NEW MEXICO OIL CONSERVATION COMMISSION GAS WELL TEST DATA SHEET - - SAN JUAN BASIN (TO BE USED FOR FRUITLAND, PICTURED CLIFFS, MESAVERDE, & ALL DAKOTA EXCEPT BARKER DOME STORAGE AREA) | D 1 . D | P(1 P7 | aso Natural Ga | Formation | | | County_Sen | | |---|---|--|---|---|---|--|--| | Purchasing F | Pipeline | BO TRIMBIL OF | a Company | | Date Test Fi | led April | 29, 1959 | | El | Paso Natural | Gas Products | / Delh | i-Taylor | | Well No | 1-C (| | Operator | | 4 261 | | w | | | 6376 | | Unit | Sec
7-5/8" | l wro | Hae. | Pay Zor | ne: From 6282 | To | | | Casing: OD_ | | 26.40# | 4497* | Tubing: (| OD 2-3/8" W | T. 4.70# T | . Perf. 6 | | | rough: Casing _ | t. 15. 50# Set | bing | ez
Gas Grav | ity: Measured | 0.677 _E | stimated | | | | 4-22-59 To | 4-30-59 | | . Measured Ja | nuary 14. 1 | | | | | | | | | | | | Meter Run Si | ze | Ori | ifice Size | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Type Chart | Туг | oe Taps | | | | • | OBSERVE | ED DATA | | | | | Flowing casino | g pressure (Dwt) _ | | • | | psig + 12 = | | psia | Flowing meter | pressure (meter re | eading when Dwt. me | easurement taker | n: | | | | | | rt reading | | | | psig + 12 = | | | | | |) ² x spring | constant | | = | | psia | | | - (d) or (d) - (c) | | ± | | = | | psi | | • | Flowing column to | | | | | | | | | _ | (a) - (c) Flow throu
pressure (from meter | _ | | = | . | psi | | Normal cha | rt average reading | | | | psig + 12 = | | psiα | | Square root | chart average rea | ding (7,00) 2 | x sp. const | 10 | =_ | 490 | psiα | | | | eter press. (p_f) (g) + | | | = | 490 | psia | | $P_t = (h) + (f)$ | | | 2,029 | | , = <u> </u> | 490 | psia | | | | (Dwt) | | | psig + 12 = | _ | psia | | | | (Dwt) | | | psig + 12 = | 2,041 | psia | | $P_{C} = (j)$ or (k)
Flowing Temp. | whichever well flo | owed inrough | 74 °F + 46 | n | | 534 | psia
°Abs | | $P_d = \frac{1}{2} P_c = \frac{1}{2}$ | | * | 1 140 | U | | 1 001 | A.Da | | - 4 /2 - 6 /2 | (1) | | W DATE CAL | CUI ATION | = | 1,021 | psia | | Q =(integrate | | x (<u>FLC</u> | OW RATE CAL | CULATION | = | 2,708 | psia MC | | Q = | | | OW RATE CAL | CULATION
= | | | psia MCJ (0, 134) | | Q = | | X (V(d) | OW RATE CAL = = = = = = = = = = = = = = = = = = = | = | = | | psia MC Op, 1/4 So | | Q = | ed) | x (V(c) | =
 | CALCULA | | 2,708 | | | Q = | ed) | x (V(c) | =
 | CALCULA | TION
5 X 2,708 | | O, AA | | Q =(integrate | ed) | X (V(d) | =
 | CALCULA | | 2,708 | psia MC Option MCF | | Q =(integrate | ed) | x (V(c) | =
 | CALCULA | | 2,708 | O, A, | | Q =(integrate | 2,708 | x (V(c) | =
 | CALCULA
(0.805).7 | 5
X 2,70 8 | 2,708 | O _J , A | | Q =(integrate | 2,708 [ARY 2,041 | x (V(c) | | CALCULA | | 2,708 | Op, 1/2/2
Op, 0/2/2
Op, 0/2/2
MCF, | | Q =
(integrate
D = Q
SUMM | 2,708 [ARY 2,041 2,708 | x (V(c) | | Company. | X 2,708 El Paso Natu | 2,708 2,302 ral Gas Pro | O _J , A | | Q = | 2,708 [ARY 2,041 | x (V(c) | | Company By Title | El Paso Natur
Petroleum E | 2,708 2,302 ral Gas Pro | Op, 1/2/2
Op, 0/2/2
Op, 0/2/2
MCF, | | Q =
(integrate
D = Q
SUMM | 2,708 ARY 2,041 2,708 535 | x (V(c) | | Company. By Title Witnessed | El Paso Natur
Petroleum E | 2,708 2,302 ral Gas Pro | Op, 1/2/2
Op, 0/2/2
Op, 0/2/2
MCF, | | Q = | 2,708 ARY 2,041 2,708 535 1,021 2,302 of completion test. | | | Company. By Title Witnesses Company. O) = 2 | El Paso Natur
Petroleum En
l by | 2,708 2,302 ral Gas Pro | O, A, | | Q =(integrate D = Q SUMM P_C = Q = P_w = Pd = This is date of | 2,708 ARY 2,041 2,708 535 1,021 2,302 of completion test. | | | Company. By Title Witnessed Company. OO) = 2 OO) ON CALCUL2 | El Paso Natur
Petroleum Es
i by
4,708 (0.994) | 2,708 2,302 2,302 ral Gas Pro rolek agineer 75 = 2,695 | O, A, | | Q = | 2,708 ARY 2,041 2,708 535 1,021 2,302 of completion test. orrection factor | | | Company By Title Witnessed Company Company O) Company | El Paso Naturo Fetroleum El by 2,708 (0.994) ATIONS Column | 2,708 2,302 2,302 75 = 2,695 | ducts Co John J. MCF/d | | Q = | 2,708 ARY 2,041 2,708 535 1,021 2,302 of completion test. orrection factor (1-e-s) 0.0441 | $ \begin{array}{c c} x & & & \\ \hline V(d) & & \\ \hline V(d) & & \\ \hline P_c^2 - P_d^2 & = 3, 12 \\ \hline P_c^2 - P_w^2 & = 3, 88 \\ \hline P_c^2 - P_$ | | Company. Company. By Title Witnessec Company. OO) = 2 OO) ON CALCUL R 2 1-e-s | El Paso Natur
Petroleum Es
i by
4,708 (0.994) | 2,708 2,302 2,302 75 = 2,695 | O, A, | | Q =(integrate D = Q SUMM Pc = Q = Pw = Pd = This is date of the da | 2,708 ARY 2,041 2,708 535 1,021 2,302 of completion test. orrection factor (1-e-s) 0.0441 0.0428 | $ \begin{array}{c c} x & & & \\ \hline & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ $ | | Company By Title Witnessed Company OO) = 2 OO) ON CALCUL (1-e-s R2 586 898 | El Paso Naturo Fetroleum El by 2,708 (0.994) ATIONS Column | 2,708 2,302 2,302 75 = 2,695 | ducts Co John J. MCF/d | *Weymouths formula used to calculate irretion in change over time. Note: Dakota flows as follows: 2-3/8" O.D. Thg. from 6211' to 5293'. Annular flow through 5-1/2" O.D. Liner from 5293' to 4404' and through 7-5/8" csg. from 4404' to surface. A 31/32" I.D. changeover tube '" long directs flow from tubing into the 5-1/2" Liner @ 5293'. Two packers are set, one @ 5293' & one \ 6216 Andrew Control of the guantina de la compansión Another de la compansión de Another de la compansión compan And the second s en de la composition La composition de la La composition de la