Initial Deliverability ## NEW MEXICO OIL CONSERVATION COMMISSION GAS WELL TEST DATA SHEET - - SAN JUAN BASIN (TO BE USED FOR FRUITLAND, PICTURED CLIFFS, MESAVERDE, & ALL DAKOTA EXCEPT BARKER DOME STORAGE AREA) | 0] | | | Formation_ | V | | | unty | | | | |--|--|--|---|---|-------------------------------|---|---------------------------------------|--|-----------------------------|---| | | eline Souther | | | | | Filed | Publi | نيد | / 10, X | 960 | | | | | | tem-Sa | ولالات | | Well N | 0 | 6 | | | erator | | | ease | Pay Zone: | | 326 | | | 3546 | | | it | Sec | | | Puy Zone. | 2 3/8 | WT. | 1 | | Perf. | 50) | | sing: OD | WT | Set At_ | | _Tubing: OD | | | | - | | | | oduced Thro | ugh: Casing | Tubine | | _Gas Gravity | | | X /40 | Est | imated | | | | Test: From | 23 To | 1/31/60 | * Date S.I.P. N | | | - 73 | | | | | eter Run Size | . | Orific | e Size | ,, | Type Cha | rt | <u>R</u> | _Type | Toops | # | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | OBSERVE | ED DATA | ٠. | | | | | | | | pressure (Dwt) | | | | nsia + 12 | = | | | psia | (a | | | (D) | | | | psig + 12 | | | | | (b | | owing tubing p | ressure (Dwt) | | | | psig + 12 | = | | | psia | (0 | | owing meter p | ressure (meter readi | ng when Dwt. meas | ırement taker | 1: | | | | | | (d | | | •. | | | | psig + 12 | = | | | psia | • | | | reading
chart reading (|) ² x spring co | nstant
± | | |
= | | | psi | (e | | | (d) or (d) - (c) | | ī | | | | | | | | | iction loss, F | lowing column to me
w through tubing: (a) | - (c) Flow through | casing | | | = | | | psi | (1 | | | ige static meter pres | | | | | | | | | | | NIal abart | werage reading | | | | psig + 12 | ! =
_ | 264 | . | psia
psia | | | Square root | chart average readin | g () ² x s | sp. const | | | - = | 74 | | psic | | | Corrected se | even day avge. meter | press. (p _f) (g) + (e) |) | | | = | | | psic | ı (| | = (h) + (f) | | | 2.000 | | | | 31.2 | -4 | psic | . / | | 111 I | - chut in proceure ([|)wt) | 10,50 | | psig + l: | 2 = | 100 | | parc | | | | | owt) | 1000 | | psig + 1:
psig + 1: | | ite); | | psic | ı (| | ellhead tubing | shut-in pressure (D | ed through | 2000 | | | | ******* | | psic |) r
) r | | ellhead tubing | g shut-in pressure (D
whichever well flowe | wt) | 1360 | 60 | | | ******* | l
2
5 | psic |) r
) r
() se | | ellhead tubing
c = (j) or (k) v | g shut-in pressure (D
whichever well flowe
(Meter Run) | ed through | 2000 | 60 | | | ******* | | psic
psic
^Ab | i ()
i z
os () | | ellhead tubing
c = (j) or (k) w
lowing Temp. | g shut-in pressure (D
whichever well flowe
(Meter Run) | ed through | 1999
•F+4 | | | | ******* | 5 | psic
psic
^Ab |) r
) r
() se | | ellhead tubing
c = (j) or (k) w
lowing Temp. | g shut-in pressure (D
whichever well flowe
(Meter Run) | ed through | 1999
•F+4 | CULATION | | | ******* | | psic
psic
^Ab |) r
) r
() se | | ellhead tubing
_C = (j) or (k) w
lowing Temp.
_d = ½ P _C = ½ | y shut-in pressure (D
whichever well flowe
(Meter Run)
(1) | ed through | 1999
•F+4 | | | | ******* | k
k
5
5 | psic
psic
oAb
psic |) r
) r
() se | | ellhead tubing c = (j) or (k) w lowing Temp. d = ½ P _C = ½ | y shut-in pressure (D
whichever well flowe
(Meter Run)
(1) | ed through | 1999
•F+4 | | | | ******* | 5 5 | psic
psic
oAb
psic | n ()
n ()
os () | | ellhead tubing
c = (j) or (k) w
lowing Temp.
d = ½ P _C = ½ | y shut-in pressure (D
whichever well flowe
(Meter Run)
(1) | ed through | 1999
•F+4 | | | | ******* | k
5
6
6 | psic
psic
oAb
psic | n ()
n ()
os () | | ellhead tubing c = (j) or (k) w lowing Temp. d = ½ P _C = ½ | y shut-in pressure (D
whichever well flowe
(Meter Run)
(1) | FLOW (d) | *F + 4 | _CULATION
= | psig + 1 | | ******* | \$
5
6
8
45 | psic
psic
oAb
psic | n (
n (
os (| | ellhead tubing c = (j) or (k) w lowing Temp. d = ½ P _C = ½ | y shut-in pressure (D
whichever well flowe
(Meter Run)
(1) | FLOW (d) | *F + 4 | | psig + 1 | | ******* | h5 | psic
psic
oAb
psic | () z
() z
() so
() z | | eilhead tubing c = (j) or (k) w lowing Temp. d = ½ Pc = ½ | y shut-in pressure (D
whichever well flower
(Meter Run)
(1) | FLOW (d) | *F + 4 | _CULATION
= | psig + 1 | | ******* | \$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | psic | n (
n (
ps (
n (| | ellhead tubing c = (j) or (k) w lowing Temp. d = ½ Pc = ½ = | y shut-in pressure (D
whichever well flowe
(Meter Run)
(1) | FLOW (d) | *F + 4 | _CULATION
= | psig + 1 | | ******* | \$5
6
85
85
997 | psic | n (
n (
os (| | ellhead tubing c = (j) or (k) w lowing Temp. d = ½ Pc = ½ (integrate | y shut-in pressure (D
whichever well flower
(Meter Run)
(1) | FLOW (d) | *F + 4 | _CULATION
= | psig + 1 | | ******* | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | psic | n (
n (
ps (
n (| | ellhead tubing c = (j) or (k) w lowing Temp. d = ½ Pc = ½ = | y shut-in pressure (D
whichever well flower
(Meter Run)
(1) | FLOW (d) | *F + 4 | _CULATION
= | psig + 1 | | ******* | \$5
6
85
\$57 | psic | n (
n (
ps (
n (| | eilhead tubing c = (j) or (k) w lowing Temp. d = ½ Pc = ½ | y shut-in pressure (D
whichever well flower
(Meter Run)
(1) X d) | FLOW (d) | *F + 4 | CULATION = | psig + 1 | 2 = | 5 | | psic | n (
n (
ps (
n (| | eilhead tubing c = (j) or (k) w lowing Temp. d = ½ Pc = ½ (integrate) | y shut-in pressure (D
whichever well flower
(Meter Run)
(1) | FLOW (d) | PRATE CAL RATE CAL VERABILIT PSia | CULATION TY CALCULA TO STATES | psig + 1 | 2 = | 50 San 1 | | psic | n (
n (
ps (
n (| | eilhead tubing c = (j) or (k) w lowing Temp. d = ½ Pc = ½ (integrate | y shut-in pressure (D
whichever well flower
(Meter Run)
(1) X d) | FLOW (d) | PF + 4 | Company_By_C | Psig + 1 | 2 =
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
= _ =
=
=
=
=
=
=
=
=
=
=
=
= _
= | S S S S S S S S S S S S S S S S S S S | L STE | psic psic AL psic MC | n (
n (
ps (
n (| | eilhead tubing c = (j) or (k) w lowing Temp. d = ½ Pc = ½ (integrate | y shut-in pressure (D
whichever well flower
(Meter Run)
(1) X d) | FLOW (d) | PSIG PSIG Mcf/day psig | Company By Calcula | TION PRIGINAL S | 2 =
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
= _
= | BY L. M | L STE | psic psic AL psic MC | n (
n (
ps (
n (| | ellhead tubing c = (j) or (k) w lowing Temp. d = ½ Pc = ½ (integrate) SUMM c = o = o = o = O = O = O d = | y shut-in pressure (D
whichever well flower
(Meter Run)
(1) X d) | FLOW (d) | PF + 4 | Company By Citle Witnessed | Psig + 1 | 2 =
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
= _
= |) BY L. M | L STE | psic psic AL psic MC | n (
n (
ps (
n (| | ellhead tubing c = (j) or (k) w lowing Temp. d = ½ Pc = ½ (integrate) SUMM c = o = o = SUMM c = o = | y shut-in pressure (D whichever well flower (Meter Run) (1) X d) | FLOW (d) | PSIQ Mcf/day psia psia psia | Company By Citle Witnessed | Psig + 1 | 2 =
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
= _
= |) BY L. M | L STE | psic psic AL psic MC | n (
n (
ps (
n (| | eilhead tubing c = (j) or (k) w lowing Temp. d = ½ Pc = ½ (integrate) = Q SUMM Cc = Cd = This is date | shut-in pressure (D whichever well flower (Meter Run) (1) ARRY of completion test. | FLOW V(c) V(d) Pc-Pd Pc-Pd Pc-Pw= | PSIQ PSIQ Mcf/day Mcf/day | Company By Company Company Company Company | TION PRIGINAL S | 2 =
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
= _
= |) BY L. M | L STE | psic psic AL psic MC | n (
n (
ps (
n (| | ellhead tubing c = (j) or (k) w lowing Temp. d = ½ Pc = ½ (integrate) = Q SUMM c = d = This is date | y shut-in pressure (D whichever well flower (Meter Run) (1) X d) | FLOW V(c) V(d) Pc-Pd Pc-Pd Pc-Pw= | PSIQ PSIQ Mcf/day Mcf/day | Company By Citle Witnessed | TION PRIGINAL S | 2 = | BY L. M | L STE | psic psic AL psic MC | a (da (da (da (da (da (da (da (da (da (d | | eilhead tubing c = (j) or (k) w lowing Temp. d = ½ Pc = ½ (integrate) = Q SUMM Cc = Cd = This is date | shut-in pressure (D whichever well flower (Meter Run) (1) ARRY of completion test. | ed through FLOW V(d) $P_c^2 - P_d^2$ $P_c^2 - P_w^2$ REMAR | PSIQ PSIQ Mcf/day Mcf/day | Company By Company Witnessed Company | TION RIGINAL S A by ATIONS | 2 =
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
= _
= | BY L. M | l stev | psic psic AL psic MC | n (d) | | eilhead tubing c = (j) or (k) w lowing Temp. d = ½ Pc = ½ (integrate) = Q SUMM Cc = Cd = This is date | shut-in pressure (D whichever well flower (Meter Run) (1) ARRY of completion test. | FLOW V(c) V(d) Pc-Pd Pc-Pd Pc-Pw= | PSIQ PSIQ PSIQ Mcf/day PSIQ PSIQ Mcf/day PSIQ Mcf/day | Company By Company Witnessed Company | TION RIGINAL S A by ATIONS | 2 = | BY L. M | l stev | psic AL psic MC | c () c () c () c () c () | | eilhead tubing c = (j) or (k) w lowing Temp. d = ½ Pc = ½ (integrate) c = Q SUMM c = c w = c d = c Meter error c | shut-in pressure (D whichever well flower (Meter Run) (1) ARRY of completion test. | ed through FLOW V(d) $P_c^2 - P_d^2$ $P_c^2 - P_w^2$ REMAR | PSIQ PSIQ PSIQ Mcf/day PSIQ PSIQ Mcf/day PSIQ Mcf/day | COMPANY By Company By Company Witnessed Company | TION RIGINAL S A by ATIONS | 2 = | BY L. M | l stev | psic AL psic MC | a () os () os () |