

DYNAMIC EVALUATION INDICATOR

DEPLETION INDEX		
FORMATION DAMAGE		
FLUID TYPE		
FLOW RATE		
PERMEABILITY		
PRESSURE:		
STIMULATION POTENTIAL		

YOUR	QUESTIONABLE
PROFIT III	
POTENTIAL	
'/S	

December 3, 1965

Cactus Drilling Corporation
Drawer 71
San Angelo, Texas

RE: Formation Test No. 2 Navajo "A" No. 1 Field Report No. 17664-A

Gentlemen:

Enclosed are copies of the Productivity Log obtained during the above referenced test along with a complimentary Special Data Analysis.

The subject test was conducted utilizing our "MFE" and Productivity Logging system of tools. The recovery data indicate the formation contains hydrocarbons and water as 2.16 cu. ft. of gas, 40 cc oil, and 60 cc water was recovered in the "MFE" Sampler. Gas flowed to the surface at a weighted average rate of 2800 MCF/Day. The Special Data Analysis indicates the zone exhibits the characteristics of good permeability and indicates the presence of well bore damage.

The logs obtained "Before" and "After" test are presented for your review. It is noted that the "After" log failed to record until the majority of the test interval had been traversed with the logging tool. The test interval is noted as 6670' - 6760' and the "After" log was recorded from 6681' - 6579'. Therefore, only 11 feet of the test interval is available for interpretation. The equipment was completely checked at the conclusion of this job and the trouble removed.

Please accept our appreciation for your use of this service.

Yours very truly,

A.T. Campus &

A. T. Campbell, Jr.

Manager, Interpretation and

Evaluation

ATC:mc

MULTI-FLOW EVALUATOR (MFE)

Technical Report and SPECIAL DATA ANALYSIS

The Multi-Flow Evaluator (MFE) is a wholly new formation evaluation tool that provides test data on an unlimited number of flow and shut-in pressure tests, plus a pressurized formation fluid sample under final flowing pressure. This sample may be drained at the well site, at our field location, or in your laboratory.

Johnston's **Special Data Analysis** provides valuable calculated data on reservoir pressure, flow capacity, effective permeability, well bore damage, radius of investigation, and potentiometric surface. Included also is a valuable written analysis of these data that can provide important help in planning your completion.

SPECIAL DATA ANALYSIS

DECEMBER 2, 1965

GENTLEMEN:

THE ENCLOSED TEST APPEARS TO BE A GOOD MECHANICAL DRILL STEM TEST DURING WHICH THE TOOLS DID FUNCTION PROPERLY. THE FORMATION PRODUCED ENOUGH RESERVOIR FLUID FOR PROPER IDENTI-FICATION. RESERVOIR PRESSURE DRAWDOWN WAS SUFFICIENT AND ADEQUATE SHUT-IN BUILD-UPS DID OCCUR FOR RELIABLE QUANTITATIVE ANALYSIS.

- 1. FLOW RATE: A WEIGHTED AVERAGE FLOW RATE OF 2800 MCF/DAY OF GAS WAS ESTIMATED FOR THIS TEST.
- 2. RESERVOIR PRESSURE: EXTRAPOLATION OF THE INITIAL SHUT-IN PRESSURE BUILD-UP INDICATES A MAXIMUM RESERVOIR PRESSURE OF 3451 p.s.i.g. AT RECORDER DEPTH. EXTRAPOLATION OF THE FINAL SHUT-IN PRESSURE BUILD-UP INDICATES A MAXIMUM RESERVOIR PRESSURE OF 3457 p.s.i.g. AT RECORDER DEPTH. THE DIFFERENCE BETWEEN THE INITIAL AND FINAL SHUT-IN PRESSURE OF 6 p.s.i. is insignificant.
- 3. PERMEABILITY: THE CALCULATED TRANSMISSIBILITY FACTOR OF 2953 MD.-FT./CP. INDICATES AN AVERAGE EFFECTIVE PERMEABILITY TO GAS OF 0.64 MD. FOR THE REPORTED 90 FOOT TEST INTERVAL. THE CALCULAT ONS WERE BASED ON A SLOPE OF 950,000 P.S.I. /LOG CYCLE OBTAINED FROM THE FINAL SHUT-IN BUILD-UP PLOT. IT WAS ASSUMED FOR THESE CALCULATIONS: (A) GAS CRAVITY 0.70 (B) VISCOSITY 0.023 CP. (C) AND GAS DEVIATION FACTOR 0.85. THESE FIGURES WERE OBTAINED FROM THE AVAILABLE TECHNICAL LITERATURE.
- 4. Well Bore Damage: The calculated Estimated Damage Ratio of 2.6 indicates that well bore damage is present at the time and conditions of this test. This value infers that the rate of production observed at the formation face during this test may be increased 2.6 times if the well bore damage alone were removed.
- 5. RADIUS OF INVESTIGATION: THE CALCULATED RADIUS OF INVESTIGATION OF THIS TEST IS

 53 FEET BASED ON AN ASSUMED POROSITY OF 10%, COMPRESSIBILITY OF 2.2 x 10 4, AND OTHER

 ASSUMPTIONS MADE IN NUMBER 3 ABOVE.
- 6. GENERAL COMMENTS: THE FORMATION EXHIBITS THE CHARACTERISTICS OF RELATIVELY GOOD PERMEABILITY EFFECTIVE TO THE RESERVOIR FLUID AND INDICATES THE PRESENCE OF WELL BORE DAMAGE. REMOVAL OF WELL BORE DAMAGE BY SOME CHEMICAL TREATMENT SHOULD PROVIDE THE NICE INCREASE IN FLOW CAPACITY AS INDICATED ABOVE.

THERE WERE NO ANOMALIES NOTED ON THE BUILD-UP FLOT.

A. T. Campbell, Jr. EVALUATION ENGINEER

Captus Drilling Corporation
Navajo"A"#1, San Juan County, New Mexico
Test #2, 6670' to 6760'

FIELD REPORT #17664 A

Gas Reservoir Engineering Data

Instrument No. ____J-007

Field Report No. 17664 A

Estimated Damage Ratio	EDR	2.6		Effective Transmissibility	<u>Κh</u> μΖ	2953	Md-ft. Cp.
Maximum Reservoir Pressure	Po	3451	P.S.I.G.	Flow Rate (ESTIMATED)	Qg	2800	MCF/Day
Slope of Shut-in Curve	Mg	950,000	PSI²/log cycle	Flow Rate LIQUID HYDROC	ARBONS	42 BBL/	DAY
Potentiometric Surface (Datum Plane, Sea Level)	PS	6194	ft.	Flow Rate WATER	Q	10 BBL/	DAY
Radius of Investigation		53	ft.	((Effective to GAS)	0.64	Md.

OHNSTON TESTERS

Assumptions made for Calculations for Gas Recoveries

- 1. Q_g is taken as steady state flow and unless stated otherwise at standard conditions 14.7 P.S.I. and 60°F.
- 2. P_f is final formation flowing pressure at steady state flow.
- 3. Formation flow is taken as single phase flow. If liquid (condensate) is produced at surface, condensation is assumed to have occurred in drill pipe.
- 4. Radial flow is assumed.
- 5. Unless given, gas specific gravity is assumed to be 0.7 (air 1.0) and having pseudo critical temperature at 385° Rankin and pseudo critical pressure of 666 P.S.I.A.
- 6. Other standard radial flow, steady state assumptions.

Empirical Equations:

1. EDR =
$$\frac{P_o^2 - P_f^2}{M_g(\log T + 2.65)}$$
 where $M_g = \frac{P_1^2 - P_{10}^2}{\text{Log Cycle}}$

2. Transmissibility
$$\frac{Kh}{\mu Z} = \frac{1637^{\circ}T_{f}Q_{g}}{M_{g}}$$

3. P.S. =
$$\left[P_o \times 2.309 \text{ ft./PSI}\right]$$
 - $\left[\text{Recorder depth to sea level.}\right]$

4. Radius of Investigation,
$$r_i$$
, = $\sqrt{\frac{Kt}{40\phi(1-S_w)\mu c}}$ where $t=time$ in days

Symbol	s	Dimensions	Symbols		Dimensions
β	Formation volume factor	vol./vol.	Q_c	Rate of oil flow during test	Bbls./day
c	Fluid compressibility	vol./vol./psi.	$Q_{v_{\ell}}$	Rate of water flow during test	Bbls./day
EDR	Estimated damage ratio		$Q_{\rm g}$	Rate of gas flow during test	MCF/day
φ	Formation porosity	fractional	ri	Radius of investigation	feet
h	Net producing interval	feet	r _w	Well bore radius	inches
L	Productivity index	Bbls./day/PSI	S _w ,	Water saturation	%
Κ	Permeability (effective)	Millidarcies	t	Shut-in time period	minutes
Me	Slope of shut-in build up	PSI ² /log cycle	Δ t	Increment time of	
P _f	Final flowing pressure	PSIG		shut-in period	minutes
Pfsi	Final shut-in pressure at time t	PSIG	Т	Open flow time period	minutes
Pisi	Initial shut-in pressure	PSIG	$^{\circ}T_{\mathbf{f}}$	Formation temperature	^o Rankin
P _o	Maximum reservoir pressure	PSIG	μ	Fluid viscosity	
P,	Final shut-in build up plot intercept	@ 1 PSIG	-	(Reservoir conditions)	Centipoise
P10	Final shut-in build up plot intercept	@ 10 PSIG	Z	Gas deviation factor (compressibility	ty factor)
P.S.	Potentiometric surface	feet	Kh I	Kh	Md ft.
Q	Rate of flow during test	Bbls./day	$\overline{\mu\beta}$ or $\overline{\mu}$	Transmissibility factor	Cp

In making any interpretation, our employees will give Customer the benefit of their best judgment as to the correct interpretation. Nevertheless, since all interpretations are opinions based on inferences from electrical, mechanical or other measurements, we cannot, and do not, guarantee the accuracy or correctness or any interpretations, and we shall not be liable or responsible, except in the case of gross or wilful negligence on our part, for any loss, costs, damages or expenses incurred or sustained by Customer resulting from any interpretation made by arry of our agents or employees.

	NFORMATION			EQUIPMENT, H	OLE & MUD	DATA
D (5)	- .	Pressure	Surface	Type Test M. F.	E. AND PRO	D. Log
Description (Rate of Flow)	Time	(P.S.I.G.)	Choke	Formation Tested	ISMAY (PE	:NN.)
Opened Tool	0945	-		Elevation ———	4954 к.в.	Ft.
GAS TO SURFACE	0951	-	_	Net Productive Interval —	-	
CLOSED FOR INITIAL SHUT-IN	0951	-	-	Estimated Parasity	-	%
FINISHED SHUT-IN	1051	_	_	All Depths Measured From	KELLY BUS	HINGS
RE-OPENED TOOL	1057		_		T SEQUENCE	
	1100	6	1 **			Depth/Length/
CLOSED FOR SECOND SHUT-IN	1102	68	11	COMPONENTS	Size/Type	1.D.
FINISHED SHUT-IN	1122	_	11	DRILL PIPE	4" FH	60401/
RE-OPENED TOOL	1128	_	*1			3.2"
GAS 1200 MCF/DAY	1130	30	11	DRILL COLLARS	4 ½ " хн	510 1/
GAS 2200 MCF/DAY	1133	70	71			2.25"
	1140	92	"	CIRCULATING SUB	4½"	
GAS 3000 MCF/DAY	1145	98	99	DRILL COLLARS	4 <u>ਵ</u> ੇੰ" xਜ	90'/2.25"
GAS 3100 MCF/DAY	1150	100	77	MULTI-FLOW	. .	
	1200	100	**	EVALUATOR	5"	
	1210	88	17	BY-PASS VALVE	3½" MFE	
	12 3 5	90	17	JARS	<u>3≟</u> " нs−1	
	1240	92	11	SAFETY JOINT	3½" BOWEN	ı
	1250	100	17	SAFETY SEAL	41 MFE	
GAS 2800 MCF/DAY		90	17	BOB-TAIL PACKER	6 3/4"	66641
CLOSED FOR FINAL SHUT-IN	1328	90	11	BOB-TAIL PACKER	6 3/4"	6670 '
PULLED PACKER LOOSE	1528		11	PERF. ANCHOR	4분" HVY	10'
FOLLEL FACKER LOUGE	1,525		†	DRILL COLLAR	4 ਹ ੈ" xн	301/2.25
			 	PERF. ANCHOR	4를" HVY	18'
				RECORDER CARRIER	4½" J	6'
			 	RECORDER CARRIER	4½" T	6'
			 	PROD. LOG TOOL	12 1	20'
		 	<u> </u>	17000 1001		
RECOV	ERY DATA					
Description	,	Amo	unt			
	60°-1	590 ' (3.7	'Q BOLE		6760	
FREE CIL (GRAVITY = 48 AT	00 + /	90' (.4		Total Depth	6760	F t
OIL AND GAS CUT WATER			4 BBLS)	Main Hole/Casing Size _	7 7/8"	
SALT WATER		30 (• 2	L- BDES)	Rat Hole/Liner Size	5/8"	
				Bottom Choke Size		10.0
				Mud Type	4.7	
				Viscosity	45 Water La	ss 8.0 c.c
				Cushion Type	Amount	Pressure
				<u> </u>	NONE	
				i f		
Remarks: LOCATION: 880	' FEL, 550	FNL, SEC.	. 29, т-31	-N, R-18-W		
Remarks: LOCATION: 880	* FEL, 550	FNL, SEC.	. 29, т-31	-N, R-18-W		
Remarks: LOCATION: 880	* FEL, 550	fnL, SEC.	. 29, т-31	-N, R-18-W		
Remarks: LOCATION: 880	* FEL, 550	FNL, SEC.	. 29, т-31	-N, R-18-W		
Remarks: LOCATION: 880	* FEL, 550	FNL, SEC.	29, т-31	-N, R-18-W		
			. 29, т-31	-N, R-18-W		
Remarks: LOCATION: 880 Address DRAWER 71; SAN			29, т-31	-N, R-18-W		
Address DRAWER 71; SAN	ANGELO, TI	EXAS	. 29, т-31		WILD CAT	
Address DRAWER 71; SAN Company CACTUS DRILLIN	ANGELO, TI	EXAS		Field	WILD CAT	
Address DRAWER 71; SAN Company CACTUS DRILLIN Well NAVAJO "A" #1	ANGELO, TI	EXAS ION Loc	ation SEE R	Field		
Address DRAWER 71; SAN Company CACTUS DRILLIN	ANGELO, TI	EXAS ION Loc		Field	WILD CAT	
Address DRAWER 71; SAN Company CACTUS DRILLIN Well NAVAJO "A" #1	ANGELO, TI G CORPORAT	EXAS ION Loc	ation SEE R	Field REMARKS Date		17664 A 18(4x's)

MULTI-FLOW EVALUATOR FLUID SAMPLE REPORT

Date	11-21-65			Fiel	d Report N	o. <u>17664 A</u>	
Company	CACTUS DRIL	LING CORPORATION		;			
Well	NAVAJO MAN	#1	_ Field _	WILD CAT			
County	SAN JUAN		_ State _	NEW MEXIC	0		
Test Interval	6670 ¹	To6760'		Tes	No	2	
Type of Test	M. F. E. AN	D PROD. LOG	_ Recove	ry Description	590 '	FREE OIL, 90	1
	OIL AND GAS	CUT WATER, 90' S	ALT WAT	ER			
Bot. Hole Ter	mp. <u>152</u>	_° F.		ed Pressures: Pressure did	SSI _ FF _ FSI _		psig psig psig psig psig. ressure.
EVALUATO	OR SAMPLER UN	IT					
Samp	le Drained:	Laboratory-Name				Other	
Samp		CO. 1 1. COS	2.16	rface			
	Total l	cc. Oil 40 cc. Water 60 cc. Mud -1 iquid cc. 100)			·	
	Gravity Gas/Oil Ratio	48 °API 8585 cu.ft./BBL	60	°F.		CHLORIDE CON	TENT
Reco Reco Mud	overy Water overy Mud overy Mud Filtrat Pit Sample Pit Sample Filtra	e	°F. °F. °F. °F.			25,000 	ppm.
Remarks	THIS APPEARS	TO BE A TEST OF	ZONE C	ONTAINING	HYDROGAR	BONS AND	
FORMATION	WATER.				· · · · · · · · · · · · · · · · · · ·		
						·	

Instrument No.	nputed Min Min
Capacity (P.S.I.G.) 6400 6728	nputed Min Min
Instrument Depth	nputed Min Min
Instrument Depth 10 10 10 10 10 10 10 1	Min
Pressure Gradient P.S.I./Ft. -	Min
Note	Min
Note Temperature F. 152	Min
Initial Hydrostatic Mud	Min
Initial Shut-in	Min
Initial Flow C 971 6 Mins. 6 SECIND FLOW C-4 515 5 Mins. 3 SECIND SHUT- N B-1 * 3430 26 Mins. 120 Mins. 121 Final Flow D 534 120 Mins. 121 Final Shut-in E * 3413 120 Mins. 119 Final Hydrostatic Mud F 3717 Remarks: C-1 472 C-7 567 C-2 530 C-8 538 C-3 550 C-9 585 C-5 820	Min
SECOND FLOW C-4 515 5 Mins. 3 3 8 8 6 Mins. 120 Mins. 121 120 Mins. 1	
SECOND SHUT- N	Min
Fina Flow D 534 120 Mins. 121	Min
Fina Shut-in E * 3413 120 Mins. 119	Min
Remorks: C-1 472 C-7 567	Min
C-2 530 C-8 538 C-3 550 C-9 585 C-5 820 C-6 512 C-6 512 C-6 512 C-6 S12 C-7 SECOND SHUT - IN FINAL SHUT - IN SECOND SHUT - IN FINAL	
C-3 550 C-9 585 C-6 512 C-6 C-6	
C-5 8:20	
C-6 512 *Shut in pressure did not reach static reservoir pressure. Clock Travel 0 ,02033 inches	
*Shut in pressure did not reach static reservoir pressure. Clock Travel O , 02033 inches	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	er min
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
C-2 0 530 C-4 0 515 D 0 534 5 2402 2.200 3 1882 4.000 10 3041 14.0 10 3215 1.600 6 2731 2.500 20 3295 7.5 15 3401 1.400 9 3184 2.000 30 3340 5.3 20 3425 1.300 12 3353 1.750 40 3362 4.2 25 3433 1.240 15 3401 1.600 50 3376 3.6 30 3437 1.200 18 3416 1.500 60 3385 3.1 35 3439 1.171 21 3424 1.429 70 3394 2.8	
C-2 0 530 C-4 0 515 D 0 534 5 2402 2.200 3 1882 4.000 10 3041 14.0 10 3215 1.600 6 2731 2.500 20 3295 7.5 15 3401 1.400 9 3184 2.000 30 3340 5.3 20 3425 1.300 12 3353 1.750 40 3362 4.2 25 3433 1.240 15 3401 1.600 50 3376 3.6 30 3437 1.200 18 3416 1.500 60 3385 3.1 35 3439 1.171 21 3424 1.429 70 3394 2.8	Δ_{t}
5 2402 2.200 3 1882 4.000 10 3041 14.0 10 3215 1.600 6 2731 2.500 20 3295 7.5 15 3401 1.400 9 3184 2.000 30 3340 5.3 20 3425 1.300 12 3353 1.750 40 3362 4.2 25 3433 1.240 15 3401 1.600 50 3376 3.6 30 3437 1.200 18 3416 1.500 60 3385 3.1 35 3439 1.171 21 3424 1.429 70 3394 2.8	t
10 3215 1.600 6 2731 2.500 20 3295 7.5 15 3401 1.400 9 3184 2.000 30 3340 5.3 20 3425 1.300 12 3353 1.750 40 3362 4.2 25 3433 1.240 15 3401 1.600 50 3376 3.6 30 3437 1.200 18 3416 1.500 60 3385 3.1 35 3439 1.171 21 3424 1.429 70 3394 2.8	
15 3401 1.400 9 3184 2.000 30 3340 5.3 20 3425 1.300 12 3353 1.750 40 3362 4.2 25 3433 1.240 15 3401 1.600 50 3376 3.6 30 3437 1.200 18 3416 1.500 60 3385 3.1 35 3439 1.171 21 3424 1.429 70 3394 2.8	
20 3425 1.300 12 3353 1.750 40 3362 4.2 25 3433 1.240 15 3401 1.600 50 3376 3.6 30 3437 1.200 18 3416 1.500 60 3385 3.1 35 3439 1.171 21 3424 1.429 70 3394 2.8	
25 3433 1.240 15 3401 1.600 50 3376 3.6 30 3437 1.200 18 3416 1.500 60 3385 3.1 35 3439 1.171 21 3424 1.429 70 3394 2.8	
30 3437 1.200 18 3416 1.500 60 3385 3.1 35 3439 1.171 21 3424 1.429 70 3394 2.8	
35 3439 1 .1 71 21 3424 1 .429 70 3394 2.8	
40 3442 1.150 24 3428 1.375 80 3399 2.6	
45 3442 1.133 B-1 27 3430 1.333 90 3404 2.4	
50 3443 1,120 100 3407 2,3	
55 3443 1.109 110 3410 2.1	0
	00
65 3444 1.092 B 67 3444 1.090	92
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	92
	92

GUIDE TO IDENTIFICATION OF DRILL STEM TEST PRESSURE CHARTS

- A. Initial Hyd. Mud
- B. Initial Shut-in
- C. Initial Flow
- D. Final Flow
- E. Final Shut-in
- F. Final Hyd. Mud

The following points are either fluctuating pressures or points indicating other packer settings, (testing different zones).

- A-1, A-2, A-3, etc. Initial Hyd. Pressures B-1, B-2, B-3, etc. Subsequent Shut-in
- Pressures
- C-1, C-2, C-3, etc. Flowing Pressures D-1, D-2, D-3, etc. Subsequent Final Flow Pressures
- E-1, E-2, E-3, etc. Subsequent Final Shut-in Pressures
- F-1, F-2, F-3, etc. Final Hyd. Mud Pressures
- Z Special pressure points such as pumping pressure recorded for formation breakdown.

