SITE INFORMATION

4 **-**

General Site I	nformation:							
Site:		Osprey 10 60 [°]	1H					
Company:		EOG Resourd						
Section, Town	ship and Range	Unit M	Sec. 10	T 25S	R 34E			
Lease Numbe	r:	API No. 30-02	5-41816					
County:		Lea County						
GPS:			32.1387º N			103.4666º W		
Surface Owne		Fee Land						
Mineral Owne	r:	EOG						
Directions:			nd Deleware Bas Rd and go approx			eleware Basin Rd 14.3M, Turn		
		South off lease	Itu anu go appio	. 5.510, 1011				
Release Data:								
Date Released	:	7/2/2017						
Type Release:		Oil						
Source of Con		Valve failure						
Fluid Released		50 bbls						
Fluids Recover		40 bbls	40 bbls					
Official Comm	nunication:							
Name:	<mark>Jamon Hohensee</mark>				Ike Tavarez			
Company:	EOG Resources				Tetra Tech			
Address:	5509 Champions	Drive			4000 N. Big Sp	ring		
					Ste 401			
City:	Midland Texas, 79	9706			Midland, Texas	i		
, Phone number	: (432) 556-8074				(432) 687-8110)		
Fax:					,			
Email:	iamon hohense	e@eogresources	com		Ike.Tavarez@)tetratech.com		
Lmail.	jamon_nonense	elegeogresources	<u></u>		IKC. Tavarcz(u			

Depth to Groundwater:	Ranking Score	Site Data	
<50 ft	20		
50-99 ft	10		
>100 ft.	0	175'	
WellHead Protection:	Ranking Score	Site Data	
Water Source <1,000 ft., Private <200 ft.	20		
Water Source >1,000 ft., Private >200 ft.	0	0	
Surface Body of Water:	Ranking Score	Site Data	
<200 ft.	20		
200 ft - 1,000 ft.	10		
>1,000 ft.	0	0	
Total Ranking Score:	0		
Ac	ceptable Soil RRAL (mg/kg)		
Benze		-	
10	50 5,000		

APPROVED By Olivia Yu at 12:24 pm, Oct 02, 2018

September 27, 2017

NMOCD grants closure to 1RP-4747.

Ms. Olivia Yu Environmental Engineer Specialist Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Closure Report for the EOG Resources - Osprey 10 601H, Unit M, Section 10, Township 25 South, Range 34 East, Lea County, New Mexico. RP# 1RP-4747.

Ms. Yu:

Tetra Tech, Inc. (Tetra Tech) was contacted by EOG Resources., (EOG) to assess a spill from Osprey 10 601H, Unit M, Section 10, Township 25 South, Range 34 East, Lea County, New Mexico (Site). The spill site coordinates are N 32.1387°, W 103.4666°. The site location is shown on Figures 1 and 2.

Background

According to the State of New Mexico C-141 Initial Report, the leak was discovered on July 2, 2017, and released approximately fifty (50) barrels of oil due to the wells relief valve located on the pad. Approximately forty (40) barrels of oil was recovered. Majority of the release was overspray that occurred off the pad in the pasture. The impact in the pasture covered an area of approximately 600' x 200'. The initial C-141 form is included in Appendix A.

Groundwater

No water wells were listed within Section 10 on the New Mexico Office of the State Engineer database. According to the Chevron Texaco Groundwater Trend map, the average depth to groundwater in this area is around 175' below surface. The groundwater data is shown in Appendix B.

Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels

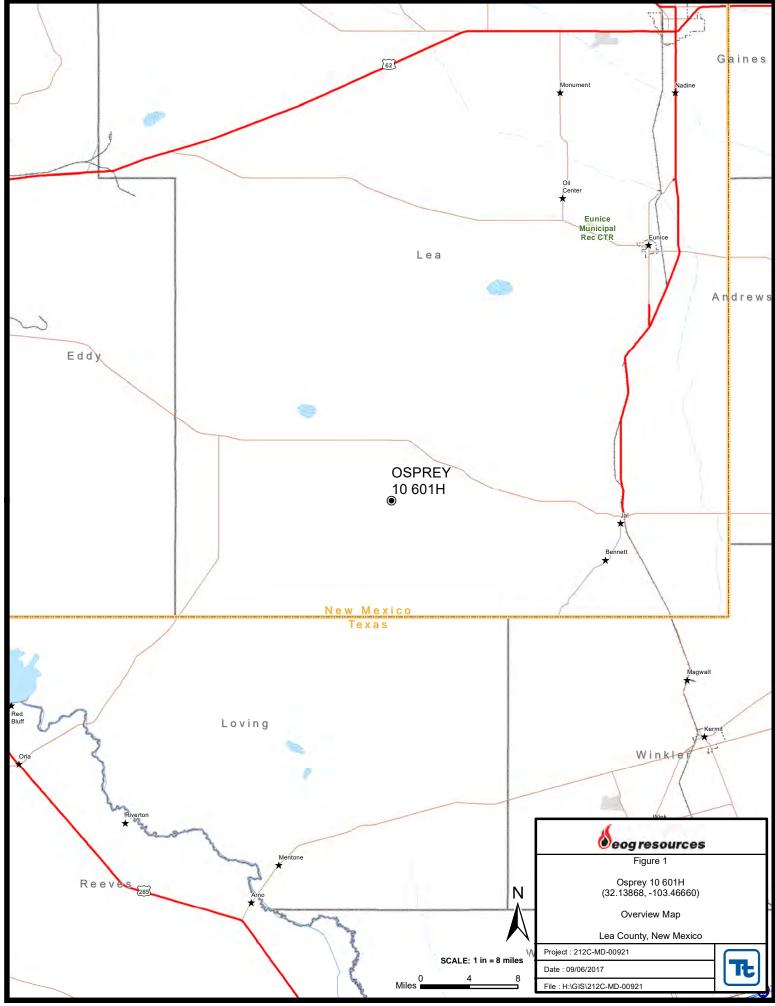
(RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the depth to groundwater, the proposed RRAL for TPH is 5,000 mg/kg.

Soil Assessment and Analytical Results

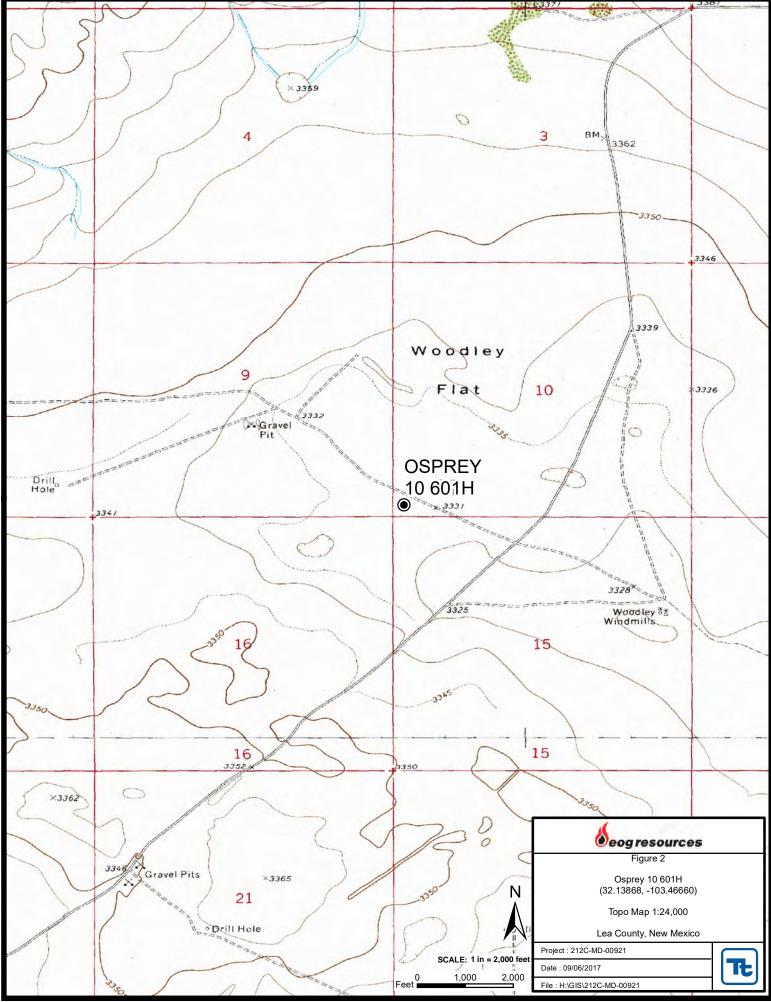
On July 31, 2017, Tetra Tech personnel were onsite to collect soil sample of the impacted area in the pasture. A total of four (4) auger holes were installed to assess the impacted soils. Selected soils were analyzed for TPH were analyzed for TPH analysis by EPA Method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The sampling results are summarized in Table 1. The auger hole locations are shown on Figure 3.

Referring to Table 1, none of the auger hole samples exceeded the RRALs for TPH, benzene, or total BTEX. All of the sample locations showed total TPH and benzene concentrations below the laboratory reporting limits. A trace of total BTEX concentrations were detected of 0.00202 mg/kg (AH-1), <0.00199 mg/kg (AH-2), <0.00201 mg/kg (AH-3) and <0.00201 mg/kg at 0-1' below surface. Additionally, the areas of auger holes (AH-1, AH-2, AH-3, and AH-4) did not show any significant chloride concentrations to the subsurface soils with a chloride high of 13.1 mg/kg.

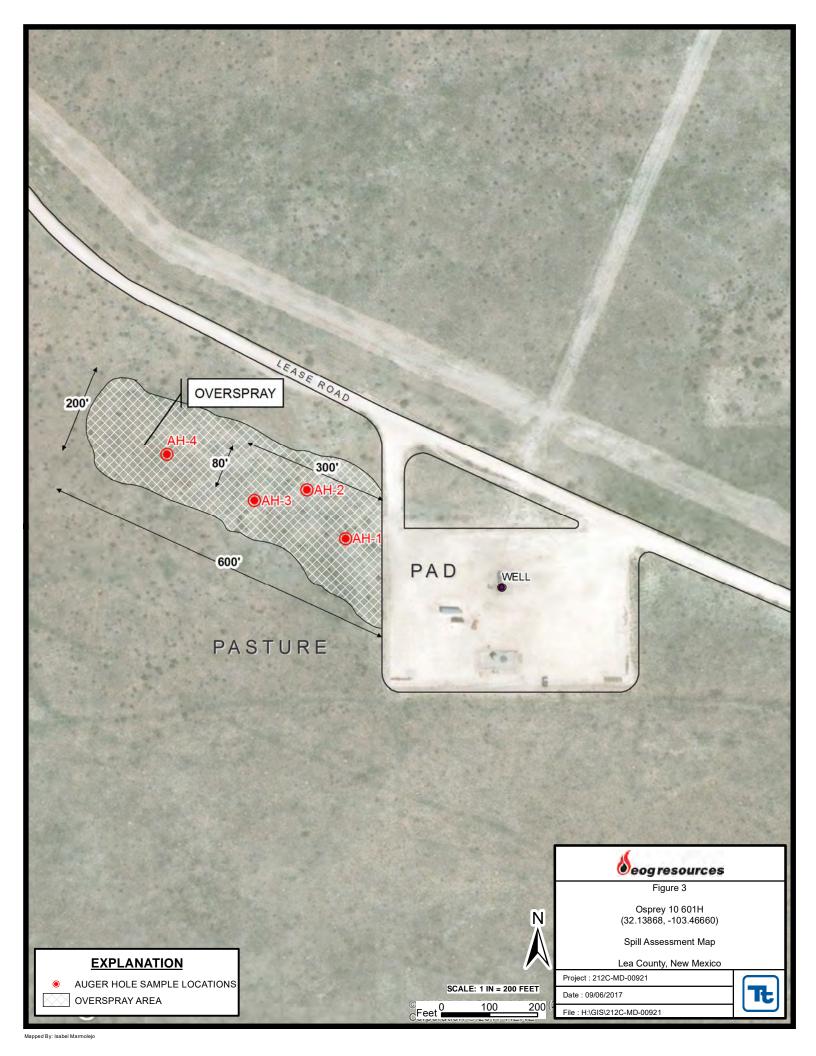
Conclusion


All of the samples were below the RRALs and the chlorides detected were not significant in the soils. Based on the laboratory results, EOG requests closure of this spill issue. The final C-141 is enclosed in Appendix A. If you have any questions or comments concerning the assessment activities for this site, please call me at (432) 682-4559.

Respectfully submitted, TETRA TECH


Ike Tavarez, PG Senior Project Manager

Clair Gonzales, Geologist I


Figures

Mapped By: Isabel Marmolejo

Mapped By: Isabel Marmolejo

Tables

Table 1EOG ResourcesOsprey 10 601HLea County, New Mexico

		Sample	BEB	Soil	Status		TPH	(mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total	Chloride
Sample ID	Sample Date	Depth (ft)	Sample Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	BTEX (mg/kg)	(mg/kg)
AH-1	7/31/2017	0-1	-	Х		<15.0	514	113	627	<0.00202	<0.00202	<0.00202	<0.00202	<0.00202	<4.98
	"	1-1.5	-	Х		-	-	-	-	-	-	-	-	-	<4.99
	"	2-2.5	-	Х		-	-	-	-	-	-	-	-	-	13.1
	"	4-4.5	-	Х		-	-	-	-	-	-	-	-	-	<4.99
	"	5-5.5	-	Х		<15.0	16.2	<15.0	16.2	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<4.97
AH-2	7/31/2017	0-1	-	Х		<15.0	42.1	<15.0	42.1	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<4.93
	"	1-1.5	-	Х		-	-	-	-	-	-	-	-	-	<4.94
	"	2-2.5	-	Х		<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<4.94
AH-3	7/31/2017	0-1	-	Х		<15.0	59.2	<15.0	59.2	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	<4.93
	"	1-1.5	-	Х		-	-	-	-	-	-	-	-	-	<4.94
	"	2-2.5	-	Х		-	-	-	-	-	-	-	-	-	<4.96
	"	4-4.5	-	Х		-	-	-	-	-	-	-	-	-	<4.96
	"	5-5.5	-	Х		<15.0	<15.0	<15.0	<15.0	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<4.97
AH-4	7/31/2017	0-1	-	Х		<15.0	29.8	<15.0	29.8	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	<4.93
	"	1-1.5	-	Х		-	-	-	-	-	-	-	-	-	<4.99
	"	2-2.5	-	Х		<15.0	<15.0	<15.0	<15.0	<0.00341	<0.00341	<0.00341	<0.00341	<0.00341	<4.93

(-) Not Analyzed

(BEB) Below Excavation Bottom

Photos

View West of Overspray

View North West Overspray

View East of Overspray

View North, AH#1

View South, AH#2

TETRA TECH

View East, AH#3

View South Overspray

View West, AH#5

Appendix A

District I 1625 N. French Dr., Hobbs, NM 88240 District III Bill S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr.

Form C-141 Revised April 3, 2017

pOY1719140491

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Sant	ta Fe, NM 87505
Release Notifica	tion and Corrective Action
	OPERATOR Initial Report Final Rep
Name of Company: EOG Resources	Contact: Jamon Hohensee
Address: 5509 Champions Drive, Midland, TX 79706	Telephone No. 432-556-8074
Facility Name: Osprey 10 601H	Facility Type: Well
Surface Owner: Fee Land Mineral Ow	mer: EOG API No. 3002541816
LOCAT	TION OF RELEASE
	North/South Line Feet from the East/West Line County
Latitude32.1387	Longitude103.4666 NAD83
NATU	IRE OF RELEASE
Type of Release: PW/Oil	Volume of Release: 50bbls Volume Recovered: 40
Source of Release: Relief valve	Date and Hour of Occurrence: Date and Hour of Discovery: 7/2/17, 7/2/17, 7:14pm 7:14pm
Was Immediate Notice Given? □ Yes ☑ No □ Not Requ	If YES, To Whom?
By Whom?	Date and Hour
Was a Watercourse Reached?	If YES, Volume Impacting the Watercourse.
🗌 Yes 🖾 No	
	foreman and lease operator were informed. The well was shut in to relieve the ay was formed off the pad. Production foreman contacted the EOG environmental
Describe Area Affected and Cleanup Action Taken.*	
	tanding fluids were recovered by vacuum truck and disposed of properly. No visible estigate site and take necessary steps properly remediate the affected area to regulatory
regulations all operators are required to report and/or file certain rele public health or the environment. The acceptance of a C-141 report l should their operations have failed to adequately investigate and rem	e to the best of my knowledge and understand that pursuant to NMOCD rules and ease notifications and perform corrective actions for releases which may endanger by the NMOCD marked as "Final Report" does not relieve the operator of liability mediate contamination that pose a threat to ground water, surface water, human health port does not relieve the operator of responsibility for compliance with any other
	OIL CONSERVATION DIVISION
Signature: So H.M.	AV
Printed Name: Jamon Hohensee	Approved by Environmental Specialist:
itle: Environmental Representative	Approval Date: 7/10/2017 Expiration Date:
-mail Address: jamon_hohensee@eogresources.com	Conditions of Approval:
Date: 7/6/2017 Phone: 432-556-8074	See attached directive
Attach Additional Sheets If Necessary	1RP-4747 nOY1719139935

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release Notification and Corrective Action

		OPERATOR	Initial Report	Final Report
Name of Company EOG Resources		Contact Jamon Hoensee		
Address 5509 Champions Drive, Midland, Te	Telephone No. (432) 556-8074	1		
Facility Name Osprey 10 601H		Facility Type Well		
Surface Owner: Fee Land	Mineral Owner:	Federal	API: 3002541816	

LOCATION OF RELEASE

Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County
Ρ	9	258	34E					Lea

Latitude N 32.1387° Longitude W -103.4666°

NATURE OF RELEASE

Type of Release: Oil	Volume of Release 50 bbls	Volume Recovered 40 bbls
Source of Release: Relief Valve	Date and Hour of Occurrence	Date and Hour of Discovery
	7/2/17, 7:14pm	7/2/17, 7:14pm
Was Immediate Notice Given?	If YES, To Whom?	
🗌 Yes 🛛 No 🗌 Not Required		
By Whom?	Date and Hour	
Was a Watercourse Reached?	If YES, Volume Impacting the Wat	ercourse.
🗌 Yes 🖾 No	N/A	
If a Watercourse was Impacted, Describe Fully.*		
	APPROVED	
N/A		
	By Olivia Yu at 12:	25 pm, Oct 02, 2018
Describe Cause of Problem and Remedial Action Taken.*	(
Describe Cause of Problem and Remedial Action Taken.*		
Spray was noticed when coming from relief valve on location. Production	foreman and lease operator were info	rmed. The well was shut in to relieve the
pressure. 500bbls of fluid was released and 40bbls recovered. Overspray		
Describe Area Affected and Cleanup Action Taken.*		
Tetra Tech inspected site and collected samples to define spills extent. Th to NMOCD for review.	e soil didn't exceed RRAL and Tetra	lech prepared closure report and submitted
to NMOCD for review.		
I hereby certify that the information given above is true and complete to t	he best of my knowledge and understa	nd that pursuant to NMOCD rules and
regulations all operators are required to report and/or file certain release n		
public health or the environment. The acceptance of a C-141 report by th		
should their operations have failed to adequately investigate and remediat		
or the environment. In addition, NMOCD acceptance of a C-141 report d	oes not relieve the operator of respons	ibility for compliance with any other
federal, state, or local laws and/or regulations.		
My DS	<u>OIL CONSERV</u>	ATION DIVISION
Signature:		
		GY
Printed Name: Ike Tavarez (agent for EOG)	Approved by	Į į
	10/2/2018	
Title: Project Manager	Approval Date: 10/2/2018	Expiration Date:
U	Conditions of Approval:	Attached
Date: 9/29/17 Phone: (432) 682-4559	BLM approval required.	
Date: 9/29/17 Phone: (432) 682-4559		

* Attach Additional Sheets If Necessary

1KP-4/4/

Appendix B

Water Well Data Average Depth to Groundwater (ft) EOG- Osprey 10 601H Lea County, New Mexico

25 South

_	24 Sc	outh	33	East	
6	5	4	3	2	1
7	8	9	10 24.6	11	12
18	17	16	15	14	13
19	20	21	22	23 208	24 16.9
30	29	28	27	26	25
31	32	33 <mark>93.2</mark>	34	35	36

	24 So	outh	34	East	
6	5	4	3	2	1
7	8	9	10	11	12
18	17	16	15	14	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

	24 So	outh	35	East	
6	5	4	3	2	1
7	8	9	10 300	11	12
18	17	16	15	14	13
19	20 <mark>97</mark>	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

	25 5	South	3	3 East	
6	5	4	3 17:	2 2	1
7	8	9	10	11 140	12 200
18	17	16	15	14	13
19	20 200	21 120	22	23	24
30	29	28	27 125	26	25
31 257	32	33	34	35	36

	26 Sc	outh	33		
6	5	4	3	2	1
			175		
7	8	9	10	11	12
				145	200
18	17	16	15	14	13
				135	
19	20	21	22	23	24
		120			
30	29		27	26	25
			125		
31	32	33	34	35	36

6	5	4	3	2	1
				300	260
7	8	9	10	11	12
18	17	16	15	14	13
			135		
19	20	21	22	23	24
					300
30	29	28	27	26	25
	50				
31	32	33	34	35	36

34 East

	26 So	outh	34	East	
6	5	4	3	2	1
7	8	9	10	11	12
18	17	16	15	14	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

	25 Sc	outh	35		
6	5	4	3 108	2	1
	165				
7	8	9	10	11	12
18	17	16	15	14	13
230					
19	20	21	22	23	24
		218			
30	29	28	27	26	25
80					
31	32	33	34	35	36

	26 Sc	outh	35	East	
6	5	4	3	2	1
7	8	9	10	11	12
18	17	16	15	14	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

88 New Mexico State Engineers Well Reports

105 USGS Well Reports

90 Geology and Groundwater Conditions in Southern Lea, County, NM (Report 6) Geology and Groundwater Resources of Eddy County, NM (Report 3)

- 34 NMOCD Groundwater Data
- 123 Tetra Tech installed temporary wells and field water level

143 NMOCD Groundwater map well location

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is closed)	(quar						IE 3=SW largest)	,	3 UTM in meters)		(In feet)
	POD		_	_	_						_		
POD Number	Sub- Code basin C	countv			Q 4	Sec	Tws	Rna	х	Y	-	-	Water Column
C 02299	CUB	LE					25S	-	649417	3554478* 🌍	350	300	50
<u>C 02314</u>		LE	2	4	2	15	25S	34E	646170	3556243* 😑	175	135	40
<u>C 02315</u>		LE	2	4	2	15	25S	34E	646170	3556243* 🌍	175	135	40
<u>C 02316</u>		LE	3	4	3	29	25S	34E	642003	3551967* 🌍	100	50	50
<u>C 02317</u>		LE	3	4	3	29	25S	34E	642003	3551967* 🌍	100	50	50
<u>C 02401</u>		LE	2	2	1	01	25S	34E	648534	3559896* 🌍	275	260	15
										Average Depth to	o Water:	155 f	eet
										Minimun	n Depth:	50 f	eet
										Maximun	n Depth:	300 f	eet
Descend Occurry (

Record Count: 6

Basin/County Search:

County: Lea

PLSS Search:

Township: 25S Range: 34E

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Appendix C

Analytical Report 558952

for Tetra Tech- Midland

Project Manager: Ike Tavarez

EOG-Osprey 10 601H

212C-MD-00921

07-AUG-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

07-AUG-17

Project Manager: **Ike Tavarez Tetra Tech- Midland** 4000 N. Big Spring Suite 401 Midland, TX 79705

Reference: XENCO Report No(s): **558952 EOG-Osprey 10 601H** Project Address: Lea County NM

Ike Tavarez:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 558952. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 558952 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Huns hoah

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Id

AH #1 (0-1')
AH #1 (1-1.5')
AH #1 (2-2.5')
AH #1 (4-4.5')
AH #1 (5-5.5')
AH #2 (0-1')
AH #2 (1-1.5')
AH #2 (2-2.5')
AH #3 (0-1')
AH #3 (0-1') AH #3 (1-1.5')
· · · ·
AH #3 (1-1.5')
AH #3 (1-1.5') AH #3 (2-2.5')
AH #3 (1-1.5') AH #3 (2-2.5') AH #3 (4-4.5')
AH #3 (1-1.5') AH #3 (2-2.5') AH #3 (4-4.5') AH #3 (5.5-6')
AH #3 (1-1.5') AH #3 (2-2.5') AH #3 (4-4.5') AH #3 (5.5-6') AH #4 (0-1')

Sample Cross Reference 558952

EOG-Osprey 10 601H

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	07-31-17 00:00		558952-001
S	07-31-17 00:00		558952-002
S	07-31-17 00:00		558952-003
S	07-31-17 00:00		558952-004
S	07-31-17 00:00		558952-005
S	07-31-17 00:00		558952-006
S	07-31-17 00:00		558952-007
S	07-31-17 00:00		558952-008
S	07-31-17 00:00		558952-009
S	07-31-17 00:00		558952-010
S	07-31-17 00:00		558952-011
S	07-31-17 00:00		558952-012
S	07-31-17 00:00		558952-013
S	07-31-17 00:00		558952-014
S	07-31-17 00:00		558952-015
S	07-31-17 00:00		558952-016

CASE NARRATIVE

Client Name: Tetra Tech- Midland Project Name: EOG-Osprey 10 601H

Project ID: 212C-MD-00921 Work Order Number(s): 558952 Report Date:07-AUG-17Date Received:08/01/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3023756 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Project Id:212C-MD-00921Contact:Ike TavarezProject Location:Lea County NM

Certificate of Analysis Summary 558952

Tetra Tech- Midland, Midland, TX Project Name: EOG-Osprey 10 601H

Date Received in Lab:Tue Aug-01-17 02:01 pmReport Date:07-AUG-17Project Manager:Kelsey Brooks

	Lab Id:	558952-0	001	558952-0	02	558952-0	03	558952-0	04	558952-	005	558952-	006
A se straig De server de l	Field Id:	AH #1 (0	-1')	AH #1 (1-1	1.5')	AH #1 (2-2	2.5')	AH #1 (4-4	4.5')	AH #1 (5-	-5.5')	AH #2 (()-1')
Analysis Requested	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Jul-31-17 (00:00	Jul-31-17 0	0:00	Jul-31-17 0	00:00	Jul-31-17 0	0:00	Jul-31-17	00:00	Jul-31-17	00:00
BTEX by EPA 8021B	Extracted:	Aug-01-17	14:30							Aug-01-17	14:30	Aug-01-17	14:30
	Analyzed:	Aug-01-17	15:41							Aug-01-17	17:14	Aug-01-17	17:33
	Units/RL:	mg/kg	RL							mg/kg	RL	mg/kg	RL
Benzene		< 0.00202	0.00202							< 0.00200	0.00200	< 0.00199	0.00199
Toluene		< 0.00202	0.00202							< 0.00200	0.00200	< 0.00199	0.00199
Ethylbenzene		< 0.00202	0.00202							< 0.00200	0.00200	< 0.00199	0.00199
m,p-Xylenes		< 0.00403	0.00403							< 0.00401	0.00401	< 0.00398	0.00398
o-Xylene		< 0.00202	0.00202							< 0.00200	0.00200	< 0.00199	0.00199
Total Xylenes		< 0.00202	0.00202							< 0.00200	0.00200	< 0.00199	0.00199
Total BTEX		< 0.00202	0.00202							< 0.00200	0.00200	< 0.00199	0.00199
Inorganic Anions by EPA 300/300.1	Extracted:	Aug-02-17	12:15	Aug-02-17 1	2:15	Aug-02-17	12:15	Aug-02-17	2:15	Aug-02-17	12:15	Aug-02-17	12:15
	Analyzed:	Aug-02-17	18:02	Aug-02-17 1	8:25	Aug-02-17	18:33	Aug-02-17	8:41	Aug-02-17	18:48	Aug-02-17	19:11
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		<4.98	4.98	<4.99	4.99	13.1	4.94	<4.99	4.99	<4.97	4.97	<4.93	4.93
TPH By SW8015 Mod	Extracted:	Aug-03-17	10:00							Aug-03-17	10:00	Aug-03-17	10:00
	Analyzed:	Aug-03-17	13:51							Aug-03-17	14:12	Aug-03-17	15:13
	Units/RL:	mg/kg	RL							mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0							<15.0	15.0	<15.0	15.0
Diesel Range Organics (DRO)		514	15.0							16.2	15.0	42.1	15.0
Oil Range Hydrocarbons (ORO)		113	15.0							<15.0	15.0	<15.0	15.0
Total TPH		627	15.0							16.2	15.0	42.1	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

Huns Boah

Kelsey Brooks Project Manager

Project Id:212C-MD-00921Contact:Ike TavarezProject Location:Lea County NM

Certificate of Analysis Summary 558952

Tetra Tech- Midland, Midland, TX Project Name: EOG-Osprey 10 601H

Date Received in Lab:Tue Aug-01-17 02:01 pmReport Date:07-AUG-17Project Manager:Kelsey Brooks

	Lab Id:	558952-0	07	558952-0	008	558952-0	009	558952-0	10	558952-0	11	558952-0	12
Amaluaia Doguostad	Field Id:	AH #2 (1-1	1.5')	AH #2 (2-2	2.5')	AH #3 (0	-1')	AH #3 (1-1	1.5')	AH #3 (2-2	2.5')	AH #3 (4-4	4.5')
Analysis Requested	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Jul-31-17 0	0:00	Jul-31-17 0	00:00	Jul-31-17 (00:00	Jul-31-17 0	0:00	Jul-31-17 0	0:00	Jul-31-17 0	0:00
BTEX by EPA 8021B	Extracted:			Aug-01-17	14:30	Aug-01-17	14:30						
	Analyzed:			Aug-01-17	17:52	Aug-01-17	18:10						
	Units/RL:			mg/kg	RL	mg/kg	RL						
Benzene				< 0.00200	0.00200	< 0.00201	0.00201						
Toluene				< 0.00200	0.00200	< 0.00201	0.00201						
Ethylbenzene				< 0.00200	0.00200	< 0.00201	0.00201						
m,p-Xylenes				< 0.00399	0.00399	< 0.00402	0.00402						
o-Xylene				< 0.00200	0.00200	< 0.00201	0.00201						
Total Xylenes				< 0.00200	0.00200	< 0.00201	0.00201						
Total BTEX				< 0.00200	0.00200	< 0.00201	0.00201						
Inorganic Anions by EPA 300/300.1	Extracted:	Aug-02-17	12:15	Aug-02-17	12:15	Aug-02-17	12:15	Aug-02-17	2:15	Aug-02-17	12:15	Aug-02-17 1	2:15
	Analyzed:	Aug-02-17	19:19	Aug-02-17	19:27	Aug-02-17	19:34	Aug-02-17	19:42	Aug-02-17	19:50	Aug-02-17 2	20:13
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		<4.94	4.94	<4.94	4.94	<4.93	4.93	<4.94	4.94	<4.96	4.96	<4.96	4.96
TPH By SW8015 Mod	Extracted:			Aug-03-17	10:00	Aug-03-17	10:00						
	Analyzed:			Aug-03-17	15:33	Aug-03-17	15:53						
	Units/RL:			mg/kg	RL	mg/kg	RL						
Gasoline Range Hydrocarbons (GRO)				<15.0	15.0	<15.0	15.0						
Diesel Range Organics (DRO)				<15.0	15.0	59.2	15.0						
Oil Range Hydrocarbons (ORO)				<15.0	15.0	<15.0	15.0						
Total TPH				<15.0	15.0	59.2	15.0						

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

Huns Boah

Kelsey Brooks Project Manager

Project Id:212C-MD-00921Contact:Ike TavarezProject Location:Lea County NM

Certificate of Analysis Summary 558952

Tetra Tech- Midland, Midland, TX Project Name: EOG-Osprey 10 601H

Date Received in Lab:Tue Aug-01-17 02:01 pmReport Date:07-AUG-17Project Manager:Kelsey Brooks

	Lab Id:	558952-(013	558952-(014	558952-0	15	558952-	016		
	Field Id:	AH #3 (5.	5-6')	AH #4 (0	-1')	AH #4 (1-1	.5')	AH #4 (2	-2.5')		
Analysis Requested	Depth:	(,	(*	- /	(,	(-	,		
	Matrix:	SOIL	SOIL			SOIL		SOIL			
				SOIL							
	Sampled:	Jul-31-17 (00:00	Jul-31-17 (00:00	Jul-31-17 0	0:00	Jul-31-17	00:00		
BTEX by EPA 8021B	Extracted:	Aug-01-17	14:30	Aug-01-17	14:30		[Aug-01-17	14:30		
	Analyzed:	Aug-01-17	18:29	Aug-01-17	18:48			Aug-02-17	07:56		
	Units/RL:	mg/kg	RL	mg/kg	RL			mg/kg	RL		
Benzene		< 0.00199	0.00199	< 0.00201	0.00201			< 0.00341	0.00341		
Toluene		< 0.00199	0.00199	< 0.00201	0.00201			< 0.00341	0.00341		
Ethylbenzene		< 0.00199	0.00199	< 0.00201	0.00201			< 0.00341	0.00341		
m,p-Xylenes		< 0.00398	0.00398	< 0.00402	0.00402			< 0.00683	0.00683		
o-Xylene		< 0.00199	0.00199	< 0.00201	0.00201			< 0.00341	0.00341		
Total Xylenes		< 0.00199	0.00199	< 0.00201	0.00201			< 0.00341	0.00341		
Total BTEX		< 0.00199	0.00199	< 0.00201	0.00201			< 0.00341	0.00341		
Inorganic Anions by EPA 300/300.1	Extracted:	Aug-02-17	12:15	Aug-02-17	12:15	Aug-02-17 1	2:15	Aug-02-17	12:15		
	Analyzed:	Aug-02-17	20:21	Aug-02-17	20:44	Aug-02-17 2	20:51	Aug-02-17	20:59		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		<4.97	4.97	<4.93	4.93	<4.99	4.99	<4.93	4.93		
TPH By SW8015 Mod	Extracted:	Aug-03-17	10:00	Aug-03-17	10:00			Aug-03-17	10:00		
	Analyzed:	Aug-03-17	16:13	Aug-03-17	16:33			Aug-03-17	16:53		
	Units/RL:	mg/kg	RL	mg/kg	RL			mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0	<15.0	15.0			<15.0	15.0		
Diesel Range Organics (DRO)		<15.0	15.0	29.8	15.0			<15.0	15.0		
Oil Range Hydrocarbons (ORO)		<15.0	15.0	<15.0	15.0			<15.0	15.0		
Total TPH		<15.0	15.0	29.8	15.0			<15.0	15.0		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

Huns Boah

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection				
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation				

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

Form 2 - Surrogate Recoveries

Project Name: EOG-Osprey 10 601H

	r ders : 558952 #: 3023756	2, Sample: 558952-001 / SMP	Batcl		: 212C-MD-0 : Soil	0921					
Units:	mg/kg	Date Analyzed: 08/01/17 15:41	SU	RROGATE R	ECOVERY S	STUDY					
	BTEX	L by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
		Analytes			[D]						
1,4-Difluor	obenzene		0.0308	0.0300	103	80-120					
4-Bromoflu	orobenzene		0.0351	0.0300	117	80-120					
Lab Batch	#: 3023756	Sample: 558952-005 / SMP	Batch: 1 Matrix: Soil								
Units:	mg/kg	Date Analyzed: 08/01/17 17:14	SU	RROGATE R	ECOVERY S	STUDY					
		(by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
		Analytes									
1,4-Difluor			0.0299	0.0300	100	80-120					
	lorobenzene		0.0326	0.0300	109	80-120					
	#: 3023756	Sample: 558952-006 / SMP	Batcl	h: 1 Matrix	: Soil						
Units:	mg/kg	Date Analyzed: 08/01/17 17:33	SU	RROGATE R	ECOVERY S	STUDY					
	BTEX	5 by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
		Analytes			[D]						
1,4-Difluor	obenzene		0.0325	0.0300	108	80-120					
4-Bromoflu	orobenzene		0.0262	0.0300	87	80-120					
Lab Batch	#: 3023756	Sample: 558952-008 / SMP	Batcl	h: 1 Matrix	: Soil						
Units:	mg/kg	Date Analyzed: 08/01/17 17:52	SU	RROGATE R	ECOVERY S	STUDY					
		L by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1.4-Difluor			0.0293	0.0300	98	80-120					
,	orobenzene		0.0293	0.0300	98	80-120					
	#: 3023756	Sample: 558952-009 / SMP	Batcl			00-120					
Units:	mg/kg	Date Analyzed: 08/01/17 18:10		RROGATE R		STUDY					
		L by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
		Analytes			[D]						
1,4-Difluor	obenzene		0.0310	0.0300	103	80-120					
4-Bromoflu	orobenzene		0.0318	0.0300	106	80-120					

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Work Orde Lab Batch #:		2, Sample: 558952-013 / SMP	Batcl	-	212C-MD-0	0921						
Units:	mg/kg	Date Analyzed: 08/01/17 18:29		RROGATE R		STUDY						
	втех	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
		Analytes										
1,4-Difluorobe			0.0295	0.0300	98	80-120						
4-Bromofluoro		G 1 559052 014 / SMD	0.0345	0.0300	115	80-120						
Lab Batch #:		Sample: 558952-014 / SMP		Batch: 1 Matrix: Soil								
Units:	mg/kg	Date Analyzed: 08/01/17 18:48	SU	SURROGATE RECOVERY STUDY								
	втех	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
1,4-Difluorobe	nzene		0.0300	0.0300	100	80-120						
4-Bromofluoro	benzene		0.0334	0.0300	111	80-120						
Lab Batch #:		Sample: 558952-016 / SMP	Batcl			00120						
Units:	mg/kg	Date Analyzed: 08/02/17 07:56	SU	RROGATE R		STUDY						
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags					
		Analytes	[13]		[D]	/01						
1,4-Difluorobe	nzene		0.0298	0.0300	99	80-120						
4-Bromofluoro	benzene		0.0308	0.0300	103	80-120						
Lab Batch #:	3024053	Sample: 558952-001 / SMP	Batcl	h: 1 Matrix	: Soil							
Units:	mg/kg	Date Analyzed: 08/03/17 13:51	SU	RROGATE R	ECOVERY S	STUDY						
	TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
1-Chlorooctane	,		123	99.8	123	70-135						
o-Terphenyl			51.2	49.9	103	70-135						
Lab Batch #:	3024053	Sample: 558952-005 / SMP	Batcl	h: 1 Matrix	: Soil	1						
Units:	mg/kg	Date Analyzed: 08/03/17 14:12	SU	RROGATE R	ECOVERY	STUDY						
	TPH	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
1.01:		Analytes										
1-Chlorooctane			129	99.9	129	70-135						
o-Terphenyl			48.0	50.0	96	70-135						

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Work Ord Lab Batch #:		2, Sample: 558952-006 / SMP	Batch		: 212C-MD-0 : Soil	00921					
Units:	mg/kg	Date Analyzed: 08/03/17 15:13		RROGATE R	-	STUDY					
	TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooctane	e		125	99.9	125	70-135					
o-Terphenyl			46.0	50.0	92	70-135					
Lab Batch #:	3024053	Sample: 558952-008 / SMP	Batch								
Units:	mg/kg	Date Analyzed: 08/03/17 15:33		SURROGATE RECOVERY STUDY							
	TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooctane	e	Analytes	128	100	128	70-135					
o-Terphenyl			47.6	50.0	95	70-135					
Lab Batch #:	3024053	Sample: 558952-009 / SMP	Batch	h: 1 Matrix: Soil							
Units:	mg/kg	Date Analyzed: 08/03/17 15:53	SU	ROGATE RECOVERY STUDY							
	TPH	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooctane		Analytes	129	00.8		70-135					
o-Terphenyl	6		128	99.8	128 93						
Lab Batch #:	3024053	Sample: 558952-013 / SMP	46.2 Batch	49.9 n: 1 Matrix		70-135					
Units:	mg/kg	Date Analyzed: 08/03/17 16:13		RROGATE R		STUDY					
	TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooctane	e		123	99.8	123	70-135					
o-Terphenyl			44.7	49.9	90	70-135					
Lab Batch #:	3024053	Sample: 558952-014 / SMP	Batch								
Units:	mg/kg	Date Analyzed: 08/03/17 16:33	SU	RROGATE R	ECOVERY S	STUDY					
	TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooctane	e		125	99.7	125	70-135					
o-Terphenyl			44.1	49.9	88	70-135					

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Work Orde Lab Batch #:		2, Sample: 558952-016 / SMP	Bato		: 212C-MD-0 : Soil	0921	
Units:	mg/kg	Date Analyzed: 08/03/17 16:53		URROGATE R		STUDY	
	TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooctane	e		123	99.8	123	70-135	
o-Terphenyl			43.3	49.9	87	70-135	
Lab Batch #:		Sample: 728595-1-BLK / BI	LK Bate	ch: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 08/01/17 10:56	SU	URROGATE R	ECOVERY S	STUDY	
	BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobe	nzene	Anarytes	0.0302	0.0300	101	80-120	
4-Bromofluoro			0.0316	0.0300	101	80-120	
Lab Batch #:		Sample: 728721-1-BLK / BI				00 120	
Units:	mg/kg	Date Analyzed: 08/03/17 12:50		URROGATE R		STUDY	
	TPH I	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooctane	e		132	100	132	70-135	
o-Terphenyl			48.3	50.0	97	70-135	
Lab Batch #:	3023756	Sample: 728595-1-BKS / BB	KS Bate	ch: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 08/01/17 09:04	SU	URROGATE R	ECOVERY S	STUDY	
	BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobe	nzene		0.0322	0.0300	107	80-120	
4-Bromofluoro			0.0326	0.0300	109	80-120	
Lab Batch #:		Sample: 728721-1-BKS / BB					
Units:	mg/kg	Date Analyzed: 08/03/17 13:11	SU	URROGATE R	ECOVERY S	STUDY	
		By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooctane	e		127	100	127	70-135	
o-Terphenyl			48.7	50.0	97	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Work Orde Lab Batch #:		Sample: 728595-1-BSD / BS	D Batcl	-	: 212C-MD-0 : Solid					
Units:	mg/kg	Date Analyzed: 08/01/17 09:23	SU	RROGATE R	ECOVERY	STUDY				
		X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1,4-Difluorobe		Anarytes	0.0311	0.0300	104	80-120				
4-Bromofluoro			0.0311	0.0300	104	80-120				
Lab Batch #:		Sample: 728721-1-BSD / BS				00-120				
Units:	mg/kg	Date Analyzed: 08/03/17 13:31		RROGATE R		STUDY				
		By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane		Analytes	124	100	124	70-135				
o-Terphenyl			47.9	50.0	96	70-135				
Lab Batch #:	3023756	Sample: 558842-013 S / MS	Batcl			0 70-135				
Units:	mg/kg	Date Analyzed: 08/01/17 09:42	SU	RROGATE R	ECOVERY	STUDY				
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]					
1,4-Difluorobe	nzene		0.0319	0.0300	106	80-120				
4-Bromofluoro	benzene		0.0347	0.0300	116	80-120				
Lab Batch #:	3024053	Sample: 558952-005 S / MS	Batel	h: 1 Matrix	: Soil					
Units:	mg/kg	Date Analyzed: 08/03/17 14:32	SU	RROGATE R	ECOVERY	STUDY				
		By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane	e		127	99.9	127	70-135				
o-Terphenyl			45.5	50.0	91	70-135				
Lab Batch #:	3023756	Sample: 558842-013 SD / MS	SD Batcl	h: 1 Matrix	: Soil					
Units:	mg/kg	Date Analyzed: 08/01/17 10:01	SU	RROGATE R	ECOVERY	STUDY				
		X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1,4-Difluorobe		-	0.0331	0.0300	110	80-120				
4-Bromofluoro			0.0355	0.0300	118	80-120				

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

	rders : 558952 #: 3024053 mg/kg	2, Sample: 558952-005 SD / I Date Analyzed: 08/03/17 14:53		Project ID: n: 1 Matrix: RROGATE RI	Soil		
	TPH F	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorood	ctane		128	99.7	128	70-135	
o-Terpheny	yl		46.6	49.9	93	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

BS / BSD Recoveries

Project Name: EOG-Osprey 10 601H

Work Order #: 558952								Pro	ject ID:	212C-MD-(00921	
Analyst: ALJ		D	ate Prepar	red: 08/01/201	17			Date A	nalyzed: (08/01/2017		
Lab Batch ID: 3023756	Sample: 728595-1-E	BKS	Bate	h #: 1					Matrix: S	Solid		
Units: mg/kg			BLAN	K /BLANK	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
BTEX by EF	PA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes			[B]	[C]	[D]	[E]	Result [F]	[G]				
Benzene		<0.00202	0.101	0.101	100	0.101	0.0974	96	4	70-130	35	
Toluene		<0.00202	0.101	0.102	101	0.101	0.0992	98	3	70-130	35	
Ethylbenzene		< 0.00202	0.101	0.105	104	0.101	0.103	102	2	71-129	35	
m,p-Xylenes		< 0.00404	0.202	0.203	100	0.202	0.199	99	2	70-135	35	
o-Xylene		< 0.00202	0.101	0.104	103	0.101	0.102	101	2	71-133	35	
Analyst: MGO		D	ate Prepar	red: 08/02/201	17	•		Date A	nalyzed: (08/02/2017		,
Lab Batch ID: 3023919	Sample: 728616-1-E	BKS	Bate	h #: 1					Matrix: S	Solid		
Units: mg/kg			BLAN	K /BLANK	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
Inorganic Anions by Analytes	y EPA 300/300.1	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride		<5.00	250	248	99	250	247	99	0	90-110	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: EOG-Osprey 10 601H

Work Order	:#: 558952							Pro	ject ID:	212C-MD-(00921	
Analyst:	ARM	D	ate Prepa	red: 08/03/201	17			Date A	nalyzed: (08/03/2017		
Lab Batch ID	: 3024053 Sample: 728721-1-	BKS	Batc	h #: 1					Matrix: S	Solid		
Units:	mg/kg		BLAN	K /BLANK	SPIKE / 1	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
	TPH By SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analy	vtes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Gasoline l	Range Hydrocarbons (GRO)	<15.0	1000	1010	101	1000	979	98	3	70-135	35	
Diesel Ra	nge Organics (DRO)	<15.0	1000	1060	106	1000	1040	104	2	70-135	35	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: EOG-Osprey 10 601H

Work Order # :	558952						Project II	D: 212C-1	MD-0092	1		
Lab Batch ID:	3023756	QC- Sample ID:	558842	-013 S	Ba	tch #:	1 Matri	x: Soil				
Date Analyzed:	08/01/2017	Date Prepared:	08/01/2	017	An	alyst: A	ALJ					
Reporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
]	BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[-]	[D]	[E]	[-]	[G]		,		
Benzene		<0.00202	0.101	0.0822	81	0.100	0.0788	79	4	70-130	35	
Toluene		< 0.00202	0.101	0.0828	82	0.100	0.0795	80	4	70-130	35	
Ethylbenzene		< 0.00202	0.101	0.0857	85	0.100	0.0790	79	8	71-129	35	
m,p-Xylenes		< 0.00403	0.202	0.166	82	0.200	0.152	76	9	70-135	35	
o-Xylene		< 0.00202	0.101	0.0852	84	0.100	0.0788	79	8	71-133	35	
Lab Batch ID:	3023919	QC- Sample ID:	558952	-001 S	Ba	tch #:	1 Matrix	x: Soil				
Date Analyzed:	08/02/2017	Date Prepared:	08/02/2	017	An	alyst: N	MGO					
Reporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorgai	nic Anions by EPA 300/300.1	Parent Sample Result	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample		RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	70	%K	%KPD	
Chloride		<4.98	249	271	109	249	271	109	0	90-110	20	
Lab Batch ID:	3023919	QC- Sample ID:	558952	-011 S	Ba	tch #:	1 Matri	x: Soil				
Date Analyzed:	08/02/2017	Date Prepared:	08/02/2	017	An	alyst: N	MGO					
Reporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorgai	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	1-1	[D]	[E]		[G]				
Chloride		<4.96	248	260	105	248	264	106	2	90-110	20	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Form 3 - MS / MSD Recoveries

Project Name: EOG-Osprey 10 601H

Work Order # :	558952						Project II): 212C-N	MD-0092	1		
Lab Batch ID:	3024053	QC- Sample ID:	558952-	005 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	08/03/2017	Date Prepared:	08/03/20	017	An	alyst: A	ARM					
Reporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
, , , , , , , , , , , , , , , , , , ,	ГРН By SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Sample	-	Duplicate Spiked Sample	-	RPD	Control Limits	Control Limits	Flag
	Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Gasoline Range	Hydrocarbons (GRO)	<15.0	999	968	97	997	975	98	1	70-135	35	
Diesel Range Or	rganics (DRO)	16.2	999	1060	104	997	1080	107	2	70-135	35	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Edg Senter Tech, Inc. Senter	ECG Issues and a base of a			Relinquished by:	Heiinquisned by:	Per	Relinguished by:										(LAB USE)	LAB #		Commenter.	Commenter		Project Location: state)	Project Name:		
Manual Constraints Manual Constraints Park (COR) BBC 3046 Park (COR) BBC 3046 Park (COR) BBC 3046 Park 1000 Park (COR) BBC 3046 Park 11 Park (COR) BBC 3046 Park 2000 Park (COR) BBC 3046 Park 2000 Park (COR) BBC 3046 P	Name Chick Status First (SS2) Bios Subsets First (SS2) Bios Subsets First (SS2) Bios Bios Subsets First (SS2) Bios Subsets First (SS2) Bios Bios Subsets First (SS2) Bios Subsets First (SS2) Bios Bios Subsets First (SS2) Bios Subsets First (SS2) Bios Bios Subsets First (SS2) Bios Subsets First (SS2) Bios Bios Bios Subsets			Date:	Date:	:41 LI-1-8-1-11 14:	Art #3 (1-1.5) Date:	AH #3 (0-1')	AH #2 (2-2.5')	AH #2 (1-1.5')	AH #2 (0-1')	AH #1 (5-5.5')	AH #1 (4-4.5')	AH #1 (2-2.5')	AH#1 (1-1.5)	AH #1 (0-1')		SAMPLE IDENTIFICATION					1		EOG	Tetra Tech, Inc.
Name And System State First (State) Base State First (State) State First (State) Base First (State) State	Name Constrained by the second seco	ORIGIN CF:(0	neceived by.	Received hv:	Received by:	I A MANANA	7/31/2017 Becoluded to:	7/31/2017	7/31/2017	7/31/2017	7/31/2017	7/31/2017	7/31/2017	7/31/2017	7/31/2017	7/31/2017		YEAR: 2017	SAMPLING		Sampler Signature:		Project #:		Site Manager:	
The stress of t	Transmission of the second state of the sec	-0.2°C)	2		D	AMPL		×	×	×	×	×	×	×	×	×	WATER		MATRIX	6	d the		Pendi		Ike Tavai	4000 N. E 401 M Tel Fax
AMA YSIS RECUEST AMA YSIS RECUEST Circle of Specify Method NG) AMA YSIS RECUEST Circle of Specify Method NG) AMA YSIS RECUEST (Circle of Specify Method NG) (Circle of Mathod NG) (Circle of Specify Method NG) (Circle o	AMAYSIS REQUEST AMAYSIS RECUEST Circle of Specify Method No. AMAYSIS	IR ID:R-8	ate: Time:					×	×	×	×	×	×	×	×	×	HNO ₃		PRESERVATIVE METHOD		R)	pn		'ez	3ig Spring Street, Ste idland, Texas 79705 (432) 682-4559 (432) 682-3946
ANALYSIS REQUEST ANALYSIS REQUEST Circle or Specify Method No. PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg TOTAL Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles REMARKS: REMARKS: REMARKS: REMARKS: PEDEX UPS Tracking #: Tracking	ANALYSIS REQUEST ANALYSIS REQUEST Circle or Specify Method No. PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg TOTAL Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles REMARKS: REMARKS: REMARKS: REMARKS: PEDEX UPS Tracking #: Tracking				0		1 N					z	_	_	z	Z	ILTERE	D (Y	(/N)							
ANALYSIS REQUEST ANALYSIS REQUEST ANALYSIS RECUEST ANALYSIS ANALYSIS ANA	ANALYSIS REQUEST ANALYSIS REQUEST ANALYSIS RECUEST ANALYSIS ANALYSIS ANA	Circle)			ample Te	LAB U	E						+				TPH TX1	005	(Ext to (C35)		1203		_		
FEDEX UPS Tracking #:	FEDEX UPS Tracking #:	AND DELIVE			mperature	SE ONLY								-	-	-	PAH 8270 otal Meta	DC als A	g As Ba	Cd Cr I	^o b Se H	łg		(Circ		
UPS Tracking #: UPS Tracking #:	UPS Tracking #: UPS Tracking #:	H	S							+	-	-				1	CLP Vola	atiles	5		r b de	ng		- 9	ANAL	
OF TRHP The second se	OP TRHP Abr X X X X X X X X X X X X Chloride Chloride Coloride Coloride<	X UPS	pecial R	ush Cha	USH: S	STAL			+	+	+	+	+	+	+	0	C/MS Vo			1.13		_		pecify	YSIS F	8
Or THRP Report 24 hr X X X X X X X X X X X X Chloride Chloride Chloride Chloride I I I I Chloride Sulfate TDS I I I I General Water Chemistry (see attached list) I I I I Anion/Cation Balance	OP TRHP Abr X X X X X X X X X X X X Chloride Chloride Coloride Coloride<	Tracki	eport Lir	rges Au	ame Da	VDAR	-		-	+	+	+	+	-	-			32/6	608					Met	EQUE	â
All Chloride Sulfate TDS All General Water Chemistry (see attached list) Image: Chloride Sulfate Image: Chloride Sulfate Anion/Cation Balance Anion/Cation Balance Image: Chloride Sulfate Image: Chloride Sulfate	TRRP Report 1 1 Chloride Sulfate TDS Image: Chloride Sulfate TDS 1 1 1 General Water Chemistry (see attached list) 1 1 Anion/Cation Balance	ng #:	nits or T	thorized		9	×	×	××	× >	< >	< >	< >	× >	< >	-		estos	s)	_	_	-		hod	ST	Q.
Anion/Cation Balance	hr 72 hr		rrrp F		48				+	Ŧ	+		-	-	+	-					e atta	ched li	st)	No.)		Q1
			leport		hr					+		-				-								-		٢

Image: Second Laboration (Second Laboration (Se
anding anding
anding anding
PRESERVATIVE PR
ANLYSIS REQUEST Crice or Specify Method No.) Crice or Specify Me
Image: Second Performed Normality Image: Second Performed Normality Image: Second Performed Normality Image: Second Performed Normality Image: Preformed Normality Image: Second Performed Normality Image: Second Performed Normality Image: Second Performed Normality Image: Second Performed Normality Image: Preformed Normality Image: Second Performed Normali
FEDEX UPS Tracking #:
Of TRRP Hego Yest Yest<

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Tetra Tech- Midland Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 08/01/2017 02:01:00 PM Temperature Measuring device used : R8 Work Order #: 558952 Comments Sample Receipt Checklist .7 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seal present on shipping container/ cooler? N/A #5 *Custody Seals intact on shipping container/ cooler? N/A #6 Custody Seals intact on sample bottles? N/A #7 *Custody Seals Signed and dated? N/A #8 *Chain of Custody present? Yes #9 Sample instructions complete on Chain of Custody? Yes #10 Any missing/extra samples? No #11 Chain of Custody signed when relinguished/ received? Yes #12 Chain of Custody agrees with sample label(s)? Yes #13 Container label(s) legible and intact? Yes #14 Sample matrix/ properties agree with Chain of Custody? Yes #15 Samples in proper container/ bottle? Yes #16 Samples properly preserved? Yes #17 Sample container(s) intact? Yes #18 Sufficient sample amount for indicated test(s)? Yes #19 All samples received within hold time? Yes #20 Subcontract of sample(s)? N/A #21 VOC samples have zero headspace? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Date: 08/01/2017

Checklist completed by: Jessica Veamer Jessica Kramer Checklist reviewed by: Muss Morah Kelsey Brooks

Date: 08/02/2017

Appendix D