCs) include: benzene, toluene, ethyl-benzene, and xylene (BTEX), total petroleum hydrocarbons (TPH), and chloride.

Regulatory Criteria

The NMOCD established remediation action levels for soils impacted by oilfield products or wastes, which are documented under New Mexico Administrative Code (NMAC) Rule 19.15.29. The Rule was repealed and replaced by *Oil Conservation Commission Order No.: R-14751*, dated June 21, 2018.

Under Rule 19.15.29, soil cleanup criteria is determined primarily based on the distance between the base of impacted soil and the depth to usable groundwater. NMOCD laboratory methodology and soil closure criteria is presented in Table 1.

Depth to Groundwater ¹	Constituent	Method ²	Regulatory Limit ³ (mg/kg)
≤ 50 feet	Chloride ⁴	EPA 300.0	600
	TPH	EPA SW-846 Method 8015M	100
	Total BTEX	EPA SW-846 Method 8021B or 8260B	50
	Benzene	EPA SW-846 Method 8021B or 8015M	10
51 feet-100 feet	Chloride ⁴	EPA 300.0	10,000
	TPH	EPA SW-846 Method 8015M	2,500
	GRO+DRO	EPA SW-846 Method 8015M	1,000
	Total BTEX	EPA SW-846 Method 8021B or 8260B	50
	Benzene	EPA SW-846 Method 8021B or 8260B	10
> 100 feet	Chloride ⁴	EPA 300.0	20,000
	TPH	EPA SW-846 Method 8015M	2,500
	GRO+DRO	EPA SW-846 Method 8015M	1,000
	Total BTEX	EPA SW-846 Method 8021B or 8260B	50
	Benzene	EPA SW-846 Method 8021B or 8015M	10

Table 1. Closure Criteria for Soils Impacted by a Release

¹From base of impact to useable groundwater (i.e., less than 10,000 milligrams per liter (mg/L) total dissolved solids (TDS)) ²Or other test methods approved by the division

³Numerical limits or natural background level, whichever is greater

⁴Applies to produced water releases or other fluids which may contain chloride

mg/kg - milligrams per kilograms

GRO – gasoline range organics

DRO - diesel range organics

ORO - oil range organics

TPH – total petroleum hydrocarbons (TPH = GRO + DRO + ORO)

Receptors and Sensitive Area Survey

A survey of receptors and sensitive areas was conducted to establish the regulatory criteria.

The findings are presented in Table 2.

Table 2. Receptor and Sensitive Area Survey San Juan 28 – 5 No. 81M

Receptor or Sensitive Feature	Yes	No
Any continuously flowing watercourse or any other significant watercourse within 300 ft from Site?		\checkmark
Any lakebed, sinkhole or playa lake within 200 ft of Site		\checkmark
Any occupied permanent residence, school, hospital, institution or church within 300 ft of Site?		\checkmark
Any spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes with 500 ft?		\checkmark
Any fresh water well or spring within 1000 ft of Site?		\checkmark
Within incorporated boundaries or within a defined municipal fresh water well field?		\checkmark
Any wetlands within 100 ft of Site?		\checkmark
Is the Site situated over any known subsurface mine?		\checkmark
Is the Site within an unstable area?		\checkmark
Is the Site situated within a 100-year floodplain?		V

Based on the lack of receptors or sensitive features in the area, the following remedial targets are applicable for the Site:

- Chloride < 20,000 mg/kg
- TPH < 2,500 mg/kg
- GRO+DRO < 1,000 mg/kg
- Total BTEX < 50 mg/kg
- Benzene < 10 mg/kg

Site Assessment

On 09/24/18, Timberwolf conducted a soil assessment to determine the magnitude and horizontal and vertical extents of contamination. When Timberwolf personnel arrived on Site, the below-ground storage tank had been removed from the pit and was situated along the northern edge of the well pad.

Timberwolf collected soil samples from six soil borings (i.e. SB1 - SB6) within or adjacent to the pit. The location and purpose of each boring is presented in Table 3. Soil sample locations are shown on the attached Sample Location Map (Figure 4).

Table 3. Location and Purpose of Soil Borings San Juan 28 – 5 No. 81M

Soil Boring	Location – Purpose
SB1	Collected from the center of the pit area to determine the degree of impact to soils and for vertical delineation
SB2—SB5	Collected at the northeast, southeast, southwest, and northwest corners of the pit to achieve horizontal delineation
SB6	Collected west of SB6 for an additional horizontal delineation point, if needed.

Soil borings were advanced with a stainless-steel hand auger. Samples were collected from one-foot depth intervals; the total depths of borings ranged from 5 to 8 feet bgs. Soil encountered consisted primarily of sandy loam. To eliminate cross contamination, the hand auger and sampling equipment were properly decontaminated between samples using distilled water and Alconox[®].

Soil samples were placed in laboratory-provided sample containers, stored on ice, and transported under proper chain-of-custody protocol to Pace National Laboratories in Mount Juliet, TN. Samples were analyzed for the following constituents:

- BTEX using EPA Method 8260B
- TPH-GRO and TPH-DRO (extended range) EPA Method 8015C
- Chloride using EPA Method 300

Analytical methods are documented on the attached laboratory reports. The analytical results are summarized Figure 4 and presented in Table 4 below.

Sample	Dette	Volatile	Organic C	ompounds (r	ng/kg)	Total	GRO	DRO	ORO	трн	Chloride
D	Date	В	т	E	x	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SB1 5-6'	09/24/18	< 0.00046	< 0.0014	< 0.00061	< 0.0055	< 0.0055	0.05	50.7	22.3	73.5	48.1
SB2 5-6'	09/24/18	< 0.00043	< 0.0014	< 0.00058	< 0.0052	< 0.0052	0.028	< 1.8	1.3	3.08	8.3
SB3 5-6'	09/24/18	< 0.00048	< 0.0015	< 0.00063	< 0.0057	< 0.0057	0.033	< 1.9	1.2	3.17	23
SB4 5-6'	09/24/18	< 0.00047	< 0.0015	< 0.00062	< 0.0056	< 0.0056	0.037	< 1.9	1.2	3.14	13.2
SB5 5-6'	09/24/18	< 0.019	0.68	0.59	12.9	14.2	752	186	0.51	938.5	9.5
SB5 7-8'	09/24/18	< 0.00044	< 0.0014	< 0.00058	0.015	0.015	11.3	2.9	< 0.3	14.5	6.5
SB6 5-6'	09/24/18	< 0.00045	< 0.0014	< 0.00059	< 0.0054	< 0.0054	0.05	< 1.8	1.39	3.24	10.4
Remedia	al Target	10	-	-	-	50	-	-	-***	2,500	20,000

Table 4. Analytical Results of Soil Samples San Juan 28 – 5 No. 81M

mg/kg – milligrams per kilogram

BTEX - benzene, toluene, ethylbenzene, xylenes

GRO - gasoline range organics

DRO - diesel range organics

ORO - oil range organics

TPH - total petroleum hydrocarbons (TPH = GRO + DRO + ORO)

Findings of Site Assessment

Based on the Site assessment and NMOCD remedial targets for the Site, the following is concluded:

• All soil samples were below the remedial targets for all COCs.

Remedial Work and Confirmation Sample

At the request of the NMOCD, Hilcorp personnel excavated one foot of soil from the base of the pit and collected a confirmation sample (i.e., ("BGT Cellar"). This work was conducted on 10/05/18. The analytical results of the confirmation sample are presented in Table 5 below and shown in Figure 5.

				Vano	uan 20 -	0 110. 0						
Sample ID	Date	Volatile	Organic C	ompounds	s (mg/kg)	Total BTEX	GRO	DRO	ORO	ТРН	Chloride	
		В	т	E	X	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
BGT Cellar	10/05/18	0.0049	0.017	0.010	0.108	0.14	2.22	17.8	16.5	36.5	32.9	
Remedial	Target	10	-	-	- 1	50	-		-	2,500	20,000	

Table 5. Analytical Results of Confirmation Sample San Juan 28 – 5 No. 81M

mg/kg - milligrams per kilogram

BTEX - benzene, toluene, ethylbenzene, xylenes

GRO - gasoline range organics

DRO - diesel range organics

ORO - oil range organics

TPH - total petroleum hydrocarbons (TPH = GRO + DRO + ORO)

Conclusions

Based on laboratory analysis of samples collected during the Site assessment and the confirmation sample following excavation activities, the following is concluded:

- Concentration of chlorides in all soil samples were below regulatory limits
- Concentration of TPH in all soil samples were below regulatory limits
- Concentration of benzene and total BTEX in all soil samples were below regulatory limits

Soil samples collected during the Site assessment and confirmation sampling event indicate the Site is in compliance with regulatory criteria. No further action is required.

Timberwolf appreciates the opportunity to provide Hilcorp with our professional consulting services. If you have any questions regarding this proposal, please contact us at (979) 324-2139.

Sincerely, Timberwolf Environmental, LLC

Preston Kocian

Preston Kocian Project Manager

Im Foster President

Attachments: Figures / Laboratory Report and Chain-of-Custody Documents

Figures

				Matan									
	Real Address	Sample ID	Date	Volatil	e Organgic C	ompounds (r	ng/kg) V	Total BTEX (mg/kg)	GRO (mg/kg)	DRO (mg/kg)	ORO (mg/kg)	TPH (mg/kg)	Chloride (mg/kg)
- CANADA SA	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER	SB15.6	09/24/19	< 0.00046	< 0.0014	< 0.00061	< 0.0055	< 0.0055	0.05	50.7	22.3	73.5	48.1
A LE MARKET AND	ALL AND A	SB2 5-6'	09/24/18	< 0.00043	< 0.0014	< 0.00058	< 0.0052	< 0.0052	0.028	< 1.8	1.3	3.08	8.3
	AND THE REPORT OF THE REPORT OF	SB3 5-6'	09/24/18	< 0.00048	< 0.0015	< 0.00063	< 0.0057	< 0.0057	0.033	< 1.9	1.2	3.17	23
Alter and a second second		SB4 5-6'	09/24/18	< 0.00047	< 0.0015	< 0.00062	< 0.0056	< 0.0056	0.037	< 1.9	1.2	3.14	13.2
and the second se	STATISTICS AND ADDRESS OF	SB5 5-6'	09/24/18	< 0.019	0.68	0.59	12.9	14.2	752	186	0.51	938.5	9.5
	STORE STORE STORE STORE STORE	SB5 7-8'	09/24/18	< 0.00044	< 0.0014	< 0.00058	0.015	0.015	11.3	2.9	< 0.3	14.5	6.5
	Constant Constant State	SB6 5-6'	09/24/18	< 0.00045	< 0.0014	< 0.00059	< 0.0054	< 0.0054	0.05	< 1.8	1.39	3.24	10.4
		Remedia	al Target	10	-		-	50	-		-	2,500	20,000
	6 SB3 SB2 SB4 SB3			Source	E Fert Dit	affiel Globe, and the Gl	Geofiere, I S Liser Ce	Eenthelen Ge	ac@itabhites	Concention	SU ,20 and	DA UCGO,	are:
Figure 4 Sample Location Map		Sit	e Asse	essmen	t Rep	ort					Se	Sample Da ptember 24	ate: 4, 2018
TIMBERWOLF	o Created By: Kevin Cole September 26, 2018 TE Project No.: HEC-180048	50 Rio	San Jua Hilcorp E Arriba C	an 28-5 N Energy C County, N	o. 81M ompany lew Mex	ico			15 Imagery Vecto	Datum: NAD8 Source: ESP or Source: TE		Sample Locat Tank Battery E Below Grade	ion (clean) 3erm Tank - 5ft bgs

		Volatile Organic Compounds (mg/kg) Total BTEX GRO DRO ORO									000	TDU	Chlorida
	San Sa	Sample ID Date		B	T	E	X	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	BO	GT Cellar 1	0/05/18	0.0049	0.017	0.01	0.108	0.14	2.22	17.8	16.5	36.5	32.9
	State - Mar	Remedial Ta	arget	10	-	-	-	50	- 15	-	- 000	2,500	20,000
	BGT Cel	ellar			Source	:: Fent, Digite TD; KGN; en	HiGibbe, ert	Fyre, Eenthot eer Commun	ar Geograph	Mas, CHESU	Airbus DS, L		
Figure 5 Confirmation Sample Location Map			Sit	te Asse	essmen	t Repo	rt					Sample I October 5	Date: , 2018
	0 Created By: Kevin Cole October 18, 2018 TE Project No.: HEC-180048		50 Ric	San Jua Hilcorp E Arriba (an 28-5 N Energy Co County, N	o. 81M ompany ew Mexic	0 0		Ima	Datum: NA gery Source: E Vector Source		Sample Loca Tank Battery Below Grade	ation (clean) Berm e Tank - 5ft bgs

Laboratory Reports and Chain-Of-Custody Documents

.

.

ANALYTICAL REPORT

September 26, 2018

Timberwolf Environmental, LLC

Sample Delivery Group:
Samples Received:
Project Number:
Description:

L1028432 09/25/2018 180048 SJ 28-5 No. 81M

Report To:

Preston Kocian 1920 W Villa Maria, Ste 205 Bryan, TX 77807

Entire Report Reviewed By:

Mark W. Beasley Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

PROJECT: 180048 SDG: L1028432 DATE/TIME: 09/26/18 16:21

PAGE:

2 of 21

ONE LAB. NATIONWIDE.

Ss

Cn

Sr

Qc

GI

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Тс

Cn

Sr

Qc

GI

AI

Sc

SB1 5-6 1 1028432-01 Solid			Collected by Preston K	Collected date/time 09/24/18 09:40	Received date/time 09/25/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1171059	1	09/25/18 13:06	09/25/18 13:21	KDW
Wet Chemistry by Method 9056A	WG1171045	1	09/25/18 14:52	09/25/18 19:09	MAJ
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1171299	1	09/25/18 11:53	09/26/18 00:35	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1170977	1	09/25/18 11:53	09/25/18 17:09	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1171079	1	09/25/18 18:32	09/25/18 23:09	AAT
			Collected by	Collected date/time	Received date/time
SB2 5-6 L1028432-02 Solid			Preston K	09/24/18 09:47	09/25/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1171059	1	09/25/18 13:06	09/25/18 13:21	KDW
Wet Chemistry by Method 9056A	WG1171045	1	09/25/18 14:52	09/25/18 19:18	MAJ
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1171299	1	09/25/18 11:53	09/26/18 00:56	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1170977	1	09/25/18 11:53	09/25/18 17:29	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1171079	1	09/25/18 18:32	09/25/18 23:21	AAT
			Collected by	Collected date/time	Received date/time
SB3 5-6 L1028432-03 Solid			Preston K	09/24/18 09:50	09/25/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1171059	1	09/25/18 13:06	09/25/18 13:21	KDW
Wet Chemistry by Method 9056A	WG1171045	1	09/25/18 14:52	09/25/18 19:27	MAJ
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1171299	1	09/25/18 11:53	09/26/18 01:17	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1170977	1	09/25/18 11:53	09/25/18 17:50	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1171079	1	09/25/18 18:32	09/25/18 23:33	AAT
			Collected by	Collected date/time	Received date/time
SB4 5-6 L1028432-04 Solid			Preston K	09/24/18 09:55	09/25/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
		- In a second second	date/time	date/time	and the second se
Total Solids by Method 2540 G-2011	WG1171059	1	09/25/18 13:06	09/25/18 13:21	KDW
Wet Chemistry by Method 9056A	WG1171045	1	09/25/18 14:52	09/25/18 19:53	MAJ
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1171299	1	09/25/18 11:53	09/26/18 01:38	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1170977 WG1171079	1	09/25/18 11:53 09/25/18 18:32	09/25/18 18:11 09/25/18 23:45	AAT
SB5 5-6 L1028432-05 Solid			Collected by Preston K	Collected date/time 09/24/18 10:00	Received date/time 09/25/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
Total Solids by Method 2540 G-2011	WG1171059	1	09/25/18 13:06	09/25/18 13:21	KDW
Wet Chemistry by Method 9056A	WG1171045	1	09/25/18 14:52	09/25/18 20:02	MAJ
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1171299	500	09/25/18 11:53	09/26/18 01:59	DWR
Volatile Organic Compounds (GC/MS) by Method 82608	WG1170977	40	09/25/18 11:53	09/25/18 23.17	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1171079	1	09/25/18 18:32	09/25/18 23:57	AAT

PROJECT: 180048

SDG: L1028432

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Sc

			Collected by	Collected date/time	Received date/time
SB5 7-8 L1028432-06 Solid			Preston K	09/24/18 10:05	09/25/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1171059	1	09/25/18 13:06	09/25/18 13:21	KDW
Wet Chemistry by Method 9056A	WG1171045	1	09/25/18 14:52	09/25/18 20:11	LAM
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1171299	25	09/25/18 11:53	09/26/18 02:20	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1170977	1	09/25/18 11:53	09/25/18 18:31	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1171079	1	09/25/18 18:32	09/26/18 00:09	TAA
			Collected by	Collected date/time	Received date/time
SB6 5-6 L1028432-07 Solid			Preston K	09/24/18 10:10	09/25/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1171061	1	09/25/18 12:53	09/25/18 13:01	KDW
Wet Chemistry by Method 9056A	WG1171045	1	09/25/18 14:52	09/25/18 20:20	LAM
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1171299	1	09/25/18 11:53	09/26/18 02:41	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1170977	1	09/25/18 11:53	09/25/18 18:52	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1171079	1	09/25/18 18:32	09/26/18 00:21	TAA

PROJECT: 180048

SDG: L1028432

DATE/TIME: 09/26/18 16:21

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

h

Mark W. Beasley Project Manager

-

ACCOUNT: Timberwolf Environmental, LLC PROJECT: 180048

SDG: L1028432 DATE/TIME: 09/26/18 16:21

PAGE: 5 of 21

SB1 5-6 Collected date/time: 09/24/18 0

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Tc

Ss

Cn

Sr

Qc

GI

AI

Sc

Collected date/time: 09/24/18 09:40

	Result	Qualifier	Dilution	Analysis	Batch			
Analyte	%			date / time				
Total Solids	86.6		1	09/25/2018 13:21	WG1171059			
Wet Chemistry by Met	hod 9056A							
	Result (dry)	Qualifier	SDL (d	ry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	48.1		0.918	10.0	11.5	1	09/25/2018 19:09	WG1171045
Volatile Organic Comr	oounds (GC)	by Metho	d 8015	D/GRO				
volutile organie comp			CDI /d	ad Unadi MOI	MQL (drv)	Dilution	Analysis	Batch
volutie organie comp	Result (dry)	Qualifier	SUL (a	ry) Unadj. Mul	111000 (01.))			
Analyte	Result (dry) mg/kg	Qualifier	mg/kg	mg/kg	mg/kg	-	date / time	
Analyte TPH (GC/FID) Low Fraction	Result (dry) mg/kg 0.0473	Qualifier	mg/kg	mg/kg 0 0.100	mg/kg 0.115	1	date / time 09/26/2018 00:35	WG1171299

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000462	0.00100	0.00115	1	09/25/2018 17:09	WG1170977
Toluene	U		0.00144	0.00500	0.00577	1	09/25/2018 17:09	WG1170977
Ethylbenzene	U		0.000612	0.00250	0.00289	1	09/25/2018 17:09	WG1170977
Total Xylenes	U		0.00552	0.00650	0.00750	1	09/25/2018 17:09	WG1170977
(S) Toluene-d8	109				75.0-131		09/25/2018 17:09	WG1170977
(S) Dibromofluoromethane	110				65.0-129		09/25/2018 17:09	WG1170977
(S) 4-Bromofluorobenzene	117				67.0-138		09/25/2018 17:09	WG1170977

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	50.7		1.86	4.00	4.62	1	09/25/2018 23:09	WG1171079
C28-C40 Oil Range	22.3		0.316	4.00	4.62	1	09/25/2018 23:09	WG1171079
(S) o-Terphenyl	78.9				18.0-148		09/25/2018 23:09	WG1171079

ACCOUNT:
Timberwolf Environmental, LLC

PROJECT: 180048

SDG: L1028432 DATE/TIME: 09/26/18 16:21

PAGE: 6 of 21

SB2 5-6 Collected date/time: 09/24/18 09:47

SAMPLE RESULTS - 02

Qc

GI

AI

Sc

atal Calida by Mathad 2E10 C 2011

Total Solids by N	vietnod 2540 G-20)11							1 CD
	Result	Qualifier	Dilution	Analysis	Batch				Cp
Analyte	%			date / time					2
Total Solids	92.2		1	09/25/2018 13:21	WG1171059				Tc
Wet Chemistry b	by Method 9056A								³ Ss
	Result (dry)	Qualifier	SDL (dry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	8 28	B I	0.862	10.0	10.8	1	09/25/2018 19:18	WG1171045	Cit

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	la l
Chloride	8.28	BJ	0.862	10.0	10.8	1	09/25/2018 19:18	WG1171045

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0284	J	0.0235	0.100	0.108	1	09/26/2018 00:56	WG1171299
(S) a,a,a-Trifluorotoluene(FID)	95.3				77.0-120		09/26/2018 00:56	WG1171299

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000434	0.00100	0.00108	1	09/25/2018 17:29	WG1170977
Toluene	U		0.00136	0.00500	0.00542	1	09/25/2018 17:29	WG1170977
Ethylbenzene	U		0.000575	0.00250	0.00271	1	09/25/2018 17:29	WG1170977
Total Xylenes	U		0.00518	0.00650	0.00705	1	09/25/2018 17:29	WG1170977
(S) Toluene-d8	108				75.0-131		09/25/2018 17:29	WG1170977
(S) Dibromofluoromethane	107				65.0-129		09/25/2018 17:29	WG1170977
(S) 4-Bromofluorobenzene	112				67.0-138		09/25/2018 17:29	WG1170977

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.75	4.00	4.34	1	09/25/2018 23:21	WG1171079
C28-C40 Oil Range	1.30	J	0.297	4.00	4.34	1	09/25/2018 23:21	WG1171079
(S) o-Terphenyl	80.7				18.0-148		09/25/2018 23:21	WG1171079

PROJECT: 180048

SDG: L1028432

DATE/TIME: 09/26/18 16:21

SB3 5-6

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Collected date/time: 09/24/18 09:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch			
Analyte	%			date / time				
Total Solids	83.8		1	09/25/2018 13:21	WG1171059			
Wet Chemistry b	y Method 9056A							
	Result (dry)	Qualifier	SDL (d	Iry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
		D	0 949	10.0	11.9	1	09/25/2018 19:27	WG1171045
Chloride	23.0		0.343	10.0				

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0327	Ţ	0.0259	0.100	0.119	1	09/26/2018 01:17	WG1171299
(S) a,a,a-Trifluorotoluene(FID)	94.0				77.0-120		09/26/2018 01:17	WG1171299

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000478	0.00100	0.00119	1	09/25/2018 17:50	WG1170977
Toluene	U		0.00149	0.00500	0.00597	1	09/25/2018 17:50	WG1170977
Ethylbenzene	U		0.000633	0.00250	0.00298	1	09/25/2018 17:50	WG1170977
Total Xylenes	U		0.00571	0.00650	0.00776	1	09/25/2018 17:50	WG1170977
(S) Toluene-d8	106				75.0-131		09/25/2018 17:50	WG1170977
(S) Dibromofluoromethane	114				65.0-129		09/25/2018 17:50	WG1170977
(S) 4-Bromofluorobenzene	120				67.0-138		09/25/2018 17:50	WG1170977

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.92	4.00	4.78	1	09/25/2018 23:33	WG1171079
C28-C40 Oil Range	1.22	J	0.327	4.00	4.78	1	09/25/2018 23:33	WG1171079
(S) o-Terphenyl	59.2				18.0-148		09/25/2018 23:33	WG1171079

.....

Sc

DATE/TIME: 09/26/18 16:21

SB4 5-6

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

WG1170977

WG1170977

09/25/2018 18:11

09/25/2018 18:11

-

Collected date/time: 09/24/18 09:55

Total Solids by Method	d 2540 G-20	D11						
	Result	Qualifier	Dilution	Analysis	Batch			
Analyte	%			date / time				
Total Solids	85.4		1	09/25/2018 13:21	WG1171059			
Wet Chemistry by Met	hod 9056A							
	Result (dry)	Qualifier	SDL (d	lry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	13.2	B	0.931	10.0	11.7	1	09/25/2018 19:53	WG1171045
Volatile Organic Comp	oounds (GC)	by Metho	d 8015	D/GRO				
	Result (dry)	Qualifier	SDL (c	lry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0371	J	0.025	4 0.100	0.117	1	09/26/2018 01:38	WG1171299
(S) a,a,a-Trifluorotoluene(FID)	94.1				77.0-120		09/26/2018 01:38	WG1171299
Volatile Organic Comp	ounds (GC/	MS) by Me	ethod 8	260B				
	Result (dry)	Qualifier	SDL (c	Iry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000	469 0.00100	0.00117	1	09/25/2018 18:11	WG1170977
Toluene	U		0.0014	46 0.00500	0.00586	1	09/25/2018 18:11	WG1170977
Ethylbenzene	U		0.000	621 0.00250	0.00293	1	09/25/2018 18:11	WG1170977
Total Xylenes	U		0.005	60 0.00650	0.00761	1	09/25/2018 18:11	WG1170977
(S) Toluene-d8	108				75.0-131		09/25/2018 18:11	WG1170977

Semi-Volatile Organic Compounds (GC) by Method 8015

111

111

-	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.89	4.00	4.69	1	09/25/2018 23:45	WG1171079
C28-C40 Oil Range	1.21	J	0.321	4.00	4.69	1	09/25/2018 23:45	WG1171079
(S) o-Terphenyl	65.0				18.0-148		09/25/2018 23:45	WG1171079

65.0-129

67.0-138

PROJECT: 180048 SDG: L1028432 DATE/TIME: 09/26/18 16:21

SB5 5-6

SAMPLE RESULTS - 05 L1028432

ONE LAB. NATIONWIDE.

WG1171045

09/25/2018 20:02

Collected date/time: 09/24/18 10:00

Total Solids by Method 2540 G-2011

									Co
	Result	Qualifier	Dilution	Analysis	Batch				
Analyte	%			date / time					2
Total Solids	85.9		1	09/25/2018 13:21	WG1171059				Tc
Wet Chemistry by M	ethod 9056A								³ Ss
	Result (dry)	Qualifier	SDL (dry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4

Volatile Organic Compounds (GC) by Method 8015D/GRO

BJ

0.926

9.47

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	752		12.6	0.100	58.2	500	09/26/2018 01:59	WG1171299	
(S) a.a.a-Trifluorotoluene(FID)	92.4				77.0-120		09/26/2018 01:59	WG1171299	

10.0

11.6

1

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U	J3	0.0186	0.00100	0.0466	40	09/25/2018 23:17	WG1170977
Toluene	0.683	J3	0.0582	0.00500	0.233	40	09/25/2018 23:17	WG1170977
Ethylbenzene	0.586	J3	0.0247	0.00250	0.116	40	09/25/2018 23:17	WG1170977
Total Xylenes	12.9	J3 J6	0.223	0.00650	0.303	40	09/25/2018 23:17	WG1170977
(S) Toluene-d8	105				75.0-131		09/25/2018 23:17	WG1170977
(S) Dibromofluoromethane	115				65.0-129		09/25/2018 23:17	WG1170977
(S) 4-Bromofluorobenzene	112				67.0-138		09/25/2018 23:17	WG1170977

Sample Narrative:

Chloride

L1028432-05 WG1170977: Non-target compounds too high to run at a lower dilution.

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	186		1.87	4.00	4.66	1	09/25/2018 23:57	WG1171079
C28-C40 Oil Range	0.538	<u>1</u>	0.319	4.00	4.66	1	09/25/2018 23:57	WG1171079
(S) o-Terphenyl	78.7				18.0-148		09/25/2018 23:57	WG1171079

Qc

GI

AI

Sc

PROJECT: 180048

SDG: L1028432

SB5 7-8

SAMPLE RESULTS - 06

ONE LAB. NATIONWIDE.

WG1171299

GI

AI

Sc

09/26/2018 02:20

Collected date/time: 09/24/18 10:05

(S) a,a,a-Trifluorotoluene(FID)

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch			
Analyte	%	guanner	Dilation	date / time	Duten			
Total Solids	91.1		1	09/25/2018 13:21	WG1171059			
Wet Chemistry by M	ethod 9056A							
	Result (dry)	Qualifier	SDL (dr	y) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	6.53	BJ	0.873	10.0	11.0	1	09/25/2018 20:11	WG1171045
Volatile Organic Cor	npounds (GC)	by Metho	d 8015E)/GRO				
	Result (dry)	Qualifier	SDL (dr	y) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	11.3		0.596	0.100	2.75	25	09/26/2018 02:20	WG1171299

77.0-120

Volatile Organic Compounds (GC/MS) by Method 8260B

95.9

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000439	0.00100	0.00110	1	09/25/2018 18:31	WG1170977
Toluene	U		0.00137	0.00500	0.00549	1	09/25/2018 18:31	WG1170977
Ethylbenzene	U		0.000582	0.00250	0.00275	1	09/25/2018 18:31	WG1170977
Total Xylenes	0.0148		0.00525	0.00650	0.00714	1	09/25/2018 18:31	WG1170977
(S) Toluene-d8	110				75.0-131		09/25/2018 18:31	WG1170977
(S) Dibromofluoromethane	112				65.0-129		09/25/2018 18:31	WG1170977
(S) 4-Bromofluorobenzene	111				67.0-138		09/25/2018 18:31	WG1170977

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.89	J	1.77	4.00	4.39	1	09/26/2018 00:09	WG1171079
C28-C40 Oil Range	U		0.301	4.00	4.39	1	09/26/2018 00:09	WG1171079
(S) o-Terphenyl	83.3				18.0-148		09/26/2018 00:09	WG1171079

PROJECT: 180048

SDG: L1028432

SB6 5-6

Chloride

SAMPLE RESULTS - 07

ONE LAB. NATIONWIDE.

WG1171045

09/25/2018 20:20

Cn

Sr

Qc

GI

AI

Sc

Collected date/time: 09/24/18 10:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch				Ct
Analyte	%			date / time					2
Total Solids	89.2		1	09/25/2018 13:01	WG1171061				To
Wet Chemistry b	by Method 9056A								³ Ss
	Result (dry)	Qualifier	SDL (dry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4

Volatile Organic Compounds (GC) by Method 8015D/GRO

BJ

0.892

10.4

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0503	Ţ	0.0243	0.100	0.112	1	09/26/2018 02:41	WG1171299
(S) a,a,a-Trifluorotoluene(FID)	94.3				77.0-120		09/26/2018 02:41	WG1171299

10.0

11.2

1

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000449	0.00100	0.00112	1	09/25/2018 18:52	WG1170977
Toluene	U		0.00140	0.00500	0.00561	1	09/25/2018 18:52	WG1170977
Ethylbenzene	U		0.000594	0.00250	0.00280	1	09/25/2018 18:52	WG1170977
Total Xylenes	U		0.00536	0.00650	0.00729	1	09/25/2018 18:52	WG1170977
(S) Toluene-d8	109				75.0-131		09/25/2018 18:52	WG1170977
(S) Dibromofluoromethane	112				65.0-129		09/25/2018 18:52	WG1170977
(S) 4-Bromofluorobenzene	110				67.0-138		09/25/2018 18:52	WG1170977

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.81	4.00	4.49	1	09/26/2018 00:21	WG1171079
C28-C40 Oil Range	1.39	J	0.307	4.00	4.49	1	09/26/2018 00:21	WG1171079
(S) o-Terphenyl	74.1				18.0-148		09/26/2018 00:21	WG1171079

PROJECT: 180048

SDG: L1028432 DATE/TIME: 09/26/18 16:21

WG1171059

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

TC

Ss

Cn

Sr

GI

AI

Sc

Total	Solids	by	Method	2540	G-2011

Method Blank	k (MB)						
(MB) R3345090-1	09/25/18 13:21						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	%		%	%			
Total Solids	0.00300						
L1028430-02	Original Sample	(OS) • Du	plicate	(DUP)			
(OS) L1028430-02	09/25/18 13:21 · (DUP)	R3345090-3	09/25/18	13:21			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	UP RPD imits	
Analyte	%	%		%			
Total Solids	70.3	65.1	1	7.76)	
Laboratory Co	ontrol Sample (L	CS)					
(LCS) R3345090-2	2 09/25/18 13:21						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limi	ts LCS Qua		
		04	0/	0/			
Analyte	%	76	70	70			

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Timberwolf Environmental, LLC	180048	L1028432	09/26/18 16:21	13 of 21

WG1171061 Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

(MB) R3345089-1	09/25/18 13:01						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	%		%	%			
Total Solids	0.00200						
L1027821-20	Original Sample	(OS) • Dup	olicate (DUP)			
(OS) L1027821-20	09/25/18 13:01 · (DUP)	R3345089-3	09/25/18 1	3:01			
	Original Result	DUP Result	Dilution	DUP RPD	UP Qualifier	JP RPD mits	
Analyte	%	%		%			
Total Solids	90.7	87.1	1	4.01			
Laboratory Cr	antral Sample //	(2)					
	00/25/19 12:01	(3)					-
(LC3) K3345005-2	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qua		
Analyte	%	%	%	%		12	
,	50.0	49.8	99.6	85.0-115			
Total Solids	50.0	10.0					

ACCOUNT: Timberwolf Environmental, LLC

PROJECT: 180048 SDG: L1028432 DATE/TIME: 09/26/18 16:21

PAGE: 14 of 21

WG1171045 Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Method Blank (MB)

(MB) R3345039-1	09/25/18 17:59			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	3.88	<u>1</u>	0.795	10.0

(OS) L1028434-01 09/25/1	8 20:28 · (DUP) R3345039-6	09/25/18	20:37		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		20		%
Chloride	ND	5.01	1	24.3	J P1	15

L1028434-02 Original Sample (OS) • Duplicate (DUP)

			0			
(OS) L1028434-02 09/25/18 20:46 • (DUP) R3345039-7 09/25/18 20:55						
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	307	205	1	39.8	<u>13</u>	15

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3345039-2 09/25/	18 18:08 · (LCS	D) R3345039-	3 09/25/18 18:1	17						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Chloride	200	207	210	104	105	80.0-120			1.65	15

L1027953-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1027953-01 09/25/18 18:43 • (MS) R3345039-4 09/25/18 18:52 • (MSD) R3345039-5 09/25/18 19:01

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	500	54.7	548	535	98.6	96.0	1	80.0-120			2.40	15

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Timberwolf Environmental, LLC	180048	L1028432	09/26/18 16:21	15 of 21

²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷GI ⁸AI ⁹Sc

WG1171299 Volatile Organic Com	pounds (GC) I	by Method 8	015D/GRO	Q		CONTR 28432-01.02.03	OL SUN	MARY			ONE LAB, NATIONWIDE.	*
Method Blank (MB	3)											Co
(MB) R3345097-3 09/25	/18 22:39											cp
Analyte	MB Result mg/kg	MB Qualifier	MB MDL mg/kg	MB RDL mg/kg								² Tc
TPH (GC/FID) Low Fraction	U		0.0217	0.100								
(S) a.a.a-Trifiuorotoluene(FID)	98.4			77.0-120								Ss
Laboratory Contro	I Sample (L	CS) • Labo	oratory Con	trol Samp	le Duplicat	e (LCSD)						⁴Cn
(LCS) R3345097-1 09/25	/18 21:36 • (LCS	D) R3345097-	2 09/25/18 21:	57	ICSD Boc	Poc Limite	LCS Qualifier	LCSD Qualifier	PPD	PPD Limite		⁵ Sr
Analyte	mg/kg	mg/kg	mg/kg	%	%	%	LCS Qualifier	LCSD Qualifier	%	%		6
TPH (GC/FID) Low Fraction	5.50	5.94	5.83	108	106	72.0-127			1.84	20		Qc
(S) a,a.a-Trifluorotoluene(FID)				112	111	77.0-120						⁷ GI
												³ AI
												⁹ Sc

ACCOUNT: Timberwolf Environmental, LLC PROJECT: 180048 SDG: L1028432 DATE/TIME: 09/26/18 16:21

PAGE: 16 of 21

WG1170977

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3345072-2 09/25/	18 16:11			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000400	0.00100
Ethylbenzene	U		0.000530	0.00250
Toluene	U		0.00125	0.00500
Xylenes, Total	U		0.00478	0.00650
(S) Toluene-d8	110			75.0-131
(S) Dibromofluoromethane	109			65.0-129
(S) 4-Bromofluorobenzene	110			67.0-138

Laboratory Control Sample (LCS)

(LCS) R3345072-1 09/25	/18 15:09					7
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	í e
Analyte	mg/kg	mg/kg	%	%		L
Benzene	0.125	0.136	109	70.0-123		8
Ethylbenzene	0.125	0.135	108	74.0-126		<i>(</i>
Toluene	0.125	0.129	103	75.0-121		9
Xylenes, Total	0.375	0.359	95.7	72.0-127		Í S
(S) Toluene-d8			101	75.0-131		
(S) Dibromofluoromethane			116	65.0-129		
(S) 4-Bromofluorobenzene			106	67.0-138		

L1028432-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1028432-05 09/25/	18 23:17 · (MS)	R3345072-3 0	9/25/18 23:38	· (MSD) R3345	072-4 09/25/1	8 23:58						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.146	U	4.53	2.36	77.9	40.6	40	10.0-149		<u>J3</u>	62.9	37
Ethylbenzene	0.146	0.586	5.04	2.62	76.5	34.9	40	10.0-160		13	63.3	38
Toluene	0.146	0.683	4.94	2.68	73.1	34.2	40	10.0-156		<u>J3</u>	59.4	38
Xylenes, Total	0.437	12.9	24.8	14.8	68.1	11.1	40	10.0-160		13 J6	50.3	38
(S) Toluene-d8					103	98.6		75.0-131				
(S) Dibromofluoromethane					119	117		65.0-129				
(S) 4-Bromofluorobenzene					109	111		67.0-138				

Sample Narrative:

OS: Non-target compounds too high to run at a lower dilution.

PAGE:
17 of 21

²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

.

WG1171079 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Metho	d Bla	ink (N	AB)

(MB) R3345251-1 09/25	5/18 22:33			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	93.4			18.0-148

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3345251-2 09/25/18 22:45 • (LCSD) R3345251-3 09/25/18 22:57										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
C10-C28 Diesel Range	50.0	34.6	32.9	69.2	65.8	50.0-150			5.04	20
(S) o-Terphenyl				110	112	18.0-148				

L1028434-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1028434-01 09/26/18 01:0	3 · (MS) R3345251-4	09/26/18 01:20 .	(MSD) R3345251-5	09/26/18 01:32
--------------------------------	---------------------	------------------	------------------	----------------

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	47.3	ND	34.4	34.7	72.7	70.2	1	50.0-150			0.868	20
(S) o-Terphenyl					89.4	83.4		18.0-148				

ACCOUNT: Timberwolf Environmental, LLC

PROJECT: 180048 SDG: L1028432 DATE/TIME: 09/26/18 16:21

PAGE: 18 of 21

-

GLOSSARY OF TERMS

ONE LAB. NATIONWIDE.

.

Tc

Ss

Cn

Sr

Qc

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
MQL	Method Quantitation Limit.
ND	Not detected at the Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.

PROJECT: 180048 SDG: L1028432 DATE/TIME: 09/26/18 16:21

ACCREDITATIONS & LOCATIONS

ONE LAB. NATIONWIDE.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report. * Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

	14444		NE OC 45 OF
Alabama	40660	Nebraska	NE-05-15-05
Alaska	17-026	Nevada	TN-03-2002-34
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico 1	n/a
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia 1	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Minois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	90010	South Carolina	84004
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee 14	2006
Louisiana 1	LA180010	Texas	T 104704245-17-14
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	TN00003
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	460132
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA

Third Party Federal Accreditations

A2LA - ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

PAGE:

20 of 21

-

ACE / DK	12-20	:PIOH	SÞ	SQ :=w	. 81	ISC/I	2		(a)	velais)	Ag get toj panjas	en :sm	11	Cate:		(andengis) : Aq pəysinbuijəj
ami /atec	uião'i Ao pasinbas uon	II DIESCIASI		Ь	410	=2 -0 :du	-]			(aut	בפוגבם מלי (מופעו	au :au		:a)80		(ລະກາຍເສີດ	s : Ao pausinbuue
N X 1pa	MosdD/rostrop moli	LEASSERIA	Hoak	HEL HCCH	:beviece:	a Anala d	HI			(aun	nengiz) :yd beviec	0 E E (1 81m	Date: 9/2	Galainin	(auseus)) : Aq paqsinbuija
	ideoilage it Applicates	NOS ZEZO					81	28	+65	51 t	ozel # 8uinou	ent		EX Conu	nest trea	er	W - Drinking Wat
	mple smelte Check Present/Intact: Advactation Strive intact: Strive intect:	tess 700 sepis 700 seilires seilires		per mp	net	- Hq		nd/Ar	n 2.0>	EEN:	INDE CAR				Kemarks:	B - Biosseay	- Soin Alfa (io2 - - Soin Alfa (io2 - - Water Mater Mater Water
			I	1				T					1.15				
60						17	X	F	7	A	0101		9-5	~		,9-5	985
10						X	×	X	7	11	5001		8-6			,8-4	985
20						7	7	17	X		0001		2-5			.9-5	585
h•	an and a strain of the					Y	1	X	X		5960		7-5			.7-9	485
20						7		7	x		0560		7-9			, 9-5	{ 8 S
29						X	X	X	7		L660		9-5			,9-5	282
					t	9					Shbo		8.2			,8.6	185
		200			ł	1			25	1	Ehba	1	2-9			, 2-9	185
13						X	17	X	X	1	ohbo	81/hZ/b	9-5	SS	6+04	.9-5	185
(Apus card) # ajduve	s topstures	1								Safes	emiT	Date	Stage	• xineli	Comp/Grab	01 910	lwes
	-98 1282				He	147	TP	TPH	BIF	No.	LUL papaan si	-ngH HZ	(VinO bes) (VinO bes)	Aed OI	Ved own		Vistelbann Vistelbann Scked on Ice N_
	Template: Preiogin:				-0	1 2	t D	5	X			Guote #	v (otified)	N 98 TRUM d	el) fazuñ Rushî (La	· M gam	eußist Ag passage
	Acctnum:					0	RO	20				#.O.9			ste/Facility ID	Keulan	(Juind) ye by (print)
L 7	60¥											5122/014 (022	8	hoo	81	9068-26	
ED.	6585-852-519 xmj									Gu	tite	Collected:		WIB	· M S	2 58-6	
	bill nonsdaj 2005.1 8086-825-218 smorti 8086-825-218 smorti 8086-825-218 smorti 8086-787-006 smorti										mos. How w	with mast Q	Email To:	14700	rusinat	+ low and m	in the sector
canchility at Dictorinal Jose																	Ĩ.
alytical "	- ABORT		-						1	CHK Pres							
Page 1 of	Chain of Custody		avi	Leservat	9 \ reniezo	Aara / Co	ISUA.			1		:noiten	motal gailling				

ANALYTICAL REPORT

HilCorp-Farmington, NM

Sample Delivery Group:	L1032397
Samples Received:	10/06/2018
Project Number:	
Description:	
Site:	J.J. 28-5 #81M
Report To:	Lindsay Dumas
	382 Road 3100
	Aztec, NM 87401

Entire Report Reviewed By:

)

Olivia Studebaker Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
BGT CELLAR L1032397-01	5
Qc: Quality Control Summary	6
Wet Chemistry by Method 9056A	6
Volatile Organic Compounds (GC) by Method 8015/8021	7
Semi-Volatile Organic Compounds (GC) by Method 8015	8
GI: Glossary of Terms	9
Al: Accreditations & Locations	10
Sc: Sample Chain of Custody	11

-

ACCOUNT: HilCorp-Farmington, NM

PROJECT:

SDG: L1032397 DATE/TIME: 10/09/18 10:18

PAGE: 2 of 11

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

BGT CELLAR L1032397-01 Solid			Collected by Kurt H	Collected date/time 10/05/18 10:15	Received date/time 10/06/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Wet Chemistry by Method 9056A	WG1177210	1	10/07/18 16:10	10/09/18 03:13	ELN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1176974	1	10/06/18 11:54	10/06/18 15:05	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1177134	2	10/06/18 21:04	10/07/18 15:06	TAA

*

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

íní.

Olivia Studebaker Project Manager

PROJECT:

SDG: L1032397 DATE/TIME: 10/09/18 10:18

PAGE: 4 of 11

BGT CELLAR

SAMPLE RESULTS - 01 L1032397

ONE LAB. NATIONWIDE.

Collected date/time: 10/05/18 10:15

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		2
Chloride	32.9	<u>P1</u>	10.0	1	10/09/2018 03:13	WG1177210	Т
Volatile Organic Con	npounds (GC) by Meth	od 8015/80	021			³ S
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		4
Benzene	0.00492		0.000500	1	10/06/2018 15:05	WG1176974	
Toluene	0.0166		0.00500	1	10/06/2018 15:05	WG1176974	5
Ethylbenzene	0.0104		0.000500	1	10/06/2018 15:05	WG1176974	S
Total Xylene	0.108		0.00150	1	10/06/2018 15:05	WG1176974	
TPH (GC/FID) Low Fraction	2.22		0.100	1	10/06/2018 15:05	WG1176974	6
(S) a,a,a-Trifluorotoluene(FID)	77.6		77.0-120		10/06/2018 15:05	WG1176974	0
(S) a,a,a-Trifluorotoluene(PID)	96.5		72.0-128		10/06/2018 15:05	WG1176974	7

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	17.8		8.00	2	10/07/2018 15:06	WG1177134
C28-C40 Oil Range	16.5		8.00	2	10/07/2018 15:06	WG1177134
(S) o-Terphenyl	40.7		18.0-148		10/07/2018 15:06	WG1177134

ACCOUNT: HilCorp-Farmington, NM PROJECT:

SDG: L1032397

DATE/TIME: 10/09/18 10:18

WG1177210 Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1032397-01

ONE LAB. NATIONWIDE.

Тс

Ss

	, .,
Method	Blank (MB)

(
/08/18 20:06			
MB Result	MB Qualifier	MB MDL	MB RD
mg/kg		mg/kg	mg/kg
U		0.795	10.0
	/08/18 20:06 MB Result mg/kg U	/08/18 20:06 MB Result <u>MB Qualifier</u> mg/kg U	/OB/18 20:06 MB Result <u>MB Qualifier</u> MB MDL mg/kg mg/kg U 0.795

L1031396-01 Original Sample (OS) • Duplicate (DUP)

L1031396-01 Ori	ginal Sample ((OS) • Dup	olicate (OUP)		
(OS) L1031396-01 10/0	08/18 23:25 · (DUP)	R3348776-4	10/08/18 2	3:33		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	645	640	1	0.771		15

L1032397-01 Original Sample (OS) • Duplicate (DUP)

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	UP RPD mits	
llyte	mg/kg	mg/kg		26			
oride	645	640	1	0.771		5	
.1032397-01 DS) L1032397-01	Original Sample	(OS) • Du	plicate (1 10/09/18 0	DUP) 3:21			
.1032397-01 DS) L1032397-01	Original Sample 10/09/18 03:13 • (DUP) Original Result	(OS) • Duj R3348776-7 DUP Result	plicate (I 10/09/18 0 Dilution	DUP) 3:21 DUP RPD	DUP Qualifier	UP RPD mits	
L1032397-01 (OS) L1032397-01 Analyte	Original Sample 10/09/18 03:13 • (DUP) Original Result mg/kg	(OS) • Duj R3348776-7 DUP Result mg/kg	plicate (I 10/09/18 0 Dilution	DUP) 3:21 DUP RPD %	DUP Qualifier	UP RPD mits	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3348776-2 10/08/18 20:15 • (LCSD) R3348776-3 10/08/18 20:24										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Chloride	200	201	202	101	101	80.0-120			0.655	15

L1032174-16 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1032174-16 10/09/18 01:10 • (MS) R3348776-5 10/09/18 01:19 • (MSD) R3348776-6 10/09/18 01:27

100/2100211110 10/05/10	01.10 - (1110) 110	510/10 5 10/0	5110 01.15 - (11	50/113540/10	0 10/05/10 01.							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	500	61.7	599	586	107	105	1	80.0-120			2.17	15

ACCOUNT: PROJECT: HilCorp-Farmington, NM

SDG: L1032397

DATE/TIME: 10/09/18 10:18 PAGE: 6 of 11

WG1176974

Method Blank (MB)

Volatile Organic Compounds (GC) by Method 8015/8021

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

.

(MB) R3348357-5 10/06/	18 13:47			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000120	0.000500
Toluene	0.000367	Ţ	0.000150	0.00500
Ethylbenzene	U		0.000110	0.000500
Total Xylene	U		0.000460	0.00150
TPH (GC/FID) Low Fraction	0.0268	7	0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	100	-		77.0-120
(S) a.a.a-Trifluorotoluene(PID)	101			72.0-128

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3348357-1 10/06/	18 11:56 · (LCSD)) R3348357-2	10/06/18 12:18								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.0500	0.0468	0.0468	93.5	93.6	76.0-121			0.0264	20	
Toluene	0.0500	0.0485	0.0484	96.9	96.8	80.0-120			0.162	20	
Ethylbenzene	0.0500	0.0477	0.0480	95.3	95.9	80.0-124			0.633	20	
Total Xylene	0.150	0.146	0.148	97.3	98.6	37.0-160			1.36	20	
(S) a,a,a-Trifluorotoluene(FID)				100	100	77.0-120					
(S) a,a,a-Trifluorotoluene(PID)				99.8	99.8	72.0-128					

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3348357-3 10/06	/18 12:40 · (LCS	D) R3348357-	4 10/06/18 13:0	3								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%		
TPH (GC/FID) Low Fraction	5.50	5.52	5.45	100	99.1	72.0-127			1.22	20		
(S) a,a,a-Trifluorotoluene(FID)				104	104	77.0-120						
(S) a.a.a-Trifluorotoluene(PID)				111	111	72.0-128						

ACCOUNT: HilCorp-Farmington, NM PROJECT:

SDG: L1032397 DATE/TIME: 10/09/18 10:18

PAGE: 7 of 11

Sc

Semi-Volatile Organ	nic Compounds	(GC) by Me	thod 8015			L103239	7-01				
Method Blank (M	1B)										
(MB) R3348412-1 10/07	7/18 14:26										
	MB Result	MB Qualifier	MB MDL	MB RDL							
Analyte	mg/kg		mg/kg	mg/kg							
C10-C28 Diesel Range	U		1.61	4.00							
C28-C40 Oil Range	U		0.274	4.00							
(S) o-Terphenyl	79.4			18.0-148							
Laboratory Cont	rol Sample (L	.CS) • Labo	ratory Con	trol Samp	le Duplicat	e (LCSD)					
(LCS) R3348412-2 10/0	07/18 14:39 · (LCS	D) R3348412-3	10/07/18 14:53								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	

50.0-150

18.0-148

QUALITY CONTROL SUMMARY

ACCOUNT:	
HilCorp-Farmington, NM	

50.0

mg/kg

41.6

41.4

83.2

101

82.8

98.0

WG1177134

C10-C28 Diesel Range

(S) o-Terphenyl

PROJECT:

SDG: L1032397

DATE/TIME: 10/09/18 10:18

0.482

20

PAGE: 8 of 11

ONE LAB. NATIONWIDE.

.

Тс

³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl

AI

Sc

GLOSSARY OF TERMS

Tc

Ss

Cn

Sr

Qc

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions	5
-------------------------------	---

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.

P1 RPD value not applicable for sample concentrations less than 5 times the reporting limit.

PROJECT:

SDG: L1032397 DATE/TIME: 10/09/18 10:18

ACCREDITATIONS & LOCATIONS

ONE LAB. NATIONWIDE.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report. * Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN-03-2002-34
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico '	n/a
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia 1	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LA000356
Kentucky 16	90010	South Carolina	84004
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee 14	2006
Louisiana 1	LA180010	Texas	T 104704245-17-14
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	TN00003
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	460132
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA

Third Party Federal Accreditations

A2LA - ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

PAGE:

10 of 11

CHAIN-OF-CUSTODY Analytical Request Document Chain-Or ustody is a LEGAL DOCUMENT - Complete all relevent fields							LAB USE ONLY- Affix Workorder/Login Label Here or List Pace Workorder Number or MTIL Log-in Number Here										
Company: HilCorp-Farmington	NM 6	1.	Billing Inf	ormation:					1 1			A	LL SH	ADED	AREAS	are for L	AB USE ONLY
Address: 382 Road 3100			PO Box 6	1529					Container Preservative Type **								ect Manager:
l	5		Houston,	TX 77208		1			1.000	-		13.61	1			288 - Da	aphne Richards
leport To: 1	2		Email To:	idum	aseh	teorp	. Cem	1	·· Pre	servat	ve Types	(1) nitric	acid, {2}	sulfuric acid	1, (3) hydro	chloric acid, (4)	sodium hydroxide, (5) zinc acetate.
LINDSAY	Dun	AS	Khu	kstra	e hila	rp.cb	m		(6) me	thanol	(7) sodi	um bisulfa	te, (8) so	dium thiosu	affate, (9)	nexane, (A) asco	rbic acid. (B) ammonium sulfate,
opy ro:			Site Colle	ction into//	Address:				(C) am	moniu	im hydroi	cide, (D) T	SP, (U) U	npreserved,	(0) Other	li ah Pro	file/Line:
ustomer Project Name/Number			State:	County/C	ity: T	me Zone C	ilected:		1.1.20			T	aryses			Lab Sa	mple Receipt Checklist;
			1		P	T MT	CT I	ET						1.1		Custor	V Saals Present/Intact Y NA
hone 505-486-9543	Site/Facility ID)#:			Complian	ce Monitor	ng?	-	18				8		1	Custor	by Signatures Present YN
mail	5.5.28	1-5 #	811	1	[Yes	[] No			1		1					Collec	a Intact
offected by (print):	Purchase Ord	er #:			DW PWS	ID #:			10	-	AL CONTRACT	13			H	Corzec	t Sottles
KyRT /	Quote #:				DW Locat	ion Code:			a		100					Suffic	Received on Ice Ox IA
collected by (siggapure)	Turnaround D	ate Requir	ed:		Immediat	ely Packed	on ice:		9		2015	1			100	VOA -	Readspace Acceptable TNO
Kurt Hockelle					AYes	[] No		2	0					100		Sample	ts in Holding Time
ample Disposal:	Rush:				Field Filte	red (if appl	cable):		0	-		100				Residu	al Chlorine Present TNOS
1 Dispose as appropriate 1 Return 1 Archive	XIS	ame Day	Next D	ay 15 Day	I Yes	[]No			A	N	11			100	1000	Gample	pH Acceptable Y M/2
Hold	1 12 Day 1	Expedite Ch	arges Apply)	1 5 Day	Analysis:				S	0	A	1		1.21	12	pH SL	rips: Y NN
Matrix Codes linsert in Matrix b	av halow! Drin	kine Water	(DIA) Gro	und Water	(GM) Mar	tawater (W	100		0	00	1 2					Lead	Acetate Strips:
Product (P), Soil/Solid (SL), Oil (C	L). Wipe (WP).	Air (AR), Ti	ssue (TS).	Bioassav (B)	Vapor (V)	Other (OT)		Q0	7	6						an add v.
	1	Como/	Collected for Res # of			# of	F	14	1 7	F			1.5	Lab S	ample # / Comments		
Customer Sample ID Matr	Matrix *	Grab	Composite Sta		Composite End		C	Ctris	E		10			E I			11037797
			Date	Time	Date	Time	1		100	1 -		and the second		Arrent			LIUTESII
BAT CELAN	55	Camo	10.5	10:15				1	X	×	X	1		185			701
		Port	142-1	10.13					1								
		,							1000			1		1000		1.000	
									1			-	-		1.000		
												-		-	-		THE OWNER PROPERTY AND IN THE OWNER
AND DESCRIPTION OF THE OWNER OF T									3.84					12172	-	1000	
											1000				125		
									1		1			14	-	1	
									155					0.00			
		1							1996				0	1000			
		-							-			-			1300	1	
stomer Bamarke / Second Pro- 1	tions / Providela	Hanneder	Turnet	(Ikal	Ables	Plue		in the second	-	CLID.	THOM	NC DOLLET	NTIO	hours	V N	N/A	LAB Sample Temperature Info:
sumer nemarks / special Condi	ciona / Possible	mazards:	Type of Ic	e usea:	wei	Bille	JIY I	aone	1997	300	HOLL	AS PRESE	at les	nours		101	Temp Blank Berelund: Y N NA
#Error			Packing Material Used:					LAB Tracking #: 730					3 89	1 ,	3016	Tharm 10# 1	
		Radchem sample(s) screened (<500 cpm): Y N NA					Samples received via:					intian	Pace Couries	Cooler 1 Temp Upon Receipt 10 aC			
linguisted by Combany Sien	ure)	Date	(Time:) . CSC Received by/Company: (Signature)						-	Date/Tir	me:	Life	T CO	1025	T AND WARMEN	Cooler 1 Therm Corr. Factor 10 oC	
K. F.L. btt				20			1-0-01								1020		Cooler 1 Corrected Temp 10-0 oc
un rocesh		10	2-2-19	5	Bacaurada	W amaria	15.00-	and a start		-	Date /T	-		trans		DO ANNA	Transmenter
minduisined by/company: (Signat	ure/	Date	/ time:		Received	oy/Compan	y (Signat	ure)		1	uate/fir	ne.		Acctnu	im; HILC	DRANM	The Direck Barghard V M MA
														Tempi	ate:		The Blank Received. 1 N Ho
linguished by/Company: (Signat	ure)	Date	/Time:		Received by/Company: (Signature)					1	Date/Tit	me:	840	Prelog	in:		HCL MeQH TSP Oth
					1	nof.	pol	2			10/1	/18	P	PM: 2	88 - Dapl	ne Richards	NonConformance(s) Page
					11	4	-					110		1.2.2			VES LINO OF