Form C-103 (Revised 3-55)

NEW MEXICO OIL CONSERVATION COMMISSION MISCELLANEOUS REPORTS ON WELLS

(Submit to appropriate District Office as per Commission Rule 1106)

COMPANY Pan American Per			x 487	y	armington	, New 1	Saxlee
	(Ad	dress)	•				
LEASE Trajille Gas Unit	WELL NO.	1 UNI	TH	S 2	1 т.	-29-¥	R-10-W
DATE WORK PERFORMED	11/15/57	PO	OL A	tee-Pi	etured Cl	Lffs	
This is a Report of: (Check	annronriate	block)	[]r	0 0 0 1 1 4 0	of Tost	-s C	sing Shut-off
Concert of the post of the concert	appropriate	block)		cesuti	or rest	or Cas	sing Shut-on
Beginning Drilling	Operations		F	Remed	ial Work		
Plugging				ther_		,	, , , , , , , , , , , , , , , , , , ,
Detailed account of work don	ne, nature an	d quantity	of m	aterial	ls used ar	nd res	ults obtaine
FILL IN BELOW FOR REME Original Well Data:		REPORT	5 ON	L Y			
DF Elev. TD	PBD	Prod.	_		Comp	l Date	
Thing, Dia Thing Depth	1C	Oil String I)ia		_Oil Stri	ng Dep	oth
Perf Interval (s)					·		
Open Hole Interval	Produc	ing Forma	tion	(s)	.,		
RESULTS OF WORKOVER:				BEF	ORE	AF	TER
Date of Test				7			•
Oil Production, bbls. per da	.y						
Gas Production, Mcf per day	7				102	多	
Water Production, bbls. per	day				1 7 2	15	3
Gas-Oil Ratio, cu. ft. per bl	•				- 4 6 5 C		3
Gas Well Potential, Mcf per		,			• •	19. T	}
Witnessed by	,				1 20 8	<u> </u>	
				 	(Comp	2119)	
OIL CONSERVATION CO	OMMISSION	above is	true	and co	t the info	rmatio	
Name Original Signed Emery	C. Arnold	my know Name	reage	· ·	BIGINAL	SIGNE	D BY
Title Supervisor Dist. # 3		Position	W -	14 01-	D. J.	SCOTI	•
Date 1957		Compani				_	
Date <u>#0</u> 7 1 8 1957		Company			con Petro Farmineto		

AZTEC DI	ISTRICT OFFICE
flo. Copies Roc	celzed 3
Dis	ON
	DEAGHED
Der reter	1
to the	/ :

Job separation sheet

MULTI-POINT BACK PRESSURE TEST FOR GAS WELLS

Pool	Astes-Ple	bured (Lifte	Fo	Formation Pictured Cliffs)	County Sen Jeen				
Init	(dual with ial	Under	_Annua	7674	region)	Spec	ial		_Date of	Test	1-23-99		
Compa	any Pen A	eriom	Petrol	eran Ge	Tp.	Lease	Profille	Gag Uni	Wel	1 No	1		
Unit		Sec2	Twp		Rge	. 10W	Purc	haser) Page Hat	inrel G	ne Company		
Casir	1g 5-1/2 N	Vt	I.	. 5.61	2Set	at_18	10 Pe	rf. 176	<u> </u>	To 170	6		
Tubir	ng 1-1/2 V	Vt	<u> </u>	. 1.4	Set	at 17	Pe:	rf.	ended; no	To	ressono		
Gas H	Pay: From_	1764	То	706	L 174	x (G 0.645		1115	Bar.Pre	ss 18		
	cing Thru:							Type We	11 Geo-	-Can Dy	4		
	of Complet						Sin	gle-Brade	nhead-G.	G. or G	.O. Dual		
	•						ED DATA		-				
Tests	ed Through) (ci	noka)		0222.00			Туре Тар	e			
	- Infough		*****	7.7		·	m.).	Data					
$\neg \vdash$	(low Dat		Diff.	Temp.	Tubing Press.	Temp.	Casing Dares.		Duration		
No.	(Line) Size	Si	ze	psig	h _w	\circ_{F} .	psig	° _F ,	psig	o _F ∙	of Flow Hr.		
SI	Shut	in 11	days				527						
1. 2.	2"		3	70		ort,	7%		-	. _i	3 house		
2. 3.													
4. 5.													
		<u> </u>								<u> </u>			
	Coeffici	ent.		Pr			CULATION:	Gravity	Compre	58.	Rate of Flow		
No.	00011101			_ ` ` `		Fact		_	1		Q-MCFPD		
	(24-Hou	ır)	√ h _w p ₁		psia	F ₁	t	Factor F _g	Fpv		@ 15.025 psia		
1.	12,365				103	1,000)	0,945	1,0	"	12.7		
2 . 3.	····	-			+			1					
4.													
5。													
					PRI	ESSURE CA	ALCUTATIO	ONS					
roa Ti	quid Hydro	voa nhon	Patio			cf/bbl.		Speci	fic Cravit	tv Sena	rator Gas		
	y of Liqui					deg.		Speci	fic Gravi	ty Flow	ing Fluid_		
c				-e ^{-s})	0.070			P.c	539	P _c	10,520		
			* * *							•			
	$P_{\mathbf{w}}$	2			, ,2		.2		_2 _2				
No.	Pt (psia)	P_{t}^{2}	Fc	,	$(F_cQ)^2$	(F	cQ) ² -e-s)	$P_{\mathbf{w}}^2$	$P_c^2 - P_w^2$	Ca			
1.	Tt (psia)	11,23	6 20,1	96-	407,874			3,090	247,471	200	w Pc		
2.													
3. 4.				+-						 			
5.													
Ábsol	ute Potent	ial:	140	4		MCFPD:	n 6.0	15					
COMPA	NY Pan Am	arto an	Petro	ann G	pereli								
ADDRE	SS Dex 40	7. Fast		- 32	APRA 1	nglacer	7	MISan	<u> 2</u>				
WITNE								-1/					
COMPA	NY					DEM	ARKS			*			
						KLM	CARA		(COEII	1-			
								/	RLLLIV	LL.			
								- 1	DEC 7	1959			

OIL CON. COM. DIST. 3

INSTRUCTIONS

This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe.

The log log paper used for plotting the back pressure curve shall be of at least three inch cycles.

NOMENCLATURE

- Q I Actual rate of flow at end of flow period at W. H. working pressure ($P_{\rm W}$). MCF/da. @ 15.025 psia and 60° F.
- P_c 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater. psia
- PwT Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia
- Pt Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia
- Pf Meter pressure, psia.
- hw Differential meter pressure, inches water.
- Fg Gravity correction factor.
- Ft Flowing temperature correction factor.
- F_{ov} Supercompressability factor.
- n I Slope of back pressure curve.

Note: If P_{w} cannot be taken because of manner of completion or condition of well, then P_{w} must be calculated by adding the pressure drop due to friction within the flow string to P_{+} .

	NOT OFFICE
100.00	3
1 203	· UNI
Committee of the Commit	1
A second	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
The same of the sa	i an disans in
File	