Form 3160-4 (August 1999)

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

FORM APPROVED OMB No. 1004-0137 Expires: November 30, 2000

WELL COMPLETION OF PECOMPLETION PEPOPT AND LOC

	WELL C	COMPL	ETION C	R RE	COM	MPLET	ION R	EPOR	T AND	LOG				ase Serial 1 MSF0784		
1a. Type of	f Well	Oil Well	⊠ Gas '	Well		ry 🔲	Other						6. If	Indian, All	ottee or	r Tribe Name
b. Type of	f Completion	Othe	lew Well er	□ Wo	rk Ov	er 🔲	Deepen	☐ P1	lug Back	□ D	iff. Re	esvr.	7. U	nit or CA A	greeme	ent Name and No.
2. Name of CONO	Operator								RBERRY		noco	com	8. Le	ase Name a	and We	ell No. JNIT 252M
	PO BOX 2	2197, DL	3084						No. (inak					PI Well No.	,	
4 Location	HOUSTO of Well (Re			nd in a	corda	nce with I	Ph Tederal re	1: 281.2	on appa	তে (৭ <u>এ</u>		$\overline{}$	10 F	ield and Po		9-26754-00-C1 Exploratory
At surfa			. 1910FWL	a	corua	1100 WIGHT	Cucrai i		, ·	*	- /	43/	В	ASIN DAK	OTA	· · · · · · · · · · · · · · · · · · ·
	orod interval							122	NO BE	V 200 Eive	1	34	01	Area Sec	32 T	Block and Survey 28N R7W Mer NMP
At total	depth SW	NW 1500	OFNL 660FV	٧L				100	OILO	ON. D	:) ::/	9.5		County or P IO ARRIB		13. State NM
14. Date Sp 07/22/2				ate T.D /04/20		hed		100	ate Control	ered 3 Ready		7	17. F		DF, KI I4 GL	3, RT, GL)*
18. Total D	Depth:	MD TVD	7273		19.	Plug Back	T.D.:		₹07.7	7267	\	20. Dep	th Bri	dge Plug Se		MD FVD
21. Type E TDT CE	lectric & Oth BL	er Mecha	mical Logs R	tun (Su	bmit c	opy of eac	ch)			1	Was D	ell cored ST run? ional Su		⊠ No i	🗖 Yes	(Submit analysis) (Submit analysis) (Submit analysis)
23. Casing a	nd Liner Rec	ord (Repo	ort all strings	set in	well)		_									
Hole Size	Size/G	rade	Wt. (#/ft.)	To (M		Bottom (MD)		Cement Depth		of Sks.		Slurry (BB		Cement T	Гор*	Amount Pulled
10.250	T	325 J-55	36.0	1			93				200				0	
8.750		000 J-55	20.0			364			+		516				0	
6.250	4,5	600 J-55	11.0			72	70				400				659	
							_									
24. Tubing								- Т							. 1	
Size 2.375	Depth Set (M	<u>1D) P</u> 7128	acker Depth	(MD)	Siz	ze De	pth Set (MD)	Packer D	Depth (M	D)	Size	De	pth Set (MI	D)	Packer Depth (MD)
	ng Intervals	11201			L		6. Perfo	ration Re	ecord				ــــــــــــــــــــــــــــــــــــــ	·-· ··-		
	ormation		Тор		Bot	ttom		Perforate	ed Interva	ı		Size	N	lo. Holes		Perf. Status
A)	DAK	OTA		7022		7236			7022	TO 723	36			46		
B)											-					
<u>C)</u>											+		+			
D) 27. Acid. Fr	racture, Treat	ment, Ce	ment Squeez	e, Etc.								····	L			
	Depth Interva	al							Amount a	ınd Type	of M	aterial				
	70	22 TO 7	236 FRAC V	V/114,56	60# 20 <i>/</i>	40 SAND	& 1590 B	BLS FLU	סונ							
																
 																
28. Product	ion - Interval	Α.	1													
Date First Produced	Test Date	Hours Tested	Test Production	Oil BBL		Gas MCF	Water BBL		l Gravity гг. API		Gas Gravity		Producti	on Method		
10/30/2001	10/30/2001	24		1.0	- 1	396.0	10.				Ciuvity			FLOV	/S FRC	M WELL
Choke Size 1/2	Tbg. Press. Flwg. 280 SI	Csg. Press. 500.0	24 Hr. Rate	Oil BBL		Gas MCF	Water BBL	Ga Ra	s:Oil tio	7	Well Sta	atus SSI				
	tion - Interva		1				1	1								
Date First Produced	Test Date	Hours Tested	Test Production	Oil BBL		Gas MCF	Water BBL		l Gravity rr. API		Gas Gravity		Producti	on Method		
Chake Size	Tbg. Press. Flwg.	Csg. Press.	24 Hr. Rate	Oil BBL		Gas MCF	Water BBL	Ga Ra	s:Oil tio	,	Well St	atus			0 F(OR RECOR

(See Instructions and spaces for additional data on reverse side)
ELECTRONIC SUBMISSION #8594 VERIFIED BY THE BLM WELL INFORMATION SYSTEM
** REVISED **

										<u> </u>	
28b. Produ	iction - Interv	al C	- , 				· · · · · · · · · · · · · · · · · · ·				
Date First Produced	Test Date	Hours Tested	Test Production	Oil BBL	Gas MCF	Water BBL	Oil Gravity Corr. API	Gas Grav	rity	Production Method	
Choke Size			24 Hr. Rate	Oil BBL	Gas MCF	Water BBL	Gas:Oil Ratio	Well	Status		
28c. Produ	iction - Interv	al D									
Date First Produced	Test Date	Hours Tested	Test Production	Oil BBL	Gas MCF	Water BBL	Oil Gravity Corr. API	Gas Grav	rity	Production Method	
Choke Size											
29. Dispos	ition of Gas(S	old, used	for fuel, veni	ed, etc.)					·		
	ary of Porous	Zones (In	clude Aquife	ers):					31. For	mation (Log) Markers	
Show a tests, it	all important a	ones of pe	orosity and c	ontents ther	reof: Cored in tool open.	ntervals and flowing and	all drill-stem I shut-in pressu	res			
	Formation		Тор	Bottom		Description	ns, Contents, etc). 		Name	Top Meas. Depth
SAN JOSE NACIMIEN OJO ALAN DAKOTA	ITO	(include p	0 374 1674 1865	374 1674 1830 1981					KIF FR PIC ME CH CL ME PO GA	O ALAMO RTLAND UITLAND CTURED CLIFFS SAVERDE ACRA IFF HOUSE NEFEE INT LOOKOUT ILLUP KOTA	1865 1982 2465 2720 3120 3690 4008 4510 4975 6296 6895
Dakot		,		_		he Blanco I	Mesaverde and	d Basın			
				,							
33. Circle	enclosed atta	chments:					·				<u> </u>
	ctrical/Mecha	_	-	-		2. Geologic	-		. DST Re	port 4. Directio	nal Survey
5. Sun	ndry Notice fo	r plugging	and cement	verification	1 (6. Core Ana	lysis	7	Other:		
34. I hereb	y certify that	the forego	Elec	tronic Subr	nission #859 For CONC	94 Verified l	by the BLM W ent to the Farn	ell Inforn iington	nation Sys		ctions):
Name ((please print)	DEBORA			MSS for pr	ocessing by	Lucy Bee on 11 Title S		(02LXB0 ING CON		
Signat	ure	(Flectron	ic Submiss	ion)			Date 1	1/14/200	1		
Signat		1-120110 <u>11</u>									

Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fradulent statements or representations as to any matter within its jurisdiction.

SAN JUAN :	28-7 UNIT 252M	(SSM 8/10/2001			Completion
API	County		ily Summary face Legal Location	NIC Dist (A) NIC CIT	FIA City (ft)
3003926754	00 RÍO ARRIBA	NEW MEXICO	NMPM-28N-7W-32-E	NS Dist. (ft) NS Flag 1500.0 N	EW Dist. (ft) EW Flag 660.0 W
Ground Elev (ft) 6044.0	Spud Date 7/23/2	Rig Release Date 8/5/2001	Latitude (DMS) 36° 37' 15.2112	Longitude (DMS 2" N 10") 7° 36' 10.6488" W
Start 8/11/2001	HELD SAFETY MEETI	NG. RU SCHLUMBERG	Ops This Rpt ER. HELD 2300 # ON 4 1/2" CS	G. RAN CBL LOG FROM	7270' TO 1250'. TOP OF
	CEMENT 1780'. RAN	TDT LOG FROM 7270' To	O 1500'. RAN GR/CCL LOG FR	OM 7270' TO SURFACE.	RD SCHLUMBERGER.
8/12/2001	HELD SAFETY MEETI		VALVE. PRESSURE TESTED		
8/16/2001			RFORATED THE DAKOTA W/ 3 022' - 7043' W/ 1 SPF, 7109' - 7		
8/18/2001	7196' W/ 1 SPF, 7220'	- 7222' W/ 1 SPF, 7234' -	7236' W/ 1 SPF. A TOTAL OF	46 HOLES. SWI. RD BLU	JE JET.
6/16/2001	BROKE DOWN FORM	ATION @ 17 BPM @ 301	FRAC'D THE DAKOTA. TEST 0 #. PUMPED 1000 GAL OF 19	5% HCL ACID @ 8 BPM @	0 1725 #. DROPPED 28
			ALLS PER BBL FOR REMAINI ALLED OFF @ 3300 #. SHUT D		
	PUMPED PREPAD @	30 BPM @ 3630 #. STEI	PPED DOWN RATE TO 22 BPN	1 @ 2872 #. STEPPED DO	OWN RATE TO 15 BPM @
) 2000 #. ISIP 1850 # - 5 MIN 1 60 # 20/40 SUPER LC, 1590 BE		
	3100 #. MAX PRESSU SWI.	JRE 3200 #. MAX SAND	CONS 5 # PER GAL. ISIP 2400	#. FRAC GRADIENT .69	. RD B J SERVICES.
8/20/2001	HELD SAFETY MEETI		W/ 4 1/2" COMPOSIT PLUG. 5		
i		OINT LOOKOUT & LOWE 4886' - 4892' W/1/2 SPF.	ER MENEFEE W/ 3 1/8" 90 4918' - 4928' W/ 1/2 SPF, 5028	DEGREE PP SELECT FII ' - 5044' W/ 1/2 SPF, 5072	
9/04/0004	5116' - 5122' W/ 1/2 SF	PF. A TOTAL OF 28 HOL	ES. RD BLUE JET.		
8/21/2001			(STAGE 1) FRAC'D THE POIN' 3780 #. BROKE DOWN FORM		
			BALLS PER BBL FOR REMAINI . RU BLUE JET. RIH W/ JUNK		
	PUMPED PRE PAD @	50 BPM @ 2000 #. ISIP	0 #. FRAC'D THE POINT LOO	KOUT W/ 65 Q 25 # LINE/	AR FOAM, 120,000 #
			.S FLUID. AVG RATE 50 BPM. 100 # - 5 MIN 0 #. FRAC GRAD		
			LUG TO 4300 #. HELD OK. PE		
			ECT FIRE PERFORATING GUN PF, 4710' - 4716' W/ 1/2 SPF, 4		
			PF. A TOTAL OF 38 HOLES. (BPM @ 2550 #. PUMPED 100		
	SEALERS @ 1 BALL I	PER BBL & 2 BALLS PE	R BBL FOR THE REMAINING B	ALLS. A TOTAL OF 46 B	ALLS. GOOD BALL
	PUMPED PRE PAD @	F@ 3490 #. RUBLUE 31 BPM @ 2055 #. STE	JET. RIH W/ JUNK BASKET. F P DOWN RATE TO 23 BPM @	RETRIEVED 46 BALL SEA 1600 #. STEP DOWN RA	LERS. RD BLUE JET. TE TO 13 BPM @ 1100
	#. ISIP 700 # - 5 MIN 8	33 # - 10 MIN 0 #. FRAC'	D THE CLIFFHOUSE/MENEFE	E W/ 65 Q 25 # LINEAR F0	DAM, 130,920 # 20/40
	ISIP 2200 #. FRAC GF	RADIENT 60. SWI. RD	JID. AVG RATE 60 BPM. AVG BJ SERVICES.	PRESSURE 3200 #. MAJ	RESSURE 3300 #.
10/18/2001 10/19/2001	HELD SAFETY MEETI		. CSG PRESSURE 600 #. KILI	ED WELL NO FRAC VAL	VE-NUROP TESTED
	BOP TO 250 # & 5000	#. BOTH PIPE & BLIND	RAMS. HELD OK. INSTALLED		
10/22/2001		<u> 2 3/8" TBG TO 3200'. S'</u> NG. OPENED UP WELL	WION. . CSG PRESSURE 550 #. RIH	W/ 3 7/8" MILL ON 2 3/8"	TBG. TAGGED SAND @
			O OUT FROM 4711' TO COMPO R PER HR AND 3 CUPS OF SAI		
10/23/2001	HELD SAFETY MEETI	NG. OPENED UP WELL	. CSG PRESSURE 550 #. RIH	W/ 3 7/8" MILL ON 2 3/8"	TBG. TAGGED
10/24/2001			DRILLED OUT COMPOSITE PL . CSG PRESSURE 650 #. RIH		
7-57-2 11-2-5 1	5002'. 368' OF FILL. F	RU DRILL AIR. CLEANEI	O OUT FROM 5002' TO 5370'.	CIRCULATED WELL W/ D	
10/25/2001			ND PER HR. PUH TO 4850'. S' . CSG PRESSURE 600 #. RIH		COMPOSITE PLUG @
			MASA VERDE THROUGH 1/2" AFTER WELL STABILIZED. TB		
	1452 MCFPD, 1 BOPD	, 2 BWPD. MASAVERDE	E PERFS @ 4484' TO 5122'. TE		
10/26/2001		7/8" MILL ON 2 3/8" TBG NG. OPENED UP WELL	TO 5100'. SWION. . CSG PRESSURE 650 #. RIH	W/ 3 7/8" MILL ON 2 3/8"	TBG TAGGED
, , , , , , , , , , , , , , , , , , , ,	COMPOSITE PLUG @	5370'. RU DRILL AIR. [DRILLED OUT COMPOSITE PL	UG @ 5370'. RIH W/ TBG	. TAGGED SAND @
		SAND PER HR. PUH TO	TO 7195'. CIRCULATED WELL 0 7000'. SWION	. W DRILL AIR. WELL M/	ANING 4 DBLS WATER
l					
	1				

300392675400 RÎO ARRIBA NEW MEXICO NMPM-28N-7W-32-E 1500.0 N 660.0 W Ground Elev (ft) Spud Date 7/23/2001 Rig Release Date 8/5/2001 Latitude (DMS) 36° 37' 15.2112" N Longitude (DMS) 107° 36' 10.6488" W Start	,			ily Summary		Completion
Start		RÍO ARRIBA	NEW MEXICO	NMPM-28N-7W-32-E	1500.0 N	
HELD SAFETY MEETING. OPENED UP WELL. CSG PRESSURE 600 #. RIH W/ 2 3/8" TBG. TAGGED SQAND @ 7195'. 7/ FILL. RU DRILL AIR. CLEANED OUT FROM 7195' TO 7267' PBTD. CIRCULATED WELL W/ DRILL AIR. WELL MAKING 4 E WATER PER HR AND 1/2 GAL SAND PER HR. PUH TO 7000'. SWION. HELD SAFETY MEETING. OPENED UP WELL. CSG PRESSURE 650 #. RIH W/ 2 3/8 TBG. TAGGED FILL @ 7200'. 67' FI RU DRILL AIR. CLEANED OUT FROM 7200' TO 7267' PBTD. CIRCULATED HOLE W/ DRILL AIR. WELL MAKING 4 BBLS WATER PER HR AND NO SAND. PUH TO 7000'. SWION HELD SAFETY MEETING. OPENED UP WELL. CSG PRESSURE 650 #. RIH W/ 3 7/8" MILL ON 2 3/8" TBG. TAGGED @ 7 NO FILL. POOH W/ 3 7/8" MILL ON 2 3/8" TBG. RIH W/ 2 3/8" TBG TO 7128'. TESTED THE DAKOTA & MESA VERDE THROUGH 1/2" CHOKE AND UP 2 3/8" TBG @ 7128'. WELL STABILIZED @ 280 #. TESTED WELL 4 HRS AFTER WELL STABILIZED. TBG PRESSURE 280 #. CSG PRESSURE 500 #. 1848 MCFPD. 2 BWPD. DAKOTA PERF 7022' TO 7236'. MESA VERDE PERFS @ 4484' TO 5122'. DAKOTA - 396 MCFPD. 1 BOPD. 10 BWPD. DAKOTA PERF 1452 MCFPD. 1 BOPD. 2 BWPD. TEST WITNESSED BY SAM MCFADDEN & NOE PARRA. LANDED 225 JTS 2 3/ TBG @ 7128' W/ SEAT NIPPLE & MULE SHOE. RU SAND LINE. RIH W/ 1.901" DRIFT TO SEAT NIPPLE. POOH W/ DRIFT						36' 10.6488" W
WATER PER HR AND 1/2 GAL SAND PER HR. PUH TO 7000'. SWION. 10/29/2001 HELD SAFETY MEETING. OPENED UP WELL. CSG PRESSURE 650 #. RIH W/ 2 3/8 TBG. TAGGED FILL @ 7200'. 67' FI RU DRILL AIR. CLEANED OUT FROM 7200' TO 7267' PBTD. CIRCULATED HOLE W/ DRILL AIR. WELL MAKING 4 BBLS WATER PER HR AND NO SAND. PUH TO 7000'. SWION 10/30/2001 HELD SAFETY MEETING. OPENED UP WELL. CSG PRESSURE 650 #. RIH W/ 3 7/8" MILL ON 2 3/8" TBG. TAGGED @ 7 NO FILL. POOH W/ 3 7/8" MILL ON 2 3/8" TBG. RIH W/ 2 3/8" TBG TO 7128'. TESTED THE DAKOTA & MESA VERDE THROUGH 1/2" CHOKE AND UP 2 3/8" TBG @ 7128'. WELL STABILIZED @ 280 #. TESTED WELL 4 HRS AFTER WELL STABILIZED. TBG PRESSURE 280 #. CSG PRESSURE 500 #. 1848 MCFPD. 2 BOPD. 12 BWPD. DAKOTA PERF 7022' TO 7236'. MESA VERDE PERFS @ 4484' TO 5122'. DAKOTA - 396 MCFPD. 1 BOPD. 10 BWPD. MESA VER 1452 MCFPD. 1 BOPD. 2 BWPD. TEST WITNESSED BY SAM MCFADDEN & NOE PARRA. LANDED 225 JTS 2 3/1 TBG @ 7128' W/ SEAT NIPPLE & MULE SHOE. RU SAND LINE. RIH W/ 1.901" DRIFT TO SEAT NIPPLE. POOH W/ DRIFT	10/27/2001			CSG PRESSURE 600 #. RII		
RU DRILL AIR. CLEANED OUT FROM 7200' TO 7267' PBTD. CIRCULATED HOLE W/ DRILL AIR. WELL MAKING 4 BBLS WATER PER HR AND NO SAND. PUH TO 7000'. SWION 10/30/2001 HELD SAFETY MEETING. OPENED UP WELL. CSG PRESSURE 650 #. RIH W/ 3 7/8" MILL ON 2 3/8" TBG. TAGGED @ 7 NO FILL. POOH W/ 3 7/8" MILL ON 2 3/8" TBG. RIH W/ 2 3/8" TBG TO 7128'. TESTED THE DAKOTA & MESA VERDE THROUGH 1/2" CHOKE AND UP 2 3/8" TBG @ 7128'. WELL STABILIZED @ 280 #. TESTED WELL 4 HRS AFTER WELL STABILIZED. TBG PRESSURE 280 #. CSG PRESSURE 500 #. 1848 MCFPD. 2 BOPD. 12 BWPD. DAKOTA PERF 7022' TO 7236'. MESA VERDE PERFS @ 4484' TO 5122'. DAKOTA - 396 MCFPD. 1 BOPD. 10 BWPD. MESA VER 1452 MCFPD. 1 BOPD. 2 BWPD. TEST WITNESSED BY SAM MCFADDEN & NOE PARRA. LANDED 225 JTS 2 3/1 TBG @ 7128' W/ SEAT NIPPLE & MULE SHOE. RU SAND LINE. RIH W/ 1.901" DRIFT TO SEAT NIPPLE. POOH W/ DRIFT		WATER PER HR AND	1/2 GAL SAND PER HR	. PUH TO 7000'. SWION.		
NO FILL. POOH W/ 3 7/8" MILL ON 2 3/8" TBG. RIH W/ 2 3/8" TBG TO 7128'. TESTED THE DAKOTA & MESA VERDE THROUGH 1/2" CHOKE AND UP 2 3/8" TBG @ 7128'. WELL STABILIZED @ 280 #. TESTED WELL 4 HRS AFTER WELL STABILIZED. TBG PRESSURE 280 #. CSG PRESSURE 500 #. 1848 MCFPD. 2 BOPD. 12 BWPD. DAKOTA PERF 7022' TO 7236'. MESA VERDE PERFS @ 4484' TO 5122'. DAKOTA - 396 MCFPD. 1 BOPD. 10 BWPD. MESA VER 1452 MCFPD. 1 BOPD. 2 BWPD. TEST WITNESSED BY SAM MCFADDEN & NOE PARRA. LANDED 225 JTS 2 3/17 TBG @ 7128' W/ SEAT NIPPLE & MULE SHOE. RU SAND LINE. RIH W/ 1.901" DRIFT TO SEAT NIPPLE. POOH W/ DRIFT		RU DRILL AIR. CLEAN WATER PER HR AND	NED OUT FROM 7200' T NO SAND. PUH TO 70	O 7267' PBTD. CIRCULATED 00'. SWION	HOLE W/ DRILL AIR. WELL	MAKING 4 BBLS
STABILIZED. TBG PRESSURE 280 #. CSG PRESSURE 500 #. 1848 MCFPD. 2 BOPD. 12 BWPD. DAKOTA PERF 7022' TO 7236'. MESA VERDE PERFS @ 4484' TO 5122'. DAKOTA - 396 MCFPD. 1 BOPD. 10 BWPD. MESA VER 1452 MCFPD. 1 BOPD. 2 BWPD. TEST WITNESSED BY SAM MCFADDEN & NOE PARRA. LANDED 225 JTS 2 3// TBG @ 7128' W/ SEAT NIPPLE & MULE SHOE. RU SAND LINE. RIH W/ 1.901" DRIFT TO SEAT NIPPLE. POOH W/ DRIFT		NO FILL. POOH W/3	7/8" MILL ON 2 3/8" TBC	RIH W/ 2 3/8" TBG TO 7128	. TESTED THE DAKOTA & N	MESA VERDE
TBG @ 7128' W/ SEAT NIPPLE & MULE SHOE. RU SAND LINE. RIH W/ 1.901" DRIFT TO SEAT NIPPLE. POOH W/ DRIFT		STABILIZED. TBG PR 7022' TO 7236'. MESA	ESSURE 280 #. CSG P . VERDE PERFS @ 448	RESSURE 500 #. 1848 MCFF 4' TO 5122'. DAKOTA - 396 M	PD. 2 BOPD. 12 BWP DFPD. 1 BOPD. 10 B	D. DAKOTA PERFS @ SWPD. MESA VERDE -
		TBG @ 7128' W/ SEAT	NIPPLE & MULE SHO	E. RU SAND LINE. RIH W/ 1.9		
	 - 					