RELEASE REPORT

ANNUAL MONITORING REPORT

EOTT PIPELINE COMPANY TNM 96-16 LEA COUNTY, NEW MEXICO

2

PREPARED FOR:

EOTT PIPELINE COMPANY P. O. BOX MIDLAND, TEXAS 79704

Ms. Lennah Frost

PREPARED BY:

ENVIRONMENTAL TECHNOLOGY GROUP, INC. 4600 WEST WALL STREET MIDLAND, TEXAS 79704

March 2000

TABLE OF CONTENTS

INTRODUCTION

FIELD ACTIVITIES

GROUND WATER GRADIENT

LABORATOPY RESULTS

SUMMARY

FIGURES Figure 1 – Site Location Map Figure 2 – Site Map

TABLES Table 1 – Ground Water Elevation Table 2 – Ground Water Chemistry

APPENDICES Appendix A – Laboratory Report

INTRODUCTION

Environmental Technology Group, Inc. (ETGI), on behalf of EOTT Energy Corp. (EOTT), prepared this annual report in compliance with the New Mexico Oil Conservation Division (OCD) letter of May 1998, requiring submittal of an annual report by April 1 of each year. The report presents the results of the quarterly ground water monitoring events only. For reference, a site location map is provided as Figure 1.

Ground water monitoring was conducted during the fourth quarter in 1999 to assess the levels and extent of dissolved phase and free phase petroleum hydrocarbon constituents. The groundwater monitoring events consisted of measuring static water levels in the monitoring wells, checking for the presence of phase-separated hydrocarbons (PSH), and purging and sampling of each well exhibiting sufficient recharge. Monitoring wells containing measurable levels of PSH were not sampled.

FIELD ACTIVITIES

The site monitoring well was gauged and sampled on December 3, 1999. During the sampling event, the monitoring well, designated to be sampled, was purged of approximately 3 well volumes of water or until the wells were dry using a PVC bailer or electrical Grundfos Pump. Groundwater was allowed to recharge and samples were obtained using disposable Teflon samplers. Monitoring wells with a measurable presence of PSH were not sampled. Water samples were stored in clean, glass containers provided by the laboratory and placed on ice in the field. Purge water was collected in a polystyrene tank and disposed of by Pate Trucking, Hobbs, New Mexico, utilizing a licensed disposal facility (OCD AO SWD-730).

GROUNDWATER GRADIENT

Location of the monitoring well is depicted on Figure 2. The ground water elevation data are provided as Table 1. The ground water gradient can not be determined with one well at the site. The depth to groundwater, as measured from the top of the well casing, was 58.40 feet for the shallow alluvial aquifer. There was no PSH detected in the monitoring well.

LABORATORY RESULTS

The ground water sample, collected during the fourth quarter, was hand delivered to Environmental Laboratory of Texas, Midland, Texas for determination of benzene, toluene, ethyl benzene and total xylenes (BTEX) concentrations by EPA Method SW846-8020 and 8021B. The ground water chemistry data are provided as Table 2 and the Laboratory Report is provided as Appendix A.

Laboratory results for the site ground water sample indicated that BTEX concentrations were below detection limits. The TPH concentrations were also below detection limits.

SUMMARY

ð

This report presents the results of the single monitoring event conducted in the calendar year 1999. No PSH was detected in the site well during the event. Dissolved phase concentrations of BTEX and TPH were non-detect in the monitoring well.

FIGURES

?

I

TABLES

)

ı

TABLE 1 GROUNDWATER ELEVATION TABLE TNM 96-16 LEA COUNTY, NM ETGI PROJECT# EOT1015C

~*

9

WELL NUMBER	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
MV-1	3792.27	ND	58.40	0.00	3,733.87

TABLE 2 GROUND WATER CHEMISTRY TNM 96-16 LEA COUNTY, NEW MEXICO ETGI PROJECT# EOT1015C

SAMPLE	SAMPLE		Methods:	Methods:					
LOCATION	DATE	BENZENE (mg/L)	TOLUËNE (mg/L)	ETHYL- BENZENE	m,p-XYLENE (mg/L)	o-XYLENE (mg/L)	EPA SW 846-8015M GRO/DRO		
				(mg/L)	(GRO C6-C10 (mg/L)	DRO >C10-C25 (mg/L)	
MW-1	12/03/00	<0.100	<0.100	<0.100	<0.100	<0.100	<0.5	<0.5	

}

.

.

APPENDIX A

5

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC. ATTN: MR. JESSE TAYLOR P.O. BOX 4845 MIDLAND, TEXAS 79704 FAX: 505-392-3760

Sample Type: Water Sample Condition: Intact/Iced/HCI Project #: EOT1015C Project Name: TNM 96-16 Project Location: Monument, N.M.

-)

Sampling Date: 12/03/99 Receiving Date: 12/10/99 Analysis Date: 12/13/99

ELT#	FIELD CODE	BENZENE mg/L	TOLUENE mg/L	ETHYLBENZENE	m.p-XYLENE mg/L	o-XYLENE m <u>g/L</u>	
22207	MW-1	<0.001	<0.001	<0.001	<0.001	<0.001	

% IA	93	89	90	90	90
% EA	91	88	89	89	88
BLANK	<0.001	<0.001	<0.001	<0.001	<0.001

METHODS: EPA SW 846-8021B,5030

aland Kindl

Raland K. Tuttle

12-13-019 Date

ENVIRONMENTAL LAB OF , INC.

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC. ATTN: MR. JESSE TAYLOR P.O. BOX 4845 MIDLAND, TEXAS 79704 FAX: 505-392-3760

Sample Project # Project N	Type: Water Condition: Intact/Iced/HCI : EOT1015C Iame: TNM 96-16 ocation: Lea County, N.M.			Sampling Date: 12/03/99 Receiving Date: 12/10/99 Analysis Date: 12/10/99
•	·······	GRO	DRO >C10-C25	
ELT#	FIELD CODE	mg/L	mg/L	
22207	MW-1	<0.5	<0.5	

%INSTRUMENT ACCURACY	114	106
% EXTRACTION ACCURACY	105	78
BLANK	<0.5	<0.5

Methods: EPA SW 846-8015M GRO/DRO

Ralandt Jobel Raland K. Tuttle

12-13-99 Date

12600 West I-20 East • Odessa, Texas 79765 • (915) 563-1800 • Fax (915) 563-1713

CHAIN-OF-CUST	ANALYSIS REQUEST		S BH		Cq C	5 88 28 1	Agh Agh Agh Agh Agh Agh Agh Agh Agh Agh	(,8(als (elals (olatile / lms	тссе и тоъ тоъ тоъ тоъ тоъ тоъ тоъ тоъ	1035/X						REMARKS Mail Celalls Healland		- NUORE : LENNAH FROST 1015 MM
Environmental Lab of Texas, Inc. 12600 West I-20 East Odessa, Texas 79763 (915) 563-1800 FAX (915) 563-1713 operManger:	79×105 EAX#: (505) 352-	P.O. Cox 4845 MIDLAND 1 X 79704	Project Name :	C TAM 96-16	Sampler Signature:	leanty NM Leanty Lowon Cooas		E S Vumor	DATE AVATER Volumel HCC HCC ANR SCUDG SCUDG SCUDG SCUDG ANR HCC HCC HCC HCC HCC HCC HCC HCC HCC	w / 3 V.5 X 1 X X X 12-3 10					e	1 Date: Times: Rodied by RE	-10-99	Tines: Rec
Envirol	7	Company Name & Address	Project #:	801 101	Project Location:	Ken		# 8V 1	(LAB USE)	Jazon m						Retinguished by: Lynna la	Reundwheel by	Rellnquithed by:

EOTT Energy Partners

Site 96-16 Closure Report

SEP 1 3 1999

ENVIRONMENTAL BUREAU OIL CONSERVATION DIVISION

Whole Earth Environmental 19606 San Gabriel Houston, Tx. 77084

Executive Summary

Location

The site is located approximately two miles east of the Navajo Refinery located on NM Hwy. 18 between Hobbs and Lovington, New Mexico. (See attached plat map). The spill consisted of an unknown volume of crude oil from a ruptured two-inch steel gathering line. There are no streams or permanent surface water impoundments within two miles of the site.

Previous Investigations

The site has been previously characterized in two reports. The first was an initial spill response report generated by Environmental Spill Control for Texas – New Mexico Pipeline Company dated May 20, 1996. Environmental Spill Control removed the stained soils to a depth of approximately nine feet below ground level and placed the contaminated materials in two piles at either end of the excavation. No discernable remediation activities were performed on the contamination piles. The site configuration prior to final excavation is represented by a schematic, (Figure 1), and a photograph included within this Executive Summary

The second investigation was undertaken for Texas – New Mexico Pipeline by KEI (Job No. 610088-1) dated June 26, 1998. KEI took two series of soil borings at the site. The first soil boring (SB-1) indicated TPH concentrations of 33.4 ppm and non-detectable concentrations of BTEX at a depth of 32.5' below the excavated portion of the site. The boring was taken from a depth approximately 9' below ground level, therefore the total depth to the sampling point is 41.5'. The second soil boring showed TPH concentrations of 570 ppm and total BTEX of 5.97 ppm also at a depth of 41.5' below ground level. (KEI test summary enclosed as Table 1 within this section).

Extent of Contamination

Based on the previous site investigations, on July 28th, Whole Earth excavated the shallow end of the pit to a total depth of six feet below ground level and then took a series of five discrete soil samples randomly across the pit bottom. These field tests are documented within the Field Analytical section of this report. The approximate location of each test point is diagramed on the July 28th Field Testing Schematic. The shallow end bottom and side walls were found to have low TPH concentrations (<200 ppm) and the

area was then re-filled to a depth of approximately 3 ¹/₂' below ground level with fresh soils obtained from a "borrow pit" located south of the excavation. The purpose of re-filling the excavation was to allow a trackhoe access to the deeper end of the location.

Excavation continued within the deeper end of the site for four days until we encountered a dense sandstone lens at a depth of approximately 35' below ground level. Field testing of the soil using Method 418.1 revealed TPH concentrations of between 2,120 and 9,810 ppm within the various soil horizons. The soil type was heavily fractured calichi and the contamination appeared to follow vertical fissures and re-concentrate at various depths as more solid ledges were encountered.

Water Investigation

On August 11th, Adkins Engineering drilled a recovery well at the southeast edge of the excavation and an additional monitoring well at a point 100' to the southeast of the recovery well. The wells were developed, cased and secured in accordance with Mr. Olson's instructions of July 22. Only clean cuttings were allowed to be placed within the bore annulus. Soil samples were obtained at 5' increments throughout the drilling of the recovery well (reference ELT nos. 19180 – 19188 within the Laboratory Analytical section of this report), and were generally found to be nominal. A spike of 770 ppm TPH was found immediately atop the sandstone layer at a depth of 35-40'.

The wells were developed, cased and secured in accordance with Mr. Olson's instructions of July 22. Water samples were drawn from both wells on August 13th and were analyzed for RCRA 8 Metals, volatile and semi-volatile compounds, BTEX, cations and anions. All concentrations were within NMWQCC acceptance standards.

Liner Installation

At the point of final excavation, a 20 mil liner was spread over the entire excavation. The sides of the liner were brought to surface and the excavation re-filled with remediated soils. Each three foot lift was analyzed in the field and a composite sample for each lift collected for later laboratory analysis. All contaminant concentrations were found to be within acceptance standards (reference ELT nos. 19170 - 19179 within the Laboratory Analytical section of this report).

A top liner was installed over the pit at a depth of approximately 5' below ground level. The side walls of the lower liner were extended over the top liner and folded towards the pit center. No plastic was allowed nearer than 3' below ground surface.

Conclusions

It appears that the contamination plume stopped at the surface of the sandstone layer at a depth of approximately 35-40'. There is no evidence of any contaminant migrating into the water table, and it is believed that all significant concentrations were excavated and placed within an impermeable polyethylene barrier.

Recommendations

Due to the sensitivity of the area as being the principal watershed for the City of Lovington, we recommend that both the recovery and monitor wells be tested on an annual basis for a period of four years. If no contaminant concentrations are found to exceed NMWQCC standards, the wells may be permanently plugged and abandoned. Should significant concentrations be discovered, we propose to install a windmill atop the recovery well and initiate an active recovery of the contamination plume.

Page 3

Pit remediation and Closure Report

Operator: <u>EOTT Energy Partners</u>	Telephone: <u>(915) 684-3467</u>
Address: _P.O. Box 1660 Midland, Tx. 79	9702
Facility orSpill 96-16 Well Name	
Location: Unit or Qtr / Qtr Sec.: Sec <u>11</u>	T15S R37ECountyLea
Pit Type: Separator Dehydrator	Other Flow line Leak
Land Type: BLM, State	, FeeX Other
	<u>84'</u> width <u>52'</u> depth <u>36'</u> other
Direction from reference:	Degrees East North
	West South
Depth to Ground Water:	Less than 50 feet (20 points)
	50 feet to 99 feet (10 points) Greater than 100 feet (0 points) <u>10</u>
Wellhead Protection Area:	50 feet to 99 feet (10 points)
Wellhead Protection Area: Distance to Surface Water:	50 feet to 99 feet (10 points) Greater than 100 feet (0 points) <u>10</u> Yes (20 points)

TABLE 1

SUMMARY OF SOIL RESULTS - BTEX AND TPH TEXAS - NEW MEXICO PIPE LINE COMPANY TNM-96-16 LEA COUNTY, NEW MEXICO

SAMPLE DATE	DEPTH (feet)	BENZENE (mg/kg)	TOLUENE (mg/kg)	ETHYL- BENZENE (mg/kg)	XYLENES (mg/kg)	TOTAL BTEX (mg/kg)	TPH (mg/kg)
03/09/98	0 - 2.5	3.08	56.60	59.80	136.00	255.48	9570
03/09/98	15 - 17.5	4.00	28.40	15.00	65.20	112.60	4020
03/09/98	30 - 32.5	ND	ND	ND	ND	ND	33.4
03/09/98	_0 - 2.5_	2.19	0.74	4.40	22.06	29.39	2110
03/09/98	15 - 17,5	ND	ND	0.036	0.273	0.309	428
03/09/98	30 - 32.5	0.029	0.040	0.910	4.978	5.957	570
	DATE 03/09/98 03/09/98 03/09/98 03/09/98 03/09/98	DATE (feet) 03/09/98 0 - 2.5 03/09/98 15 - 17.5 03/09/98 30 - 32.5 03/09/98 0 - 2.5 03/09/98 15 - 17.5	DATE (feet) (mg/kg) 03/09/98 0 - 2.5 3.08 03/09/98 15 - 17.5 4.00 03/09/98 30 - 32.5 ND 03/09/98 0 - 2.5 2.19 03/09/98 15 - 17.5 ND	DATE (feet) (mg/kg) (mg/kg) 03/09/98 0 - 2.5 3.08 56.60 03/09/98 15 - 17.5 4.00 28.40 03/09/98 30 - 32.5 ND ND 03/09/98 00 - 2.5 2.19 0.74 03/09/98 15 - 17.5 ND ND	SAMPLE DATE DEPTH (feet) BENZENE (mg/kg) TOLUENE (mg/kg) BENZENE (mg/kg) 03/09/98 0 - 2.5 3.08 56.60 59.80 03/09/98 0 - 2.5 3.08 56.60 59.80 03/09/98 15 - 17.5 4.00 28.40 15.00 03/09/98 30 - 32.5 ND ND ND 03/09/98 0 - 2.5 2.19 0.74 4.40 03/09/98 15 - 17.5 ND ND 0.036	SAMPLE DATE DEPTH (feet) BENZENE (mg/kg) TOLUENE (mg/kg) BENZENE (mg/kg) XYLENES (mg/kg) 03/09/98 0 - 2.5 3.08 56.60 59.80 136.00 03/09/98 0 - 2.5 3.08 56.60 59.80 136.00 03/09/98 15 - 17.5 4.00 28.40 15.00 65.20 03/09/98 30 - 32.5 ND ND ND ND 03/09/98 0 - 2.5 2.19 0.74 4.40 22.06 03/09/98 15 - 17.5 ND ND 0.036 0.273	SAMPLE DATE DEPTH (feet) BENZENE (mg/kg) TOLUENE (mg/kg) BENZENE (mg/kg) XYLENES BTEX (mg/kg) 03/09/98 0 - 2.5 3.08 56.60 59.80 136.00 255.48 03/09/98 0 - 2.5 3.08 56.60 59.80 136.00 255.48 03/09/98 15 - 17.5 4.00 28.40 15.00 65.20 112.60 03/09/98 30 - 32.5 ND ND ND ND ND 03/09/98 0 - 2.5 2.19 0.74 4.40 22.06 29.39 03/09/98 15 - 17.5 ND ND 0.036 0.273 0.309

5:te 96-16

Protocol

Included within this section are a copy of the Whole Earth remediation protocol PR-17A submitted to the NMOCD on July 1, 1999 and a copy of Mr. Bill Olson's response dated July 22, 1999.

.

.

Remediation Protocol EOTT Energy Partners Project 96-16

1.0 Purpose

This protocol is to provide a detailed outline of the steps to be employed in the remediation of a spill area located between Hobbs and Lovington, New Mexico.

2.0 Scope

This protocol is site specific for the EOTT 96-16 remediation project.

3.0 Preliminary

Prior to any field operations, Whole Earth Environmental shall conduct the following activities:

3.1 Client Review

- 3.1.1 Whole Earth shall meet with cognizant personnel within EOTT to review this protocol and make any requested modifications or alterations.
- 3.1.2 Changes to this protocol will be documented and submitted for final review by EOTT prior to the initiation of actual field work.

4.0 Safety

4.1 Prior to work on the site, Whole Earth shall obtain the location and phone numbers of the nearest emergency medical treatment facility. We will review all safety related issues with the appropriate EOTT personnel, sub-contractors and exchange phone numbers.

4.2 A tailgate safety meeting shall be held and documented each day. All subcontractors must attend and sign the daily log-in sheet.

4.3 Anyone allowed on to location must be wearing sleeved shirts, steel toed boots, and long pants. Each vehicle must be equipped with two way communication capabilities.

PR-17A

4.4 Prior to any excavation, New Mexico One Call will be notified. The One Call notification number will be included within the closure report. If lines are discovered within the area to be excavated they shall be marked with pin flags on either side of the line at maximum five foot intervals.

5.0 Remediation Procedure

5.1 All soils containing a TPH concentration >5,000 ppm, and all soils containing a benzene concentration>10ppm or a total BTEX concentration >50ppm will be excavated and placed immediately adjacent to the excavation. The side walls and bottom of the excavation will be field tested for TPH and BTEX concentrations in accordance with WEQP-06 and WEQP-19.

5.2The Hobbs branch of the OCD will be notified to witness the final confirmation sampling of the side walls and bottom of the excavation. Samples will be collected in accordance with WEQP-77 and analyzed for TPH and BTEX.

5.3 The excavated soils will be mixed and blended with sub-strait materials to achieve a maximum concentration of 5,000 ppm TPH, 10 ppm benzene and 50 ppm total BTEX concentration. A confirmation composite sample will be collected and analyzed in accordance with 5.2 of this protocol.

6.0 Modeling

6.1 The bottom hole benzene concentrations and the depth to ground water will be determined and included within a VADSAT contaminant migration model. The modeled results should project that no benzene concentrations exceeding NMWQCC standards of 10 ppb shall be allowed to impact the ground water within a 100 year model span.

6.2 The modeled results will be submitted to the Sante Fe office of the NMOCD prior to any materials being re-deposited within the excavation.

7.0 Liner

7.1 Upon approval by the NMOCD, Whole Earth will install a 30 mil polyethylene liner within the excavation. The liner will extend up the side walls to a point within 5' of the ground surface. The excavated soils will be replaced within the liner at concentrations not to exceed those described in paragraph 5.2 of this protocol.

7.2 An additional polyethylene top cover will be erected atop the excavation and overlapped with the bowl liner to insure that no surface water will infiltrate the main plume area. The top liner should be slightly domed to accommodate subsidence and to direct a drainage path away from the main plume. The top of the liner shall be at least 3' below ground level.

8.0 Groundwater Remediation and Monitoring

8.1 A recovery well will be drilled, cased and developed to a total depth of 105' and will incorporate a minimum of 30' of 4" slotted PVC screen. The well will be backfilled with cuttings, sand packed sealed with bentonite. The top 10' of the well will be cemented to surface.

8.2 A windmill will be erected over the recovery well. The windmill will be equipped with a "down hole" oil-water separator. The free phase product will be pumped to surface and directed to an above ground storage tank for subsequent removal for re-processing. The storage tank will be netted to insure that it poses no risk to wildlife.

8.3 The lateral extent of the plume will be defined by a 2" monitor well constructed with a minimum of 20' of slotted screen. All other construction details will be in accordance with paragraph 8.1 of this protocol.

9.0 Monitoring

9.1 Both the recovery well and delineation well will be initially sampled for the presence and concentrations of RCRA 8 metals, BTEX, criteria PAH's, chlorides and major cations and anions. Sample collection will be in accordance with WEQP-76.
9.2 Both wells will be sampled on a quarterly basis for the presence and concentration of BTEX. After four consecutive quarters in which the BTEX concentrations within the source and monitor wells show BTEX concentrations in accordance with NMWQCC standards, the wells will be re-analyzed for RCRA 8 metals, criteria PAH's, chlorides and major cations and anions. If the test results show concentrations within acceptable NMWQCC standards, EOTT will request final site closure. Once approved, the recovery and monitor wells will be grouted to surface and the site re-contoured to match background topography.

10.0 Closure Report

10.1 At the conclusion of the project, Whole Earth shall prepare a closure report which contains the following minimum information:

- Photographs of the location prior to remediation
- Photographs of the location at time of final closure
- Plat map showing sampling locations
- All pre-closure contaminant concentrations
- Contaminant concentrations at the conclusion of the project
- Copies of this protocol and all testing procedures
- Copies of each days tailgate safety meeting
- Copies of daily calibration logs for each instrument
- Independent split sample laboratory analyses
- Copies of the VADSAT contaminate migration model
- MSDS sheets of the liner
- Construction details of the monitor and recovery wells
- A hydrogeological survey map indicating the depth and direction of the groundwater and locations of the recovery and monitor wells

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION 2040 S. PACHECO SANTA FE, NEW MEXICO 87505 (505) 827-7131

July 22, 1999

<u>CERTIFIED MAIL</u> RETURN RECEIPT NO: Z-274-520-685

Ms. Lennah Frost EOTT Energy Pipeline Limited Partnership P.O. Box 1660 Midland, Texas 79702

RE: REMEDIATION PLAN SITE 96-16

Dear Ms. Frost:

The New Mexico Oil Conservation Division (OCD) has reviewed EOTT Energy Pipeline Limited Partnership's (EOTT) July 1, 1999 "DENTON GATHERING AREA LEAKSITE – DARR ANGEL RANCH, SEC 11, T-15-S, R-37-E, LEA COUNTY, NEW MEXICO" which was submitted on behalf of EOTT by their consultant Whole Earth Environmental, Inc. This document contains EOTT's proposed work plan for investigation and remediation of soil and ground water contamination resulting from a crude oil spill at EOTT's 96-16 site.

The above referenced work plan is approved with the following conditions:

- J. Due to the use of ground water as a municipal water supply in this area, contaminated soils in excess of the OCD's guidelines shall be excavated to the extent practicable.
- \mathcal{X} . The OCD defers comment on the results of the modeling until the extent of contamination is determined and the model is calibrated using actual site field data.
- \mathcal{X} . The recovery well shall be installed directly downgradient and as close as possible to the source of the leak.
- A. The vertical extent of soil contamination shall be determined during the drilling of the recovery well. Soil samples shall be obtained at five foot intervals starting at the elevation of the bottom of the excavation and continuing to the top of the water table. The soil samples will be sampled and analyzed for concentrations of total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene and xylene (BTEX) using EPA approved methods and quality assurance/quality control (QA/QC) procedures.
- S. If ground water is contaminated in excess of New Mexico Water Quality Control Commission (WQCC) standards, EOTT shall install a sufficient number of monitor wells to determine the extent of contamination.

- 6. EOTT shall complete all monitor and recovery wells as follows:
 - \sqrt{a} . At least 15 feet of well screen shall be placed across the water table interface with 5 feet of the well screen above the water table and 10 feet of the well screen below the water table.
 - \checkmark b. An appropriately sized gravel pack shall be set in the annulus around the well screen from the bottom of the hole to 2-3 feet above the top of the well screen.
 - \sqrt{c} . A 2-3 foot bentonite plug shall be placed above the gravel pack.
 - d. The annular space above the bentonite plug shall not be backfilled with cuttings. The remainder of the hole from the bentonite plug to the surface shall be grouted to the surface with cement containing 3-5% bentonite.
 - \sqrt{e} . A concrete pad and locking well cover shall be placed around the well at the surface.
 - \checkmark . The well shall be developed after construction using EPA approved procedures.
- 7. No less than 48 hours after the wells are developed, ground water from all <u>monitor wells</u> shall be purged, sampled and analyzed for concentrations of BTEX, polycyclic aromatic hydrocarbons (PAH) and **WQCC metals** using EPA approved methods and QA/QC procedures.
- A 5 point composite verification sample shall be obtained from each 3 foot lift of remediated material placed onto the liner system. The soil samples will be sampled and analyzed for concentrations of TPH and BTEX using EPA approved methods and quality assurance/quality control (QA/QC) procedures.
- $\mathcal{N}|\mathcal{A}|$ 9. All below grade lines used for conveying fluids from recovery wells to the above ground storage tank shall be pressure tested to 3 psi above operating pressure prior to operation.
- N|A 10.. All recovered oil shall be stored in a closed tank and the tank shall be bermed to contain one and one-third times the volume of the largest tank or all interconnected tanks.
- N/4 11. All wastes generated shall be disposed of at an OCD approved facility.
 - 12. EOTT shall submit the results of the soil remediation and investigation actions to the OCD in a comprehensive report. The report shall be submitted to the OCD Santa Fe Office by September 24, 1999 with a copy provided to the OCD Hobbs District Office and shall include:
 - a. A description of all investigation, remediation and monitoring activities which have occurred including conclusions and recommendations.

- b. A geologic/lithologic log and well completion diagram for each monitor well.
- c. A water table potentiometric map showing the location of spills, excavated areas, monitor wells, recovery wells, and any other pertinent site features as well as the direction and magnitude of the hydraulic gradient.
- d. Isopleth maps for contaminants of concern which were observed during the investigations.
- e. Summary tables of all soil and ground water quality sampling results and copies of all laboratory analytical data sheets and associated QA/QC data taken within the past year.
- *N*/*I* f. The disposition of all wastes generated.
- NA g. The results of any below grade line testing.
 - h. Specific as built construction information on the liner system.
- *N*/*A* i. The results of any below grade line testing.
- N/4 j. A plan for addressing soil contamination which remains in place between the liner system and the ground water.
- $\sqrt{13}$. EOTT shall notify the OCD at least 24 hours in advance of all scheduled activities such that the OCD has the opportunity to witness the events and split samples.

Please be advised that OCD approval does not limit EOTT to the proposed work plan should the investigation actions fail to adequately define or remediate contamination related to EOTT's activities, or if contamination exists which is outside the scope of the work plan. In addition, OCD approval does not relieve EOTT of responsibility for compliance with any other federal, state or local laws and regulations.

If you have any questions or comments, please contact me at (505) 827-7154.

Sincerely,

William C. Olson Hydrologist Environmental Bureau

xc: Chris Williams, OCD Hobbs District Office Mike Griffin, Whole Earth Environmental, Inc.

.

Procedures

Included within this section are copies of the detailed sample collection and field testing procedures employed on this project.

WHOLE EARTH ENVIRONMENTAL QUALITY PROCEDURE

Procedure for Conducting Field TPH Analysis

Completed By:	Approved By:	Effective Date:	02/15/97
piecea):			

1.0 Purpose

To define the procedure to be used in conducting total percentage hydrocarbon testing in accordance with EPA Method 418.1 (modified) using the "MEGA" TPH Analyzer.

2.0 Scope

This procedure is to be used for field testing and on site remediation information.

3.0 Procedure

3.1 The G.A.C. "MEGA" TPH analyzer is an instrument that measures concentrations of aliphatic hydrocarbons by means of infra-red spectrometry. It is manufactured to our specifications and can accurately measure concentrations from two parts per million through 100,000 parts per million. The unit is factory calibrated however minor calibration adjustments may be made in the field. Quality Procedure 25 defines the field calibration methods to be employed.

- 3.2 Prior to taking the machine into the field, insert a 500 ppm and 5,000 ppm calibration standard into the sample port of the machine. Zero out the Range dial until the instrument records the exact standard reading.
- 3.3 Once in the field, insert a large and small cuvette filled with clean Freon 113 into the sample port of the machine. Use the range dial to zero in the reading. If the machine does not zero, do not attempt to adjust the span dial. Immediately implement Quality Procedure 25.

- 3.4 Place a 100 g. weight standard on the field scale to insure accuracy. Zero out the scale as necessary.
- 3.5 Tare a clean 100 ml. sample vial with the Teflon cap removed. Add 10 g. (+/- .01 g), of sample soil into the vial taking care to remove rocks or vegetable matter from the sample to be tested. If the sample is wet, add up to 5 g. silica gel or anhydrous sodium sulfate to the sample after weighing.
- 3.6 Dispense 10 ml. Freon 113 into the sample vial.
- 3.7 Cap the vial and shake for five minutes.
- 3.8 Carefully decant the liquid contents of the vial into a filter/desiccant cartridge and affix the cartridge cap. Recap the sample vial and set aside.

3.9 Insert the metal tip of the pressure syringe into the cap opening and slowly pressurize. WARNING: APPLY ONLY ENOUGH PRESSURE ON THE SYRINGE TO EFFECT FLOW THROUGH THE FILTERS. TOO MUCH PRESSURE MAY CAUSE THE CAP TO SEPARATE FROM THE BODY OF THE CARTRIDGE. Once flow is established through the cartridge direct the flow into the 5 cm. cuvette until the cuvette is full. Reverse the pressure on the syringe and remove the syringe tip from the cartridge cap. Set the cartridge aside in vertical position.

3.10 The cuvette has two clear and two frosted sides. Hold the cuvette by the frosted sides and carefully insert into the sample port of the machine. Read the right hand digital read-out of the instrument. If the reading is less than 1,000 ppm. the results shall be recorded in the field Soil Analysis Report. If the result is higher than 1,000 ppm, continue with the dilution procedure.

4.0 Dilution Procedure

4.1 When initial readings are greater than 1,000 ppm using the 5 cm. cuvette, pour the contents of the 5 cm. cuvette into a 1 cm. cuvette. Insert the 1. cm cuvette into the metal holder and insert into the test port of the instrument.

- 4.1 Read the left hand digital read-out of the machine. If the results are less than 10,000 ppm, record the results into the field Soil Analysis Report. If greater than 10,000 ppm, continue the dilution process. Concentrations >10,000 ppm are to be used for field screen purposes only.
- 4.2 Pour the contents of the small cuvette into a graduated glass pipette. Add 10 ml. pure Freon 113 into the pipette. Shake the contents and pour into the 1cm. cuvette. Repeat step 4.2. adding two zeros to the end of the displayed number. If the reported result is greater than 100,000 ppm. the accuracy of further readings through additional dilutions is extremely questionable. Do not use for reporting purposes.
- 4.4 Pour all sample Freon into the recycling container.

5.0 Split Samples

5.1 Each tenth test sample shall be a split sample. Decant approximately one half of the extraction solvent through a filter cartridge and insert into the instrument to obtain a concentration reading. Clean and rinse the cuvette and decant the remainder of the fluid to obtain a second concentration reading from the same sample. If the second reading varies by more than 1% from the original, it will be necessary to completely recalibrate the instrument.

WHOLE EARTH ENVIRONMENTAL QUALITY PROCEDURE

Procedure for Instrument Calibration and Quality Assurance Analysis for General Analysis "MEGA" TPH Analyzer

Completed By:	Approved By:	Effective Date:	1	/	-

1.0 Purpose

This procedure outlines the methods to be employed in calibrating the GAC MEGA TPH analyzer and for determining and reporting of accuracy curves.

2.0 Scope

This procedure shall be followed each day that the instrument is used.

3.0 Procedure

3.1 Turn the instrument on and allow to warm up with no cuvette in the receptacle. The instrument will take between five and ten minutes to come to equilibrium as can be determined by the concentration display readings moving a maximum of 5 ppm on the low scale. If the instrument continues to display erratic readings greater than 5 ppm, remove the cover and check both the mirrors and chopper to insure cleanliness.

3.2 All TPH standards shall be purchased form Environmental Resources Corporation and as a condition of their manufacture subject to independent certification by third party laboratories. Each standard is received with a calibration certificate.

3.3 Insert the low range (100 ppm) calibration standard into the receiving port and note the result on the right hand digital display. If the displayed reading is less than 98 ppm or greater than 102 ppm, remove the circuit board cover panel and zero out the instrument in accordance with QP-26.

(Note: Except in New Mexico, set the span to read 105% of actual standard).

3.4 Repeat the process with the mid range (500 ppm) calibration standard. If the displayed reading is less than 490 ppm or greater than 510 ppm zero out the span as described in QP-26.

3.5 Repeat the process again with the 1,000 and 5,000 ppm calibration standards.

3.6 Pour clean Freon 113 into a filter cartridge and extract into 10 ml cuvette. Insert the cuvette into the receiving port and zero out the instrument reading using the far right adjustment knob on the instrument. Repeat using the 1 ml cuvette and the left hand zero dial.

4.0 Determining & Reporting Instrument Accuracy

4.1 After making the fine adjustment with the zero dials reinsert each calibration standard into the instrument and note the concentration values. If <u>any</u> concentration value exceeds 2% of the standard set point, repeat all steps in section 3.0 of this Procedure. Note the actual concentration values displayed by the instrument after each calibration standard.

4.2 The four calibration standards shall be used in reporting span deviation as follows:

	Standards Range		
100 ppm	500 ppm	1,000 ppm	5,000 ррт
0-250 ppm	251-750 ppm	751-2,500 ppm	2,501-10,000 ppm

4.3 Divide the actual instrument reading value of each calibration sample by the concentration shown on the standard (e.g., 501 ppm instrument reading / 500 ppm standard = 1.002%). These readings shall be reported for each test performed.

5.0 Re-calibration

5.1 If any sample exceeds the concentration of 1,000 ppm on the 10 ml cuvette or 10,000 ppm on the 1 ml cuvette, the cuvette must be thoroughly rinsed with clean Freon and the instrument re-zeroed in accordance with 3.6 of this procedure.

WHOLE EARTH ENVIRONMENTAL QUALITY PROCEDURE

Procedure for Instrument Calibration and Quality Assurance Analysis for Photovac Gas Chromatograph

Completed By:	Approved By:	Effective Date:	1	/
				•

1.0 Purpose

This procedure outlines the methods to be employed in calibrating the Photovac analyzer in the BTEX mode and for determining and reporting of accuracy curves.

2.0 Scope

This procedure shall be followed each day that the instrument is used.

3.0 Procedure

Start-up

3.1 Turn the instrument on and press the Battery button. A battery status report will appear on the screen. If the charge level is less than 8.0, either charge the battery or insert a fresh battery pack.

3.2 Open carrier gas valve on right side of instrument. The instrument is now tuning the lamp. If any "boot" problems occur during warm-up, the "chck" symbol will appear on the screen. Pressing TUTOR will prompt the instrument to provide details. The instrument will not progress beyond the start-up mode until all prompts are cleared.

3.3 The next screen display will be "purj" and will last approximately ten minutes. The instrument is purging the column.

Calibrate

3.4 Connect the regulator to cylinder of calibration gas. Connect calibration adapter and tee assembly to both the regulator and instrument. **DO NOT FORCE ANY CONNECTION!**

3.5 Inspect the open end of the tee vent to insure unobstructed flow.

3.6 Enter CAL on the key pad. The instrument will query "benzene?". Following the prompts and using the key pad, set the concentrations to those defined on the calibration gas bottle. Follow the same procedure for toluene, ethyl-benzene and xylene. After each compound, the instrument will read that the next analysis will be a calibration.

3.7 Press ENTER on key pad. The instrument will calibrate itself for the concentrations specified.

Confirmation Sample

3.8 After each calibration, run the calibration gas through the instrument once again. The display readings should be <u>exactly</u> those of the concentrations displayed on the calibration gas bottle. If they are not, the instrument needs factory calibration; do not use.

4.0 Re-calibration

4.1 The instrument is designed with software that prompts you to recalibrate each day, each thirty minutes of use, and after running a sample with high concentrations of one or more of the detected compounds.

5.0 Reporting Instrument Accuracy

5.1 The instrument accuracy as certified by the factory is 15% within one decade of instrument set point. Lower detection limits are 0.1 ppm for benzene and 1.0 ppm for toluene, ethylbenzene and xylene.

5.2 These standards and detection limits must be shown on all reports in which the instrument is used.

WHOLE EARTH ENVIRONMENTAL QUALITY PROCEDURE

Procedure for Obtaining Water Samples (Cased Wells) Using One Liter Bailer

Completed By:	Approved By:	Effective Date:	1	1

1.0 Purpose

This procedure outlines the methods to be employed in obtaining water samples from cased monitoring wells.

2.0 Scope

This procedure shall be used for developed, cased water monitoring wells. It is not to be used for standing water samples such as ponds or streams.

3.0 Preliminary

- 3.1 Obtain sterile sampling containers from the testing laboratory designated to conduct analyses of the water. The shipment should include a Certificate of Compliance from the manufacturer of the collection bottle or vial and a Serial Number for the lot of containers. Retain this Certificate for future documentation purposes.
- 3.2 The following table shall be used to select the appropriate sampling container, preservative method and holding times for the various elements and compounds to be analyzed.

Compound to be Analyzed	Sample Container Size	Sample Container Description	Cap Requirements	Preservative	Maximum Hold Time
BTEX	40 ml.	VOA Container	Teflon Lined	HCI	7 days
TPH	1 liter	clear glass	Teflon Lined	HCI	28 days
PAH	1 liter	clear glass	Teflon Lined	lce	7 days
Cation / Anion	1 liter	clear glass	Teflon Lined	None	48 Hrs.
Metals	1 liter	HD polyethylene	Any Plastic	Ice / HNO ₃	28 Days
TDS	300 ml.	clear glass	Any Plastic	lce	7 Days

4.0 Chain of Custody

- 4.1 Prepare a Sample Plan. The plan will list the well identification and the individual tests to be performed at that location. The sampler will check the list against the available inventory of appropriate sample collection bottles to insure against shortage.
- 4.2 Transfer the data to the Laboratory Chain of Custody Form. Complete all sections of the form except those that relate to the time of delivery of the samples to the laboratory.
- 4.3 Pre-label the sample collection jars. Include all requested information except time of collection. (Use a fine point Sharpie to insure that the ink remains on the label). Affix the labels to the jars.

5.0 Bailing Procedure

- 5.1 Identify the well from the site schematics. Place pre-labeled jar(s) next to the well. Remove the bolts from the well cover and place the cover with the bolts nearby. Remove the plastic cap from the well bore by first lifting the metal lever and then unscrewing the entire assembly.
- 5.2 The well may be equipped with an individual 1 liter bailing tube. If so, use the tube to bail a volume of water from the well bore equal to 10 liters
- for each 5' of well bore in the water table. (This assumes a 2" dia. Well bore).
- 5.3 Take care to insure that the bailing device and string do not become crosscontaminated. A clean pair of rubber gloves should be used when handling either the retrieval string or bailer. The retrieval string should not be allowed to come into contact with the ground.

6.0 Sampling Procedure

- 6.1 Once the well has been bailed in accordance with 5.2 of this procedure, a sample may be decanted into the appropriate sample collection jar directly
- from the bailer. The collection jar should be filled to the brim. Once the jar is sealed, turn the jar over to detect any bubbles that may be present. Add additional water to remove all bubbles from the sample container.
- 6.2 Note the time of collection on the sample collection jar with a fine Sharpie.

QP-76

QP-76

- 6.3 Place the sample directly on ice for transport to the laboratory. The preceding table shows the maximum hold times between collection and testing for the various analyses.
- 6.4 Complete the Chain of Custody form to include the collection times for each sample. Deliver all samples to the laboratory.

7.0 Documentation

- 7.1 The testing laboratory shall provide the following minimum information:
 - A. Client, Project and sample name.
 - B. Signed copy of the original Chain of Custody Form including data on the time the sample was received by the lab.
 - C. Results of the requested analyses
 - D. Test Methods employed
 - E. Quality Control methods and results

WHOLE EARTH ENVIRONMENTAL QUALITY PROCEDURE

Procedure for Obtaining Soil Samples for Transportation to a Laboratory

Completed By:	Approved By:	Effective Date:	1	/	-

1.0 Purpose

This procedure outlines the methods to be employed when obtaining soil samples to be taken to a laboratory for analysis.

2.0 Scope

This procedure shall be used for developed, cased water monitoring wells. It is not to be used for standing water samples such as ponds or streams.

3.0 Preliminary

- 3.1 Obtain sterile sampling containers from the testing laboratory designated to conduct analyses of the soil. The shipment should include a Certificate of Compliance from the manufacturer of the collection bottle or vial and a
- Serial Number for the lot of containers. Retain this Certificate for future documentation purposes.
- 3.2 If collecting TPH, BTEX, RCRA 8 metals, cation / anions or O&G, the sample jar may be a clear 4 oz. container with Teflon lid. If collecting PAH's, use an amber 4 oz. container with Teflon lid.

4.0 Chain of Custody

- 4.1 Prepare a Sample Plan. The plan will list the number, location and designation of each planned sample and the individual tests to be performed on the sample. The sampler will check the list against the available inventory of appropriate sample collection bottles to insure against shortage.
- 4.2 Transfer the data to the Laboratory Chain of Custody Form. Complete all sections of the form except those that relate to the time of delivery of the samples to the laboratory.

QP-77

4.3 Pre-label the sample collection jars. Include all requested information except time of collection. (Use a fine point Sharpie to insure that the ink remains on the label). Affix the labels to the jars.

5.0 Sampling Procedure

- 5.1 Go to the sampling point with the sample container. If not analyzing for ions or metals, use a trowel to obtain the soil. Do not touch the soil with your bare hands. Use new latex gloves with each sample to help minimize any cross-contamination.
- 5.2 Pack the soil tightly into the container leaving the top slightly domed. Screw the lid down tightly. Enter the time of collection onto the sample collection jar label.
- 5.3 Place the sample directly on ice for transport to the laboratory.
- 5.4 Complete the Chain of Custody form to include the collection times for each sample. Deliver all samples to the laboratory.

7.0 Documentation

- 7.1 The testing laboratory shall provide the following minimum information:
 - A. Client, Project and sample name.
 - B. Signed copy of the original Chain of Custody Form including data on the time the sample was received by the lab.
 - C. Results of the requested analyses
 - D. Test Methods employed
 - E. Quality Control methods and results

Field Analytical Testing

Included within this section are the results of field TPH testing and instrument calibration conducted by Whole Earth Environmental on the materials being re-deposited within the excavated pit.

August 12, 1999

Lennah Frost

(915) 684-3467

Date:

Contact:

Phone:

Client Name:EOTT Energy PartnersFacility Name:96-16Technician:M. GriffinGeo-coordinates:See Enclosed

TPH Analyzer	1152
E.C. Analyzer	N/A
VOC Analyzer	N/A
Geiger Counter	N/A
Chromatograph	N/A
HMB	N/A

Sample No.	Storik (* 198	Time	Reant	n and U/M	Sample Description
1	TPH (418.1)	7:13	1,710	ppm	sandy calichi, 5-10% clay
2	TPH (418.1)	7:13	2,230	ppm	sandy calichi, 5-10% clay
3	TPH (418.1)	7:25	4,160	ppm	sandy calichi, 5-10% clay
4	TPH (418.1)	7:40	347	ppm	sandy calichi, 5-10% clay
5	TPH (418.1)	8:07	594	ppm	sandy calichi, 5-10% clay
6	TPH (418.1)	8:22	5,140	ppm	sandy calichi, 5-10% clay
7	TPH (418.1)	8:22	4,630	ppm	sandy calichi, 5-10% clay (retest)
8	TPH (418.1)	9:45	956	ppm	sandy calichi, 5-10% clay
9	TPH (418.1)	9:45	3,550	ppm	sandy calichi, 5-10% clay
10	TPH (418.1)	9:45	781	ppm	sandy calichi, 5-10% clay
11	TPH (418.1)	9:45	2,260	ppm	sandy calichi, 5-10% clay
12	TPH (418.1)	10:20	2,420	ppm	sandy calichi, 5-10% clay
13	TPH (418.1)	10:20	633	ppm	sandy calichi, 5-10% clay
14	TPH (418.1)		1,280	ppm	sandy calichi, 5-10% clay
15	TPH (418.1)	13:17	488	ppm	sandy calichi, 5-10% clay
16	TPH (418.1)	13:17	2,740	ppm	sandy calichi, 5-10% clay
17	TPH (418.1)	15:44	5,290	ppm	sandy calichi, 5-10% clay
18	TPH (418.1)	15:44	4,780	ppm	sandy calichi, 5-10% clay (retest)
19	TPH (418.1)	16:08	1,520	ppm	sandy calichi, 5-10% clay
20	TPH (418.1)	16:08	1,620	ppm	sandy calichi, 5-10% clay

Calibration No.	Time outsite	Std. Cone.	Result	≥ u/M _{inter}	Technician
1	6:15	100	106	ppm	MG
2	6:15	200	223	ppm	MG
2	6:15	500	541	ppm	MG
4	6:15	1,000	1,043	ppm	MG
5	5.8. 8. ⁶ 9 8 8 6	and the second second	a for horderation ()	A the state of the	
6	The property is			and the state of the state	· 전문 문 동작 문 문
7	as ed a su a c		2000 6 5	all and the state of the	<u> 1997년</u> 1997년 - 신영한 북동
8	的研究情况的	Chia Salah		the production of	出一了这种那些了 了。

Reviewed & Approved

2

July 1, 1999

Lennah Frost

(915) 684-3467

Date:

Contact:

Phone:

Client Name:EOTT Energy PartnersFacility Name:96-16Technician:E. WernerGeo-coordinates:See Enclosed

TPH Analyzer	1152
E.C. Analyzer	N/A
VOC Analyzer	N/A
Geiger Counter	N/A
Chromatograph	N/A
HMB	N/A

Sample No.		Time	Result	nin ko UNI 😑	and an antipation sample Description
1	TPH (418.1)	10:15	6,110	ppm	Deep bottom 28' bgl
2	TPH (418.1)	11:20	4,790	ppm	Deep bottom 32' bgl
3	TPH (418.1)	14:15	2,120	ppm	Deep bottom 35' bgl
4	TPH (418.1)	14:15	4,860	ppm	Deep bottom 35' bgl
5	TPH (418.1)	14:15	4,820	ppm	Deep bottom 35' bgl
6					
7					
8	1				
9					
10					
11					
12					
13					
14					
15					
16]	•			
17					
18					
19					
20					

Calibration No.	Time	Sid Cane.	Result month	annan U-FAN	Technician
1	7:30	100	121	ppm	EW
2	7:30	200	201	ppm	EW
2	7:30	500	536	ppm	EW
4	7:30	1,000	1,050	ppm	EW
5	and a start of the second			and the second second	a star of the second
6					计相关结构 经非常 首
7	State Set		1 1.3 3	Will an in	전화 영감 것이 나는 것이다.
8	A 5 62 6 2 5	and the state of get	6.06.0000000	なったいない	

U 911 Reviewed & Approved

June 29, 1999

Lennah Frost

(915) 684-3467

Date:

Contact:

Phone:

Client Name:EOTT Energy PartnersFacility Name:96-16Technician:E. WernerGeo-coordinates:See Enclosed

TPH Analyzer	1152
E.C. Analyzer	N/A
VOC Analyzer	N/A
Geiger Counter	N/A
Chromatograph	N/A
НМВ	N/A

sample No.			Result		Sample Description
1	TPH (418.1)	9:45	6,320	ppm	Deep bottom 15' bgi
2	TPH (418.1)	10:35	5,960	ppm	Deep bottom 18' bgl
3	TPH (418.1)	10:35	7,360	ppm	Deep bottom 18' bgi
4	TPH (418.1)	13:20	8,510	ppm	Deep bottom 21' bgl
5	TPH (418.1)	15:45	9,810	ppm	Deep bottom 25' bgl
· 6	TPH (418.1)	18:10	6,740	ppm	Deep bottom 28' bgl
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					

Calibration No.	Time, and a second	Std. Cone.	Result man	and UIM	Technician
1	7:15	100	114	ppm	EW
2	7:15	200	207	ppm	EW
2	7:15	500	531·	ppm	EW
4	7:15	1,000	1,090	ppm	EW
5			38,3,4, % (la an	
6	ann a tha a thair A tha tha ann an tha	Service and	Alternation of the state		그 같은 것으로 가 같은
7		1997 - 2 Mar			
8	and the second				그는 눈가 잘 물고 가 같아?

Reviewed & Approved

June 28, 1999

Lennah Frost

(915) 684-3467

Date:

Contact:

Phone:

Client Name:EOTT Energy PartnersFacility Name:96-16Technician:E. WernerGeo-coordinates:See Enclosed

TPH Analyzer	1152
E.C. Analyzer	N/A
VOC Analyzer	N/A
Geiger Counter	N/A
Chromatograph	N/A
HMB	N/A

Sampla No.	Test Type		Result	U/N	The state of the second st		
1	TPH (418.1)	9:55	56	ppm	Shallow bottom 5' bgl		
2	TPH (418.1)	9:55	102	ppm	Shallow bottom 5' bgl		
3	TPH (418.1)	9:55	89	ppm	Shallow bottom 5' bgl		
4	TPH (418.1)	9:55	74	ppm	Shallow bottom 5' bgi		
5	TPH (418.1)	9:55	163	ppm	Shallow bottom 5' bg1		
6	TPH (418.1)	10:30	206	ppm	West wall 5' bgl		
7	TPH (418.1)	10:30	41	ppm	East wall 5' bgl		
8	TPH (418.1)	10:30	116	ppm	West ledge wall 6' bg!		
9	TPH (418.1)	10:30	284	ppm	East iedge wali 6' bgl		
10	TPH (418.1)	10:30	578	ppm	East deep wall 9' bgl		
11	TPH (418.1)	12:15	>10,000	ppm	Deep bottom 9' bgi		
12	TPH (418.1)	12:15	>10,000	ppm	Deep bottom 9' bgi		
13							
14							
15							
16							
17							
18							
19							
20							

Galibration No.	Time	Sidecones	Result	······································	
1	9:30	100	112	ppm	EW
2	9:30	200	251	ppm	EW
2	9:30	500	537	ppm	EW
4	9:30	1,000	1,150	ppm	EW
5					The states where
6	Service Service				The strategy of the providence of the
7					Engrade March and States
8		Conserved and		Mental Co	2日の11日間におりませい。

Reviewed & Approved

Laboratory Analytical Reports

1

Included within this section are copies of the chain of custody forms and analytical results for remediated materials being replaced within the excavation. Additionally included is a copy of the results of soil sampling conducted during the drilling of the recovery well located immediately adjacent to the excavation.

Env. mental	mental Lab of Texas, Inc.		12600 West I-20 (915) 563-1	B00 F.	jiessa, Texas 79763 AX (915) 563-1713		IO-NIT	+ CUST	1 λαο,	CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQ	RALYSIS			
jet Manager.			Phone #:										ł	<u> </u>
=// uerne	er		FAX #:					-		ANALYSIS REQUEN				
	0													. <u></u>
	2	d	Project Name :				as gH d	es 6H						<u> </u>
46-16							19 YO	d9 1						
jert Location:			Sampler Signature:	nature:) P) 1	<u>ca c</u>		0				
Louinster		+		TTA VOSSA	_		6 aA	69 z	səl	80				
	รช อ	Jur	MATRIX	PRESERVATIVE METHOD	SAMPLING	CNS/(/				
LAB # FIELD CODE AB USE) CNLY	R CONTAIN	ютАльпифV ЯЭТАW	OTHER sluge Air soil	HONE ICE HNO3 HCT	83HTO 3TAO	81EX 8050	TPH 418.	Total Metals TCLP Volati	TCLP Semi	אכו גכו 102				
5486 N/ Mail	1	46		<u> </u>	(0-30-04 11	1001				· · · · · · · · · · · · · · · · · · ·	 		_	
18487 S Wall	.			>	7-1-99/13 15	5 1			-					
ل		·	·	<u>></u>	6-30-91				·					Ī
18489 W Wal		1		~	6-2-91	-1				7				
18490 Rtm	-1				2-1-94	7					 			
						_						_	\neg	
			•			_								
x (144) en	Date: 7-2-901	Time: D	Ύ~	Rented by	dor. Rich Jail	REMARKS			l			•		
linquished by:	Date			Received by:						•				
llaquished by:	Date	ÿ Q F		Received by Laboratory:	:Traber									

"Don't Treat Your Soil Like Dirt!"

WHOLE EARTH ENVIRONMENTAL ATTN: MR. ELLIOT WERNER 19606 SAN GABRIEL HOUSTON, TEXAS 77084 FAX: 281-646-8996

Sample Type: Soil Sample Condition: Intact/Iced Project #: 96-16 Project Name: None Given Project Location: Lovington Sampling Date: See below Receiving Date: 07/02/99 Analysis Date: 07/02/99

		BENZENE	TOLUENE	ETHYLBENZENE	m_D-XYLENE	0-XYLENE	TPH (DRO) C10-C28
ELT#	FIELD CODE /SAMPLE DATE	(mg/kg)	(mafka)	(mg/kg)	(mg/kg)	(mg/kgi	(mg/kg)
18486	N Wall 06/30/99	<0.100	<0.100	<0.100	<0.100	<0.100	<10
18487	S Wali 07/01/99	<0.100	0.175	0.171	0.662	0.445	1261
18488	E Wall 06/30/99	<0.100	<0.100	<0.100	<0.100	<0.100	37
18489	W Wall 06/30/99	<0.100	<0.100	<0.100	<0.100	<0.100	<10
18490	Btm. 07/01/99	<0.100	0.219	0.196	0.759	0.484	849

,						
%IA	93	91	89	88	89	102
%EA	102	96	91	90	95	95
BLANK	<0.100	<0.100	<0.100	<0.100	<0.100	<10

METHODS: EPA SW 846-8020,5030, 8015M DRO

lan OF Juli

Raland K. Tuttle

1-6-99 Date

"Don't Treat Your Soil Like Dirt!"

WHOLE EARTH ENVIRONMENTAL ATTN: MR. MIKE GRIFFIN 19806 SAN GABRIEL HOUSTON, TEXAS 77084 FAX: 281-646-8996

Sample Type: Soil Sample Condition: Intact/ load Project #: 96-16 Project Name: None Given Project Location: Lovington Sampling Date: 07/01/99 Receiing Date: 07/02/99 Analysis Date: 07/22/99

ELT#	FIELD CODE	TPH mg/kg
18490	Bottom	2860

% INSTRUMENT ACCURACY	99
% EXTRACTION ACCURACY	111
BLANK	<10

METHODS: EPA 418.1

Kalanck Jul

Raland K. Tuttle

22-90

ENVIRONMENTAL LAB OF , INC.

"Don't Treat Your Soil Like Dirt!"

WHOLE EARTH ENVIRONMENTAL ATTN: MR. MIKE GRIFFIN 19606 SAN GABRIEL HOUSTON, TEXAS 77084 FAX: 281-646-8998

Sample Type: Soil Sample Condition: Intect/load Project #: 98-16 Backfill Project Name: EOTT Project Location: Lovington, N.M. Sampling Date: 08/12/99 Receiving Date: 08/13/99 Analysis Date: 08/16/99

ELT#	FIELD CODE	BENZENE	TOLUENE (mg/kg)	ETHYLBENZENE (mg/kg)	m.p-XYLENE (mg/kg)	o-XYLENE (mg/kg)	
19170	Litt 1	<0.100	0.598	0.722	2.48	2.64	
19171	Lift 2	<0,100	0.744	0.548	1.74	1.82	
19172	Lift 3	<0.100	0.411	0.366	1.16	1.27	
19173	Lift 4	<0.100	0.756	0.503	1.58	1.51	
19174	Lift 5	<0,100	0.742	0.515	1.91	1.98	
19175	上沂日	0.109	0.744	0.669	1.88	1.34	
19176	Lift 7	<0.100	0.337	0.228	0.786	0.654	
19177	Lift 8	<0.100	0.444	0.409	1.25	1.05	
19178	Lin 9	<0.100	0.133	0.223	0.790	0.737	
19179	Lift 10	<0.100	0.169	0.246	0.813	0.715	

%IA	9 7	90	88	86	89
%EA	89	87	85	83	85
BLANK	<0.100	<0.100	<0.100	<0.100	<0.100

METHODS: EPA SW 848-8020,5030

londk Reland K. Tuttle

8-23-99 Date

د . . به جو بر

ENVIRONMENTAL

"Don't Treat Your Soil Like Dirt!"

WHOLE EARTH ENVIRONMENTAL ATTN: MR MIKE GRIFFIN 19606 SAN GABRIEL HOUSTON, TEXAS 77084 FAX: 281-646-8996

Sample Project Project N	Type: Soit Condition: Intact/Iced : 96-16 Backfill lame: EOTT .ocation: Lovington, N.M.	Sampling Date: 08/12/99 Receiving Date: 08/13/99 Analysis Date: 08/19/99	
•	-	DRO	
		C10-C28	
ELT#	FIELD CODE	(mg/kg)	
19170	Lift 1	55	
19171	Lift 2	1994	
19172	Lift 3	562	
19173	Lift 4	2807	
19174	Lift 5	1814	
19175	Lift 6	293	
19176	Lift 7	303	
19177	Lift 8	1445	
19178	Lift 9	684	
19179	Lift 10	508	
	QUALITY CONTROL	510	
	TRUE VALUE	500	
	% PRECISION	102	

Methods: EPA SW 846-8015M DRO

elm CKJ Law

8-23-99 Date

12600 West I-20 East + Odessa, Texas 79765 + (915) 563-1800 + Fax (915) 563-1713

"Don't Treat Your Soil Like Dirt!"

WHOLE EARTH ENVIRONMENTAL ATTN: MR MIKE GRIFFIN 19606 SAN GABRIEL HOUSTON, TEXAS 77084 FAX: 281-648-8996

Sample Project #	Type: Soll Condition: Intacl/Iced : 96-16 Backfill lame: EOTT	Sampling Date: 08/12/99 Floceiving Date: 08/13/99 Analysis Date: 08/26/99
Project L	ocation: Lovington, N.M.	4
		GRO
		O6-C10
ELTI	FIELD CODE	(mg/kg)
19170	Lift 1	501
19171	Lift 2	127
19172	Lift 3	186
19173	Lin 4	126
19174	Lin 5	191
1 917 5	Lift 6	51
19176	Lift 7	54
19177	Lift 8	85
19178	Lin 9	32
19179	Lift 10	174
	QUALITY CONTROL	489
	TRUE VALUE	500
	% PRECISION	96

Methods: EPA SW 846-8015M GRO

Raland K Jul

8-28-99 Date

12600 West I-20 East • Odessa, Texas 79765 • (915) 563-1800 • Fax (915) 563-1713

						<u> </u>						
M. Golden			Fame S: (אייני: (אל) איל - 1353 אייני: (אל) איל - 1353	रू हेरह			SATINA	TAALYSIS REQUENT	-		
10/0	the Environ			•						,	······	
16	Back P. 11		Project Mame :	11 1 1								
			Sumpler Signature	grafure:					6			
- 40162 - 107	AM		MATRIX	PRESERVATIVE	SWIPLENC	T	8 ev 6		770			•
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FIELD CODE				93117 97A 	1611 +1811 SAEX ##5#/	TCLP Meials A	IDS ICLP Semi Vo ICLP Vomilie	1 <u>5108</u> 101			
TU: CLIB		· · · ·	s I		4.2	-]				·		
12-1				5		~						
					e Te	~				•• • •		
15.7					8-121	11			<u> </u>			
[9] TH 12:24 5		2			<i>c</i> 1-0	<u></u>			<u> </u>			
19175 11.47 6			11		ا تا-ھ	$\dot{\leq}$			\leq		-+	-
7 13: 1/ ML 151		7			0-12	Ż		 				
191 TT / FF 8		7		^	6-2	Ż		 	<u> </u>			
191 78 Lift 9		5		5	8-12	\mathbf{i}		-	5			-
01 + J-7 52 151				<u>-</u>	8-12	<u>}</u>						
J. C.W	8-13-99	E	• • • •	Rentred by	Sa Ann	REMARKS						
and and the	Dete			Reactived by:					`			
elinquished by:	Date			Reatined by Laboratory	-							

"Don't Treat Your Soil Like Dirt!"

WHOLE EARTH ENVIRONMENTAL ATTN: MR. MIKE GRIFFIN 19606 SAN GABRIEL HOUSTON, TEXAS 77084 FAX: 281-846-8996

Sample Type: Soil Sample Condition: Intact/load Project #: 98-18 Project Name: EOTT Project Location: Lovington, N.M. Sampling Date: 08/11/99 Receiving Date: 08/13/99 Analysis Date: TPH 08/14/99 Analysis Date: BTEX 08/16/99

ELT#	FIELD CODE /SAMPLE DATE	BENZENE (mgAg)	TOLUENE (mg/kg)	ETHYLBENZENE (mg/kg)	m.p-XYLENE (mg/kg)	o-XYLENE (mg/kg)	TPH (mg/kg)
19180	25	<0.100	<0.100	<0.100	<0.100	<0.100	<10
19781	30'	<0.100	<0.100	0.115	0,435	0.320	<10
19182	35	<0,100	<0.100	<0.100	0.250	0.173	<10
19183	40	<0.100	0.330	0.345	0.250	0.350	770
19184	45	<0.100	<0.100	<0.100	0.244	0.164	70
19185	50'	<0,100	<0.100	0.141	0.503	0.872	<10
19186	55	<0.100	<0.100	<0.100	0.169	<0.100	<10
19187	60'	<0.100	<0.100	<0.100	0.163	0.103	<10
19188	65'	<0.100	<0.100	<0.100	<0.100	<0.100	30

%IA	97	90	88	86	89	100
%EA	89	87	85	83	85	107
BLANK	<0.100	<0.100	<0.100	<0.100	<0.100	<10

METHODS: EPA SW 846-8020,5030, EPA 418.1

lander, toul

Raland K. Tuttle

8-19-99 Date

Water Investigation

Included within this section are the schematics for the recovery and monitor wells, topographical map indicating the surface gradient, and copies of the chain of custody and laboratory analytical results for water samples obtained from each well.

.

ENVIRONMENTAL

"Don't Treat Your Soil Like Dirt!"

WHOLE EARTH ENVIRONMENTAL ATTN: MR. MIKE GRIFFIN 19808 SAN GABRIEL HOUSTON, TEXAS 77084 FAX: 1-281-646-8998

Sample Type: Water Sample Condition: Intact/ Iced/ HCl Project #: 96-16 Recovery & Monitor Well Project Name: EOTT Project Location: Lovington, N.M.

Sampling Date: 08/13/99 Receiving Date: 08/13/99 Analysis Date: 08/13/99

ELT#	FIELD CODE	BENZENE	TOLUENE <u>moji</u> l	ETHYLBENZENE mg/L	m.p-XYLENE <u>mg/L</u>	o-XYLENE mail	
19191	(M) Monitor Well	0.001	0.001	<0.001	0.001	0.001	
19192	(R) Recovery Well	0.005	0.003	0.001	0.003	0.002	

% IA	96	88	85	86	89
% EA	94	91	91	90	92
BLANK	<0.001	<0.001	<0.001	<0.001	<0.001

METHODS: SW 846-8020,5030

landk Jule

Raland K. Tuttle

8-26-99 Date

ENVIRONMENTAL LAB OF , INC.

"Don't Treat Your Soil Like Dirt!"

WHOLE EARTH ENVIRONMENTAL ATTN: MR. MIKE GRIFFIN 19606 SAN GABRIEL HOUSTON, TEXAS 77084 FAX: 281-646-8998

Sample Type: Water sample Condition: Intact/load Project #: 96-16 Recovery & monitor Well Project Name: EOTT Project Location: Lovington, N.M.

Sampling Date: 08/13/99 Receiving Date: 08/13/99 Analysis Date: 8/18 & 8/19/99

DISSOLVED METALS (mg/L)

ELT	Field Code	Ag	As	Ba	Cd	Cr	Hg	РЪ	Se
19193	Monitor	<0.01	<0.002	<0.10	<0.005	<0.03	<0.002	<0.10	<0.002
	REPORTING LIMIT	0.01	0,002	0,10	0.005	0.03	0.002	0.10	0.002
	% IA % EA	102 114	102 98	101 90	96 95	99 100	95 99	101 104	109 117

METHODS: EPA SW 846-3050. 7760, 7062, 7080, 7130, 7190, 7470, 7420, 7742

alanck front

Raland K Tuttle

-26-99 Date

ENVIRONMENTAL LAB OF , INC.

"Don't Treat Your Soil Like Dirt!"

WHOLE EARTH ENVIRONMENTAL ATTN: MR. MIKE GRIFFIN 19606 SAN GABRIEL

HOUSTON, TEXAS 77084 FAX: 1-281-646-8996

Sample T	ype: Water				Sampling Dat	le: 08/13/99
Sample C	ondition: Intact/ Iced	Receiving Da	te: 08/13/99			
Project #:	96-16 Recovery & Mor	hitor Well			Analysis Date	: See Below
Project Na	ame: EOTT				-	
Project Lo	cation; Lovington, N.M.					
		Suffale	Chloride	Carbonate	Bicarbonale	Nhrate

ELT#	FIELD CODE	mg/L	ing/L	mg/L	mg/L	mg/L	
19193	Monitor	167	44	Q	130	1.9	

QUALITY CONTROL TRUE VALUE % PRECISION	53,4 50,0 107	5140 5000 103	-	•	9.9 10.0 99
ANALYSIS DATE	8/14/99	8/25/99	8/24/99	8/24/99	8/19/99

METHODS: EPA 375.4, 325.3, 310, 353.3

Ralandk Jule Raland K. Tuttle

8-26-99 Date

ENVIRONMENTAL LAB OF , INC.

. *

"Don't Treat Your Soil Like Dirt!"

WHOLE EARTH ENVIRONMENTAL ATTN: MR. MIKE GRIFFIN 19606 SAN GABRIEL HOUSTON, TEXAS 77084 FAX: 1-281-846-8996

Sample Type: Water
Sample Condition: Intact/ loed
Project #: 96-16 Recovery & Monitor Well
Project Name: EOTT
Project Location: Lovington, N.M.

Sampling Date: 08/13/99 Receiving Date: 08/13/99 Analysis Date: 08/18/99

ELTH	FIELD CODE	Ce mo/L	Na mg/L	Mg mg/L	K 	
19193	Monitor	58.0	39.8	17.06	5.10	

% INSTRUMENT ACCURACY	104	97	100	94
% EXTRACTION ACCURACY	98	98	106	94
BLANK	<1.00	<1.00	<0.50	<0.50

METHODS: SW 846-7140, 7770, 7450, 7610

ala CK Juli

<u>8.26.9</u>9 Date

ENVIRONMENTAL LAB OF 7, INC.

"Don't Treat Your Soil Like Dint!"

WHOLE EARTH ENVIRONMENTAL ATTN: MR. MIKE GRIFFIN 19606 SAN GABRIEL HOUSTON, TEXAS 77084 FAX: 281-646-8996

Sample Type: Water Sample Condition: Intact/Iced Project #: 96-16 Recovery & Monitor Well Project Name: EOTT Project Location: Lovington, N.M.

Sampling Date: 08/13/99 Receiving Date: 08/13/99 Extraction Date: 08/17/99 Analysis Date: 08/23/99 Field Code: Monitor

ELT# 19193

	REPORTING	Concentration			
8270 COMPOUNDS	LIMIT	<u>/L</u>	961A	RPD	% EA
Acenaphthene	0.0100	ND	80	10.22	72
Acenaphthylene	0.0100	ND	80		
Anthracene	0.0100	ND	94		
Benzo (a) anthracene	0.0100	ND	104		
Benzo (a) pyrene	0.0100	ND	106		
Benzo (b) fluoranthene	0.0100	ND	102		
Benzo (g.h.i) perylene	0.0100	ND	118		
Banzo (k) fluoranthene	0.0100	ND	110		
4-Bromophenyi-phenylether	0.0100	ND	98		
Butylbenzylphthalate	0.0100	ND	108		
Carbazole	0.0100	ND	96		
4-Chloro-3-methylphenol	0.0100	ND	96	13.51	79
4-Chloroaniline	0.0100	ND	82		
Bis (2-chloroethoxy) methane	0.0100	ND	90		
Bis (2-chloroethyl) ether	0.0100	ND	102		
Bis (2-chloroisopropyl) ether	0.0100	ND	74		
2- Chloronaphthalene	0.0100	ND	84		
2-Chlorophenol	0.0100	ND	88	1.40	72
4-Chlorophenyl-phenylether	0,0100	ND	90		
Chrysene	0.0100	ND	126		
Dibenzofuran	0.0100	ND	86		
Dibenz (a.h) anthracene	0.0100	ND	138		
1.2-Dichlorobenzene	0.0100	ND	82		
1.3-Dichtorobenzene	0.0100	ND	80		
1.4-Dichlorobenzene	0.0100	ND	84	1.57	63
3.3-Dichlorobenzidine	0.0200	ND	N/A		
2.4-Dichlorophenol	0.0100	ND	92		
Diethylphthalate	0.0100	ND	88		
2,4-Dimethylphenol	0.0100	ND	64		
Dimethylphthalate	0.0100	ND	86		
Di-n-Butylphthalate	0.0100	ND	104		
4,6-Dinitro-2-methylphenol	0.0250	ND	128		
2.4-Dinitrophenol	0.0250	ND	114		
2.4-Dinitrotoluene	0.0100	ND	108	8.70	84

ELT# 19193

	Reporting	Concentration		_		
8270 COMPOUNDS	Limits	mg/L	%IA	RPD	%EA	ł
2,6-Dinitrotoluene	0.0100	ND	108			
DI-n-octylphthalate	0.0100	ND	122			
Fluoranthene	0.0100	ND	102			
Fluorene	0.0100	ND	80			
Hexachlorobenzene	0.0100	ND	108			
Hexachlorobutadiene	0.0100	ND	92			
Hexachlorocyclopentadiene	0.0100	ND	62			
Hexachloroethane	0.0100	ND	82			
Indeno (1.2,3-cd) pyrene	0.0100	ND	122			
Isophorone	0.0100	ND	104			
2-Methylnaphthalene	0.0100	ND	88			
2-Methylphenol	0.0100	ND	88			
3 and 4-Methylphenol	0.0100	ND	82			
Naphthalene	0.0100	ND	80			
2-Nitroaniline	0.0250	ND	104			
3-Nitroaniline	0.0250	ND	104			
4-Nitroaniline	0.0250	ND	90			
Nitrobenzene	0.0100	ND	98			
2-Nitrophenol	0.0100	ND	96			
4-Nitrophenol	0.0250	ND	114	8.70	84	
N-Nitroso-Di-n-Propylamine	0.0100	ND	86	4.14	74	
N-Nitrosodiphenylamine	0.0100	ND	94			
Pentachlorophenol	0.0250	ND	88	6.54	79	
Phenanthrene	0.0100	ND	96			
Phenol	0.0100	ND	110	3.51	87	
Pyrena	0.0100	ND	112	2.44	83	
Bis (2-ethylhexyl) phthalate	0.0100	ND	104			
1,2,4-Trichlorobenzene	0.0100	ND	88	1.38	73	
2.4.5-Trichlorophanol	0.0250	ND	94			
2.4.6-Trichlorophenol	0.0100	ND	94			

.

METHOD: EPA SW 846-8270C. 3510 SURROGATES

%	RECOVERY

2-Fluorophenol SURR	42
Phenol-d5 SURR	30
Nitrobenzene-d5 SURR	67
2-Fluorobiphenyl SURR	64
2.4.6-Tribromophenol SURR	101
Terphenyl-d14 SURR	54

Raland K. Tuttle

8-26-97 Date

"Don't Treat Your Soil Like Dirt!"

	WHOLE EART ATTN: MR. MI 19606 SAN GA HOUSTON, TE FAX: 281-646-	KE GRIFFIN BRIEL EXAS 77084	ENTAL		Page 1 of 2
Sample Type: Water Sample Condition: Intact/iced Project #: 96-18 Recovery & Monitor 1 Project #: 50-17		0.00		Sampling Date Receiving Date Analysis Date:	le: 08/13/99
Project Name: EOTT Project Location: Lovington, N.M.					
Field Code: Monitor					
Volatiles EPA SW 846-8260, (mg/l)	ELT#				
Compounds	19193	PQI.	%Dev	Method	% EA
	10130			Blank	
Chloromethane	ND	0.001	-19.5	ND	
Vinyl chloride	ND	0.001	-23.0	ND	
Bromomethane	ND	0.001	-0.7	ND	
Chloroethane	ND	0.001	2.5	ND	
Trichlorofluoromethane	ND	0.001	-14.2	ND	
Acetone	ND	0.010	-10.0	ND	
1.1-Dichloroethene	ND	0.001	9.1	ND	90
lodomethane	ND	0.010	-14.3	ND	
Vinyl Acetate	ND	0.010	11.2	ND	
Carbon Disulfide	ND	0.001	2.6	ND	
Methylene Chloride	ND	0.001	-2.4	ND	
trans-1.2-Dichloroethene	ND	0.001	11.0	ND	
1.1-Dichloroethane	ND	0.001	10.9	ND	
2-Butanone	ND	0.010	16.9	ND	
cis-1,2-dichloroethene	ND	0.001	11.5	ND	
Bromochloromethane	ND	0.001	6.2	ND	
Chloroform	ND	0.001	0.8	ND	
1.1,1-Trichioroethane	ND	0.001	12.6	ND	
Carbon Tetrachloride	ND	0.001	6.9	ND	
Benzene	ND	0.001	11.1	ND	93
1,2 Dichlomethane	ND	0.001	8.0	ND	
Trichloroethene	ND	0.001	0.2	ND	99
1,2-Dichloropropane	ND	0.001	5.4	ND	
Dibromomethane	ND	0.001	-1.2	ND	
Bromodichloromethane	ND	0.001	3.0	ND	
2-Hexanone	ND	0.010	32.9	ND	
4-Methyl 2-Pentanone	ND	0.010	24.6	ND	
cis 1,3 Dichloropropene	ND	0.001	-1.7	ND	
Toluene	0.001	0.001	-0.7	ND	101
trans 1,3-Dichloropropene	ND	0.001	1.7	ND	
1,1,2-Trichloroethane	ND	0.001	10.8	ND	
Dibromochloromethane	ND	0.001	-2.0	ND	

	19608 SAN GA HOUSTON, TE FAX: 281-646-	BRIEL XAS 77084			r-age ≈ or ≈
Sample Type: Water			:	Sampling Date	e: 08/13/99
Sample Condition: Intact/loed			1	Receiving Dat	e: 08/13/99
Project #: 96-16 Recovery & Monitor	Well			Analysis Date:	08/25/99
Project Name: EOTT				-	
Project Location: Lovington, N.M.					
Field Code: Monitor					
Volatiles EPA SW 846-8260, (mg/l)	ELT#	PQL	%Dev	Method	% EA
Compounds	19193			Blank	
Tetrachloroethene	ND	0.001	-5.1	ND	
Chlorobenzene	ND	0.001	4.6	ND	98
1,1,1,2-Tetrachloroethane	ND	0.001	-6.6	ND	
Ethylbenzene	ND	0.001	-5.3	ND	
m&p Xylene	ND	0.001	-7.3	ND	
o-Xylene	0.001	0.001	-9.6	ND	
Styrene	ND	0.001	-5.7	ND	
Bromoform	ND	0.001	12,1	ND	
1,1,2,2-Tetrachloroethane	ND	0.001	5.1	ND	
1,2,3-Trichloropropane	ND	0.001	-21.7	ND	
1.4-Dichlorobenzene	ND	0.001	4.1	ND	
1,2-Dichlorobenzene	ND	0.001	7.4	ND	
1,2-Dibromo-3-Chloropropane	ND	0.001	35.4	ND	

WHOLE EARTH ENVIRONMENTAL

ATTN: MR. MIKE ORIFFIN

SYSTEM MONITORING COMPOUNDS	% RECOVERY
Dibromofluoromethane	107
Taluen e-d8	100
4-Bramolluorobenzene	98

ND=<PQL

Raland K. Tutte B-26-99 Raland K. Tutte Date

Page 2 of 2

Х

EOTT Energy Partners

RECEIVED

JUL 0 7 1999

ENVIRONMENTAL BUREAU OIL CONSERVATION DIVISION

Site 96-16 Remediation Protocol

Whole Earth Environmental 19606 San Gabriel Houston, Tx. 77084

Whole Earth Environmental, Inc.

19606 San Gabriel, Houston, Texas 77084 281/492-7077 • Fax: 281/646-8996

RECEIVED

JUL 0 7 1999

Environmental Bureau Oil Conservation Division

July 1, 1999

New Mexico Oil Conservation Division 2040 South Pacheco Sante Fe, New Mexico 87505

Attn: Bill Olson

Dear Bill:

Enclosed, please find a copy of our remediation protocol for Eott Energy's 96-16 site. Though we have not yet sampled the ground water beneath the spill site, I'm fairly confidant that we will encounter free phase product on the water table when we do actually core it down.

Anticipating this result, I've gone ahead with a remediation protocol in which the plume will be excavated to a TPH concentration of <5,000 ppm, a liner installed and the remediated materials re-deposited within the lined excavation at <5,000 ppm TPH concentrations. I took your and Mr. Anderson's advise and included a top cover for the encapsulated plume so as to insure that it is completely sealed off in all directions.

We've found an oil / water separator that is powered by a windmill and which promises recovery rates of up to 720 gallons per day of free phase product. If this technology works at only one-hundredth of it's stated potential, we will have discovered an efficient, low cost method of obtaining product recovery at remote locations.

As we are midway into this project, I would sincerely appreciate it if you could give the enclosed plan your earliest possible review.

Warmest personal regards,

President [#] Whole Earth Environmental, Inc.

Site Profile

Location

The spill site is located approximately two miles east of the Navajo Refinery located on NM Hwy. 18 between Hobbs and Lovington, New Mexico. (See attached geo-coordinate maps). There are no surface streams or water wells within one mile of the site.

Previous Investigations

The site has been previously characterized in two reports. The first was an initial spill response report generated by Environmental Spill Control and dated May 20, 1996. The second was generated by KEI (Job No. 610088-1) dated June 26, 1998.

KEI took two series of soil borings at the site. The first soil boring (SB-1) indicated TPH concentrations of 33.4 ppm and non-detectable concentrations of BTEX at a depth of 32.5' below the excavated portion of the site. The boring was taken from the excavated portion of the site approximately 9' below ground level, therefore the total depth to the sampling point is 41.5'. The second soil boring showed TPH concentrations of 570 ppm and total BTEX of 5.97 ppm also at a depth of 41.5' below ground level. (KEI test summary enclosed).

Remediation History

The site was previously excavated to a depth of approximately 9' at the southern end of the spill and ramped to the north, (see enclosed photographs). Based on the previous analytical data, Whole Earth Environmental attempted to continue the excavation to a depth sufficient to achieve contaminant concentrations of <100 ppm TPH, <10 ppm benzene and <50 ppm total BTEX.

The excavation efforts were discontinued at a total depth of 35' below ground level when field testing revealed TPH concentrations <1,000 ppm. The excavation was then sampled on all four side-walls and bottom, contoured and graded to accept a liner.

TABLE I

SUMMARY OF SOIL RESULTS - BTEX AND TPH TEXAS - NEW MEXICO PIPE LINE COMPANY TNM-96-16 LEA COUNTY, NEW MEXICO

SAMPLE LOCATION	SAMPLE DATE	DEPTH (feet)	BENZENE (mg/kg)	TOLUENE (mg/kg)	ETHYL- BENZENE (mg/kg)	XYLENES (mg/kg)	TOTAL BTEX (mg/kg)	TPH (mg/kg)
SB-1	03/09/98	_0-2.5	3.08	56.60	59.80	136.00	255.48	9570
SB-1	03/09/98	15 - 17.5	4.00	28.40	15.00	65.20	112.60	4020
SB-1	03/09/98	30 - 32.5	ND	ND	ND	ND	ND	33.4
SB-2	03/09/98	0 - 2.5	2.19	0.74	4.40	22.06	29.39	2110
SB-2	03/09/98	15 - 17.5	ND	ND	0.036	0.273	0.309	428
SB-2	03/09/98	30 - 32.5	0.029	0.040	0.910	4.978	5.957	570
l								

~

Protocol

This section contains a copy of the remediation protocol we plan to employ on this project.

4.4 Prior to any excavation, New Mexico One Call will be notified. The One Call notification number will be included within the closure report. If lines are discovered within the area to be excavated they shall be marked with pin flags on either side of the line at maximum five foot intervals.

5.0 Remediation Procedure

5.1 All soils containing a TPH concentration >5,000 ppm, and all soils containing a benzene concentration>10ppm or a total BTEX concentration >50ppm will be excavated and placed immediately adjacent to the excavation. The side walls and bottom of the excavation will be field tested for TPH and BTEX concentrations in accordance with WEQP-06 and WEQP-19.

5.2The Hobbs branch of the OCD will be notified to witness the final confirmation sampling of the side walls and bottom of the excavation. Samples will be collected in accordance with WEQP-77 and analyzed for TPH and BTEX.

5.3 The excavated soils will be mixed and blended with sub-strait materials to achieve a maximum concentration of 5,000 ppm TPH, 10 ppm benzene and 50 ppm total BTEX concentration. A confirmation composite sample will be collected and analyzed in accordance with 5.2 of this protocol.

6.0 Modeling

6.1 The bottom hole benzene concentrations and the depth to ground water will be determined and included within a VADSAT contaminant migration model. The modeled results should project that no benzene concentrations exceeding NMWQCC standards of 10 ppb shall be allowed to impact the ground water within a 100 year model span.

6.2 The modeled results will be submitted to the Sante Fe office of the NMOCD prior to any materials being re-deposited within the excavation.

7.0 Liner

7.1 Upon approval by the NMOCD, Whole Earth will install a 30 mil polyethylene liner within the excavation. The liner will extend up the side walls to a point within 5' of the ground surface. The excavated soils will be replaced within the liner at concentrations not to exceed those described in paragraph 5.2 of this protocol.

7.2 An additional polyethylene top cover will be erected atop the excavation and overlapped with the bowl liner to insure that no surface water will infiltrate the main plume area. The top liner should be slightly domed to accommodate subsidence and to direct a drainage path away from the main plume. The top of the liner shall be at least 3' below ground level.

8.0 Groundwater Remediation and Monitoring

8.1 A recovery well will be drilled, cased and developed to a total depth of 105' and will incorporate a minimum of 30' of 4" slotted PVC screen. The well will be backfilled with cuttings, sand packed sealed with bentonite. The top 10' of the well will be cemented to surface.

8.2 A windmill will be erected over the recovery well. The windmill will be equipped with a "down hole" oil-water separator. The free phase product will be pumped to surface and directed to an above ground storage tank for subsequent removal for re-processing. The storage tank will be netted to insure that it poses no risk to wildlife.

8.3 The lateral extent of the plume will be defined by a 2" monitor well constructed with a minimum of 20' of slotted screen. All other construction details will be in accordance with paragraph 8.1 of this protocol.

9.0 Monitoring

9.1 Both the recovery well and delineation well will be initially sampled for the presence and concentrations of RCRA 8 metals, BTEX, criteria PAH's, chlorides and major cations and anions. Sample collection will be in accordance with WEQP-76.

9.2 Both wells will be sampled on a quarterly basis for the presence and concentration of BTEX. After four consecutive quarters in which the BTEX concentrations within the source and monitor wells show BTEX concentrations in accordance with NMWQCC standards, the wells will be re-analyzed for RCRA 8 metals, criteria PAH's, chlorides and major cations and anions. If the test results show concentrations within acceptable NMWQCC standards, EOTT will request final site closure. Once approved, the recovery and monitor wells will be grouted to surface and the site re-contoured to match background topography.

10.0 Closure Report

10.1 At the conclusion of the project, Whole Earth shall prepare a closure report which contains the following minimum information:

- Photographs of the location prior to remediation
- Photographs of the location at time of final closure
- Plat map showing sampling locations
- All pre-closure contaminant concentrations
- Contaminant concentrations at the conclusion of the project
- Copies of this protocol and all testing procedures
- Copies of each days tailgate safety meeting
- Copies of daily calibration logs for each instrument
- Independent split sample laboratory analyses
- Copies of the VADSAT contaminate migration model
- MSDS sheets of the liner
- Construction details of the monitor and recovery wells
- A hydrogeological survey map indicating the depth and direction of the groundwater and locations of the recovery and monitor wells

Procedures

• •

This section contains copies of the detailed sample collection and field testing procedures we plan to employ on this project.

.

WHOLE EARTH ENVIRONMENTAL QUALITY PROCEDURE

Procedure for Conducting Field TPH Analysis

Completed By:	 Approved By:	Effective Date:	02/15/97

1.0 Purpose

To define the procedure to be used in conducting total percentage hydrocarbon testing in accordance with EPA Method 418.1 (modified) using the "MEGA" TPH Analyzer.

2.0 Scope

This procedure is to be used for field testing and on site remediation information.

3.0 Procedure

- 3.1 The G.A.C. "MEGA" TPH analyzer is an instrument that measures concentrations of aliphatic hydrocarbons by means of infra-red spectrometry. It is manufactured to our specifications and can accurately measure concentrations from two parts per million through 100,000 parts per million. The unit is factory calibrated however minor calibration adjustments may be made in the field. Quality Procedure 25 defines the field calibration methods to be employed.
- 3.2 Prior to taking the machine into the field, insert a 500 ppm and 5,000 ppm calibration standard into the sample port of the machine. Zero out the Range dial until the instrument records the exact standard reading.
- 3.3 Once in the field, insert a large and small cuvette filled with clean Freon 113 into the sample port of the machine. Use the range dial to zero in the reading. If the machine does not zero, do not attempt to adjust the span dial. Immediately implement Quality Procedure 25.

- 3.4 Place a 100 g. weight standard on the field scale to insure accuracy. Zero out the scale as necessary.
- 3.5 Tare a clean 100 ml. sample vial with the Teflon cap removed. Add 10 g. (+/- .01 g), of sample soil into the vial taking care to remove rocks or vegetable matter from the sample to be tested. If the sample is wet, add up to 5 g. silica gel or anhydrous sodium sulfate to the sample after weighing.
- 3.6 Dispense 10 ml. Freon 113 into the sample vial.
- 3.7 Cap the vial and shake for five minutes.
- 3.8 Carefully decant the liquid contents of the vial into a filter/desiccant cartridge and affix the cartridge cap. Recap the sample vial and set aside.
- 3.9 Insert the metal tip of the pressure syringe into the cap opening and slowly pressurize. WARNING: APPLY ONLY ENOUGH PRESSURE ON THE SYRINGE TO EFFECT FLOW THROUGH THE FILTERS. TOO MUCH PRESSURE MAY CAUSE THE CAP TO SEPARATE FROM THE BODY OF THE CARTRIDGE. Once flow is established through the cartridge direct the flow into the 5 cm. cuvette until the cuvette is full. Reverse the pressure on the syringe and remove the syringe tip from the cartridge cap. Set the cartridge aside in vertical position.
- 3.10 The cuvette has two clear and two frosted sides. Hold the cuvette by the frosted sides and carefully insert into the sample port of the machine. Read the right hand digital read-out of the instrument. If the reading is less than 1,000 ppm. the results shall be recorded in the field Soil Analysis Report. If the result is higher than 1,000 ppm, continue with the dilution procedure.

4.0 Dilution Procedure

4.1 When initial readings are greater than 1,000 ppm using the 5 cm. cuvette, pour the contents of the 5 cm. cuvette into a 1 cm. cuvette. Insert the 1. cm cuvette into the metal holder and insert into the test port of the instrument.

- 4.1 Read the left hand digital read-out of the machine. If the results are less than 10,000 ppm, record the results into the field Soil Analysis Report. If greater than 10,000 ppm, continue the dilution process. Concentrations >10,000 ppm are to be used for field screen purposes only.
- 4.2 Pour the contents of the small cuvette into a graduated glass pipette. Add 10 ml. pure Freon 113 into the pipette. Shake the contents and pour into the 1cm. cuvette. Repeat step 4.2. adding two zeros to the end of the displayed number. If the reported result is greater than 100,000 ppm. the accuracy of further readings through additional dilutions is extremely questionable. Do not use for reporting purposes.
- 4.4 Pour all sample Freon into the recycling container.

5.0 Split Samples

5.1 Each tenth test sample shall be a split sample. Decant approximately one half of the extraction solvent through a filter cartridge and insert into the instrument to obtain a concentration reading. Clean and rinse the cuvette and decant the remainder of the fluid to obtain a second concentration reading from the same sample. If the second reading varies by more than 1% from the original, it will be necessary to completely recalibrate the instrument.

WHOLE EARTH ENVIRONMENTAL QUALITY PROCEDURE

Sampling and Testing Protocol BTEX Speciation in Soil

Completed By:	Approved By:	Effective Date:	1	1

1.0 Purpose

This procedure is to be used to determine the concentrations of Benzene, Toluene, Ethyl-Benzene and Xylene (BTEX) in soils.

2.0 Scope

This procedure is to be used as the standard field measurement for soil BTEX concentrations. It is not to be used as a substitute for full spectrographic speciation of organic compounds.

3.0 Procedure

3.1 Sample Collection and Preparation

3.1.1 Collect at least 500 g. of soil from the sample collection point. Take care to insure that the sample is representative of the general background to include visible concentrations of hydrocarbons and soil types. If necessary, prepare a composite sample of soils obtained at several points in the sample area. Take care to insure that no loose vegetation, rocks or liquids are included in the sample(s).

3.1.2 The soil sample(s) shall be immediately inserted into a one quart or larger polyethylene freezer bag and sealed. When sealed, the bag should contain a nearly equal space between the soil sample and trapped air.

3.1.3 The sealed samples shall be allowed to set for a minimum of five minutes at a minimum temperature of 70° F.

3.1.4 The sealed sample bag should be massaged to break up any clods, and to provide the soil sample with as much exposed surface area as practically possible.

3.2 Sampling Procedure

3.2.1 The instrument to be used in conducting VOC concentration testing shall be a Photovac Ion-chromatograph with BTEX Module. Prior to use the instrument shall be zeroed out in accordance with QP-55.

3.2.2 Carefully open one end of the collection bag and insert the probe tip into the bag taking care that the probe tip not touch the soil sample or the side walls of the bag. If VOC analysis was conducted on the sample prior to BTEX analysis, care should be taken to insure that a sufficient air volume exists in the bag to provide accurate results. If the available air space within the bag is insufficient to run a full analysis, the sample shall be discarded.

3.2.3 Set the instrument to retain the highest result reading value. Record the reading onto the Field Analytical Report Form and additionally enter the location code into the instrument data logger.

4.0 After testing, the soil samples shall be returned to the sampling location, and the bags collected for off-site disposal. IN NO CASE SHALL THE SAME BAG BE USED TWICE. EACH SAMPLE CONTAINER MUST BE DISCARDED AFTER EACH USE.

WHOLE EARTH ENVIRONMENTAL QUALITY PROCEDURE

Procedure for Instrument Calibration and Quality Assurance Analysis for General Analysis "MEGA" TPH Analyzer

				<u> </u>
Completed By:	Approved By:	Effective Date:	/	/

1.0 Purpose

This procedure outlines the methods to be employed in calibrating the GAC MEGA TPH analyzer and for determining and reporting of accuracy curves.

2.0 Scope

This procedure shall be followed each day that the instrument is used.

3.0 Procedure

3.1 Turn the instrument on and allow to warm up with no cuvette in the receptacle. The instrument will take between five and ten minutes to come to equilibrium as can be determined by the concentration display readings moving a maximum of 5 ppm on the low scale. If the instrument continues to display erratic readings greater than 5 ppm, remove the cover and check both the mirrors and chopper to insure cleanliness.

3.2 All TPH standards shall be purchased form Environmental Resources Corporation and as a condition of their manufacture subject to independent certification by third party laboratories. Each standard is received with a calibration certificate.

3.3 Insert the low range (100 ppm) calibration standard into the receiving port and note the result on the right hand digital display. If the displayed reading is less than 98 ppm or greater than 102 ppm, remove the circuit board cover panel and zero out the instrument in accordance with QP-26.

(Note: Except in New Mexico, set the span to read 105% of actual standard).

3.4 Repeat the process with the mid range (500 ppm) calibration standard. If the displayed reading is less than 490 ppm or greater than 510 ppm zero out the span as described in QP-26.

3.5 Repeat the process again with the 1,000 and 5,000 ppm calibration standards.

3.6 Pour clean Freon 113 into a filter cartridge and extract into 10 ml cuvette. Insert the cuvette into the receiving port and zero out the instrument reading using the far right adjustment knob on the instrument. Repeat using the 1 ml cuvette and the left hand zero dial.

4.0 Determining & Reporting Instrument Accuracy

4.1 After making the fine adjustment with the zero dials reinsert each calibration standard into the instrument and note the concentration values. If <u>any concentration value exceeds 2% of the standard set point, repeat all</u> steps in section 3.0 of this Procedure. Note the actual concentration values displayed by the instrument after each calibration standard.

4.2 The four calibration standards shall be used in reporting span deviation as follows:

	Standards Range	······································	
100 ppm	500 ppm	1,000 ppm	5,000 ppm
0-250 ppm	251-750 ppm	751-2,500 ppm	2,501-10,000 ppm

4.3 Divide the actual instrument reading value of each calibration sample by the concentration shown on the standard (e.g., 501 ppm instrument reading / 500 ppm standard = 1.002%). These readings shall be reported for each test performed.

5.0 Re-calibration

5.1 If any sample exceeds the concentration of 1,000 ppm on the 10 ml cuvette or 10,000 ppm on the 1 ml cuvette, the cuvette must be thoroughly rinsed with clean Freon and the instrument re-zeroed in accordance with 3.6 of this procedure.

WHOLE EARTH ENVIRONMENTAL QUALITY PROCEDURE

Procedure for Instrument Calibration and Quality Assurance Analysis for Photovac Gas Chromatograph

Completed By:	Approved By:	Effective Date:	1	1

1.0 Purpose

This procedure outlines the methods to be employed in calibrating the Photovac analyzer in the BTEX mode and for determining and reporting of accuracy curves.

2.0 Scope

This procedure shall be followed each day that the instrument is used.

3.0 Procedure

Start-up

3.1 Turn the instrument on and press the Battery button. A battery status report will appear on the screen. If the charge level is less than 8.0, either charge the battery or insert a fresh battery pack.

3.2 Open carrier gas valve on right side of instrument. The instrument is now tuning the lamp. If any "boot" problems occur during warm-up, the "chck" symbol will appear on the screen. Pressing TUTOR will prompt the instrument to provide details. The instrument will not progress beyond the start-up mode until all prompts are cleared.

3.3 The next screen display will be "purj" and will last approximately ten minutes. The instrument is purging the column.

Calibrate

3.4 Connect the regulator to cylinder of calibration gas. Connect calibration adapter and tee assembly to both the regulator and instrument. **DO NOT FORCE ANY CONNECTION!**

3.5 Inspect the open end of the tee vent to insure unobstructed flow.

3.6 Enter CAL on the key pad. The instrument will query "benzene?". Following the prompts and using the key pad, set the concentrations to those defined on the calibration gas bottle. Follow the same procedure for toluene, ethyl-benzene and xylene. After each compound, the instrument will read that the next analysis will be a calibration.

3.7 Press ENTER on key pad. The instrument will calibrate itself for the concentrations specified.

Confirmation Sample

3.8 After each calibration, run the calibration gas through the instrument once again. The display readings should be <u>exactly</u> those of the concentrations displayed on the calibration gas bottle. If they are not, the instrument needs factory calibration; do not use.

4.0 Re-calibration

4.1 The instrument is designed with software that prompts you to recalibrate each day, each thirty minutes of use, and after running a sample with high concentrations of one or more of the detected compounds.

5.0 Reporting Instrument Accuracy

5.1 The instrument accuracy as certified by the factory is 15% within one decade of instrument set point. Lower detection limits are 0.1 ppm for benzene and 1.0 ppm for toluene, ethylbenzene and xylene.

5.2 These standards and detection limits must be shown on all reports in which the instrument is used.

QP-76 (Rev. A)

WHOLE EARTH ENVIRONMENTAL

QP-76 (Rev. A)

WHOLE EARTH ENVIRONMENTAL QUALITY PROCEDURE

Procedure for Obtaining Water Samples (Cased Wells) Using One Liter Bailer

······································				
Completed By:	Approved By:	Effective Date:	1	/

1.0 Purpose

This procedure outlines the methods to be employed in obtaining water samples from cased monitoring wells.

2.0 Scope

This procedure shall be used for developed, cased water monitoring wells. It is not to be used for standing water samples such as ponds or streams.

3.0 Preliminary

- 3.1 Obtain sterile sampling containers from the testing laboratory designated to conduct analyses of the water. The shipment should include a Certificate of Compliance from the manufacturer of the collection bottle or vial and a Serial Number for the lot of containers. Retain this Certificate for future documentation purposes.
- 3.2 The following table shall be used to select the appropriate sampling container, preservative method and holding times for the various elements and compounds to be analyzed.

Compound to be Analyzed	Sample Container Size	Sample Container Description	Cap Requirements	Preservative	Maximum Hold Time
BTEX	40 ml.	VOA Container	Teflon Lined	НСІ	7 days
ТРН	1 liter	clear glass	Teflon Lined	HCI	28 days
PAH	1 liter	clear glass	Teflon Lined	Ice	7 days
Cation / Anion	1 liter	clear glass	Teflon Lined	None	48 Hrs.
Metals	1 liter	HD polyethylene	Any Plastic	Ice / HNO ₃	28 Days
TDS	300 ml.	clear glass	Any Plastic	Ice	7 Days
4.0 Chain of Custody

- 4.1 Prepare a Sample Plan. The plan will list the well identification and the individual tests to be performed at that location. The sampler will check the list against the available inventory of appropriate sample collection bottles to insure against shortage.
- 4.2 Transfer the data to the Laboratory Chain of Custody Form. Complete all sections of the form except those that relate to the time of delivery of the samples to the laboratory.
- 4.3 Pre-label the sample collection jars. Include all requested information except time of collection. (Use a fine point Sharpie to insure that the ink remains on the label). Affix the labels to the jars.

5.0 Bailing Procedure

- 5.1 Identify the well from the site schematics. Place pre-labeled jar(s) next to the well. Remove the bolts from the well cover and place the cover with the bolts nearby. Remove the plastic cap from the well bore by first lifting the metal lever and then unscrewing the entire assembly.
- 5.2 The well may be equipped with an individual 1 liter bailing tube. If so, use the tube to bail a volume of water from the well bore equal to 10 liters for each 5' of well bore in the water table. (This assumes a 2" dia. Well bore).
- 5.3 Take care to insure that the bailing device and string do not become crosscontaminated. A clean pair of rubber gloves should be used when handling either the retrieval string or bailer. The retrieval string should not be allowed to come into contact with the ground.
- 6.0 Sampling Procedure
 - 6.1 Once the well has been bailed in accordance with 5.2 of this procedure, a sample may be decanted into the appropriate sample collection jar directly from the bailer. The collection jar should be filled to the brim. Once the jar is sealed, turn the jar over to detect any bubbles that may be present. Add additional water to remove all bubbles from the sample container.
 - 6.2 Note the time of collection on the sample collection jar with a fine Sharpie.

QP-76

QP-76

- 6.3 Place the sample directly on ice for transport to the laboratory. The preceding table shows the maximum hold times between collection and testing for the various analyses.
- 6.4 Complete the Chain of Custody form to include the collection times for each sample. Deliver all samples to the laboratory.

7.0 Documentation

- 7.1 The testing laboratory shall provide the following minimum information:
 - A. Client, Project and sample name.
 - B. Signed copy of the original Chain of Custody Form including data on the time the sample was received by the lab.
 - C. Results of the requested analyses
 - D. Test Methods employed
 - E. Quality Control methods and results

QP-77

WHOLE EARTH ENVIRONMENTAL QUALITY PROCEDURE

Procedure for Obtaining Soil Samples for Transportation to a Laboratory

Completed By:	Approved By:	Effective Date:	/	1
	11		,	

1.0 Purpose

This procedure outlines the methods to be employed when obtaining soil samples to be taken to a laboratory for analysis.

2.0 Scope

This procedure shall be used for developed, cased water monitoring wells. It is not to be used for standing water samples such as ponds or streams.

3.0 Preliminary

- 3.1 Obtain sterile sampling containers from the testing laboratory designated to conduct analyses of the soil. The shipment should include a Certificate of Compliance from the manufacturer of the collection bottle or vial and a Serial Number for the lot of containers. Retain this Certificate for future documentation purposes.
- 3.2 If collecting TPH, BTEX, RCRA 8 metals, cation / anions or O&G, the sample jar may be a clear 4 oz. container with Teflon lid. If collecting PAH's, use an amber 4 oz. container with Teflon lid.

4.0 Chain of Custody

- 4.1 Prepare a Sample Plan. The plan will list the number, location and designation of each planned sample and the individual tests to be performed on the sample. The sampler will check the list against the available inventory of appropriate sample collection bottles to insure against shortage.
- 4.2 Transfer the data to the Laboratory Chain of Custody Form. Complete all sections of the form except those that relate to the time of delivery of the samples to the laboratory.

Modeling Data Entry Eott Energy Corporation Site 96-16 Benzene Migration Model

Control DataEntryU / M.DeterministicYesMonte CarloNoEvaporation of ChemicalsNoAdsorbed Phase BiodecayNoLow Permeability Layer Below ContaminationNot Present

Source Data		
Waste Zone Thickness	40	Feet
Waste Zone Area	800	Square Feet
Ratio of Length to Width	1:1	
Soil Thickness Above Waste Zone	35	Feet
Contaminant Concentration in Soil / Waste Zone	10	ppm (benzene)
Hydrocarbon Concentration in Soil / Waste Zone	5,000	ppm

Chemical Data Benzene

Yes

Unsaturated Zone		
Biodecay Cooefficient	0.001	1 / day
Organic Carbon Fraction	1.00E-06	
Soil Database	Sandy Clay	
Hydrological Database	Sedimentary	
Unsaturated Zone Thickness	9.23	meter
Soil Database	Sandy Clay	
van Genuchten n	1.09	(Default)
Residual Water Content	0.01001	
Unsaturated Zone Dispersivity	0	Internally

Saturated Zone		
Biodecay Cooefficient	0.001	1 / day
Aquifer Porosity	0.2	(Default)
Organic Carbon Fraction	0	Internally
Longitudinal Dispersivity	0	Internally
Ratio of Long. / Trans. Dispersivities	3	
Ratio of Trans. / Vert. Dispersivities	87	Default
Hydrological Database	Sedimentary	
Aquifer Thickness	10	meters
Aquifer Gradient	0.023	
Saturated Hydraulic Conductivity	0.13	meters / day

Net Infiltration Rate	0.00001 ft. / day

JAN 22 1999

ENVIRONMENTAL BUREAU OIL CONSERVATION DIVISION

BASELINE RISK ASSESSMENT REPORT

TEXAS-NEW MEXICO PIPE LINE COMPANY TNM-96-16 LEA COUNTY, NEW MEXICO

5309 Wurzbach, Suite 100 San Antonio, Texas 78238 (210) 680-3767 (210) 680-3763 FAX

BASELINE RISK ASSESSMENT REPORT

TEXAS-NEW MEXICO PIPE LINE COMPANY TNM-96-16 LEA COUNTY, NEW MEXICO

PREPARED FOR:

TEXAS-NEW MEXICO PIPE LINE COMPANY

P. O. Box 1030 Jal, New Mexico 88252

Mr. Tony Savoie

PREPARED BY:

KEI

M. Kay Hawthorne, REM Senior Scientist

James D. Mosley, P.E Senior Engineer

Job No. 610088

January 14, 1999

EXECUTIVE SUMMARY	1
INTRODUCTION	3
CHRONOLOGY OF PREVIOUS SITE ACTIVITIES	3
CONSTITUENTS OF CONCERN METHODOLOGY TO CALCULATE HAZARD QUOTIENT FOR TPH	4
EXPOSURE ASSESSMENT SITE CONDITIONS RECEPTORS OF CONCERN MEDIA OF CONCERN COMPLETE EXPOSURE PATHWAYS ESTIMATION OF RECEPTOR POINT CONCENTRATIONS EXPSOURE FACTORS AND ESTIMATION OF DOSE	4
RISK CHARACTERIZATION	7
RISK-BASED TARGET LEVEL CALCULATIONS	8
UNCERTAINTIES	8
CONCLUSIONS	9
REFERENCES	9
 WORKSHEET 1 - Exposure Pathway Analysis WORKSHEET 2 - Site-Specific Input Parameters - Soil WORKSHEET 3 - Exposure Input Parameters - Soil WORKSHEET 4 - Risk and Hazard Index Calculated for Subsurface Soil WORKSHEET 5 - Risk and Hazard Index Calculated for Soil (Ground Water Protection) WORKSHEET 6 - Exposure Pathways with Unacceptable Risk WORKSHEET 7 - Site-Specific Target Levels for Subsurface Soil 	
FIGURES FIG. 1 - Site Location and Adjacent Properties Map FIG. 2 - Soil Source Area Map	
APPENDICES APPENDIX A - Surrogate Toxicity Value for TPH APPENDIX B - Risk Calculations for Ground Water Protection APPENDIX C - Risk Calculations for Soils (0-15 feet)	

APPENDIX D - SSTL Calculations for Soils (0-15 feet) APPENDIX E - Jury and AT123D Models

EXECUTIVE SUMMARY

The Texas-New Mexico Pipe Line Company (TNMPL) release site designated as TNM-96-16 in Lea County, New Mexico was evaluated according to the United States Environmental Protection Agency (EPA) guidance documents listed in the REFERENCES section. The objective of the assessment was to evaluate the actual or reasonable potential for public and environmental exposure to constituents of concern, to evaluate the potential human health risks from that exposure, and to determine risk-based cleanup levels for constituents which pose an unacceptable risk.

The site is a crude oil pipeline release identified as TNM-96-16 in Lea County, New Mexico. A Site Location Map showing the location of the site in relation to the surrounding area is presented as FIG. 1. Details of the site are shown on FIG. 2.

The soils on site are sands and caliche. Ground water was not encountered on site during drilling (to a depth of approximately 38 feet bgs). There are no existing registered water wells within a one-half mile radius of the site. The site is in a remote, undeveloped rural location.

Based on the results of laboratory analyses, the constituents of concern are BTEX, TPH, and the polynuclear aromatic hydrocarbons (PAHs) chrysene, fluorene, naphthalene, and phenanthrene.

Complete pathways selected for exposure assessment included:

- on-site residents ingestion of ground water (ground water protection)
- on-site residents ingestion of soil, dermal contact with soil, and inhalation of volatiles and particulates from soil
- construction workers ingestion of soil, dermal contact with soil, and inhalation of volatiles and particulates from soil

The estimated risks are presented on WORKSHEETS 4 and 5. When the resulting risks were unacceptable, Site Specific Target Levels (SSTLs) which result in acceptable risks were calculated. Detected site concentrations are compared to the SSTLs on WORKSHEET 7.

The maximum total carcinogenic risk and maximum total hazard index for each type of pathway is presented below:

	SOIL PATHWAYS (0-15 feet)	GROUND WATER PROTECTION PATHWAYS
Maximum Total Carcinogenic Risk	4.48 x 10 ⁻⁷	0.00
Maximum Total Hazard Index	7.92	0.50

The most stringent SSTL for each constituent of concern in soil is compared to the maximum detected site concentrations below.

CONSTITUENT	SOIL SSTL (0'-15') (mg/kg)	MAXIMUM SOIL CONCENTRATION (0'-15') (mg/kg)
Ethylbenzene	355	59.8
Fluorene	9.63	1.3
Naphthalene	9.46	2.1
Phenanthrene	4.44	3.9
Toluene	63.6	56.6
Xylenes	144	136
TPH	3,070	30,900

Analysis of the risk assessment for the site indicates corrective action is required for soil. We recommend an evaluation of remedial alternatives for this site.

INTRODUCTION

This report presents the methodology and results of a baseline risk assessment conducted for the Texas-New Mexico Pipe Line Company release site designated as TNM-96-16 in Lea County, New Mexico. The site is located in the NW/4, SW/4 of Section 4, Township 17 South, Range 32 East. This risk assessment follows the approach included in the United States Environmental Protection Agency (EPA) guidance documents listed in the REFERENCES section. These guidance documents were used because they contain the most pertinent information for conducting risk assessments and because they are used and approved by the EPA. These documents are intended to provide guidance only, and considerable professional judgment must be exercised in applying these guidance documents to site-specific risk assessments. Consequently, this risk assessment incorporates several conservative (protective) assumptions in evaluating potential risks at the Texas-New Mexico Pipe Line Company site.

The objective of the assessment was to evaluate the actual or reasonable potential for public and environmental exposure to constituents of concern, to evaluate the potential risk from that exposure, and to determine risk-based cleanup levels for constituents which pose an unacceptable risk.

Conducting the baseline risk assessment requires:

- identification of the constituent(s) of concern and their toxicity
- identification of potential receptors at the site
- identification of exposure scenarios for each receptor
- quantification of exposure, dose and risk to each receptor
- calculation of site specific risk-based cleanup levels for constituents which pose an unacceptable risk

CHRONOLOGY OF PREVIOUS SITE ACTIVITIES

A chronological listing of significant events and activities is presented below.

- 4/24/96: Crude oil pipeline spill of approximately 430 barrels discovered. Oil Or Product Loss Report completed.
- 5/20/96: Environmental Spill Control conducted site investigation; four soil borings installed to define lateral extent of contamination.
- 7/30/96: Spill area excavated by TNMPL.
- 3/9/98: KEI installed two soil borings to delineate vertical extent of contamination.
- 6/18/98: KEI collects samples from excavated area and from stockpiled soils.
- 7/20/98: KEI submits Draft Soil Remediation Work Plan.

A description of the procedures and conclusions of KEI's site investigation activities, including the results of laboratory analysis of soil and ground water samples, is presented in the Subsurface Investigation Report, April 30, 1998.

CONSTITUENTS OF CONCERN

The following compounds were detected by laboratory analysis and make up the constituents of concern (COCs) for this site: benzene, toluene, ethylbenzene, and xylenes (BTEX), total petroleum hydrocarbons (TPH), and the PAHs chrysene, fluorene, naphthalene, and phenanthrene.

METHODOLOGY TO CALCULATE HAZARD QUOTIENT FOR TPH

Crude oil is a mixture of numerous hydrocarbons, many of which have no published toxicity factors. Therefore, a surrogate approach involving the assignment of conservative toxicity values and chemical property values to mass fraction groups based on their number of carbon atoms and structural similarities was implemented in order to estimate the hazard quotient for crude oil as a whole. The surrogate approach consists of a 4 step process.

- Identify groups of compounds based on their number of carbon atoms and structural similarities and measure the mass fraction of each group in the crude oil sample. The results of this "fingerprinting" analysis are presented in APPENDIX A.
- Identify representative toxicity values and chemical property values for groups of compounds identified above.
- Estimate the hazard quotient for each mass fraction group using the same equations used for individual compounds.
- Compute the hazard quotient for the crude oil as a whole by weighting the results for each group on a mass fraction basis. The following equation is used to compute the weighted hazard quotient for TPH:

$$HQ_w = \Sigma (HQ_i \times m_i)$$

where

The results of the implementation of this approach for the crude oil sample obtained at the subject site are presented on each calculation sheet.

EXPOSURE ASSESSMENT

SITE CONDITIONS

The TNM-96-16 release site occurs on undeveloped, remote rural land along a crude oil pipeline located in Lea County, New Mexico. The land is slightly rolling to flat with sparse native grasses. This risk assessment is based on the assumption that the excavation in the source area will be backfilled with clean soil and stockpiled soils will be treated or removed.

The soils on site are sands and caliche. Ground water was not encountered on site during drilling (at depths up to 38 feet) so ground water data is unavailable. According to the New

Mexico State Engineer Office, a depth of 139 feet was recorded on January 12, 1996, in an observation well estimated to be 1 mile east of the site.

Land Use

It is possible that the site may not remain vacant, but could be used for residential or commercial purposes. The nearest residence is more than 0.5 miles away. Adjacent land use consists of range land and tank batteries.

Water Use

There are no existing registered water wells within a one-half mile radius of the site. The drinking water in the vicinity of this site is supplied from an aquifer at depths of greater than 100 feet.

RECEPTORS OF CONCERN

On-site receptors of concern include:

- residents
- workers
- site visitors
- construction workers

Off-site receptors of concern include:

- residents
- workers

The exposure assumptions for the on-site resident are greater in every instance than those for the on-site worker, the site visitor, the off-site resident, and the off-site worker. Therefore, the on-site worker, the site visitor, the off-site resident, and the off-site worker pathways are not considered in this risk assessment.

The construction worker scenario assumes that a pit $10m \times 10m \times 5m$ is excavated at the site and the construction worker spends 8 hours a day / 5 days a week in the pit for a period of 3 months, the assumed duration of construction.

MEDIA OF CONCERN

Soil

Exposure to COCs present in the soils at the site can occur by incidental ingestion of contaminated soil and dermal contact with contaminated soil. Additionally, COCs present in the soil may leach into the ground water.

Air

Volatile emissions from residual hydrocarbons in soil at the site could lead to exposure through inhalation. Dispersion and transport of these volatiles in the atmosphere may cause on-site and off-site ambient air concentrations to be impacted. Due to the potential of contaminants to adsorb to particulates, inhalation of contaminated particulates is also possible during construction activities.

Ground Water

Assuming that a future resident installed a domestic well on site, exposure to COCs present in the ground water under the site could occur by ingestion of drinking water.

COMPLETE EXPOSURE PATHWAYS

Ground water is greater than 15 feet deep, therefore, exposure to volatile emissions from ground water and exposure through dermal contact with ground water are considered incomplete pathways.

Ground water was not encountered on site during drilling and no registered water wells exist within 0.5 miles of the site; however, to be conservative, it was assumed that a water well would be installed on the site for residential domestic use. Therefore, exposure to contaminants via ingestion of drinking water is considered a complete pathway for on-site residents under future conditions.

Complete pathways selected for exposure assessment included:

- on-site residents ingestion of ground water (ground water protection)
- on-site residents ingestion of soil, dermal contact with soil, and inhalation of volatiles and particulates from soil
- construction workers ingestion of soil, dermal contact with soil, and inhalation of volatiles and particulates from soil

ESTIMATION OF RECEPTOR POINT CONCENTRATIONS

The above scenarios require that the contaminant concentrations in soil, ground water, and air at the point where exposure with the human receptor occurs be estimated. Site specific data is available for subsurface soil concentrations at the site. On-site ambient air concentrations, when needed, were estimated using screening level contaminant fate and transport equations. On-site ground water concentrations were estimated using a dilution/attenuation factor (DAF) calculated from the Jury and AT123D models. The DAF predicts the potential migration from soil into ground water for each constituent of concern. A summary of DAF calculations is provided in APPENDIX E. Potential ground water concentrations were then calculated by multiplying the soil concentration times the respective DAF for each constituent of concern.

The site-specific input parameters used in these calculations are presented in WORKSHEET 2. COC-specific parameters and risk equations are presented in APPENDIX B and APPENDIX C.

The following conservative assumptions were used in these calculations:

For the soil pathways:

• The <u>maximum</u> COC soil concentrations detected between 0 and 15 feet during assessment activities at the site exist homogeneously in the subsurface from the ground surface to a depth of 15 feet throughout the soil source area.

- It was assumed that a residence will be constructed in the source area.
- It was assumed that for non-carcinogens a child resident will ingest 200 mg of soil per day, 350 days per year for 6 years, for carcinogens an adult resident will ingest 124 mg of soil per day, 350 days per year for 30 years, and for both carcinogens and non-carcinogens that an adult resident will inhale 15 m³ of air per day and will have 5800 cm² of skin surface area in contact with the soil, 350 days per year for 30 years. These exposure parameters represent the maximum potential (worst-case) exposure assumptions listed in EPA guidelines.
- It was assumed that a construction worker will inhale 20 m³/day, will ingest 480 mg/day, and will have 3300 cm² of skin surface area in contact with the soil 5 days/week for 12 weeks.

For the ground water protection pathway:

- The maximum COC soil concentrations detected in the vadose zone during assessment activities at the site exist homogeneously in the vadose zone throughout the soil source area.
- It was assumed that a new domestic drinking water well will be installed in the middle of the source area.
- The depth to water was assumed to be 139 feet below ground surface.
- It was assumed that the resident will ingest 2 liters of ground water per day, 350 days per year for 30 years. These exposure parameters represent the maximum potential (worst-case) exposure assumptions listed in EPA guidelines.

EXPOSURE FACTORS AND ESTIMATION OF DOSE

The receptor point concentrations are combined with exposure factors to estimate dose using the relationships described in EPA RAGS. Exposure factor assumptions are chosen to reflect EPA guidance and site-specific conditions and represent conservative and reasonable estimates of potential exposure. Exposure factors used in this risk assessment are presented in WORKSHEET 3.

Note that for the residential soil ingestion pathway the age-adjusted ingestion rate is used with the other adult exposure factors for carcinogens and the child ingestion rate is used with the other child exposure factors for toxicants.

RISK CHARACTERIZATION

The overall impact to human health due to exposure to chemicals is estimated by combining the estimated dose and the critical toxicity values (slope factor for carcinogens, reference dose for non-carcinogens). A carcinogenic risk value was calculated for benzene and a Hazard Quotient value was calculated for each non-carcinogen considered a constituent of concern. The Hazard Quotients were then summed to calculate the total Hazard Index for each soil pathway. The calculated carcinogenic risk and the Hazard Index values for each pathway are summarized in WORKSHEET 4 for soil (0 to 15 feet) and WORKSHEET 5 for

vadose zone soil. The risk calculation equations, exposure factor inputs, and chemicalspecific inputs such as toxicity values are presented in APPENDIX B and APPENDIX C.

The maximum total carcinogenic risk and maximum total Hazard Index for each type of pathway is presented below:

	SOIL PATHWAYS (0-15 feet)	GROUND WATER PROTECTION PATHWAYS
Maximum Total Carcinogenic Risk	4.48 x 10 ⁻⁷	0.00
Maximum Total Hazard Index	7.92	0.50

The carcinogenic risk does not exceed the acceptable level of 1.0×10^{-6} . The Hazard Index exceeds the acceptable level of 1.0 for the soil (0-15 feet) pathway.

RISK-BASED TARGET LEVEL CALCULATIONS

For each complete pathway with estimated risk over the acceptable levels, Site-Specific Target Levels (SSTLs) were calculated for each COC. The same conservative assumptions and input parameters used in the risk calculations were used in the SSTL calculations to ensure those concentration limits will be protective of human health. The SSTL calculations are presented in APPENDIX D. The SSTLs for soil are presented in WORKSHEET 7.

The most stringent SSTL for each constituent of concern in soil is compared to the maximum detected site concentrations below.

CONSTITUENT	SOIL SSTL (0'-15') (mg/kg)	MAXIMUM SOIL CONCENTRATION (0'-15') (mg/kg)
Ethylbenzene	355	59.8
Fluorene	9.63	1.3
Naphthalene	9.46	2.1
Phenanthrene	4.44	3.9
Toluene	63.6	56.6
Xylenes	144	136
ТРН	3,070	30,900

UNCERTAINTIES

As in any risk assessment, there is uncertainty in the results obtained. There may be uncertainty in the following components of these assessments:

- delineation of contaminants in the subsurface
- future use of the site and surrounding land use
- modeling input parameters
- exposure pathway analysis
- chemical toxicity values

Although uncertainty exists, the conservative nature of the risk assessment conducted makes it unlikely that small changes in these components would impact the conclusion for this site.

CONCLUSIONS

Analysis of the risk assessment for the site indicates corrective action is required for soil. We recommend an evaluation of remedial alternatives for this site.

REFERENCES

Montgomery, John H. (1996) Groundwater Chemicals; Desk Reference. CRC Press, Inc., Boca Raton, FL.

Lyman, W.J., W.F. Reehl, and D.H. Rosenblatt (1990) Handbook of Chemical Property Estimation Methods. American Chemical Society, Washington, DC.

National Oceanic and Atmospheric Administration/Environmental Data Service/National Climatic Data Center (1977) U.S. Department of Commerce. Local Climatological Data - Annual Summaries for 1977.

U.S. Environmental Protection Agency (EPA) (1988) Superfund Exposure Assessment Manual. EPA/640/1-88/001.

U. S. Environmental Protection Agency (EPA) (1989) Exposure Factors Handbook. Office of Health and Environmental Assessment. U. S. EPA/600/8-89/043.

U. S. Environmental Protection Agency (EPA) (1989) Risk Assessment Guidance for Superfund. Vol. I. Human Health Evaluation Manual (Part A), EPA/540/1-89/002.

U. S. Environmental Protection Agency (EPA) (1991) Risk Assessment Guidance for Superfund. Vol. I. Human Health Evaluation Manual (Part B, Development of Risk-Based Preliminary Remediation Goals). 9285.7-01b.

U. S. Environmental Protection Agency (EPA) (1994) Health Effects Assessment Summary Tables (HEAST). Annual FY-1995. OHEA ECAO-CIN-909.

U. S. Environmental Protection Agency (EPA) (1995) Integrated Risk Information System.

Texas-New Mexico Pipe Line Co. TNM-96-16		
		WORKSHEET 1
Lea County, New Mexico		EXPOSURE PATHWAY ANALYSIS
Ground Water		
Potential Exposure Pathways	Y/N	Explanation / Source
Is Ground Water Ingestion Pathway Complete?	z	Ground water data unavailable. See ground water protection pathway.
Is Construction Worker Pathway Complete?	z	Ground water is > 15 feet deep.
Is inhalation of Volatiles Pathway Complete?	z	Ground water is > 15 feet deep.
Soils		
Potential Exposure Pathways	Y/N	Explanation / Source
Is Inhalation/Ingestion Pathway Complete?	7	Contaminants of concern detected in soil 0'-15'.
is Construction Worker Pathway Complete?	>	Construction activity in the source area is possible.
Is Construction Worker Exposed to Both Soil and Ground Water Simultaneously?	z	One pathway is closed.
Is Ground Water Protection Pathway Complete?	≻	Contaminants of concern detected in vadose zone soil . Ground water concentrations modelled using the Jury and AT123D models.

BASELINE RISK AS: Texas-New Mexico Pipe Line Co. TiMM-96-16 Lea County, New Mexico Reading and the second se	BASELINE RISK ASSESMENT WORKSHEET 2 SITE-SPECIFIC INPUT PARAMETERS - SOIL Unlits Soil Parameters Comments Comments Comments Comments Comments In Default Value. In Default Value. In Default Value. In Default Value. All Perant Value. All Perant Value. In Default Value. All Perant Value. All Perant Value. All Parameters All Parameters More Follore. More Follore. More Follore. All Parameters More Follore.
---	--

WORKSHEET 3 **EXPOSURE INPUT PARAMETERS - SOIL** Con. Wkr. events/day Units days/wk mg/day mg/cm² days/wk m³/day weeks weeks years years years cm² cm² ş Ч Construction Worker 3300 6170 0.06 0.12 0.24 20 480 2 2 ω 12 2 2 ŝ S Worker 5800 250 250 2 2 25 25 25 25 20 50 **RISK ASSESSMENT** Child 350 200 15 ω ဖ Resident Adult 5800 124 350 350 22 8 8 88 45 2 BASELINE mg-yr/kg-day mg/cm² mg/day liters/day Units days/yr days/yr m³/day years years years years years cm^2 Š Averaging Time (non-carcinogens) - ground water Skin Surface Area in contact w/ ground water Exposure Frequency, dermal contact w/ soil Texas-New Mexico Pipe Line Co. Averaging Time (non-carcinogens) - soil Input Parameters Skin Surface Area in contact w/ soil Duration of Dermal Contact Event Exposure Duration, ground water Age-adjusted Soil Ingestion Rate Dermal Contact Event Frequency Lea County, New Mexico Averaging Time (carcinogens) Soil to Skin Adherence Factor Exposure Duration, soil Water Ingestion Rate Exposure Frequency Soil Ingestion Rate Inhalation Rate TNM-96-16 Body weight

	BASELINE RISK	RISK ASSESSMENT	MENT	
Texas-New Mexico Pipe Li TNM-96-16	Pipe Line Co.	RISK a	WORKSHEET 4 RISK and HAZARD INDEX CALCUL ATED	WORKSHEET 4 X CALCULATED
Lea County, New Mexico			FOR SUI	FOR SUBSURFACE SOIL
Risk	and Hazard Inc	Risk and Hazard Index for SOILS 0 to 15 feet	- 0 to 15 feet	
'X' indicates	indicates pathway is complete:	×	· X	×
	Soil	On-Site	On-Site	Construction
Constituent	Concentrations	Worker	Resident	Worker
of	Maximum	Inhalation +	Inhalation +	Inhalation +
Concern	(mg/kg)	Ingestion+Dermal	Ingestion+Dermal	Ingestion+Dermal
Carcinogens				
Benzene	3.08e+0	1.61e-7	3.19e-7	5.27e-8
Chrysene	1.10e+0	6.98e-8	1.29e-7	1.75e-10
	Total Risk:	2.31e-7	4.48e-7	5.28e-8
Non-Carcinogens				
Ethylbenzene	5.98e+1	5.38e-4	7.88e-3	1.18e-2
Fluorene	1.30e+0	2.02e-4	6.75e-4	2.15e-4
Naphthalene	2.10e+0	3.46e-4	1.11e-3	1.10e-3
Phenanthrene	3.90e+0	9.96e-4	1.32e-2	5.11e-3
Toluene	5.66e+1	1.31e-3	4.75e-3	4.45e-2
Xylene (mixed isomers)	1.36e+2	1.83e-3	2.59e-3	6.60e-2
TPH - New Method	3.09e+4	2.41e+0	7.89e+0	4.90e+0
	Hazard Index:	2:41e+0	7.92e+0	5:03e+0

Í

	BASELINE	RISK	ASSESSMENT	ENT		
Texas-New Mexico Pipe L TNM-96-16 Lea County, New Mexico	ine Co.		RISK FOR SOIL	WORKSHEET 5 RISK and HAZARD INDEX CALCULATED FOR SOIL (GROUND WATER PROTECTION)	WOR D INDEX CA WATER PR(WORKSHEET 5 X CALCULATED R PROTECTION)
Risk and H	Risk and Hazard Index for SOIL - GROUND WATER PROTECTION	Soil - G	ROUND M	ATER PR	OTECTION	
'X' indicates	X' indicates pathway is complete:	×		×		
	Soil	One	On-Site	Ö	On-Site	Constr.
Constituent	Concentrations	Worker	Iker	Kesi	Kesident	Worker
Concern	(mg/kg)	Ingestion	Inhalation	Ingestion	Inhalation	+ Dermal
Carcinogens						
Benzene	4.00e+0	0.00e+0		0,00e+0		
Chrysene	1.10e+0	0.00e+0		0.00e+0		
	Total Risk:	0.00e+0		0.00e+0		
Non-Carcinogens	5 Q&e+1	0+000				
Fluorene	1.30e+0	0.000+0		0.00e+0		
Naphthalene	2.10e+0	0.00e+0		0.00e+0		
Phenanthrene	3.90e+0	0.00e+0		0.00e+0		
Toluene	5.66e+1	0.00e+0		0.00e+0		
Xylene (mixed isomers)	1.36e+2	0.00e+0		0.00e+0		
TPH - New Method	3.09e+4	1.79e-1		5.00e-1		
	Hazard Index:	1.79e-1		5.00e-1		

TARG	ĒTI	TARGET LEVEL CALCULATIONS
Texas-New Mexico Pipe Line Co. TNM-96-16		WORKSHEET 6
Lea County, New Mexico		EXPOSURE PATHWAYS WITH UNACCEPTABLE RISK
Ground Water		
Potential Exposure Pathways	Υ'N	Explanation / Source
Is Ground Water Ingestion Pathway Complete and Without Controls and Creates Risk?	z	See Ground Water Protection pathway. Controls proposed or in place: None
Is Construction Worker Pathway Complete	z	Ground water is > 15 feet deep.
and Without Controls and Creates Risk?		Controls proposed or in place: None
is Inhalation of Volatiles Pathway Complete	z	Ground water is > 15 feet deep.
and Without Controls and Creates Risk?		Controls proposed or in place: None
Soils		
Potential Exposure Pathways	۲/N	Explanation / Source
Is Inhalation/Ingestion Pathway Complete	<u> </u>	Maximum soil concentrations create unacceptable risk.
and Without Controls and Creates Risk?		No impervious cover over soil source area.
		Controls proposed or in place: None
Is Construction Worker Pathway Complete	 ≻	Maximum soil concentrations create unacceptable risk.
and Without Controls and Creates Risk?	<u> </u>	Construction activity in the source area is possible.
		Controls proposed or in place: None
Is Construction Worker Exposed to Both Soil	z	Ground water is > 15 feet deep.
and Ground Water Simultaneously?	<u> </u>	Controis proposed or in place: None
Is Ground Water Protection Pathway Complete	>	Maximum soil concentrations create unaccentable rick (CMP nathway)
		Controls proposed or in place: None

		TARGET LE	TARGET LEVEL CALCULATIONS	JLATIONS				
Texas-New Mexico Pipe Line Co. TNM-96-16	ine Co.			SITE C	WORKSHEET 7 SITE CONCENTRATIONS COMPARED TO	WORK IONS COMF	WORKSHEET 7 COMPARED TO	
Lea County, New Mexico		SITE-SI	SITE-SPECIFIC TARGET LEVELS (SSTL'S) FOR SUBSURFACE SOIL	SET LEVELS ((SSTL's) FOF	R SUBSURF	ACE SOIL	
	SSTL's fo	or SUBSURFACE SOILS - 0 to 15 feet BGS	ACE SOILS	- 0 to 15 f	eet BGS			1
'X' indicates pathway is complete:	vay is complete:	x	x	X	X		-	
Constituent		On-Site Worker	On-Site Resident	Construction	Critical	Soil Concentrations	ii) trations	
of		Inh+Ing+Der	Inh+Ing+Der	Inh+Ing+Der	SSTL	Maximum	95th UCL	
Concern		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
Non-Carcinogens	HQ's							
Ethylbenzene	0.070	>1,513	5.31e+2	3.55e+2	3.55e+2	5.98e+1	N/A	
Fluorene	0.005	3.22e+1	9.63e+0	3.03e+1	9.63e+0	1.30e+0	N/A	
Naphthalene	0.005	3.03e+1	9.46e+0	9.59e+0	9.46e+0	2.10e+0	N/A	
Phenanthrene	0.015	5.87e+1	4.44e+0	1.15e+1	4.44e+0	3.90e+0	N/A	
Toluene	0.050	>1,501	5.96e+2	6.36e+1	6.36e+1	5.66e+1	N/A	
Xylene (mixed isomers)	0.070	>446	>446	1.44e+2	1.44e+2	1.36e+2	A/A	
TPH - New Method	0.785	1.01e+4	3.07e+3	4.95e+3	3.07e+3	3.09e+4	N/A	
Hazard Index:	1.000							
								1

Î

NOTE:

95th UCL = One-sided upper 95th confidence limit of the mean SSTL = Site Specific Target Level

Texas-New Mexico Pipe Line Co. TNM-96-16 Lea County, New Mexico

TPH MASS FRACTIONS AND RELATIVE CONCENTRATIONS

Constituent of Concern	Fingerprint (mg/kg)	Mass Fraction (%)	Maximum Concentration (mg/kg)
TPH - New Method	30,900	100%	30,900
TPH-Arom-EC>8-10	o	0.00%	0
TPH-Arom-EC>10-12	19	0.06%	19
TPH-Arom-EC>12-16	2,064	6.68%	2,064
TPH-Arom-EC>16-21	5,587	18.08%	5,587
TPH-Arom-EC>21-35	2,351	7.61%	2,351
TPH-Aliph-EC 5-6	0	0.00%	0
TPH-Aliph-EC>6-8	0	0.00%	0
TPH-Aliph-EC>8-10	114	0.37%	114
TPH-Aliph-EC>10-12	677	2.19%	677
TPH-Aliph-EC>12-16	4,456	14.42%	4,456
TPH-Aliph-EC>16-35	15,635	50.60%	15,635

Calculation Sheet GROUND WATER PROTECTION Worker -- Ingestion of Ground Water Pathway

Texas-New Mexico Pipe Line Co.	BW	lRgw	EF	ED	foc	Dist
TNM-96-16	(kg)	(L/day)	(days/yr)	(years)		(m)
Lea County, New Mexico	70	1.0	250	25	0.009	0

For carcinogens:

Risk = Conc_{s-v} * DAF * IR_{gw} * EF * ED * SF / BW * 70 * 365

For non-carcinogens:

HQ = Conc_{s-v} * DAF * IR_{gw} * EF / RfD * BW * 365

Constituent	SF	RfD	Conc _{s-v}	DAF	Conc _{gwp}	Risk
of Concern	(1/mg/kg-d)	(mg/kg-d)	(mg/kg)		(mg/L)	or HQ
Carcinogens				·		
Benzene	2.90e-2		4.00e+0	0.00e+0	0.00e+0	0.00e+0
Chrysene	7.30e-3		1.10e+0	0.00e+0	0.00e+0	0.00e+0
					Total Risk:	0.00e+0
Non-Carcinogens						
Ethylbenzene		1.00e-1	5,98e+1	0.00e+0	0.00e+0	0.00e+0
Fluorene		4.00e-2	1.30e+0	0.00e+0	0.00e+0	0.00e+0
Naphthalene		4.00e-2	2.10e+0	0.00e+0	0.00e+0	0.00e+0
Phenanthrene		4.00e-3	3.90e+0	0.00e+0	0.00e+0	0.00e+0
Toluene		2.00e-1	5.66e+1	0.00e+0	0.00e+0	0.00e+0
Xylene (mixed isomers)		2.00e+0	1.36e+2	0.00e+0	0.00e+0	0.00e+0
TPH - New Method						1.79e-1
				н	azard Index:	1.79e-1
TPH-Arom-EC>8-10		4.00e-2	0.00e+0	1.36e-2	0.00e+0	0.00e+0
TPH-Arom-EC>10-12		4.00e-2	1.85e+1	1.12e-3	2.08e-2	5.08e-3
TPH-Arom-EC>12-16		4.00e-2	2.06e+3	4.64e-9	9.58e-6	2.34e-6
TPH-Arom-EC>16-21		3.00e-2	5.59e+3	0.00e+0	0.00e+0	0.00e+0
TPH-Arom-EC>21-35		3.00e-2	2.35e+3	0.00e+0	0.00e+0	0.00e+0
TPH-Aliph-EC 5-6		6.00e-2	0.00e+0	4.07e-2	0.00e+0	0.00e+0
TPH-Aliph-EC>6-8		6.00e-2	0.00e+0	1.72e-2	0.00e+0	0.00e+0
TPH-Aliph-EC>8-10		1.00e-1	1.14e+2	5.15e-3	5.89e-1	5.76e-2
TPH-Aliph-EC>10-12		1.00e-1	6.77e+2	1.17e-3	7.92e-1	7.75e-2
TPH-Aliph-EC>12-16		1.00e-1	4.46e+3	8.80e-5	3.92e-1	3.84e-2
TPH-Aliph-EC>16-35		2.00e+0	1.56e+4	0.00e+0	0.00e+0	0.00e+0
	· · · ·					

NOTES:

Conc(s-v) = Concentration in soil vadose zone Conc(gwp) = Concentration in ground water SF = Slope Factor HQ = Hazard Quotient RfD = Reference Dose

foc = fraction organic carbon BW = Body Weight IR_{gw} = Ingestion Rate EF = Exposure Frequency

ED = Exposure Duration

Risk = Carcinogenic Risk DAF = Dilution attenuation factor Calculation Sheet GROUND WATER PROTECTION Resident --- Ingestion of Ground Water Pathway

Texas-New Mexico Pipe Line Co.	BW	IRgw	EF	ED	foc	Dist
TNM-96-16	(kg)	(L/day)	(days/yr)	(years)		(m)
Lea County, New Mexico	70	2.0	350	30	0.009	0

For carcinogens:

Risk = Conc_{s-v} * DAF * IR_{gw} * EF * ED * SF / BW * 70 * 365

For non-carcinogens:

 $HQ = Conc_{s-v} * DAF * IR_{gw} * EF / RfD * BW * 365$

Constituent	SF	RfD	Conc _{s-v}	DAF	Conc _{gwp}	Risk
of Concern	(1/mg/kg-d)	(mg/kg-d)	(mg/kg)		(mg/L)	or HQ
Carcinogens					- • •	
Benzene	2.90e-2		4.00e+0	0.00e+0	0.00e+0	0.00e+0
Chrysene	7.30e-3		1.10e+0	0.00e+0	0.00e+0	0.00e+0
					Total Risk:	0.00e+0
Non-Carcinogens						
Ethylbenzene		1.00e-1	5.98e+1	0.00e+0	0.00e+0	0.00e+0
Fluorene		4.00e-2	1.30e+0	0.00e+0	0.00e+0	0.00e+0
Naphthalene		4.00e-2	2.10e+0	0.00e+0	0.00e+0	0.00e+0
Phenanthrene		4.00e-3	3.90e+0	0.00e+0	0.00e+0	0.00e+0
Toluene		2.00e-1	5.66e+1	0.00e+0	0.00e+0	0.00e+0
Xylene (mixed isomers)		2.00e+0	1.36e+2	0.00e+0	0.00e+0	0.00e+0
TPH - New Method						5.00e-1
				н	azard Index: ⁻	5.00e-1
TPH-Arom-EC>8-10		4.00e-2	0.00e+0	1.36e-2	0.00e+0	0.00e+0
TPH-Arom-EC>10-12		4.00e-2	1.85e+1	1.12e-3	2.08e-2	1.42e-2
TPH-Arom-EC>12-16		4.00e-2	2.06e+3	4.64e-9	9.58e-6	6.56e-6
TPH-Arom-EC>16-21		3.00e-2	5.59e+3	0.00e+0	0.00e+0	0.00e+0
TPH-Arom-EC>21-35		3.00e-2	2.35e+3	0.00e+0	0.00e+0	0.00e+0
TPH-Aliph-EC 5-6		6.00e-2	0.00e+0	4.07e-2	0.00e+0	0.00e+0
TPH-Aliph-EC>6-8		6.00e-2	0.00e+0	1.72e-2	0.00e+0	0.00e+0
TPH-Aliph-EC>8-10		1.00e-1	1.14e+2	5.15e-3	5.89e-1	1.61e-1
TPH-Aliph-EC>10-12		1.00e-1	6.77e+2	1.17e-3	7.92e-1	2.17e-1
TPH-Aliph-EC>12-16		1.00e-1	4.46e+3	8.80e-5	3.92e-1	1.07e-1
TPH-Aliph-EC>16-35		2.00e+0	1.56e+4	0.00e+0	0.00e+0	0.00e+0

NOTES:

Conc(s-v) = Concentration in soil vadose zone Conc(gwp) = Concentration in ground water SF = Slope Factor HQ = Hazard Quotient

RfD = Reference Dose

foc = fraction organic carbon

BW = Body Weight

- IR_{gw} = Ingestion Rate
- EF = Exposure Frequency

ED = Exposure Duration

Risk = Carcinogenic Risk DAF = Dilution attenuation factor

 $(z_{i},z_{i}) \in \mathbb{R}^{n}$

Worker - Inhalation of Volatiles from Soil **Calculation of Risk**

÷

Texas-New Mexico Pipe Line Co.	BW	IRair	EF	ED	LS LS	>	На	A	8	ш	foc	PEF
TNM-96-16	(kg)	(m ³ /day)	(days/yr)	(years)	(ພ	(s/ɯ)	<u>(</u>	(m²)	(g/cc)	I	1	(kg/m³)
Lea County, New Mexico	02	ຊ	250	25	6	4.92	2.0	171	1.80	0.32	0.009	1.802E-11

For carcinogens: Risk	Risk = (Conc _{sol} * (VF + PEF) / DAF) * IR _{alr} * EF * ED * SF / BW * 70 * 365		Dist (m)	DAF
For non-carcinogens:	: HQ = (Conc _{soll} * (VF + PEF) / DAF) * IR _{alr} * EF * (1/RfD) / BW * 365	·	0	1.00
	VF = (2*Dei*E*Kas*10-3)/(LS*V*DH/A)*(3.14*alpha*ED*3.15E+7) ^{0.5}) ^{0.5}		

Constituent	Concsoil	SF RfD	Dei	Кd	Ŧ	Kas	alpha	٨F	Risk
of Concern	(mg/kg)	(1/mg/kg-d) (mg/kg-d)	(mg/kg-d) (cm ² /sec)	(cm³/g)	1	(g /cm³)	(cm²/sec)	(m ¹ /kg)	or HQ
Carcinogens									
Benzene	3.08e+0	2.91e-2	2.05e-2	7.49e-1	2.32e-1	3.11e-1	1.07e-3	2.32e-5	1.45e-7
Chrysene	1.10e+0	6.10e-3	5.45e-3	1.80e+3	4.37e-5	2.43e-8	2.36e-11	3.26e-9	1.54e-12
							Ĭ	Total Risk:	1.45e-7
Non-Carcinogens									
Ethylbenzene	5.98e+1	2.86e-1	1.64e-2	9.87e+0	2.67e-1	2.71e-2	7.88e-5	5.99e-6	2.45e-4
Fluorene	1.30e+0	4.00e-2	1.38e-2	6.52e+1	2.67e-3	4.10e-5	1.00e-7	2.13e-7	1.35e-6
Naphthalene	2.10e+0	4.00e-2	1.30e-2	1.16e+1	5.38e-2	4.64e-3	1.07e-5	2.20e-6	2.26e-5
Phenanthrene	3.90e+0	4.00e-3	1.19e-3	1.27e+2	6.63e-3	5.21e-5	1.10e-8	7.05e-8	1.34e-5
Toluene	5.66e+1	1.14e-1	1.84e-2	2.72e+0	2.65e-1	9.75e-2	3.14e-4	1.21e-5	1.18e-3
Xylene (mixed isomers)	1.36e+2	2.00e-1	1.63e-2	2.16e+0	2.93e-1	1.36e-1	3.83e-4	1.35e-5	1.79e-3
TPH - New Method	3.09e+4								8.15e-2
							Haza	Hazard Index:	8.47e-2
TPH-Arom-EC>8-10	0.00e+0	5.71e-2	2.20e-2	1.43e+1	4.84e-1	3.39e-2	1.32e-4	7.76e-6	0.00e+0
TPH-Arom-EC>10-12	1.85e+1	5.71e-2	2.20e-2	2.26e+1	1.36e-1	6.03e-3	2.35e-5	3.26e-6	2.07e-4
TPH-Arom-EC>12-16	2.06e+3	5.71e-2	2.20e-2	4.51e+1	5.16e-2	1.14e-3	4.47e-6	1.42e-6	1.00e-2
TPH-Arom-EC>16-21	5.59e+3	3.00e-2	2.20e-2	1.43e+2	1.18e-1	8.26e-4	3.22e-6	1.21e-6	4.40e-2
TPH-Arom-EC>21-35	2.35e+3	3.00e-2	2.20e-2	1.13e+3	6.65e-3	5.87e-6	2.29e-8	1.02e-7	1.56e-3
TPH-Aliph-EC 5-6	0.00e+0	5.71e-2	2.20e-2	7.15e+0	3.28e+1	4.58e+0	9.86e-3	1.21e-4	0.00e+0
TPH-Aliph-EC>6-8	0.00e+0	5.71e-2	2.20e-2	3.58e+1	4.85e+1	1.35e+0	4.26e-3	5.44e-5	0.00e+0
TPH-Aliph-EC>8-10	1.14e+2	2.86e-1	2.20e-2	2.85e+2	7.92e+1	2.78e-1	1.04e-3	2.27e-5	1.78e-3
TPH-Aliph-EC>10-12	6.77e+2	2.86 c -1	2.20e-2	2.26e+3	1.23e+2	5.45e-2	2.11e-4	9.86e-6	4.57e-3
TPH-Aliph-EC>12-16	4.46e+3	2.86e-1	2.20e-2	4.51e+4	5.25e+2	1.16e-2	4.54e-5	4.54e-6	1.38e-2
TPH-Aliph-EC>16-35	1.56e+4	2.00e+0	2.20e-2	9.00e+6	6.57e+4	7.29e-3	2.85e-5	3.59e-6	5.49e-3

NOTES:

BW = body weight	AT = averaging time	IR _A = Inhalation rate	EF = exposure frequency	ED = exposure duration	LS = Length of Source Area	
Conc(soit) = Concentration in soil (0-15 feet)	Risk = Carcinogenic Risk	SF = Slope Factor	HQ = Hazard Quotient	RID = Reference Dose	DAF = Dilution attenuation factor	

v = ∨elocity of Wind DH ≕ Diffusion Height A = Area of Soil Source B = Bulk Soil Density E = Effective Porosity Dei = effective diffusion coefficient

H's unitless Henry's Law Constant Kd = organic carbon partition coefficient * foc foc = fraction organic carbon Kas = H / Kd alpha = Dei * E / (E + B / Kas) PEF = Particulate Emissions Factor

Worker - Ingestion of Soil & Dermal Contact with Soil **Calculation of Risk**

Texas-New Mexico Pipe Line Co. BW	BW	CF	IRsoil	EF	ED	CF IRsoil EF ED EF _{dermal} SA	SA	AF
TNM-96-16	(kg)	(mg/kg)	(mg/day)	(days/yr)	(years)	(mg/kg) (mg/day) (days/yr) (years) (days/yr) (cm²) (mg/cm²)	(cm²)	(mg/cm ²)
Lea County, New Mexico	20	70 1.00E+06 50	50	250	25	25 250 5,800	5,800	1.00
For carcinogens: Risk _{ing} = Conc _{soli} * IR _{soli} * EF * ED * SF / BW * 70 * 365 * CF	Risk _{ing} :	= Conc _{soll} *	IR _{soil} * EF	* ED * SF	/ BW * 7	0 * 365 * CI		
	Risk _{per}	Risk _{ber} = Conc _{soli} * SA * AF * ABS * EF * ED * SF / BW * 70 * 365 * CF	SA * AF '	* ABS * EF	: * ED * S	3F / BW * 70) * 365 * C	Ϋ́
For non-carcinogens: HQ _{ING} = Conceol * IR _{soll} * EF * (1/RfD) / BW * 365 * CF	HQ _{ING} ≡	Conc _{soll} * IF	R _{soll} * EF *	(1/RfD) / I	BW * 36	5 * CF		•

HQper = Conc.oil * SA * AF* ABS * EF * (1/RfD) / BW * 365 * CF

				_		_	_																		
Risk _{ber} or HO _{eco}	OL NUDER		0.00E+00	6.84E-08	6.84e-8		0.00E+00	1.84E-04	2.98E-04	5.05E-04	00+300.0	0.00E+00	2.14E+00	2.14e+0	0.00E+00	2.63E-03	2.93E-01	1.06E+00	4.45E-01	0.00E+00	0.00E+00	6.49E-03	3.84E-02	2.53E-01	4.44E-02
ABS	1		0000	0.130	Total Risk:		0.00	0.100	0.100	0.050	0.000	0.000		Hazard Index:	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100
RfDd	(p-5%/Gu)				Ĭ		0.10	0.04	0.04	0.02	0.20	2.00		Haza	0.04	0.04	0.04	0.03	0.03	0.06	0.06	0.10	0.10	0.10	2.00
SFd Marine AV	(1/mg/kg-d) (mg/kg-d)		0.029	0.0236																					
																							_		
Risk _{iNG}	OT HUNG		1.56E-08	1.40E-09	1.70e-8		2.93E-04	1.59E-05	2.57E-05	4.77E-04	1.38E-04	3.33E-05	1.84E-01	1.85e-1	0.00E+00	2.27E-04	2.52E-02	9.11E-02	3.83E-02	0.00E+00	0.00E+00	5.59E-04	3.31E-03	2.18E-02	3.82E-03
RfDo	(mg/kg-d) Of HUING				Total Risk:		0.10	0.04	0.04	00'0	0.20	2.00		Hazard Index:	0.04	0.04	0.04	0.03	0.03	0.06	0.06	0.10	0.10	0.10	2.00
SFo Minutes	(1/mg/kg-d)		0.029	0.0073	F									Haz											
Concreation	(mg/kg)		3.08e+0	1.10e+0			5.98e+1	1.30e+0	2.10e+0	3.90e+0	5.66e+1	1.36e+2	3.09e+4		0.00e+0	1.85e+1	2.06e+3	5.59e+3	2.35e+3	0.00e+0	0.00e+0	1.14e+2	6.77e+2	4.46e+3	1.56e+4
Constituent	of Concern	Carcinogens				Non-Carcinogens	Ethylbenzene		Naphthalene	Phenanthrene		Xylene (mixed isomers)	TPH - New Method		TPH-Arom-EC>8-10	TPH-Arom-EC>10-12	TPH-Arom-EC>12-16	FPH-Arom-EC>16-21	FPH-Arom-EC>21-35	rPH-Aliph-EC 5-6	TPH-Aliph-EC>6-8	FPH-Aliph-EC>8-10	PH-Aliph-EC>10-12	LPH-Aliph-EC>12-16	TPH-Aliph-EC>16-35

NOTES:

Conc(soil) = Concentration in soil (0-15 feet) Risk = Carcinogenic Risk SF = Stope Factor HQ = Hazard Quotient

RfD = Reference Dose BW = body weight AT = averaging time

ABS = dermal absorption fra

IR_{set} = Ingestion rate EF = exposure frequency ED = exposure duration

SA = skin surface area AF = adherence factor

Worker - Combined Risk for Soil Texas-New Mexico Pipe Line Co. **Calculation of Risk**

Į

Risking + Riskder + Riskinhal H **Risk**wkr-soll If On-Site:

Risk_{inhal.} 11 **Risk**wkr-soll If Off-Site:

Constituent	Risk _{ing}	Riskoer		Riskwkr-soll
Carcinogens			O I CUNHAL	OI 11 LAWKI-SOIL
Benzene	1.56E-08	0.00E+00	1.45E-07	1.61E-07
Chrysene	1.40E-09	6.84E-08	1.54E-12	6.98E-08
Non-Carcinogens				
Ethylbenzene	2.93E-04	0.00E+00	2.45E-04	5.38E-04
Fluorene	1.59E-05	1.84E-04	1.35E-06	2.02E-04
Naphthalene	2.57E-05	2.98E-04	2.26E-05	3.46E-04
Phenanthrene	4.77E-04	5.05E-04	1.34E-05	9.96E-04
Toluene	1.38E-04	0.00E+00	1.18E-03	1.31E-03
Xylene (mixed isomers)	3.33E-05	0.00E+00	1.79E-03	1.83E-03
TPH - New Method	1.84E-01	2.14E+00	8.15E-02	2.41E+00
TPH-Arom-EC>8-10	0.00E+00	0.00E+00	0.00E+00	0.00E+00
TPH-Arom-EC>10-12	2.27E-04	2.63E-03	2.07E-04	3.06E-03
TPH-Arom-EC>12-16	2.52E-02	2.93E-01	1.00E-02	3.28E-01
TPH-Arom-EC>16-21	9.11E-02	1.06E+00	4.40E-02	1.19E+00
TPH-Arom-EC>21-35	3.83E-02	4.45E-01	1.56E-03	4.85E-01
TPH-Aliph-EC 5-6	0.00E+00	0.00E+00	0.00E+00	0.00E+00
TPH-Aliph-EC>6-8	0.00E+00	0.00E+00	0.00E+00	0.00E+00
TPH-Aliph-EC>8-10	5.59E-04	6.49E-03	1.78E-03	8.83E-03
TPH-Aliph-EC>10-12	3.31E-03	3.84E-02	4.57E-03	4.63E-02
TPH-Aliph-EC>12-16	2.18E-02	2.53E-01	1.38E-02	2.89E-01
TPH-Aliph-EC>16-35	3.82E-03	4.44E-02	5.49E-03	5.37E-02

NOTES: Risk = Carcinogenic Risk HQ = Hazard Quotient

Texas-New Mexico Pipe Line Co.	BW	IRair	EF	ED	LS	>	НО	A	B	ш	foc	PEF
TNM-96-16	(kg)	(m³/day)	(days/yr)	(years)	(E)	(m/s)	(m)	(m²)	(3/cc)	ł	I	(kg/m²)
Lea County, New Mexico	۶	15	350	30	19	4.92	2.0	171	1.80	0.32	0.009	1.802E-11
For carcinogens:	Risk =	(Conc _{soli} * (VF + PEF) / DAF) * IR _{alr} * EF * ED * SF / BW * 70 * 365	· (VF + PE	EF) / DAF) * IR _{air} * E	:F * ED * (sf / BW *	70 * 365			Dist (m)	DAF
For non-carcinogens:	на = ((Conc _{soll} * (VF + PEF) / DAF) * IR _{at} * EF * (1/RfD) / BW * 365	VF + PEF	-) / DAF)	* IR _{air} * EF	* (1/RfD)	/ BW * 3	65			0	1.00
	VF = {	(2* Dei*E*Kas*10-3)/(LS*V*DH/A)*(3.14*alpha*ED*3.15E+7) ⁰⁵	* Kas * 1	0-3) / (L:	HU * V * S	I/A)*(3	1.14 * alpl	ha * ED * ;	3.15E+7) ⁽	5		
		LG	90									
of Concern	Conc _{tof} (ma/ka)	(1/mg/kg-d)	(ma/ka-d)	Uel (cm²/sec)	(cm ³ /a)	± 1	Kas (a /cm²)	alpha (cm²/sec)	VF (m ^{3/ka)}	Risk or HO		
Carcinogens	i						2		18			
Benzene	3.08e+0	2.91e-2		2.05e-2	7.49e-1	2.32e-1	3.11e-1	1.07e-3	2.32e-5	1.67e-7		
Chrysene	1.10e+0	6.10e-3		5.45e-3	1.80e+3	4.37e-5	2.43e-8	2.36e-11	3.26e-9	1.77e-12		
							•	Ĕ	Total Risk:	1.67e-7		
Non-Carcinogens												
Ethylbenzene	5.98e+1		2.86e-1	1.64e-2	9.87e+0	2.67e-1	2.71e-2	7.88e-5	5.99e-6	2.35e-4		
Fluorene	1.30e+0		4.00e-2	1.38e-2	6.52e+1	2.67e-3	4.10e-5	1.00e-7	2.13e-7	1.30e-6		
Naphthalene	2.10e+0		4.00e-2	1.30e-2	1.16e+1	5.38e-2	4.64e-3	1.07e-5	2.20e-6	2.16e-5		
Phenanthrene	3.90e+0		4.00e-3	1.19e-3	1.27e+2	6.63e-3	5.21e-5	1.10e-8	7.05e-8	1.29e-5		
Toluene	5.66e+1		1.14e-1	1.84e-2	2.72e+0	2.65e-1	9.75e-2	3.14e-4	1.21e-5	1.13e-3		
Xylene (mixed isomers)	1.36e+2		2.00e-1	1.63e-2	2.16e+0	2.93e-1	1.36e-1	3.83e-4	1.35e-5	1.72e-3		
TPH - New Method	3.09e+4									7.81e-2		
								Haza	Hazard Index:	8.12e-2		
TPH-Arom-EC>8-10	0.00e+0		5.71e-2	2.20e-2	1.43e+1	4.84e-1	3.39e-2	1.32e-4	7.76e-6	0.00e+0		
TPH-Arom-EC>10-12	1.85e+1		5.71e-2	2.20e-2	2.26e+1	1.36e-1	6.03e-3	2.35e-5	3.26e-6	1.99e-4		
TPH-Arom-EC>12-16	2.06e+3		5.71e-2	2.20e-2	4.51e+1	5.16e-2	1.14e-3	4.47e-6	1.42e-6	9.63e-3		
TPH-Arom-EC>16-21	5.59e+3		3.00e-2	2.20e-2	1.43e+2	1.18e-1	8.26e-4	3.22e-6	1.21e-6	4.22e-2		
TPH-Arom-EC>21-35	2.35e+3		3.00e-2	2.20e-2	1.13e+3	6.65e-3	5.87e-6	2.29e-8	1.02e-7	1.50e-3		
TPH-Aliph-EC 5-6	0.00e+0		5.71e-2	2.20e-2	7.15e+0	3.28e+1	4.58e+0	9.86e-3	1.21e-4	0.00e+0		
TPH-Aliph-EC>6-8	0-00e+0		5.71e-2	2.20e-2	3.58e+1	4.85e+1	1.35e+0	4.26e-3	5.44e-5	0.00e+0		
TPH-Aliph-EC>8-10	1.14e+2		2.86e-1	2.20e-2	2.85e+2	7.92e+1	2.78e-1	1.04e-3	2.27e-5	1.70e-3		
TPH-Aliph-EC>10-12	6.77e+2		2.86e-1	2.20e-2	2.26e+3	1.23e+2	5.45e-2	2.11e-4	9.86e-6	4.38e-3		
TPH-Aliph-EC>12-16	4.46e+3		2.86e-1	2.20e-2	4.51e+4	5.25e+2	1.16e-2	4.54e-5	4.54e-6	1.33e-2		
TPH-Aliph-EC>16-35	1.56e+4		2.00e+0	2.20e-2	9.00e+6	6.57e+4	7.29e-3	2.85e-5	3.59e-6	5.26e-3		
NOTES:												
Conc(soil) = Concentration in soil (0-15 feet)	(eet)	BW = body weight	sight	-	V = Velocity of Wind	of Wind			H' = unitless I	H' = unitless Henry's Law Constant	onstant	
Risk = Carcinogenic Risk		AT = averaging time	g time	-	DH = Diffusion Height	n Height			Kd = organic :	carbon partitic	Kd = organic carbon partition coefficient * foc	Ŷ
SF = Slope Factor		IR _A = Inhalation rate	on rate	•	A = Area of Soil Source	oil Source		_	foc = fraction organic carbon	organic carbo	-	
HQ = Hazard Quotient		EF = exposure frequency	frequency	-	B = Bulk Soil Density	Density		-	Kas = H'/Kd	_		

Resident - Inhalation of Volatiles from Soil **Calculation of Risk**

<

PEF

ED = exposure duration LS = Length of Source Area

alpha = Dei • E / (E + B / Kas) PEF = Particulate Emissions Factor

RID = Reference Dose

E = Effective Porosity Dei = effective diffusion coefficient

1000
1000
1.5.1
14.54
100201
- -
0
O
18 El
- 프
1
<u>ା</u> ପା
ा जा
Z
<u> </u>
1 =1
f Risk Dermal (
175 1
" " ~ "
الحم كا
1.2 = (
12:01
133
Iculation of of Soil &
alcu n of
Calcu on of
Calcu tion of
Calcu estion of
Calcu gestion of
Calculati ngestion of Soi
Calcu Ingestion of
Ca Ingestion
Ca Ingestion
Ca Ingestion
Calcu ent - Ingestion of
Cal Jent – Ingestion
Ca Ingestion
Cal Jent – Ingestion
Cal Resident – Ingestion
Cal Jent – Ingestion
Cal Resident – Ingestion
Cal Resident – Ingestion
Cal Resident – Ingestion
Cal Resident – Ingestion
Cal Resident – Ingestion
Cal Resident – Ingestion
Cal Resident – Ingestion
Cal Resident – Ingestion

•••

Texas-New Mexico Pipe Line Co.	BW	CF IRsoil EF	IRsoil	EF	ED	ED EFdermal	SA	AF
TNM-96-16	(6d)	(mg/kg)	(mg/day)	(days/yr)	(years)	(mg/kg) (mg/day) (days/yr) (years) (days/yr) (cm²) (mg/cm²)	(cm²)	(mg/cm²)
Lea County, New Mexico	20	1.00E+06 124	124	350	30	350	5,800	1.00
For carcinogens: Risk _{ING} = Conc _{soll} * IR _{soll} * EF * ED * SF / BW * 70 * 365 * CF	Risk _{ing} :	= Conc _{soll} *	IR _{soll} * EF	* ED * SF	/ BW * 7	0 * 365 * CI	••	
	Risk _{der}	Riskper = Conceel * SA * AF * ABS * EF * ED * SF / BW * 70 * 365 * CF	SA AF	* ABS * EF	* ED *	SF / BW * 7() * 365 * (失

HQper = Concesi * SA * AF* ABS * EF * (1/RfD) / BW * 365 * CF

For non-carcinogens: HQ_{ING} = Conc_{sol} * IR_{sol} * EF * (1/RfD) / BW * 365 * CF

Constituent	Conc	SFo	RfDo	Riskue		SFd	RfDd	ABS	Riskner	
of Concern	(mg/kg)	(1/mg/kg-d)	~	or HQ _{ING}	(1/1	(1/mg/kg-d)	(mg/kg-d)	1	or HQ _{DER}	
Carcinogens										
Benzene	3.08e+0	0.029		1.52E-07		0.029		000.0	0,00E+00	
Chrysene	1.10e+0	0.0073		1.36E-08	0	0.0236		0.130	1.15E-07	
·		T	Total Risk:	1.65e-7			10	Total Risk:	1.15e-7	
Non-Carcinogens										
Ethylbenzene	5.98 e+1		0.10	7.65E-03			0.10	000.0	0.00E+00	
Fluorene	1.30e+0		0.04	4.16E-04			0.04	0.100	2.58E-04	
Naphthalene	2.10e+0		0.04	6.71E-04			0.04	0.100	4.17E-04	
Phenanthrene	3.90e+0		0.0	1.25E-02	····		0.02	0:050	7.07E-04	
Toluene	5.66e+1		0.20	3.62E-03			0.20	0.000	0,00E+00	
Xylene (mixed isomers)	1.36e+2		2.00	8.69E-04			2.00	0.000	0.00E+00	
TPH - New Method	3.09e+4			4.82E+00					3.00E+00	
		Haza	Hazard Index:	4.85e+0			Hazar	Hazard Index:	3.00e+0	
TPH-Arom-EC>8-10	0.00e+0		0.04	0.00E+00			0.04	0,100	0,00E+00	
TPH-Arom-EC>10-12	1.85e+1		0.04	5.93E-03			90	0.100	3.68E-03	
TPH-Arom-EC>12-16	2.06e+3		0.04	6.60E-01			0.04	0.100	4.10E-01	
TPH-Arom-EC>16-21	5.59e+3		0.03	2.38E+00			0.03	0.100	1.48E+00	
TPH-Arom-EC>21-35	2.35e+3		0.03	1.00E+00			0.03	0.100	6.23E-01	
TPH-Aliph-EC 5-6	0.00e+0		0.06	0.00E+00			0.06	0.100	0.00E+00	
TPH-Aliph-EC>6-8	0.00e+0		0.06	0.00E+00			0.06	0.100	0.00E+00	
TPH-Aliph-EC>8-10	1.14e+2		0.10	1.46E-02			0.10	0.100	9.08E-03	
TPH-Aliph-EC>10-12	6.77e+2		0.10	8.65E-02			0.10	0.100	5.38E-02	
TPH-Aliph-EC>12-16	4.46e+3		0.10	5.70E-01			0.10	0.100	3.54E-01	
TPH-Aliph-EC>16-35	1.56e+4		2.00	1.00E-01			2.00	0.100	6.21E-02	
IOTES:				I	:		•	:		
Conc(soil) = Concentration in soil (0-15 feet)	15 feet)	RfD = Reference Dose	e Dose	R	IR _{sell} = Ingestion rate	n rate	•/	SA = skin surtace area	rtace area	
Risk = Carcinogenic Risk		BW = body weight	ħ	ū	EF = exposure frequency	requency		AF = adherence factor	nce factor	

HISK = Carcinogenic

HQ = Hazard Quotient SF = Slope Factor

.

ABS = dermal absorption fraction tor

lea

ED = exposure duration

AT = averaging time

<u>S</u>

Calculation of Risk Resident - Combined Risk for Soil Texas-New Mexico Pipe Line Co.

If On-Site: Risk_{res-Solt} ≕ Risk_{ING} + Risk_{DER} + Risk_{INHAL} If Off-Site: Risk_{res-Solt} = Risk_{INHAL} Riskres-soll or HQres-soll

1.29E-07

7.88E-03 6.75E-04 1.11E-03 1.32E-02 4.75E-03

3.19E-07

or HQ_{INHAL} Riskinhal 0.00E+00.0 0.00E+00 1.67E-07 1.77E-12 2.35E-04 1.30E-06 2.16E-05 1.29E-05 1.13E-03 I.72E-03 7.81E-02 0.00E+00 1.99E-04 9.63E-03 4.22E-02 1.50E-03 1.70E-03 4.38E-03 1.33E-02 5.26E-03 or HQ_{DER} 4.17E-04 Riskoer 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.00E+00 0.00E+00 1.48E+00 0.00E+00 0.00E+00 9.08E-03 1.15E-07 2.58E-04 7.07E-04 3.68E-03 4.10E-01 5.38E-02 6.21E-02 6.23E-01 3.54E-01 Risk_{ing} or HQ_{ing} 8.65E-02 1.36E-08 I.52E-07 7.65E-03 4.16E-04 5.71E-04 I.25E-02 3.62E-03 3.69E-04 4.82E+00 0.00E+00 5.93E-03 6.60E-01 2.38E+00 .00E+00.1 0.00E+00 0.00E+00.0 1.46E-02 1.00E-01 5.70E-01 Xylene (mixed isomers) TPH-Arom-EC>10-12 TPH-Arom-EC>12-16 IPH-Arom-EC>21-35 TPH-Aliph-EC>12-16 TPH-Aliph-EC>16-35 TPH-Arom-EC>16-21 TPH-Aliph-EC>10-12 IPH-Arom-EC>8-10 of Concern TPH-Aliph-EC>8-10 Constituent TPH - New Method TPH-Aliph-EC>6-8 TPH-Aliph-EC 5-6 Non-Carcinogens Phenanthrene Ethylbenzene Carcinogens Naphthalene Chrysene Fluorene Benzene Toluene

2.59E-03

7.89E+00

0.006+00 9.816-03 1.086+00 3.906+00 1.636+00 0.006+00 0.006+00

2.54E-02 1.45E-01 9.37E-01 1.67E-01

> Risk = Carcinogenic Risk HQ = Hazard Quotient

NOTES:
1. 1 ⁰ M 1
146
18.0
1000
ō
S
. Ę
<u> </u>
l S
<u> </u>
S S
× []
f Rist on of
E S
[2] 관
r a
을 또
1.2
l 🚆 🗄
ပ်ခံ
L C
Ca Vorker
Ň
5
i i i
분정철
199 2
Ĕ
ୁମ
1
1.1.21
[· ·]

Towar New Mexico Dine Line Co		10.1		2	c -	2	2					
I CARS-INEW INEALCU LIDE LIDE CO.	Ma		Ľ	2	2	>	ĥ	4	ם	ц	10C	PEF P
TNM-96-16	(kg)	(m ³ /day)	(days/yr)	(years)	(<u>E</u>	(m/s)	Ē	(m²)	(g/cc)	I	I	(kg/m²)
Lea County, New Mexico	70	20	5	12	ъ	0.49	2.0	109	1.80	0.32	0.009	4.58e-11

For carcinogens: Risk = Conc _{soll} * (VF + PEF) * R _{alr} * EF * ED * SF / BW * 70 * 365	For non-carcinogens: HQ = Conc _{soli} * (VF + PEF) * IR _{air} * EF * (1/RfD) / BW * 365	VF = (2*Dei*E*Kas*10-3)/(LS*V*DH/A)*(3.14*alpha*ED*3.15E+7) ^{0.5}
Risk = Conc _{soll} *	HQ = Conc _{soll} * (V	VF = (2*Dei*E
For carcinogens:	For non-carcinogens:	

Constituent	Concred	SF	RfD	Dei	РУ	н,	Kas	alpha	VF	Risk	
of Concern	(mg/kg)	(1/mg/kg-d) ((mg/kg-d)	(cm ² /sec)	(cm³/g)	ł	(g /cm³)	(cm²/sec)	(m³/kg)	or HQ	
Carcinogens											
Benzene	3.08e+0	2.91e-2		2.05e-2	7.49e-1	2.32e-1	3.11e-1	1.07e-3	2.32e-5	5.12e-8	
Chrysene	1.10e+0	6.10e-3		5.45e-3	1.80e+3	4.37e-5	2.43e-8	2.36e-11	3.26e-9	5.39e-13	
								T	Total Risk:	5.12e-8	
Non-Carcinogens											
Ethylbenzene	5.98e+1		2.86e-1	1.64e-2	9.87e+0	2.67 e -1	2.71e-2	7.88e-5	5.99e-6	8.99e-3	
Fluorene	1.30e+0	-	4.00e-2	1.38e-2	6.52e+1	2.67e-3	4.10e-5	1.00e-7	2.13e-7	4.96e-5	
Naphthalene	2.10e+0	-	4.00e-2	1.30e-2	1.16e+1	5.38e-2	4.64e-3	1.07e-5	2.20e-6	8.28e-4	
Phenanthrene	3.90e+0	-	4.00e-3	1.19e-3	1.27e+2	6.63e-3	5.21e-5	1.10e-8	7.05e-8	4.93e-4	
Toluene	5.66e+1		1.14e-1	1.84e-2	2.72e+0	2.65e-1	9.75e-2	3.14e-4	1.21e-5	4.31e-2	
Xylene (mixed isomers)	1.36e+2		2.00e-1	1.63e-2	2.16e+0	2.93e-1	1.36e-1	3.83e-4	1.35e-5	6.57e-2	
TPH - New Method	3.09e+4									2.99e+0	
								Haza	Hazard Index:	3.11e+0	
TPH-Arom-EC>8-10	0.00e+0		5.71e-2	2.20e-2	1.43e+1	4.84e-1	3.39e-2	1.32e-4	7.76e-6	0.00e+0	
TPH-Arom-EC>10-12	1.85e+1	•	5.71e-2	2.20e-2	2.26e+1	1.36e-1	6.03e-3	2.35e-5	3.26e-6	7.60e-3	ŗ
TPH-Arom-EC>12-16	2.06e+3		5.71e-2	2.20e-2	4.51e+1	5.16e-2	1.14e-3	4.47e-6	1.42e-6	3.68e-1	
TPH-Arom-EC>16-21	5.59e+3		3.00e-2	2.20e-2	1.43e+2	1.18e-1	8.26e-4	3.22e-6	1.21e-6	1.61e+0	
TPH-Arom-EC>21-35	2.35e+3		3.00e-2	2.20e-2	1.13e+3	6.65e-3	5.87e-6	2.29e-8	1.02e-7	5.73e-2	
TPH-Aliph-EC 5-6	0.00e+0	•	5.71e-2	2.20e-2	7.15e+0	3.28e+1	4.58e+0	9.86e-3	1.21e-4	0.00e+0	
TPH-Aliph-EC>6-8	0.00e+0		5.71e-2	2.20e-2	3.58e+1	4.85e+1	1.35e+0	4.26e-3	5.44e-5	0.00e+0	
TPH-Aliph-EC>8-10	1 14e+2		2.86e-1	2.20e-2	2.85e+2	7.92e+1	2.78e-1	1.04e-3	2.27e-5	6.52e-2	
TPH-Aliph-EC>10-12	6.77e+2		2.86e-1	2.20e-2	2.26e+3	1.23e+2	5.45e-2	2.11e-4	9.86e-6	1.68e-1	
TPH-Aliph-EC>12-16	4.46e+3		2.86e-1	2.20e-2	4.51e+4	5.25e+2	1.16e-2	4.54e-5	4.54e-6	5.08e-1	
TPH-Aliph-EC>16-35	1.56e+4	3	2.00e+0	2.20e-2	9.00e+6	6.57e+4	7.29e-3	2.85e-5	3.59e-6	2.01e-1	
NOTES:											
Conc(soil) = Concentration in soil (0-15 feet)	5 feet)	BW = body weight	ht	-	V = Velocity of Wind	of Wind			H' = unitless	H' = unitless Henry's Law Constant	nstant
Risk = Carcinogenic Risk		AT = averaging time	ime		DH = Diffusion Height	n Height			Kd = organic	carbon partitio	Kd = organic carbon partition coefficient * foc
SF = Slope Factor		IR _A = Inhalation rate	rate		A = Area of Soll Source	oil Source			foc = fraction	foc = fraction organic carbon	
HQ = Hazard Quotient		EF = exposure frequency	equency		B = Bulk Soit Density	Density			Kas = H' / Kd		
RfD = Reference Dose		ED = exposure duration	luration		E = Effective Porosity	Porosity			alpha = Dei *	alpha = Dei * E / (E + B / Kas)	(s)
DAF = Dilution attenuation factor		LS = Length of Source Area	source Area		Dei = effectiv	Dei = effective diffusion coefficient	efficient		PEF = Partici	PEF = Particulate Emissions Factor	Factor
									i i		2

Calculation of Risk Construction Worker - Ingestion of Soil & Dermal Contact with Soil

....

Texas-New Mexico Pipe Line Co.	BW	Ч	IRsoil EF		ED	ED EF _{dermal}	SA	AF
TNM-96-16	(kg)	(mg/kg)	(mg/day)	(mg/kg) (mg/day) (days/yr) (years)	(years)	(days/yr)	(cm²)	(mg/cm ²)
Lea County, New Mexico	70	1.00E+06	480	5	12	5	3,300	0.12
For carcinogens: Risk _{ING} = Conc _{soli} * IR _{soli} * EF * ED * SF / BW * 70 * 365 * CF	Risk _{ing}	= Conc _{solt} *	IR _{soll} * EF	* ED * SF	/ BW * 7	0 * 365 * CI		
	Risk _{der}	Risk _{ber} = Conc _{soli} * SA * AF * ABS * EF * ED * SF / BW * 70 * 365 * CF	SA*AF	* ABS* EF	ED S	SF / BW * 70) * 365 * (ц.
For non-carcinogens: HQ _{iNG} = Conc _{soll} * IR _{soll} * EF * (1/RfD) / BW * 365 * CF	HQ _{ING} =	Conc _{soll} * II	R _{soll} * EF *	(1/RfD) /	BW * 36!	5 * CF		
	HQ _{DER} =	HQoer = Conc.eout * SA * AF* ABS * EF * (1/RfD) / BW * 365 * CF	SA * AF* /	ABS*EF*	(1/RfD)	/ BW * 365 ·	CF	

of Concern (mg/kg) Carcinogens 3.08e+0 Benzene 3.08e+0 Benzene 1.10e+0 Chrysene 1.10e+0 Non-Carcinogens 5.98e+1 Ethylbenzene 1.30e+0 Naphthalene 2.10e+0 Phenanthrene 3.90e+0 Toluene 5.66e+1	(1/mg/kg-d) 0.029 0.0073	(mg/kg-d)	or HQ _{ING}	(1/mg/kg-d)) (mg/kg-d)	I	or HQ _{DER}
ens sinogens cene erre irene	0.029 0.0073	otal Risk.					
kinogens erne irene	0.029	ota! Rick [.]					1.1
k kinogens cene ene irene	0.0073	otat Rick [.]	1.44E-09	0.029		0.000	0.00E+00
nogens an e e e ene		otal Rick	1.29E-10	0.0236		0.130	4.48E-11
	2e+1 2e+0 3e+0 2e+0		1.57e-9		F	Total Risk:	4.48e-11
)e+0 De+0 De+0 De+0						
υ)e+0]e+0]e+0	0.10	2.81E-03		0.10	0.000	0.00E+00
U	Je+0 De+0	0.04	1.53E-04		0.04	0.100	1.26E-05
	0e+0	0.04	2.47E-04		0.04	0.100	2.03E-05
		0.0	4.58E-03		0.02	0.050	3.45E-05
	3e+1	0.20	1.33E-03		0.20	0.000	0.00E+00
Xylene (mixed isomers) 1.366	l.36e+2	2.00	3.19E-04		2.00	0.000	0.00E+00
TPH - New Method 3.094	3.09e+4		1.77E+00				1.46E-01
	Haz	Hazard Index:	1.78e+0		Haza	Hazard Index:	1,46e-1
TPH-Arom-EC>8-10 0.006	0.00e+0	0.04	0.00E+00		0.04	0.100	0.00E+00
TPH-Arom-EC>10-12 1.856	1.85e+1	0.04	2.18E-03		0.04	0.100	1.80E-04
TPH-Arom-EC>12-16 2.06	2.06e+3	0.04	2.42E-01		0.04	0.100	2.00E-02
TPH-Arom-EC>16-21 5.596	5.59e+3	0.03	8.75E-01		0.03	0.100	7.22E-02
TPH-Arom-EC>21-35 2.35e+3	5e+3	0.03	3.68E-01		0.03	0.100	3.04E-02
TPH-Aliph-EC 5-6 0.00e+0	De+0	0.06	0.00E+00		0.06	0.100	0.00E+00
TPH-Aliph-EC>6-8 0.00e+0	0+0 De+0	0.06	0.00E+00		0.06	0.100	0,00E+00
TPH-Aliph-EC>8-10 1.14	l.14e+2	0.10	6.37E-03		0.10	0.100	4.43E-04
TPH-Aliph-EC>10-12 6.776	5.77e+2	0.10	3.18E-02		0.10	0.100	2.62E-03
•	4.46e+3	0.10	2.09E-01		0.10	0.100	1.73E-02
1-Aliph-EC>16-35 1	.56e+4	2.00	3.67E-02		2.00	0.100	3.03E-03
NOTES:							
Conc(soil) = Concentration in soil (0-15 feet)	RfD = Reference Dose	ie Dose	Ru	R _{tall} = Ingestion rate		SA = skin surface area	liface area
Risk = Carcinogenic Risk	BW = body weight	ght	Ē	EF = exposure frequency		AF = adherence factor	nce factor
SF = Stope Factor	AT = averaging time	time	ËD	ED = exposure duration		ABS = derm	ABS = dermal absorption fraction
HO = Hazard Ountient							

Construction Worker - Combined Risk for Soil Texas-New Mexico Pipe Line Co. **Calculation of Risk**

Risk_{cw-soll} = Risk_{ing} + Risk_{der} + Risk_{inhal}

of Concern	DNINGIN	RISKDER	KISKINHAL	RISKCW-SOIL
	or HQ _{ING}	or HQ _{DER}	OF HQINHAL	or HQcw-soll
Carcinogens				
Benzene	1.44E-09	0.00E+00	5.12E-08	5.27E-08
Chrysene	1.29E-10	4.48E-11	5.39E-13	1.75E-10
Non-Carcinogens				
Ethylbenzene	2.81E-03	0.00E+00	8.99E-03	1.18E-02
Fluorene	1.53E-04	1.26E-05	4.96E-05	2.15E-04
Naphthalene	2.47E-04	2.03E-05	8.28E-04	1.10E-03
Phenanthrene	4.58E-03	3.45E-05	4.93E-04	5.11E-03
Toluene	1.33E-03	0.00E+00	4.31E-02	4.45E-02
Xylene (mixed isomers)	3.19E-04	0.00E+00	6.57E-02	6.60E-02
TPH - New Method	1.77E+00	1.46E-01	2.99E+00	4.90E+00
			0.005+00	
	0.00			
TPH-Arom-EC>10-12	2.18E-03	1.80E-04	7.60E-03	9.95E-03
TPH-Arom-EC>12-16	2.42E-01	2.00E-02	3.68E-01	6.31E-01
TPH-Arom-EC>16-21	8.75E-01	7.22E-02	1.61E+00	2.56E+00
TPH-Arom-EC>21-35	3.68E-01	3.04E-02	5.73E-02	4.56E-01
TPH-Aliph-EC 5-6	0.00E+00	0.00E+00	0,00E+00	0.00E+00
TPH-Aliph-EC>6-8	0.00E+00	0.00E+00	0.00E+00	0.00E+00
TPH-Aliph-EC>8-10	5.37E-03	4.43E-04	6.52E-02	7.10E-02
TPH-Aliph-EC>10-12	3.18E-02	2.62E-03	1.68E-01	2.02E-01
TPH-Aliph-EC>12-16	2.09E-01	1.73E-02	5.08E-01	7.34E-01
TPH-Aliph-EC>16-35	3.67E-02	3.03E-03	2.01E-01	2.41E-01

Risk = Carcinogenic Risk HQ = Hazard Quotient

		ΟŇ	alculati orker –	on of Sil Inhalat	Calculation of Site-Specific Target Levels Worker – Inhalation of Volatiles from Soil	ic Targe olatiles	t Levels Irom Soi					
Texas-New Mexico Pipe Line Co.	BW	IRair	EF	ED	LS I	>	НО	A	8	ш	foc	PEF
TNM-96-16	(kg)	(m³(day)	(days/yr)	(years)	(m)	(m/s)	(m)	(m²)	(B/cc)		1	(kg/m²)
Lea County, New Mexico	8	8	250	25	19	4.92	2.0	171	1.80	0.32	600.0	1.802E-11
For carcinodens:	SSTL =	DAF	* BW * 7	0 * 365 / 1	* TR * BW * 20 * 365 / IB * FF * FD * SF * (VE + PEE	ED * SE *	(VF + PF	1				DAF
						5						
For non-carcinogens:	SSTL =	DAF	* BW *	365 / IR _{air}	* HQ * BW * 365 / iR _{air} * EF * (1/RfD) * (VF + PEF	fD) * (VF	+ PEF)				_	1.00
	VF = ((2* Dei * E * Kas * 10-3) / (LS * V * DH / A) * (3.14 * alpha * ED	* Kas * 1	0-3) / (רי	HQ * V * S	/A)*(3.	14 * alphi	-8	3.15E+7) ^{0.5}			
											,	
Constituent	TR I	SF [1]maika_d)	ਸ਼ੂ ।	RfD (mc/to-4)	Dei (rm ¹ /ser)	Kd Kd	Ξ	Kas (a lcm³)	alpha (cm ³ /sec)	VF (m ³ /fm)		SSTL (molike)
	L	(p-63/611/1)	1	(mg/kg-a)	_	(cm /g)	1	(mɔ/ g)	(cm.rsec)	(Bx) (B)		(mg/xg)
Non-Carcinocane												
Ethylbenzene			0.07	0.29	1.64e-2	9.87e+0	2.67e-1	2.71e-2	7.88e-5	5.99e-6		1.71e+4
Fluorene			0.01	0.04	1.38e-2	6.52e+1	2.67e-3	4.10e-5	1.00e-7	2.13e-7		4.81e+3
Naphthalene			0.01	0.04	1.30e-2	1.16e+1	5.38e-2	4.64e-3	1.07e-5	2.20e-6		4.65e+2
Phenanthrene			0.02	0.00	1.19e-3	1.27e+2	6.63e-3	5.21e-5	1.10e-8	7.05e-8		4.35e+3
Toluene			0.05	0.11	1.84e-2	2.72e+0	2.65e-1	9.75e-2	3.14e-4	1.21e-5		2.41e+3
Xylene (mixed isomers)			0.07	0.20	1.63e-2	2.16e+0	2.93e-1	1.36e-1	3.83e-4	1.35e-5		5.31e+3
TPH - New Method			0.79									2.98e+5
TPH-Arom-EC>8-10			0.000	0.06	2.20e-2	1.43e+1	4.84e-1	3.39e-2	1.32e-4	7.76e-6		3.76e+4
TPH-Arom-EC>10-12			0.001	0.06	2.20e-2	2.26e+1	1.36e-1	6.03e-3	2.35e-5	3.26e-6		8.95e+4
TPH-Arom-EC>12-16			0.067	0.06	2.20e-2	4.51e+1	5.16e-2	1.14e-3	4.47e-6	1.42e-6		2.05e+5
TPH-Arom-EC>16-21			0.181	0.03	2.20e-2	1.43e+2	1.18e-1	8.26e-4	3.22e-6	1.21e-6		1.27e+5
TPH-Arom-EC>21-35			0.076	0.03	2.20e-2	1.13e+3	6.65e-3	5.87e-6	2.29e-8	1.02 e -7		1.51e+6
TPH-Aliph-EC 5-6			0.000	0.06	2.20e-2	7.15e+0	3.28e+1	4.58e+0	9.86 e- 3	1.21e-4		2.41e+3
TPH-Aliph-EC>6-8			0.000	0.06	2.20e-2	3.58e+1	4.85e+1	1.35e+0	4.26e-3	5.44e-5		5.36e+3
TPH-Aliph-EC>8-10			0.004	0.29	2.20e-2	2.85e+2	7.92e+1	2.78e-1	1.04e-3	2.27e-5		6.43e+4
TPH-Aliph-EC>10-12			0.022	0.29	2.20e-2	2.26e+3	1.23e+2	5.45e-2	2.11e-4	9.86e-6		1.48e+5
TPH-Aliph-EC>12-16			0.144	0.29	2.20e-2	4.51e+4	5.25e+2	1.16e-2	4.54e-5	4.54e-6		3.22e+5
TPH-Aliph-EC>16-35			0.506	2 50 50	2.20e-2	9.00e+6	6.57e+4	7.29e-3	2.85e-5	3.59e-6		2.85e+6
NOTES:												
SSTL = Site specific Target Level		BW = body weight	ight		V = Velocity of Wind	Mind			H' = unitless h	H' = unitless Henry's Law Constant	onstant	
TR = Target Risk		AT = averaging time	t time		DH = Diffusion Height	n Height			Kd = organic c	carbon partitio	Kd = organic carbon partition coefficient * foc	8
SF = Stope Factor		IR _A = Inhalation rate	n rate		A = Area of Soil Source	oil Source			foc = fraction c	foc = fraction organic carbon	e	
HQ = hazard quotient		EF = exposure frequency	frequency		B = Bulk Soil Density	Density			Kas = H'/Kd	_		
RfD = Reference Dose		ED = exposure duration	duration		E = Effective Porosity	Porosity			alpha = Dei • {	atpha = Dei • E / (E + B / Kas)	as)	
										-		

PEF = Particulate Emissions Factor

Dei = effective diffusion coefficient

LS = Length of Source Area

DAF = Dilution attenuation factor

Calculation of Site-Specific Target Levels Worker - Ingestion of Soil & Dermal Contact with Soil

Texas-New Mexico Pipe Line Co.	BW	СF	CF IRsoil	Ш	ED	EF _{dermal}	SA	AF
TNM-96-16	(kg)	(mg/kg)	(mg/day)	(mg/kg) (mg/day) (days/yr)	(years)	(days/yr)	(cm²)	(mg/cm ²)
Lea County, New Mexico	70	1.00E+06 50	50	250	25	250	5,800	1.00
For carcinogens: SSTL _{ING} = TR * BW * 70 * 365 * CF / IR _{soli} * EF * ED * SF	SSTLING	= TR * BV	V * 70 * 36	5 * CF / IR	soli*EF*ED	* SF		
	SSTL _{DER}	= TR * B/	W * 70 * 3	65 * CF / S	SSTL _{DER} = TR*BW*70*365*CF/SA*AF*ABS*EF*ED*SF	* EF * ED	* SF	
For non-carcinogens: SSTL _{ING} = HQ * BW * 365 * CF / IR _{soli} * EF * (1/RfD)	SSTL _{ING}	= HQ * B	W * 365 * N	CF / IR _{soll} *	EF * (1/RfD)			
	SSTL _{der}	= HQ * B	W * 365 *	CF / SA * /	SSTL _{DER} = HQ * BW * 365 * CF / SA * AF* ABS * EF * (1/RfD)	: * (1/RfD)		

Constituent	TR	SFo	Å	RfDo	SSTLING	L	SFd	RfDd	ABS	SSTL _{DER}
of Concern	1	(1/mg/kg-d)	:	(mg/kg-d)	(mg/kg)	<u> </u>	(1/mg/kg-d) (mg/kg-d)	(mg/kg-d)	:	(mg/kg)
						<u> </u>				
Non-Carcinogens										
Ethylbenzene			0.07	0.10	1.43e+4			0.10	0.000	9.99e+99
Fluorene			0.01	0.04	4.09e+2			0.04	0.100	3.52e+1
Naphthalene			0.01	0.04	4.09e+2			0.04	0.100	3.52e+1
Phenanthrene			0.02	0.00	1.23e+2	•••		0.02	0.050	1.16e+2
Toluene			0.05	0.20	2.04e+4			0.20	0.000	9.99e+99
Xylene (mixed isomers)			0.07	2.00	2.86e+5			2.00	0.000	9.99e+99
TPH - New Method			0.79		1.32e+5					1.13e+4
TPH-Arom-EC>8-10			0.000	0.04	8.18e+4			0.04	D. 100	7.05e+3
TPH-Arom-EC>10-12			0.001	0.04	8.18e+4			0.04	0.100	7.05e+3
TPH-Arom-EC>12-16			0.067	0.04	8.18e+4			0.04	0.100	7.05e+3
TPH-Arom-EC>16-21			0.181	0.03	6.13e+4			0.03	0.100	5.29e+3
TPH-Arom-EC>21-35			0.076	0.03	6.13e+4			0.03	0.100	5.29e+3
TPH-Aliph-EC 5-6			0,000	0.06	1.23e+5			0.06	0,100	1.06e+4
TPH-Aliph-EC>6-8			0.000	0.06	1.23e+5			0.06	0.100	1.06e+4
TPH-Aliph-EC>8-10	·		0.004	0.10	2.04e+5			0.10	0.100	1.76e+4
TPH-Aliph-EC>10-12			0.022	0.10	2.04e+5			0.10	0.100	1.76e+4
TPH-Aliph-EC>12-16			0.144	0.10	2.04e+5			0.10	0.100	1.76e+4
TPH-Aliph-EC>16-35			0.506	2.00	4.09e+6			2.00	0.100	3.52e+5
NOTES:						J				
SSTL = Site specific Target Level		RfD = Reference Dose	e Dose		IR.od = Ingestion rate	ate		SA = skin surface area	ce area	
TR = Target Risk		BW = body weight	ght		EF = exposure frequency	Juency	•	AF = adherence factor	a factor	
SF = Slope Factor		AT = averaging time	time		ED = exposure duration	ration		ABS = dermal absorption fraction	ubsorption fract	tion

HQ = hazard quotient

Calculation of Site-Specific Target Levels Worker -- Combined SSTL for Soil Texas-New Mexico Pipe Line Co.

If On-Site: SSTL_{wkr-soll} =

((1 / SSTL_{ING}) + (1 / SSTL_{DER}) + (1 / SSTL_{INHAL}))

If Off-Site: SSTL_{wkr-soll} = SSTL_{INHAL}

Constituent of Concern Non-Carcinogens Ethylbenzene Fluorene Naphthalene Phenanthrene Toluene Xylene (mixed isomers) TPH - New Method
--

SSTL _{ING}	(mg/kg)	1.43e+4	4.09e+2	4.09e+2	1.23e+2	2.04e+4	2.86e+5	1.32e+5

	I				
SSTL _{DER} (mg/kg)	9.99e+99	3.52e+1 3.52e+1	1.16e+2	9.99e+99 9.99e+99	1.13e+4

SSTL _{INHAL}	1.71e+4	4.81e+3	4.35e+3	5.31e+3
(mg/kg)		4.65e+2	2.41e+3	2.98e+5

vkr-SOIL ¥g)	 6+3	e+1	e+1	e+1	e+3	e+3	e+4
SSTL _{wkr-S} (mg/kg)	1./06+3	3.22e+1	3.03e+1	5.87e+1	2.15e+3	5.22e+3	1.01e+4

.

		Cal Resid	culation lent – 1	l of Site- nhalatio	Specific n of Vo	Calculation of Site-Specific Target Levels Resident Inhalation of Volatiles from Soil	evels om Soil					
Texas-New Mexico Pipe Line Co.	BW	IRair	Ш	ED	SI	>	F	A	8	ш	foc	PEF
TNM-96-16	(kg)	(m³/day)	(days/yr)	(years)	(m)	(m/s)	(m)	(m²)	(3/cc)	1	1	(kg/m³)
Lea County, New Mexico	02	15	350	30	19	4.92	2.0	171	1.80	0.32	0.009	1.802E-11
									_		_	
For carcinogens:	SSIL =	DAF	* BW * 7	365/1	R _{air} * EF *	* TK * BW * 70 * 365 / IR _{air} * EF * ED * SF * (VF + PEF)	(VF + PE	F)				DAF
For non-carcinogens:	SSTL =	DAI	* BW * 3	65 / IR _{air} *	· EF * (1/R	F * HQ * BW * 365 / IR _{air} * EF * (1/RfD) * (VF + PEF)	+ PEF)					1.00
	VF = (2 * Dei * E *	* Kas * 1()-3)/(F{	HQ * V * S	* Kas * 10-3) / (LS * V * DH / A) * (3.14 * alpha * ED * 3.15E+7) ^{0.5}	14 * alph	a * ED * 3.	15E+7) ^{0.5}		-	
Constituent	TR	SF	Ŗ	RfD	Dei	kd	Γ.	Kas	aloha	VF	:	SSTL
of Concern	1	(1/mg/kg-d)	1	(mg/kg-d)	(cm²/sec)	(cm³/g)	: 1	(8 /cm³)	(cm²/sec)	(m ³ /kg)		(mg/kg)
Non-Carcinogens												
Ethylbenzene			0.07	0.29	1.64e-2	9.87e+0	2.67 e- 1	2.71e-2	7.88e-5	5.47e-6		1.78e+4
Fluorene			0.01	0.04	1.38e-2	6.52e+1	2.67 e- 3	4.10e-5	1.00e-7	1.94e-7		5.01e+3
Naphthalene			0.01	0.04	1.30e-2	1.16e+1	5.38e-2	4.64e-3	1.07e-5	2.01e-6		4.85e+2
Phenanthrene			0.02	0.00	1.19e-3	1.27e+2	6.63e-3	5.21e-5	1.10e-8	6.43e-8		4.54e+3
Toluene			0.05	0.11	1.84e-2	2.72e+0	2.65e-1	9.75 8 -2	3.14e-4	1.11e-5		2.51e+3
Xylene (mixed isomers)			0.07	0.20	1.63 e- 2	2.16e+0	2.93 e -1	1.36e-1	3.83e-4	1.23e-5		5.54e+3
TPH - New Method			0.79									3.11e+5
TPH-Arom-EC>8-10			0.00	0.06	2.20e-2	1.43e+1	4.84e-1	3.39e-2	1.32e-4	7.08e-6		3.93e+4
TPH-Arom-EC>10-12			0.00	0.06	2.20e-2	2.26e+1	1.36e-1	6.03e-3	2.35e-5	2.98e-6		9.34e+4
TPH-Arom-EC>12-16			0.07	0.06	2.20e-2	4.51e+1	5.16e-2	1.14e-3	4.47e-6	1.30e-6		2.14e+5
TPH-Arom-EC>16-21			0.18	0.03	2.20 0- 2	1.43e+2	1.18e-1	8.26e-4	3.22e-6	1.10e-6		1.33e+5
TPH-Arom-EC>21-35			0.08	0.03	2.20 e -2	1.13e+3	6.65 e- 3	5.87 e -6	2.29e-8	9.29e-8		1.57e+6
TPH-Aliph-EC 5-6			0.00	0.06	2.20 0- 2	7.15e+0	3.28e+1	4.58e+0	9.86e-3	1.11e-4		2.52e+3
TPH-Aliph-EC>6-8			0.00	0.06	2.20e-2	3.58e+1	4.85e+1	1.35e+0	4.26e-3	4.97e-5		5.60e+3
TPH-Aliph-EC>8-10			0.00	0.29	2.20e-2	2.85e+2	7.92e+1	2.78 e -1	1.04e-3	2.07e-5		6.71e+4
TPH-Aliph-EC>10-12			0.02	0.29	2.20 0- 2	2.26e+3	1.23e+2	5.45e-2	2.11e-4	9.00e-6		1.55e+5
TPH-Aliph-EC>12-16			0.14	0.29	2.20e-2	4.51e+4	5.25e+2	1.16e-2	4.54e-5	4.14e-6		3.36e+5
TPH-Aliph-EC>16-35 NOTES:			0.51	2.00	2.20e-2	9.00e+6	6.57e+4	7.29e-3	2.85e-5	3.28e-6		2.97e+6
SSTL = Site specific Target Level		BW = body weight	ght		V = Velocity of Wind	of Wind			H' = unitless ł	H' = unitless Henry's Law Constant	nstant	
TR ≃ Target Risk		AT = averaging time	time		DH = Diffusion Height	in Height			Kd = organic (carbon partition	Kd = organic carbon partition coefficient * foc	0
SF = Slope Factor		IR _A = Inhalation rate	n rate		A = Area of Soil Source	ioil Source			foc = fraction e	foc = fraction organic carbon		
HQ = hazard quotient		EF = exposure frequency	frequency		B = Bulk Soil Density	Density			Kas = H'/Kd			
RID = Reference Dose		ED = exposure duration	duration		E = Effective Porosity	Porosity			alpha = Dei * I	alpha = Dei * E / (E + B / Kas)	IS)	
DAF = Dilution attenuation factor		LS = Length of Source Area	Source Area	_	Dei = effectiw	Dei = effective diffusion coefficient	flicient		PEF = Particu	PEF = Particulate Emissions Factor	Factor	

•

	5	5,800 1 1.00		* SF			SFd RfDd ABS SSIL _{DER} (1/mg/kg-d) (mg/kg) - (mg/kg)		0.10 0.000 9.99e+99	0.04 0.100 2.52e+1	0.04 0.100 2.52e+1	0.02 0.050 8.27e+1	0.20 0.000 9.99e+99	2.00 0.000 9.99e+99	8.10e+3	0.04 0.100 5.03e+3	0.04 0.100 5.03e+3	0.04 0.100 5.03e+3	0.03 0.100 3.78e+3	0.100	0.06 0.100 7.55e+3	1.4	0.10 0.100 1.26e+4	0.10 0.100 1.26e+4	0.10 0.100 1.26e+4	2.00 0.100 2.52e+5		SA = skin surface area	AF = adherence factor	ABS = dermat absorption fraction	
EFdermal	(days/yr)	350	* SF	EF * ED		* (1/RfD)																-						rate	duency	Iration	
ED	(years)	90	TR * BW * 70 * 365 * CF / IR _{soll} * EF * ED *	TR * BW * 70 * 365 * CF / SA * AF * ABS *	HQ * BW * 365 * CF / IRsoli * EF * (1/RfD)	HQ * BW * 365 * CF / SA * AF* ABS * EF * (1/RfD)	SSTL _{-ING} (mg/kg)		5.48e+2	1.56e+1	1.56e+1	4.69e+0	7.82e+2	1.10e+4	5.03e+3	3.13e+3	3.13e+3	3.13e+3	2.35e+3	2.35e+3	4.69e+3	4.69e+3	7.82e+3	7.82e+3	7.82e+3	1.56e+5		R _{tot} = Ingestion rate	EF = exposure frequency	ED = exposure duration	
Ш	(days/yr)	350	5 * CF / IR _s	35 * CF / SA	CF / IR _{solt} * I	CF / SA * A	RfDo (mg/kg-d)		0.10	0.04	0.04	0.00	0.20	2.00		0.04	0.04	0.04	0.03	0.03	0.06	0.06	0.10	0.10	0.10	2.00		-	ш	ш	
IRsoil	(mg/day)	124	V * 70 * 36	N * 70 * 36	V * 365 * (W * 365 * I	Ъ I		0.07	0.01	0.01	0.02	0.05	0.07	0.79	0.00	0.00	0.07	0.18	0.08	0.00	0.00	0.00	0.02	0.14	0.51		ce Dose	ight	g time	
СF	(mg/kg)	1.00E+06	IE	= TR*B	= HQ * BV	= HQ * B	SFo (1/mg/kg-d)																					RfD = Reference Dose	BW = body weight	AT = averaging time	
BW	(Kg) 70	2	SSTLING	SSTLDER	SSTLING	SSTL _{DER}	TR -																								
Texas-New Mexico Pipe Line Co.		Lea County, New Mexico	For carcinogens:		For non-carcinogens:		Constituent of Concern	Non-Carcinogens	Ethylbenzene	Fluorene	Naphthalene	Phenanthrene	Toluene	Xylene (mixed isomers)	TPH - New Method	TPH-Arom-EC>8-10	TPH-Arom-EC>10-12	TPH-Arom-EC>12-16	TPH-Arom-EC>16-21	TPH-Arom-EC>21-35	TPH-Aliph-EC 5-6	TPH-Aliph-EC>6-8	TPH-Aliph-EC>8-10	TPH-Aliph-EC>10-12	TPH-Aliph-EC>12-16	TPH-Aliph-EC>16-35	NOTES:	SSTL = Site specific Target Level	TR = Target Risk	SF = Slope Factor	

Calculation of Site-Specific Target Levels Resident – Ingestion of Soil & Dermal Contact with Soil

If On-Site:	SSTL _{res-SOL} =	((1 / SSTL _{ING}) + (1 ((1 / SSTL _{ING}) + (1 / SSTL _{DER}) + (1 / SSTL _{INHAL})	/ SSTL _{INHAI}))
If Off-Site:	SSTL _{res-SOL} = S	SSTLINHAL		
Constituent of Concern	SSTL _{ING} (mg/kg)	SSTL _{DER} (mg/kg)	SSTL _{INHAL} (mg/kg)	SSTLres-Solt (mg/kg)
<u>Non-Carcinogens</u> Ethylbenzene	5.48e+2	9.99e+99	1.78e+4	5.31e+2
Fluorene	1.56e+1	2.52e+1	5.01e+3	9.63e+0
Naphthalene	1.56e+1	2.52e+1	4.85e+2	9.46e+0
Phenanthrene	4.69e+0	8.27e+1	4.54e+3	4.44e+0
Toluene	7.82e+2	9.99e+99	2.51e+3	5.96e+2
Xylene (mixed isomers)	1.10e+4	9.99e+99	5.54e+3	3.68e+3
TPH - New Method	5.03e+3	8.10e+3	3.11e+5	3.07e+3

SSTL = Site specific Target Level

•

		1977 H. M. W. Solo										
Teves New Mevice Bine 1 ine Co	Ma	iDoir	EF	E D	0	~						
TNM-96-16		(m ³ /dav)	(davs/wk)	(weeks)	3 j	v (m/s)	5 Ē	t ~	(a/cc)	u	<u>3</u> 1	(ka/m)
Lea County, New Mexico	20	50	2	12	19	4.92	2.0	109	1.80	0.32	0.009	4.579E-11
For carcinogens:	SSTL =	TR * BW *	70 * 365 /	IR _{air} * EF	* ED * SF	BW * 70 * 365 / IR _{air} * EF * ED * SF * (VF + PEF)	ZEF)					
For non-carcinogens:	SSTL =	HQ * BW *	365 / IR _{air}	* EF * (1	/RfD) * (\	BW * 365 / IR _{air} * EF * (1/RfD) * (VF + PEF)	_					
	VF = (2	(2*Dei*E*	Kas * 10-	3)/(12	/ HQ + / +	* E * Kas * 10-3) / (LS * V * DH / A) * (3.14 * alpha * ED * 3.15E+7) ^{0.5}	4 * alpha	* ED * 3.1	5E+7) ^{0.5}			
Constituent	TR	SF	ğ	RfD	Dei	РХ	Ξ	Kas	alpha	VF		SSTL
of Concern	1	(1/mg/kg-d)	1	(mg/kg-d)	(cm³/sec)	(6/ _c m2)	I	(8 /cm ³)	(cm ² /sec)	(m³/kg)		(mg/kg)
Non-Carcinogens												
Ethylbenzene			0.07	0.29	1.64e-2	9.87e+0	2.67e-1	2.71e-2	7.88e-5	5.47e-6		4.65e+2
Fluorene			0.01	0.04	1.38e-2	6.52e+1	2.67e-3	4.10e-5	1.00e-7	1.94e-7		1.31e+2
Naphthalene			0.01	0.04	1.30e-2	1.16e+1	5.38e-2	4.64e-3	1.07e-5	2.01e-6		1.27e+1
Phenanthrene			0.02	0.0	1.19e-3	1.27e+2	6.63e-3	5.21e-5	1.10e-8	6.43e-8		1.19e+2
Toluene			0.05	0.11	1.84e-2	2.72e+0	2.65e-1	9.75 6 -2	3.14e-4	1.11e-5		6.56e+1
Xylene (mixed isomers)			0.07	0.20	1.63e-2	2.16e+0	2.93 e -1	1.36e-1	3.83e-4	1.23e-5		1.45e+2
TPH - New Method			0.79									8.12e+3
TPH-Arom-EC>8-10			0.00	0.06	2.20e-2	1.43e+1	4.84e-1	3.39e-2	1.32e-4	7.08e-6		1.03e+3
TPH-Arom-EC>10-12			0.00	0.06	2.20e-2	2.26e+1	1.36e-1	6.03e-3	2.35e-5	2.98e-6		2.44e+3
TPH-Arom-EC>12-16			0.07	0.06	2.20e-2	4.51e+1	5.16e-2	1.14e-3	4.47e-6	1.30e-6		5.60e+3
TPH-Arom-EC>16-21			0.18	0.03	2.20e-2	1.43e+2	1.18e-1	8.26e-4	3.22e-6	1.10e-6		3.46e+3
TPH-Arom-EC>21-35			0.08	0.03	2.20e-2	1.13e+3	6.65e-3	5.87e-6	2.29 0- 8	9.29e-8		4.11e+4
TPH-Aliph-EC 5-6			00'0	0.06	2.20e-2	7.15e+0	3.28e+1	4.58e+0	9.86e-3	1.11e-4		6.58e+1
TPH-Aliph-EC>6-8			0.0	0.06	2.20e-2	3.58e+1	4.85e+1	1.35e+0	4.26e-3	4.97e-5		1.46e+2
TPH-Aliph-EC>8-10			0.00	0.29	2.20e-2	2.85e+2	7.92e+1	2.78e-1	1.04e-3	2.07e-5		1.75e+3
TPH-Aliph-EC>10-12			0.02	0.29	2.20e-2	2.26e+3	1.23e+2	5.45e-2	2.11e-4	9.00e-6		4.04e+3
TPH-Aliph-EC>12-16			0.14	0.29	2.20e-2	4.51e+4	5.25e+2	1.16e-2	4.54e-5	4.14e-6		8.77e+3
TPH-Aliph-EC>16-35			0.51	2.00	2.20e-2	9.00e+6	6.57e+4	7.29e-3	2.85e-5	3.28e-6		7.76e+4
NOTES: SSTI = Ste energin Tarret Level		RW = hoch weinht	ž		V = Velocity of Wind	f Wind			H" = unitless F	H" = unitless Heno/s I aw Constant	nstant	
TR = Taroet Risk		AT = averacino time	time		DH = Diffusion Height	n Heicht			Kd = oroanic	Kd = proanic carbon partition coefficient * foc	coefficient * fo	Q
SE - Slove Eacher		ID Inhalation rate			A - Area of Soil Source	oil Counco			fine - fraction :	foc - fraction organic carbon		2
HQ = hazard quotient		EF = exposure frequency	requency		B = Bulk Soil Density	Density			Kas = H' / Kđ			
RfD = Reference Dose		ED = exposure duration	duration		E = Effective Porosity	Porosity			alpha = Dei * I	alpha = Dei * E / (E + B / Kas)	(s	
		LS = Length of Source Area	Source Area		Dei = effective	Dei = effective diffusion coefficient	fficient		PEF = Particu	PEF = Particulate Emissions Factor	Factor	

Construction Worker – Ingestion of Soil & Dermal Contact with Soil

AF	(mg/cm ²)	0.12		• SF		
SA	(cm²)	3,300	* SF	3* EF * ED		: * (1/RfD)
8	(weeks)	12	soll * EF * ED	SSTL _{DER} = TR * BW * 70 * 365 * CF / SA * AF * ABS * EF * ED * SF	EF * (1/RfD)	SSTL _{DER} = HQ * BW * 365 * CF / SA * AF* ABS * EF * (1/RfD)
L L	(mg/kg) (mg/day) (days/wk)	5	5 * CF / IR	35 * CF / S/	CF / IR _{soll} *	CF / SA * /
CF IRsoil	(mg/day)	480	V * 70 * 36	N * 70 * 3(N * 365 * (W * 365 *
CF	(mg/kg)	1.00E+06	≖ TR*BV	= TR * B	= HQ * BV	= HQ * B
BW	(kg)	02	SSTLING	SSTL _{DER}	SSTLING	SSTL _{DER}
Texas-New Mexico Pipe Line Co.	TNM-96-16	Lea County, New Mexico	For carcinogens: SSTL _{ING} = TR * BW * 70 * 365 * CF / IR _{soll} * EF * ED * SF		For non-carcinogens: SSTL _{ING} = HQ * BW * 365 * CF / IR _{soll} * EF * (1/RfD)	

SSTL_{DER}

(mg/kg)

5.16e+2 5.16e+2 1.70e+3

9.99e+99

9.99e+99

9.99e+99

1.66e+5

		ž	KILO	SSTLING	SFd	RfDd	ABS	<u>نې</u>
of Concern	- (1/mg/kg-d)	<u>٦</u>	(mg/kg-d)	(mg/kg)	(1/mg/kg-d)	(mg/kg-d)	1	Ĩ
Non-Percipotane			!					
Ethylbenzene		0.07	0.10	1.49e+3		0,10	0.000	0
Fluorene		0.01	0.04	4.26e+1		0.04	0.100	5
Naphthalene		0.01	0.04	4.26e+1		0.04	0.100	U)
Phenanthrene		0.02	00.0	1.28e+1		0.02	0.050	***
Toluene	•	0.05	0.20	2.13e+3		0.20	0.000	6
Xylene (mixed isomers)		0.07	2.00	2.98e+4		2.00	0.000	ດີ
TPH - New Method		0.79		1.37e+4				
TPH-Arom-EC>8-10		0.00	0.04	8.52e+3		0.04	0.100	
TPH-Arom-EC>10-12		00.0	0.04	8.52e+3		0.04	0.100	-
TPH-Arom-EC>12-16		0.07	0.04	8.52e+3		0.04	0.100	-
TPH-Arom-EC>16-21		0.18	0.03	6.39e+3	1	0.03	0.100	2
TPH-Arom-EC>21-35		0.08	0.03	6.39e+3		0.03	0.100	2
TPH-Aliph-EC 5-6		0.00	0.06	1.28e+4		0.06	0.100	-
TPH-Aliph-EC>6-8		0.00	0.06	1.28e+4		0.06	0.100	***
TPH-Aliph-EC>8-10		0.00	0.10	2.13e+4		0,10	0,100	0
TPH-Aliph-EC>10-12		0.02	0.10	2.13e+4		0.10	0.100	2
TPH-Aliph-EC>12-16		0.14	0.10	2.13e+4		0.10	0.100	N
TPH-Aliph-EC>16-35		0.51	2.00	4.26e+5		2.00	0.100	5
NOTES:								
SSTL = Site specific Target Level	RID = Reference Dose	ence Dose		R _{tot} = Ingestion rate		SA ≂ skin surface area	ace area	
TR = Target Risk	BW = body weight	weight		EF = exposure frequency	ł.	AF = adherence factor	e factor	
SF = Slope Factor	AT = averaging time	jing time		ED = exposure duration		ABS = dermal (ABS = dermal absorption fraction	tíon

1.03e+5 1.03e+5

1.03e+5 7.74e+4 7.74e+4 1.55e+5 1.55e+5 2.58e+5 .

HQ = hazard quotient

2.58e+5

5.16e+6

2.58e+5

Calculation of Site-Sperator Target Levels Construction Worker - Combined SSTL for Soil Texas-New Mexico Pipe Line Co.

SSTL_{cw-soll} =

((1 / SSTL_{ING}) + (1 / SSTL_{DER}) + (1 / SSTL_{INHAL}))

-

Constituent
or concern
Non-Carcinogens
Ethylbenzene
Fluorene
Naphthalene
Phenanthrene
Toluene
Xylene (mixed isomers)
TPH - New Method

NOTES:

SSTL = Site specific Target Level

	T							
SSTL _{ING} (ma/ka)	ò	1.49e+3	4.26e+1	4.26e+1	1.28e+1	2.13e+3	2.98e+4	1.37e+4

SSTL _{DER} (mg/kg)	9.99e+99	5.16e+2	5.16e+2 1 70e+3	9.99e+99	9.99e+99	1.66e+5

SSTL-cw-soil. (mg/kg)	3.55e+2	33	9.59e+0	1.15e+1	6.36e+1	1.44e+2	4.95e+3	

*** COMMON INPUT PARAMETERS ***

PARAMETER NAME	UNITS	VALUE
Porosity	(cc/cc)	0.25
Bulk Density	(g/cc)	1.8
Water Content	(cc/cc)	0.1
Fractional Organic Carbon	(mg/mg)	9.00E-03
Incorporation Depth	(cm)	1010
Clean Soil Thickness	(cm)	200
Simulation Time	(yrs)	70
Length of Soil Column	(cm)	4240
Infiltration Rate	(cm/day)	5.55E-02
Source Length	(m)	12.5
Source Width	(m)	18.9
Boundary Layer Thickness	(cm)	5

Chemical Specific Input Parameters for Benzene

Parameter Name Units	Value		
Total Soil Concentration Diffusion Coeff. in Air Diffusion Coeff. in Water Henrys Constant Organic Carbon Part. Coeff. Lumped Chemical Decay Rate	-	(mg/kg) (cm^2/day) (cm^2/day) [(mg/L)/(mg/L)] (cc/g) (1/day)	1 7517 0.8467 0.249 83 5.48E-04
Outputs for Benzene			
Time = 1 yrs			
Cumulative Emissions to Air Advective Mass Loading Rate to Diffusive Mass Loading Rate to G Advective & Diffusive Mass Load	Groundwater	(g) (g/day) (g/day) (g/day)	58.42 0 0 0
Time = 2 yrs			
Cumulative Emissions to Air Advective Mass Loading Rate to Diffusive Mass Loading Rate to G Advective & Diffusive Mass Load Time = 3 yrs	Groundwater ing Rate to Groundwater	(g) (g/day) (g/day) (g/day)	147 3.42E-40 3E-38 3.03E-38
Cumulative Emissions to Air Advective Mass Loading Rate to Diffusive Mass Loading Rate to G Advective & Diffusive Mass Load Time = 4 yrs	Groundwater	(g) (g/day) (g/day) (g/day)	214.3 1.24E-27 6.15E-26 6.27E-26
Cumulative Emissions to Air Advective Mass Loading Rate to Diffusive Mass Loading Rate to G Advective & Diffusive Mass Load Time = 5 yrs	Groundwater Groundwater ing Rate to Groundwater	(g) (g/day) (g/day) (g/day)	263.6 2.22E-21 7.65E-20 7.87E-20
Cumulative Emissions to Air Advective Mass Loading Rate to Diffusive Mass Loading Rate to G Advective & Diffusive Mass Load	Groundwater Groundwater	(g) (g/day) (g/day) (g/day)	300 1.19E-17 3.12E-16 3.24E-16

Time = 10 yrs ≄====================================		
Cumulative Emissions to Air	(g)	382.7
Advective Mass Loading Rate to Groundwater	(g/day)	2.11E-10
Diffusive Mass Loading Rate to Groundwater	(g/day)	2.5E-09
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	2.71E-09
Țime = 15 yrs ⊴====================================		
Cumulative Emissions to Air	(g)	403.4
Advective Mass Loading Rate to Groundwater	(g/day)	3.05E-08
Diffusive Mass Loading Rate to Groundwater	(g/day)	2.33E-07
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	2.63E-07
Cumulative Emissions to Air	(g)	409
Advective Mass Loading Rate to Groundwater	(g/day)	2.32E-07
Diffusive Mass Loading Rate to Groundwater	(g/day)	1.29E-06
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	1.52E-06
Time = 25 yrs ====================================		
Cumulative Emissions to Air	(g)	410.6
Advective Mass Loading Rate to Groundwater	(g/day)	5.33E-07
Diffusive Mass Loading Rate to Groundwater	(g/day)	2.33E-06
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	2.86E-06
Time = 30 yrs		
Cumulative Emissions to Air	(g)	411
Advective Mass Loading Rate to Groundwater	(g/day)	6.7E-07
Diffusive Mass Loading Rate to Groundwater	(g/day)	2.4E-06
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	3.07E-06
Time = 35 yrs ==== === =============================		
Cumulative Emissions to Air	(g)	411.1
Advective Mass Loading Rate to Groundwater	(g/day)	5.94E-07
Diffusive Mass Loading Rate to Groundwater	(g/day)	1.79E-06
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	2.38E-06
Time = 40 yrs ====================================		
Cumulative Emissions to Air	(g)	411.2
Advective Mass Loading Rate to Groundwater	(g/day)	4.22E-07
Diffusive Mass Loading Rate to Groundwater	(g/day)	1.09E-06
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	1.51E-06

Time = 45 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	411.2 2.58E-07 5.79E-07 8.36E-07
Time = 50 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	411.2 1.41E-07 2.79E-07 4.2E-07
Time = 55 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	411.2 7.17E-08 1.25E-07 1.97E-07
Time = 60 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day)	411.2 3.43E-08 5.34E-08
Time = 65 yrs	(g/day)	8.77E-08
Time = 65 yrs ====================================	(g/day) (g/day) (g/day) (g/day)	8.77E-08 411.2 1.56E-08 2.19E-08 3.75E-08
Time = 65 yrs ====================================	(g) (g/day) (g/day)	411.2 1.56E-08 2.19E-08

Chemical Specific Input Parameters for Chrysene

PARAMETER NAME	UNITS	VALUE
Total Soil Concentration Diffusion Coeff. in Air Diffusion Coeff. in Water Henrys Constant Organic Carbon Part. Coeff. Lumped Chemical Decay Rate	(mg/kg) (cm^2/day) (cm^2/day) [(mg/L)/(mg/L)] (cc/g) (1/day)	1 3905 0.8182 4.69E-05 2.00E+05 0
Outputs for Chrysene		
Time = 1 yrs . ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 2 yrs	(g) (g/day) (g/day) (g/day)	0 0 0
E E E E E E E E E E E E E E E E E E E	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 3 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 4 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 5 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0

Time = 10 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 15		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 20 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0
Time = 25 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 30 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 35 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 40 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0

ŀ

I

Time = 45 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 50 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 55 yrs ===== ======== =======================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 60 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 65 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 70 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0

.

Chemical Specific Input Parameters for Ethylbenzene

PARAMETER NAME	UNITS	VALUE
Total Soil Concentration Diffusion Coeff. in Air Diffusion Coeff. in Water Henrys Constant Organic Carbon Part. Coeff. Lumped Chemical Decay Rate	(mg/kg) (cm^2/day) (cm^2/day) [(mg/L)/(mg/L)] (cc/g) (1/day)	1 5702 0.5875 0.287 1100 0
Outputs for Ethylbenzene		
Time = 1 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 2 yrs	(g) (g/day) (g/day) (g/day)	0.000161 0 0 0
======================================	(g) (g/day) (g/day) (g/day)	0.07794 0 0 0
Time = 3 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0.7542 0 0 0
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 5 yrs	(g) (g/day) (g/day) (g/day)	2.577 0 0 0
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	5.681 0 0 0

Time = 10 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	35.04 0 0 0
Time = 15 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 20 yrs	(g) (g/day) (g/day) (g/day)	74.93 4.21E-73 9.3E-71 0
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	117.3 1.25E-55 1.62E-53 0
Time = 25 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	159.4 3.9E-45 3.5E-43 3.53E-43
Time = 30 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	200.2 3.93E-38 2.68E-36 2.72E-36
Time = 35 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	239.6 4E-33 2.19E-31 2.23E-31
Time = 40 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	277.3 2.3E-29 1.05E-27 1.07E-27

Time = 45 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	313.5 1.94E-26 7.58E-25 7.78E-25
Time = 50 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	348.3 4.29E-24 1.46E-22 1.51E-22
Time = 55 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	381.6 3.56E-22 1.08E-20 1.11E-20
Time = 60 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 65 yrs	(g) (g/day) (g/day) (g/day)	413.7 1.42E-20 3.87E-19 4.01E-19
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 70 yrs	(g) (g/day) (g/day) (g/day)	444.6 3.23E-19 7.97E-18 8.29E-18
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	474.3 4.71E-18 1.06E-16 1.11E-16

Chemical Specific Input Parameters for Toluene

-

PARAMETER NAME	UNITS	VALUE
Total Soil Concentration	(mg/kg)	1
Diffusion Coeff. in Air	(cm^2/day)	6739
Diffusion Coeff. in Water	(cm^2/day)	0.743
Henrys Constant	[(mg/L)/(mg/L)]	
Organic Carbon Part. Coeff.	(cc/g)	300
Lumped Chemical Decay Rate	(1/day)	0
Outputs for Toluene		
Time = 1 yrs		
Cumulative Emissions to Air	(g)	3.157
Advective Mass Loading Rate to Groundwater	(g/day)	0
Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Time = 2 yrs		
Cumulative Emissions to Air	(g)	24.34
Advective Mass Loading Rate to Groundwater	(g/day)	0
Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Time = 3 yrs		
Cumulative Emissions to Air	(g)	56.46
Advective Mass Loading Rate to Groundwater	(g/day)	0
Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Time = 4 yrs		
====3 #82#8# &&&		
Cumulative Emissions to Air	(g)	92.31
Advective Mass Loading Rate to Groundwater	(g/day)	3.49E-65
Diffusive Mass Loading Rate to Groundwater	(g/day)	7.24E-63
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Time = 5 yrs		
╾╾ ╴╴╜╀╫╫╫╫╫╖╖╻╌╌╌╌╴╴╴╴╴╴╴╴╴╴╴╴╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸		
Cumulative Emissions to Air	(g)	129
Advective Mass Loading Rate to Groundwater	(g/day)	1.07E-52
Diffusive Mass Loading Rate to Groundwater	(vsh/n)	1 49E-50

Diffusive Mass Loading Rate to Groundwater (g/day) 1.49E-50 Advective & Diffusive Mass Loading Rate to Groundwater (g/day)

Time = 10 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	301 1.13E-27 5.68E-26 5.8E-26
Time = 15 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 20 yrs	(g) (g/day) (g/day) (g/day)	447.4 2.71E-19 8.16E-18 8.43E-18
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	573.2 4.37E-15 9.35E-14 9.79E-14
Time = 25 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	683.1 1.5E-12 2.48E-11 2.63E-11
Time = 30 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	780.1 7.45E-11 1.01E-09 1.08E-09
Time = 35 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 40 yrs	(g) (g/day) (g/day) (g/day)	866.6 1.23E-09 1.4E-08 1.52E-08
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	944.1 1.01E-08 9.96E-08 1.1E-07

Time = 45 yrs		
Cumulative Emissions to Air	(g)	1014
Advective Mass Loading Rate to Groundwater	(g/day)	5.26E-08
Diffusive Mass Loading Rate to Groundwater	(g/day)	4.55E-07
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	5.07E-07
Time = 50 yrs		
Cumulative Emissions to Air	(g)	1078
Advective Mass Loading Rate to Groundwater	(g/day)	1.97E-07
Diffusive Mass Loading Rate to Groundwater	(g/day)	1.52E-06
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	1.72E-06
Time = 55 yrs		
Cumulative Emissions to Air	(g)	1135
Advective Mass Loading Rate to Groundwater	(g/day)	5.85E-07
Diffusive Mass Loading Rate to Groundwater	(g/day)	4.07E-06
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	4.66E-06
Time = 60 yrs ====================================		
Cumulative Emissions to Air	(g)	1188
Advective Mass Loading Rate to Groundwater	(g/day)	1.45E-06
Diffusive Mass Loading Rate to Groundwater	(g/day)	9.19E-06
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	1.06E-05
Time = 65 yrs		
=======================================		
Cumulative Emissions to Air	(g)	1237
Advective Mass Loading Rate to Groundwater	(g/day)	3.14E-06
Diffusive Mass Loading Rate to Groundwater	(g/day)	1.82E-05
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	2.14E-05
Time = 70 yrs		
Cumulative Emissions to Air	(a)	1282
	(g) (g/dav)	
Advective Mass Loading Rate to Groundwater	(g/day)	6.09E-06
Diffusive Mass Loading Rate to Groundwater	(g/day)	3.26E-05
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	3.87E-05

Chemical Specific Input Parameters for Xylene

PARAMETER NAME	UNITS	VALUE
Total Soil Concentration Diffusion Coeff. in Air Diffusion Coeff. in Water Henrys Constant Organic Carbon Part. Coeff. Lumped Chemical Decay Rate	(mg/kg) (cm^2/day) (cm^2/day) [(mg/L)/(mg/L)] (cc/g) (1/day)	1 6221 0.6739 0.315 240 0
Outputs for Xylene		
Time = 1 yrs ==== ==========		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	7.133 0 0 0
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 3 yrs	(g) (g/day) (g/day) (g/day)	41.01 0 0 0
Cumulative Emissions to Air		95 59
Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	85.58 2.952E-68 6.898E-66 0
Time = 4 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	132.3 7.324E-52 .1020E-48 0
Time = 5 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	178.4 .5157E-41 .5034E-39 .5086E-39

Time = 10 yrs		
Cumulative Emissions to Air	(g)	384.4
Advective Mass Loading Rate to Groundwater	(g/day)	.2887E-21
Diffusive Mass Loading Rate to Groundwater	(g/day)	.1093E-19
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	.1121E-19
Time = 15		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 20 yrs	(g) (g/day) (g/day) (g/day)	553.2 .1202E-14 .2792E-13 .2912E-13
Cumulative Emissions to Air	(g)	694.8
Advective Mass Loading Rate to Groundwater	(g/day)	.2556E-11
Diffusive Mass Loading Rate to Groundwater	(g/day)	.4267E-10
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	.4523E-10
Time = 25 yrs ====================================		
Cumulative Emissions to Air	(g)	816.0
Advective Mass Loading Rate to Groundwater	(g/day)	.2597E-09
Diffusive Mass Loading Rate to Groundwater	(g/day)	.3378E-08
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	.3638E-08
Time = 30 yrs		
Cumulative Emissions to Air	(g)	912.0
Advective Mass Loading Rate to Groundwater	(g/day)	.5745E-08
Diffusive Mass Loading Rate to Groundwater	(g/day)	.6114E-07
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	.6688E-07
Time = 35 yrs		
Cumulative Emissions to Air	(g)	1013.
Advective Mass Loading Rate to Groundwater	(g/day)	.5304E-07
Diffusive Mass Loading Rate to Groundwater	(g/day)	.4771E-06
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	.5301E-06
Cumulative Emissions to Air	(g)	1094.
Advective Mass Loading Rate to Groundwater	(g/day)	.2832E-06
Diffusive Mass Loading Rate to Groundwater	(g/day)	.2204E-05
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	.2487E-05

Time = 45 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	1167. .1049E-05 .7187E-05 .8237E-05
Time = 50 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 55 yrs	(g) (g/day) (g/day) (g/day)	1231. .3003E-05 .1836E-04 .2136E.04
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 60 yrs	(g) (g/day) (g/day) (g/day)	1290. 7124E-05 .3930E-04 .4642E-04
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 65 yrs	(g) (g/day) (g/day) (g/day)	1343. .1467E-04 .7367E-04 .8834E-04
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	1391. .2709E-04 .1247E-03 .1518E-03
Time = 70 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	1436. .4588E-04 .1949E-03 .2407E-03

|

AT123D Output File Analysis for Example Problem

Chemicals in the analysis Benzene Chrysene Ethylbenzene Toluene Xylene

Number of years simulated: 70

GENERAL INPUT DATA

NO. OF POINTS IN X-DIRECTION NO. OF POINTS IN Y-DIRECTION NO. OF POINTS IN Z-DIRECTION NO. OF POINTS IN Z-DIRECTION NO. OF ROOTS: NO. OF SERIES TERMS NO. OF BEGINNING TIME STEPS NO. OF ENDING TIME STEP NO. OF TIME INTERVALS FOR PRINTED OUT SOLUTION INSTANTANEOUS SOURCE CONTROL = 0 FOR INSTANT SOURCE SOURCE CONDITION CONTROL = 0 FOR STEADY SOURCE INTERMITTENT OUTPUT CONTROL = 0 NO SUCH OUTPUT CASE CONTROL =1 THERMAL, = 2 FOR CHEMICAL, = 3 RAD	1 10 1000 1 70 1 70 1 2
X-COORDINATE OF RECEPTOR WELL (METERS) Y-COORDINATE OF RECEPTOR WELL (METERS) AQUIFER DEPTH, = 0.0 FOR INFINITE DEEP (METERS) AQUIFER WIDTH, = 0.0 FOR INFINITE WIDE (METERS) BEGIN POINT OF X-SOURCE LOCATION (METERS) END POINT OF X-SOURCE LOCATION (METERS) BEGIN POINT OF Y-SOURCE LOCATION (METERS) END POINT OF Y-SOURCE LOCATION (METERS) BEGIN POINT OF Y-SOURCE LOCATION (METERS) BEGIN POINT OF Z-SOURCE LOCATION (METERS) BEGIN POINT OF Z-SOURCE LOCATION (METERS) END POINT OF Z-SOURCE LOCATION (METERS)	6.25E+00 9.46E+00 3.05E+00 0.00E+00 1.25E+01 0.00E+00 1.89E+01 0.00E+00 0.00E+00
POROSITY	2.50E-01
HYDRAULIC CONDUCTIVITY (METER/YEAR)	3.15E+01
HYDRAULIC GRADIENT	2.00E-02
LONGITUDINAL DISPERSIVITY (METER)	0.00E+00
LATERAL DISPERSIVITY (METER)	0.00E+00
VERTICAL DISPERSIVITY (METER)	0.00E+00
BULK DENSITY OF THE SOIL (KG/M**3)	1.80E+03
TIME INTERVAL SIZE FOR THE DESIRED SOLUTION (YR)	1.00E+00
DISCHARGE TIME (YR)	7.00E+01

INPUT DATA/RESULTS FOR CHEMICAL: Benzene

INST. WASTE RELEASE (KG) VALID FOR INST CASE ONLY DISTRIBUTION COEFFICIENT, KD (M**3/KG) MOLECULAR DIFFUSION COEFFICIENT (M**2/YR) DECAY CONSTANT (1/YR) LIST OF TRANSIENT SOURCE RELEASE RATE .000E+00 .111E-37 .229E-25 .287E-19 .118E-15 .280E-13 .130E-11 .218E-10 .186E-09 .989E-09 .373E-08 .109E-07 .259E-07 .531E-07 .960E-07 .157E-06 .236E-06 .332E-06 .440E-06 .556E-06 .672E-06 .784E-06 .886E-06 .974E-06 .104E-05 .110E-05 .113E-05 .114E-05 .114E-05 .112E-05 .109E-05 .104E-05 .991E-06 .933E-06 .870E-06 .805E-06 .739E-06 .675E-06 .612E-06 .552E-06 .495E-06 .441E-06 .392E-06 .347E-06 .305E-06 .268E-06 .234E-06 .204E-06 .177E-06 .153E-06 .133E-06 .114E-06 .981E-07 .841E-07 .720E-07 .614E-07 .523E-07 .445E-07 .378E-07 .320E-07 .271E-07 .229E-07 .193E-07 .163E-07 .137E-07 .115E-07 .964E-08 .808E-08 .677E-08	1.00E+00 1.66E-03 3.09E-02 7.30E-01
000E+00 111E 27 220E 25 287E-10 118E-15	
200E-13 .130E-11 .210E-10 .100E-09 .909E-09	
.373E-08 .109E-07 .259E-07 .531E-07 .960E-07	
.157E-06 .236E-06 .332E-06 .440E-06 .556E-06	
.672E-06 .784E-06 .886E-06 .974E-06 .104E-05	
.110E-05 .113E-05 .114E-05 .114E-05 .112E-05	
.109E-05 .104E-05 .991E-06 .933E-06 .870E-06	
.805E-06 .739E-06 .675E-06 .612E-06 .552E-06	
.495E-06 .441E-06 .392E-06 .347E-06 .305E-06	
.268E-06 .234E-06 .204E-06 .177E-06 .153E-06	
.133E-06 .114E-06 .981E-07 .841E-07 .720E-07	
.614E-07 .523E-07 .445E-07 .378E-07 .320E-07	
.271E-07 .229E-07 .193E-07 .163E-07 .137E-07	
.115E-07 .964E-08 .808E-08 .677E-08 RETARDATION FACTOR RETARDED SEEPAGE VELOCITY (M/YR) RETARDED LONGITUDINAL DISPERSION COEF. (M**2/YR) RETARDED LATERAL DISPERSION COEFFICIENT (M**2/YR) .	
RETARDATION FACTOR	1.30E+01
RETARDED SEEPAGE VELOCITY (M/YR)	1.95E-01
RETARDED LONGITUDINAL DISPERSION COEF. (M**2/YR)	9.55E-03
RETARDED LATERAL DISPERSION COEFFICIENT (M**2/YR) .	9.55E-03
RETARDED VERTICAL DISPERSION COEFFICIENT (M**2/YR).	9.55E-03
time [yr] = 1.00 avg. conc. [mg/l] = .000E+00	
time [yr] = 5.00 avg. conc. [mg/l] = .000E+00	
time [yr] = 10.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 15.0 avg. conc. [mg/l] = .307E-07	
time [yr] = 20.0 avg. conc. [mg/l] = .225E-06	
time [yr] = 25.0 avg. conc. [mg/l] = .684E-06	
time [yr] = 30.0 avg. conc. [mg/l] = .713E-06	
time [yr] = 35.0 avg. conc. [mg/l] = .725E-06	
time [yr] = 40.0 avg. conc. [mg/l] = .420E-06	
time [yr] = 45.0 avg. conc. [mg/l] = .284E-06	
time [yr] = 50.0 avg. conc. [mg/l] = .128E-06	
time [yr] = 55.0 avg. conc. [mg/l] = .704E-07	
time [yr] = 60.0 avg. conc. [mg/l] = .277E-07	
time [yr] = 65.0 avg. conc. [mg/l] = .138E-07	
time [yr] = 70.0 avg. conc. [mg/l] = .424E-08	

INPUT DATA/RESULTS FOR CHEMICAL: Chrysene

INST. WASTE RELEASE (KG) VALID FOR INST CASE ONLY DISTRIBUTION COEFFICIENT, KD (M**3/KG) MOLECULAR DIFFUSION COEFFICIENT (M**2/YR) DECAY CONSTANT (1/YR) LIST OF TRANSIENT SOURCE RELEASE RATE .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00	4.00E+00 2.99E-02 0.00E+00
RETARDATION FACTOR	2.88E+04
.000E+00 .000E+00 .000E+00 .000E+00 RETARDATION FACTOR RETARDED SEEPAGE VELOCITY (M/YR) RETARDED LONGITUDINAL DISPERSION COEF. (M**2/YR)	8.75E-05
RETARDED LONGITUDINAL DISPERSION COEF. (M**2/YR) RETARDED LATERAL DISPERSION COEFFICIENT (M**2/YR) .	4.15E-06
RETARDED LATERAL DISPERSION COEFFICIENT (M 2/YR).	4.15E-06 4.15E-06
time [yr] = 1.00 avg. conc. [mg/l] = .000E+00	
time [yr] = 5.00 avg. conc. [mg/l] = .000E+00	
time [yr] = 10.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 15.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 20.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 25.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 30.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 35.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 40.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 45.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 50.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 55.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 60.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 65.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 70.0 avg. conc. [mg/l] = .000E+00	

INPUT DATA/RESULTS FOR CHEMICAL: Ethylbenzene

INST. WASTE RELEASE (KG) VALID FOR INST CASE OF DISTRIBUTION COEFFICIENT, KD (M**3/KG) MOLECULAR DIFFUSION COEFFICIENT (M**2/YR) DECAY CONSTANT (1/YR) (M**2/YR) LIST OF TRANSIENT SOURCE RELEASE RATE .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 </th <th>2.20E-02 2.14E-02 1.10E+00</th>	2.20E-02 2.14E-02 1.10E+00
.525E-17 .895E-17 .150E-16 .248E-16 RETARDATION FACTOR	1.59E+02
.525E-17 .895E-17 .150E-16 .248E-16 RETARDATION FACTOR RETARDED SEEPAGE VELOCITY (M/YR) RETARDED LONGITUDINAL DISPERSION COEF. (M**2/	1.58E-02
RETARDED LONGITUDINAL DISPERSION COEF. (M**2/ RETARDED LATERAL DISPERSION COEFFICIENT (M**2)	R) 5.38E-04 YR). 5.38E-04
RETARDED LATERAL DISPERSION COEFFICIENT (M**2 RETARDED VERTICAL DISPERSION COEFFICIENT (M**	/YR). 5.38E-04
time [yr] = 1.00 avg. conc. [mg/l] = .000	E+00
time [yr] = 5.00 avg. conc. [mg/l] = .000	
time [yr] = 10.0 avg. conc. [mg/l] = .000	
time [yr] = 15.0 avg. conc. [mg/l] = .000	
time [yr] = 20.0 avg. conc. [mg/l] = .000	
time [yr] = 25.0 avg. conc. [mg/l] = .000	E+00
time [yr] = 30.0 avg. conc. [mg/l] = .000	5+00
time [yr] = 35.0 avg. conc. [mg/l] = .000	E+00
time [yr] = 40.0 avg. conc. [mg/l] = .000	E+00
time [yr] = 45.0 avg. conc. [mg/l] = .000	E+00
time [yr] = 50.0 avg. conc. [mg/l] = .000	E+00
time [yr] = 55.0 avg. conc. [mg/l] = .000	E+00
time [yr] = 60.0 avg. conc. [mg/l] = .000	5+00
time [yr] = 65.0 avg. conc. [mg/l] = .000	5+00
time [yr] = 70.0 avg. conc. [mg/l] = .000	E+00

INPUT DATA/RESULTS FOR CHEMICAL: Toluene

DISTRIBUTIO MOLECULAF DECAY CON LIST OF TRA .000E+00 .877E-42 .358E-23 .320E-16 .136E-12 .227E-10 .717E-09 .862E-08 .561E-07 .242E-06 .778E-06 .203E-05 .451E-05	DN COEFFI DIFFUSIO STANT (1/ NSIENT SC .000E+00 .630E-36 .257E-21 .253E-15 .455E-12 .502E-10 .126E-08 .131E-07 .772E-07 .312E-06 .957E-06 .241E-05 .520E-05		*2/YR) *2/YR) 2E-25 8E-17 7E-13 1E-11 5E-09 5E-08 0E-07 5E-06 8E-06 0E-05 8E-05 0E-05	6.00E-03 2.71E-02 1.20E+00
	.1005-04 ON FACTO	.113E-04 .126E-04		4 425+01
RETARDED	SEEPAGE	.113E-04 .126E-04 ? /ELOCITY (M/YR) NAL DISPERSION COEF.	•••••	5.70E-02
RETARDED	LONGITUD	NAL DISPERSION COEF.	(M**2/YR)	2.45E-03
RETARDED	LATERAL D	ISPERSION COEFFICIEN DISPERSION COEFFICIEN	Г (M**2/YR) .	2.45E-03
RETARDED	VERTICAL	Dispersion Coefficien	11 (M ^{~~} 2/YR).	2.455-03
time [yr] =	1.00	avg. conc. [mg/l] =	= .000E+00	
time [yr] =	5.00	avg. conc. [mg/l] =	= .000E+00	
time [yr] =	10.0	avg. conc. [mg/l] =	= .000E+00	
time [yr] =	15.0	avg. conc. [mg/l] =	= .000E+00	
time [yr] =	20.0	avg. conc. [mg/l] =	= .000E+00	
time [yr] =	25.0	avg. conc. [mg/l] =	= .000E+00	
time [yr] =	30.0	avg. conc. [mg/l] =	= .000E+00	
time [yr] =	35.0	avg. conc. [mg/l] =	= .000E+00	
time [yr] =	40.0	avg. conc. [mg/l] =	386E-08	
time [yr] =	45.0	avg. conc. [mg/l] =	= .272E-07	
time [yr] =	50.0	avg. conc. [mg/i] =	= .715 E-07	
time [yr] =	55.0	avg. conc. [mg/l] =	= .278E-06	
time [yr] =	60.0	avg. conc. [mg/l] =	= .485E-06	
time [yr] =	65.0	avg. conc. [mg/l] =	• .136E-05	
time [yr] =	70.0	avg. conc. [mg/l] =	= .1 87E-05	

INPUT DATA/RESULTS FOR CHEMICAL: Xylene

INST. WAST DISTRIBUTIO MOLECULAN DECAY CON LIST OF TRA .000E+00 .532E-33 .231E-18 .669E-13 .470E-10 .260E-08 .390E-07 .273E-06 .118E-05 .370E-05 .922E-05 .195E-04 .362E-04 .611E-04	ON COEFFI	CIENT, KD) (M**3/KG) .		••	4.80E-03
.362E-04	.405E-04	.451E-04	.501E-04	.554E	E-04	
.611E-04 RETARDATI RETARDED RETARDED RETARDED RETARDED	.672E-04 ON FACTO SEEPAGE ^V LONGITUD LATERAL D VERTICAL	.737E-04 R VELOCITY INAL DISP DISPERSIO DISPERSIO	.806E-04 (M/YR) ERSION CO N COEFFIC DN COEFFIC	EF. (N IENT (CIENT	 /**2/YR) (M**2/YR) . ` (M**2/YR).	3.56E+01 7.09E-02 2.77E-03 2.77E-03 2.77E-03
time [yr] =	1.00	a	vg. conc. [m	g/l] =	.000E+00	
time [yr] =	5.00	a	vg. conc. [m	g/l] =	.000E+00	
time [yr] =	10.0	a	vg. conc. [m	g/l] =	.000E+00	
time [yr] =	15.0	a	vg. conc. (m	g/l] =	.000E+00	
time [yr] =	20.0	a	vg. conc. [m	g/l] =	.000E+00	
time [yr] =	25.0	a	vg. conc. [m	g/i] =	.000E+00	
time [yr] =	30.0	a	vg. conc. [m	g/l] =	.416E-08	
time [yr] =	35.0	a	vg. conc. [m	g/l] =	.524E-07	
time [yr] =	40.0	a	vg. conc. (mę	g/l] =	.214E-06	
time [yr] =	45.0	a	vg. conc. [m	g/i] =	.994E-06	
time [yr] =	50.0	a	vg. conc. (m	g/l] =	.216E-05	
time [yr] =	55.0	a	vg. conc. [mợ	g/l] =	.621E-05	
time [yr] =	60.0	a	vg. conc. [m	g/l] =	.976E-05	
time [yr] =	65.0	a	vg. conc. [m	g/l] =	.216E-04	
time [yr] =	70.0	a	vg. conc. [m	g/l] =	.281E-04	

Jury Output File Analysis for Example Problem

*** COMMON INPUT PARAMETERS ***

PARAMETER NAME UNITS VALUE

Porosity	(cc/cc)	0.25
Bulk Density	(g/cc)	1.8
Water Content	(cc/cc)	0.1
Fractional Organic Carbon	(mg/mg)	9.00E-03
Incorporation Depth	(cm)	1010
Clean Soil Thickness	(cm)	200
Simulation Time	(yrs)	70
Length of Soil Column	(cm)	4240
Infiltration Rate	(cm/day)	5.55E-02
Source Length	(m)	12.5
Source Width	(m)	18.9
Boundary Layer Thickness	(cm)	5

Chemical Specific Input Parameters for Fluorene

Parameter Name	Units	Value
Total Soil Concentration Diffusion Coeff. in Air Diffusion Coeff. in Water Henrys Constant Organic Carbon Part. Coeff. Lumped Chemical Decay Rate	(mg/kg) (cm^2/day) (cm^2/day) [(mg/L)/(mg/L)] (cc/g) (1/day)	1 5478 1.149 2.86E-03 7300 0
Outputs for Fluorene		
Time = 1 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 2 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 3 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 4 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 5 yrs	(g) (g/day) (g/day) (g/day)	0 0 0
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0
Time =	10 yrs	
--------	--------	
--------	--------	

Time =15 yrs===================================
Cumulative Emissions to Air(g)0Advective Mass Loading Rate to Groundwater(g/day)0Diffusive Mass Loading Rate to Groundwater(g/day)0
Advective Mass Loading Rate to Groundwater(g/day)0Diffusive Mass Loading Rate to Groundwater(g/day)0
(g,)/
Time = 20 yrs
Cumulative Emissions to Air (g) 0 Advertive Mass Leading Rate to Croundwater (g/day) 0
Advective Mass Loading Rate to Groundwater(g/day)0Diffusive Mass Loading Rate to Groundwater(g/day)0
Advective & Diffusive Mass Loading Rate to Groundwater (g/day) 0
Time = 25 yrs
Cumulative Emissions to Air (g) 0
Advective Mass Loading Rate to Groundwater(g/day)0Diffusive Mass Loading Rate to Groundwater(g/day)0
Diffusive Mass Loading Rate to Groundwater(g/day)0Advective & Diffusive Mass Loading Rate to Groundwater(g/day)0
Time = 30 yrs
Cumulative Emissions to Air (g) 0
Advective Mass Loading Rate to Groundwater (g/day) 0
Diffusive Mass Loading Rate to Groundwater(g/day)0Advective & Diffusive Mass Loading Rate to Groundwater(g/day)0
Time = 35 yrs
Cumulative Emissions to Air(g)0Advective Mass Loading Rate to Groundwater(g/day)0
Diffusive Mass Loading Rate to Groundwater (g/day) 0
Advective & Diffusive Mass Loading Rate to Groundwater (g/day) 0
Time = 40 yrs
=======================================
Cumulative Emissions to Air (g) 0
Advective Mass Loading Rate to Groundwater(g/day)0Diffusive Mass Loading Rate to Groundwater(g/day)0
Advective & Diffusive Mass Loading Rate to Groundwater (g/day) 0

Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0
Time = 50 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater	(g) (g/day)	0 0
Diffusive Mass Loading Rate to Groundwater	(g/day)	õ
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Time = 55 yrs		
730===================================		
Cumulative Emissions to Air	(g)	0
Advective Mass Loading Rate to Groundwater	(g/day)	0
Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g/day) (g/day)	0 0
	(3	-
Time = 60 yrs ====================================		
		_
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater	(g) (g/day)	0 0
Diffusive Mass Loading Rate to Groundwater	(g/day)	Ő
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Time = 65 yrs		
Cumulative Emissions to Air	(g)	0
Advective Mass Loading Rate to Groundwater	(g/day)	0
Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Time = 70 yrs		
Cumulative Emissions to Air	(g)	0
Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater	(g/day) (g/day)	0
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day) (g/day)	0 0
-		

Chemical Specific Input Parameters for Naphthalene

_____^{^___}

Parameter Name	Units	Value
Total Soil Concentration Diffusion Coeff. in Air Diffusion Coeff. in Water Henrys Constant Organic Carbon Part. Coeff. Lumped Chemical Decay Rate	(mg/kg) (cm^2/day) (cm^2/day) [(mg/L)/(mg/L)] (cc/g) (1/day)	1 5098 0.648 5.78E-02 1300 0
Outputs for Naphthalene		
Time = 1 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 2 yrs	(g) (g/day) (g/day) (g/day)	0 0 0 0
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	-4.3E-11 0 0 0
Time = 3 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	5.19E-10 0 0
Time = 4 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	5.93E-08 0 0 0
Time = 5 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	2.47E-06 0 0 0

Time = 10 yrs

Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0.006019 0 0 0
Time = 15 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 20 yrs	(g) (g/day) (g/day) (g/day)	0.09951 0 0 0
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0.4428 0 0 0
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 30 yrs	(g) (g/day) (g/day) (g/day)	1.14 0 0 0
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 35 yrs	(g) (g/day) (g/day) (g/day)	2.209 0 0 0
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 40 yrs	(g) (g/day) (g/day) (g/day)	3.617 0 0 0
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	5.315 0 0 0

.

Time = 45 yrs

Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	7.248 0 0 0
Time = 50 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 55 yrs	(g) (g/day) (g/day) (g/day)	9.367 0 0 0
=======================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	11.63 0 0 0
Time = 60 yrs		
=======================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	14 0 0 0
Time = 65 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 70 yrs	(g) (g/day) (g/day) (g/day)	16.45 0 0 0
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	18.96 0 0 0

Chemical Specific Input Parameters for Phenanthrene

.

Į

Parameter Name	Units	Value
Total Soil Concentration Diffusion Coeff. in Air Diffusion Coeff. in Water Henrys Constant Organic Carbon Part. Coeff. Lumped Chemical Decay Rate	(mg/kg) (cm^2/day) (cm^2/day) [(mg/L)/(mg/L)] (cc/g) (1/day)	1 4493 0.5124 7.11E-03 1.40E+04 0
Outputs for Phenanthrene		
Time = 1 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 2 yrs	(g) (g/day) (g/day) (g/day)	0 0 0 0
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 3 yrs === ==========================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 4 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time ≈ 5 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0

Time = 10 yrs	*********		
Cumulative Emissions to Air	Groundwater	(g)	0
Advective Mass Loading Rate to		(g/day)	0
Diffusive Mass Loading Rate to O		(g/day)	0
Advective & Diffusive Mass Load		(g/day)	0
Time = 15 yrs			
Cumulative Emissions to Air	Groundwater	(g)	0
Advective Mass Loading Rate to		(g/day)	0
Diffusive Mass Loading Rate to C		(g/day)	0
Advective & Diffusive Mass Load		(g/day)	0
Time = 20 yrs ====================================			
Cumulative Emissions to Air	Groundwater	(g)	0
Advective Mass Loading Rate to		(g/day)	0
Diffusive Mass Loading Rate to C		(g/day)	0
Advective & Diffusive Mass Load		(g/day)	0
Time = 25 yrs ====================================			
Cumulative Emissions to Air	Groundwater	(g)	0
Advective Mass Loading Rate to		(g/day)	0
Diffusive Mass Loading Rate to C		(g/day)	0
Advective & Diffusive Mass Load		(g/day)	0
Time = 30 yrs ====================================	*****		
Cumulative Emissions to Air	Groundwater	(g)	0
Advective Mass Loading Rate to		(g/day)	0
Diffusive Mass Loading Rate to C		(g/day)	0
Advective & Diffusive Mass Load		(g/day)	0
Time = 35 yrs ====================================	*****************		
Cumulative Emissions to Air	Groundwater	(g)	0
Advective Mass Loading Rate to		(g/day)	0
Diffusive Mass Loading Rate to C		(g/day)	0
Advective & Diffusive Mass Load		(g/day)	0
Time = 40 yrs			
Cumulative Emissions to Air	Groundwater	(g)	0
Advective Mass Loading Rate to		(g/day)	0
Diffusive Mass Loading Rate to C		(g/day)	0
Advective & Diffusive Mass Load		(g/day)	0

Time = 45 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0
Time = 50 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 55 yrs	(g) (g/day) (g/day) (g/day)	0 0 0 0
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 60 yrs	(g) (g/day) (g/day) (g/day)	0 0 0 0
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0
Time = 65 yrs	(g/day)	U
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 70 yrs	(g) (g/day) (g/day) (g/day)	0 0 0
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0

•

Chemical Specific Input Parameters for TPH-AL05-06

________70200000_____

Parameter Name	Units	Value
Total Soil Concentration Diffusion Coeff. in Air Diffusion Coeff. in Water Henrys Constant Organic Carbon Part. Coeff. Lumped Chemical Decay Rate	(mg/kg) (cm^2/day) (cm^2/day) [(mg/L)/(mg/L)] (cc/g) (1/day)	1 8640 0.864 1410 794 0
Outputs for TPH-AL05-06		
Time = 1 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	2375 2.39E-06 0.04456 0.04456
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	2929 1.9E-05 0.1745 0.1745
Time = 3 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 4 yrs	(g) (g/day) (g/day) (g/day)	3201 3.28E-05 0.1914 0.1915
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 5 yrs	(g) (g/day) (g/day) (g/day)	3369 3.91E-05 0.1598 0.1598
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	3487 4.07E-05 0.1226 0.1226

Time = 10 yrs

Cumulative Emissions to Air	(g)	3785
Advective Mass Loading Rate to Groundwater	(g/day)	3.11E-05
Diffusive Mass Loading Rate to Groundwater	(g/day)	0.02512
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0.02515
Time = 15 yrs ====================================		
Cumulative Emissions to Air	(g)	3920
Advective Mass Loading Rate to Groundwater	(g/day)	2.21E-05
Diffusive Mass Loading Rate to Groundwater	(g/day)	0.001151
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0.001173
Time = 20 yrs ====================================		
Cumulative Emissions to Air	(g)	4001
Advective Mass Loading Rate to Groundwater	(g/day)	1.64E-05
Diffusive Mass Loading Rate to Groundwater	(g/day)	-0.0054
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	-0.00538
Time = 25 yrs		
Cumulative Emissions to Air	(g)	4057
Advective Mass Loading Rate to Groundwater	(g/day)	1.27E-05
Diffusive Mass Loading Rate to Groundwater	(g/day)	-0.00711
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	-0.0071
Time = 30 yrs ====================================		
Cumulative Emissions to Air	(g)	4098
Advective Mass Loading Rate to Groundwater	(g/day)	1.02E-05
Diffusive Mass Loading Rate to Groundwater	(g/day)	-0.00728
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	-0.00727
Time = 35 yrs		
Cumulative Emissions to Air	(g)	4130
Advective Mass Loading Rate to Groundwater	(g/day)	8.43E-06
Diffusive Mass Loading Rate to Groundwater	(g/day)	-0.00693
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	-0.00693

Time = 40 yrs

Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	4156 7.1E-06 -0.00643 -0.00642
Time = 45 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day)	4178 6.09E-06 -0.0059
Advective & Diffusive Mass Loading Rate to Groundwater Time = 50 yrs	(g/day)	-0.0059
2======================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	4196 5.29 E -06 -0.00541 -0.0054
Time = 55 yrs		
==q&e=c=qq&&e==s=qq&&e====s=qq&&d&e====		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	4212 4.66E-06 -0.00495 -0.00495
Time = 60 yrs ======##=============================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	4225 4.14E-06 -0.00455 -0.00454
Time = 65 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	4237 3.71E-06 -0.00419 -0.00418
Time = 70 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	4248 3.35E-06 -0.00386 -0.00386

.

.

Chemical Specific Input Parameters for TPH-AL06-08

Parameter Name	Units	Value
Total Soil Concentration Diffusion Coeff. in Air Diffusion Coeff. in Water Henrys Constant Organic Carbon Part. Coeff. Lumped Chemical Decay Rate	(mg/kg) (cm^2/day) (cm^2/day) [(mg/L)/(mg/L)] (cc/g) (1/day)	1 8640 0.864 2120 3980 0
Outputs for TPH-AL06-08		
Time = 1 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 2 yrs	(g) (g/day) (g/day) (g/day)	2264 7.86E-07 0.02497 0.02497
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 3 yrs	(g) (g/day) (g/day) (g/day)	2837 8.61E-06 0.1361 0.1361
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	3121. .1693E-04 .1719 .1719
Time = 4 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	3298. .2165E-04 .1561 .1561
Time = 5 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	3422. .2355E-04 .1271 .1272

Time = 10 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	3738. .1985E-04 .3302E-01 .3304E-01
Time = 15 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 20 yrs	(g) (g/day) (g/day) (g/day)	3881. .1457E-04 .5582E-02 .5596E-02
>>>=##=###############################		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	3967. .1101E-04 .2909E-02 .2898E-02
Time = 25 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	4027、 .8630E-05 .5652E-02 .5644E-02
Time = 30 yrs		
Curnulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	4070. .6979E-05 .6396E-02 .6389E-02
Time ≈ 35 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 40 yrs	(g) (g/day) (g/day) (g/day)	4105. .5787E-05 .6386E-02 .6381E-02
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	4132. .4895E-05 .6091E-02 .6086E-02

Time = 45 yrs

Cumulative Emissions to Air	(g)	4155.
Advective Mass Loading Rate to Groundwater	(g/day)	.4209E-05
Diffusive Mass Loading Rate to Groundwater	(g/day)	.5698E-02
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	.5694E-02
Time = 50 yrs ====================================		
Cumulative Emissions to Air	(g)	4174.
Advective Mass Loading Rate to Groundwater	(g/day)	.3668E-05
Diffusive Mass Loading Rate to Groundwater	(g/day)	.5288E-02
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	.5285E-02
· Time = 55 yrs		
Cumulative Emissions to Air	(g)	4191.
Advective Mass Loading Rate to Groundwater	(g/day)	.3233E-05
Diffusive Mass Loading Rate to Groundwater	(g/day)	.4894E-02
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	.4891E-02
Time = 60 yrs ====================================		
Cumulative Emissions to Air	(g)	4205.
Advective Mass Loading Rate to Groundwater	(g/day)	.2878E-05
Diffusive Mass Loading Rate to Groundwater	(g/day)	.4528E-02
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	.4525E-02
Time = 65 yrs ====================================		
Cumulative Emissions to Air	(g)	4218.
Advective Mass Loading Rate to Groundwater	(g/day)	.2593E-05
Diffusive Mass Loading Rate to Groundwater	(g/day)	.4195E-02
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	.4193E-02
Time = 70 yrs ====================================		
Cumulative Emissions to Air	(g)	4230.
Advective Mass Loading Rate to Groundwater	(g/day)	.2335E-05
Diffusive Mass Loading Rate to Groundwater	(g/day)	.3894E-02
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	.3891E-02

AT123D Output File Analysis for Example Problem

Chemicals in the analysis Fluorene Naphthalene Phenanthrene TPH-AL05-06 TPH-AL06-08

Number of years simulated: 70

GENERAL INPUT DATA

NO. OF POINTS IN X-DIRECTION	1
NO. OF POINTS IN Y-DIRECTION	1
NO. OF POINTS IN Z-DIRECTION	10
NO. OF ROOTS: NO. OF SERIES TERMS	1000
NO. OF BEGINNING TIME STEPS	1
NO. OF ENDING TIME STEP	70
NO. OF TIME INTERVALS FOR PRINTED OUT SOLUTION	1
INSTANTANEOUS SOURCE CONTROL = 0 FOR INSTANT SOURCE	1
SOURCE CONDITION CONTROL = 0 FOR STEADY SOURCE	70
INTERMITTENT OUTPUT CONTROL = 0 NO SUCH OUTPUT	1
CASE CONTROL =1 THERMAL, = 2 FOR CHEMICAL, = 3 RAD	2
X-COORDINATE OF RECEPTOR WELL (METERS)	6.25E+00
Y-COORDINATE OF RECEPTOR WELL (METERS)	9.46E+00
AQUIFER DEPTH, = 0.0 FOR INFINITE DEEP (METERS)	3.05E+00
AQUIFER WIDTH, = 0.0 FOR INFINITE WIDE (METERS)	0.00E+00
BEGIN POINT OF X-SOURCE LOCATION (METERS) ,	0.00E+00
END POINT OF X-SOURCE LOCATION (METERS)	1.25E+01
BEGIN POINT OF Y-SOURCE LOCATION (METERS)	0.00E+00
END POINT OF Y-SOURCE LOCATION (METERS)	1.89E+01
BEGIN POINT OF Z-SOURCE LOCATION (METERS)	0.00E+00
END POINT OF Z-SOURCE LOCATION (METERS)	0.00E+00
POROSITY	2.50E-01
HYDRAULIC CONDUCTIVITY (METER/YEAR)	3.15E+01
HYDRAULIC GRADIENT	2.00E-02
LONGITUDINAL DISPERSIVITY (METER)	0.00E+00
LATERAL DISPERSIVITY (METER)	0.00E+00
VERTICAL DISPERSIVITY (METER)	0.00E+00
BULK DENSITY OF THE SOIL (KG/M**3)	1.80E+03
TIME INTERVAL SIZE FOR THE DESIRED SOLUTION (YR)	1.00E+00
DISCHARGE TIME (YR)	7.00E+01

INPUT DATA/RESULTS FOR CHEMICAL: Fluorene

INST. WASTE RELEASE (KG) VALID FOR INST CASE ONLY DISTRIBUTION COEFFICIENT, KD (M**3/KG) MOLECULAR DIFFUSION COEFFICIENT (M**2/YR) DECAY CONSTANT (1/YR) LIST OF TRANSIENT SOURCE RELEASE RATE	1.00E+00 1.46E-01 4.19E-02 0.00E+00
.000E+00 .000E+00 .000E+00 .000E+00 .000E+00	
.000E+00 .000E+00 .000E+00 .000E+00 .000E+00	
0005+00 0005+00 0005+00 0005+00	
RETARDED LONGITUDINAL DISPERSION COEFFICIENT (M**2/YR) RETARDED LATERAL DISPERSION COEFFICIENT (M**2/YR) RETARDED VERTICAL DISPERSION COEFFICIENT (M**2/YR).	1 05=+03
PETARDED SEEPAGE VELOCITY (M/VP)	2 405 02
	2.402-03
RETARDED LONGITUDINAL DISPERSION COEF. (MI*2/TR)	1.592-04
RETARDED LATERAL DISPERSION COEFFICIENT (M**2/YR).	1.59E-04
RETARDED VERTICAL DISPERSION COEFFICIENT (M**2/YR).	1.59E-04
time [yr] = 1.00 avg. conc. [mg/l] = .000E+00	
time [yr] = 5.00 avg. conc. [mg/l] = .000E+00	
time [yr] = 10.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 15.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 20.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 25.0 avg. conc. [mg/i] = .000E+00	
time [yr] = 30.0 avg. conc. [mg/l] = .000E+00	
time $[y_{t}] = 25.0$ over some $[ma/l] = -0.015 + 0.0$	
time [yr] = 35.0 avg. conc. [mg/I] = .000E+00	
time [yr] = 40.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 45.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 50.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 55.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 60.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 65.0 avg. conc. [mg/l] = .000E+00	
time $[vr] = 70.0$	
time [yr] = 70.0 avg. conc. [mg/l] = .000E+00	

INPUT DATA/RESULTS FOR CHEMICAL: Naphthalene

INST. WASTE RELEASE (KG) VALID FOR INST CASE ONLY DISTRIBUTION COEFFICIENT, KD (M**3/KG) MOLECULAR DIFFUSION COEFFICIENT (M**2/YR) DECAY CONSTANT (1/YR) LIST OF TRANSIENT SOURCE RELEASE RATE	1.00E+00 2.60E-02 2.37E-02 0.00E+00
.000E+00 .000E+00 .000E+00 .000E+00	
.000E+00 .000E+00 .000E+00 .000E+00	
.000E+00 .000E+00 .000E+00 .000E+00	
.000E+00 .000E+00 .000E+00 .000E+00 .000E+00	
.000E+00 .000E+00 .000E+00 .000E+00 .000E+00	
.000E+00 .000E+00 .000E+00 .000E+00 .000E+00	
.000E+00 .000E+00 .000E+00 .000E+00 .000E+00	
RETARDED SEEPAGE VELOCITY (M/YR) RETARDED LONGITUDINAL DISPERSION COEF. (M**2/YR) RETARDED LATERAL DISPERSION COEFFICIENT (M**2/YR) . RETARDED VERTICAL DISPERSION COEFFICIENT (M**2/YR).	1 885+02
	1 245 02
	1.34E-02
RETARDED LONGITUDINAL DISPERSION COEF. (M**2/YR)	5.03E-04
RETARDED LATERAL DISPERSION COEFFICIENT (M**2/YR) .	5.03E-04
RETARDED VERTICAL DISPERSION COEFFICIENT (M**2/YR).	5.03E-04
time [yr] = 1.00 avg. conc. [mg/l] = .000E+00	
time [yr] = 5.00 avg. conc. [mg/l] = .000E+00	
time [yr] = 10.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 15.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 20.0 avg. conc. [mg/!] = .000E+00	
time $[yr] = 25.0$ and cone $[mg/l] = .000E+00$	
time [yr] = 25.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 30.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 35.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 40.0 avg. conc. [mg/l] = .000E+00	
3	
time [yr] = 45.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 50.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 55.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 60.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 65.0 avg. conc. [mg/l] = .000E+00	
time [yr] = 70.0 avg. conc. [mg/l] = .000E+00	

INPUT DATA/RESULTS FOR CHEMICAL: Phenanthrene

INST. WASTE RELEAS DISTRIBUTION COEFF MOLECULAR DIFFUSIO DECAY CONSTANT (1	E (KG) VALID FOR INST CASE ONLY FICIENT, KD (M**3/KG) ON COEFFICIENT (M**2/YR) /YR) SOURCE RELEASE RATE	1.00E+00 2.80E-01 1.87E-02 0.00E+00
	0.000E+00 .000E+00 .000E+00	
	000E+00 .000E+00 .000E+00	
	0.000E+00 .000E+00 .000E+00	
	0.000E+00.000E+00.000E+00	
	000E+00 .000E+00 .000E+00	
	000E+00 .000E+00 .000E+00	
.000E+00 .000E+00	000E+00 .000E+00 .000E+00	
.000E+00 .000E+00	000E+00 .000E+00 .000E+00	
	0.000E+00 .000E+00 .000E+00	
0005+00 0005+00	0005+00 0005+00	
	DR VELOCITY (M/YR) DINAL DISPERSION COEF. (M**2/YR) DISPERSION COEFFICIENT (M**2/YR) . DISPERSION COEFFICIENT (M**2/YR).	2 025+02
		1 255 02
RETARDED SEEPAGE		1.25E-03
RETARDED LONGITUD	DINAL DISPERSION COEF. (M**2/YR)	3.71E-05
RETARDED LATERAL I	DISPERSION COEFFICIENT (M**2/YR) .	3.71E-05
RETARDED VERTICAL	DISPERSION COEFFICIENT (M**2/YR).	3.71E-05
	· · · · · ·	
time $[yr] = 1.00$	ave conc $[mo/l] = 000E+00$	
	avg. conc. [mg/l] = .000E+00	
time fuel - 5.00	avg. conc. [mg/l] = .000E+00	
$\operatorname{time}\left[\operatorname{yr}\right] = 5.00$	avg. conc. $[mg/l] = .000E+00$	
time [yr] = 10.0	avg. conc. [mg/l] = .000E+00	
time [yr] = 15.0	avg. conc. [mg/l] = .000E+00	
time [yr] = 20.0	avg. conc. [mg/l] = .000E+00	
time [yr] = 25.0	avg. conc. [mg/l] = .000E+00	
time [yr] = 30.0	avg. conc. [mg/l] = .000E+00	
time [yr] = 35.0	avg. conc. [mg/l] = .000E+00	
time [yr] = 40.0	avg. conc. [mg/l] = .000E+00	
time $[w] = 45.0$		
time [yr] = 45.0	avg. conc. [mg/l] = .000E+00	
time [yr] = 50.0	avg. conc. [mg/l] = .000E+00	
time [yr] = 55.0	avg. conc. [mg/l] = .000E+00	
	· -	
time [yr] = 60.0	avg. conc. [mg/i] = .000E+00	
time [yr] = 65.0	avg. conc. [mg/l] = .000E+00	
time funder 70.0		
time [yr] = 70.0	avg. conc. [mg/l] = .000E+00	

INPUT DATA/RESULTS FOR CHEMICAL: TPH-AL05-06

INST. WAST DISTRIBUTIO MOLECULAF DECAY CON LIST OF TRA	E RELEASE ON COEFFIC DIFFUSION STANT (1/Y	(KG) VALID FOR INST CASE ONLY CIENT, KD (M**3/KG) N COEFFICIENT (M**2/YR) ('R) DURCE RELEASE RATE	1.00E+00 1.59E-02 3.15E-02 0.00E+00
		.699E-01 .583E-01 .448E-01	
		.178E-01 .129E-01 .918E-02	
		.264E-02 .139E-02 .428E-03	
		.000E+00 .000E+00 .000E+00	
	.000E+00		
.000E+00		.000E+00 .000E+00 .000E+00	
.000E+00		.000E+00 .000E+00 .000E+00	
.000E+00		.000E+00 .000E+00 .000E+00	
.000E+00			
	.000E+00		
	.000E+00		
RETARDATIC		.000E+00 .000E+00 	1 15E+02
RETARDED	SEEDAGE V		2 19 - 02
			1 005-02
		SPERSION COEFFICIENT (M**2/YR)	1.092-03
RETARDED		DISPERSION COEFFICIENT (M**2/YR).	1.09E-03
RETARDED	VERTICAL	DISPERSION COEPFICIENT (IN ZITR).	1.092-03
time [vr] =	1 00	avg. conc. [mg/l] = .119E-03	
ano (Ji) -	1.00		
time [vr] =	5 00	avg. conc. [mg/l] = .407E-01	
time [vr] =	10.0	avg. conc. [mg/l] = .390E-01	
time (vr) =	15.0	avg. conc. [mg/l] = .319E-01	
time [yr] =	20.0	avg. conc. [mg/l] = .278E-01	
time [yr] =	25.0	avg. conc. [mg/l] = .260E-01	
	20.0		
time [yr] =	30.0	avg. conc. [mg/l] = .249E-01	
anie Dil	00.0	avg. conc. [mg/i] = .240E-01	
time [yr] =	35.0	avg. conc. [mg/l] = .241E-01	
une [yi] –	55.0	avg. conc. [mg/i] = .241E-01	
time [yr] =	40.0	avg. conc. [mg/l] = .234E-01	
and Bil -	40.0	uvg. oono. [mgn] = .∠o+⊏-o i	
time [yr] =	45.0	avg. conc. [mg/l] = .229E-01	
une [yi] –	40.0		
timo (vr) -	50.0	225 = 0.01	
time [yr] =	50.0	avg. conc. [mg/l] = .225E-01	
timo furl -	55 Q		
time [yr] =	55.0	avg. conc. [mg/l] = .222E-01	
41-ma 5	60.0		
time [yr] =	00.0	avg. conc. [mg/l] = .219E-01	
Alizzan en Er 113	85 Q		
time [yr] =	05.0	avg. conc. [mg/l] = .216E-01	
A1	70.0		
time [yr] =	70.0	avg. conc. [mg/l] = .214E-01	

INPUT DATA/RESULTS FOR CHEMICAL: TPH-AL06-08

INST. WASTE RELE DISTRIBUTION COE MOLECULAR DIFFU DECAY CONSTANT LIST OF TRANSIEN .911E-02 .497E .363E-01 .279E .897E-02 .657E .112E-02 .379E .000E+00 .000E .000E+00 .000E .000E+00 .000E .000E+00 .000E .000E+00 .000E .000E+00 .000E .000E+00 .000E	FFICIENT, KD (M** SION COEFFICIEN (1/YR) F SOURCE RELEAS 01 .627E-01 .01 .212E-01 .02 .469E-02 .03 .000E+00 .00 .000E+00	'3/KG) IT (M**2) SE RATE 570E-01 .46 60E-01 .12 321E-02 .20 000E+00 .00 000E+00 .00	/YR) 24E-01 21E-01 24E-02 00E+00 00E+00 00E+00 00E+00 00E+00 00E+00 00E+00 00E+00 00E+00 00E+00 00E+00 00E+00 00E+00	7.96E-02 3.15E-02 0.00E+00
.000E+00 .000E	-00 .000E+00 .0	100E+00		5 745+02
.000E+00 .000E+ RETARDATION FAC RETARDED SEEPAC RETARDED LONGIT	GE VELOCITY (M/Y	 R)		4.39E-03
RETARDED LONGIT	UDINAL DISPERSION	ON COEF. (M	1**2/YR)	2.20E-04
RETARDED LATER	AL DISPERSION CO	OEFFICIENT	(M**2/YR).	2.20E-04 2.20E-04
	avg. co			
time [yr] = 5.00	avg. co	onc. [mg/l] =	.163E-01	
time [yr] = 10.0	avg. co	onc. [mg/l] =	.172E-01	
time [yr] = 15.0	avg. co	onc. [mg/l] =	.139E-01	
time [yr] = 20.0	avg, co	onc. [mg/l] =	.109E-01	
time [yr] = 25.0	avg. co	onc. [mg/l] =	.936E-02	
time [yr] = 30.0	avg. co	onc. [mg/i] =	.835E-02	
time [yr] = 35.0	avg. co	onc. [mg/l] =	.765E-02	
time [yr] = 40.0	avg. co	onc. [mg/l] =	.715E-02	
time [yr] = 45.0	avg. co	onc. [mg/l] =	.677E-02	
time [yr] = 50.0	avg. co	onc. [mg/l] =	.648E-02	
time [yr] = 55.0	avg. co	onc. [mg/l] =	.624E-02	
time [yr] = 60.0	avg. co	onc. [mg/l] =	.606E-02	
time [yr] = 65.0	avg. co	onc. [mg/i] =	.591E-02	
time [yr] = 70.0	avg. co	onc. [mg/l] =	.578E-02	

.

Jury Output File Analysis for Example Problem

*** COMMON INPUT PARAMETERS ***

PARAMETER NAME	UNITS	VALUE
Porosity	(cc/cc)	0.25
Bulk Density	(g/cc)	1.8
Water Content	(cc/cc)	0.1
Fractional Organic Carbon	(mg/mg)	9.00E-03
Incorporation Depth	(cm)	1010
Clean Soil Thickness	(cm)	200
Simulation Time	(yrs)	70
Length of Soil Column	(cm)	4240
Infiltration Rate	(cm/day)	5.55E-02
Source Length	(m)	12.5
Source Width	(m)	18.9
Boundary Layer Thickness	(cm)	5

Chemical Specific Input Parameters for TPH-AL08-10

Parameter Name Units Value		
Total Soil Concentration Diffusion Coeff. in Air Diffusion Coeff. in Water Henrys Constant Organic Carbon Part. Coeff. Lumped Chemical Decay Rate	(mg/kg) (cm^2/day) (cm^2/day) [(mg/L)/(mg/L)] (cc/g) (1/day)	1 8640 0.864 3410 3.16E+04 0
Outputs for TPH-AL08-10		
Time = 1 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 2 yrs	(g) (g/day) (g/day) (g/day)	1796 1.16E-08 0.000975 0.000975
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	2426 6.7E-07 0.02853 0.02853
Time = 3 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 4 yrs	(g) (g/day) (g/day) (g/day)	2759 2.52E-06 0.07125 0.07125
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	2972 4.62E-06 0.09646 0.09647

Time = 5 yrs

l

Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	3123 6.34E-06 0.1033 0.1033
Time = 10 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater	(g) (g/day)	3516 8.9E-06
Diffusive Mass Loading Rate to Groundwater	(g/day)	0.05955
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0.05956
Time = 15 yrs ====================================		
Cumulative Emissions to Air	(g)	3697
Advective Mass Loading Rate to Groundwater	(g/day)	7.86E-06
Diffusive Mass Loading Rate to Groundwater	(g/day)	0.02629
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0.0263
Time = 20 yrs		
2726555505222222666666555555555555555555		
Cumulative Emissions to Air	(g)	3807
Advective Mass Loading Rate to Groundwater	(g/day)	6.54E-06
Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g/day) (g/day)	0.01072 0.01073
-	(g/ddy)	0.01070
Time = 25 yrs		
Cumulative Emissions to Air	(g)	3882
Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater	(g/day) (g/day)	5.44E-06 0.003305
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day) (g/day)	0.00331
Time = 30 yrs ==== ==== ============================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater	(g) (g/day)	3938 4.57E-06
Diffusive Mass Loading Rate to Groundwater	(g/day) (g/day)	-0.00038
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	-0.00038
Time = 35 yrs		
Cumulative Emissions to Air	(g)	3982
Advective Mass Loading Rate to Groundwater	(g/day)	3.9E-06
Diffusive Mass Loading Rate to Groundwater	(g/day)	-0.00226
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	-0.00226

Time = 40 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Díffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	4017 3.37E-06 -0.00321 -0.00321
Time = 45 yrs ===== ==================== ===========		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 50 yrs	(g) (g/day) (g/day) (g/day)	4046 2.95E-06 -0.00367 -0.00366
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	4071 2.6E-06 -0.00385 -0.00384
Time = 55 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	4092 2.32E-06 -0.00387 -0.00387
Time = 60 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	4111 2.08E-06 -0.00381 -0.00381
Time = 65 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 70 yrs	(g) (g/day) (g/day) (g/day)	4127 1.88E-06 -0.0037 -0.0037
_#=###=====@####E=#======#####&#EEEEEEEEEE</td><td></td><td></td></tr><tr><td>Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater</td><td>(g) (g/day) (g/day) (g/day)</td><td>4142 1.72E-06 -0.00357 -0.00356</td></tr></tbody></table>		

.

Chemical Specific Input Parameters for TPH-AL10-12

.

• • • • • • • • • •

PARAMETER NAME	UNITS	VALUE
Total Soil Concentration Diffusion Coeff. in Air Diffusion Coeff. in Water Henrys Constant Organic Carbon Part. Coeff. Lumped Chemical Decay Rate	(mg/kg) (cm^2/day) (cm^2/day) [(mg/L)/(mg/L)] (cc/g) (1/day)	1 8640 0.864 5410 2.51E+05 0
Outputs for TPH-AL10-12		
Time = 1 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	859.4 3.44E-16 1.44E-10 1.44E-10
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 3 yrs	(g) (g/day) (g/day) (g/day)	1422 4.42E-11 8.9E-06 8.9E-06
Time = 3 yrs ⊴== ==== ==============================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	1795 2.4E-09 0.000322 0.000322
Time = 4 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	2062 1.82E-08 0.001835 0.001835
Time = 5 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	2264 6.19E-08 0.005012 0.005012

Time = 10 yrs

Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	2838 6.76E-07 0.02727 0.02727
Time = 15 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	3122 1.33E-06 0.0344 0.0344
Time = 20 угs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	3299 1.7E-06 0.03122 0.03122
Time = 25 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	3423 1.85E-06 0.02543 0.02543
Time = 30 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 35 yrs	(g) (g/day) (g/day) (g/day)	3515 1.87E-06 0.01986 0.01987
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	3588 1.82E-06 0.01525 0.01525
Time = 40 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	3647 1.74E-06 0.01161 0.01161

Time = 45 yrs

Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 50 yrs	(g) (g/day) (g/day) (g/day)	3696 1.65E-06 0.00878 0.008782
= == =================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	3738 1.56E-06 0.006596 0.006597
Time = . 55 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	3774 1.46E-06 0.004904 0.004905
Time = 60 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	3806 1.37E-06 0.003588 0.003589
Time = 65 yrs		
q qqqq ddaaaaaaaaaaaaaaaaaaaaaaaaaa		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	3834 1.29E-06 0.002559 0.00256
Time = 70 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	3859 1.21E-06 0.00175 0.001752

Chemical Specific Input Parameters for TPH-AL12-16

. . . .

PARAMETER NAME	UNITS	VALUE
Total Soil Concentration Diffusion Coeff. in Air Diffusion Coeff. in Water Henrys Constant Organic Carbon Part. Coeff. Lumped Chemical Decay Rate	(mg/kg) (cm^2/day) (cm^2/day) [(mg/L)/(mg/L)] (cc/g) (1/day)	1 8640 0.864 2.25E+04 5.01E+06 0
Outputs for TPH-AL12-16		
Time = 1 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 2 yrs	(g) (g/day) (g/day) (g/day)	193.6 3.44E-49 3.66E-42 3.66E-42
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	436.6 2.4E-28 9.84E-22 9.84E-22
Time = 3 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	646.8 2.32E-21 5.84E-15 5.84E-15
Time = 4 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 5 yrs	(g) (g/day) (g/day) (g/day)	830.8 7.49E-18 1.37E-11 1.37E-11
=======================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	993.6 9.78E-16 1.4E-09 1.4E-09

Time = 10 yrs

Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	1587 1.86E-11 1.3E-05 1.3E-05
Time = 15 yrs		
		4004
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater	(g) (g/day)	1964 5.33E-10
Diffusive Mass Loading Rate to Groundwater	(g/day)	0.000248
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0.000248
Time = 20 yrs === ==== =============================		
Cumulative Emissions to Air	(g)	2228
Advective Mass Loading Rate to Groundwater	(g/day)	2.91E-09
Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g/day) (g/day)	0.00102 0.00102
·	(0)/	
Time = 25 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater	(g) (g/day)	2425 8.06E-09
Diffusive Mass Loading Rate to Groundwater	(g/day)	0.002269
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0.002269
Time = 30 yrs		
_;=== == ===============================		
Cumulative Emissions to Air	(g)	2579
Advective Mass Loading Rate to Groundwater	(g/day)	1.58E-08
Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g/day) (g/day)	0.003706 0.003706
	(3	
Time = 35 yrs ##=== =================== =============		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater	(g) (g/day)	2703 2.53E-08
Diffusive Mass Loading Rate to Groundwater	(g/day)	0.005073
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0.005073
Time = 40 yrs ≖≠====================================		
	<i>.</i>	
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater	(g) (g/day)	2807 3.55E-08
Diffusive Mass Loading Rate to Groundwater	(g/day) (g/day)	0.00622
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0.00622

.

Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	2895 4.59E-08 0.007095 0.007095
Time = 50 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	2971 5.58E-08 0.007699 0.007699
Time = 55 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	3037 6.49E-08 0.008064 0.008064
Time = 60 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 65 yrs	(g) (g/day) (g/day) (g/day)	3095 7.3E-08 0.008231 0.008231
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 70 yrs	(g) (g/day) (g/day) (g/day)	3147 8.01E-08 0.008243 0.008243
#G62±==±=================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	3194 8.62E-08 0.008136 0.008136

Chemical Specific Input Parameters for TPH-AL16-35

PARAMETER NAME	UNITS	VALUE
Total Soil Concentration Diffusion Coeff. in Air Diffusion Coeff. in Water Henrys Constant Organic Carbon Part. Coeff. Lumped Chemical Decay Rate	(mg/kg) (cm^2/day) (cm^2/day) [(mg/L)/(mg/L)] (cc/g) (1/day)	1 8640 0.864 2.66E+05 1.00E+09 0
Outputs for TPH-AL16-35		
Time = 1 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 2 yrs	(g) (g/day) (g/day) (g/day)	0.01396 0 0 0
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 3 yrs	(g) (g/day) (g/day) (g/day)	1.013 0 0 0
\$=====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	5.146 0 0 0
Time = 4 yrs s===================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	12.67 0 0 0
Time = 5 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	22.88 0 0 0

Time = 10 yrs

Time = 10 yrs		
Oursulation Emissions to Air		02.6
Cumulative Emissions to Air	(g) (a/dav)	93.6
Advective Mass Loading Rate to Groundwater	(g/day)	1.91E-77 5.59E-69
Diffusive Mass Loading Rate to Groundwater	(g/day)	5.59 <u>-</u> -69 0
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	U
Time = 15 yrs		
Time = 15 yrs		
Cumulative Emissions to Air	(g)	173.6
Advective Mass Loading Rate to Groundwater	(g/day)	6.14E-55
Diffusive Mass Loading Rate to Groundwater	(g/day)	8.77E-47
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0
·		
Time = 20 yrs		
#222822228222828287777772222222222828888777		
Cumulative Emissions to Air	(g)	252.7
Advective Mass Loading Rate to Groundwater	(g/day)	1.15E-43
Diffusive Mass Loading Rate to Groundwater	(g/day)	1.06E-35
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	1.06E-35
Time = 25 yrs		

Cumulative Emissions to Air	(g)	328.8
Advective Mass Loading Rate to Groundwater	(g/day)	6.81E-37
Diffusive Mass Loading Rate to Groundwater	(g/day)	4.63E-29
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	4.63E-29
Ū		
Time = 30 yrs		
Cumulative Emissions to Air	(g)	401.5
Advective Mass Loading Rate to Groundwater	(g/day)	2.27E-32
Diffusive Mass Loading Rate to Groundwater	(g/day)	1.22E-24
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	1.22E-24
Time = 35 yrs		
Cumulative Emissions to Air	(g)	470.9
Advective Mass Loading Rate to Groundwater	(g/day)	3.9E-29
Diffusive Mass Loading Rate to Groundwater	(g/day)	1.73E-21
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	1.73E-21
	-	
Time = 40 yrs		

	<i>/</i> ->	.
Cumulative Emissions to Air	(g) (a(dau))	537.3
Advective Mass Loading Rate to Groundwater	(g/day)	1.05E-26
Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g/day) (g/day)	3.96E-19

(g/day)

3.96E-19

10 vrs

Advective & Diffusive Mass Loading Rate to Groundwater

Time =	45 yrs
--------	--------

Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	600.9 8.23E-25 2.69E-17 2.69E-17
Time = 50 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater	(g) (g/dav)	661.9
Diffusive Mass Loading Rate to Groundwater	(g/day) (g/day)	2.7E-23 7.83E-16
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	7.83E-16
Time = 55 yrs		
Cumulative Emissions to Air	(g)	720.4
Advective Mass Loading Rate to Groundwater	(g/day)	4.73E-22
Diffusive Mass Loading Rate to Groundwater	(g/day)	1.23E-14
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	1.23E-14
Time = 60 yrs		
=======================================		
Cumulative Emissions to Air	(g)	776.7
Advective Mass Loading Rate to Groundwater	(g/day)	5.16E-21
Diffusive Mass Loading Rate to Groundwater	(g/day)	1.21E-13
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	1.21E-13
Time = 65 yrs		
Cumulative Emissions to Air	(g)	830.9
Advective Mass Loading Rate to Groundwater	(g/day)	3.9E-20
Diffusive Mass Loading Rate to Groundwater	(g/day)	8.41E-13
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	8.41E-13
Time = 70 yrs		
=======================================		
Cumulative Emissions to Air	(g)	883
Advective Mass Loading Rate to Groundwater	(g/day)	2.22E-19
Diffusive Mass Loading Rate to Groundwater	(g/day)	4.41E-12
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	4.41E-12

Chemical Specific Input Parameters for TPH-AR08-10

· ·

PARAMETER NAME	UNITS	VALUE
Total Soil Concentration Diffusion Coeff. in Air Diffusion Coeff. in Water Henrys Constant Organic Carbon Part. Coeff. Lumped Chemical Decay Rate	(mg/kg) (cm^2/day) (cm^2/day) [(mg/L)/(mg/L)] (cc/g) (1/day)	1 8640 0.864 20.4 1590 0
Outputs for TPH-AR08-10		
Time = 1 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	575.4 9.83E-20 2.6E-16 2.6E-16
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 3 yrs	(g) (g/day) (g/day) (g/day)	1036 8.83E-12 1.07E-08 1.08E-08
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	1376. .4280E-08 .3406E-05 .3410E-05
Time = 4 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	1637. .9783E-07 .5812E-04 .5822E-04
Time = 5 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	1843. .6516E-06 .3099E-03 .3106E-03

Time = 10 yrs

.

Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	2466. .3021E-04 .7261E-02 .7291E-02
Time = 15 yrs		
## # #################################		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater	(g) (g/day)	2793. .1043E-03
Diffusive Mass Loading Rate to Groundwater	(g/day)	.1661E-01
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	.1671E-01
Time = 20 yrs ====================================		
Cumulative Emissions to Air	(g)	3001.
Advective Mass Loading Rate to Groundwater	(g/day)	.1827E-03
Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g/day) (g/day)	.2136E-01
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	.215 4E-0 1
Time ≈ 25 yrs		
Cumulative Emissions to Air	(g)	3148.
Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater	(g/day) (g/day)	.2433E-03 .2209E-01
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	.2233E-01
Time ≈ 30 yrs		
Cumulative Emissions to Air	(g)	3259.
Advective Mass Loading Rate to Groundwater	(g/day)	.2835E-03
Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	.2069E-01
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	.2097E-01
Time ≈ 35 yrs		
Cumulative Emissions to Air	(g)	3347.
Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater	(g/day) (g/day)	.3070E-03 .1843E-01
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	.1873E-01
Time ≈ 40 yrs		

Cumulative Emissions to Air	(g)	3419.
Advective Mass Loading Rate to Groundwater	(g/day)	.3184E-03
Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g/day) (g/day)	.1598E-01 .1630E-01
Advotitio & Bindsho Mass Ebading Nate to Groundwater	(gruay)	.10302-01

.

Time = 45 yrs		
Cumulative Emissions to Air	(g)	3479.
Advective Mass Loading Rate to Groundwater	(g/day)	.3215E-03
Diffusive Mass Loading Rate to Groundwater	(g/day)	.1365E-01
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	.1397E-01
Time = 50 yrs ====================================		
Cumulative Emissions to Air	(g)	3530.
Advective Mass Loading Rate to Groundwater	(g/day)	.3191E-03
Diffusive Mass Loading Rate to Groundwater	(g/day)	.1156E-01
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	.1188E-01
Time = 55 yrs ·		
Cumulative Emissions to Air	(g)	3575.
Advective Mass Loading Rate to Groundwater	(g/day)	.3131E-03
Diffusive Mass Loading Rate to Groundwater	(g/day)	.9734E-02
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	.1005E-01
Time = 60 yrs		
Cumulative Emissions to Air	(g)	3613.
Advective Mass Loading Rate to Groundwater	(g/day)	.3049E-03
Diffusive Mass Loading Rate to Groundwater	(g/day)	.8168E-02
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	.8473E-02
Time = 65 yrs		
Cumulative Emissions to Air	(g)	3648.
Advective Mass Loading Rate to Groundwater	(g/day)	.2954E-03
Diffusive Mass Loading Rate to Groundwater	(g/day)	.6834E-02
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	.7130E-02
Time = 70 yrs		
Cumulative Emissions to Air	(g)	3678.
Advective Mass Loading Rate to Groundwater	(g/day)	.2853E-03
Diffusive Mass Loading Rate to Groundwater	(g/day)	.5702E-02
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	.5987E-02

. .

Cumulative Emissions to Air	(g)	3613.
Advective Mass Loading Rate to Groundwater	(g/day)	.3049E-03
Diffusive Mass Loading Rate to Groundwater	(g/day)	.8168E-02
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	.8473E-02

.
AT123D Output File Analysis for Example Problem

Chemicals in the analysis TPH-AL08-10 TPH-AL10-12 TPH-AL12-16 TPH-AL16-35 TPH-AR08-10

Number of years simulated:

70

GENERAL INPUT DATA

NO. OF POINTS IN X-DIRECTION NO. OF POINTS IN Y-DIRECTION NO. OF POINTS IN Z-DIRECTION NO. OF ROOTS: NO. OF SERIES TERMS NO. OF BEGINNING TIME STEPS NO. OF ENDING TIME STEP NO. OF TIME INTERVALS FOR PRINTED OUT SOLUTION INSTANTANEOUS SOURCE CONTROL = 0 FOR INSTANT SOURCE SOURCE CONDITION CONTROL = 0 FOR STEADY SOURCE INTERMITTENT OUTPUT CONTROL = 0 NO SUCH OUTPUT CASE CONTROL =1 THERMAL, = 2 FOR CHEMICAL, = 3 RAD	1 10 1000 1 70 1 70 1 2
X-COORDINATE OF RECEPTOR WELL (METERS) Y-COORDINATE OF RECEPTOR WELL (METERS) AQUIFER DEPTH, = 0.0 FOR INFINITE DEEP (METERS) AQUIFER WIDTH, = 0.0 FOR INFINITE WIDE (METERS) BEGIN POINT OF X-SOURCE LOCATION (METERS) END POINT OF X-SOURCE LOCATION (METERS) BEGIN POINT OF Y-SOURCE LOCATION (METERS) END POINT OF Y-SOURCE LOCATION (METERS) BEGIN POINT OF Y-SOURCE LOCATION (METERS) BEGIN POINT OF Z-SOURCE LOCATION (METERS) BEGIN POINT OF Z-SOURCE LOCATION (METERS) END POINT OF Z-SOURCE LOCATION (METERS)	6.25E+00 9.46E+00 3.05E+00 0.00E+00 1.25E+01 0.00E+00 1.89E+01 0.00E+00 0.00E+00
POROSITY	2.50E-01
HYDRAULIC CONDUCTIVITY (METER/YEAR)	3.15E+01
HYDRAULIC GRADIENT	2.00E-02
LONGITUDINAL DISPERSIVITY (METER)	0.00E+00
LATERAL DISPERSIVITY (METER)	0.00E+00
VERTICAL DISPERSIVITY (METER)	0.00E+00
BULK DENSITY OF THE SOIL (KG/M**3)	1.80E+03
TIME INTERVAL SIZE FOR THE DESIRED SOLUTION (YR)	1.00E+00
DISCHARGE TIME (YR)	7.00E+01

INPUT DATA/RESULTS FOR CHEMICAL: TPH-AL08-10

سيدحمد المتراد التمالي متنبعا والتبيان

INST. WAST DISTRIBUTIO MOLECULAF DECAY CON LIST OF TRA	E RELEASE ON COEFFIC R DIFFUSION ISTANT (1/Y ANSIENT SO	(KG) VALID FOR INST CASE ONLY CIENT, KD (M**3/KG) N COEFFICIENT (M**2/YR) (R) URCE RELEASE RATE	1.00E+00 6.32E-01 3.15E-02 0.00E+00
		.260E-01 .352E-01 .377E-01	
		.291E-01 .253E-01 .217E-01	
		.134E-01 .114E-01 .960E-02	
		.569E-02 .474E-02 .392E-02	
		.207E-02 .161E-02 .121E-02	
		.294E-03 .633E-04 .000E+00	
		.000E+00 .000E+00 .000E+00	
.000E+00	.000E+00	.000E+00 .000E+00 .000E+00	
		.000E+00 .000E+00 .000E+00	
.000E+00	.000E+00	.000E+00 .000E+00 .000E+00	
.000E+00	.000E+00	.000E+00 .000E+00 .000E+00	
.000E+00	.000E+00	.000E+00 .000E+00 .000E+00	
		.000E+00 .000E+00 .000E+00	
0005+00	0005+00	000E+00 000E+00	
RETARDATI	ON FACTOR	ELOCITY (M/YR) NAL DISPERSION COEF. (M**2/YR) SPERSION COEFFICIENT (M**2/YR) . DISPERSION COEFFICIENT (M**2/YR).	4 55E+03
RETARDED	SEEPAGE V	ELOCITY (M/YR)	5 54E-04
RETARDED		NAL DISPERSION COFE (M**2/YR)	2 77 - 05
RETARDED			2.770-05
		SPERSION COEFFICIENT (W 2/1R).	2.77E-05
RETARDED	VERTICAL	ASPERSION COEFFICIENT (M ² 2/YR).	2.77E-05
time [yr] =	1.00	avg. conc. [mg/l] = .662E-07	
time [yr] =	5.00	avg. conc. [mg/l] = .267E-02	
time [yr] =	10.0	avg. conc. [mg/l] = .507E-02	
time [yr] =	15.0	avg. conc. [mg/l] = .515E-02	
time [yr] =	20.0	avg. conc. [mg/l] = .444E-02	
time [yr] =	25.0	avg. conc. [mg/l] = .383E-02	
time [yr] =	30.0	avg. conc. [mg/l] = .328E-02	
time [yr] =	35.0	avg. conc. [mg/l] = .290E-02	
time [yr] =	40.0	avg. conc. [mg/l] = .264E-02	
time [yr] =	45.0	avg. conc. [mg/l] = .244E-02	
time [yr] =	50.0	avg. conc. [mg/l] = .229E-02	
time [yr] =	55.0	avg. conc. [mg/l] = .216E-02	
time [yr] =	60.0	avg. conc. [mg/l] = .205E-02	
time [yr] =	65.0	avg. conc. [mg/l] = .195E-02	
time [yr] =	70.0	avg. conc. [mg/l] = .187E-02	

INPUT DATA/RESULTS FOR CHEMICAL: TPH-AL10-12

and the second second

. . .

INST. WAST DISTRIBUTI	E RELEAS	E (KG) VALI	D FOR INS' (M**3/KG)	T CAS	E ONLY	1.00E+00 5.02E+00
MOLECULA	R DIFFUSIC			(M**2	 //YR)	3 15E-02
DECAY CON	ISTANT (1/	YR)		(0.00E+00
LIST OF TR	•			F		0.002.00
		.117E-03			-02	
		.705E-02				
		.122E-02				
		.122E-01 .121E-01				
		.101E-01				
	.843E-02		.763E-02			
.688E-02			.587E-02			
.527E-02			.448E-02			
.401E-02			.339E-02			
	.286E-02		.255E-02			
.227E-02	.214E-02	.202E-02	.190E-02	.179E	-02	
.168E-02	.158E-02	.149E-02	.140E-02	.131E	E-02	
.123E-02	.115E-02	.107E-02	.100E-02	.934E	E-03	
		.749E-03				
						3 61E+04
RETARDATI RETARDED RETARDED	SEEPAGE		M/YR)			6 975-05
					··· //**?///D\	2 405 00
				ייד, נוע ובאוזיי	$\frac{1}{1} \frac{2}{1} \frac{1}{1} \frac{1}$	3.492-00
RETARDED RETARDED		DIOPERSION				3.49E-06
RETARDED	VERTICAL	DISPERSIO	N COEFFIC	JENT	(M**2/YR).	3.49E-06
time [yr] =	1.00	av	g. conc. [m	g/l] =	.000E+00	
time [yr] =	5.00	av	g. conc. (m	g/l] =	.133E-04	
time [yr] =	10.0	av	g. conc. [m	g/l] =	.268E-03	
time [yr] =	15.0	av	g. conc. (m	g/l] =	.707E-03	
time [yr] =	20.0	av	g. conc. (m	g/l] =	.945E-03	
time [yr] =	25.0	av	g. conc. (mạ	g/l] =	.112E-02	
time [yr] =	30.0	av	g. conc. (mę	g/l] =	.115E-02	
time [yr] =	35.0	av	g. conc. [m	g/l] =	.117E-02	
time [yr] =	40.0	av	g. conc. (mé	g/l] =	.113E-02	
time [yr] =	45.0	av	g. conc. [m	g/l] =	.109E-02	
time [yr] =	50.0	av	g. conc. (mạ	g/i] =	.103E-02	
time [yr] =	55.0	av	g. conc. [m	g/l] =	.988E-03	
time [yr] =	60.0	av	g. conc. (m	g/i] =	.930E-03	
time [yr] =	65.0	av	g. conc. [m	g/l] =	.883E-03	
time [yr] =	70.0	av	g. conc. (m	g/l] =	.833E-03	

INPUT DATA/RESULTS FOR CHEMICAL: TPH-AL12-16

INST. WAST DISTRIBUTI MOLECULA DECAY COM	TE RELEASI ON COEFF R DIFFUSIONSTANT (1/	E (KG) VALID FOR INST CASE ONLY ICIENT, KD (M**3/KG) ON COEFFICIENT (M**2/YR) YR) OURCE RELEASE RATE .213E-14 .498E-11 .510E-09 .494E-06 .174E-05 .473E-05 .369E-04 .598E-04 .905E-04 .234E-03 .299E-03 .372E-03 .631E-03 .728E-03 .828E-03 .114E-02 .125E-02 .135E-02 .166E-02 .176E-02 .185E-02 .211E-02 .219E-02 .227E-02 .247E-02 .253E-02 .259E-02 .273E-02 .277E-02 .281E-02 .290E-02 .292E-02 .300E-02 .301E-02 .301E-02 .301E-02 .299E-02 .298E-02 R	1.00E+00 1.00E+02 3.15E-02 0.00E+00
LIST OF TR	ANSIENT S	OURCE RELEASE RATE	
.134E-41	.359E-21	.213E-14 .498E-11 .510E-09	
.110E-07	.972E-07	.494E-06 .174E-05 .473E-05	
.107E-04	.209E-04	.369E-04 .598E-04 .905E-04	
.130E-03	.178E-03	.234E-03 .299E-03 .372E-03	
.453E-03	.539E-03	.631E-03 .728E-03 .828E-03	
931E-03	104E-02	114E-02 125E-02 135E-02	
146F-02	156E-02	166E-02 176E-02 185E-02	
194E-02	2038-02	211E-02 219E-02 227E-02	
2245-02	2415 02	247E 02 252E 02 250E 02	
.2346-02	.2412-02	.247 E-02 .255E-02 .259E-02	
.204E-02	.209E-02	.273E-02 .277E-02 .281E-02	
.284E-02	.287E-02	.290E-02 .292E-02 .294E-02	
.296E-02	.298E-02	.299E-02 .300E-02 .300E-02	
.301E-02	.301E-02	.301E-02 .301E-02 .301E-02	
.300E-02	.300E-02	.299E-02 .298E-02 R VELOCITY (M/YR) INAL DISPERSION COEF. (M**2/YR)	
RETARDATI	ON FACTO	R	7.21E+05
RETARDED	SEEPAGE	VELOCITY (M/YR)	3.49E-06
RETARDED	LONGITUD	INAL DISPERSION COEF. (M**2/YR)	1.75E-07
RETARDED		DISPERSION COEFFICIENT (M**2/YR) .	1 75E-07
		DISPERSION COEFFICIENT (M**2/YR).	
	VERHORE		1.75E-07
time fuel -	4 00		
time [yr] =	1.00	avg. conc. [mg/l] = .000E+00	
time [yr] =	5.00	avg. conc. [mg/l] = .000E+00	
time [yr] =	10.0	avg. conc. [mg/l] = .310E-08	
time [yr] =	15.0	avg. conc. [mg/l] = .203E-06	
time [yr] =	20.0	avg. conc. [mg/l] = .139E-05	
and Dil	20.0		
time fuel -	25.0		
time [yr] =	25.0	avg. conc. [mg/l] = .491E-05	
time [yr] =	30.0	avg. conc. [mg/l] = .106E-04	
time [yr] =	35.0	avg. conc. [mg/l] = .192E-04	
time [yr] =	40.0	avg. conc. [mg/l] = .285E-04	
		5 (5)	
time [yr] =	45.0	avg. conc. [mg/l] = .398E-04	
	10.0		
time [yr] =	50.0	avg. conc. [mg/l] = .500E-04	
une [91] -	50.0		
time o final as	55 O		
time [yr] =	55.0	avg. conc. [mg/l] = .614E-04	
time [yr] =	60.0	avg. conc. [mg/l] = .706E-04	
time [yr] =	65.0	avg, conc. [mg/l] =805E-04	
time [yr] =	70.0	avg. conc. [mg/l] = .880E-04	
		• • •	

• • •

INPUT DATA/RESULTS FOR CHEMICAL: TPH-AL16-35

INST. WASTE RELEASE (KG) VALID FOR INST CASE ODISTRIBUTION COEFFICIENT, KD (M**3/KG)	2.00E+04 3.15E-02 0.00E+00
.436E-12 .613E-12 .854E-12 .118E-11	
.436E-12 .613E-12 .854E-12 .118E-11 RETARDATION FACTOR RETARDED SEEPAGE VELOCITY (M/YR) RETARDED LONGITUDINAL DISPERSION COEF. (M**2 RETARDED LATERAL DISPERSION COEFFICIENT (M** RETARDED VERTICAL DISPERSION COEFFICIENT (M**	2/YR). 8.76E-10
time [yr] = 1.00 avg. conc. [mg/l] = .00	0E+00
time [yr] = 5.00 avg. conc. [mg/l] = .00	0E+00
time [yr] = 10.0 avg. conc. [mg/i] = .00	0E+00
time [yr] = 15.0 avg. conc. [mg/l] = .00	0E+00
time [yr] = 20.0 avg. conc. [mg/l] = .00	0E+00
time [yr] = 25.0 avg. conc. [mg/l] = .00	0E+00
time [yr] = 30.0 avg. conc. [mg/l] = .00	0E+00
time [yr] = 35.0 avg. conc. [mg/l] = .00	0E+00
time [yr] = 40.0 avg. conc. [mg/l] = .00	0E+00
time [yr] = 45.0 avg. conc. [mg/i] = .00	0E+00
time [yr] = 50.0 avg. conc. [mg/i] = .00	0E+00
time [yr] = 55.0 avg. conc. [mg/l] = .00	0E+00
time [yr] = 60.0 avg. conc. [mg/l] = .00	0E+00
time [yr] = 65.0 avg. conc. [mg/l] = .00	0E+00
time [yr] = 70.0 avg. conc. [mg/i] = .00	0E+00

INPUT DATA/RESULTS FOR CHEMICAL: TPH-AR08-10

DISTRIBUTI MOLECULAI	ON COEFF	E (KG) VALID FOR INST CASE ONLY ICIENT, KD (M**3/KG) ON COEFFICIENT (M**2/YR) YR) OURCE RELEASE RATE .124E-05 .212E-04 .113E-03	1.00E+00 3.18E-02 3.15E-02
	•		0.002100
		.127E-02 .193E-02 .266E-02	
		.487E-02 .552E-02 .610E-02	
		.737E-02 .765E-02 .786E-02	
		.817E-02 .818E-02 .815E-02	
.810E-02	.801E-02	.791E-02 .779E-02 .765E-02	
.751E-02	.735E-02	.718E-02 .701E-02 .684E-02	
.666E-02	.648E-02	.630E-02 .613E-02 .595E-02	
		.543E-02 .526E-02 .510E-02	
		.463E-02 .448E-02 .434E-02	
		.392E-02 .379E-02 .367E-02	
		.331E-02 .320E-02 .309E-02	
.299E-02	.289E-02	.279E-02 .269E-02 .260E-02	
.251E-02	.243E-02	.234E-02 .226E-02	
RETARDATI	ON FACTO	R VELOCITY (M/YR) INAL DISPERSION COEF. (M**2/YR)	2.30E+02
RETARDED	SEEPAGE	VELOCITY (M/YR)	1.10E-02
RETARDED	LONGITUD	INAL DISPERSION COEF. (M**2/YR)	5.49E-04
RETARDED		DISPERSION COEFFICIENT (M**2/YR) .	5 49E-04
RETARDED		DISPERSION COEFFICIENT (M**2/YR).	5 498-04
	VERTIONE		3,436-04
time [vr] =	1.00	avg. сопс. [mg/l] = .000Е+00	
time [yr] =	5.00	avg. conc. [mg/l] = .513E-05	
	0.00		
Alaman Frank an	40.0	avg. conc. [mg/l] = .595E-03	
time [yr] =	10.0	avg. conc. $[ing/i] = .595E-05$	
time [yr] =	15.0	avg. conc. [mg/l] = .303E-02	
time [yr] =	20.0	avg. conc. [mg/l] = .559E-02	
time [yr] =	25.0	avg. conc. [mg/l] = .840E-02	
	20.0		
time furl -	20.0	$a_{12} = a_{12} = a$	
time [yr] =	30.0	avg. conc. [mg/l] = .993E-02	
time [yr] =	35.0	avg. conc. [mg/l] = .115E-01	
time [yr] =	40.0	avg. conc. [mg/l] = .121E-01	
time [yr] =	45.0	avg. conc. [mg/l] = .129E-01	
time [yr] =	50.0	avg. conc. [mg/l] = .131E-01	
time [yr] =	55.0	avg. conc. [mg/l] = .135E-01	
anne Dil -	00.0		
Alima a front an	<u></u>		
time [yr] =	00.0	avg. conc. [mg/l] = .134E-01	
time [yr] =	65.0	avg. conc. [mg/l] = .136E-01	
time [yr] =	70.0	avg. conc. [mg/l] = .134E-01	

· · · · · · ·

Jury Output File Analysis for Example Problem

*** COMMON INPUT PARAMETERS ***

PARAMETER NAME	UNITS	VALUE
	()	0.05
Porosity	(cc/cc)	0.25
Bulk Density	(g/cc)	1.8
Water Content	(cc/cc)	0.1
Fractional Organic Carbon	(mg/mg)	9.00E-03
Incorporation Depth	(cm)	1010
Clean Soil Thickness	(cm)	200
Simulation Time	(yrs)	70
Length of Soil Column	(cm)	4240
Infiltration Rate	(cm/day)	5.55E-02
Source Length	(m)	12.5
Source Width	(m)	18.9
Boundary Layer Thickness	(cm)	5

.

Chemical Specific Input Parameters for TPH-AR10-12

PARAMETER NAME	UNITS	VALUE
Total Soil Concentration Diffusion Coeff. in Air Diffusion Coeff. in Water Henrys Constant Organic Carbon Part. Coeff. Lumped Chemical Decay Rate	(mg/kg) (cm^2/day) (cm^2/day) [(mg/L)/(mg/L)] (cc/g) (1/day)	1 8640 0.864 5.82 2510 0
Outputs for TPH-AR10-12		
Time = 1 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	70.61 0 0 0
Time = 2 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 3 yrs	(g) (g/day) (g/day) (g/day)	205.4 7.35E-44 1.88E-40 1.88E-40
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	335.6 1.23E-30 1.76E-27 1.77E-27
Time = 4 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	456 5.21E-24 5.2E-21 5.2E-21
Time = 5 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	567.4 5.07E-20 3.86E-17 3.87E-17

.

Time = 10 yrs ====================================	=	
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwat	(g) .(g/day) (g/day) er (g/day)	1022 5.39E-12 1.89E-09 1.89E-09
Time = 15	=	
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwat Time = 20 yrs	(g) (g/day) (g/day) er (g/day)	1358 2.76E-09 6.33E-07 6.35E-07
	=	
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) er (g/day)	1616 6.5E-08 1.12E-05 1.12E-05
Time = 25 yrs ====================================	=	
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwat	(g) (g/day) (g/day) er (g/day)	1820 4.41E-07 6.02E-05 6.06E-05
Time = 30 yrs ====================================	=	
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwat	(g) (g/day) (g/day) er (g/day)	1988 1.59E-06 0.000182 0.000183
Time = 35 yrs	:=	
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwat	(g) (g/day) (g/day) ter (g/day)	2127 4.02E-06 0.000393 0.000397
Time = 40 yrs ====================================	:=	
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwat	(g) (g/day) (g/day) ter (g/day)	2246 8.04E-06 0.000691 0.000699

.

Time = 45 yrs

Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	2348 1.38E-05 0.001054 0.001068
Time = 50 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 55 yrs	(g) (g/day) (g/day) (g/day)	2438 2.12E-05 0.001459 0.00148
3K8222222222 555555 56662222223289 5 52222222		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	2517 3.01E-05 0.00188 0.00191
Time = 60 yrs		
₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	2588 4.01E-05 0.002296 0.002336
Time = 65 yrs		
=======================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	2651 5.1E-05 0.002691 0.002742
Time = 70 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	2709 6.24E-05 0.003053 0.003116

Chemical Specific Input Parameters for TPH-AR12-16

PARAMETER NAME	UNITS	VALUE
Total Soil Concentration Diffusion Coeff. in Air Diffusion Coeff. in Water Henrys Constant Organic Carbon Part. Coeff. Lumped Chemical Decay Rate	(mg/kg) (cm^2/day) (cm^2/day) [(mg/L)/(mg/L)] (cc/g) (1/day)	1 8640 0.864 2.25 5010 0
Outputs for TPH-AR12-16		
Time = 1 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 2 yrs	(g) (g/day) (g/day) (g/day)	0.4265 0 0 0
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	7.457 0 0 0
Time = 3 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 4 yrs	(g) (g/day) (g/day) (g/day)	23.17 0 0 0
Time = 4 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	44.26 0 0 0
Time = 5 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	68.3 0 0 0

Time = 10 yrs

Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	199.8 1.16E-44 1.17E-41 1.17E-41
Time = 15 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	327.1 2.94E-31 1.67E-28 1.67E-28
Time = 20 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	444.7 1.54E-24 6.04E-22 6.06E-22
Time = 25		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	553.5 1.7E-20 5.09E-18 5.11E-18
Time = 30 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 35 yrs	(g) (g/day) (g/day) (g/day)	654.6 8.58E-18 2.07E-15 2.08E-15
Time = 35 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	748.8 7.39E-16 1.5E-13 1.51E-13
Time = 40 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	837.1 2.11E-14 3.68E-12 3.7E-12

Time = 45 yrs

Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 50 yrs	(g) (g/day) (g/day) (g/day)	919.8 2.87E-13 4.41E-11 4.44E-11
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 55 yrs	(g) (g/day) (g/day) (g/day)	997.5 2.33E-12 3.2E-10 3.22E-10
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	1071 1.3E-11 1.61E-09 1.62E-09
Time = 60 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	1140 5.46E-11 6.16E-09 6.22E-09
Time = 65 yrs		
=======================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	1205 1.85E-10 1.92E-08 1.93E-08
Time = 70 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	1267 5.25E-10 5.04E-08 5.1E-08

Chemical Specific Input Parameters for TPH-AR16-21

PARAMETER NAME	UNITS	VALUE
Total Soil Concentration Diffusion Coeff. in Air Diffusion Coeff. in Water Henrys Constant Organic Carbon Part. Coeff. Lumped Chemical Decay Rate	(mg/kg) (cm^2/day) (cm^2/day) [(mg/L)/(mg/L)] (cc/g) (1/day)	1 8640 0.864 0.54 1.58E+04 0
Outputs for TPH-AR16-21		
Time = 1 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 2 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	7.11E-12 0 0 0
Time = 3 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 4 yrs	(g) (g/day) (g/day) (g/day)	7.72E-08 0 0 0
=======================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	9.21E-06 0 0 0
Time = 5 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0.000174 0 0 0

Time = 10 yrs

. . . .

1

Cumulative Emissions to Air	(g)	0.08447
Advective Mass Loading Rate to Groundwater	(g/day)	0
Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0 D
Adveolate d Billiolite Mass Ebacing Rale to Cloundwatch	(graay)	U
Time = 15 yrs		
Cumulative Emissions to Air	(g)	0.8201
Advective Mass Loading Rate to Groundwater	(g/day)	0
Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Time - 00 me		
Time = 20 yrs		
Cumulative Emissions to Air	(g)	2.81
Advective Mass Loading Rate to Groundwater	(g/day)	0
Diffusive Mass Loading Rate to Groundwater	(g/day)	õ
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	Ő
Advective & Diffusive Mass Evading Nate to Groundwater	(g/day)	Ŭ
Time = 25 yrs		
, ##6055555 <u>555555555555555555555555555555</u>		
Cumulative Emissions to Air	(g)	6.209
Advective Mass Loading Rate to Groundwater	(g/day)	0
Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0
_ .		
Time = 30 yrs		
Cumulative Emissions to Air	(g)	10.9
Advective Mass Loading Rate to Groundwater	(g/day)	0
Diffusive Mass Loading Rate to Groundwater	(g/day)	0
•		-
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Time = 35 yrs		
Cumulative Emissions to Air	(g)	16.68
Advective Mass Loading Rate to Groundwater	(g/day)	0
Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0

Cumulative Emissions to Air	(g)	10.9
Advective Mass Loading Rate to Groundwater	(g/day)	0
Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0

Cumulative Emissions to Air	(g)	16.68
Advective Mass Loading Rate to Groundwater	(g/day)	0
Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0

Time = 4	40	yrs
----------	----	-----

Advective & Diffusive Mass Loading Rate to Groundwater

Cumulative Emissions to Air	(g)	23.35
Advective Mass Loading Rate to Groundwater	(g/day)	20.00
Diffusive Mass Loading Rate to Groundwater	(g/day)	Ö
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Advective & Diffusive Mass Loading Mate to Crodinawater	(g/day)	U
Time = 45 yrs		
Cumulative Emissions to Air	(g)	30.73
Advective Mass Loading Rate to Groundwater	(g/day)	0
Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Time = 50 yrs		
Cumulative Emissions to Air	(g)	38.67
Advective Mass Loading Rate to Groundwater	(g/day)	0
Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Time = 55 yrs		
228##Eta282#2=======2 t EE28===================================		
Cumulative Emissions to Air	(g)	47.05
Advective Mass Loading Rate to Groundwater	(g/day)	0
Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Time = 60 yrs		
=======================================		
	<i>,</i> ,	
Cumulative Emissions to Air	(g)	55.77
Advective Mass Loading Rate to Groundwater	(g/day)	0
Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0
Time = 65 yrs		
269-98-92220×8×87==================		
Cumulative Emissions to Air	(g)	64.76
Advective Mass Loading Rate to Groundwater	(g/day)	04.70
Diffusive Mass Loading Rate to Groundwater	(g/day)	Ö
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day) (g/day)	0
A A A A A A A A A A A A A A A A A A A	(graay)	0
Time = 70 yrs		
Cumulative Emissions to Air	(g)	73.96
Advective Mass Loading Rate to Groundwater	(g/day)	0
Diffusive Mass Loading Rate to Groundwater	(g/day)	7.85E-77
Advective & Diffusive Mass Loading Rate to Groundwater	(g/day)	0

(g/day)

Chemical Specific Input Parameters for TPH-AR21-35

PARAMETER NAME	UNITS	VALUE
Total Soil Concentration Diffusion Coeff. in Air Diffusion Coeff. in Water Henrys Constant Organic Carbon Part. Coeff. Lumped Chemical Decay Rate	(mg/kg) (cm^2/day) (cm^2/day) [(mg/L)/(mg/L)] (cc/g) (1/day)	1 8640 0.864 2.83E-02 1.26E+05 0
Outputs for TPH-AR21-35		
Time = 1 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 2 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 3 yrs	(g) (g/day) (g/day) (g/day)	0 0 0
Time = 3 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 4 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 5 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0

Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 15 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 20 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 25 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 30 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0
Time = 35 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 40 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0

Time = 45 yrs

822323988222242238888888832222238888822222

Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0
Time = 50 yrs ====================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater Time = 55 yrs	(g) (g/day) (g/day) (g/day)	0 0 0
=======================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 60 yrs		
=======================================		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 65 yrs		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0
Time = 70 yrs		
, = = = = = = = = = = = = = = = = = = =		
Cumulative Emissions to Air Advective Mass Loading Rate to Groundwater Diffusive Mass Loading Rate to Groundwater Advective & Diffusive Mass Loading Rate to Groundwater	(g) (g/day) (g/day) (g/day)	0 0 0 0

• • •

AT123D Output File Analysis for Example Problem

Chemicals in the analysis TPH-AR10-12 TPH-AR12-16 TPH-AR16-21 TPH-AR21-35

Number of years simulated:

70

GENERAL INPUT DATA

NO. OF POINTS IN X-DIRECTION NO. OF POINTS IN Y-DIRECTION NO. OF POINTS IN Z-DIRECTION NO. OF POINTS IN Z-DIRECTION NO. OF ROOTS: NO. OF SERIES TERMS NO. OF BEGINNING TIME STEPS NO. OF ENDING TIME STEP NO. OF TIME INTERVALS FOR PRINTED OUT SOLUTION INSTANTANEOUS SOURCE CONTROL = 0 FOR INSTANT SOURCE SOURCE CONDITION CONTROL = 0 FOR STEADY SOURCE INTERMITTENT OUTPUT CONTROL = 0 NO SUCH OUTPUT CASE CONTROL =1 THERMAL, = 2 FOR CHEMICAL, = 3 RAD	1 10 1000 1 70 1 70 1 2
X-COORDINATE OF RECEPTOR WELL (METERS) Y-COORDINATE OF RECEPTOR WELL (METERS) AQUIFER DEPTH, = 0.0 FOR INFINITE DEEP (METERS) AQUIFER WIDTH, = 0.0 FOR INFINITE WIDE (METERS) BEGIN POINT OF X-SOURCE LOCATION (METERS) END POINT OF X-SOURCE LOCATION (METERS) BEGIN POINT OF Y-SOURCE LOCATION (METERS) END POINT OF Y-SOURCE LOCATION (METERS) BEGIN POINT OF Y-SOURCE LOCATION (METERS) BEGIN POINT OF Z-SOURCE LOCATION (METERS) BEGIN POINT OF Z-SOURCE LOCATION (METERS)	6.25E+00 9.46E+00 3.05E+00 0.00E+00 1.25E+01 0.00E+00 1.89E+01 0.00E+00 0.00E+00
POROSITY	2.50E-01
HYDRAULIC CONDUCTIVITY (METER/YEAR)	3.15E+01
HYDRAULIC GRADIENT	2.00E-02
LONGITUDINAL DISPERSIVITY (METER)	0.00E+00
LATERAL DISPERSIVITY (METER)	0.00E+00
VERTICAL DISPERSIVITY (METER)	0.00E+00
BULK DENSITY OF THE SOIL (KG/M**3)	1.80E+03
TIME INTERVAL SIZE FOR THE DESIRED SOLUTION (YR)	1.00E+00
DISCHARGE TIME (YR)	7.00E+01

INPUT DATA/RESULTS FOR CHEMICAL: TPH-AR10-12

.529E-14 .340E-08 .476E-06 .611E-05 .286E-04 .798E-04	.686E-40 .360E-12 .128E-07 .898E-06 .882E-05 .363E-04 .941E-04	.644E-27 .846E-11 .391E-07 .157E-05 .123E-04 .452E-04 .110E-03	.190E-20 .979E-10 .102E-06 .260E-05 .167E-04 .554E-04 .127E-03	.141E .691E .232E .410E .221E .669E .145E	16 E-09 E-06 E-05 E-04 E-04 E-03	1.00E+00 5.02E-02 3.15E-02 0.00E+00
	.186E-03 .306E-03					
.419E-03	.449E-03	.479E-03	.509E-03	.540E	E-03	
	.603E-03 .760E-03					
	.913E-03					
.103E-02 RETARDATIC RETARDED RETARDED RETARDED			(110/0)			3.62E+02
RETARDED	SEEPAGE V LONGITUDI	NAL DISP	(W/TR) ERSION CO	DEF. (N	 1**2/YR)	0.95E-03 3.48E-04
RETARDED	LATERAL D	ISPERSIC	N COEFFIC	CIENT ((M**2/YR) .	3.48E-04
RETARDED	VERTICAL E	DISPERSI	ON COEFF	CIENT	(M**2/YR).	3.48E-04
time [yr] =	1.00	a	ıvg. conc. (n	ng/l] =	.000E+00	
	5.00					
	10.0					
	15.0					
	20.0					
time [yr] =			ivg. conc. (n			
time [yr] =			ivg. conc. [n			
time [yr] =			ivg. conc. [n			
time [yr] =	40.0	8	ivg. conc. (n	ng/i] =	.122E-03	
time [yr] =	45.0	8	avg. conc. [n	ng/l] =	.231E-03	
time [yr] =	50.0	8	ivg. conc. [n	ng/l] =	.347E-03	
time [yr] =	55.0	8	ivg. conc. [n	ng/l] =	.529E-03	
time [yr] =	60.0	a	ivg. conc. [n	ng/l] =	.691E-03	
time [yr] =	65.0	8	avg. conc. [n	ng/l] =	.930E-03	
time [yr] =	70.0	á	avg. conc. [n	ng/l] =	.112E-02	

,

INPUT DATA/RESULTS FOR CHEMICAL: TPH-AR12-16

 INST. WASTE RELEASE (KG) VALID FOR INST DISTRIBUTION COEFFICIENT, KD (M**3/KG) MOLECULAR DIFFUSION COEFFICIENT DECAY CONSTANT (1/YR) LIST OF TRANSIENT SOURCE RELEASE RATH .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .174E-45 .166E-37 .163E-34 .550E-32 .808E-30 .267E-26 .748E-25 .145E-23 .204E-22 .191E-20 .135E-19 .806E-19 .414E-18 .747E-17 .270E-16 .889E-16 .270E-15 .200E-14 .495E-14 .116E-13 .258E-13 .112E-12 .220E-12 .416E-12 .761E-12 .233E-11 .392E-11 .643E-11 .103E-10 .249E-10 .377E-10 .559E-10 .817E-10 .167E-09 .233E-09 .322E-09 .439E-09 .790E-09 .104E-08 .136E-08 .177E-08 .289E-08 .365E-08 .458E-08 .571E-08 .867E-08 .106E-07 .128E-07 .155E-07 	(M**2/YR) E .000E+00 .427E-41 .609E-28 .221E-21 .186E-17 .759E-15 .549E-13 .135E-11 .162E-10 .118E-09 .592E-09 .227E-08 .706E-08	1.00E-01 3.15E-02 0.00E+00
.867E-08 .106E-07 .128E-07 .155E-07		7 225+02
.867E-08 .106E-07 .128E-07 .155E-07 RETARDATION FACTOR RETARDED SEEPAGE VELOCITY (M/YR) RETARDED LONGITUDINAL DISPERSION COE		3.49E-03
RETARDED LONGITUDINAL DISPERSION COE RETARDED LATERAL DISPERSION COEFFICI	EF. (M**2/YR)	1.75E-04
RETARDED LATERAL DISPERSION COEFFICE RETARDED VERTICAL DISPERSION COEFFIC	CIENT (M**2/YR),	1.75E-04 1.75E-04
time [yr] = 1.00 avg. conc. [mg	g/I] = .000E+00	
time [yr] = 5.00 avg. conc. [mg	g/l] = .000E+00	
time [yr] = 10.0 avg. conc. [mg		
time [yr] = 15.0 avg. conc. [mg		
time [yr] = 20.0 avg. conc. [mg		
time [yr] = 25.0 avg. conc. [mg	g/l] = .000E+00	
time [yr] = 30.0 avg. conc. [mg	g/l] = .000E+00	
time [yr] = 35.0 avg. conc. [mg	g/l] = .000E+00	
time [yr] = 40.0 avg. conc. [mg	g/I] = .000E+00	
time [yr] = 45.0 avg. conc. (mg	g/i] = .000E+00	
time [yr] = 50.0 avg. conc. [mg	g/l] = .000E+00	
time [yr] = 55.0 avg. conc. [mg	g/I] = .000E+00	
time [yr] = 60.0 avg. conc. [mg	g/l] = .000E+00	
time [yr] = 65.0 avg. conc. [mg	g/l] = .172E-08	
time [yr] = 70.0 avg. conc. [mg	g/l] = .464E-08	

INPUT DATA/RESULTS FOR CHEMICAL: TPH-AR16-21

INST. WASTE RELEASE (KG) VALID FO DISTRIBUTION COEFFICIENT, KD (M** MOLECULAR DIFFUSION COEFFICIEN DECAY CONSTANT (1/YR) LIST OF TRANSIENT SOURCE RELEAS	OR INST CASE ONLY *3/KG) JT (M**2/YR) 	1.00E+00 3.16E-01 3.15E-02 0.00E+00
.000E+00 .000E+00 .000E+00 .0		
.000E+00 .000E+00 .000E+00 .0		
.000E+00 .000E+00 .000E+00 .0		
.000E+00 .000E+00 .000E+00 .00		
.000E+00 .000E+00 .000E+00 .0		
.000E+00 .000E+00 .000E+00 .000E+00 .000E+00		
.000E+00 .000E+00 .000E+00 .0		
	000E+00 .000E+00	
.000E+00 .000E+000E+		
	000E+00 .000E+00	
.000E+00 .000E+000 .000E+00 .000E+000E+		
.000E+00 .000E+000 .000E+00 .000E+000E+		
.000+00.000+00.000+00.000+00.000+00.000+00.000+00.000+00.000+00.000+00.000+00.000+00.000+00.000+00.000+00.000+00		
.000E+00 .000E+00 .000E+00 .0	JUUE+00	0.005.00
RETARDED SEEPAGE VELOCITY (M/Y RETARDED LONGITUDINAL DISPERSION CO RETARDED LATERAL DISPERSION CO		2.28E+03
RETARDED SEEPAGE VELOCITY (M/Y	′R)	1.11E-03
RETARDED LONGITUDINAL DISPERS	ION COEF. (M**2/YR)	5.54E-05
RETARDED LATERAL DISPERSION CO	DEFFICIENT (M**2/YR) .	5.54E-05
RETARDED VERTICAL DISPERSION C	OEFFICIENT (M**2/YR).	5.54E-05
time [yr] = 1.00 avg. c	onc. [mg/l] = .000E+00	
time [yr] = 5.00 avg. c	onc. [mg/l] = .000E+00	
time [yr] = 10.0 avg. c	onc. [mg/l] = .000E+00	
time [yr] = 15.0 avg. c	onc. [mg/l] = .000E+00	
time Ivrl = 20.0	onc. [mg/l] = .000E+00	
time [yr] = 20.0 avg. c		
time [yr] = 25.0 avg. c	onc. [mg/l] = .000E+00	
time [yr] = 30.0 avg. c	:onc. [mg/l] = .000E+00	
time [yr] = 35.0 avg. c	:onc. [mg/l] = .000E+00	
time [yr] = 40.0 avg. c	onc. [mg/l] = .000E+00	
time [yr] = 45.0 avg. c	onc. [mg/l] = .000E+00	
time [yr] = 50.0 avg. c	:onc. [mg/l] = .000E+00	
time [yr] = 55.0 avg. c	onc. [mg/l] = .000E+00	
	erer fulgul - reader an	
time [yr] = 60.0 avg. c	:onc. [mg/l] = .000E+00	
ane grij – oo.o avg. d	ono. [mg/i] = .000±+00	
time luci m AF 0		
time [yr] = 65.0 avg. c	conc. [mg/l] = .000E+00	
time [yr] = 70.0 avg. c	conc. [mg/l] = .000E+00	

INPUT DATA/RESULTS FOR CHEMICAL: TPH-AR21-35

DISTRIBUTION COEF MOLECULAR DIFFUS DECAY CONSTANT (LIST OF TRANSIENT .000E+00 .000E+ .000E+00 .000E+	00 .000E+00 .000E+00 .000E+00 00 .000E+00 .000E+00 .000E+00	1.00E+00 2.52E+00 3.15E-02 0.00E+00
000E+00 .000E+ RETARDATION FACT	00 .000E+00 .000E+00	1.81E+04
RETARDED SEEPAG	FOR E VELOCITY (M/YR) JDINAL DISPERSION COEF. (M**2/YR)	1.39E-04
RETARDED LONGITU	L DISPERSION COEFFICIENT (M**2/YR)	6.95E-06 6.95E-06
RETARDED VERTICA	L DISPERSION COEFFICIENT (M**2/YR) . AL DISPERSION COEFFICIENT (M**2/YR).	6.95E-06
time [yr] = 1.00	avg. conc. [mg/l] = .000E+00	
time [yr] = 5.00	avg. conc. [mg/l] = .000E+00	
time [yr] = 10.0	avg. conc. [mg/l] = .000E+00	
time [yr] = 15.0	avg. conc. [mg/l] = .000E+00	
time [yr] = 20.0	avg. conc. [mg/l] = .000E+00	
time [yr] = 25.0	avg. conc. [mg/l] = .000E+00	
time [yr] = 30.0	avg. conc. [mg/l] = .000E+00	
time [yr] = 35.0	avg. conc. [mg/l] = .000E+00	
time [yr] = 40.0	avg. conc. [mg/l] = .000E+00	
time [yr] = 45.0	avg. conc. [mg/l] = .000E+00	
time [yr] = 50.0	avg. conc. [mg/l] = .000E+00	
time [yr] = 55.0	avg. conc. [mg/l] = .000E+00	
time [yr] = 60.0	avg. conc. [mg/I] = .000E+00	
time [yr] = 65.0	avg. conc. [mg/l] = .000E+00	
time [yr] = 70.0	avg. conc. [mg/l] = .000E+00	

RECEIVED

JUN 2 9 1998

ENVIRONMENTAL BUREAU OIL CONSERVATION DIVISION

SOIL BORINGS SB-1, SB-2

TEXAS - NEW MEXICO PIPE LINE COMPANY TNM-96-16 LEA COUNTY, NEW MEXICO

5309 Wurzbach, Suite 100 San Antonio, Texas 78238 (210) 680-3767 (210) 680-3763 FAX

SUBSURFACE INVESTIGATION REPORT SOIL BORINGS SB-1, SB-2

TEXAS - NEW MEXICO PIPE LINE COMPANY TNM-96-16 LEA COUNTY, NEW MEXICO

PREPARED FOR:

TEXAS - NEW MEXICO PIPE LINE COMPANY P. O. Box 1030 Jal, New Mexico 88252

Mr. Tony Savoie

PREPARED BY: KEI

Monica A. Sfentz

Project Manager

Theresa Nix Project Manager

Pat Bullinger, P.E.

KEI Job No. 610088-1

PURPOSE AND SCOPE

SOIL INVESTIGATION

1

1

SOIL DESCRIPTION ANALYTICAL RESULTS

FIGURES

FIG. 1 - SITE LOCATION MAP

FIG. 2 - SITE DETAILS

FIG. 3 - LOGS AND DETAILS OF SOIL BORINGS

TABLES

1

GENERAL NOTES

TABLE I - SUMMARY OF SOIL RESULTS - BTEX AND TPH

TABLE II - SUMMARY OF SOIL RESULTS - SPLP

TABLE III - SUMMARY OF SOIL RESULTS - GEOTECHNICAL

APPENDICES

APPENDIX A - ANALYTICAL LABORATORY REPORTS - SOIL Chain-Of-Custody Documentation APPENDIX B - QA/QC PROCEDURES

PURPOSE AND SCOPE

The purpose of the subsurface investigation was to delineate the vertical extent of hydrocarbon impact at the site within the apparent source area. Previous activities at the site consisted of the advancement of 4 soil borings to delineate the lateral extent of impact and to estimate the apparent volume of soil to be excavated from the site. That report was generated by Environmental Spill Control, Inc. and dated May 20, 1996. The site location is shown on FIG. 1.

SOIL INVESTIGATION

The subsurface investigation consisted of drilling 2 soil borings (designated SB-1 and SB-2) within the previously excavated area. The borings were drilled to an approximate depth of 41.5 feet below the ground surface, 32.5 feet below the surface of the excavated area. This depth placed the bottom of the borings approximately 5 feet below any apparently impacted soils as determined by the visual inspection of samples in the field. Soil samples were collected at selected intervals from 9 feet below the ground surface to the bottom of the boring. The soils were classified in the field, soil samples were field screened, and selected samples were prepared and shipped to the laboratory for analysis. Upon completion of sampling activities, each soil boring was backfilled to the surface with a cement/bentonite grout.

Ground water was not encountered in either of the soil borings. The depth to ground water is suspected to be between 75 and 90 feet below the ground surface. The locations of the soil borings are presented on FIG. 2.

SOIL DESCRIPTION

The subsurface soil profile was classified in general accordance with the Unified Soil Classification System by visually observing the soil samples obtained during the assessment. Depths given are referenced from the surface of the excavated area, 9 feet below the ground surface, unless otherwise noted. In general, 3 soil types were encountered. A general description, approximate thickness, and head-space sample results for each soil type are as follows:

Soil Type I

This soil type consisted of white caliche gravel encountered at the surface of each boring and again at a depth of approximately 13 feet. The observed thickness of this soil type ranged from 4 to 7 feet. The caliche gravel was sandy, contained sandstone gravel, and was dry. Head-space readings from samples of this soil type varied from 99 ppm to 753 ppm.

Soil Type II

This soil type consisted of red sand and was encountered at a depth of approximately 4.5 feet at both boring locations. The sand contained calcareous nodules in the upper 2 to 3 feet and organic material in the lower 5 to 7 feet. This soil type was dry to slightly moist. The observed thickness of this soil type varied from 8 to 9 feet. Head-space readings from samples of this soil type ranged from 304 ppm to 598 ppm.

Soil Type III

This soil type consisted of light brown sand and was encountered from a depth of approximately 19 feet to the bottom of the sample in both borings. The sand was finegrained and contained sandstone gravel. The observed thickness of this soil type was approximately 13.5 feet. Head-space readings from samples of this soil type ranged from 44 ppm to 117 ppm.

Logs indicating the subsurface soil profile, depths at which soil samples were obtained, head-space results, and laboratory results are presented on FIG. 3.

ANALYTICAL RESULTS .

Three soil samples were selected from each soil boring based on the following criteria:

- The sample collected between 0 and 2.5 feet below the surface of the excavated area.
- The sample collected between 15 and 17.5 feet below the surface of the excavated area.
- The sample at the bottom of each soil boring.

Soil samples selected for analytical testing consisted of the following:

- Six samples from the soil borings were tested for benzene, toluene, ethylbenzene, and xylenes (BTEX) and total petroleum hydrocarbons diesel range organics (TPH-DRO).
- One soil sample from soil boring SB-1 (exhibiting the highest concentration of TPH by EPA Method 8015 DRO) was tested for SPLP TPH, SPLP Volatile Organic Compounds (VOCs), and SPLP Semi-volatile Organic Compounds (SVOCs).
- One hand-augered sample was collected outside of the excavated area and analyzed for fraction of organic carbon (FOC) and moisture content. The location of this sample is shown on FIG. 2.
- Laboratory results for the selected samples indicated the following concentration ranges:

CONSTITUENT	CONCENTRATION RANGE
BENZENE	ND to 4.00 mg/kg
BTEX	ND to 255.48 mg/kg
трн	33.4 to 9,570 mg/kg
SPLP TPH	6.8 mg/kg
BENZENE	0.057 mg/L
ETHYLBENZENE	0.568 mg/L
ISOPROPYLBENZENE	0.080 mg/L
NAPHTHALENE	0.044 to 0.160 mg/L
TOLUENE	1.364* mg/L
1,2,4-TRIMETHYLBENZENE	0.260 mg/L
1,3,5-TRIMETHYLBENZENE	0.083 mg/L
m,p-XYLENES	0.869 mg/L

CONSTITUENT	CONCENTRATION RANGE
n-PROPYLBENZENE	0.067 mg/L
o-XYLENE	0.596 mg/L
2-METHYLNAPHTHALENE	0.042 mg/L
FOC	0.9%
MOISTURE CONTENT	3.5%

* Indicates constituent was detected above the method calibration limits.

SPLP VOC and SPLP SVOC constituents not listed above were ND. Soil laboratory results are summarized in TABLES I through III. Soil analytical laboratory reports and chain-ofcustody documentation are presented in APPENDIX A. Quality Assurance/Quality Control Procedures are presented in APPENDIX B.

GENERAL NOTES

ND - Indicates constituent was not detected above the method detection limit.

Method detection or reporting limits:

BTEX	-	0.020 to 0.40 mg/kg
ТРН	-	10.0 to 500 mg/kg
SPLP TPH	-	0.9 mg/L
SPLP VOCs	-	0.025 to 0.050 mg/L
SPLP SVOCs	-	0.025 to 0.063 mg/L
FOC	-	0.1%
Moisture Content	-	0.1%

Laboratory test methods:

BTEX	-	EPA Method SW846-8020
TPH	-	Modified EPA Method 8015-DRO
SPLP TPH	-	EPA Method 1312/418.1
SPLP VOCs	-	EPA Method SW846-1312/8260
SPLP SVOCs	-	EPA Method SW846-1312/8270
FOC	-	ASTM Method D2974
Moisture Content	-	ASTM 2216-71

TABLE I

SUMMARY OF SOIL RESULTS - BTEX AND TPH TEXAS - NEW MEXICO PIPE LINE COMPANY TNM-96-16 LEA COUNTY, NEW MEXICO

SAMPLE LOCATION	SAMPLE DATE	DEPTH (feet)	BENZENE (mg/kg)	TOLUENE (mg/kg)	ETHYL- BENZENE (mg/kg)	XYLENES (mg/kg)	TOTAL BTEX (mg/kg)	TPH (mg/kg)
SB-1	03/09/98	0 - 2.5	3.08	56.60	59.80	136.00	255.48	9570
SB-1	03/09/98	15 - 17.5	4.00	28.40	15.00	65.20	112.60	4020
SB-1	03/09/98	30 - 32.5	ND	ND	ND	ND	ND	33.4
SB-2	03/09/98	0 - 2.5	2.19	0.74	4.40	22.06	29.39	2110
SB-2	03/09/98	15 - 17.5	ND	ND	0.036	0.273	0.309	428
SB-2	03/09/98	30 - 32.5	0.029	0.040	0.910	4.978	5.957	570

TABLE II

SUMMARY OF SOIL RESULTS - SPLP TEXAS - NEW MEXICO PIPE LINE COMPANY TNM-96-16 LEA COUNTY, NEW MEXICO

	CONCENTRATION
PARAMETER	(mg/L)
VOCs:	
Benzene	0.057
Ethylbenzene	0.568
Isopropylbenzene	0.080
Naphthalene	0.160
Toluene	1.364*
1,2,4-Trimethylbenzene	0.260
1,3,5-Trimethylbenzene	0.083
m.p-Xylenes	0.869
n-Propylbenzene	0.067
o-Xylene	0.596
SVOCs:	
2-Methyinaphthalene	0.042
Naphthalene	0.044
ТРН	6.8

NOTES:

- 1. The sample was obtained on 03/09/98 from SB-1 at 0 to 2.5 feet.
- 2. * Indicates the result was beyond calibration limits.
- 3. Those constituents not listed were ND.
TABLE III

SUMMARY OF SOIL RESULTS - GEOTECHNICAL TEXAS - NEW MEXICO PIPE LINE COMPANY TNM-96-16 LEA COUNTY, NEW MEXICO

PARAMETER	CONCENTRATION (%)
Organic Content (FOC)	0.9
Moisture Content	3.5

NOTES:

- 1. The sample was collected on 03/09/98 at approximately 6 to 8 feet below ground surface.
- 2. The sample location is identified on FIG. 2.

ANALYTICAL REPORT 1-80927

for

K.E.I. Consultants, Inc.

Project Manager: Theresa Nix Project Name: TNM-96-16

Project Id: 610088

April 1, 1998

HOUSTON - DALLAS - SAN ANTONIO

 11381 Meadowglen Lane
 Suite L * Houston, Texas 77082-2647

 Phone (281) 589-0692
 Fax (281) 589-0695

teres en la companya de la companya

Laboratories

11381 Meadowglen Suite L Houston, Texas 77082-2647 (281) 589-0692 Fax: (281) 589-0695 Houston - Dallas - San Antonio - Latin America

April 1, 1998

Project Manager: Theresa Nix K.E.I. Consultants, Inc. 5309 Wurzbach Rd. Suite 100 San Antonio, TX 78238

Reference: XENCO Report No.: 1-80927 Project Name: TNM-96-16 Project ID: 610088 Project Address: Lea County New Mexico

Dear Theresa Nix:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with XENCO Chain of Custody Number 1-80927. All results being reported to you apply only to the samples analyzed, properly identified with a Laboratory ID number. This letter documents the official transmission of the contents of the report and validates the information contained within.

All the results for the quality control samples passed thorough examination. Also, all parameters for data reduction and validation checked satisfactorily. In view of this, we are able to release the analytical data for this report within acceptance criteria for accuracy, precision, completeness or properly flagged.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 3 years in our archives and after that time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in COC No. 1-80927 will be filed for 60 days, and after that time they will be properly disposed of without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

XENCO operates under the A2LA guidelines. Our Quality System meets ISO/IEC Guide 25 requirements which is strictly implemented and enforced through our standard QA/QC procedures.

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Sincerely,

Eddie Conomoto, Ph.D.

Technical Director

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY!

Date Received in Lab : Mar 12, 1998 09:45 Date Report Faxed: Apr 1, 1998 ZKNCO contact : Carlos CastrofEdva X6NCO contact : Carlos CastrofEdva X8L 180927 005 SB-2 SB-2 Implie SB-2 Sold Sold Sold At 10.0) 2110 (250) 428 (200) Mg/g R.L mg/g R.L ppm Maphy R.L ppm 0.147 (0.40) Mg/g 0.0200 0.126 0.0309 0.309 Mg/g N.D. 23.35 0.330 0.330 Mg/g N.D. 23.35 0.330 0.330 Mg/g N.D. 23.35 0.330 0.330 Mg/g N.D. 23.35	K.E.I. Consultants, inc. K.E.I. Consultants, inc. n: Thereas Nix Project Name: TMM-96-16 Date R. n: Thereas Nix Froject Name: TMM-96-16 Date R. n: Thereas Nix Froject Name: TMM-96-16 Date R. n: Les County New Mexico 18027 001 18027 001 18027 003 160 n: Les County New Mexico 0.2.5 58-1 59-1 59-1 <td< th=""><th>KI</th><th>ANALYSIS SUMMARY 1-80927</th><th></th><th></th><th></th></td<>	KI	ANALYSIS SUMMARY 1-80927			
Date Received in Lab : Mar Date Report Faxed: Apr Date Report Faxed: Apr Tool	C. Date R. Dat	K.I				:
Date Report Faxed: Apr XfNCO contact: Carl XfNCO contact: Carl 7 003 180927 004 1809 7 033 180927 004 1809 1 5B-2 5 5 2 5 501d 1809 1 03/18/98 R.L. 03/18/98 R.L. mg/kg R.L. 03/13/98 R.L. 03/13/98 2 10.0.0) 2.110 (250) 0 0 20 0.020) 0.74 (0.10) 0 0 20 0.020) 0.74 (0.10) 0 0 20 0.020) 8.76 (0.10) 0 0 0 0.020) 9.76 0.10) 0 0 0 0.020) 9.76 0.10) 0 0 0 0.020) 0.2339 0 0 0 0 0 0 0 0 0 0 0	Date 227 003 180 88 13:30 03/08 96 13:30 03/08/98 8 R.L. mg/kg 33.4 (10.0) 03/18/98 R.L. ppm 0.020 (0.020) 0010 0010 0.020 (0.020) 0010 0010 0010 0.020 (0.020) 0010 0010 0010 0010 0010 0010 0010		sultants, Inc. e: TNM-96-16	Date Received in I	ab: Mar 12, 1998 00	9:45
7 003 180927 004 1809 1 3.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	27 003 180 28 13:30 03/18/98 8 13:30 03/18/98 8 13:30 03/18/98 8 1.L 03/13/98 8 .L 03/13/98 8 .L 02/13/98 8 .L 02/13/98 0.020 (0.020) 0.020 (0.020)	New Mexico		Date Report Fa X€NCO conf	xed: Apr 1, 1998 act : Carlos Castro/Ec	dward Yonemoto
R.L. 03/18/98 R.L. 03/18/98 R.L. 03/18/98 3.4 (10.0) 2110 (250) mg/kg 3.4 (10.0) 2110 (250) 03/13/98 R.L. ppm ppm < 0 < 0 20 (0.020) 0.74 (0.10) < 0 20 (0.040) 13.30 0.20 0 20 (0.020) 8.76 (0.10) 0 20 0.0200 8.76 (0.10) 0 20 0.0200 8.76 (0.10) 0 21 0.0200 8.76 (0.10) 0 21 0.0200 8.76 (0.10) 0 21 0.0200 8.76 (0.10) 0 21 0.0200 8.76 (0.10) 0 22 0.0203 8.76 (0.10) 0 21 0.0200 13.30 0.29.39 0 21 0.0200 8.76 0.10 0 21 0.0200 8.76 0.10 0<	R.L. 03/18/98 R.L. 03/1 33.4 (10.0) 2110 (250) 33.4 (10.0) 2110 (250) 33.4 (10.0) 2110 (250) 33.4 (10.0) 211398 R.L. 03/1 9pm 0.20 (0.020) 2.19 (0.10) 020 (0.020) 3.76 (0.10) 020 (0.020) 8.76 (0.10) 020 (0.020) 8.76 (0.10) 020 (0.020) 8.76 (0.10) 020 (0.020) 8.76 (0.10) 020 (0.020) 8.76 (0.10) 020 (0.020) 8.76 (0.10) 021 (0.020) 8.76 (0.10) 021 (0.020) 8.76 (0.10) 021 (0.020) 8.76 (0.10) 021 (0.020) 8.76 (0.10) 022 (0.020) 8.76 (0.10) 022 (0.020) 8.76 (0.10) 021 (0.020) 2.33 (0.10) 022 (0.020) 8.76 (0.10) 021 (0.020) 2.33 022 <	Lab ID: 180927 001 Field ID: 58-1 Depth: 0-2.5 Matrix: Solid Sampled: 03/09/98 12:56		180927 004 SB-2 0-2.5 Solid 03/09/98 13:45	180927 005 SB-2 15-17.5 Solid 03/09/98 14:06	180927 006 SB-2 30-32.5 Solid 03/09/98 14:35
3.4 (10.0) 2110 (250) R.L. 2013/98 R.L. 2013/13/98 Ppm 220 (0.020) 0.74 (0.10) < 0 220 (0.020) 4.40 (0.10) 0 220 (0.020) 8.76 (0.10) 0 220 (0.020) 8.75 (0.10) 0 220 (0.020) 8.75 (0.10) 0 220 (0.020) 0.20 0 220 0.020 0 220 0.020 0 220 0 200 0	33.4 (10.0) 2110 (250) R.L. 03/13/98 R.L. 020 (0.020) 2.19 (0.10) 020 (0.020) 0.74 (0.10) 020 (0.020) 8.76 (0.10) 020 (0.020) 8.76 (0.10) 0.020 (0.020) 0.74 (0.10) 0.020 (0.020) 0.020 (0.020) 0.74 (0.10) 0.020 (0.020) 0.020	d 03/18/98 R.L. 03/1 s: mg/kg R.L. mg/	t.t. 03/18/98 mg/kg	03/18/98 mg/kg	~	03/18/98 R.L. mg/kg
R.L. 03/13/98 R.L. 03/13/98 R.L. ppm 220 (0.020) 2.19 (0.10) < 0 220 (0.020) 0.74 (0.10) < 0 220 (0.020) 13.30 (0.20) 0 220 (0.020) 8.76 (0.10) 0 220 (0.020) 8.76 (0.10) 0 239.39 0 N.D 29.39 0 N.D 20.00 0	R.L. 03/13/98 R.L. ppm R.L. ppm 7.1. pp	9570 (500)	33.4	2110	428	570 (50.0)
20 (0.020) 2.19 (0.10) < 0 220 (0.020) 0.74 (0.10) < 0 220 (0.020) 4.40 (0.10) 0 340 (0.040) 13.30 (0.20) 0 376 (0.10) 0 20 0.020 8.76 (0.10) 0 20 0.020 8.76 (0.10) 0 20 0 0.020 0 0.0	020 (020) 2.19 020 (0020) 2.19 020 (0020) 4.40 020 (0.020) 8.76 020 0.020 8.76 0.020 0.020 8.76 0.010 0.020 8.76 0.020 0.020 8.76 0.020 0.020 8.76 0.020 0.020 8.76 0.020 0.020 8.76 0.020 0.020 8.76 0.020 0.020 8.76 0.020 0.020 8.76 0.010 0.020 8.76 0.020 0.020 8.76 0.010 0.010 13.30 0.020 0.020 8.76 0.020 0.020 8.76 0.010 0.010 13.30 0.010 0.010 13.30 0.010 0.010 13.30 0.010 0.010 13.30 0.010	03/13/98 R.L. ppm	03/13/98 ppm	03/13/98 ppm		03/13/98 R.L. ppm
220 (0.020) 0.74 (0.10) <0 220 (0.020) 4.40 (0.10) 0 220 (0.020) 8.76 (0.10) 0 220 (0.020) 8.76 (0.10) 0 N.D 29.39 0 N.D 29.39 0 nultants, Inc	020 (0.020) 0.74 020 (0.020) 4.40 0.040 (0.040) 13.30 0.020 (0.020) 8.76 N.D. 8.76 N.D. 7.	(0.20)		2.19		0.029 (0.020)
220 (0.020) 4.40 (0.10) 0 440 (0.040) 13.30 (0.20) 0 20 (0.020) 8.76 (0.10) 0 N.D. 29.39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.020 (0.020) 4.40 040 (0.040) 13.30 020 (0.020) 8.76 N.D. 8.76 N.D. 7 N.D. 7 N.D. 7 N.Consultants, Inc.	(0.20)		0.74	×	0.040 (0.020)
Ad0 (0.040) 13:30 (0.20) 0 220 (0.020) 8.76 (0.10) 0 N.D 29.39 N.D 29.39 N.D 29.39 On 10:000	0.040 (0.040) 13.30 0.020 (0.020) 8.76 N.D 8.76 N.D 7.7 Consultants, Inc.	(0.20)		4.40		0.910 (0.020)
220 (0.020) 8.76 (0.10) 0 N.D. 29.39 29.39 29.39 29.39 29.39 29.39 29.39 20.30	0.020 (0.020) 8.76 N.D. 8.76	(0.40)		13.30		3.280 (0.040)
N.D. 29.39	N.D.	(0.20)		8.76		1.698 (0.020)
Disultants, Inc.	SPLP-Semivolatiles Analyzed: 032696 R.L. EPA1312/8270 Uniks: rugL R.L. Acenaphthene < 0.025				0.309	5.957
onsultants, Inc.	Accaraphtherie < 0.025 (0.025) Accaraphthylene < 0.025 (0.025)	03/26/98 mg/L				
onsultants, Inc.	Actional phylicitie < 0.025 (0.025) <td></td> <td></td> <td></td> <td></td> <td></td>					
onsultants, Inc.	Anthracene < 0.025 (0.025)	< 0.025 (0.025)				
onsultants, Inc	Benzo(a)anthracene < 0.025 (0.025) (0.025)					
onsultants, Inc.	Benzo(a)pyrene < 0.025					
onsultants, Inc.	Benzo(b)fluoranthene < 0.025					
onsultants, Inc.	Benzo(g,h.i)perylence < 0.025	< 0.025				
onsultants, Inc	Benzo(k)fluoranthene < 0.025 (0.025) 4-Bromophenyl-phenylether < 0.025	< 0.025				
onsultants, Inc	4-Bromophenyl-phenylether < 0.025 (0.025)	< 0.025				
onsultants, Inc.	Butly benzyl phthalate < 0.025 (0.025)	< 0.025				
onsultants, Inc	Carbazole < 0.025 (0.025)	< 0.025				
onsultants, Inc	4-Chloro-3-Methylphenol < 0.025 (0.025) A-Chloro-3-Methylphenol This report summary, and the entire report it represents, has been made for the exclusive and confidential use of K.E.I. Consultants, inc	< 0.025				
onsultants, Inc	This report summary, and the entire report it represents, has been made for the exclusive and confidential use of K.E.I. Consultants, Inc					
onsultants, Inc	This report summary, and the entire report it represents, has been made for the exclusive and confidential use of K.E.I. Consultants, inc				ł	1
	The internetations and results expressed through this analytical report represent the best judgment of XENCO Laboratories.	the entire report it represents, has been made for the exclusive and confidentia units erroressed through this analytical report represent the best judgment of Xi	l use of K.E.I. Consultants, In ENCO Laboratories.		Edward	Fohemoto, Ph.D.
	XENCO Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.	ever, assumes no responsibility and makes no warranty to the end use of the d	ata hereby presented.		Techr	Technical Director

Laboratories		CERTIFICATE	OF ANALYSIS	SUMMARY 1-80927	80927		
Project ID: 610088			K.E.I. Consultants, Inc. Project Name: TNM-96-16	ants, Inc. 1M-96-16	Date Received in I	Date Received in Lab : Mar 12, 1998 09:45	9:45
Project Manager: Theresa Nix Project Location: Lea County New Mexico	<i>w</i> Mexico				Date Report Fa XENCO cont	Date Report Faxed: Apr 1, 1998 XENCO contact : Carlos Castro/Edward Yonemoto	dward Yonemoto
	Lab ID:	180927 001	180927 002	180927 003	180927 004	180927 005	180927 006
	Field (D:	SB-1	SB-1	SB-1	SB-2	SB-2	SB-2
Analvsis Requested	Depth:	0-2.5	15-17.5	30-32.5	0-2.5	15-17.5	30-32.5
	Mainx: Sampled:	50110 03/09/98 12:56	Solid 03/09/98 13:14	Solid 03/09/98 13:30	Solid 03/09/98 13:45	Solid 03/09/98 14:06	Solid 03/09/98 14:35
EPA1312/8270	Analyzed: (Units: r	03/26/98 R.L. mg/L					
4-Chloroaniline		< 0.025 (0.025)					
2-Chloronaphthalene							
2-Chtorophenol		< 0.025 (0.025)					
4-Chlorophenyl-phenyl ether		< 0.025 (0.025)					
Chrysene		< 0.025 (0.025)					-
Di-n-butyl phthalate		< 0.025 (0.025)					
Di-n-octyl phthalate		< 0.025 (0.025)					
Dibenzo(a,h)anthracene		< 0.025 (0.025)					
Dibenzofuran		< 0.025 (0.025)					
1,2-Dichlorobenzene		< 0.025 (0.025)					· · · · · · · · · · · · · · · · · · ·
1, 3-Dichlorobenzene		< 0.025 (0.025)					
1,4-Dichlorobenzene		< 0.025 (0.025)					
3,3'-Dichlorobenzidine		< 0.025 (0.025)					-
2,4-Dichlorophenol		< 0.025 (0.025)					
Diethyl phthalate		< 0.025 (0.025)					
2,4-Dimethylphenol		< 0.025 (0.025)					
Dimethyl phthalate		< 0.025 (0.025)					
4.6-Dinitro-2-methylphenol	 	< 0.063 (0.063)					
2,4-Dinitrophenol		< 0.063 (0.063)					
2,4-Dinitrotoluene		< 0.025 (0.025)					
2,6-Dinitrotoluene		< 0.025 (0.025)					
Fluoranthene		< 0.025 (0.025)					
Fluorene		< 0.025 (0.025)					
Hexachlorobenzene		< 0.025 (0.025)					
This report summary, and the entire report it represents, has been made for the exciusive	represents, has	been made for the exclusi	ve and confidential use of	F K.E.I. Consultants, Inc.	лс		
The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories. XENCO I aboratories therear assumes no resonativitity and makes no warranty to the end use of the data berefut o	ough this analy	lical report represent the b	est judgment of XENCO L	aboratories.		Edward H.	Edward H. Tonemoto, Ph.D

Laboratories		CERTIFICATE	OF ANALYSIS	SUMMARY	1-80927		
Project ID: 610088			K.E.I. Consultants, Inc. Project Name: TNM-96-16	ants, Inc. M-96-16	Date Received in I	Date Received in I ah : Mar 12_1998_09:45	2:45 2:45
Project Manager: Theresa Nix Project Location: Lea County New Mexico	w Mexico				Date Report Fa	Date Report Faxed: Apr 1, 1998 XENCO contact : Carlos Castro/Edward Yonemoto	tward Yonemoto
Analysis Requested	Lab ID: Field ID: Depth: Matrix: Sampled:	180927 001 SB-1 0-2.5 Solid 03/09/98 12:56	180927 002 SB-1 15-17.5 Solid 03/09/98 13-14	180927 003 SB-1 30-32.5 Solid 03/09/08 13-30	180927 004 SB-2 0-2.5 Solid Dramouos 13-46	180927 005 SB-2 15-17.5 Solid Ottoone 14.06	180927 006 SB-2 30-32.5 Solid
EPA1312/8270	10 10	03/26/98 R.L. mg/L					
Hexachlorobutadiene		< 0.025 (0.025)					
Hexachlorocyclopentadiene		< 0.025 (0.025)					
Hexachloroethane		< 0.025 (0.025)					
Indeno(1,2,3-cd)pyrene		< 0.025 (0.025)					
Isophorone		< 0.025 (0.025)					
2-Methytnaphthalene		0.042 (0.025)					
2-Methylphenol		< 0.025 (0.025)					
4-Methylphenol		< 0.025 (0.025)					
N-Nitroso-di-n-propylamine		< 0.025 (0.025)					
N-Nitrosodiphenylamine		< 0.025 (0.025)					
Naphthalene		0.044 (0.025)					
2-Nitroaniline		< 0.063 (0.063)					
3-Nitroaniline		< 0.063 (0.063)					
4-Nitroaniline		< 0.063 (0.063)					
Nitrobenzene		< 0.025 (0.025)					
2-Nitrophenol		< 0.025 (0.025)					
4-Nitrophenol		< 0.025 (0.025)					
Pentachlorophenol		< 0.063 (0.063)					
Phenanthrene		< 0.025 (0.025)					
Phenoi		< 0.025 (0.025)					
Pyrene		< 0.025 (0.025)					
1,2,4-Trichlorobenzene		< 0.025 (0.025)					
2,4,5-Trichlorophenol		< 0.063 (0.063)					
2,4,6-Trichlorophenol		< 0.025 (0.025)					
This report summary, and the entire report it represents, has been made for the exclusive and confidential use of K.E.I. C The internatations and results evenesed through this availation around concerned to been to be a function of the	represents, has	been made for the exclusion that	ve and confidential use of	K.E.I. Consultants, Inc.	i	Edward H.A.	Eduard H. Asartmoto, Dh.D.
	Linius and uffine			auoi alories,			

Laboratories		CERTIFICATE	OF ANALYSIS	SUMMARY	1-80927		
Deviced ID. 610000			K.E.I. Consultants, Inc.	ants, Inc.			
			rioject Name: I NM-90-10	01-06-141	Date Received in L	Date Received in Lap: Mar 12, 1998 09:45 Date Report Faxed: Apr 1, 1998	C.4.
Project Location: Lea County New Mexico	w Mexico				XENCO cont	XENCO contact : Carlos Castro/Edward Yonemoto	dward Yonemoto
	Lab ID:	180927 001	180927 002	180927 003	180927 004	180927 005	180927 006
	Pleid IU:	58-1 0 2 5	SB-1	SB-1	SB-2	SB-2	SB-2
Analysis Requested	Matrix.	c.2.0	6.71-61 bilos	30-32.5 Selid	0-2.5	15-17.5 5-23	30-32.5
	Sampled:	03/09/98 12:56	03/09/98 13:14	03/09/98 13:30	50110 03/09/98 13:45	50!10 03/09/98 14:06	501d 03/09/98 14:35
EPA1312/8270	Analyzed: Units:	03/26/98 R.L. mg/L					
bis [2-Chloroethoxy] methane		< 0.025 (0.025)					
bis [2-Chloroethyl] ether		< 0.025 (0.025)					
bis [2-Chloroisopropyl] ether		< 0.025 (0.025)					
bis [2-Ethythexyl] phthalate		< 0.025 (0.025)					
SPLP Volatiles	Analyzed:	03/30/98					
EPA 8260	Units:	mg/L R.t.					
Benzene		0.057 (0.025)					
Bromobenzene		< 0.025 (0.025)					
Bromochloromethane		< 0.025 (0.025)					
Bromodichloromethane		< 0.025 (0.025)					
Bromoform		< 0.025 (0.025)					
Bromomethane		< 0.025 (0.025)					
Carbon Tetrachloride		< 0.025 (0.025)					
Chlorobenzene	1	< 0.025 (0.025)					
Chloroethane		< 0.050 (0.050)					
Chloroform		< 0.025 (0.025)					
Chloromethane		< 0.050 (0.050)					
2-Chlorotoluene		< 0.025 (0.025)					
4-Chlorotoluene		< 0.025 (0.025)					
1,2-Dibromo-3-chloropropane		< 0.025 (0.025)					
Dibromochloromethane		< 0.025 (0.025)					
1,2-Dibromoethane		< 0.025 (0.025)					
Dibromomethane		< 0.025 (0.025)					
						ţ	1
This report summary, and the entire report it represents, has been made for the exclusive and confidential use of K.E.I. (The interretations and results expressed through this analytical report represent the best indoment of XENCO I abvertories.	represents, ha	s been made for the exclusion that	ive and confidential use of	F K.E.I. Consultants, Inc.		Edward H	Eduard N Transmoto Dh D
	min curt ußnot		Set Judyment of AENCO L	auvu alur ies.		Luwai Jury	

	-	CERTIFICATE	OF ANALYSIS	SUMMARY 1-80927	0927		
	<i>,</i>						
			K.E.I. Consultants, Inc	ints, Inc.			
Project ID: 610088			Project Name: TNM-96-16	M-96-16	Date Received in L	Date Received in Lab : Mar 12, 1998 09:45	9:45
Project Manager: Theresa Nix					Date Report Fa	Date Report Faxed: Apr 1, 1998	
Project Location: Lea County New Mexico	Mexico				XENCO CONT	XENCO contact : Carlos Castro/Edward Yonemoto	dward Yonemoto
	Lab ID:	180927 001	180927 002	180927 003	180927 004	180927 005	180927 006
	Field IU:	SB-1	SB-1	SB-1	SB-2	SB-2	SB-2
Analysis Requested	Lepin:	0-2.5	15-17.5	30-32.5	0-2.5	15-17.5	30-32.5
	Sampled:	03/09/98 12:56	03/09/98 13:14	50110 03/09/98 13:30	Solid 03/09/98 13:45	Solid 03/09/98 14:06	Solid 03/09/98 14:35
EPA 8260	Analyzed: (03/30/98 R.L. mø/L					
1.2-Dichlorobenzene		< 0.025 (0.025)					
1.3-Dichlorobenzene		< 0.025 (0.025)					
1.4-Dichlorobenzene		< 0.025 (0.025)					
Dichlorodifluoromethane		< 0.025 (0.025)					
1,1-Dichtoroethane		< 0.025 (0.025)					
1,2-Dichloroethane		< 0.025 (0.025)					
1,1-Dichloroethene		< 0.025 (0.025)					
1,2-Dichloropropane		< 0.025 (0.025)					
1,3-Dichloropropane		< 0.025 (0.025)					
2,2-Dichloropropane		< 0.025 (0.025)					
1,1-Dichloropropene		< 0.025 (0.025)					
Ethyłbenzene		0.568 (0.025)					
Hexachlorobutadiene		< 0.025 (0.025)					
Isopropylbenzene		0.080 (0.025)					
MTBE		< 0.050 (0.050)					
Methylene chloride		< 0.050 (0.050)					
Naphthalene		0.160 (0.025)					
Styrene		< 0.025 (0.025)					
1,1,1,2-Tetrachloroethane		< 0.025 (0.025)					
1,1,2,2-Tetrachloroethane		< 0.025 (0.025)					
Tetrachloroethene		< 0.025 (0.025)					
Toluene		•• 1.364 (0.025)					
1,2,3-Trichlorobenzene		< 0.025 (0.025)					
1,2,4-Trichlorobenzene		< 0.025 (0.025)					
This report summary, and the entire report it represents, has been made for the excitusive	presents, has	been made for the exclusi	ve and confidential use of	K.E.I. Consultants, Inc.			
The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.	ugh this analy sponsíbility au	tical report represent the b od makes no warranty to th	est judgment of XENCO La e end use of the data herel	aboratories. by presented.		Edward B	ward BE Conternoto, Ph.I — Technical Director

Laberatories		CERTIFICATE	OF ANALYSIS	SUMMARY 1-80927	30927		
Project ID: 610088			K.E.I. Consultants, Inc. Project Name: TNM-96-16	ants, inc. M-96-16	Date Received in I	Date Received in Lab : Mar 12, 1998 09:45	3:45
Project Manager: Theresa Nix Project Location: Lea County New Mexico	w Mexico				Date Report Fa X€NCO cont	Date Report Faxed: Apr 1, 1998 XENCO contact : Carlos Castro/Edward Yonemoto	dward Yonemoto
	Lab ID: Field ID:	180927 001 SB-1	180927 002 SB-1	180927 003 SB-1	180927 004 SB-2	180927 005 SB-2	180927 006 SB-2
Analysis Requested	Uepth: Matrix: Sampled:	0-2.5 Solid 03/09/98 12:56	15-17.5 Solid 03/09/98 13:14	30-32.5 Solid 03/09/98 13:30	0-2.5 Solid 03/09/98 13-45	15-17.5 Solid 03/09/98 14-06	30-32.5 Solid Namerea 14-35
EPA 8260	Analyzed: Units:	03/30/98 R.L. mg/L					
1,1,1-Trichloroethane		< 0.025 (0.025)					
1,1,2-Trichloroethane		< 0.025 (0.025)					
Trichloroethene		< 0.025 (0.025)					
Trichlorofluoromethane		< 0.025 (0.025)					
1,2,3-Trichloropropane		< 0.025 (0.025)					
1,2,4-Trimethylbenzene		0.260 (0.025)					
1,3,5-Trimethylbenzene		0.083 (0.025)					
Vinyl chloride		< 0.025 (0.025)					
cis-1,2-Dichloroethene		< 0.025 (0.025)					
cis-1,3-Dichloropropene		< 0.025 (0.025)					
m.p-Xylenes		0.869 (0.025)					
n-Butylbenzene		< 0.025 (0.025)					
n-Propylbenzene		0.067 (0.025)					
o-Xylene		0.596 (0.025)					
p-Isopropyitoluene		< 0.025 (0.025)					
sec-Butylbenzene		< 0.025 (0.025)					
tert-Butyłbenzene		< 0.025 (0.025)					
trans-1,2-Dichloroethene		< 0.025 (0.025)					
trans-1,3-Dichloropropene		< 0.025 (0.025)					
** Result beyond calibration limits							
SPLP TPH 1312/418.1	Analyzed: Units:	03/26/98 R.L. ppm					
Total Petroleum Hydrocarbons		6.8 (0.9)					
This report summary, and the entire report it represents, has been made for the exclusive and confidential use of K.E.I. (The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories.	represents, ha rough this anal	s been made for the exclusi vitical report represent the t	ve and confidential use of test judgment of XENCO L	f K.E.I. Consultants, Inc aboratories.		Edwardt	Fonemoto, Ph.D
XENCO Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.	responsibility a	nd makes no warranty to th	e end use of the data here	hu presented			

Laboratories		CERTIFICATE		OF ANALYSIS SUMMARY 1-80927	1-80927		
Davised (D. 810088				K.E.I. Consultants, Inc.		4000 CT - 10 4000	A.M.
Project Manager: Theresa Nix Project Location: Lea County New Mexico	w Mexico			riojeci Name: I NM-90-10	Date Received in Date Report 1 XENCO.co	Date Received in Lab : Mar 12, 1996 US:45 Date Report Faxed: Apr 1, 1998 XENCO contact : Carlos Castro/Edward Yonemoto	us:40 VEdward Yonemoto
i i	Lab ID:	180927 007	107				
	Field ID:	FOC					
Analysis Requested	Depth: Matrix	Allo S					
	Sampled:	03/09/98 14:45	4:45				
Moisture Content	Analyzed:		R.L.				
ASTM 2216-71	CIHIS.	%					
Moisture Content		3.5	(0.1)				
Organic Content	Analyzed: Units:	03/16/98 %	R.L.				
			1				
This report summary, and the entire report it represents, has been made for the exclusive and confidential use of K.E.I. Co The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories however assumes no resonstitility and makes no warranty to the end use of the data hovely presented	t represents, ha irough this anal	is been made for lytical report repr	the exclus resent the t	ive and confidential use of K.E.I. Consultants, inc best judgment of XENCO Laboratories.	tants, inc	Edward	-dward B. Venemoto, Ph.D
			AFTABILY IV U	he end use of the data hereby presented.			fectorical Director

•

XENCO Laboratories

Certificate Of Quality Control for Batch : 18Z99A92

SW- 846 8015 M TPH- DRO (Diesel)

Date Validated: Mar 19, 1998 13:30 Date Analyzed: Mar 17, 1998 20:11

QA/QC Manager: Sunil Ajai, M.S.

Analyst: OR Matrix: Solid

		i	BLANK SPI	(E ANALYS	SIS		
	[A]	[B]	[C]	(D)	(E)	F	[G]
P	Blank	Blank Spike	Blank		QC	LIMITS	
Parameter	Result	Result	Spike Amount	Detection Limit	Blank Spike Recovery	Recovery Range	Qualifier
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	
Total Petroleum Hydrocarbons	< 10.00	86.17	100	10.00	86.2	65-135	<u></u>

Brank Spike Recovery [E] = 100*(B-A)/(C)
N.C. = Not calculated, data below detection limit
D. = Below detection limit
A results are based on MDL and validated for QC purposes only

Houston - Dallas - San Antonio

and the survey of the rest of the rest of the second strategy and the second

Certificate Of Quality Control for Batch: 18299A92

SW- 846 8015 M TPH- DRO (Diesel)

Date Validated: Mar 19, 1998 13:30 Date Analyzed: Mar 17, 1998 22:00 QA/QC Manager: Sunil Ajai, M.S.

Analyst: OR

Matrix: Solid

			argente e MATF	RIX SPIKE /	MATRIX S	PIKE DUP	MATRIX SPIKE / MATRIX SPIKE DUPLICATE AND RECOVERY	RECOVERY			
0.C. Samle ID	[V]	(a)	[]	ē	Ð	Matrix	E	[6]	E	E	5
	Sample	Matrix Spike	Matrix Spike	Matrix		Limit	SC	g	ဗ္ဗ	Matrix Spike	
CAA -076A91	Result	Result	Duplicate	Spike	Detection	Relative	Spike Relative	Matrix Spike	M.S.D.	Recovery	Qualifier
			Result	Amount	Limit	Difference	Difference	Recovery	Recovery	Range	
rarameter	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	*	*	*	*	*	
Total Petroleum Hydrocarbons	28.34	117	118	100	10.00	30.0	0.9	88.7	89.7	65-135	
كالبابية والمتعالية والم		والكريد فالمكر بالمتعامل والمتعالم والمتعالم والمتعال والم									

Spike Relative Difference [F] = 200*(B-C)/(B+C) Matrix Spike Recovery [G] = 100*(B-A)/[D] M S.D. = Matrix Spike Duplicate M S.D. Recovery [H] = 100*(C-A)[[D] N.D. = Below detection limit or not detected All results are based on MDL and validated for QC purposes

Houston - Dallas - San Antonio

Edward H. Yonemoto, Ph.D. Aechnical Director

Certificate Of Quality Control for Batch: 18A25A88

SW- 846 5030/8020 BTEX

Date Validated: Mar 16, 1998 11:30 Date Analyzed: Mar 13, 1998 11:04 QA/QC Manager: Sunil Ajai, M.S. Analyst: HL Matrix: Solid

	I	BLANK SPI	(E ANALYS	iis		
[A]	[8]	[C]	[D]	[E]	F	[G]
Blank	Blank Spike	Blank		QC	LIMITS	1
Result	Result	Spike	Detection	Blank Spike	Recovery	Qualifier
		Amount	Limit	Recovery	Range	
ppm	ppm	ppm	ppm	%	%	
< 0.0010	0.0933	0.1000	0.0010	93.3	65-135	
< 0.0010	0.0906	0.1000	0.0010	90.6	65-135	
< 0.0010	0.0927	0.1000	0.0010	92.7	65-135	
< 0.0020	0.1850	0.2000	0.0020	92.5	65-135	
< 0.0010	0.0920	0.1000	0.0010	92.0	65-135	
	Blank Result ppm < 0.0010 < 0.0010 < 0.0010 < 0.0020	[A] [B] Blank Blank Spike Result Result ppm ppm < 0.0010	[A] [B] [C] Blank Blank Spike Blank Result Blank Spike Spike ppm ppm ppm < 0.0010	[A] [B] [C] [D] Blank Blank Spike Blank Blank Blank Result Result Spike Detection ppm ppm ppm ppm < 0.0010	Blank Blank Spike Blank QC Result Result Spike Detection Blank Spike ppm ppm ppm ppm ppm % < 0.0010	[A] [B] [C] [D] [E] [F] Blank Blank Spike Blank QC LIMITS Result Result Spike Detection Blank Spike Recovery ppm ppm ppm ppm % % < 0.0010

Uank Spike Recovery [E] = 100*(B-Å)/(C) N.C. = Not calculated, data below detection limit D. = Below detection limit I results are based on MDL and validated for QC purposes only

Edward H Yonemoto, Ph.D. Pechnical Director

-	
-	

Certificate Of Quality Control for Batch: 18A25A88

SW- 846 5030/8020 BTEX

Date Validated: Mar 16, 1998 11:30 Date Analyzed: Mar 13, 1998 14:54 QA/QC Manager: Sunil Ajai, M.S.

Analyst: HL Matrix: Solid

			MATF	NX SPIKE /	MATRIX S	PIKE DUPL	ATRIX SPIKE / MATRIX SPIKE DUPLICATE AND RECOVERY	ECOVERY			
O.C. Samula ID	[M]	[8]		ē	E	Matrix	E	5	E	E	5
	Sample	Matrix Spike	Matrix Spike	Matrix		Limit	So	ဗ	ç	Matrix Spike	
24A -976491	Result	Result	Duplicate	Spike	Detection	Relative	Spike Reiative	Matrix Spike	M.S.D.	Recovery	Qualifier
			Result	Amount	Limit	Difference	Difference	Recovery	Recovery	Range	
Parameter	mqq	ppm	шdd	mqq	mqq	*	%	%	*	*	
Benzene	< 0.020	1.864	1.908	2.000	0.020	25.0	2.3	93.2	95.4	65-135	
Toluene	< 0.020	1.830	1.852	2.000	0.020	25.0	1.2	91.5	92.6	65-135	
Ethylbenzene	< 0.020	1.906	1.898	2.000	0.020	25.0	0.4	95.3	94.9	65-135	
m.p-Xylenes	< 0.040	3.760	3.760	4.000	0.040	25.0	0.0	94.0	94.0	65-135	
o-Xylene	< 0.020	1.886	1.892	2.000	0.020	25.0	0.3	94.3	94.6	65-135	

Spike Relative Difference [F] = 200°(B-C)/(B+C) Matrix Spike Recovery [G] = 100°(B-A)/[O] M S D. = Matrix Spike Duplicate M S D. Recovery [H] = 100°(C-A)/[D] N D. = Below detection timit or not detected All results are based on MDL, and validated for QC purposes

Houston - Dalles - Sen Antonio

Certificate Of Quality Control for Batch :: 18A23A93

EPA1312/8260 SPLP Volatiles

Date Validated: Mar 31, 1998 17:00 Date Analyzed: Mar 30, 1998 11:38 Analyst: CE

Matrix: Solid

QA/QC Manager: Sunil Ajai, M.S.

			BLANK SPI	(E ANALYS	SIS	n na sea Na sea sea Na sea sea sea sea sea sea sea sea sea se	
	[A]	[B]	[C]	[D]	(E)	Ē.	[G]
	Blank	Blank Spike	Blank		ac	LIMITS	
Parameter	Result	Result	Spike Amount	Detection Limit	Blank Spike Recovery	Recovery Range	Qualifier
	mg/L	mg/L	mg/L	mg/L	%	%	
Benzene	< 0.0010	0.0481	0.0500	0.0010	96.2	66-142	
Chlorobenzene	< 0.0010	0.0487	0.0500	0.0010	97.4	60-133	
1,1-Dichloroethene	< 0.0040	0.0486	0.0500	0.0040	97.2	59-172	
Toluene	< 0.0010	0.0475	0.0500	0.0010	95.0	59-139	
Trichloroethene	< 0.0030	0.0507	0.0500	0.0030	101.4	62-137	

Ank Spike Recovery [E] = 100*(B-A)/(C) N.C. = Not calculated, data below detection limit N.D. = Below detection limit results are based on MDL and validated for QC purposes only

Edward L. Yonemoto, Ph.D. Technical Director

Certificate Of Quality Control for Batch : 18A23A93

EPA1312/8260 SPLP Volatiles

Date Validated: Mar 31, 1998 17:00 Date Analyzed: Mar 30, 1998 18:19 QA/QC Manager: Sunil Ajai, M.S.

Analyst: CE

Matrix: Solid

			MATR	IX SPIKE /	MATRIX S	PIKE DUPL	ATRIX SPIKE / MATRIX SPIKE DUPLICATE AND RECOVERY	RECOVERY			
	[M]	[8]	[0]	ē	E	Matrix	E	<u>[6]</u>	Ē	E	5
	Sample	Matrix Spike	Matrix Spike	Matrix		Limit	ac	ö	ac	Matrix Spike	
100 -126081	Result	Result	Duplicate	Spike	Detection	Relative	Spike Relative	Matrix Spike	M.S.D.	Recovery	Qualifier
	 1		Result	Amount	Limit	Difference	Difference	Recovery	Recovery	Range	
rarameter	mg/L	mg/L	mg/L	mg/L	mg/L	*	%	%	%	%	
Benzene	0.0570	0.2670	0.2575	0.2500	0.0050	20.0	3.6	84.0	80.2	66-142	
Chlorobenzene	< 0.0050	0.2305	0.2195	0.2500	0.0050	20.0	4.9	92.2	87.8	60-133	
1,1-Dichloroethene	< 0.0200	0.2190	0.2025	0.2500	0.0200	25.0	7.8	87.6	81.0	59-172	
Toluene	1.3645	1.3500	1.3035	0.2500	0.0050	20.0	3.5	5.8	24.4	59-139	4
Trichloroethene	< 0.0150	0.2230	0.2140	0.2500	0.0150	20.0	4.1	89.2	85.6	62-137	

(A) Recovery affected by high analyte concentration in sample (matrix effect)
 Spike Relative Difference [F] = 200*(B-C)/(B+C)
 Matrix Spike Recovery [G] = 100*(B-A)/[D]
 M.S.D. = Matrix Spike Duplicate
 M.S.D. Recovery [H] = 100*(C-A)/[D]

All results are based on MDL and validated for QC purposes

N.D. = Below detection limit or not detected

Edward BP Tohemoto, Ph.D. Technical Director

Page

Hauston - Dallos - San Antonio

Certificate Of Quality Control for Batch: 18A34B35

EPA 1311/8270 TCLP Semi-volatiles

Date Validated: Mar 26, 1998 15:10 Date Analyzed: Mar 26, 1998 03:54 QA/QC Manager: Sunil Ajai, M.S.

Analyst: LC Matrix: Solid

				NK SPIKE /	BLANK SP	IKE DUPLI	LANK SPIKE / BLANK SPIKE DUPLICATE AND RECOVERY	ECOVERY			
	[A]	[8]	5	 [0]	E	Blank	E	[0]	E	E	2
	Blank	Blank Spike	Blank Spike	Blank		Limit	ac	S	ပ္ပ	Blank Spike	
Parameter	Result	Result	Duplicate	Spike	Detection	Relative	Spike Relative	Blank Spike	B.S.D.	Recovery	Qualifier
			Result	Amount	Limit	Difference	Difference	Recovery	Recovery	Range	
	mg/L	mg/L	mg/L	mg/L	mg/L	*	*	*	*	*	
Acenaphthene	< 0.0050	0.2035	0.2155	0.2500	0:0050	19.0	5.7	81.4	86.2	46-118	
4-Chloro-3-Methylphenol	< 0.0050	0.1830	0.1610	0.2500	0:0050	33.0	12.8	73.2	64.4	23-97	
2-Chlorophenol	< 0.0050	0.1740	0.1510	0.2500	0:0050	28.7	14.2	69.69	60.4	27-123	
1,4-Dichlorobenzene	< 0.0050	0.2000	0.2055	0.2500	0.0050	32.1	2.7	80.0	82.2	36-97	
2,4-Dinitrotoluene	< 0.0050	0.1825	0.1955	0.2500	0:0050	21.8	6.9	73.0	78.2	24-96	
N-Nitroso-di-n-propytamine	< 0.0050	0.1875	0.1960	0.2500	0.0050	55.4	4.4	75.0	78.4	41-116	
4-Nitrophenol	< 0.0100	0.0560	0.0555	0.2500	0.0100	47.2	6.0	22.4	22.2	10-80	
Pentachlorophenol	< 0.0050	0.0650	0.0560	0.2500	0.0050	48.9	14.9	26.0	22.4	9-103	
Phenol	< 0.0050	0.0910	0.0775	0.2500	0.0050	22.6	16.0	36.4	31.0	12-89	
Pyrene	< 0.0100	0.2220	0.2360	0.2500	0.0100	25.2	6.1	88.8	94.4	26-127	
1,2,4-Trichlorobenzene	< 0.0100	0.2135	0.2245	0.2500	0.0100	23.0	5.0	85.4	89.8	39-98	

Spike Relative Difference [F] = 200°(B-C)/(B+C) Blank Spike Recovery [G] = 100°(B-A)/[D] B.S.D. = Blank Spike Duplicate B.S.D. Recovery [H] = 100°(C-A)[D] N.D. = Below detection limit or not detected All results are based on MDL and validated for QC purposes

Certificate Of Quality Control for Batch: 18A07C31

EPA 418.1 Total Petroleum Hydrocarbons

Date Validated: Mar 26, 1998 14:35 Date Analyzed: Mar 26, 1998 14:04 QA/QC Manager: Sunii Ajai, M.S.

Analyst: EZ

Matrix: Liquid

			BLAN	IK SPIKE /	BLANK SP	IKE DUPLI	BLANK SPIKE / BLANK SPIKE DUPLICATE AND RECOVERY	SCOVERY			
	[¥]	[8]	ទ	6	E	Blank	E	ତ୍ର	Ξ	Ē	Ξ
	Blank	Blank Spike	Blank Spike	Blank		Limit	S	မွ	g	Blank Spike	
Parameter	Result	Result	Duplicate	Spike	Detection	Relative	Spike Relative	Blank Spike	B.S.D.		Qualifier
		_	Result	Amount	Limit	Difference	Difference	Recovery	Recovery	Range	
	mqq	ррт	mqq	mqq	шdd	%	*	%	%	%	
Total Petroleum Hydrocarbons	< 0.40	6.51	6.92	6.93	0.40	25.0	6.1	94.0	6.66	70-125	

Spike Relative Difference [F] = 200°(B-C)/(B+C) Blank Spike Recovery [G] = 100°(B-A)/[D] B.S.D. = Blank Spike Duplicate B.S.D. Recovery [H] = 100°(C-A)/[D] N.D. = Below detection limit or not detected All results are based on MDL and validated for QC purposes

Houston Dallas - San Antonio

Edward H Yonemoto, Ph.D. **Aechnical Director**

Certificate Of Quality Control for Batch: 18A19A97

ASTM 2216-71 Moisture Content

 Date Validated:
 Mar 17, 1998 09:00

 Date Analyzed:
 Mar 16, 1998 14:05

 QA/QC Manager:
 Sunil Ajai, M.S.

Analyst: IF

Matrix: Solid

	· · · ·		UPLICATI	E ANALYS	IS	
Q.C. Sample ID	[A]	[8]	[C]	[D]	(E)	[F]
180926- 011	Sample	Duplicate		QC	LIMITS	1
100520-011	Result	Result	Detection	Relative	Relative	Qualifier
Parameter			Limit	Difference	Difference	ļ
Faranteter	%	%	%	%	%	4
Moisture Content	11.20	10.70	0.1	4.6	20.0	

Relative Difference [D] = 200*(B-A)/(B+A) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

Certificate Of Quality Control for Batch: 18A19A98

ASTM D2974 Organic Content

 Date Validated:
 Mar 17, 1998
 09:05

 Date Analyzed:
 Mar 16, 1998
 14:05

 QA/QC Manager:
 Sunil Ajai, M.S.

Analyst: IF

Matrix: Solid

			DUPLICATI	E ANALYS	IS	
Q.C. Sample ID	[A]	[8]	[0]	[D]	(E)	(F)
180926- 011	Sample	Duplicate		QC	LIMITS	l
	Result	Result	Detection	Relative	Relative	Qualifier
Parameter		I	Limit	Difference	Difference	
	%	%	%	%	%	
Organic Content	1.01	1.00	0.1	1.0	20.0	

Relative:Difference [D] = 200*(B-A)/(B+A) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

ANALYTICAL CHAIN OF CUSTODY REPORT and the first state of the state of the state • • • •

CHRONOLOGY OF SAMPLES

K.E.I. Consultants, Inc.

Project Name: TNM-96-16

Project Manager: Theresa Nix

Project ID: 610088

Date Received in Lab: Mar 12, 1998 09:45 by LY XENCO COC#: 1-80927

XENCO contact : Carlos Castro/Edward Yonemoto

	Projec	Project Location: Lea County	Lea County	~						×	NCO contact : Car	XeNCO contact : Carlos Castro/Edward Yonemoto
			New Mexico	g						Dati	Date and Time	
	-	Field ID		l ab	Method			Turn	Sample	Addition		
					Name			Around	Collected	Requested	Extraction	Analysis
-	SB-1 (0-2.5)			180927-001	BTEX	SW-846	ppm	Standard	Mar 9, 1998 12:56		Mar 13, 1998 by HL	Mar 13, 1998 19:22 by HL
2					TPH8015M-D	SW-846 8015 M	mg/kg	Standard	Mar 9, 1998 12:56		Mar 12, 1998 by OL	Mar 18, 1998 02:57 by OR
ŝ					SPLP TPH	EPA	Wdd	7 days	Mar 9, 1998 12:56	Mar20,1998 09:00	Mar 26, 1998 by EZ	Mar 26, 1998 14:20 by EZ
4					VOA (8260)	EPA1312/8260	mg/kg	7 days	Mar 9, 1998 12:56	Mar20,1998 09:00	Mar 30, 1998 by CE	Mar 30, 1998 17:42 by CE
ŝ					SPLP-SV(TCL)	SW846-1312/82	ugh	7 days	Mar 9, 1998 12:56	Mar20,1998 09:00	Mar 25, 1998 by SS	Mar 26, 1998 18:34 by LC
ø	SB-1 (15-17.5)	6)		180927-002 BTEX	BTEX	SW-846	ppm	Standard	Mar 9, 1998 13:14		Mar 13, 1998 by HL	Mar 13, 1998 16:50 by HL
~					TPH8015M-D	SW-846 8015 M	mg/kg	Standard	Mar 9, 1998 13:14		Mar 12, 1998 by OL	Mar 18, 1998 03:24 by OR
8	SB-1 (30-32.5)	2)		180927-003 BTEX	втех	SW-846	mqq	Standard	Mar 9, 1998 13:30		Mar 13, 1998 by HL	Mar 13, 1998 15:52 by HL
9					TPH8015M-D	SW-846 8015 M	mg/kg	Standard	Mar 9, 1998 13:30		Mar 12, 1998 by OL	Mar 18, 1998 03:51 by OR
\$	10 SB-2 (0-2.5)			180927-004	втех	SW-846	udd	Standard	Mar 9, 1998 13:45		Mar 13, 1998 by HL	Mar 13, 1998 17:09 by HL
1					TPH8015M-D	SW-846 8015 M	mg/kg	Standard	Mar 9, 1998 13:45		Mar 12, 1998 by OL	Mar 18, 1998 04:18 by OR
12	SB-2 (15-17.5)	(<u>)</u>		180927-005 BTEX	втех	SW-846	mqq	Standard	Mar 9, 1998 14:06		Mar 13, 1998 by HL	Mar 13, 1998 17:27 by HL
13					TPH8015M-D	SW-846 8015 M	ByBw	Standard	Mar 9, 1998 14:06		Mar 12, 1998 by OL	Mar 18, 1998 05:37 by OR
4	14 SB-2 (30-32.5)	6		180927-006 BTEX	BTEX	SW-846	mqq	Standard	Mar 9, 1998 14:36		Mar 13, 1998 by HL	Mar 13, 1998 16:11 by HL
15					TPH8015M-D	SW-846 8015 M	mg/kg	Standard	Mar 9, 1998 14:35		Mar 12, 1998 by OL	Mar 18, 1998 05:15 bv OR
16	16 FOC			180927-007 Moisture	Moisture	ASTM 2216-71	×	Standard	Mar 9, 1998 14:45		Mar 16, 1998 by IF	Mar 16, 1998 14:15 by IF
17					Org. Content	ASTM D2974	*	Standard	Mar 9, 1998 14:45		Mar 16, 1998 by IF	Mar 16, 1998 14:15 by IF

ł

QA/QC PROCEDURES

DECONTAMINATION OF EQUIPMENT

Prior to drilling at each boring location, the auger bit was cleaned with Liqui-Nox detergent and rinsed with distilled water.

SOIL SAMPLING

Samples of the subsurface soils were obtained through the collection of auger cuttings at discrete intervals during drilling utilizing a hydraulic drilling rig. Representative soil samples were divided into two separate portions using clean, disposable gloves and clean sampling tools. One portion of the soil sample was placed in a disposable sample bag. The bag was labeled and sealed for head-space analysis using a photoionization detector (PID) calibrated to a 100 ppm isobutylene standard. Each sample was allowed to volatilize for approximately 30 minutes at ambient temperature prior to conducting the analysis.

The other portion of the soil sample was placed in a sterile glass container equipped with a Teflon-lined lid furnished by the analytical laboratory. The container was filled to capacity to limit the amount of head-space present. Each container was labeled and placed on ice in an insulated cooler. Upon selection of samples for analysis, the cooler was sealed for shipment to the laboratory. Proper chain-of-custody documentation was maintained throughout the sampling process.

Soil samples were express mailed to Xenco Laboratories of San Antonio, Texas for BTEX, TPH-DRO, SPLP SVOC, SPLP VOC, SPLP TPH, FOC, and moisture content analyses using the methods described below. Soil samples were analyzed for BTEX, TPH, and SPLP analyses within 14 days following the collection date.

The soil samples were analyzed for BTEX concentrations in accordance with EPA Method SW846-8020, for TPH concentrations in accordance with modified EPA Method 8015-DRO, for SPLP TPH concentrations in accordance with EPA Method 1312/418.1, for SPLP VOC concentrations in accordance with EPA Method SW846-1312/8260, for SPLP SVOC concentrations in accordance with EPA Method SW846-1312/8270, for FOC concentrations in accordance with EPA Method SW846-1312/8270, for FOC concentrations in accordance with EPA Method SW846-1312/8270, for FOC concentrations in accordance with EPA Method SW846-1312/8270, for FOC concentrations in accordance with EPA Method SW846-1312/8270, for FOC concentrations in accordance with EPA Method SW846-1312/8270, for FOC concentrations in accordance with EPA Method SW846-1312/8270, for FOC concentrations in accordance with EPA Method SW846-1312/8270, for FOC concentrations in accordance with EPA Method SW846-1312/8270, for FOC concentrations in accordance with EPA Method SW846-1312/8270, for FOC concentrations in accordance with EPA Method SW846-1312/8270, for FOC concentrations in accordance with EPA Method SW846-1312/8270, for FOC concentrations in accordance with ASTM Method D2974, and for moisture content in accordance with ASTM 2216-71.

LABORATORY PROTOCOL

The laboratory was responsible for proper QA/QC procedures. These procedures were transmitted with the laboratory reports.