Revised 12-1-55

MULTI-POINT BACK PRESSURE TEST FOR GAS WELLS

Pool	Blanco			For	rmation	nation Mesaverde			County Rio Arriba			
Init	ial_XX		Annu	al		Spec	ial		_Date of	Test_9	-11-56	
Company Pacific Northwest Pipeline					Corp.	Corp. Lease		29-6 W		1 No	53-31	
Unit	7 5/8	Sec3	3 1 _Tw	p. 291	I Rg	e. 6W	Purcl	haserN	ot connec	ted		
Casi	7 5/8 ng 5 1/2 V	Wt	I	.D	Se	3,, t at 5,	425 645 Per	rf. 5,0	34	To5	6,600	
Tubi	ng 2 1	Wt.	I	•D•	Se	t at 5.	57 9 Per	rf.		То		
Tubing 2 Wt. I.D. Set at 5,579 Perf. To Gas Pay: From To L xG .690 -GL Bar.Press. 12.0												
	_											
Producing Thru: Casing Tubing XX Type Well Single Single-Bradenhead-G. G. or G.O. Dual												
Date	of Complet	tion:_	8-31-	56	_Packe	r						
						OBSERV	ED DATA					
Te s t	ed Through			Choke) 1	(Meteor)	s.I. 7	days		Type Tap	s		
			low D				Tubing		Casing D			
No.	KRARA Kararay		oke)	Press.	Diff.	Temp.	Press.	Temp.	Press.	Temp.	Duration of Flow	
10.	Size			psig	h _w	°F.	psig	°F.	psig	°F∙	Hr.	
SI							1103		1115		Shut-in.	
1. 2.	2	3/4	4	451		68	451	68	962	<u> </u>	3 hours.	
3.		<u> </u>										
4. 5.												
					-	RIOW CAT	CIT ATTONS	5				
	Coefficient			Pre				Gravity Compress. Rate of Flow				
No.	(24-Hour) 7/		7 h	h.n.a. psia		Factor		Factor Factor Factor		@ 15.025 psia		
1.	14.1605				63 •9924			•9325	1.054		6395	
2.												
1. 2. 3. 4.												
5.	· · · · · · · · · · · · · · · · · · ·											
					PRI	ESSURE CA	ALCUT ATI	ONS				
as L	iquid Hydro	ocarbor	n Ratio	D		cf/bbl.					rator Gas	
	ty of Liqui	-	cocarb	ons l-e ^{-s})		deg.		Speci	fic Gravi 1127	ty Flow	/ing Fluid	
c			(<u>e</u>				' C——	1121	c	LE TO O I	
T	P _w		, T				.2		2 2			
No.	max (psia)	Pt	F	cQ	$(F_cQ)^2$	(F.	cQ) ² -e-s)	P_{W}^{2}	$P_c^2 - P_w^2$	1	Pw Pc	
1.	974					(1)	· L	948.7	321.4		3.952	
1. 2. 3.		<u> </u>										
4.										 		
		<u> </u>				i			<u> </u>			
	lute Potent ANY Pac	tial: ific N	17,92 orthwe	5 st Pipe.	line Co	MCFPD;	n <u>.75 = </u>	2.803				
ADDR	ESS405	d West	Bread	way, Fa	rmingto	n, New M						
	T and TITLE ESSED	Wo_	B. Ric	hardson	, III;	Well Tes	t Engine	er				
	ANY						ADVC					
						REM	ARKS			1		

OIL COM. COM. DIST. 3

INSTRUCTIONS

This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe.

The log log paper used for plotting the back pressure curve shall be of at least three inch cycles.

NOMENCLATURE

- Q = Actual rate of flow at end of flow period at W. H. working pressure (Pw). MCF/da. @ 15.025 psia and 600 F.
- Pc= 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater. psia
- Pw- Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia
- Pt_ Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia
- Pf Meter pressure, psia.
- hw Differential meter pressure, inches water.
- Fg Gravity correction factor.
- F_t Flowing temperature correction factor.
- Fpv Supercompressability factor.
- n I Slope of back pressure curve.

Note: If $P_{\rm W}$ cannot be taken because of manner of completion or condition of well, then $P_{\rm W}$ must be calculated by adding the pressure drop due to friction within the flow string to $P_{\rm t}$.

OIL CONSERV	VATION COMMISSION
A =7 >== = = = = = = = = = = = = = = = =	- AMINISSION
Ala	FIRST CLASSE
	3
	the second control of
	/
150 120	
F112	1 2