EL PASO NATURAL GAS COMPANY

OPEN FLOW TEST DATA

DATE May 15, 1979

Operator E1 Paso N	tural Gas Company	San Juan 28-7 Uni	San Juan 28-7 Unit #251				
NE 31-28-		County Rio Arriba	State New Mexico				
Formation Dakota		Pool Basin	Pool				
Casing: Diameter 4.	00 Set At: Feet 7075	Tubing: Diameter 1 1/2	Set At: Feet 7016				
Pay Zone: From 68	4 To 7002	Total Depth;	Shut In 5-8-79				
Stimulation Method Sar	d Water Frac	Flow Through Casing	Flow Through Tubing				

Choke Size, Inches		Choke Constant	t: C			,
Shut-In Pressure, Casing,	PSIG 2423	+ 12 = PSIA 2335	Days Shut-In	Shut-In Pressure, Tubing	PSIG 2318	+ 12 = PSIA 2330
Flowing Pressure: P	PSIG	+ 12 = PSIA		Working Pressure: Pw	PSIG	+ 12 = PSIA
Temperature:		n =		Fpv (From Tables)		Gravity
T= •F F	- + =					Fg =

CHOKE VOLUME = Q =	С	X	P _t	x	F,	x	Fg	x	Fpv
--------------------	---	---	----------------	---	----	---	----	---	-----

Q =

	MCE /D
-	MCF/D

OPEN FLOW = Aof = Q
$$\begin{pmatrix} 2 & 2 & P_c & P_c & P_w & P_c & P_c & P_w & P_c & P_c$$

Aof =
$$\left(\begin{array}{c} \\ \\ \end{array}\right)_{Q}^{n}$$

C.R. Wagner
Well Test Engineer