

DEC 2 1 1998

MARSHALL A #3 Meter/Line ID - 92603

SITE DETAILS

Legals - Twn: 27 Rng: 09

NMOCD Hazard Ranking: 20 Operator: TEXACO E&P INC Sec: 15 Unit: G

Land Type: 3 - Navajo Pit Closure Date: 08/18/94

RATIONALE FOR RISK-BASED CLOSURE:

The above mentioned production pit was assessed and ranked according to the criteria in the New Mexico Conservation Division's Unlined Surface Impoundment Closure Guidelines.

The primary source, discharge to the pit, has been removed. There has been no discharge to the production pit for at least five years and the pit has been closed for at least three years.

The production pit has been remediated to the practical extent of the trackhoe or to the top of bedrock. Initial laboratory analysis has indicated that the soil remaining at the bottom of the excavation is above standards based on the hazard ranking score. Contaminated soil was removed and transported to an approved landfarm for disposal. The initial excavation was backfilled with clean soil and graded in a manner to divert precipitation away from the excavated area. Any rainfall that does infiltrate the ground surface must migrate through clean backfill before reaching any residual hydrocarbons remaining in the soil. Therefore, further mobility of residual hydrocarbons is unlikely.

Since the soil samples from the initial excavation were above standards, a test boring was drilled and a sample was collected to evaluate the vertical extent of impact to soils. Test boring sample results indicated soils below standards beneath the original excavation.

El Paso Field Services Company (EPFS) requests closure of the above mentioned production pit location for the following reasons:

- Discharge to the pit has not occurred in over five years and the pit has been closed for over three years.
- The bulk of the impacted soil was removed during the initial excavation.
- The excavation was backfilled with clean soil and graded to divert precipitation away from the excavation area.
- All source material has been removed from the ground surface, eliminating potential direct contact with livestock and the general public.
- Groundwater was not encountered in the initial excavation or test boring; therefore, impact to groundwater is unlikely.
- Soil samples collected beneath the initial excavation were below standards.
- No potential receptors are within 1,000 feet of the site.
- Residual hydrocarbons remaining in the soil at the bottom of the initial excavation will
 naturally degrade in time with minimal risk to the environment.

FIELD PIT SITE ASSESSMENT FORM

GENERAL	Meter: 92.603 Location: Marshall A well No. 3 Operator #: 02.63 Operator Name: Texaco P/L District: Ballard Coordinates: Letter: G Section 15 Township: Z7 Range: 9 Or Latitude Longitude Pit Type: Dehydrator X Location Drip: Line Drip: Other: Site Assessment Date: 6-15-94 Area: 11 Run: 71
	NMOCD Zone: (From NMOCD Maps) Inside Outside Land Type: BLM (1) State (2) Fee (3) Outside Outside
	Outside (2) Indian Extern Navay? Depth to Groundwater Less Than 50 Feet (20 points) (1) 50 Ft to 99 Ft (10 points) (2) Greater Than 100 Ft (0 points) (3)
ASSESSMENT	Wellhead Protection Area: Is it less than 1000 ft from wells, springs, or other sources of fresh water extraction?, or; Is it less than 200 ft from a private domestic water source? ☐ (1) YES (20 points) ☒ (2) NO (0 points)
SITE ASS	Horizontal Distance to Surface Water Body Less Than 200 Ft (20 points) (1) 200 Ft to 1000 Ft (10 points) (2) Greater Than 1000 Ft (0 points) (3)
	Name of Surface Water Body <u>Jaquez Canys N</u> (Surface Water Body : Perennial Rivers, Major Wash, Streams, Creeks, Irrigation Canals, Ditches, Lakes, Ponds) Distance to Nearest Ephemeral Stream (1) < 100'(Navajo Pits Only) (2) > 100'
	TOTAL HAZARD RANKING SCORE: POINTS
RKS	Remarks: One prt-dry
REMARKS	Inside. V.Z. on Redline & Topa
	TO ME TO THE TOTAL OF

- 4,	r.
NO	ORIGINAL PIT LOCATION Original Pit : a) Degrees from North 34 Footage from Wellhead 107 b) Length : 17 Depth : 4
ORIGINAL PIT LOCATION	N 17'
REMARKS	Remarks: PLotos - 0814
	Completed By: Signature Completed By: 6-75-94 Date

FIELD PIT REMEDIATION/CLOSURE FORM

-		Meter: 92603 Location: Marshall A #3
GENERAL		Coordinates: Letter: _3r_ Section_10 Township2 Nange
GEN		Or LatitudeLongitude Date Started : <u>8/18/94</u> Run: <u>//</u>
-		-
SNO		Sample Number(s): <u>KD 774</u>
VATT		Sample Depth: 12' Feet Final PID Reading 92m PID Reading Depth 17' Feet
SNOTTANATIONS	200	Final PID Reading PID Reading Depth Yes No
1	FIELD OF	Groundwater Encountered Approximate DepthFeet
1 1	r.	
1		Remediation Method :
		Excavation Approx. Cubic Yards
	URE	Onsite Bioremediation Backfill Pit Without Excavation
	S	Soil Disposition:
	ご	Envirotech
		Pit Closure Date: 8/18/94 Pit Closed By: BEI
	REMARKS	Remarks: Distest Hole to 12', TOOK DID Sample,
ļ	RE	Signature of Specialist:
	L	Signature of Specialist

FIELD SERVICES LABORATORY ANALYTICAL REPORT PIT CLOSURE PROJECT

SAMPLE IDENTIFICATION

	Field ID	Lab ID	
SAMPLE NUMBER:	KD224	945965	
MTR CODE SITE NAME:	92603	Marshall A #3	
SAMPLE DATE TIME (Hrs):	8/18/94 1325		
PROJECT:	Phase I		
DATE OF TPH EXT. ANAL.:	8/24/94	8/24/94	
DATE OF BTEX EXT. ANAL.:	8/25/94	8/25/94	
TYPE DESCRIPTION:	VG	Fine brown sand	

RESULTS

PARAMETER:	RESULT	UNITS		QUALIFIERS		
	1		DF.	Q	M(g)	V(ml)
BENZENE	<0.03	MG/KG				
TOLUENE	0.18	MG/KG				
ETHYL BENZENE	0.06	MG/KG				
TOTAL XYLENES	0.33	MG/KG				
TOTAL BTEX	0.57	MG/KG	ļ			
TPH (418.1)	220	MG/KG			2.23	28
HEADSPACE PID	9	PPM				
PERCENT SOLIDS	93.7	%				

-- TPH is by EPA Method 418.1 and BTEX is by EPA Method 8020 --

The Surrogate Recovery was at	100	for this sample	All QA/QC was acceptable.	
Narrative: ATI roults q	Hodred			
DF = Dilution Factor Used	\bigcirc			
Approved By:	- Fardr	INGVZPIT.XLS	Date: 9/30/94	

FIELD SERVICES LABORATORY ANALYTICAL REPORT

PIT CLOSURE PROJECT - Soil Samples Inside the GWV Zone

SAMPLE IDENTIFICATION

	Field I	D ,lace		Lab ID		
SAMPLE NUMBER:	KT 224	RLB 9/26 95	94591	a5		
MTR CODE SITE NAME:	92400	92603		N/A		
SAMPLE DATE TIME (Hrs):	A -18-94		132	<u>s</u>		
SAMPLED BY:		N/	Α			
DATE OF TPH EXT. ANAL.:	8-24	-94	8/6	24/94		
DATE OF BTEX EXT. ANAL.:	8 2	5 94	81	25 194		
TYPE DESCRIPTION:	√6		fine by	own 520	nd	
REMARKS:	F	RESULTS				
DADAMETED	RESULT	UNITS		QUALIF	IERS	
PARAMETER	TEGO21		DF	Q	M(g)	V(ml)
BENZENE	20.025	MG/KG	1			
TOLUENE	0.18	MG/KG				
ETHYL BENZENE	0.060	MG/KG	1			
TOTAL XYLENES	0.33	MG/KG				
TOTAL BTEX alle	MB 22-0.60	MG/KG				
TPH (418.1)	220	MG/KG			2.23	28
HEADSPACE PID	a a	PPM		ļ		
PERCENT SOLIDS	93.7	%				
The Surrogate Recovery was at	TPH is by EPA Method	418.1 and BTEX is by _% for this samp			otable.	
Narrative:	eouts o	ttached.	·····			
DF = Dilution Factor Used		-		-//		
Approved By:		·	Date:	9/30/94		

Test Method for a service of samela, a fraction of the first of the fi

GAS CHROMATOGRAPHY RESULTS

TEST : BTEX (EPA 8020)

CLIENT

: EL PASO NATURAL GAS CO. ATI I.D.: 408397

PROJECT #

: 24324

PROJECT NAME : PIT CLOSURE

PRODUCT MAIN TOTAL					
SAMPLE ID. # CLIENT I.D.	MATRIX	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	DIL. FACTOR
01 945963	NON-AQ	08/18/94	08/25/94	08/26/94	10
02 945964	NON-AQ	08/18/94	08/28/94	08/28/94	1
03 945965	NON-AQ	08/18/94	08/25/94	08/25/94	1
PARAMETER		UNITS	01	02	03
		MG/KG	<0.25	<0.025	<0.025
BENZENE		, MG/KG	<0.25	<0.025	0.18
TOLUENE ETHYLBENZENE		MG/KG	1.6	<0.025	0.060
TOTAL XYLENES		MG/KG	15	0.026	0.33
SURROGATE: BROMOFLUOROBENZENE (%)			147*	90	100

^{*}OUTSIDE ATI QUALITY CONTROL LIMITS DUE TO MATRIX INTERFERENCE

ATI I.D. 408397

August 29, 1994

El Paso Natural Gas Co. P.O. Box 4990 Farmington, NM 87499

Project Name/Number: PIT CLOSURE 24324

Attention: John Lambdin

On 08/25/94, Analytical Technologies, Inc., (ADHS License No. AZ0015), received a request to analyze non-aqueous samples. The samples were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

If you have any questions or comments, please do not hesitate to contact us at (505) 344-3777.

H. Mitchell Rudenstein, Ph.D.

Laboratory Manager

MR:jt

Enclosure

PHASE II EXCAVATION

FIELD PIT REMEDIATION/CLOSURE FORM/PHASE II

GENERAL	Meter: 92603 Location: Marshall A well 16.3 Coordinates: Letter: & Section 15 Township: 27 Range: 9 Or Latitude Longitude Date Started: 14/15/95 Area: 27 Run: 9
TELD OBSERVATIONS	Sample Number(s): $\frac{5K/37}{18}$ Feet Final PID Reading $\frac{207.1}{18}$ PID Reading Depth $\frac{18}{18}$ Feet Yes No Groundwater Encountered \square (1) \square (2) Approximate Depth \square Feet Final Dimensions: Length 22 Width \square Depth \square
CLOSURE	Remediation Method: Excavation Onsite Bioremediation Backfill Pit Without Excavation Soil Disposition: Envirotech Other Facility Pit Closure Date: (1) Approx. Cubic Yards 228 ur 12/1/45 (2) APP & ALTON TAMES EPRE Overburden Cubic Yards 43 ur 12/1/45 (3) Tierra Other Facility
TWARKS	Remarks: Pit Pick Readings W-10,5/5-118.0) (E-4,9) (W-20,0) Had Drif Pot on South side could not Dig That wall More than 100 from Ethern ral Street No Fence No ElDla ON Site Hit Rail At 18 Signature of Specialist: Dr. King (SP3195) 05/01/85

FIELD SERVICES LABORATORY ANALYTICAL REPORT PIT CLOSURE PROJECT

SAMPLE IDENTIFICATION

	Field ID	Lab ID
SAMPLE NUMBER:	JK137	947786
MTR CODE SITE NAME:	92603	Marshall A #3
SAMPLE DATE TIME (Hrs):	11/15/95	1000
PROJECT:	PHASE II	Excavation
DATE OF TPH EXT. ANAL.:	11/17/95	11/17/95
DATE OF TPH EXT. ANAL.: DATE OF BTEX EXT. ANAL.:	11/17/95 11/16/95	11/17/95 11/16/95

	Remarks:	

RESULTS

PARAMETER	RESULT	UNITS		QUALIFIE	ERS		
			DF	Q	M(g)	V(ml)	
BENZENE	0.73	MG/KG					
TOLUENE	18.4	MG/KG					
ETHYL BENZENE	13.6	MG/KG					
TOTAL XYLENES	93.3	MG/KG	2	D		-	
TOTAL BTEX	126	MG/KG					
TPH (418.1)	4,160	MG/KG			1.99	28	
HEADSPACE PID	207	РРМ					
PERCENT SOLIDS	77.5	%	E				

-- TPH is by EPA Method 418.1 and BTEX is by EPA Method 8020 --

The Surrogate Recovery was at The "D" qualifier indicates the reporte Narrative:	98.4 ed result for th	for this sample is analyte is calculat	All QA/QC ed based on	was acceptable. a secondary dilution factor.
DF = Dilution Factor Used				
Approved By:	bdr.	INGVZPIT.XLS	Date:	11/21/95

FIELD SERVICES LABORATORY

ANALYTICAL REPORT

PIT CLOSURE PROJECT - Soil Samples Inside the GWV Zone

SAMPLE NUMBER: MTR CODE SITE NAME: SAMPLE DATE TIME (Hrs): PROJECT:	Field II TK 137 93603		94 7	Lab ID		
MTR CODE SITE NAME: SAMPLE DATE TIME (Hrs): PROJECT:			911 7	- 01		
MTR CODE SITE NAME: SAMPLE DATE TIME (Hrs): PROJECT:			77 / /	186		
SAMPLE DATE TIME (Hrs): PROJECT:			Marsa		3	
PROJECT:	11-15-95	5	1000)		
	Phase II Na	,	CAVATION	H-9/2	1/97	
DATE OF TPH EXT. ANAL.:	11/17	145				
DATE OF BTEX EXT. ANAL.:	11/16/95	7	11/16	195		
TYPE DESCRIPTION:	V6		Linker ver	Sand do	clag	
TYPE DESCRIPTION:	y C /		3 1 1		ļ	
Field Demonks			_		<u> </u>	
Field Remarks: _				-		-
	F	RESULTS				
	DECULT.	UNITS		QUALIF	IERS	
PARAMETER	RESULT	Olivio	DF	Q	M(g)	V(ml)
BENZENE	0.7	MG/KG				
TOLUENE	18.4	MG/KG				
ETHYL BENZENE	13.6	MG/KG				
TOTAL XYLENES	93.3	MG/KG	2	<u>D</u>		
TOTAL BTEX	126	MG/KG			1 6 -	53.0
TPH (418.1)	4160	MG/KG			1.99	28
HEADSPACE PID	207.1	PPM				
PERCENT SOLIDS	77,5	%				
The Surrogate Recovery was at Narrative:	TPH is by SPA Method		EPA Method 8020 -	was acce	otable.	
DF = Dilution Factor Used Approved By:			Date:	11/21/4	2	

BTEX SOIL SAMPLE WORKSHEET

File	.	947786	Date Printed :	11/20/95	
Soil Mas	s (g):	5.01	Multiplier (L/g) ∶	0.00100	
Extraction vol		10	CAL FACTOR (Analytical):	200	
Shot Volume		50	CAL FACTOR (Report):	0.19960	
			DILUTION FACTOR:	1 Det. Lir	nit
Benzen e	(ug/L) :	3.63	Benzene (mg/Kg):	0.725 0.4	199
Toluene	(ug/L) :	92.41	Toluene (mg/Kg):	18.445 0.4	199
Ethylbenzene	(ug/L) :	68.18	Ethylbenzene (mg/Kg):	13.609 0.4	199
p & m-xylene	(ug/L) :	351.22	p & m-xylene (mg/Kg):	70.104 0.9	98
o-xylene	(ug/L) :	95.84	o-xylene (mg/Kg):	19.130 0.4	199
c xylolic	(- <i>3</i> -7		Total xylenes (mg/Kg):	89.234 1.4	197
			Total BTEX (mg/Kg):	122.012	

EL PASO NATURAL GAS EPA METHOD 8020 - BTEX SOILS

File : C:\LABQUEST\CHROM001\111695-2.015 Method : C:\LABQUEST\METHODS\1-111695.MET

Sample ID : 947786,5.01G,50U Acquired : Nov 17, 1995 01:23:41 Printed : Nov 17, 1995 01:50:16

User : MARLON

Channel A Results

COMPONENT	RET TIME	AREA	CONC (ug/L)
BENZENE	5.590	1048168	3.6298
TOLUENE	9.680	24548280	92.4146
ETHYLBENZENE	13.817	16618020	68.1815
M & P XYLENE	14.223	90243160	351.2188
O XYLENE	15.340	22241232	95.8407
BFB	16.917	55450160	98.4089

BTEX SOIL SAMPLE WORKSHEET

File	e :	947786	Date Printed :	11/20/95	
Soil Mas	s (g):	5.01	Multiplier (L/g) :	0.00100	
Extraction vo	l. (mL) :	10	CAL FACTOR (Analytical):	400	
Shot Volum	e (uL) :	25	CAL FACTOR (Report):	0.39920	
			DILUTION FACTOR:	2	Det. Limit
Benzen e	(ug/L) :	1.90	Benzene (mg/Kg):	0.758	0.998
Toluene	(ug/L) :	47.19	Toluene (mg/Kg):	18.838	0.998
Ethylbenzene	(ug/L) :	30.34	Ethylbenzene (mg/Kg):	12.112	0.998
p & m-xylene	(ug/L) :	186.16	p & m-xylene (mg/Kg):	74.315	1.996
o-xylene	(ug/L) :	47.59	o-xylene (mg/Kg):	18.998	0.998
•	• - •		Total xylenes (mg/Kg):	93.313	2.994
			Total BTEX (mg/Kg):	125.022	

EL PASO NATURAL GAS EPA METHOD 8020 - BTEX SOILS

File : C:\LABQUEST\CHROM001\111695-2.014 Method : C:\LABQUEST\METHODS\1-111695.MET

Sample ID : 947786,5.01G,25U Acquired : Nov 17, 1995 00:43:33 Printed : Nov 17, 1995 01:10:01

User : MARLON

Channel A Results

COMPONENT	RET TIME	AREA	CONC (ug/L)
BENZENE	5.590	553425	1.9004
TOLUENE	9.673	12905418	47.1935
ETHYLBENZENE	13.807	7494244	30.3372
M & P XYLENE	14.207	48833928	186.1648
O XYLENE	15.330	11005081	47.5916
BFB	16.907	52325204	92.8629

**************** Test Method for Oil and Grease and Petroleum Hydrocarbons * in Water and Soil * Perkin-Elmer Model 1600 FT-IR * Analysis Report *************** 幸 95/11/17 15:12 * Sample identification 947786 * Initial mass of sample, g * Volume of sample after extraction, ml 28.000 Petroleum hydrocarbons, ppm 4163.040 Net absorbance of hydrocarbons (2930 cm-1) 0.511* 15:12 Y: Petroleum hydrocarbons spectrum 99.36 $\times T$

3000

2800

 $\bigcirc m^{-i}$

30.53

3200

PHASE II DRILL

RECORD OF SUBSURFACE EXPLORATION

PHILIP ENVIRONMENTAL SERVICES INC.

4000 Monroe Road

Farinington, New Mexico 87401 505: 326-2262 FAX (505) 326-2388

			Well #		MW-1	-646
			Page	_ 1	of	_a
Project Name	EPFS	GW PIT	-S			
Project Number	175	520	Phas	se	6001	
Project Location	Ma	shal	1 A#	3	9260	מ
		_	•		•	
Well Logged By		CM CH	HANCE			
Personnel On-Site		D CHA	RLEY			
Contractors On-Site						
Client Personnel On-	Site					
		•				
Drilling Method	4 1/4	ID HSA	4			

PID

Air Monitoring Method

Borehole #

BH-1

		ſ	Sample			Depth				
Deoth	Sample	Sample	Type &	Sample Description	uscs	Lithology	А	r Monito	ring	Drilling Conditions
Feet)	Number	Interval	Recovery	Classification System: USCS	Symbol	Change	ŧ	Jnits: PF	M	& Blow Counts
			(inches)			(feet)	ВZ	BH	- YH	
· · ·										
 										
 								-		
 				-						
~										
l										
<u> </u>										
<u> </u>										
10					İ					
									l	
									Ì	
15										
				ο υπι						
				Backfill +018'						
_										
									1	
20	1	50.20	18	L+Gry sandq LLAT, dry, v. s+45			0	420	1980	1000 hr
<u> </u>		-	,	L+Gry sandy CLty, dry, v. stiff lowplastic					767	1000 hr
i									•	
	_	20.7	18	L+ Com-B, sandy CLAY, dry						
	3 .	457/	, ,	L+ Gry-Br sandy CLAY, dry, hard, low plastic			0	210	8.10	-10124
				tar ay tampinging					980	
										-Hard Drilling
30	3	70-13	12	Tan silry StNO, med -coarse, tr F, med dense, dry,	ł		10	120	680	-Hard Drilling
		36	, -	to F, med dense, dry				1	1600	-1030h-
					i					1
				Tan clauser SAND formad sand						
35	4	J2-7_	78	Tan cley by SAND, f-mod sand, med dans t, mais t			0	290	897	1050
				The contract of the contract o		İ	_		922	
									'	
l					l	}				
l	_		8	L- Gonsilans AND, UT-Formed	ĺ				16:	
40	2	40-47	8	L+ Grysilty SAND, uf-F, to med, med dense, sl moish			0	٥٥١	100	-1130
	i	<u> </u>		110 - 110/ 31 110/31		l	L	1	1 1/2	-

		_
Comments:	CMC 715 sent to lab For RTEX. TOH. Souls collected From 44-45'	
	Refusal Q 4 m/ argers. Not enough sandly for PID & lab sande.	
	Submitted lab sande BH growted to surface. BW not encountered	_
	Geologist Signature	
	- Chad	_
5-2-97\DBILLO	XI S	

RECORD OF SUBSURFACE EXPLORATION

PHILIP ENVIRONMENTAL SERVICES INC.

4000 Monroe Road

Farmington, New Mexico 87401 (505) 326-2262 FAX (505) 326-2388

Elevation

Borehole Location
GWL Depth
Logged By
CM CHANCE

Drilled By
Date/Time Started
Date/Time Completed

Borehole #	BH-1
Well #	MW-1 C-(
Page 🔏 _	of a

EPFS GW PITS Project Name 6001 17520 Phase Project Number Marshall A#) 92603 Project Location CM CHANCE Well Logged By D CHARLEY Personnel On-Site Contractors On-Site Client Personnel On-Site 4 1/4 ID HSA Drilling Method

PID

Air Monitoring Method

- 40 - 45 - 45 - 45 - 45 - 45 - 50 - 50 - 55 - 55 - 55 - 55 - 55 - 5	Depth (Feet)	Sample Number	Sample Interval	Sample Type & Recovery (inches)	Sample Description Classification System: USCS	USCS Symbol	Depth Lithology Change (feet)		r Monitor Jaits: PP BH	_	Drilling Conditions & Blow Counts
	- 4° - 4° - 4° - 5° - 5° - 6° -	Number	Interval	Recovery (inches)	Classification System: USCS	Symbol	ı	BZ.	84	S	

Comments:	
	Geologist Signature
5, 2/97\DRILLOG.XLS	

FIELD SERVICES LABORATORY ANALYTICAL REPORT PIT CLOSURE PROJECT

SAMPLE IDENTIFICATION

	Field ID	Lab ID
SAMPLE NUMBER:	CMC315	970477
MTR CODE SITE NAME:	92603	Marshall A #3
SAMPLE DATE TIME (Hrs):	5/20/97	1140
PROJECT:	Phase II Dri	lling - Initial
DATE OF TPH EXT. ANAL.:	5/28/97	5/28/97
DATE OF BTEX EXT. ANAL.:	5/29/97	5/30/97
TYPE DESCRIPTION:	VG	Light gray sand

Field Remarks:	_

RESULTS

PARAMETER	RESULT UNITS		QUALIFIERS			
FAIR-WILL CO.			DF	Q	M(g)	V(ml)
BENZENE	< 0.5	MG/KG				
TOLUENE	< 0.5	MG/KG				
ETHYL BENZENE	< 0.5	MG/KG				
TOTAL XYLENES	< 1.5	MG/KG				
TOTAL BTEX	<3	MG/KG				
TPH (418.1)	<10	MG/KG			2.05	28
HEADSPACE PID	N/A	PPM				
PERCENT SOLIDS	88.7	%		15 (15) 15 (15) 15 (15) 16 (15) 17 (15)		····

-- TPH is by EPA Method 418.1 and BTEX is by EPA Method 8020 --

The Surrogate Recovery was at	for this sample	All UA/UC was acceptable.	
Narrative:			
DF = Dilution Factor Used			
Approved By: Jarl	INGVZPIT.XLS	Date: <u>(</u> (((4 ⁻))	

BTEX SOIL SAMPLE WORKSHEET

File	e :	970477	Date Printed :	6/4/97
Soil Mas		5.05	Multiplier (L/g) :	0.00099
Extraction vo		10	CAL FACTOR (Analytical):	200
Shot Volum		50	CAL FACTOR (Report):	0.19802
			DILUTION FACTOR:	1 Det. Limit
Benzene	(ug/L) :	0.00	Benzene (mg/Kg):	0.000 0.495
Toluene	(ug/L) :	0.00	Toluene (mg/Kg):	0.000 0.495
Ethylbenzene	(ug/L) :	0.00	Ethylbenzene (mg/Kg):	0.000 0.495
p & m-xylene	(ug/L) :	0.00	p & m-xylene (mg/Kg):	0.000 0.990
o-xylene	(ug/L) :	0.00	o-xylene (mg/Kg):	0.000 0.495
C Aylolle	(3)		Total xylenes (mg/Kg):	0.000 1.485
			Total BTEX (mg/Kg):	0.000

```
Test Method for
     Gil and Grease and Petroleum Hydrocarbons
                                                     4
                 in Water and Soil
                                                     7.
           Perkin-Elmer Model 1600 FT-IR
                  Analysis Report
97 70522B 11.817
C Sample identification
cynamy
 Initial mass of sample, g
   tolume of sample after extraction, ml
 .
Potroleum hydrocarbons, ppm
-112.452
1 Hes absorbance of hydrocarbons (2930 cm-1)
1.493
                                                                    11117
          M: Petholeum hydrocarbons spectrum
្រក់អ៊ីអ៊ី
                                                         2699
                                                                     \circ m^{-1}
     j\in \mathcal{G}_{\overline{\mathcal{G}}}
```

EL PASO NATURAL GAS EPA METHOD 8020 - BTEX SOILS

File : C:\LABQUEST\CHROM001\052997-1.002 Method : C:\LABQUEST\METHODS\1-052297.MET

Sample ID : 970477,5.05G,50U Acquired : May 29, 1997 13:27:29 Printed : May 30, 1997 08:35:01

User MARLON

Channel A Results

COMPONENT	RET TIME	AREA	CONC (ug/L)
BENZENE	9.300	0	0.0000
TFT	11.530	910077	95.5591
TOLUENE	13.920	0	0.0000
ETHYLBENZENE	18.300	0	0.0000
M & P XYLENE	18.700	0	0.0000
O XYLENE	19.900	0	0.0000
BFB	21.060	4388697	101.2782

Channel A Group Results

COMPONENT	RET TIME	AREA	CONC (ug/L)
		-	
TOTAL XVIENES		0	0.0000

PHASE III DRILL

	· - · - · - · - · - · - ·	

RECORD OF SUBSURFACE EXPLORATION

Prase III Drilling

Drilling Method

Air Monitoring Method

	3.21.97
•	(31) (35:
	Borehole # BH
	Weil #
	P 1 of 1

PHILIP	ENVIRONMENTAL SERVICES INC.	

4000 Monroe Road

Farmington, New Mexico 87401 :506) 326-2262 FAX (506) 326-2388

Project Name	EPFS GW PI		
Project Number	17520	Phase	6001.77
Project Location	MARSHAL	LA#3	- 92603
Well Logged By Personnel, On-Site	D Ces	. Chayle	'

4 1/4" ID HSA

	1	Sample	Sample Type &	Sample Description	uscs	Depth Lithology	Air Monitoring	Drilling Conditions
(Feet) Nur	mber 1	nterval	Recovery (inches)	Classification System: USCS	Symbol	Change (feet)	Units: PPM BZ BH S	& Blow Counts
5			(inches)	BACKFILL TO 12' SILTY-SANDS, SAND-SILT, MILTURES. YELLOWISH-OPENION NO HE STAINFORDER TD=15'	SM	(feet)	BZ BH S/A	

Comments:	BTEN +TPH ANALYSES. GW NOTENCOUNTERED. GROWTED TO SURFACE.
	Geologist Signature

FIELD SERVICES LABORATORY ANALYTICAL REPORT

SAMPLE II	DENTIFICATION
-----------	---------------

	Field ID	Lab ID 970092		
SAMPLE NUMBER:	DRC5	970092		
MTR CODE SITE NAME:	92603	Marshall A #3		
SAMPLE DATE TIME (Hrs):	2/11/97	1315		
PROJECT:	Phase IltDrilling 13-15'		3/12/97	
DATE OF TPH EXT. ANAL.:	2/13/97	2/13/97		
DATE OF BTEX EXT. ANAL.:	2/14/97	2/14/97		
TYPE DESCRIPTION:	VG Brown sand			
Field Remarks:				
	RESULTS			

PARAMETER	RESULT	UNITS	QUALIFIERS			
PARAMETER			DF	Q	M(g)	V(ml)
BENZENE	< 0.5	MG/KG				
TOLUENE	< 0.5	MG/KG				
ETHYL BENZENE	< 0.5	MG/KG				
TOTAL XYLENES	< 1.5	MG/KG				
TOTAL BTEX	< 3	MG/KG				
TPH (418.1)	<10	MG/KG			2.29	28
HEADSPACE PID	1	PPM				·····
PERCENT SOLIDS	91.7	%				

The Surrogate Recovery was at 93.6 % for this sample All QA/QC was acceptable.

Narrative:

DF = Dilution Factor Used

EL PASO FIELD SERVICES LABORATORY EPA METHOD 8020 - BTEX

File : C:\LABQUEST\CHROM000\021397-0.028 Method : C:\LABQUEST\METHODS\0-021297.MET

Sample ID : 970092,5.12G,50U Acquired : Feb 14, 1997 10:44:13 Printed : Feb 14, 1997 11:14:36

User : MARLON

Channel A Results

COMPONENT	RET TIME	AREA	CONC (ug/L)
BENZENE	8.050	0	0.0000
â,â,a-TFT	10.267	1791137	94.9103
TOLUENE	12.567	0	0.0000
ETHYLBENZENE	16.790	0	0.0000
M, P-XYLENES	17.170	0	0.0000
O-XYLENE	18.310	0	0.0000
BFB	19.617	6834136	93.5558

Channel A Group Results

COMPONENT	RET TIME	AREA	CONC (ug/L)		
TOTAL XYLENES		0	0.0000		

BTEX SOIL SAMPLE WORKSHEET

File	e :	970092	Date Printed :	2/18/97
Soil Mas	s (g):	5.12	Multiplier (L/g) ∶	0.00098
Extraction vo	l. (mL) :	10	CAL FACTOR (Analytical):	200
Shot Volum	e (uL) :	50	CAL FACTOR (Report):	0.19531
			DILUTION FACTOR:	1 Det. Limit
Benzene	(ug/L) :	0.00	Benzene (mg/Kg):	0.000 0.488
Toluene	(ug/L) :	0.00	Toluene (mg/Kg):	0.000 0.488
Ethylbenzene	(ug/L) :	0.00	Ethylbenzene (mg/Kg):	0.000 0.488
p & m-xylene	(ug/L) :	0.00	p & m-xylene (mg/Kg):	0.000 0.977
o-xylene	(ug/L) :	0.00	o-xylene (mg/Kg):	0.000 0.488
-			Total xylenes (mg/Kg):	0.000 1.465
			Total BTEX (mg/Kg):	0.000

```
Test Method for
     Oil and Grease and Petroleum Hydrocarbons
                                                *
Ŀ
                                                *
                in Water and Soil
                                                \frac{\mathcal{X}}{2}
                                                45
47
47
          Perkin-Elmer Model 1600 FT-IR
                 Analysis Report
97/02/13
         15:15
Sample identification 970092
1.52
Initial mass of sample, g
2.290
  Volume of sample after extraction, ml
¥.
 28.000
  Petroleum hydrocarbons, ppm
-7.518
 Net absorbance of hydrocarbons (2930 cm-1)
0.185
ψ.
                                                             15:15
         M: Petroleum nydrocarbons spectrum
[BE, 4]
  ::T
```

3000

2800

 $\circ m^{-1}$

अटलल