Form 3160-3 (April 2004) #### **UNITED STATES** DEPARTMENT OF THE INTERIOR **BUREAU OF LAND MANAGEMENT** OCD Hobbs 5. Lease Serial No. LC-058697 B 6. IfIndian, Allotee or Tribe Name | APPLICATION FOR | PERMIT TO | DRILL C | R REENTER | |-----------------|------------------|---------|-----------| | | | | | | | | | | | T TOTY !! O. A. A. | 4 37 | | | |---|---------------|---------------------|-----------------------|--------------|--|--|--|--| | la. Type of work: X DRILL REENTE | r S | plit | Est | ate | | greement, Name and No. | | | | | | • | | | 8. Lease Name ar | id Well No. | | | | lb. Type of Well: X Oil Well Gas Well Other | Sin | ngle Zone | Multip | le Zone | MCA | 422 | | | | 2. Name of Operator | 1. | - 0 | S | | 9. API Well No. | 3 | | | | ConocoPhillips Company | <u>\</u> 2 | 1781 | 7) | | | 501 | | | | 3a. Address 3300 N. "A" St., Bldg. 6 Midland, TX 3 | b. Phone N | No(include | arka cod | e) | 10. Field and Pool, | • | | | | 19703 | (432)68 | 8-6813 | | | | burg-San Andres | | | | 4. Location of Well (Report location clearly and in accordan | | | irements. | *) | 11. Sec., T. R. M. o
Sec. 30, T17S, I | or Blk. and Survey or Area 33E, UL "C" | | | | At surface 810' FNL & 1330' FWL, Sec. 30, 17S, 3 | | | | | | | | | | Atproposed prod. zone 810' FNL & 1330' FWL, Sec. | 30, 17S, 3 | 33E, UL ' | 'C" | | | Lie G | | | | 14 Distance in miles and direction from nearest town or pos | t office* | | | | 12.County or Paris | • | | | | Approximately 5.5 miles SE from Maljamar, NM | | | | | LEA | New Mexico | | | | 15. Distance from proposed* 810' FNL | 16. No. of | acres in 1 | ease | | cing Unit dedicated t | to this well | | | | location to nearest property or lease line, ft. & 1310' | 13,786.6 | 6 | | 40 | | | | | | (Also to nearest drig. unit line, if any) FEL | | | | | | | | | | 18. Distance from proposed location* to nearest well, drilling, completed, from MCA | 19. Propos | sed Depth | | 20. BLM | BIA Bond No. on file | | | | | to nearest well, drilling, completed, applied for, on this lease, ft. from MCA 390 | 4421' | | | ES0085 | | | | | | 21. Elevations (Show whether DF, KDB, RT, GL, etc.) | 2.2. Approx | ximate dat | e work v | vill start* | 2.3. Estimated dura | ntion | | | | 4038' GR | 12/23/ | /2009 | | | 7 days | | | | | | 24. Atta | | | | | | | | | The following, completed in accordance with the requirement | nts of Onsl | hore Oil ar | nd Gas O | rder No.1 | , shall be attached to | this form: | | | | Well plat certified by a registered surveyor. | | | lto cover
20 above | | tions unless covered b | y an existing bond on file (see | | | | 2. A Drilling Plan. | • .• | 1 | ator certif | | | | | | | A Surface Use Plan (if the location is on National Forest System Lan
SUPO shall be filed with the appropriate Forest Service Office). | ds, the | 6. Sucl | h other sit | e specific i | nformation and/or plan | ns as may be required by the | | | | | | | orized offi | cer. | | | | | | 25. Signature | I . | e (Printed/ | | | | Date OS 10 4 10 000 | | | | Jalyn N. Viske | Jaly | n N. Fisk | е | | | 05/04/2009 | | | | Title () Regulatory Specialist | | | | | | | | | | Approved by (Signature) /s/ Don Peterson | Nam | Name(Printed/Typed) | | | | AUG 1 4 2009 | | | | Title FIELD MANAGER | Offic | e CA | RLSE | AD F | IELD OFFIC | E | | | | Application approval does not warrant or certify that the applicant holds | legal or equi | | | | | | | | Title 18U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowing part of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. *(Instructions on page 2) conduct operations thereon. Conditions of approval, if any, are attached. RECEIVED Roswell Controlled Water Basin AUG 18 2009 **HOBBSOCD** SEE ATTACHED FOR APPROVAL FOR TWO YEARS CONDITIONS OF APPROVAL APPROVAL SUBJECT TO **GENERAL REQUIREMENTS** AND SPECIAL STIPULATIONS **ATTACHED** DISTRICT I 1625 N. French Dr., Hobbs, NM 88240 # State of New Mexico Energy, Minerals & Natural Resources Department Form C-102 Revised October 12, 2005 Submit to Appropriate District Office State Lease - 4 Copies Fee Lease - 3 Copies WEST 1330 DISTRICT III 1301 W. Grand Avenue, Artesia, No. 1220 South St. Frances Dr. DISTRICT III 1000 Rio Brezos Rd., Aztec, NM 87414AUG 18 ZUUS Santa Fe, NM 87505 33 E ☐ AMENDED REPORT LEA DISTRICT IV 1220 S. St. Francis Dr., Santa Fe, HOBBSOCO 30 C 17 S #### WELL LOCATION AND ACREAGE DEDICATION PLAT | 30-029 | API Number
30-025-39501 | | | Pool Code MALJAMAR; GRAYBURG-SA | | | Pool Code | | | | | |-------------------|----------------------------|---|------------------------|---------------------------------|---------------|------------------|---------------|----------------|--------|--|--| | Property C | | | Property Name MCA UNIT | | | | Well Num | | | | | | OGRID No
21781 | | Operator NameElevationCONOCOPHILLIPS403 | | | | | | | | | | | Surface Location | | | | | | | | | | | | | UL or lot No. | Section | Township | Range | Lot Idn | Feet from the | North/South line | Feet from the | East/West line | County | | | #### Bottom Hole Location If Different From Surface 810 **NORTH** | UL or lot No. | Section | Township | Range | Lot Idn | Feet from the | North/South line | Feet from the | East/West line | County | |-----------------|----------|------------|-------------|----------|---------------|------------------|---------------|----------------|--------| | 02 07 100 1101 | | | | | | | | | | | Dedicated Acres | Joint or | Infill Con | nsolidation | Code Ore | der No. | <u> </u> | | 1 | | | 40 | | | | | | | | | | | 10 | | | | _, | | | TITE | CONCOLTD ATE | A GO G | NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION | NON-DIANDAL | | |---|--| | 4040.7' \(\frac{\text{Plane Coordinate}}{\text{X}}\) Plane Coordinate \(\text{X} = 692,600.6 \\ \text{Y} = 659,109.5 \\ \text{Y} = 659,109.5 | OPERATOR CERTIFICATION I hereby certify the the suformation contained herem is true and complete to the best of my knowledge and belief, and that this organization either come a working interest or unleased mineral interestin the land including the proposed bettom hole location or has a right to drill this well at this location pursuant to a contract with an owner of such a mineral or working interest, or to a wokindary pooling agreement or a compulsory pooling order heretafore entered by the division. | | 4034.4" 4044.7' | Signature Date JALYN N. FISKE Printed Name | | (3) | SURVEYOR CERTIFICATION I hereby certify that the well location shown on this plat was plotted from field notes of actual surveys made by me or under my supervison and that the same is true and correct to the best of my belief. | | (3) | October 22, 2008 Date of Survey Signature & Seal of Particular MEXICONOR M | | NOTE: 1) Plane Coordinates shown hereon are Transverse Mercator Grid and Conform to the "New Mexico Coordinate System", New Mexico East Zone, North American Datum of 1927, Distances shown hereon are mean horizontal surface values. | W.O. Nume, 2008-1212. Certificate No. Maccon Appropriate No. Maccon Appropriate No. 12185 | RECEIVED June 18, 2009 AUG 1,8 2009 HOBBSOCD ConocoPhillips Company PTRRC Todd Tredaway 4001 Penbrook St, Stc 351 Odessa TX, 79762 Office (432) 368-1268 Cell (432)
202-0016 Fax (432)368-1287 Cody Layton Bureau of Land Management 620 East Greene Carlsbad New Mexico 88220 Re: MCA Unit 422 Section 30, T17S-R33E Lea County, New Mexico Dear Cody: Settlement has been reached between the surface owner and ConocoPhillips Company for the above mentioned well location and appurtenances. The surface owner is: Olane Caswell 1702 Gillham Drive Brownfield, TX 79316 If you have any questions, please contact me. Sincerely, Todd Tredaway **PTRRC** ConocoPhillips Company # VICINITY MAP SEC. 30 TWP. 17-S RGE. 33-E SURVEY N.M.P.M. COUNTY LEA DESCRIPTION 810' FNL & 1330' FWL ELEVATION 4038' OPERATOR CONOCOPHILLIPS LEASE MCA UNIT COMPARY 110 W. LOUISIANA, STE. 110 MIDLAND TEXAS, 79701 687-0865 - (432) 687-0868 FAX # LOCATION VERIFICATION MAP | SEC. 30 TV | VP. 17-S | RC | E. | 33 | <u>-Е</u> | |--------------|----------|----|-----|---------|-----------| | SURVEY | | | | | | | COUNTY | | | | | | | DESCRIPTION | | | 13 |
30' | FWL | | ELEVATION | | | | | | | OPERATOR | | | IP9 | | | | | | | | | | | LEASE | | | | | | | U.S.G.S. TOP | UGRAPHIC | MA | ٢ | | | DOG LAKE # LOCATION VERIFICATION MAP SEC. 30 TWP. 17-S RGE. 33-E SURVEY N.M.P.M. COUNTY LEA DESCRIPTION 810' FNL & 1330' FWL ELEVATION 4038' OPERATOR CONOCOPHILLIPS LEASE MCA UNIT U.S.G.S. TOPOGRAPHIC MAP DOG LAKE #### DRIVING DIRECTIONS FROM THE INTERSECTION OF STATE HIGHWAY 82 AND STATE HIGHWAY 33 IN MALJAMAR, NM GO SOUTH ON SAID STATE HIGHWAY 33 3.0 MILES TO A LEASE ROAD ON EAST (LEFT) SIDE OF ROAD, THEN GO EAST 1.1 MILE TO A LEASE ROAD ON NORTH (LEFT) SIDE OF ROAD, THEN GO NORTH 0.2 MILE TO A POINT BEING APPROXIMATELY 100 FEET EAST OF THE PROPOSED LOCATION. 110 W. LOUISIANA, STE. 110 MIDLAND TEXAS, 79701 (432) 687-0865 - (432) 687-0868 FAX ## **CONOCOPHILLIPS** #### MCA UNIT #422 Located 810' FNL & 1330' FWL, Section 30 Township 17 South, Range 33 East, N.M.P.M. Lea County, New Mexico | Drawn By: LVA | Date: November 14, 2008 | |--------------------|-------------------------| | Scale: 1"=100' | Field Book: 422 / 12-38 | | Revision Date: | Quadrangle: Dog Lake | | W.O. No: 2008-1212 | Dwg. No.: L-2008-1212-A | #### MCA 422 | Formation Tops | and Planned Total Depth | |-----------------------|-------------------------| | Formation Call Points | Top (ft MD) | | Rustler | 1120 | | Salado | 1327 | | Grayburg | 3782 | | Grayburg - 6 | 3995 | | San Andres | 4147 | | San Andres - 7 | 4147 | | San Andres - 9 | 4319 | | Total Depth (minimum) | 4474 | | Total Depth (maximum) | 4519 | | Casing Depths | | | | | | |---------------------------------|------|------|--|--|--| | String Minimum Depth Maximum De | | | | | | | Surface Casing | 1145 | 1190 | | | | | Production Casing | 4464 | 4509 | | | | Note: The Surface Casing and the Production Casing programs reflect an uncertainty of 45' in the setting depth for the shoe because that is the approximate length of a full joint of Range 3 casing. This range for the setting depth will allow us to drill the hole to fit the casing string based on how the tally comes out and will provide for the cementing head to be positioned at the rig floor for safety and efficiency in cementing operations. The casing will be set approximately 10 ft off bottom. ## Master Drilling Plan ConocoPhillips Company MCA Unit February 28, 2008 (Revised July 23, 2008) Lea County, NM Pool: Maljamar, Grayburg-San Andres | MCA UNI | TARE | A | Tw | | _ | 60 | |----------|---------|-------------------------------|----------|-------|--------|------------------| | Lease | Sfx | Lessor | n | Rng | Sec | QQ | | N/A | | USA LC 061842 | 17 | 32 | 14 | E2 | | N/A | | Fee | 17 | 32 | 14 | W2 | | N/A | | USA LC 059576 | 17 | 32 | 15 | NE | | 088907 | 000 | USA LC 054687 | 17 | 32 | 15 | N2, SW, W2SE | | 269411 | 000 | USA NM-080258 | 17 | 32 | 15 | E2SE | | N/A | | State of New Mexico B-2366-16 | 17 | 32 | 16 | NE, N2SE | | N/A | | State of New Mexico VO-3555 | 17 | 32 | 16 | N2SW | | 109063 | 000 | State of New Mexico B 155-5 | 17 | 32 | 16 | S2SW | | 109063 | 000 | State of New Mexico B 155-5 | 17 | 32 | 16 | NW | | 088913 | 000 | State of New Mexico B 2366-11 | 17 | 32 | 16 | SWSE | | 088908 | 000 | State of New Mexico B 4062-3 | 17 | 32 | 16 | SESE | | 088912 | 000 | USA LC 029405-B | 17 | 32 | 17 | W2 | | 088912 | 000 | USA LC 029405-B | 17 | 32 | 17 | W2E2 | | 109069 | 000 | USA NM LC 060329 | 17 | 32 | 17 | E2E2 | | 088912 | 000 | USA LC 029405-B | 17 | 32 | 18 | E2 | | 088912 | 000 | USA LC 029405-B | 17 | 32 | 18 | E2W2 | | | 000 | USA NM LC 060329 | 17 | 32 | 18 | WWW | | 109069 | 000 | USA NM LC 060329 | 17 | 32 | 18 | SWSW | | 109069 | 000 | USA LC 029405-A | 17 | 32 | 19 | N2 | | 088911 | | USA LC 029405-B | 17 | 32 | 19 | S2 | | 088912 | 000 | USA LC 029405-A | 17 | 32 | 20 | N2 | | 088911 | 000 | USA LC 029405-B | 17 | 32 | 20 | S2 | | 088912 | 000 | USA LC 029509-A | 17 | 32 | 21 | N2, SW, N2SE | | 088909 | 000 | ~ | 17 | 32 | 21 | S2SE | | 088910 | 000 | USA LC 029509-B | 17 | 32 | 22 | W2NW | | 088909 | 000 | USA LC 029509-A | 17 | 32 | 22 | NE | | 088910 | 000 | USA LC 029509-B | 17 | 32 | 22 | E2NW | | 088910 | 000 | USA LC 029509-B | 17 | 32 | 22 | NWSE | | 088910 | 000 | USA LC 029509-B | 17 | 32 | 22 | sw | | 088910 | 000 | USA LC 029509-B | 17 | 32 | 22 | E2SE | | 253943 | 000 | USA LC 058395 | 17 | 32 | 22 | SWSE | | 253943 | 000 | USA LC 058395 | 17 | 32 | 23 | NWSW | | 101798 | 000 | USA LC 029400-A | 17 | 32 | 23 | S2SE | | 109067 | 000 | USA LC 058697-A | 17 | 32 | 23 | N2SE | | 109066 | 000 | USA LC 058698-A | 17 | 32 | 23 | NESW | | 109066 | 000 | USA LC 058698-A | 17 | 32 | 23 | S2SW | | 109066 | 000 | USA LC 058698-A | 17 | 32 | 23 | N2 | | 109068 | 000 | USA LC 058698-B | 17 | 32 | 25 | All | | N/A | | USA LC 058697-B | | | 26 | W2NE | | 262724 | 000 | USA LC 058408-A | 17 | 32 | | NESE, NWSE, | | 262723 | 000 | USA LC 058408-B | 17 | 32 | 26 | S2SE | | 109066 | 000 | USA LC 058698-A | 17 | 32 | 26 | S2NW | | 253944 | 000 | USA LC 058699 | 17 | 32 | 26 | SW | | 109062 | 000 | USA LC 061841 | 17 | 32 | 26 | N2NW | | 256034 | 000 | USA NM 94188 | 17 | 32 | 26 | E2NE | | 109065 | 000 | USA LC 057210 | 17 | 32 | 27 | NENE, SE, SWNE | | Master D | Orillin | g Plan – ConocoPhillips Comp | oany - I | MCA U | nit: F | ebruary 28, 2008 | | | | | | | | W2 | |--------|-----|---------------------|----|----|----|-------------------------| | 253947 | 000 | USA LC 058396 | 17 | 32 | 27 | NWNE, SENE | | 109065 | 000 | USA LC 057210 | 17 | 32 | 28 | All | | 256050 | 000 | USA LC 029410-A | 17 | 32 | 29 | Alí | | N/A | | USA LC 029410-B | 17 | 32 | 30 | W2, SE, W2NE | | 253946 | 000 | USA LC 060199-B | 17 | 32 | 30 | E2NE | | N/A | | USA LC 029410-B | 17 | 32 | 31 | E2SE, N2 | | N/A | | USA LC 069105 | 17 | 32 | 31 | E2SE | | | | USA NM 03428 | 17 | 32 | 31 | SW | | N/A | | State of NM B-4109 | 17 | 32 | 32 | NE, N2NW, | | N/A | | State of NM B-6768 | 17 | 32 | 32 | SE, NESW
S2SW, NWSW, | | N/A | | State of NM OG-5119 | 17 | 32 | 32 | S2NW | | 109072 | 000 | USA LC 029409-A | 17 | 32 | 33 | SW | | 109071 | 000 | USA LC 059001-A | 17 | 32 | 33 | E2, N2NW, S2NW | | 109060 | 000 | USA LC 058514 | 17 | 32 | 34 | NE | | 109059 | 000 | USA LC 058728 | 17 | 32 | 34 | E2NW | | 109061 | 000 | USA LC 059002 | 17 | 32 | 34 | W2NW | | N/A | | USA LC 068140 | 17 | 32 | 34 | SW | | N/A | | USA LC 060503 | 17 | 32 | 34 | N2SE | | N/A | | USA NM 036852 | 17 | 32 | 34 | S2SE | | 109068 | 000 | USA LC 058698-B | 17 | 32 | 35 | W2 | | 109068 | 000 | USA LC 058407-B | 17 | 32 | 35 | NE | | 109068 | 000 | USA LC 058409-B | 17 | 32 | 35 | SE | | 109070 | 000 | USA LC 058697-B | 17 | 33 | 30 | W2 | #### 1. Geologic Name of Surface Formation: Quaternary Alluvium and Dunes # 2. Estimated tops of geological markers and estimated depths to water, oil, or gas formations: In the MCA Unit, the estimated tops of the geological markers and proposed Total Depth (TD) vary within a range of approximately 550' to 775'. The range of minimum to maximum depth for these markers and proposed TD range is presented in the table below. The datum for these depths is RKB or Rig Floor (which is 10' - 12' above Ground Level). | 5 C-11 | Top (MD) | | Contents | | | |----------------------|----------|---------|--|--|--| | Formation Call | Minimum | Maximum | | | | | Above top of Rustler | | | Fresh Water | | | | Rustler | 600' | 1,170' | | | | | Salado | 775' | 1,380' | " OOO T II in the Dreamm | | | | Grayburg | 3,270' | 3,940' | Oil, Gas, Salt Water and possible CO2 from old injection Program | | | | Grayburg 6 | 3,480' | 4,170' | Oil, Gas, Salt Water and possible CO2 from old injection Program | | | | San Andres 7 | 3,610' | 4,345' | Oil, Gas, Salt Water and possible CO2 from old injection Program | | | | San Andres 9 | 3,810' | 4,585' | Oil, Gas, Salt Water and possible CO2 from old injection Program | | | | Proposed TD | 4,155' | 4,705' | Oil, Gas, Salt Water and possible CO2 from old injection Program | | | Note: For each individual well we will include with our Application for Permit to Drill (APD) our correlation pick depths for the formation tops and proposed TD for that individual well. Protection of fresh water will be accomplished by setting the surface casing 25' - 70' into the Rustler Anhydrite formation and **cementing** the surface casing from the casing shoe **to the surface of ground** in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19. #### Proposed casing program: | | | | | | | | | | | Safety Fac | tors | |------|---------|------|-----------------|----------|---------|------|------|-----------|---------|-------------|------------------------| | | Hole | | Interval | | 1814 | Gr | Conn | Condition | Calcula | ted per BLM | Load Formulas | | Туре | Size | N | ID RKB (ft) | OD | Wt | | | | Burst | Collapse | Tension
Dry/Buoyant | | | (in) | From | То | (inches) | (lb/ft) | | | | | 310 | NA | | | | | 40' - 87' |
13-3/8" | 48# | H-40 | STC | New | NA | NA | N/A | | Cond | 17-1/2" | 0 | (30' – 75' BGL) | | | | | Manu | 5.49 | 2.5 | 8.2 / 9.42 | | Conf | 12-1/4" | 0 | 625' 1,240' | 8-5/8" | 24# | J-55 | STC | New | 3.43 | | | | Surf | 12-1/4 | L | | | 4-7.11 | J-55 | LTC | New | 2.17 | 2.01 | 3.09 / 3.64 | | Prod | 7-7/8" | 0 | 4,155' 4,705' | 5-1/2" | 17# | J-55 | | 1.0 | l | <u> </u> | <u> </u> | We propose to set the surface and production casing approximately 10' off bottom and to drill the hole to fit the casing string so that the cementing head is positioned at the floor for the cement job. # Casing Design (Safety) Factors - BLM Criteria: **BLM Criteria for Minimum Design Factors** | | BLM Criteria for Minimu | m Design Factors | | |------------------------------|-------------------------|------------------|-----------------------| | | | Collapse | Tension | | | Burst | | 1.6 dry / 1.8 Buoyant | | Casing Design Safety Factors | 1.0 | 1.125 | 1.0 d.) | | Casing Design Care | | | | Joint Strength Design (Safety) Factor: SFt SFt = Fi / Wt; Where - Fj is the rated pipe Joint Strength in pounds (lbs) - Wt is the weight of the casing string in pounds (lbs) The criteria for Minimum Acceptable Joint Strength Design (Safety) Factor SFT = 1.6 dry or 1.8 buoyant Collapse Design (Safety) Factor: SFc $SFc = Pc / (MW \times .052 \times Ls)$ Where - Pc is the rated pipe Collapse Pressure in pounds per square inch (psi) - MW is mud weight in pounds per gallon (ppg) - Ls is the length of the string in feet (ft) The criteria for Minimum Acceptable Collapse Design (Safety) Factor SFc = 1.125 Burst Design (Safety) Factor: SFb SFb = Pi / BHP Where - Pi is the rated pipe Burst (Minimum Internal Yield) Pressure in pounds per square inch (psi) - BHP is bottom hole pressure in pounds per square inch (psi) The criteria for Minimum Acceptable Burst Design (Safety) Factor SFb = 1.0 # Joint Strength Design (Safety) Factors – BLM Criteria Surface Casing: - SFj Dry = 244,000 lbs / $(1240 \text{ ft} \times 24 \text{ lb/ft}) = 244,000 \text{ lbs} / 29,760 \text{ lbs} = 8.20 \text{ Dry}$ - SFj Buoyant = 244,000 lbs / (1240 ft x 24 lb/ft) [1-(8.5/65.5)= 244,000 lbs / 25,898 lbs = 9.42 buoyant **Production Casing:** - SFj Dry = 247,000 lbs / (4705 ft x 17 lb/ft) = 247,000 lbs / 79,985 lbs = 3.09 Dry - SFj Buoyant = 247,000 lbs / (4705 ft x 17 lb/ft) [1-(10.0/65.5)= 247,000 lbs / 67,773 lbs = 3.64 Buoyant ## Collapse Design (Safety) Factors – BLM Criteria Surface Casing: SFc = 1370 psi / (8.5 ppg x .052 x 1240 ft) = 1370 psi / 548 psi = 2.50 **Production Casing:** SFc = $4910 \text{ psi / } (10 \text{ ppg} \times .052 \times 4705 \text{ ft}) = 4910 \text{ psi / } 2447 \text{ psi = } 2.01$ ## Burst Design (Safety) Factors – BLM Criteria Surface Casing: SFb = $2950 \text{ psi} / (8.33 \text{ ppg} \times .052 \times 1240 \text{ ft}) = 2950 \text{ psi} / 537 \text{ psi} = 5.49$ **Production Casing:** SFb = 5320 psi / (7.15 ppg x .052 x 4705 ft) = 5320 psi / 1750 psi = 3.04 based on reservoir pressure data SFb = 5320 psi / (10 ppg x .052 x 4705 ft) = 5320 psi / 2447 psi = 2.17 based on brine density used to drill to TD # Casing Design (Safety) Factors - Additional ConocoPhillips Criteria: ConocoPhillips casing design policy establishes Corporate Minimum Design Factors (see table below) and requires that service life load cases be considered and provided for in the casing design. ConocoPhillips Corporate Criteria for Minimum Design Factors | (| ConocoPhillips Corporate Crit | eria for Minimulii Design i ac | 1013 | |-----------------------|-------------------------------|--------------------------------|-------| | | Burst | Collapse | Axial | | Casing Design Factors | | 1.05 | 1.4 | | Casing Design Factors | | | | #### Surface Casing: The maximum internal (burst) load on the Surface Casing occurs when the surface casing is tested to 1500 psi. We will pressure up to 1600 psi and let the pressure settle for 1 minute after shutting down the pump. Therefore the maximum pressure that the surface casing will be exposed to will be 1600 psi. Surface Casing Burst Design Factor DF Burst = Burst Rating / Maximum Pressure During Casing Pressure Test = 2950 psi / 1600 psi = 1.84 The maximum collapse load on the Surface Casing occurs when we release the pressure after bumping the plug on the surface casing cement job. Surface Casing Collapse Design Factor DF Collapse = Collapse Rating / (Cement Column Hydrostatic Pressure – Displacement Fluid Hydrostatic Pressure) DF Collapse = $1370 \text{ psi} / \{[(300 \text{ ft x}.052 \text{ x} 14.8 \text{ ppg}) + (940 \text{ ft x}.052 \text{ x} 13.5 \text{ ppg})] - (1240 \text{ ft x}.052 \text{ x} 8.33 \text{ ppg})\}$ DF Collapse = 1370 psi / 354 psi DF Collapse = 3.87 The maximum axial load on the Surface Casing would be the buoyant weight of the full string of casing plus an allowance for potential overpull in the amount of 30,000 lbs. ``` Surface Casing Axial (Tension) Design Factor DF Tension = Joint Strength Rating / Buoyant Weight + Overpull Margin Buoyancy Factor for fresh water (8.34 ppg fluid) = 1 - (8.34 / 65.5) = .873 Overpull Margin is selected to be 30,000 lbs DF Tension = 244,000 lbs / [(1240 ft x 24 lb/ft x .873) + 30,0000 lbs] DF Tension = 244,000 lbs / 55980 lbs DF Tension = 4.36 ``` #### **Production Casing:** The maximum internal (burst) load would occur either during during fracture initiation or screen out. Fracture initiation occurs with 2% KCL water in the hole. Screen-out might occur with up to 12 ppg frac fluid in the hole. ``` For the fracture initiation load case, the design factor calculated at surface is: DF Burst @ Surface for Fracture Initiation = Burst Rating / Maximum Applied Surface Pressure DF Burst @ Surface for Fracture Initiation = 5320 psi / 4260 psi DF Burst @ Surface for Fracture Initiation = 1.25 For the fracture initiation load case, the design factor calculated at TD is: DF Burst @ TD for Fracture Initiation = Burst Rating / (Internal Pressure – Pore Pressure) Internal Pressure at TD = Surface Pressure + Hydrostatic Pressure at TD of 2% KCL Water Column Hydrostatic Pressure at TD of 2% KCL Water Column = 4705 ft x .052 x 8.6 ppg = 2104 psi Surface Pressure at the time of Fracture Initiation = 4260 psi maximum Internal Pressure at TD = 4260 psi + 2104 psi = 6364 psi Pore Pressure in the Reservoir = 1750 psi approximately DF Burst @ TD for Fracture Initiation = 5320 psi / (6364 psi - 1750 psi) DF Burst @ TD for Fracture Initiation = 5320 psi / 4614 psi DF Burst @ TD for Fracture Initiation = 1.15 For the screen out load case, the maximum burst loading occurs at TD and is calculated as follows: DF Burst @ TD for Screen Out = Burst Rating / (Internal Pressure – Pore Pressure) Internal Pressure at TD = Surface Pressure + Hydrostatic Pressure at TD of 12 ppg frac fluid Hydrostatic Pressure at TD of 12 ppg frac fluid = 4705 ft x .052 x 12.0 ppg = 2936 psi Maximum Allowable Surface Pressure at the time of Screen Out = 3450 psi maximum Internal Pressure at TD at time of Screen Out = 3450 psi + 2936 psi = 6386 psi Pore Pressure in the Reservoir = 1750 psi approximately DF Burst @ TD for Fracture Initiation = 5320 psi / (6386 psi - 1750 psi) DF Burst @ TD for Fracture Initiation = 5320 psi / 4636 psi DF Burst @ TD for Fracture Initiation = 1.15 ``` The maximum collapse load on the production casing occurs with the well pumped off on production. The maximum potential pore pressure in the well would be equal to or less 10 ppg which is the density of the brine drilling fluid used in drilling production hole interval from the Surface Casing Shoe to TD. ``` DF Collapse = Collapse Rating / Maximum Possible Pore Pressure DF Collapse = 4910 / (10 ppg x .052 x 4705 ft) = 4910 psi / 2447 psi = 2.01 Production Casing Axial (Tension) Design Factor DF Tension = Joint Strength Rating / Buoyant Weight + Overpull Margin Buoyancy Factor for 10 ppg brine = 1 - (10.0 / 65.5) = .847 Overpull Margin is selected to be 30,000 lbs DF Tension = 247,000 lbs / [(4705 ft x 17 lb/ft x .847) + 30,0000 lbs] DF Tension = 247,000 lbs / 97,747 bs DF Tension = 2.53 ``` We propose options to our casing program as follows: - Single Stage Cementing: We propose an option to perform a Single Stage cement job on the 5-1/2" production casing. - Two Stage Cementing: We propose an option to run a Stage Tool in the 5-1/2" production casing and perform a two-stage cement job if losses are observed to occur while drilling the 7-7/8" production hole. The stage tool would be positioned near the top of the Grayburg formation. In any event in which we would propose to implement this contingency, a call would be made to the authorized officers at BLM and NMOCD to confirm permission prior to proceeding. Also, if we do not circulate out any cement from the top of the Stage Tool, we must and will contact BLM and NMOCD to report this and obtain permission prior to proceeding with the 2nd Stage. A Cement Bond Log or other cement evaluation log will be run after moving off the drilling rig and prior to perforating to determine the top of cement on the Stage 1 cement job and this information will be communicated to BLM and NMOCD and permission will be obtained prior to continuing with the completion. - Two Stage Cementing with External Casing Packers: In the event that a waterflow is experienced while drilling the 7-7/8" production hole, we propose an option / contingency plan to run a Stage Tool with two each External Casing Packers (ECP's) in the 5-1/2" production casing and to perform a two stage cement job. The placement of the Stage Tool and External Casing Packers would be as follows: - The Lower External Casing Packer would be placed approximately 200' to 270' below the top of the Grayburg formation and would be above the shallowest planned perforation depth. - The Upper External Casing Packer would be placed approximately 500' to 1600' above the top of the Grayburg formation and would be above the waterflow. - The Stage Tool would be placed
immediately above the Upper External Casing Packer. The execution of the Two Stage cement job with External Casing Packers would be as follows - The Stage 1 cement would be pumped, placing cement from the casing shoe to the Stage Tool. - The two ECP's would be simultaneously set by hydraulic pressure after bumping the Stage 1 cement Wiper Dart on the baffle on the float collar. The setting of the ECP's should shut off the water flow – isolating it between the ECP's. - c. After setting the ECP's the Stage Tool would be opened by hydraulic pressure (or with the free fall opening cone if necessary) and the excess cement above the top of the Stage Tool would be circulated out. Note: If we do not circulate out any cement from the top of the Stage Tool, we must and will contact BLM and NMOCD to report this and obtain permission prior to proceeding with the 2nd Stage. A Cement Bond Log or other cement evaluation log will be run after moving off the drilling rig and prior to perforating to determine the top of cement on the Stage 1 cement job and this information will be communicated to BLM and NMOCD and permission will be obtained prior to continuing with the completion. - d. The Stage 2 cement would be pumped placing cement from the Stage Tool to Surface. The closing wiper plug would be bumped on the stage tool and the Stage Tool would be closed with hydraulic pressure. In any event in which we would propose to implement this contingency, a call would be made to the authorized officers at BLM and NMOCD to confirm permission prior to proceeding. Diagrams / schematics of the proposed casing program alternatives are attached. # 4. Proposed cementing program: For the cementing program a range is presented for the number of sacks of cement and for the bottom, top, and length of the lead slurries and tail slurries due to the variation in formation tops and planned TD for the planned / contemplated wells for which this Master Drilling Plan is intended. #### 13-3/8" Conductor: Cement to surface with rat hole mix, ready mix or Class C Neat cement. (Note: The gravel used in the cement is not to exceed 3/8" dia) TOC at surface. #### 8-5/8" Surface Casing: The intention for the cementing program for the Surface Casing is to: - Place the Tail Slurry from the casing shoe to 300' above the casing shoe, - Bring the Lead Slurry to surface. Spacer. 20 bbls Fresh Water | Lead Slurry Volume (sx) & Recipe & Excess % 207 - 599 sx Class C + 4% bentonite + 2% CaCl2 + 0.125% LCM if needed | Bottom
(ft MD)
325'
to
940' | Top
(ft MD)
Surface | Length
(ft)
325'
to
940' | Density
(ppg)
13.5 | Yield
(cuff/sx)
1.75 | Mix Wtr
gal/sx
9.18 | Compressiv
@ 80 deg F by
Time
12 hrs
15 hrs
24 hrs | e Strengths
y UCA Method
Strength
402 psi
500 psi
713 psi | |---|---|---------------------------|--------------------------------------|--------------------------|----------------------------|---------------------------|---|--| | Excess = 170% | 1 | <u> </u> | l | L | | | | | | Tail Slurry Volume (sx) & Recipe & Excess % | Bottom
(ft MD) | Top
(ft MD) | Length
(ft) | Density
(ppg) | Yield
(cuft/sx) | Mix Wtr
gal/sx
6.36 | Compressiv
@ 91 deg F b
Time | re Strengths
y UCA Method
Strength | |--|----------------------|--------------------|----------------|------------------|--------------------|---------------------------|--|--| | 220 sx
Class C
+ 2% CaCl2
+ 0.125% LCM if
needed | 625'
to
1,240' | 325'
to
940' | 300' | 14.8 | 1.33 | 0.00 | 3 hrs
9 hrs
12 hrs
24 hrs
48 hrs | 50 psi
500 psi
793 psi
1,266 psi
2,183 psi | | Excess = 100% | | | | | | | | L | Displacement: Fresh Water Note: In accordance with the Pecos District Conditions of Approval, we will Wait on Cement (WOC) for a period of not less than 18 hrs after placement of the cement on the Surface Casing in order to achieve at least 500 psi compressive strength in both the Lead Slurry and Tail Slurry cements prior to drilling out of the Surface Casing. Master Drilling Plan - ConocoPhillips Company - MCA Unit: February 28, 2008 Revised 23 July 08 Page 7 of 22 # 5-1/2" Production Casing Cementing Program - Single Stage Cementing Option: The intention for the cementing program for the Production Casing – Single Stage Cementing Option is to: - Place the Tail Slurry from the casing shoe to the top of the Grayburg formation, - Bring the Lead Slurry to surface. Spacer: 20 bbls Fresh Water with an option to follow this with 1,000 gallons SuperFlush 102 and 20 additional bbls Fresh Water. | Lead Slurry
Volume (sx)
& Recipe & Excess % | Bottom
(ft MD) | Top
(ft MD) | Length
(ft) | Density
(ppg) | Yield
(cuft/sx) | Mix Wtr
gal/sx | Strei
@ 113 (| ressive
ngths
deg F by
Method | |---|------------------------|----------------|------------------------|------------------|--------------------|-------------------|--|--| | 440 – 654 sx
50% Class C
50% POZ
+ 10% bentonite
+ 8 lb/sx Salt
+ 0.4% Fluid Loss Additive
+ 0.125% LCM if needed | 3,270'
to
3,940' | Surface | 3,270'
to
3,940' | 11.8 | 2.51 | 14.64 | Time 12 hrs 24 hrs 48 hrs 72 hrs 116 hrs | Strength
93 psi
234 psi
382 psi
468 psi
584 psi | | Tail Slurry (this is a Co
Volume (sx) | Bottom | nt cement)
Top
(ft MD) | Length
(ft) | Density
(ppg) | Yield
(cufl/sx) | Mix Wtr
gal/sx | Compressiv
@ 113 deg F b | e Strengths
y UCA Method | |---|-----------------------------------|------------------------------|--------------------|------------------|--------------------|-------------------|---|---| | & Recipe & Excess % 118 223 sx 50% Class C 50% POZ +1 lb/sx LAP-1 +0.5% CFR-3 + 0.25% D-AIR 3000 CO ₂ Resistant CMT | (ft MD)
4,155'
to
4,705' | 3,270'
to
3,940' | 636'
to
885' | 14.5 | 1.25 | 5.57 | Time
8 hrs
12 hrs
24 hrs
48 hrs
72 hrs | Strength
549 psi
928 psi
1,642 psi
2,184 psi
2,379 psi | Displacement: 2% KCL water with approximately 250 ppm gluteraldehyde biocide. # 5-1/2" Production Casing Cementing Program - Two-Stage Cementing Option (for Loss of Circulation Events): We propose an option to use the two-stage cementing method for cementing the production casing if any loss of circulation events or heavy seepage is experienced while drilling the 7-7/8* hole. (see discussion in Item 3 above). The proposed two-stage cementing program would be as follows: - Stage 1: Would place cement from the casing shoe to the stage tool. - Stage 2: Would place cement from the stage tool to Surface. #### Stage 1: Spacer: 20 bbls Fresh Water with an option to follow this with 1,000 gallons SuperFlush 102 and 20 additional bbls Fresh Water | Stage | 1 – Lead Su | irry: None | |-------|-------------|------------| | Stage 1 – Tail Slurry (Volume (sx) | this is a Co | тор | it cement)
Length
(ft) | Density
(ppg) | Yield
(cuft/sx) | Mix Wtr
gal/sx | Compressive
@ 113 deg F by | y UCA Method | |--|-----------------------------------|-----------------------------------|------------------------------|------------------|--------------------|-------------------|---|---| | & Recipe & Excess % 118 – 223 sx 50% Class C 50% POZ +1 lb/sx LAP-1 +0.5% CFR-3 + 0.25% D-AIR 3000 | (ft MD)
4,155'
to
4,705' | (ft MD)
3,270'
to
3,940' | 636'
to
885' | 14.5 | 1.25 | 5.57 | Time
8 hrs
12 hrs
24 hrs
48 hrs
72 hrs | Strength
549 psi
928 psi
1,642 psi
2,184 psi
2,379 psi | | CO ₂ Resistant CMT
Excess = 26% - 83% | (based on | caliper if a | available) | | | | | | Displacement: A volume of Fresh Water equal to the capacity volume from the stage tool to the float collar, followed by brine based mud. #### Stage 2: Spacer: 20 bbls Fresh Water with an option to follow this with 1000 gallons SuperFlush 102 and 20 additional bbls Fresh Water | Stage 2 - Lead Slurry | | | | - · · · | Yield | Mix Wtr | Compressive | Strenaths | |--|------------------------|----------------|------------------------|------------------|-----------|---------|---|--| | Volume (sx) | Bottom
(ft MD) | Top
(ft MD) | Length
(ft) | Density
(ppg) | (cuft/sx) | gai/sx | @ 113 deg F by C | rush Method | | & Recipe & Excess % 386 - 602 sx 50% Class C 50% POZ + 10% bentonite + 8 lb/sx Salt + 0.4% Fluid Loss Additive + 0.125% LCM if needed | 3,000'
to
3,670' | Surface | 3,000'
to
3,670' | 11.8 | 2.51 | 14.64 | Time
12 hrs
24 hrs
48 hrs
72 hrs
116
hrs | Strength
93 psi
234 psi
382 psi
468 psi
584 psi | | Stage 2 – Tail Slurry Volume (sx) | Bottom
(ft MD) | Top
(ft MD) | Length
(ft) | Density
(ppg) | Yield
(cuft/sx) | Mix Wtr
gal/sx | Compressive
@ 113 deg F by C | | |--|------------------------|------------------------|----------------|------------------|--------------------|-------------------|--|---| | & Recipe & Excess % 100 sx Class C + 0.1% Retarder (if needed) | 3,270'
to
3,940' | 3,000'
to
3,670' | 270' | 14.8 | 1.33 | 6.34 | Time 1 hrs 05 min 2 hrs 38 min 24 hrs 72 hrs | Strength
50 psi
500 psi
2,800 psi
3,182 psi | Displacement: Fresh Water # 5-1/2" Production Casing Cementing Program - Two-Stage Cementing Option with Stage Tool and External Casing Packers (for Water Flow Events): We propose an option to use the two-stage cementing method with a Stage Tool and two each External Casing Packers if any waterflow event is experienced while drilling the 7-7/8" hole as discussed above in Item 3. The proposed two-stage cementing program would be as follows: - Stage 1: Would place cement from the casing shoe to the stage tool - Stage 2: Would place cement from the stage tool to Surface. #### Stage 1: Spacer: 20 bbls Fresh Water with an option to follow this with 1000 gallons SuperFlush 102 and 20 additional bbls Fresh Water | Stage 1 – Lead Slurry
Volume (sx) | Bottom | Top | Length
(ft) | Density
(ppg) | Yield
(cuft/sx) | Mix Wtr
gal/sx | Compressive S
@ 113 deg F by C | trengths
rush Method | |---|-----------------------------------|-----------------------------------|----------------------|------------------|--------------------|-------------------|---|--| | & Recipe & Excess % 78 - 369 sx 50% Class C 50% POZ + 10% bentonite + 8 lb/sx Salt + 0.4% Fluid Loss Additive + 0.125% LCM if needed | (ft MD)
3,270'
to
3,940' | (ft MD)
1,670'
to
3,440' | 500'
to
1,600' | 11.8 | 2.51 | 14.64 | Time
12 hrs
24 hrs
48 hrs
72 hrs
116 hrs | Strength
93 psi
234 psi
382 psi
468 psi
584 psi | | Stage 1 – Tail Slurry | Bottom | Top | Length | Density | Yield | Mix Wtr | Compressiv | e Strengths | |---|-----------------------------------|------------------------|--------------------|---------|-----------|---------|---|---| | Volume (sx) | | (ft MD) | (ft) | (ppg) | (cuft/sx) | gal/sx | @ 113 deg F by | Crush Method | | & Recipe & Excess % 118 – 202 sx 50% Class C 50% POZ +1 lb/sx LAP-1 +0.5% CFR-3 + 0.25% D-AIR 3000 CO ₂ Resistant CMT | (ft MD)
4,155'
to
4,705' | 3,270'
to
3,940' | 636'
to
885' | 14.5 | 1.25 | 5.57 | Time
8 hrs
12 hrs
24 hrs
48 hrs
72 hrs | Strength
549 psi
928 psi
1,642 psi
2,184 psi
2,379 psi | Displacement: A volume of Fresh Water equal to the capacity volume from the stage tool to the float collar, followed by brine based mud. #### Stage 2: Spacer: 20 bbls Fresh Water with an option to follow this with 1000 gallons SuperFlush 102 and 20 additional bbls Fresh Water | Stage 2 – Lead Slurry
Volume (sx) | Bottom | Top | Length
(ft) | Density
(ppg) | Yield
(cuft/sx) | Mix Wtr
gal/sx | Compressive S
@ 113 deg F by Cr | trengths
ush Method | |--|-----------------------------------|--------------------|------------------------|------------------|--------------------|-------------------|--|--| | & Recipe & Excess % 145 – 584 sx 50% Class C 50% POZ + 10% bentonite + 8 lb/sx Salt + 0.2% Fluid Loss Additive + 0.125% Polyflake | (ft MD)
1,400'
to
3,170' | (ft MD)
Surface | 1,400'
to
3,170' | 11.8 | 2.55 | 14.88 | Time
12 hrs
24 hrs
48 hrs
72 hrs | Strength
100 psi
200 psi
245 psi
310 psi | | Stage 2 – Tail Slurry | Bottom | Top | Length | Density | Yield | Mix Wtr | Compressive | Strengths | |--|-----------------------------------|------------------------|--------|---------|-----------|---------|--|--| | Volume (sx) | | (ft MD) | (ft) | (ppg) | (cuft/sx) | gal/sx | @ 113 deg F by 0 | Crush Method | | & Recipe & Excess % 100 sx Class C + 0.1% Retarder (if needed) | (ft MD)
1,670'
to
3,440' | 1,400'
to
3,170' | 270' | 14.8 | 1.33 | 6.359 | Time 1 hrs 05 min 2 hrs 38 min 24 hrs 72 hrs | Strength
50 psi
500 psi
2,800 psi
3,182 ps | Displacement: Fresh Water # Proposal for Option to Adjust Production Casing Cement Volumes: The production casing cement volumes for the proposed single stage and two-stage options presented above are estimates based on data from previous wells. We propose an option to adjust these volumes based on the caliper log data for this proposed well if available. Also, if no caliper log is available for this proposed well, we would propose an option to possibly increase the production casing cement volumes to account for any uncertainty in regard to the hole volume. #### 5. Pressure Control Equipment: The blowout preventer equipment (BOP) will consist of 11", 2M equipment to conform to the requirements for a 2M System as described in Onshore Oil and Gas Order No. 2, III.A.2.a.ii. The blowout preventer equipment will be installed after running and cementing the surface casing and installing the wellhead and will be tested by a third party using a test plug. Ram type preventers and associated equipment will be tested to approved stack working pressure of 2000 psi. Annular type preventers, if used, will be tested to 50 percent of rated working pressure, and therefore will be tested to 1000 psi. The above tests will be performed: - When initially installed - Whenever any seal subject to test pressure is broken - Following related repairs, and - At 30 day intervals Annular preventers, if used, will be functionally operated at least weekly. Pipe and Blind rams shall be activated each trip, but not more than once per day. All of the above described tests will be recorded in the drilling log. A diagram of the proposed BOPs and choke manifold is attached. ## 6. Proposed Wellhead Program: Casing Head: 8-5/8" Slip on and Weld x 11" 5M Casing Head installed on 8-5/8" surface casing Tubing Head: 11" 5M x 7-1/6" 5M Tubing Head installed after setting 5-1/2" production casing Or, alternatively: Casing Head: 8-5/8" Slip on and Weld x 11" 3M Casing Head installed on 8-5/8" surface casing Tubing Head: 11" 3M x 7-1/6" 5M Tubing Head installed after setting 5-1/2" production casing #### 7. Proposed Mud System: The mud systems that are proposed for use are as follows: | The mud Systemo and are per | | | | | |-----------------------------|-----------------------------|---------------|-------------|------------------| | | TYPE and VOLUME | WEIGHT | VISCOSITY | WATERLOSS | | DEPTH | Fresh Water Native Mud | 8.5 – 9.0 ppg | 28 - 40 sec | N.C. | | 0 - Surface Casing Point | Fresh Water Native Mud | 0.0 0.0 ppg | | | | | 320 bbls in lined earth pit | 10 ppg | 29 sec | N.C. | | Surface Casing Point to TD | Brine | 10 ppg | 2000 | | | | 640 bbis in lined earth pit | 10 ppg | 34 – 45 sec | 5 - 10 cc/30 min | | Conversion to Mud at TD | Brine Based Mud | 10 ppg | 0, 10 000 | - | | | 300 bbls in steel mud pits | <u> </u> | <u> </u> | | 12-1/4" hole from surface of ground to surface casing point. The circulating media will be either a native mud or fresh water with high viscosity sweeps. The mud components will be: - Fresh Water - Bentonite (if needed) - Lime - Soda Ash - Starch (if needed) - **Drilling Paper** - Other loss of circulation material if needed (nut plug or fiberous material) - Soap sticks (if needed) 7-7/8" hole from the surface casing shoe to TD: The circulating media will be 10 ppg brine and will be converted to a mud with starch, attapulgite, and lime upon reaching Total Depth (TD). The mud components will be: - Brine (approximately 10 lb/gal density) - Attapulgite - Lime - Starch - Drilling Paper - Other loss of circulation material if needed (nut plug, fiberous material, gilsonite, or asphalt) - Soap Sticks if needed - Diesel in sweeps if needed - Lease crude oil as a spotting fluid if needed in the event of differential sticking We do not plan to keep any weighting material at the wellsite. The circulating system we plan to use while drilling would be a "U" shaped brine reserve pit. We plan to monitor the pit level visually, not with float type pit level monitoring system. After reaching TD, if the well is not flowing from a waterflow, then we would bring circulation into the steel mud pits and circulate the hole and convert to a brine based mud circulating through the steel mud pits. In such event we would propose to monitor the pit level visually, not with a float type pit level monitoring system. Gas detecting equipment will be installed in the mud return system and will be monitored. A mud gas separator will be installed and operable before drilling out from the Surface Casing. ## 8. Logging, Coring, and Testing Program: - a. No drill stem
tests will be done - b. No mud logging is planned - No whole cores are planned - d. The open hole electrical logging program is planned to be as follows: - Total Depth to top of Grayburg or possibly to the surface casing shoe: Resistivity, Density, Spectral Gamma Ray and possibly BHC Sonic. - Total Depth to Surface Casing Shoe: Caliper - Total Depth to 200' MD, Gamma Ray and Neutron - Formation pressure data (XPT) on electric line if needed (optional) - Rotary Sidewall Cores on electric line if needed (optional) ## 9. Abnormal Pressures and Temperatures: • It is possible that abnormal pressures may be encountered while drilling in the 7-7/8" hole interval from the surface casing shoe to TD. If encountered, it is expected that a water flow would occur with some gas, oil, and/or CO₂ associated with it. The source of any such abnormal pressure would be from CO₂ injection (from our previous CO₂ injection program) and water injection that got out of zone and charged up in natural fractures previous CO₂ injection program) and water injection that got out of zone and charged up in natural fractures previous courtered. On three of the six wells drilled by ConocoPhillips in MCA Unit in 2006, such waterflows with associated gas, oil, or CO₂ were encountered. In these wells, the waterflow was encountered in the upper Queen or Grayburg interval above the reservoir. However there have also been cases in the history of this field in which occurrences of water flow, or in some cases CO₂ flow, have occurred at shallower depths. But in all such cases that we are aware of, the flow has been somewhere below the surface casing shoe. We are not aware of any such flows occurring above the surface casing shoe. Other than these occasional charged up zones, no abnormal pressures are expected. We plan to shut in and bleed off our injectors in the area before drilling each well in order to relieve the injection pressure in reservoir in the area. Our experience is that this is very helpful in regard to reducing the pressure in the reservoir, but may not relieve all pressure from charged up zones above the reservoir. If a waterflow is encountered, our proposed plan is to let it flow while drilling to TD, and then run and cement the production casing using the two-stage method and employing a Stage Tool and two each External Casing Packers as described and discussed above. Our proposed plan in this regard is to shut off any such waterflow by the action of setting the External Casing Packers — containing any such waterflow zone between the two External Casing Packers. We will ensure that we have sufficient storage capacity at surface to provide for the possibility that the well may flow water. The estimated maximum rate of water flow (based on observations on past wells) is 120 bbl/hr flow rate. - The expected maximum bottom hole pressure in the reservoir is approximately 1750 psi. However with our injectors operating we have some wells that exhibit higher pressure up to approximately 2750 psi in the reservoir. In this regard we judge that these wells have a highly permeable avenue of communication to the injectors thus causing them to exhibit this higher pressure in the reservoir. We anticipate that when we shut down and bleed off the injectors in the respective areas in preparation for the drilling program the pressure in the reservoir on these wells will be reduced to the normal reservoir pressure in the field which is approximately 1750 psi. - Above the reservoir, it is possible that there may be charged up zones (charged up from water injection and/ or CO2 injection that got out of zone). Such charged up zones are not found on each well drilled in this field, but are found occasionally. We do not have any measurement of the pressure of such charged up zones but we feel it is not practical to attempt to control such zones with hydrostatic mud weight. The typical practices in this field have been to let these zones flow while drilling to TD, and our observation is that these zones will typically deplete and stop flowing water after several days or can be isolated between external casing packers as is proposed in this Master Drilling Plan. - The expected bottom hole temperature is 110 degrees F during logging or 115 degrees F bottom hole static temperature. - The estimated H2S concentrations in the MCA Field is 11,000 14,000 ppm H2S with a gas rate of zero to 38 MCFPD. The 100 ppm H2S ROE is 0 59'. The 500 ppm ROE is 0 27'. ConocoPhillips will comply with the provisions of Oil and Gas Order # 6, Hydrogen Sulfide Operations and will provide H2S monitoring equipment which will be rigged up, tested, and operational prior to drilling out from surface casing. All persons arriving on location will have H2S certification & training that occurred within the last year. Each occurrence of H2S gas at surface is to be noted on the daily reports and any occurrence of H2S in excess of 100 ppm will be reported to the authorized officer as soon as possible but no later than the next business day per the provisions of Oil and Gas Order # 6, Hydrogen Sulfide Operations. Also, ConocoPhillips will provide an H2S Contingency Plan (please see copy attached) and will keep this plan updated and posted at the wellsite during drilling operations. # 10. Anticipated starting date and duration of operations: Road and location construction will begin after the BLM and NMOCD have approved the APD and will take into account any closure stipulations that may be attached or specified in order to avoid operations in any closure period. Also, rig availability may impact our schedule. With consideration of these limiting factors, we would intend / plan to drill the wells in our proposed program MCA Unit within two years after receiving approval of the APD. #### Attachments: - Attachment # 1 Proposed Casing and Cementing Program with Single Stage Cementing of Production Casing - Attachment # 2 Proposed Casing and Cementing Program with Two-Stage Cementing of Production Casing - Attachment # 3 Proposed Casing and Cementing Program with External Casing Packers and Two-Stage Cementing of Production Casing - Attachment # 4...... Diagram of Choke Manifold Equipment (Excerpted 54 FR 39528, Sept 27, 1989) - Attachment # 5...... BOP and Choke Manifold Schematic 2M System (Figure 3-1, Appendix G, from BLM) - Attachment # 6...... BOP and Choke Manifold Schematic 2M System (Figure 3-1A, Appendix G, from BLM) # **Contact Information:** Program prepared by: Steven O. Moore, Staff Drilling Engineer, ConocoPhillips Company Phone 832 486 2459 Cell Phone 281 467 7596 #### Program revised 23 July 08 By: Jason Tilley, Drilling Engineer, ConocoPhillips Company Phone (832) 486-2919 Cell Phone (281) 684-4720 Attachment #1 #### MCA Unit Proposed Casing & Cementing Program with Single-Stage Cementing of Production Casing (Alternative # 1) Datum: RKB (10' -12' above ground level) The intent of this alternative casing program is to provide a contingency plan for using Single-Stage Cementing for the production casing cement job if hole conditions are favorable (with no severe loss of circulation, heavy seepage, or waterflow events occurring during the drilling operations). Conductor: 13-3/8" 48# H-40 ST&C set at 30' to 75' below ground level (40' to 87' MD RKB) and cemented to surface. Surface Casing: 8-5/8" 24# J-55 ST&C set in the Rustler formation and cemented to surface. Cement Wiper Plug Float Shoe, one joint of casing, and Float Collar Schematic prepared by: Steven O. Moore, Staff Drilling Engineer 28-February-2008 A Single-Stage cement job is pumped placing cement from the Production Casing shoe to surface. Production casing: 5-1/2" 17# J-55 LT&C set 10' above TD and cemented to surface with single-stage cementing method. Master Drilling Plan - ConocoPhillips Company - MCA Unit: February 28, 2008 Page 17 of 22 Attachment #2 # MCA Unit Proposed Casing & Cementing Program with Two-Stage Cementing of Production Casing (Alternative # 2) Datum: RKB (10' - 12' above ground level) The intent of this alternative casing program is to provide a contingency plan for using Two-Stage Cementing for the production casing cement job if loss of circulation occurrs during the drilling operations. See comments in "Step 1" to "Step 3" of this schematic. Stage 2 Wiper Plug / Closing Plug Stage Tool at top of Grayburg Stage 1 Wiper Dart Float Shoe, one joint of casing, and Float Collar Schematic prepared by: Steven O. Moore, Staff Drilling Engineer 28-February-2008 Conductor: 13-3/8" 48# H-40 ST&C set at 30' to 75' below ground level (40' to 87' MD RKB) and cemented to surface. Surface Casing: 8-5/8" 24# J-55 ST&C set in Rustler formation and cemented to surface. #### Step 3: Stage 2 Cement is pumped placing cement from the Stage Tool to surface. #### Step 2: The Stage Tool is opened by hydraulic pressure and the excess cement is circulated out from above the stage-tool. Circulation is continued for approximately 4 to 6 hrs until the Stage 1 cement has set and thus isolated the potential loss of circulation zone(s). #### Step 1: Stage 1 Cement is pumped placing cement from Production Casing shoe to the Stage Tool. Production casing: 5-1/2" 17# J-55 LT&C set 10' above TD and cemented to surface with two-stage cementing method. Attachment #3 #### MCA Unit Proposed Casing & Cementing Program with ECP's and Two-Stage Cementing of Production Casing (Alternative # 3) Datum: RKB (10' - 12' above ground level) The intent of this alternative casing program is to provide a contingency plan for using External Casing Packers (ECP's) and Two-Stage Cementing to shut off a waterflow if such waterflow occurs while drilling the well. See comments in "Step 1" to "Step 4" of this schematic. Stage 2 Wiper Plug / Closing Plug Stage Tool (immediately above the Upper External Casing Packer) (Upper) External Casing Packer (set above the waterflow) Possible waterflow between the bottom of the Salado and the top of the
Grayburg 6 Formation (Lower) External Casing Packer set 200 - 270' below the top of the Grayburg Formation and above the shallowest planned perforation. Stage 1 Wiper Dart Float Shoe, one joint of casing, and Float Collar Schematic prepared by: Steven O. Moore, Staff Drilling Engineer 28-February-2008 Conductor: 13-3/8" 48# H-40 ST&C set at 30' to 75' below ground level (40' to 87' MD RKB) and cemented to surface. Surface Casing: 8-5/8" 24# J-55 ST&C set in Rustler formation and cemented to surface. #### Step 4: Stage 2 Cement is pumped placing cement from the Stage Tool to surface. #### Step 3: After setting the External Casing Packers, the Stage Tool is opened by hydraulic pressure and the excess cement is circulated out from above the stage-tool. #### Step 2: The two External Casing Packers (ECP's) are simultaneously set by hydraulic pressure after bumping the Stage 1 Cement Wiper Dart on the baffle on the float collar. The setting of the ECP's should shut off the waterflow isolating it between the two ECP's. #### Step 1: Stage 1 Cement is pumped placing cement from Production Casing shoe to the Stage Tool. Production casing: 5-1/2" 17# J-55 LT&C set 10' above TD and cemented to surface with two-stage cementing method. Attachment # 4 # Location Schematic and Rig Layout for Closed Loop System Appendix G Time 3-1A Appendia G # **Drilling Operations** H₂S Plan ConocoPhillips, Inc. will comply with Onshore Order No. 2 and No. 6 for working in an $\rm H_2S$ environment or a potential H₂S environment. #### Hydrogen Sulfide Training All contractors and subcontractors employed by ConocoPhillips will receive or have received training from a qualified instructor within the last twelve months in the following areas prior to commencing drilling operations on this well. - The hazards and characteristics of hydrogen sulfide (H₂S). - Safety precautions. - 3. Operations of safety equipment and life support systems. In addition, contractor supervisory personnel will be trained or prepared in the following areas: - The effect of H₂S on metal components in the system, especially where high tensile strength tubulars are to be used. - 2. Corrective action and shutdown procedures when drilling or reworking a well, blowout prevention and well control procedures, if the nature of the work involves these items. - The contents and requirements of the contingency plan when such plan is required. ## II. H₂S Equipment and Systems #### 1. Safety Equipment The following minimum safety equipment will be on location: - Wind direction indicators placed near rig floor/mud return lines and at points along the perimeter of the location to allow visibility of at least one indicator from any point on location. - b. Automatic H₂S detection alarm equipment (both audio and visual). - c. Clearly visible warning signs. Signs will use the words "POISON GAS" and "CAUTION" with a strong color contrast. - d. Protective breathing equipment will be located in the doghouse and at briefing areas on location. #### 2. Well Control Systems - a. Blowout Prevention Equipment - Flare lines will be 6" flanged steel lines with electronic ignition, boom will be at least 150' from the wellbore. - Choke is to be remotely controlled. - Flare gun and flares will not be used. - Mud gas separator will be used and a rotating head (if well is exploratory). #### b. Communication The rig contractor will be required to have two-way communication capability. ConocoPhillips will have either, land-line, satellite phone, microwave phone, or mobile (cellular) telephone capabilities. #### c. Mud Program The mud program has been designed to minimize the volume of H_2S circulated to surface. Proper mud weight, safe drilling practices and the use of H_2S scavengers when appropriate will minimize hazards when penetrating H_2S bearing zones. #### d. Drill stem tests Any planned drill stem test will be cancelled if H_2S is detected prior to such test. In the event that H_2S is detected during testing, the test will be terminated immediately. # IV. EMERGENCY EQUIPMENT and MAINTENANCE 432.561.5049 Odessa, Tx. 575.392.2973 Hobbs, NM # **Emergency Equipment Suppliers** # Total Safety US Odessa, Tx/ Hobs, NM H₂S monitors Breathing air includes cascade systems Fire fighting equipment First aid and medical supplies Safety equipment # Safety International - Odessa, Tx. 432.580.3770 H₂S monitors Breathing air includes cascade systems First aid and medical supplies Safety equipment H2S Specialist 575.393.3093 Indian Fire & Safety – Hobbs, NM H₂S monitors Breathing air including cascade systems trailer mounted 30 minute air packs Safety Equipment # Leek Fire & Equipment Company - Odessa, Tx. 432.332.1693 H₂S monitors Fire fighting equipment First aid and medical supplies Safety equipment # V. EMERGENCY CALL LIST: The following is a priority list of personnel to contact in an emergency situation: | Office No. | Home | Cellular | |--------------|--|---| | 432.368.1302 | 432.563.9467 | 432.556.9116 | | 423.368.1263 | 432.367.4961 | 432.556.9113 | | 432.368.1100 | | 432.978.9804 | | 432.368.1248 | | 432.631.066 | | 832.486.2567 | 281.225.8063 | 281.435.3517 | | | 432.368.1302
423.368.1263
432.368.1100
432.368.1248 | 432.368.1302 432.563.9467 423.368.1263 432.367.4961 432.368.1100 432.368.1248 | # EMERGENCY CALLEIST: State Officials # Regulatory Agencies Texas Railroad Commission (District 8) Office: 432.684.5581 Midland, Texas New Mexico Oil Conservation Commission Office: 575.393.6161 P. O. Box 1980 Hobbs, New Mexico 88240-1980 Bureau of Land Mngt. Carlsbad Field Office Office: 575.234.5972 620 E. Greene St. Fax: 575.885.9264 Carlsbad, NM 88220 EMERGENCY CALL LIST: Local Officials Refer to the Location Information Sheet Note: The LIS should include any area residents (i.e. rancher's house, etc) # ConocoPhillips Emergency Contact Phone Numbers (SENM) | ConocoPhillips | <u>s</u> | | | (281)293-3600 | |---|------------------------|---------------------------|-----------------------------|--------------------------------| | Drilling Superin | tendent | Cotton Hair | work
cell | (432)368-1302
(432)556-9116 | | Safety (WSER) | | Tom Samarripa | work
cell | (432)368-1263
(432)556-9113 | | Drilling Enginee | er | Jason Tilley | work
cell | (832)486-2919
(281)684-4720 | | Regulatory Cor | ntact | Jalyn Fiske | work | (432)688-6813 | | EMERGENCY NUMBERS | | | | | | Hospital: | Lea County Re | egional Medical Center (I | lobbs) | (575)492-5000 | | Ambulance: | Hobbs Fire De | partment | | (575)397-9308 | | Air Ambulance: | Care Star | | | (888)624-3571
(800)627-2376 | | Fire Dept: | Hobbs
Maljamar (Nor | n-Emergency) | | (575)397-9308
(575)676-4100 | | State Police: | Hobbe (Mon-F | mergency) | | (5/5)392-3300 | | Sheriff: | Lovington | | | (575)396-3611 | | Police: | Lovington | | | (575)396-5166 | | NMOCD: | (Non Emerge) | ncy) | | (575)393-6161 | | BLM: | Carlsbad | | | (575)393-3612
(575)393-4280 | | New Mexico Emergency Response (Santa Fe):(505)476-9600 24HR (505)827-9126 | | | (505)476-9600 (505)827-9126 | | | New Mexico State Emergency Operations Center (Santa Fe):(505)476-9635 | | | | | | National Emergency Response Center (Washington, DC):(800)424-8802 | | | | | # Recommended Telephone Procedures for Emergencies - 1. State emergency situation - 2. Give full name, company, and phone number - 3. Give cause of injury and condition of injured - 4. Provide good directions to location or highway - 5. Send vehicle to meet EMS at highway or landmark - 6. Stay by phone until EMS arrives on location # PECOS DISTRICT CONDITIONS OF APPROVAL | OPERATOR'S NAME: | ConocoPhillips | |-----------------------|-------------------------------------| | LEASE NO.: | LC058697B | | WELL NAME & NO.: | MCA Unit 422 | | SURFACE HOLE FOOTAGE: | 810' FNL & 1330' FWL | | BOTTOM HOLE FOOTAGE | Same | | LOCATION: | Section 30, T. 17 S., R 33 E., NMPM | | COUNTY: | Lea County, New Mexico | # TABLE OF CONTENTS Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below. | General Provisions | |--| | Permit Expiration | | Archaeology, Paleontology, and Historical Site | | Noxious Weeds | | Special Requirements | | Lesser Prairie Chicken | | Ground-level Abandoned Well Marker | | ◯ Construction | | Notification | | Topsoil | | Reserve Pit – Closed-loop mud system | | Federal Mineral Material Pits | | Well Pads | | Roads | | Road Section Diagram | | ☑ Drilling | | Onshore Order 6 – H2S requirements | | □ Production (Post Drilling) | | Pipelines | | Electric Lines | | Reserve Pit Closure/Interim Reclamation | | Final Abandonment/Reclamation | ## I. GENERAL PROVISIONS The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells. ## II. PERMIT EXPIRATION If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must
have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.) # III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer. ### IV. NOXIOUS WEEDS The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies. # V. SPECIAL REQUIREMENT(S) Timing Limitation Stipulation/Condition of Approval for Lesser Prairie-Chicken: Oil and gas activities including 3-D geophysical exploration, and drilling will not be allowed in lesser prairie-chicken habitat during the period from March 1st through June 15th annually. During that period, other activities that produce noise or involve human activity, such as the maintenance of oil and gas facilities, geophysical exploration other than 3-D operations, and pipeline, road, and well pad construction, will be allowed except between 3:00 am and 9:00 am. The 3:00 am to 9:00 am restriction will not apply to normal, around-the-clock operations, such as venting, flaring, or pumping, which do not require a human presence during this period. Additionally, no new drilling will be allowed within up to 200 meters of leks known at the time of permitting. Normal vehicle use on existing roads will not be restricted. Exhaust noise from pump jack engines must be muffled or otherwise controlled so as not to exceed 75 db measured at 30 ft. from the source of the noise. Ground-level Abandoned Well Marker to avoid raptor perching: Upon the plugging and subsequent abandonment of the well, the well marker will be installed at ground level on a plate containing the pertinent information for the plugged well. For more installation details, contact the Carlsbad Field Office at 575-234-5972 ### VI. CONSTRUCTION ### A. NOTIFICATION The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the Hobbs Field Station at (575) 393-3612 at least 3 working days prior to commencing construction of the access road and/or well pad. When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer. ### B. TOPSOIL The operator shall stockpile the topsoil of the well pad. The topsoil shall not be used to backfill the reserve pit and will be used for interim and final reclamation. #### C. RESERVE PITS The operator has applied for a closed-loop system. The operator shall properly dispose of drilling contents at an authorized disposal site. ### D. FEDERAL MINERAL MATERIALS PIT If the operator elects to surface the access road and/or well pad, mineral materials extracted during construction of the reserve pit may be used for surfacing the well pad and access road and other facilities on the lease. Payment shall be made to the BLM prior to removal of any additional federal mineral materials from any site other than the reserve pit. Call the Carlsbad Field Office at (575) 234-5972. ### E. WELL PAD SURFACING Surfacing of the well pad is not required. If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation. The well pad shall be constructed in a manner which creates the smallest possible surface disturbance, consistent with safety and operational needs. ### VII. DRILLING ## A. DRILLING OPERATIONS REQUIREMENTS The BLM is to be notified a minimum of 4 hours in advance for a representative to witness: - a. Spudding well - b. Setting and/or Cementing of all casing strings - c. BOPE tests # Lea County Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612 - 1. A Hydrogen Sulfide (H2S) Drilling Plan should be activated 500 feet prior to drilling into the Yates formation. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM. - 2. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. ### B. CASING Changes to the approved APD casing and cement program require submitting a sundry and receiving approval prior to work. Failure to obtain approval prior to work will result in an Incident of Non-Compliance being issued. Centralizers required on surface casing per Onshore Order 2.III.B.1.f. Wait on cement (WOC) time for a primary cement job will be a minimum 18 hours for a water basin, 24 hours in the potash area, or 500 pounds compressive strength, whichever is greater for all casing strings. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. See individual casing strings for details regarding lead cement slurry requirements. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer. Possible water and brine flows in the Salado and Artesia Group. Possible lost circulation in the Grayburg and San Andres Formations. Possible high pressure air pockets in the Rustler and Salado formations with possible high pressure due to previous CO2 injection in the Artesia Group & San Andres. - 1. The 8-5/8 inch surface casing shall be set at approximately 1145 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface. - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. - b. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry. - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater. - d. If cement falls back, remedial cementing will be done prior to drilling out that string. - 2. The minimum required fill of cement behind the 5-1/2 inch production casing is: - a. Single Stage Cement Job - ☐ Cement to surface. If cement does not circulate, see B.1.a, c-d above. - b. Two Stage Cement Job: Contact BLM for permission as per Master Drilling Plan prior to running. Follow Master Drilling Plan with notification to BLM and perform job as approved in Master Drilling Plan. - c. Two Stage Cement Job with External Casing Packers: Contact BLM for permission as per Master Drilling Plan prior to running. Follow Master Drilling Plan with notification to BLM and perform job as approved in Master Drilling Plan. - 3. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations. ### C. PRESSURE CONTROL - 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17. - 2. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 2000 (2M) psi. - 3. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests. - a. The tests shall be done by an independent service company. - b. The results of the test shall be reported to the appropriate BLM office. - c. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office. - d. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. ### D. DRILL STEM TEST If drill stem tests are performed, Onshore Order 2.III.D shall be followed. RGH 062709 # VIII. PRODUCTION (POST DRILLING) ### A. WELL STRUCTURES & FACILITIES ### **Placement of Production Facilities** Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location. # **Containment Structures** The containment structure shall be constructed to
hold the capacity of the entire contents of the largest tank, plus 24 hour production, unless more stringent protective requirements are deemed necessary by the Authorized Officer. ### **Painting Requirement** All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color Shale Green, Munsell Soil Color Chart # 5Y 4/2 ### B. PIPELINES STANDARD STIPULATIONS FOR SURFACE INSTALLED PIPELINES A copy of the grant and attachments, including stipulations, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations. Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer: - 1. The holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant. - 2. The holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 et seq. (1982) with regards to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant. (See 40 CFR, Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR, Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government. - 3. The holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, et seq. or the Resource Conservation and Recovery Act, 42 U.S.C. 6901, et seq.) on the Right-of-Way (unless the release or threatened release is wholly unrelated to activity of the Right-of-Way holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way holder on the Right-of-Way. This agreement applies without regard to whether a release is caused by the holder, its agent, or unrelated third parties. - 4. The holder shall be liable for damage or injury to the United States to the extent provided by 43 CFR Sec. 2883.1-4. The holder shall be held to a standard of strict liability for damage or injury to the United States resulting from pipe rupture, fire, or spills caused or substantially aggravated by any of the following within the right-of-way or permit area: - a. Activities of the holder including, but not limited to construction, operation, maintenance, and termination of the facility. - b. Activities of other parties including, but not limited to: - (1) Land clearing. - (2) Earth-disturbing and earth-moving work. - (3) Blasting. - (4) Vandalism and sabotage. ### c. Acts of God. The maximum limitation for such strict liability damages shall not exceed one million dollars (\$1,000,000) for any one event, and any liability in excess of such amount shall be determined by the ordinary rules of negligence of the jurisdiction in which the damage or injury occurred. This section shall not impose strict liability for damage or injury resulting primarily from an act of war or from the negligent acts or omissions of the United States. 5. If, during any phase of the construction, operation, maintenance, or termination of the pipeline, any oil, salt water, or other pollutant should be discharged from the pipeline system, impacting Federal lands, the control and total removal, disposal, and cleaning up of such oil, salt water, or other pollutant, wherever found, shall be the responsibility of the holder, regardless of fault. Upon failure of the holder to control, dispose of, or clean up such discharge on or affecting Federal lands, or to repair all damages resulting therefrom, on the Federal lands, the Authorized Officer may take such measures as he deems necessary to control and clean up the discharge and restore the area, including, where appropriate, the aquatic environment and fish and wildlife habitats, at the full expense of the holder. Such action by the Authorized Officer shall not relieve the holder of any responsibility as provided herein. | 6. All construction way width of | | tenance activity v | will be confi | ned to the au | thorized right-of- | |-----------------------------------|----------------|--------------------|---------------|---------------|---| | 7. No blading or by the Authorize | _ | any vegetation w | ill be allowe | d unless app | roved in writing | | suspension of the | e pipeline acr | ross low areas in | the terrain. | In hummock | that will minimize
y of duney areas,
suspended across | 9. The pipeline shall be buried with a minimum of _______ inches under all roads, "two-tracks," and trails. Burial of the pipe will continue for 20 feet on each side of each crossing. The condition of the road, upon completion of construction, shall be returned to at least its former state with no bumps or dips remaining in the road surface. these features. - 10. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting of the fence. No permanent gates will be allowed unless approved by the Authorized Officer. - 11. In those areas where erosion control structures are required to stabilize soil conditions, the holder will install such structures as are suitable for the specific soil conditions being encountered and which are in accordance with sound resource management practices. - 12. Excluding the pipe, all above-ground structures not subject to safety requirement shall be painted by the holder to blend with the natural color of the landscape. The paint used shall be a color which simulates "Standard Environmental Colors" **Shale Green**, Munsell Soil Color No. 5Y 4/2; designated by the Rocky Mountain Five State Interagency Committee. - 13. The pipeline will be identified by signs at the point of origin and completion of the right-of-way and at all road crossings. At a minimum, signs will state the holder's name, BLM serial number, and the product being transported. Signs will be maintained in a legible condition for the life of the pipeline. - 14. The holder shall not use the pipeline route as a road for purposes other than routine maintenance as determined necessary by the Authorized Officer in consultation with the holder. The holder will take whatever steps are necessary to ensure that the pipeline route is not used as a roadway. - 15. Any cultural and/or paleontological resource (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the authorized officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the authorized officer. An evaluation of the discovery will be made by the authorized officer to determine appropriate cultural or scientific values. The holder will be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the authorized officer after consulting with the holder. (March 1989) ### C. ELECTRIC LINES STANDARD STIPULATIONS FOR OVERHEAD ELECTRIC DISTRIBUTION LINES A copy of the grant and attachments, including stipulations, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations. Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer: - 1. The holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant. - 2. The holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 et seq. (1982) with regards to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant. (See 40 CFR, Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR, Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government. - 3. The holder agrees to indemnify the United States against any liability
arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, et seq. or the Resource Conservation and Recovery Act, 42 U.S.C. 6901, et seq.) on the Right-of-Way (unless the release or threatened release is wholly unrelated to the Right-of-Way holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way holder on the Right-of-Way. This agreement applies without regard to whether a release is caused by the holder, its agent, or unrelated third parties. - 4. There will be no clearing or blading of the right-of-way unless otherwise agreed to in writing by the Authorized Officer. - 5. Powerlines shall be constructed in accordance to standards outlined in "Suggested Practices for Raptor Protection on Powerlines," Raptor Research Foundation, Inc., 1981. The holder shall assume the burden and expense of proving that pole designs not shown in the above publication are "raptor safe." Such proof shall be provided by a raptor expert approved by the Authorized Officer. The BLM reserves the right to require modification or additions to all powerline structures placed on this right-of-way, should they be necessary to ensure the safety of large perching birds. Such modifications and/or additions shall be made by the holder without liability or expense to the United States. - 6. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting the fence. No permanent gates will be allowed unless approved by the Authorized Officer. - 7. The BLM serial number assigned to this authorization shall be posted in a permanent, conspicuous manner where the power line crosses roads and at all serviced facilities. Numbers will be at least two inches high and will be affixed to the pole nearest the road crossing and at the facilities served. - 8. Upon cancellation, relinquishment, or expiration of this grant, the holder shall comply with those abandonment procedures as prescribed by the Authorized Officer. - 9. All surface structures (poles, lines, transformers, etc.) shall be removed within 180 days of abandonment, relinquishment, or termination of use of the serviced facility or facilities or within 180 days of abandonment, relinquishment, cancellation, or expiration of this grant, whichever comes first. This will not apply where the power line extends service to an active, adjoining facility or facilities. - 10. Any cultural and/or paleontological resource (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the Authorized Officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery will be made by the Authorized Officer to determine appropriate actions to prevent the loss of significant cultural or scientific values. The holder will be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the Authorized Officer after consulting with the holder. # 11. Special Stipulations: - For reclamation remove poles, lines, transformer, etc. and dispose of properly. - Fill in any holes from the poles removed. - See attached reclamation plans. # IX. INTERIM RECLAMATION & RESERVE PIT CLOSURE ### A. INTERIM RECLAMATION If the well is a producer, interim reclamation shall be conducted on the well site in accordance with the orders of the Authorized Officer. The operator shall submit a Sundry Notices and Reports on Wells (Notice of Intent), Form 3160-5, prior to conducting interim reclamation. During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses. Operators should work with BLM surface management specialists to devise the best strategies to reduce the size of the location. Any reductions should allow for remedial well operations, as well as safe and efficient removal of oil and gas. During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed. # Seed Mixture for LPC Sand/Shinnery Sites The holder shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be <u>no</u> primary or secondary noxious weeds in the seed mixture. Seed will be tested and the viability testing of seed will be done in accordance with State law(s) and within nine (9) months prior to purchase. Commercial seed will be either certified or registered seed. The seed container will be tagged in accordance with State law(s) and available for inspection by the authorized officer. Seed will be planted using a drill equipped with a depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture will be evenly and uniformly planted over the disturbed area (smaller/heavier seeds have a tendency to drop the bottom of the drill and are planted first). The holder shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed will be broadcast and the area shall be raked or chained to cover the seed. When broadcasting the seed, the pounds per acre are to be doubled. The seeding will be repeated until a satisfactory stand is established as determined by the authorized officer. Evaluation of growth will not be made before completion of at least one full growing season after seeding. Species to be planted in pounds of pure live seed* per acre: | Species | | <u>lb/acre</u> | |---------------------|----|----------------| | Plains Bristlegrass | | 5lbs/A | | Sand Bluestem | | 5lbs/A | | Little Bluestem | | 3lbs/A | | Big Bluestem | * | 6lbs/A | | Plains Coreopsis | | 2lbs/A | | Sand Dropseed | 4. | 1lbs/A | | | | | ^{**}Four-winged Saltbush 5lbs/A Pounds of seed x percent purity x percent germination = pounds pure live seed ^{*} This can be used around well pads and other areas where caliche cannot be removed. ^{*}Pounds of pure live seed: # X. FINAL ABANDONMENT & REHABILITATION REQUIREMENTS Upon abandonment of the well and/or when the access road is no longer in service the Authorized Officer shall issue instructions and/or orders for surface reclamation and restoration of all disturbed areas. On private surface/federal mineral estate land the reclamation procedures on the road and well pad shall be accomplished in accordance with the private surface land owner agreement.