3-CCC 1-H. L. Kendrick 1-Bill Parrish MEXICO OIL CONSERVATION COMMISSION 1-WD 1-D, 2-F Form 0-122 Rev_Bed 12-1-55 ## בוובא השת הטוב הבווב | | Basin Dak | ota | Fo: | rmation_ | Dakot | .a | | _County | San J | uan | |--|--------------------------------------|-------------------|---|--|---------------------|--|--|--|---------------------------------|--| | | | | | | | | | | | 5/31/62_ | 6 | | Jnit | F Se | c. 25 T | wp. 27 | N_Rge. | 11 W | Purch | aser <u>E</u> | Paso Na | tural G | as Company | | asi | ng 4 1/2 Wt | . 10.50 | I.D. 4.0 | 52 Set 8 | at 662 | 0Per | f. 6444- | <u>58</u> | To 649 | 8-6530 | | ubi | ng <u>1 1/2</u> Wt | 2,75 | I.D. <u>1.6</u> | lO_Set | at 654 | 4 Per | f• | | Го | 6544 | | as | Pay: From_ | 6444 To_ | 6530 | L 6544 | x0 | .67 | | 4384 | Bar.Pre | ss. <u>12.0</u> | | 'rod | ucing Thru: | Casing_ | | Tubi | ng <u>X</u> | <u> </u> | _Type We: | ll <u>Sinal</u> | e Gas | | | | | | | | | STITE | Te-Drage | TITIC GROT - (1) | 3. Or 0 | .O. Dual | | auc | OI COMPLECT | <u></u> | | | | | | • • | | , per a | | | | | | • | OBSERVE | ED DATA | | | | | | 'e s t | ed Through | XXXXXXXXX | (Choke) | (Mexexx) | | | | Туре Тар | s | and the second s | | | | Flow | Data | | | Tubing | | Casing D | ata | | | JO. | (Prover)
(Line) | (DAAAAAAA |) | | | i i | | | 1 | Duration of Filo | | | Size | Size | psig | h _w | °F. | psig | | | | | | SI
L. | | 3/4" | 055 | | 69 | 1834
355 | | 1996
1389 | | 7 days 3 hour | | 2. | | 3/4" | 25 5 | | | 333 | 09 | | | | | • | | | | | | | | | | | | · · · | | | | | | | | | | | | | | | | FL | OW CAL | CULATIONS | S | | | | | | Coefficient F | | Pr | ricw calculation of the calculat | | Temp. | Gravity Compr | | ress. Rate of Flow | | | No. | (24-Hour) $$ | | ո _ա թ _բ | psia | osia F _t | | Fg | Fov | ^* | ● 15.025 psi | | 1. | 12.3650 | | "-1 | 367 | 9915 | | .9463 | | 039 | 4,423 | | 2. | | | | | | | | | | | | 3.
+• | | | | | | | | | | | | 5. | PRES | SURE C | ALCUT ATI O | ons | | | | | as I | Liquid Hydro | carbon R a | tio | PRES | | | Speci | fic Grav | ity Sep | arator Gas | | ravi | Liquid Hydrod
ity of Liquid | d Hydroca | rbons | | | | Speci
Speci | fic Grav | ity Flo | wing Fluid | | ravi | | d Hydroca | | | f/bbl. | | Speci
Speci
P _c | fic Grav | ity Flo | wing Fluid | | ravi | ity of Liquid | d Hydroca | rbons | | f/bbl.
deg. | | Speci
Speci
P _c | fic Grav
20 6 8
1401 | P _c P _w 1 | wing Fluid | | ravi | ity of Liquid | d Hydroca | rbons(1-e ⁻⁵) | | f/bbl.
deg. | | Speci
Speci
P _c | fic Grav | PC PW C | wing Fluid
4032.0
1962.8 | | No. | ity of Liquid | d Hydroca | rbons | | f/bbl.
deg. | | Speci
Speci
Pc
Pw
P _w 2 | fic Grav
2008
1401
P ² _c -P ² _w | PC PW C | wing Fluid
4032.0
1962.8
al. Pw
Fw Pc | | No. | ity of Liquid | d Hydroca | rbons(1-e ⁻⁵) | | f/bbl.
deg. | | Speci
Speci
P _c
Pw | fic Grav
20 6 8
1401 | PC PW C | wing Fluid
4032.0
1962.8 | | No. | ity of Liquid | d Hydroca | rbons(1-e ⁻⁵) | | f/bbl.
deg. | | Speci
Speci
Pc
Pw
P _w 2 | fic Grav
2008
1401
P ² _c -P ² _w | PC PW C | wing Fluid
4032.0
1962.8
al. Pw
Fw Pc | | No.
1.
2.
3. | ity of Liquid | d Hydroca | rbons(1-e ⁻⁵) | | f/bbl.
deg. | | Speci
Speci
Pc
Pw
P _w 2 | fic Grav
2008
1401
P ² _c -P ² _w | PC PW C | wing Fluid
4032.0
1962.8
al. Pw
Fw Pc | | No. 1. 2. 3. 4. 5. | Pw Pt (psia) olute Potent | Pt lial: | F _c Q 7,293 | (F _c Q) ² | f/bbl.deg. (F) (I) | (cQ) ²
-e ^{-s}) | Speci
Speci
PcPw
Pw_2
1962.8 | fic Grav
2008
1401
P ² _c -P ² _w | PC PW C | wing Fluid
4032.0
1962.8
al. Pw
Fw Pc | | No. | Pw Pt (psia) olute Potent | Pt | F _c Q 7,293 | (F _c Q) ² | f/bbl.deg. (F) (I) | (Q) ² -e ^{-s}) | Speci
Speci
PcPw
Pw_2
1962.8 | Pc-Pw 2069.2 | PC PW C | wing Fluid
4032.0
1962.8
al. Pw
Fw Pc | | No. No. 1. 2. 3. 4. 5. Absa | Pw Pt (psia) olute Potent | P2 t | F _c Q 7,293 Southwest | (F _c Q) ² Producti Club Pla | (F) (I) MCFPD; | n Compared C | Speci
Speci
PcPw | Pc-Pw 2069.2 | PC PW C | wing Fluid
4032.0
1962.8
al. Pw
Fw Pc | | No. 1. 2. 3. 4. 5. Absa COM ADD AGE WIT | Pw Pt (psia) olute Potent PANY RESS | Pt ial: | Toons (1-e-s) FcQ 7.293 Southwest 207 Petroge Lower MacNa | (F _c Q) ² Producti Club Pla Hoffman, | MCFPD;
on FMC | n | Speci
Speci
PcPw | Pc-Pw 2069.2 | PC PW C | wing Fluid
4032.0
1962.8
al. Pw
Fw Pc | ## INSTRUCTIONS This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe. The log log paper used for plotting the back pressure curve shall be of at least three inch cycles. ## NOMENCLATURE - Q I Actual rate of flow at end of flow period at W. H. working pressure (P_w) . MCF/da. @ 15.025 psia and 600 F. - P_c 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater. psia - P_{w} Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia - Pt Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia - Pf Meter pressure, psia. - hw Differential meter pressure, inches water. - Fg Gravity correction factor. - F_t Flowing temperature correction factor. - Fpv Supercompressability factor. - n I Slope of back pressure curve. Note: If $P_{\mathbf{W}}$ cannot be taken because of manner of completion or condition of well, then $P_{\mathbf{W}}$ must be calculated by adding the pressure drop due to friction within the flow string to $P_{\mathbf{t}}$.