NEW MEXICO OIL CONSERVATION COMMISSION Form C-122 MULTI-POINT BACK PRESSURE TEST FOR GAS WELLS Revised 12-1-55 | T_21 - 3 | D481N | DENOTE | | | ormation | Dax | CULA | Colombian, and Colombian, and Colombian, 1997 | County_ | an Ju | <u>In</u> | | |--|---------------|-----------------------|-------------------------------|-----------------|---------------------------------|---------------------------------|--|--|---|---------------------------|-----------------------------|--| | initial_ | X | | _Armua | L | | Spe | cial | T.P. S. Service Control of the Contr | Date of | Test | 10-19-61 | | | | | | | | | | | Federal | | | | | | | | | | | | | | chaser | | | | | | | | | | | | | | erf. 64 | | To 6 4 | 469 | | | | | | | | | | | erf. Oper | | | | | | | | | | | | | | | | | ess. 12.0 | | | | | | | | | | | | | | | | | ate of | Complet | ion: | 10/7/6 | ., | Packe | r | Sir | gle-Brade | enhead-G. | G. or | G.O. Dual | | | | 3 | | <u> </u> | | r acke | | | Reserve | orr lemb. | | | | |) m | , | (5 | \ / 21 | | | | ZD DATA | | | | | | | ested T | nrough | | | | (Meter) | | | | Type Tap | os | | | | (P | (Prover) (Che | | | | Diff. | Temp. | | Data
Temp. | Casing I | | Duratio | | | 0. (1 | Line)
Size | (Qnifi
Siz | eac) | psig | | o _F , | psig | | į | | of Flo | | | ī | | | | P016 | **W | | 1917 | Fi | 1917 | F. | 7 day | | | • | | 3/4 | | 282 | | 71 | 282 | 71 | 1193 | | 3 hr. | ************ | | | | | | | | | | | F | FLOW CAL | CULATION | 5 | | | | | | Coefficient | | | | Pr | Pressure Flow Ten | | | Gravity Compress. Rate of Flow | | | | | | (24-Hour) V | | | $h_{\mathbf{w}} \mathbf{p_f}$ | | psia | Factor
Ft | | Fg | Fpv | | @ 15.025 psia | | | | 12.3650 | | | 295 | | .9896 | | .9463 | 1.032 | | 3,525 | | | | | | | | | | | | | | | | | - | | | | | | | | · · · · · · · · · · · · · · · · · · · | PRE | SSURE CA | ALCUI ATI | ONS | | | | | | Liquid | | | | | PRE | | ALCUIATIO | | fic Gravi | ty Sepa | rator Gas | | | Liquid
vity of | Liquid | Hydro | carbons | | | | ALCUIATIO | Specia
Specia | fic Gravi | ty Flow | rator Gasing Fluid | | | Liquid
vity of | Liquid | Hydro | carbons | | | cf/bbl. | ALCUI AT I | Special Special P _c | fic Gravi
1 929 | ty Flow
Pc 3 | ing Fluid | | | Liquid
vity of | Liquid | Hydro | carbons
(1- | | | cf/bbldeg. | | Specia
Specia
Po
Pw | fic Gravi
1929
1205 | ty Flow Pc 3 | ing Fluid | | | Liquid
vity of | Liquid | Hydro | carbons | | | cf/bbldeg. | ALCULATION ACCORDED TO THE CONTRACT OF CON | Special Special P _c | fic Gravi
1 929 | ty Flow Pc 3 Pw2 1 | ing Fluid | | | Liquid
vity of | Liquid | Hydro | carbons
(1- | | | cf/bbldeg. | | Specia
Specia
Po
Pw | fic Gravi
1929
1205 | ty Flow Pc 3 | ing Fluid | | | Liquid
vity of | Liquid | Hydro | carbons
(1- | | | cf/bbldeg. | | Specin
Specin
Pc
Pw | fic Gravi
1929
1205
P _c -P _w ² | ty Flow Pc 3 Pw2 1 | ing Fluid | | | Liquid
vity of | Liquid | Hydro | carbons
(1- | | | cf/bbldeg. | | Specin
Specin
Pc
Pw | fic Gravi
1929
1205
P _c -P _w ² | ty Flow Pc 3 Pw2 1 | ing Fluid | | | Liquid vity of | psia) | Pt Pt | F _c Q | ==\$) | (F _c Q) ² | cf/bbl.deg. | (Q) ²
e-s) | Special Specia | fic Gravi
1929
1205
P _c -P _w ² | ty Flow Pc 3 Pw2 1 | ing Fluid | | | Pt (| psia) | Pt Pt | F _c Q | ==\$) | (F _c Q) ² | cf/bbl.deg. | (Q) ²
e-s) | Special Specia | fic Gravi
1929
1205
P _c -P _w ² | ty Flow Pc 3 Pw2 1 | ing Fluid | | | Pw Pt (solute MPANY DRESS ENT and | psia) Potenti | Pt al: | F _c Q | luctic
Plass | (F _c Q) ² | cf/bbl.deg. | n75 | Special Specia | fic Gravi
1929
1205
P _c -P _w ² | Pc 3 Pw2 1 Cai | ing Fluid
721.0
452.0 | | | P _w Pt (| psia) Potenti | Pt al: | F _c Q | luctic
Plass | (F _c Q) ² | Cf/bbldeg. (For (1)- | n75 | Special Specia | fic Gravi
1929
1205
P _c ² -P _w ²
2269.0 | ty Flow Pc 3 Pw2 1 Cai P, | 1961 | | | Pw Pt (solute MPANY DRESS ENT and TNESSED | psia) Potenti | Pt al: | F _c Q | luctic
Plass | (F _c Q) ² | Cf/bbldeg. (Foliation) MCFPD; | n75 | Special Specia | fic Gravi
1929
1205
P _c ² -P _w ²
2269.0 | Cai P, | ing Fluid
721.0
452.0 | | ## INSTRUCTIONS This form: to be used for reporting multi-point back pressure tests on gas wells in the State e, except those on which special orders are applicable. Three copies of this is rm and the back pressure curve shall be filed with the Commission at Box 871, Sant Fe. The log log paper used for plotting the back pressure curve shall be of at least three incl cycles. ## NOMENCLATURE - Q I Actual rate f flow at end of flow period at W. H. working pressure ($P_{\rm W}$). MCF/da. @ 15 025 psia and 600 F. - P_c = 72 hour well and shut-in casing (or tubing) pressure whichever is greater. - PwT Static wellh ad working pressure as determined at the end of flow period. (Casing if f wing thru tubing, tubing if flowing thru casing.) psia - Pt Flowing well and pressure (tubing if flowing through tubing, casing if flowing thro the casing.) psia - Pf Meter pressu :, psia. - $h_{\mathbf{W}^{\perp}}$ Differential leter pressure, inches water. - FgI Gravity correction factor. - F_t Flowing temperature correction factor. - F_{DV} Supercompre: ability factor. - n I Slope of bar pressure curve. Note: If P_W can t be taken because of manner of completion or condition of well, t en P_W must be calculated by adding the pressure drop due to frictic within the flow string to P_+ .