NEW MEXICO OIL CONSERVATION COMMISSION

		2 219								
**************************************	MULTI-POINT	BACK	PRESSURE	TEST	FOR	GAS WELL	S			

ool	Undes:	ignat	.:: 0∄(•d	F	ormation_	Dakots	.		County_	San	Juan ctober 17, 19 1-26
	THE COT	103 7	The day	-25	_	Speci	ia1		Date of	Test O	ctober 17, 19
1 t 1a	Comp	ass I	_ ^{Annua} kxplor	atio	n, Inc.		Federa	<u> </u>	- Wol	1 No.	1-26
mpan	у				L	.ease		<u> </u>		in Ge	a Company
it _	M Se	ec. 26	Twp	30 N	Rge	. 13 W	Purch	ase ^{Souti}	ern un		s Company 50 48
sing	. 43 Wt	t. 1 <u>1.</u>	6 I.	D	.000 _{Set}	at	Per	·f		_To	
.bing	2-3/8 Wt	t. 4.7	I.	D. 1.	995 Set	at 63	28 Per	f. 632	28	To Pi	n Collar
s Pa	v: From	6392	To	644	18 _L 632	8 _x	g .65		4113	Bar.Pr	ess
odua	ing Theus	Cas	ing	Tub	ing Tub	ne		Type Wei	11 _	Singl	
L	f Commist	i an e O		. 2	19 60 -ker	· None	Sing	le-Brade	nhead-G. ir Temp.	G. or 156	G.O. Dual
te c	or compred	1011: <u>0</u>	CODE		TO SECRET				· · · ·		
						OBSERVI	ED DATA				
sted	l Through	RHAD	er) (C	hoke)	(NEDST)				Type Tar		
			low Da		Dice	Town		Data Temp.	Casing I		Duration
,	(Prover) (Line)	(Cho (Orif	ke) ice) ze	Press	Dill		LIG99.	-			of Flow
	Size	` Si	ze	psig	h _w	°F.	ps i g 2105	°F.	psig	[⊃] F•	SI Hr.
	Z"	J 57	-			640	382		910		3 hrs
	3"	3/	4"		+					+	+
					 						
										ļ	
		L									
) .	Coeffici		-√ h _w r		ressure	Flow Fac	CULATION: Temp. tor	Gravity	Compre Facte	or	Rate of Flow Q-MCFPD @ 15.025 psia
+			V			9969		°)16	4737.7
	12.365			3	94						
Ŧ											
vit	quid Hydro y of Liqui	carbor d Hydi	rocarbo				CALCUIATI		ific Grav ific Grav 2124	ity Ser ity Flo	parator Gas owing Fluid
o•	P _w	P	F F	_c Q	(F _c Q) ²	(I	F _c Q) ² L-e ^{-s})	P _w 2	P _c -P _w ²	(Cal. Pw Pc
								849.9	3661.	5	.433
									<u> </u>		
-					 						
		<u> </u>			L	MORRE	: n 0.7	15	<u></u>		
	ute Potent	7	ABBE	3.6	ploration	MCFPD on, Inc	3				
OMPA DDRE			1045	Cast	+ Dlace	Denve	er z. Co	lorado			
	and TITL	E A	lbert	. S.	Johnson	Petro	oleum E	gineer			
1:1'NE	SSED	1	7. 45.	FEEL	plorati				<u> </u>		OH HIX
OMPA	NY		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				MARKS				Arialian /
											Ctonic
										300	CUI CUM /
										1	CUM COM !

INSTRUCTIONS

This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe.

The log log paper used for plotting the back pressure curve shall be of at least three inch cycles.

NOMENCLATURE

- Q = Actual rate of flow at end of flow period at W. H. working pressure (P_W). MCF/da. @ 15.025 psia and 60° F.
- P_c = 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater. psia
- $P_{\mathbf{w}}$ Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia
- Pt- Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia
- Pf Meter pressure, psia.
- hw Differential meter pressure, inches water.
- Fg Gravity correction factor.
- Ft Flowing temperature correction factor.
- F_{nv} Supercompressability factor.
- n I Slope of back pressure curve.

Note: If $P_{\mathbf{W}}$ cannot be taken because of manner of completion or condition of well, then $P_{\mathbf{W}}$ must be calculated by adding the pressure drop due to friction within the flow string to $P_{\mathbf{t}}$.

STATE OF NEW MEXICO
CONSERVATION COM COM
The Late Distance of the Control of
TOWNER OF COS ES KESSEN SA
SANTA FE
The state of the s
US 15.
TRANS CAT R