DISTRICT I

DISTRICT II

P.O. Box 1980, Hobbs, NM 88241-1980

State of New Mexico Energy, Minerals and Natural Resources Department

OIL CONSERVATION DIVISION

2040 S. Pacheco Santa Fe, New Mexico 87505-6429

Form C-107-A New 3-12-96

__YES __x_ NO

APPROVAL PROCESS:

X Administrative ____Hearing

EXISTING WELLBORE

APPLICATION FOR DOWNHOLE COMMINGLING

811 South First St., Artesia, NM 88210-2835 DISTRICT III

1000 Rio Brazos Rd, Aztec, NM 87410-1693

TYPE OR PRINT NAME: Dan Voecks

urlington Resources Oil & Gas C	Addre	ox 4289, Farmington, NM 8749	
an Juan 27-5 Unit		'N-05W	Rio Arriba
350	Well No. Unit Lt	r Sec - Twp - Rge	County
GRID NO14538 Property Cod	In 7454 API NO 30-YYY		ng Unit Lease Types: (check 1 or more)
The following facts are submitted in support of downhole commingling:	Upper Zone	Intermediate Zone	Lower Zone
l. Pool Name and Pool Code	Blanco Mesaverde - 72319		Basin Dakota - 71599
2. Top and Bottom of Pay Section (Perforations)	will be supplied upon completion r		will be supplied upon completion
3. Type of production (Oil or Gas)	gas	2****	gas
Method of Production (Flowing or Artificial Lift)	flowing		flowing
5. Bottomhole Pressure Oil Zones - Artificial Lift:	(Current) a. 566 psi (see attachment)	a. (2) - (3) (3)	a. 963 psi (see attachment)
Estimated Current Gas & Oil - Flowing: Measured Current All Gas Zones: Estimated or Measured Original	(Original) b. 1277 psi (see attachment)	Carrier S	b. 3187 psi (see attachment)
6. Oil Gravity (API) or Gas BTU Content	BTU 1105		BTU 1099
7. Producing or Shut-In?	shut in		shut in
Production Marginal? (yes or no)	no		yes
If Shut-in and oil/gas/water rates of last production	Date: n/a Rates:	Date:	Date: n/a
ote: For new zones with no production history, pplicant shall be required to attach production stimates and supporting data	Nates:	Rates:	Rates:
If Producing, give data and bil/gas/water water of recent test within 60 days)	Date: n/a Rates:	Date: Rates:	Date: r/a Rates:
8. Fixed Percentage Allocation Formula -% for each zone (total of %'s to equal 100%)	Oil: Gas: %	Oil: Gas: %	Oil: Gas: %
(total of % 5 to equal 100%)	will be supplied upon completion		will be supplied upon completion
If allocation formula is based up attachments with supporting data Are all working, overriding, and roy If not, have all working, overriding Have all offset operators been giv			•
. Will cross-flow occur? _x Y production be recovered, and will	es No	mpatible, will the formations notx YesNo (If No, atta	be damaged, will any cross-flow ch explanation)
. Are all produced fluids from all co	mmingled zones compatible with e	each other?x_Yes No	
. Will the value of production be dec	, , ,	, , , , , , , , , , , , , , , , , ,	
. If this well is on, or communitized Land Management has been notified	d with, state or federal lands, eith ed in writing of this application	er the Commissioner of Public La X_Yes No	ands or the United States Bureau
NMOCD Reference Cases for Rule	303(D) Exceptions: ORDER NO(S	i)Reference OrderR-1069	94 attached
* Notification list of all o	nset operators.	ng unit and acreage dedication. not available, attach explanation.) ion rates and supporting data. sts for uncommon interest cases. to support commingling.	
nereby certify that the informat	ion above is true and comple	te to the best of my knowled	ge and belief.
IGNATURE: \ \ d \ \ d \ \ \ \ \ d \ \ \ \ \ \ \	Od//	uction Engineer DATE: 2	2.00

TELEPHONE NO.:

(505) 326-9700

District I PO Box 1980, Hobbs, NM 88241-1980

District II PO Drawer DD, Antesia, NM 88211-0719

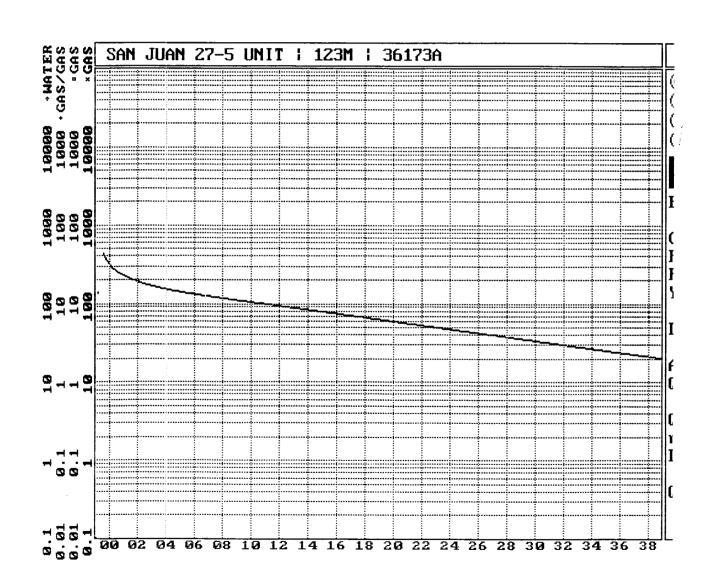
District III 1000 Alo Brazos Rd., Aztec, NM 87410

District IV PO Box 2088, Santa Fe, NM 87504-2088

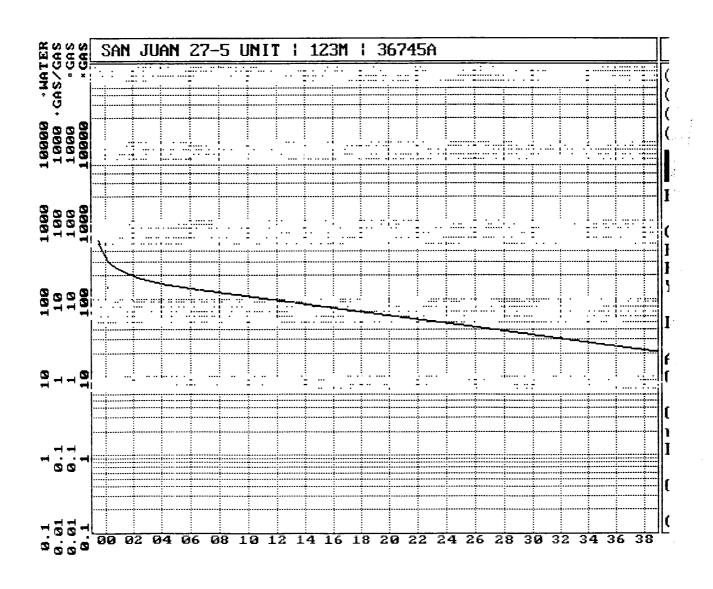
OIL CONSERVATION DIVISION PO Box 2088 Santa Fe, NM 87504-2088

State of New Mexico Energy, Minerals & Natural Resources Department

Revised February 21. 1
Instructions on t
Submit to Appropriate District Off
State Lease - 4 Cor
Fee Lease - 3 Cor


AMENDED REPO

Form C-


		WEL	L LOCATION A	DA DNA	CREAGE DEDI	CAT	ION PL	.AT	
	Number		*Pool Code						
30-039-		72	319/71599	Blar Property	nco Mesaver	de/	Basin	<u>Dakota</u>	Well Number
7454					7-5 UNIT				123M
'OGRID No.				Operator					*Elevation
14538		BUR	LINGTON RESC		OIL & GAS	COM	IPANY		6465
UL or lot no. Sec	tion To	wnehip Range		face	Location North/South line	Fant	foon the	East/West]i	ne County
i		7N 5W	15	80	SOUTH	SOUTH 1585 EA		EAST	RIÓ ARRIE
UL or lot no. Sec	tion To	11 Botto		ion If	Different North/South line		N Surf	ace East/West li	ne County
NV-E/321.7	7 //	int or Infill 14	Consolidation Code ¹⁵ Or	der No.				L	
DK-S/330.3									
2637.36	2691	2	STANDARD UNIT	2673.		72.40'	OPER I hereby cert true and come Signatur Peggy Printed Regula Title 19 Date	ATOR CE	RTIFICATI
3		4	5	NMSF	15 8 5'	53	was plotted or under my correct to ti	from field notes (
		NMS		.095			Date of Signature and	Survey	METICO E

2785.86

San Juan 27-5 Unit #123M Expected Production Curve Mesaverde Formation

San Juan 27-5 Unit #123M Expected Production Curve Dakota Formation

San Juan 27-5 Unit #123M

Bottom Hole Pressures Flowing and Static BHP Cullender and Smith Method Version 1.0 3/13/94

Mesaverde	Dakota			
MV-Current	<u>DK-Current</u>			
GAS GRAVITY COND. OR MISC. (C/M) %N2 0.31 %CO2 0.51 %H2S 0 DIAMETER (IN) DEPTH (FT) SURFACE TEMPERATURE (DEG F) BOTTOMHOLE TEMPERATURE (DEG F) SURFACE PRESSURE (PSIA) BOTTOMHOLE PRESSURE (PSIA) 0.637 0.637 C 0.637 C 0.7 0.637 C 0.7 0.7 0.7 0.7 0.7 0.7 0.7	GAS GRAVITY COND. OR MISC. (C/M) %N2 %CO2 %CO2 %H2S DIAMETER (IN) DEPTH (FT) SURFACE TEMPERATURE (DEG F) BOTTOMHOLE TEMPÉRATURE (DEG F) FLOWRATE (MCFPD) SURFACE PRESSURE (PSIA) BOTTOMHOLE PRESSURE (PSIA) BOTTOMHOLE PRESSURE (PSIA) 963.3			
MV-Original	<u>DK-Original</u>			
GAS GRAVITY COND. OR MISC. (C/M) %N2 0.31 %CO2 0.51 %H2S 0 DIAMETER (IN) 2 DEPTH (FT) SURFACE TEMPERATURE (DEG F) BOTTOMHOLE TEMPERATURE (DEG F) FLOWRATE (MCFPD) 0 SURFACE PRESSURE (PSIA) 1110 BOTTOMHOLE PRESSURE (PSIA) 1276.6	GAS GRAVITY COND. OR MISC. (C/M) %N2 %CO2 %CO2 %H2S DIAMETER (IN) DEPTH (FT) SURFACE TEMPERATURE (DEG F) BOTTOMHOLE TEMPERATURE (DEG F) FLOWRATE (MCFPD) SURFACE PRESSURE (PSIA) BOTTOMHOLE PRESSURE (PSIA) 3187.4			

Q.VAREA\!MVPUD\COMGLS\BHP.xls

Page No.: 1

Print Time: Tue Feb 02 08:18:16 1999

Property ID: 1445

Property Name: SAN JUAN 27-5 UNIT | 37 | 53369B-1 Table Name: Q:\PUBLIC\GENTITY\GDPNOS\TEST.DBF

DATE	CUM_GAS Mcf	M SIWHP
03/08/58 06/03/58 12/06/58 06/14/59 06/14/60 11/22/60 06/13/61 10/01/62 04/19/63 04/29/64 05/10/65 04/19/66 05/16/67 05/02/68 10/07/70 07/22/71 06/06/72 06/04/74 06/25/76 04/21/86	0 0 24000 45000 78000 94000 118000 164000 214000 243000 269000 297000 321000 382596 401792 425578 482198 532643 693136	1110.0 1109.0 883.0 863.0 763.0 722.0 690.0 681.0 651.0 654.0 635.0 634.0 599.0 582.0 537.0 442.0 511.0
04/23/91 05/20/91	744493 746822	510.0 498.0

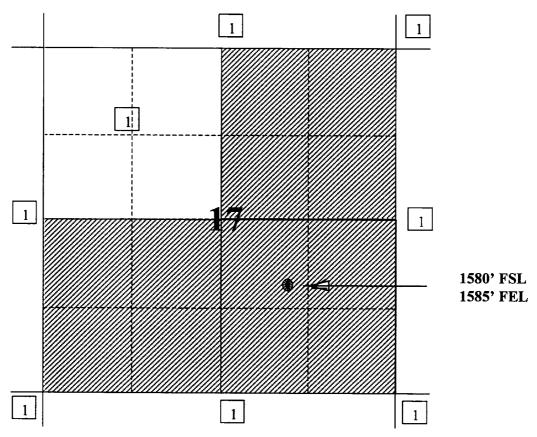
San Juan 27-5 Unit #123M

Mesaverde Offset

Page No.: 1
Print Time: Tue Feb 02 08:18:04 1999
Property ID: 1356
Property Name: SAN JUAN 27-5 UNIT | 131 | 44045A-1
Table Name: Q:\PUBLIC\GENTITY\GDPNOS\TEST.DBF

		CUM_GAS	DATE
0 1 07 5 11-4 440	2635.0	0	08/17/71
<u>San Juan 27-5 Unit #12</u>	2634.0 1722.0	0 45974	08/19/71 11/03/71
Dakota Offset	1240.0	124729	06/06/72
Dakota Oliset	1042.0	213690	07/19/73
	909.0	346962	05/22/75
	847.0	486526	07/06/77
	830.0	593290	05/01/79
	772.0	703345	05/04/81
	942.0	803701	09/19/83
	857.0	875292	06/04/85
	999.0	992407	06/28/88
	853.0	1089480	06/01/90
	808.0	1150889	04/29/92

San Juan 27-5 Unit #123M Blanco Mesaverde / Basin Dakota 27N - 5W - 17


69 ⁴⁵∕ c		53.A 86E 283 ™ 78	52A 16 52A 16 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	21 109 21 84E 25A	23A 110E 110 110 110 110 110 110 110 110 11	34 375a 2017/445 3400
82 45 ⊠®P	6 SOM SOM	55 5 78E 61A 88 69 53 P	88 89 52 608 1 P 89 28	3 28 25 84 89 82 p	23 (SE) 111 11111111111111111111111111111111	3 2 3 3 5 de 168 de)
128M 255 M 255	#9 ⊠	SS 70	, S	113E 1133 113B M 101A 253	99E 14 99	104mm 日本 1
46 ESS 128	7 69M 253	8 8 8 70 M	9 82 83 4 83 4	10 10 10 10 10 10 10 10 10 10 10 10 10 1	11 105 83 88 W	12
163 M 47	137 S	3 € 114	23 40 36 36 36 36 36 36 36 36 36 36 36 36 36	96 96E 33 M 15 69 196 196 108 D PA'96 193 108	98 103 38 386 6 M 98E 14 M 103E M 103E	107 (St. 200) 13 (St. 200) 107 (St. 200) 1 13 (St. 200) 1 107
133M ⊠3 M 19 133 — ∰8	P 20 138	1.38 SS (\$2(1)	122 30 30 P	117M 88 117 88 9 W	115 10 10 23 115M 23	31 116 38 P
ın ∰	138E ES3 _G	131 № 14 131 № 14 1	125 P 25E	118 12 25 25 186 P 25 186	200M ⊕ 16 M 283	\$ 43 S 3 S 3
⊗ ³ ³⁴⁴	⊕ ⊠	165M 4 140 M 253 4 140 P-PA	77 (SE 124)	94 at 20	130E 130	127E 127E 190
30 141 34 88 34	164M. 1	29 140M	51 p 22 121	27 128 88 88	26 · · · · · · · · · · · · · · · · · · ·	25 \$\frac{127}{28}\$
y ⁹⁷⁴	57 p 22 166	180 24 P	142 ⊠ ⊗ p 68 68 68 68 68 68 68 68 68 68 68 68 68	5 65A 5 65B 143	20 145 P ∰23	P
31 · • ⊕ 54 • 97 ⊠ ••/*••	67A	32	55 68A 68 P	34 170 \$65 \$50 P	12 ASS 144	36 ★18 U-PA

BURLINGTON RESOURCES OIL AND GAS COMPANY

San Juan 27-5 Unit #123M OFFSET OPERATOR/OWNER PLAT Down-hole Commingle

Mesaverde (E/2) / Dakota (S/2) Formations Well

Township 27 North, Range 5 West

1) Burlington Resources

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION DIVISION FOR THE PURPOSE OF CONSIDERING:

CASE NO. 11626 ORDER NO. R-10694

APPLICATION OF BURLINGTON RESOURCES
OIL & GAS COMPANY FOR THE ESTABLISHMENT
OF A DOWNHOLE COMMINGLING "REFERENCE
CASE" FOR ITS SAN JUAN 27-5 UNIT PURSUANT
TO DIVISION RULE 303.E AND THE ADOPTION
OF SPECIAL ADMINISTRATIVE RULES THEREFOR.
SAN JUAN COUNTY, NEW MEXICO.

PIO ARRIBA

ORDER OF THE DIVISION

FM THE DIVISION:

This cause came on for hearing at 8:15 a.m. on October 17 and November 7, 1996, at Santa Fe. New Mexico, before Examiners David R. Catanach and Michael E. Stogner, respectively.

NOW, on this 12th day of November, 1996, the Division Director, having considered the testimony, the record and the recommendations of the Examiner, and being fully advised in the premises.

FINDS THAT:

- (1) Due public notice having been given as required by law, the Division has jurisdiction of this cause and the subject matter thereof.
- (2) The applicant. Burlington Resources Oil & Gas Company (Burlington), pursuant to the provisions of Division Rule 303.E., seeks to establish a downhole comminging "reference case" to provide exceptions for (a) marginal economic criteria. (b) pressure criteria. (c) allocation formulas and (d) modification of notification rules on a unit-wide basis for downhole commingling of Dakota. Mesaverde. Fruitland Coal and Pictured Cliffs gas production within existing or funite drilled wells within the San Juan 27-5 Unit. San Juan County, New Mexico.
- (3) Division Rule No. 303.E., amended by Order No. R-10470-A. currently states:

"If sufficient data exists on a lease, pool, formation, geographic area, em., so as to render it unnecessary to repeatedly provide such data on Form C-107-A, an operator may except any of the various criteria required under Paragraph 303.D, of this rule by establishing a "reference case". The Division, upon its own motion, or by application from an operator, may establish "reference cases" either administratively or by hearing. Upon Division approval of such "reference cases" for specific criteria, subsequent applications to downhole commingie (Form C-107-A) will be required only to cite the Division order number which established such exceptions and shall not be required to submit data for those criteria."

- (4) The applicant is the current operator of the San Juan 27-5 Unit which encompasses some 23.043 acres in Township 27 North. Range 5 West. NMPM. San Juan County, New Mexico.
- (5) Within the San Juan 27-5 Unit, the applicant currently operates one immired and one (101) Basin-Dakota Gas Pool wells, one hundred and five (105) Blanco-Mesaverde Gas Pool wells, eighty-seven (87) South Blanco-Pictured Cliffs and Tapacito-Pictured Cliffs Gas Pool wells, and four (4) Basin-Fruitland Coal Gas Pool wells.
 - (6) According to its evidence and testimony, Burlington seeks to:
 - a) establish a "reference case" for marginal economic criteria in the Dakota and Pictured Cliffs formations whereby these formations and/or pools may be identified as "marginal" on Form C-107-A's subsequently filed for wells within the San Juan 27-5 Unit. The applicant further proposes that the data provided in the immediate case serve as supplemental data or confirmation that these formations and/or pools should be classified as "marginal";
 - b) establish a "reference case" for pressure criteria in the Dakota and Pictured Cliffs formations whereby the Division may utilize data provided in the immediate case to verify the pressure data provided on Form C-107-A's subsequently filed for wells within the San Juan 27-5 Unit:

- establish a "reference case" whereby the Division utilizes the data presented in the immediate case to endorse or approve certain methods of allocating production whereby the applicant need not submit additional data or justification when proposing a certain method of allocating production on Form C-107-A's subsequently filed for wells within the San Juan 27-5 Unit; and.
 - d) establish a "reference case" or an administrative procedure for authorizing the downhole commingting of existing or future drilled wells within the San Juan 27-5 Unit without additional nonce to each affected interest owner as required by Division Rule No. 303.D.
- (7) In support of its request to except marginal economic criteria, the applicant presented geologic and engineering evidence and testimony which indicates that within the San Juan 27-5 Unit:
 - a) the structure and thickness of the Dakota and Pictures Cliffs formations are very consistent:
 - b) the average recoverable Dakora and Pictured Cliffs gas reserves underlying an undeveloped drill block are approximately 583 MMCFG and 426 MMCFG, respectively;
 - c) the average initial producing rate for a newly drilled or recompleted Dakota and Pictured Cliffs gas well is approximately 393 MCFGD and 63 MCFGD, respectively; and.
 - d) the estimated ultimate gas recoveries and initial producing rates from the Dakota and Pictured Cliffs formations are insufficient to justify drilling stand alone wells and/or dually completed wells to recover such gas reserves.
 - (8) The evidence and testimony presented by the applicant indicates that the Dakota and Pictured Cliffs formations within the San Juan 27-5 Unit should be properly classified as "marginal".
 - (9) In support of its request to except pressure criteria within the Dakota and Pictured Cliffs formations within the San Juan 27-5 Unit, the applicant presented engineering evidence and testimony which indicates that:

- a) the average shut-in bottomhole pressure within the Dakota and Pictured Cliffs formations at the time of initial development were approximately 3.141 psi and 1.118 psi, respectively; and.
- b) the average current shut-in bottomhole pressure within the Dakota and Pictured Cliffs formations are approximately 1.032 ps; and 441 psi, respectively.
- (10) There is sufficient pressure data available within the San Juan 27-5 Unit so as to except pressure criteria as proposed by the applicant.
- (11) The applicant testified that various allocation methods will be unitized for downhole commingled wells within the San Juan 27-5 Unit depending on the circumstances. Some of the methods and circumstances are described as follows:
 - a) the subtraction method will likely be utilized in those instances involving the Basin-Fruitland Coal Gas Pool and in those instances where a zone with a well established decline rate is commingled with a newly completed zone:
 - b) a fixed allocation formula will be utilized in those instances where production history for both zones is available, or in those instances where newly completed zones are tested and stabilized flow rates obtained.
 - (12) The ailocation methods proposed by the applicant are routinely utilized by industry and approved by the Division and therefore the proposal to except ailocation formulas should be approved.
 - (13) In support of its request to establish a "reference case" or administrative procedure for providing notice within the San Juan 27-5 Unit the applicant presented evidence and testimony which indicates that:
 - a) the interest ownership between two zones within a given weilbore in the San Juan 27-5 Unit is generally not common:
 - b) pursuant to Division Rule No. 303.D.. applicant is currently required to notify all interest owners within the San Juan 27-5 Unit every time a Form C-107-A is submitted to the Division. There is a considerable number of such interest owners within the unit:

- c) providing notice to each interest owner within the San Juan 27-5
 Unit of subsequent downnoise communitings is unnecessary and is
 an excessive burden on the applicant:
- d) the downhole commingling of wells within the San Juan 27-5 Unit Area will benefit working, royalty, and overriding royalty interest owners. In addition, the downhole commingling of wells within the San Juan 27-5 Unit should not violate the correlative rights of any interest owner:
- e) no interest owner appeared at the hearing in opposition to the establishment of a "reference case" or administrative procedure for notice.
- (14) An administrative procedure should be established within the San Juan 27-5 Unit for obtaining approval for subsequent downhole comminged wells without notice to Unit interest owners, provided however that, all other provisions comained within Division Rule No. 303.C. are complied with.
- pressure criteria, allocation formulas and notice will lessen the burden on the applicant pressure criteria, allocation formulas and notice will lessen the burden on the applicant insofar as providing the data required pursuant to Division Rule No. 303.D. and Form C-107-A, will provide the applicant a streamlined method for obtaining downnoise comminging approvals within the San Juan 27-5 Unit, and will not violate correlative rights.

IT IS THEREFORE ORDERED THAT:

(1) The application of Burlington Resources Oil & Gas Company to establish a "reference case" for (a) marginal economic criteria. (b) pressure criteria. (c) allocation formulas and (d) modification of notification rules on a unit-wide basis for downhold commingling of Dakota. Mesaverde. Fruitiand Coal and Pictured Cliffs gas production within existing or future drilled wells within the San Juan 27-5 Unit. San Juan County New Mexico. is hereby approved.