Case No. 6598

Application
Transcripts

Small Exhibits

STATE OF NEW MEXICO

ENERGY AND MINERALS DEPARTMENT

OIL CONSERVATION DIVISION AZTEC DISTRICT OFFICE

1000 RIO BRAZOS ROAD AZTEC, NEW MEXICO 87410 (505) 334-6178

April 3, 1980

Gulf Oil Corporation P. 0. Box 670 Hobbs, New Mexico 88240

Re: Apache Federal #8 D-8-24N-5W

Case 6.598

Gentlemen:

As per Order R-6076, the percentage split of the commingled production has been determined after test to be as follows:

> 60% Oil to the Gallup interval 40% Oil to the Dakota interval

0% Gas to the Gallup interval 100% Gas to the Dakota interval

These percentages will be in effect until further notice.

If you have any questions, please contact this office.

Yours truly,

Frank T. Chavez District Supervisor

FTC:dh

XC: OCD, Santa Fe U S G S Durango Henry's Production

STATE OF NEW MEXICO ENERGY AND MINERALS DEPARTMENT OIL CONSERVATION DIVISION State Land Office Building Santa Fe, New Mexico 25 July 1979

EXAMINER HEARING

IN THE MATTER OF:

Application of Gulf Oil Corporation for) downhole commingling, Rio Arriba County,) New Mexico.

BEFORE: Daniel S. Nutter

TRANSCRIPT OF HEARING

APPEARANCES

For the Oil Conservation Division:

Ernest L. Padilla, Esq. Legal Counsel for the Division State Land Office Bldg. Santa Fe, New Mexico 87503

For the Applicant:

Terry I. Cross, Esq. The Gulf Companies P. O. Box 1150 Midland, Texas 79702

Register in they be auscupt

10

13

15

16

17

18

19

20

21

22

12

13

14

15

16

17

18

19

20

21

STATE OF NEW MEXICO ENERGY AND MINERALS DEPARTMENT OIL CONSERVATION DIVISION State Land Office Building Santa Fe, New Mexico

25 July 1979

EXAMINER HEARING

IN THE MATTER OF:

Application of Gulf Oil Corporation for) downhole commingling, Rio Arriba County,) New Mexico.

6598

BEFORE: Daniel S. Nutter

TRANSCRIPT OF HEARING

APPEARANCES

For the Oil Conservation Division:

Ernest L. Padilla, Esq. Legal Counsel for the Division State Land Office Bldg. Santa Fe, New Mexico 87503

For the Applicant:

Terry I. Cross, Esq. The Gulf Companies P. O. Box 1150 Midland, Texas 79702

Register we then to anscript

Dana	7
Page	<u> </u>

NEW MEXICO OIL CONSERVATION COMMISSION

EXAMINER HEARING

SANTA FE , NEW MEXICO

Hearing Date___

JULY 25, 1979 Time: 9:00 A.M.

NAME	REPRESENTING	LOCATION
Dieliam F. San H. R. Keedenih	Campbell and State P.A.	Sada Le
W.T. Thimm	Setty oil Co.	Midland
H.W. Jany	Golfy Oil Go.	Hobbs, il.M.
J.D. munay	Getty Oil Co.	Hobbs, N.M.
Ranic T. Faction	To Pico Enilyral Casoa	El Paso, 7X
Tem Cres	Conty oil Corp	had Cand Thy
Joseph Meller	Misse Division Co.	Thereton of Tx
Company (A. D)	Hiddo howefin	Luc Donn Ferran
R. Lului	Capital Obverver	Santule
R. L. Heensal		arteria
Joel (arson	Losce Canon to Proluson NAPELO INC	HOUSTON
Pr Hubtes Ne Par V Teacock R. J. Shings	Phillips Potr Co.	Olersa .
Much wolf	Phillips ToTA.	Odessa, IX

NEW MEXT	ICO OIL CONSERVATION COMMISSION	
***************************************	EXAMINER HEARING	
	SANTA FE, NEW MEXICO	
Hearing Date	JULY 25, 1979	Time: 9:00 A.M.
NAME	REPRESENTING	LOCATION
W.V. Kelblin Custo Anderson	Kellahin + Kellahin	Santate Midland Albuquerque
How. Benischek Leonard Kerstl	Independent Ensech	midcard
T.E. BROWN	ENSERCH EXPLORATION INC	MIDLAND
		·
·	*	•

Page

INDEX

BETHEL S. STRAWSER

Direct Examination by Mr. Cross 3

Cross Examination by Mr. Nutter 11

EXHIBITS

Applicant Exhibit One, Plat	4
Applicant Exhibit Two A, Sketch Applicant Exhibit Two B, Sketch	5 5
Applicant Exhibit Three, Well Data Sheet	
Applicant Exhibit Four A, Curve Applicant Exhibit Four B, Curve	6 6
Applicant Exhibit Five A, Tabulation Applicant Exhibit Five B, Tabulation	7

SALLY WALTON BOYD
CERTIFIED SHORTHAND REPORTER
1018 Plaza Blanca (1915) 411-3461
Santa Fe, New Mexico 111-3461

د باشداد

MR. NUTTER: We'll next call Case Number

MR. PADILLA: Application of Gulf Oil Corporation for downhole commingling, Rio Arriba County, New Mexico.

MR. CROSS: Terry Cross for Gulf Oil.

I believe Mr. Sperling of Albuquerque has entered a letter of appearance on behalf of Gulf.

MR. NUTTER: We have that appearance.

MR. CROSS: I have one witness.

(Witness sworn.)

BETHEL S. STRAWSER

being called as a witness and having been duly sworn upon her oath, testified as follows, to-wit:

DIRECT EXAMINATION

BY MR. CROSS:

6598.

7

8

10

11

12

13

14

15

16

17

18

19

20

21

22

Q Please state your name, your employer, your position, and location.

A. My name is Bethel Strawser. I'm employed by Gulf Oil Corporation in Midland, Texas, as a petroleum engineer.

O. Have you previously qualified to testify

9

10

11

12

13

14

15

17

18

19

20

21

before the Oil Conservation Division?

A. No, I have not.

A. I receive a Bachelor of Science in engineering from Duke University. I've been employed with Gulf now for a year and a half as a petroleum engineer.

MR. CROSS: Mr. Examiner, is this witness qualified to testify?

MR. NUTTER: Yes, she is.

Q. Would you please restate what Gulf is seeking in this application?

A. Gulf is seeking authority to downhole commingle the production from the Otero Gallup Oil Pool and the Basin Dakota Gas Pool in the wellbores of our Apache Federal Wells No. 8 and 9.

These are located respectively in Unit D of Section 8, and Unit D of Section 17, in Township 24 North, Range 5 West in Rio Arriba County, New Mexico.

Q. Would you please explain for the Examiner your Exhibit Number One?

A. Okay, the Exhibit Number One is a location plat. You'll see that the Apache Federal Lease covers four sections and is outlined in sort of a dotted line or hachure.

SALLY WALTON BOYC
CERTIFIE? SMCIATMAND REPORTE
1010Plaza Blanca (605) 411-344
Santa Fe, New Mexico 17501

10

11

12

13

14

15

17

18

19

20

21

22

23

The two wells which we propose to downhole commingle are colored pink or red, however you want to look at it.

Q. Do you have exhibits depicting the downhole particulars of these wells?

A. Yes. The Exhibits Number Two-A and Two-B are diagrammatic sketches showing the present downhole equipment and completion and the equipment which we propose to use after downhole commingling.

Q Would you please give the history of the wells for which you're requesting downhole commingling authority?

A. The Well No. 8 was spudded April 1st, 1959, and drilled to a total depth of 7045 feet. 5-1/2 inch production casing was set at that depth. The well was dually completed in the Otero Gallup and the Basin Dakota Pools. There are the present pool designations.

The Dakota was perforated from 6922 to 6968 and treated with 1000 gallons of acid. A bridge plug was set at 6876 and additional Dakota was perforated at 6783 to 6856.

This zone was fracture treated with 30,912 gallons of oil and 30,000 pounds of sand.

Initially the Dakota zone flowed with an absolute open flow of 2775 Mcf per day.

SALLY WALTON BOYD
SENTIFED SHOWTHAND REPORTER
016Plaza Blanca (605) 471-246;
Senta Po. New Mexico 3716;

10

11

12

13

14

15

16

17

18

ĩŸ

21

22

23

24

25

The Gallup zone was perforated from 5976 to 5744. It was treated with 750 gallons of acid, 30,000 gallons of oil, and 30,000 pounds of sand.

Absolute open flow was 2150 Mcf per day. The last production from this zone was in December of 1964.

The Well No. 9 was spudded September 4th of 1960 and drilled to total depth of 6838. The 5-1/2 inch casing was cemented at 6821 feet. The well was dually completed in the Basin Dakota and Otero Gallup Pools.

Dakota zone was perforated 6638 to 6692 and fracture treated with 56,000 gallons of water and 50,000 pounds of sand. Open flow potential was 4000 Mcf per day.

The Gallup zone was perforated from 5514 to 5626 and fracture treated with 20,000 gallons of water and 20,000 pounds of sand. It pumps 12 barrels of oil, a trace of water, and 40 Mcf gas on 24-hour potential test.

This zone last produced in June of 1964.

We do expect that by the commingling of the Dakota gas with the Gallup production that we would be able to lift the liquids in the Gallup and prevent the loading up that killed these -- this zone in both wells.

Do you have exhibits showing the production from each of these wells?

A. Yes, Exhibits Four-A and Four-B are curves which plot production from these wells. What they mainly

SALLY WALTON BOYD CENTIFED SHORTHAND REPORTER 610 Plaza Banca (66) 471-446 Sabila Po, New Mexico 87191

show you are the relative quantities of gas from the two zones and the relative quantities of oil from the two zones for each well separately.

Exhibits Five-A and Five-B tabulate the same history numerically.

Taken from Exhibits Five-A and Five-B, the daily rates from the latest production on each of these wells are approximately as follows: The Well No. 8, the Gallup last produced an average of 17 Mcf of gas per day. The Dakota produced an average of 147 Mcf gas and half a barrel of condensate.

In the Well No. 9 the Gallup produced approximately 43 Mcf gas per day and 1.4 barrels of oil per day.

The Dakota produced an average of 156 Mcf gas per day and .3 barrels condensate.

Q Have precedents been set in the immediate area to downhole commingle the Gallup and Dakota Pools?

A. Yes, under Order Number R-5205, dated

April 27th, 1976, Continental Oil Company was authorized

to downhole commingle the two subject pools in eight wells

on their Northwest Haynes Lease. This lies immediately to

the east of Gulf's Apache Federal Lease, and I have outlined

it in orange on your first exhibit, the location plat.

Q Would it be practical to dually complete

SALLY WALTON BOY ENTITIES SHORTHAND REPORTS 110 Place Blance (100) 1711-24, Santa Pe, New Mexico 5770 2

10

11

12

13

14

15

16

17

18

19

20

21

22

23

the two subject wells?

A. No, they were both dually completed at one time; however, this was only possible because both zones were flowing.

The Gallup zone now requires pumping, which would necessitate a string of tubing large enough to have 7/8ths inch rods and this is not possible as a second string in 5-1/2 inch casing.

Alternatively we would be required to put in complete crossover equipment and this is not practical either in 5-1/2 inch casing.

Do you have any pressure data on these wells?

A. Our 1978 packer leakage test shows in the Well No. 8 shut-in tubing pressure in the Gallup of 999 psi; shut-in tubing pressure in the Dakota of 898 psi.

In the Well No. 9 Gallup showed 1249 and the Dakota 859.

We expect that once the Gallup zone is on production again the pressures will become more equivalent.

Q What are your views with regard to possible crossflow between the zones?

A We do not anticipate any crossflow problems because we do expect these pressures to become more equivalent once we bleed off the Gallup again.

Q Do you have any evidence to indicate that the fluids from these two pools will be compatible?

A Yes. Continental has been downhole commingling its production from the Otero Gallup and the Basin Dakota since 1976 and they have reported no incompatibility.

Q. What is your proposal regarding the allocation of production between the Otero Gallup and Basin Dakota Pools?

A. We would propose to allocate by the subtraction method. Since the production from the Gallup is very difficult to predict, we propose to predetermine the amount of production to be allocated to the Dakota and permit the remainder to be assigned to the Gallup.

We would suggest that this matter be worked out between the District Supervisor of the New Mexico Oil Conservation Division and Gulf personnel after the authority to downhole commingle has been granted.

Q What would Gulf propose to do in the event secondary recovery operations are undertaken in this area in these pools?

A. We will recommend separation of zones as deemed necessary for efficient secondary recovery operations.

Q. What do you anticipate regarding the production capabilities of these wells under commingled conditions?

A Based on the latest year of production from each zone, we would anticipate that stabilized production for each well will average not more than 200 Mcf gas per day with less than 3 barrels of oil.

It is possible, however, that an initial rate from the Gallup zone may cause those figures to be temporarily exceeded.

Q Will the value of the commingled production be adversely affected?

A. No, the addition of the Gallup production to the Dakota will not affect the value of the Dakota production. The value of the Gallup production cannot be adversely affected since it cannot be commercially produced except by downhole commingling with the Dakota.

Q. Will you summarize again what Gulf is seeking in this application?

A. In order to prevent waste and maximize the recovery of hydrocarbons under this lease, Gulf is requesting authority to downhole commingle the Otero Gallup and the Basin Dakota Pool production in our Apache Federal Lease Well Nos. 8 and 9, located respectively in Unit D of Section 8 and Unit D of Section 17, Township 24 North, Range 5 West, in Rio Arriba County, New Mexico.

Q Were these exhibits prepared by you or under your supervision?

SALLY WALTON BOYD SENTIFED SHOUTHAND REPORTER SEPTIARS BANCO (105) 171-3163 SANTA PA, New Mostico 37301

10

12

13

14

15

16

17

18

19

20

21

22

A Yes, they were.

MR. CROSS: I move that these exhibits be admitted in evidence.

MR. NUTTER: The exhibits will be admitted in evidence.

MR. CROSS: I have no further questions.

CROSS EXAMINATION

BY MR. NUTTER:

Q. The No. 8 Well never did produce any liquids from the Gallup?

A. None recorded, sir.

Q. Why did it quit producing, then? You were talking about they would need to be on artificial lift.

A I would have to suppose that the pressure down there was apparently not sufficient to lift whatever mist there might have been and whatever there might have been, apparently, dropped back without ever being produced.

Q On this Exhibit Five-A you've shown no production of liquids whatsoever from the Gallup in the No. 8 Well.

A. That is correct.

I have seen this happen before, where a well has been killed due to loading up and yet you don't

see excessive liquids in the production.

Now, the No. 9 has produced a small amount of liquids from the -- or did produce a small amount of liquids from the Gallup, and it also has produced condensate from the Dakota consistently throughout its life.

A That is correct.

MR. NUTTER: Are there any further questions of the witness? She may be excused.

Do you have anything further, Mr. Cross?

MR. CROSS: No, sir, I don't.

MR. NUTTER: Does anyone have anything they wish to offer in Case Number 6598?

We'll take the case under advisement.

(Mearing concluded.)

REPORTER'S CERTIFICATE

I, SALLY WALTON BOYD, a Court Reporter, DO HEREBY CERTIFY that the foregoing and attached Transcript of Hearing before the Oil Conservation Division was reported by me; that said transcript is a full, true, and correct record of the hearing, prepared by me to the best of my ability, knowledge, and skill, from my notes taken at the time of the hearing.

Sally W. Boyd, C.S.R.

ida hereby certify that the foregoings of a complete record of the procedings in the Examiner hearing of Case No. 65 heard by me on 2/25 129.75 OII CONSETVATION DIVISION

ĩ5

STATE OF NEW MEXICO ENERGY AND MINERALS DEPARTMENT OIL CONSERVATION DIVISION State Land Office Building Santa Fe, New Mexico 25 July 1979

EXAMINER HEARING

IN THE MATTER OF:

Application of Gulf Oil Corporation for) CASE downhole commingling, Rio Arriba County,) New Mexico.

BEFORE: Daniel S, Nutter

TRANSCRIPT OF HEARING

APPEARANCES

For the Oil Conservation Division:

Ernest L. Padilla, Esq. Legal Counsel for the Division State Land Office Bldg. Santa Fe, New Mexico 87503

For the Applicant:

Terry I. Cross, Esq. The Gulf Companies P. O. Box 1150 Midland, Texas 79702

11

12

13

14

15

16

17

18

19

20

21

22

23

1 8 7 7 %

BETHEL S. STRANSLY

Direct	Examination by Mr. Cross	
Cross B	Examination by Mr. Nother	

SALLY WALTON BOYD CENIFIED SHINTHAND REPORTER 1919 Phase Blance (191) 411-445 Bante Po, Now Mealon 3719;

EXHIBITS

Applicant	Exhibit	One,	Pl	at	
Applicant Applicant	Exhibit Exhibit	Two	A, B,	Sketch Sketch	
Applicant	Exhibit	Thre	е,	Well Data Sheet	
Applicant Applicant	Exhibi+	Four	_		9
Applicant Applicant	Exhibit Exhibit	Five Five	A, B,	Tabulation Tabulation	7

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

MR. NUTTER: We'll next call Case Number 6598.

MR. PADILLA: Application of Gulf Oil Corporation for downhole commingling, Rio Arriba County, New Mexico.

MR. CROSS: Terry Cross for Gulf Oil.

I believe Mr. Sperling of Albuquerque has entered a letter of appearance on behalf of Gulf.

MR. NUTTER: We have that appearance.

MR. CROSS: I have one witness.

(Witness sworn.)

BETHEL S. STRAWSER

being called as a witness and having been duly sworn upon her oath, testified as follows, to-wit:

DIRECT EXAMINATION

BY MR. CROSS:

Q Please state your name, your employer, your position, and location.

A My name is Bethel Strawser. I'm employed by Gulf Oil Corporation in Midland, Texas, as a petroleum engineer.

A Have you previously qualified to testify

ALLY WALTON BOYD SATIFIED SHOATHAND REPORTER 28 Plaza Banca (605) 471-3462 Senta Po, New Montoo 87561

10

11

12

13

14

15

16

17

18

19

20

21

22

23

before the Oil Conservation Division?

A No, I have not.

@ Would you please briefly summarize your educational background and work experience as a petroleum engineer?

A. I receive a Bachelor of Science in engineering from Duke University. I've been employed with Gulf now for a year and a half as a petroleum engineer.

MR. CROSS: Mr. Examiner, is this witness qualified to testify?

MR. NUTTER: Yes, she is.

Q Would you please restate what Gulf is seeking in this application?

A. Gulf is seeking authority to downhole commingle the production from the Otero Gallup Oil Pool and the Basin Dakota Gas Pool in the wellbores of our Apache Federal Wells No. 8 and 9.

These are located respectively in Unit D of Section 8, and Unit D of Section 17, in Township 24 North, Range 5 West in Rio Arriba County, New Mexico.

Q. Would you please explain for the Examiner your Exhibit Number One?

A. Okay, the Exhibit Number One is a location plat. You'll see that the Apache Federal Lease covers four sections and is outlined in sort of a dotted line or hachure.

11

12

13

14

15

16

17

18

20

22

23

The two wells which we propose to downhole commingle are colored pink or red, however you want to look at it.

Do you have exhibits depicting the downhole particulars of these wells?

Yes. The Exhibits Number Two-A and Two-B are diagrammatic sketches showing the present downhole equipment and completion and the equipment which we propose to use after downhole commingling.

Would you please give the history of the wells for which you're requesting downhole commingling authority?

The Well No. 8 was spudded April 1st, 1959, and drilled to a total depth of 7045 feet. 5-1/2 inch production casing was set at that depth. The well was dually completed in the Otero Gallup and the Basin Dakota Pools. There are the present pool designations.

The Dakota was perforated from 6922 to 6968 and treated with 1000 gallons of acid. A bridge plug was set at 6876 and additional Dakota was perforated at 6783 to 6856.

This zone was fracture treated with 30,912 gallons of oil and 30,000 pounds of sand.

Initially the Dakota zone flowed with an absolute open flow of 2775 Mcf per day.

SALLY WALTON BOYD
SERTIFED SHORTHAND REPORTER
010Flaza Blance (605) 471-3465
8exta Fo, New Mexico 37101

The Callup zone was perforated from 5976 to 5744. It was treated with 750 gallons of acid, 30,000 gallons of oil, and 30,000 pounds of sand.

Absolute open flow was 2150 Mcf per day.

The last production from this zone was in December of 1964.

The Well No. 9 was spudded September 4th of 1960 and drilled to total depth of 6838. The 5-1/2 inch casing was cemented at 6821 feet. The well was dually completed in the Basin Dakota and Otero Gallup Pools.

Dakota zone was perforated 6638 to 6692 and fracture treated with 56,000 gallons of water and 50,000 pounds of sand. Open flow potential was 4000 Mcf per day.

The Gallup zone was perforated from 5514 to 5626 and fracture treated with 20,000 gallons of water and 20,000 pounds of sand. It pumps 12 barrels of oil, a trace of water, and 40 Mcf gas on 24-hour potential test.

This zone last produced in June of 1964.

We do expect that by the commingling of the Dakota gas with the Gallup production that we would be able to lift the liquids in the Gallup and prevent the loading up that killed these -- this zone in both wells.

Q. Do you have exhibits showing the production from each of these wells?

A. Yes, Exhibits Four-A and Four-B are curves which plot production from these wells. What they mainly

SALLY WALTON BOYD
ERTIFIED SHORTHAND REPORTER
19 Plaza Blanca (845; 471-2445
Santa Fe, New Moxico 47191

show you are the relative quantities of gas from the two zones and the relative quantities of oil from the two zones for each well separately.

Exhibits Five-A and Five-D tabulate the same history numerically.

Taken from Exhibits Five-A and Five-B, the daily rates from the latest production on each of these wells are approximately as follows: The Well No. 8, the Gallup last produced an average of 17 Mcf of gas per day. The Dakota produced an average of 147 Mcf gas and half a barrel of condensate.

In the Well No. 9 the Gallup produced approximately 43 Mcf gas per day and 1.4 barrels of oil per day.

The Dakota produced an average of 156 Mcf gas per day and .3 barrels condensate.

Q. Have precedents been set in the immediate area to downhole commingle the Gallup and Dakota Pools?

A. Yes, under Order Number R-5205, dated

April 27th, 1976, Continental Oil Company was authorized

to downhole commingle the two subject pools in eight wells

on their Northwest Haynes Lease. This lies immediately to

the east of Gulf's Apache Federal Lease, and I have outlined

it in orange on your first exhibit, the location plat.

Q Would it be practical to dually complete

SALLY WALTON BOYE ERTIFIED SHORTHAND REPORTE 16 Plaza Blanca (666) 471-341 Santa (74, New Mexico 5734)

10

11

12

13

15

17

18

19

20

21

22

23

the two subject wells?

No, they were both dually completed at one time; however, this was only possible because both zones were flowing.

The Gallup zone now requires pumping, which would necessitate a string of tubing large enough to have 7/8ths inch rods and this is not possible as a second string in 5-1/2 inch casing.

Alternatively we would be required to put in complete crossover equipment and this is not practical either in 5-1/2 inch casing.

Do you have any pressure data on these
 wells?

Mell No. 8 shut-in tubing pressure in the Gallup of 999 psi; shut-in tubing pressure in the Dakota of 898 psi.

In the Well No. 9 Gallup showed 1249 and the Dakota 859.

We expect that once the Gallup zone is on production again the pressures will become more equivalent.

Q What are your views with regard to possible crossflow between the zones?

A We do not anticipate any crossflow problems because we do expect these pressures to become more equivalent once we bleed off the Gallup again.

Q Do you have any evidence to indicate that the fluids from these two pools will be compatible?

A Yes. Continental has been downhole commingling its production from the Otero Gallup and the Basin

Dakota since 1976 and they have reported no incompatibility.

What is your proposal regarding the allocation of production between the Otero Gallup and Basin

Dakota Pools?

A. We would propose to allocate by the subtraction method. Since the production from the Gallup is very difficult to predict, we propose to predetermine the amount of production to be allocated to the Dakota and permit the remainder to be assigned to the Gallup.

We would suggest that this matter be worked out between the District Supervisor of the New Mexico Oil Conservation Division and Gulf personnel after the authority to downhole commingle has been granted.

Q What would Gulf propose to do in the event secondary recovery operations are undertaken in this area in these pools?

A. We will recommend separation of zones as deemed necessary for efficient secondary recovery operations.

Q What do you anticipate regarding the production capabilities of these wells under commingled conditions?

11

12

13

14

15

16

17

18

19

20

21

22

A Dased on the latest year of production from each zone, we would anticipate that stabilized production for each well will average not more than 200 Mcf gas per day with less than 3 barrels of oil.

It is possible, however, that an initial rate from the Gallup zone may cause those figures to be temporarily exceeded.

- Q. Will the value of the commingled production be adversely affected?
- A. No, the addition of the Gallup production to the Dakota will not affect the value of the Dakota production. The value of the Gallup production cannot be adversely affected since it cannot be commercially produced except by downhole commingling with the Dakota.
- Q. Will you summarize again what Gulf is seeking in this application?
- A. In order to prevent waste and maximize the recovery of hydrocarbons under this lease, Gulf is requesting authority to downhole commingle the Otero Gallup and the Basin Dakota Pool production in our Apache Federal Lease Well Nos. 8 and 9, located respectively in Unit D of Section 8 and Unit D of Section 17, Township 24 North, Range 5 West, in Rio Arriba County, New Mexico.
- Q Were these exhibits prepared by you or under your supervision?

11

12

13

14

15

16

17

18

19

20

21

22

23

2á

25

A Yes, they were.

MR. CROSS: I move that these exhibits be admitted in evidence.

MR. NUTTER: The exhibits will be admitted in evidence.

MR. CROSS: I have no further questions.

CROSS EXAMINATION

BY MR. NUTTER:

Q. The No. 8 Well never did produce any liquids from the Gallup?

A None recorded, sir.

Q. Why did it quit producing, then? You were talking about they would need to be on artificial lift.

A I would have to suppose that the pressure down there was apparently not sufficient to lift whatever mist there might have been and whatever there might have been, apparently, dropped back without ever being produced.

Q On this Exhibit Five-A you've shown no production of liquids whatsoever from the Gallup in the No. 8 Well.

A. That is correct.

I have seen this happen before, where a well has been killed due to loading up and yet you don't

see excessive liquids in the production.

Now, the No. 9 has produced a small amount of liquids from the -- or did produce a small amount of liquids from the Gallup, and it also has produced condensate from the Dakota consistently throughout its life.

That is correct.

MR. NUTTER: Are there any further questions of the witness? She may be excused.

Do you have anything further, Mr. Cross? MR. CROSS: No, sir, I don't.

MR. NUTTER: Does anyone have anything they wish to offer in Case Number 6598?

We'll take the case under advisement.

(Hearing concluded.)

10

11

22

23

REPORTER'S CERTIFICATE

I, SALLY WALTON BOYD, a Court Reporter, DO HEREBY CERTIFY that the foregoing and attached Transcript of Hearing before the Oil Conservation Division was reported by me; that said transcript is a full, true, and correct record of the hearing, prepared by me to the best of my ability, knowledge, and skill, from my notes taken at the time of the hearing.

Sally W. Boyd, C.S.R.

I do hereby contine that the foregoing is a complete record of the proceedings in the Examiner hearing of Gase No. 6570 heard by me on 19.79.

, Examiner

Oil Conservation Division

SALLY WALTON BOY ERTIFIED SHOITHAND REPORT 019 FLAZE BLANCE (808) 471-94 SARIA FO, NYW MOXION 8710

STATE OF NEW MEXICO ENERGY AND MINERALS DEPARTMENT OIL CONSERVATION DIVISION

August 17, 1979

POST OFFICE BOX 2008 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87501 (505) 827-2434

Mr. Terry Cross, Attorney Gulf Oil Corporation	Re: CASE NO. 6598 ORDER NO. R-6076
Box 1150 Midland, Texas 79702	Applicant:
Dear Sir:	
Enclosed herewith are two conditions order recently enterests	opies of the above-referenced ered in the subject case.
JOE D. RAMEY Director	•
JDR/fd	
Copy of order also sent to:	•
Hobbs OCD x Artesia OCD x Aztec OCD x	
Other	

STATE OF NEW MEXICO ENERGY AND MINERALS DEPARTMENT OIL CONSERVATION DIVISION

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION DIVISION FOR THE PURPOSE OF CONSIDERING:

> CASE NO. 6598 Order No. R-6076

APPLICATION OF GULF OIL CORPORATION FOR DOWNHOLE COMMINGLING, RIO ARRIBA COUNTY, NEW MEXICO.

ORDER OF THE DIVISION

BY THE DIVISION:

This cause came on for hearing at 9 a.m. on July 25, 1979, at Santa Fe, New Mexico, before Examiner Daniel S. Nutter.

NOW, on this let day of August, 1979, the Division Director, having considered the testimony, the record, and the recommendations of the Examiner, and being fully advised in the premises,

FINDS:

- (1) That due public notice having been given as required by law, the Division has jurisdiction of this cause and the subject matter thereof.
- (2) That the applicant, Gulf Oil Corporation, is the owner and operator of the Apache Federal Wells No. 8 located in Unit D of Section 8 and No. 9 located in Unit D of Section 17, both in Township 24 North, Range 5 West, NMPM, Rio Arriba County, New Mexico.
- (3) That the applicant seeks authority to commingle Otero-Gallup and Basin-Dakota production within the wellbores of the above-described wells.
- (4) That from the Otero-Gallup zone, the subject well is capable of low marginal production only.
- (5) That from the Basin-Dakota zone, the subject well is capable of low marginal production only.
- (6) That the proposed commingling may result in the recovery of additional hydrocarbons from each of the subject pools, thereby preventing waste, and will not violate correlative rights.

-2-Case No. 6598 Order No. R-6076

- (7) That the reservoir characteristics of each of the subject zones are such that underground waste would not be caused by the proposed commingling provided that the wells are not shut-in for an extended period.
- (8) That to afford the Division the opportunity to assess the potential for waste and to expeditiously order appropriate remedial action, the operator should notify the Aztec district office of the Division any time the subject wells are shut-in for 7 consecutive days.
- (9) That in order to allocate the commingled production to each of the commingled zones in the wells, applicant should consult with the supervisor of the Aztec district office of the Division and determine an allocation formula for each of the production zones.

IT IS THEREFORE ORDERED:

- (1) That the applicant, Gulf Oil Corporation, is hereby authorized to commingle Otero-Gallup and Basin-Dakota production within the wellbores of the Apache Federal Wells No. 8, located in Unit D of Section 8 and No. 9 located in Unit D of Section 17, both in Township 24 North, Range 5 West, NMPM, Rio Arriba County, New Mexico.
- (2) That the applicant shall consult with the Supervisor of the Aztec district office of the Division and determine an allocation formula for the allocation of production to each zone in each of the subject wells.
- (3) That the operator of the subject wells shall immediately notify the Division's Aztec district office any time the wells have been shut-in for 7 consecutive days and shall concurrently present, to the Division, a plan for remedial action.
- (4) That jurisdiction of this cause is retained for the entry of such further orders as the Division may deem necessary.

Santa Fe, New Mexico, on the day and year herein-

STATE OF NEW MEXICO

otl conservation division

JOE D. RAMEY Director

fd/

above

Dockets Nos. 29-79 and 31-79 are tentatively set for hearing on August 8 and 22, 1979. Applications for hearing must be filed at least 22 days in advance of hearing date.

DOCKET: COMMISSION HEARING - TUESDAY - JULY 24, 1979

OIL CONSERVATION COMMISSION - 9 A.M. - ROOM 205 STATE LAND OFFICE BUILDING, SANTA FE, NEW MEXICO

CASE 6596: Application of Harvey E. Yates Company for pool creation and special pool rules, Eddy County, New Mexico. Applicant, in the above-styled cause, seeks the creation of a new Upper Pennsylvanian gas pool to be designated as the Southeast Indian Basin-Upper Pennsylvanian Gas Pool for its Southeast Indian Basin Well No. 1 located in Unit A of Section 23, Township 22 South, Range 23 East, and special pool rules therefor including 320-acre gas well spacing.

CASE 6597: Application of Harvey E. Yates Company for an unorthodox gas well location, Eddy County, New Mexico. Applicant, in the above-styled cause, seeks approval for the unorthodox location of its Southeast Indian Basin Well No. 2, an Upper Pennsylvanian well to be drilled 660 feet from the North and West lines of Section 24, Township 22 South, Range 23 East, with the N/2 or all of said Section 24 to be dedicated to the well, depending on the outcome of Case No. 6596.

Docket No. 28-79

DOCKET: EXAMINER HEARING - WEDNESDAY - JULY 25, 1979

9 A.M. - OIL CONSERVATION DIVISION CONFERENCE ROOM, STATE LAND OFFICE BUILDING, SANTA FE, NEW MEXICO

The following cases will be heard before Daniel S. Nutter, Examiner, or Richard L. Stamets, Alternate Examiner:

CASE 6545: (Continued from June 27, 1979, Examiner Hearing)

In the matter of the hearing called by the Oil Conservation Division on its own motion to permit Corinne Grace, Travelers Indemnity Company, and all other interested parties to appear and show cause why the Kuklah Baby Well No. 1 located in Unit G of Section 24, Township 22 South, Range 26 East, Eddy County, New Mexico, should not be plugged and abandoned in accordance with a Division-approved plugging program.

CASE 6598: Application of Gulf Oil Corporation for downhole commingling, Rio Arriba County, New Mexico.

Applicant, in the above-styled cause, seeks approval for the downhole commingling of Otero-Gallup and Basin-Dakota production in the wellbores of its Apache Federal Wells No. 8 located in Unit C of Section 8 and No. 9 located in Unit D of Section 17, both in Township 24 North, Range 5 West.

Application of Gulf Oil Corporation for downhole commingling, Lea County, New Mexico.

Applicant, in the above-styled cause, seeks approval for the downhole commingling of Fusselman and Montoya production, North Justis Field, in the wellbore of its W. A. Ramsay Well No. 4 located in Unit M of Section 36, Township 24 South, Range 37 East.

Application of Mesa Petroleum Company for compulsory pooling, Eddy County, New Mexico.

Applicant, in the above-styled cause, seeks an order pooling all mineral interests in the Morrow formation underlying the E/2 of Section 10, Township 16 South, Range 27 East, to be dedicated to a well to be drilled at a standard location thereon. Also to be considered will be the cost of drilling and completing said well and the allocation of the cost thereof as well as actual operating costs and charges for supervision. Also to be considered will be the designation of applicant as operator of the well and a charge for risk involved in drilling said well.

Application of Harvey E. Yates Company for compulsory pooling, Lea County, New Mexico.

Applicant, in the above-styled cause, seeks an order pooling all mineral interests in the Wolfcamp through Mississippian formations underlying the E/2 of Section 8, Township 14 South, Range 36 East, to be dedicated to a well to be drilled at a standard location thereon. Also to be considered will be the cost of drilling and completing said well and the allocation of the cost thereof as well as actual operating costs and charges for supervision. Also to be considered will be the designation of applicant as operator of the well and a charge for risk involved in drilling said well.

CASE 6602: Application of Tenneco Oil Company for an unorthodox well location, Eddy County, New Mexico.

Applicant, in the above-styled cause, seeks approval for the unorthodox location of its Federal 33

C No. 2 Well 1010 feet from the North line and 1710 feet from the West line of Section 33, Township 17 South, Range 29 East, South Empire-Wolfcamp Pool, the E/2 NW/4 of said Section 33 to be dedicated to the well.

CASE 6603: (This case will be continued to the August 8 hearing.)

Application of Conoco Inc. for downhole commingling, Lea County, New Mexico. Applicant, in the above-styled cause, seeks approval for the downhole commingling of Penrose Skelly and Eumont production in the wellbore of its Hawk B-1 Well No. 12 located in Unit O of Section 8, Township 21 South, Range 37 East.

- CASE 6604: Application of Cities Service Company for rescission of Division Crder No. R-5921, Eddy County, New Mexico. Applicant, in the above-styled cause, seeks the rescission of Order No. R-5921 which order provided for the compulsory pooling of all of the mineral interests in the Pennsylvanian formation underlying the S/2 of Section 8, Township 23 South, Range 28 East.
- CASE 6605: Application of Estoril Producing Corporation for compulsory pooling and an unorthodox gas well location, Lea County, New Mexico. Applicant, in the above-styled cause, seeks an order pooling all mineral interests in the Morrow formation underlying the W/2 of Section 15, Township 20 South, Range 34 East, to be dedicated to a well to be drilled at an unorthodox location 660 feet from the North and West lines of said Section 15. Also to be considered will be the cost of drilling and completing said well and the allocation of the cost thereof as well as actual operating costs and charges for supervision. Also to be considered will be the designation of applicant as operator of the well and a charge for risk involved in drilling said well.
- CASE 6564: (Continued and Readvertised)

Application of Herndon 0:1 & Gas Co. for an unorthodox oil well location, Lea County, New Mexico. Applicant, in the above-styled cause, seeks approval for the unorthodox location of its O. A. Woody Well No. 1 to be drilled 2310 feet from the North line and 330 feet from the West line of Section 35, Township 16 South, Range 38 East, Knowles-Devonian Pool.

- CASE 6606: Application of Getty 0il Company for salt water disposal, Lea County, New Mexico.

 Applicant, in the above-styled cause, seeks authority to dispose of produced salt water in the Yates formation in the open-hole interval from 3810 feet to 4169 feet in its State "AA" Well No. 1 located in Unit I of Section 35, Township 21 South, Range 34 East.
- Application of Getty Oil Company for a dual completion, Lea County, New Mexico.

 Applicant, in the above-styled cause, seeks approval for the dual completion of its Getty 36 State

 Well No. 1 located in Unit F of Section 36, Township 21 South, Range 34 East, to produce oil from
 the Wolfcamp formation and gas from the Morrow formation through parallel strings of tubing.
- Application of Getty Oil Company for pool creation and special pool rules, Lea County, New Mexico.

 Applicant, in the above-styled cause, seeks the creation of a new Wolfcamp oil pool for its Getty

 36 State Well No. 1 located in Unit F of Section 36, Township 21 South, Range 34 East, and special rules therefor, including 160-acre oil well spacing.
- Application of Napeco Inc. for pool creation and special pool rules, Eddy County, New Mexico.

 Applicant, in the above-styled cause, seeks the creation of a new Strawn oil pool for its Benson

 Deep Unit Well No. 1 located in Unit 0 of Section 33, Township 18 South, Range 30 East, and

 special rules therefor, including 160-acre spacing and standard well locations.
- CASE 6610: Application of Koch Industries, Inc. for salt water disposal, Lea County, New Mexico.

 Applicant, in the above-styled cause, seeks authority to dispose of produced salt water in the Rustler formation through the perforated interval from 1190 feet to 1210 feet in its Wills "A"

 Well No. 7 located in Unit E of Section 35, Township 26 South, Range 37 East, Rhodes Field.
- CASE 6611: Application of Cabot Corp. for salt water disposal, Lea County, New Mexico.

 Applicant, in the above-styled cause, seeks approval for the disposal of produced salt water in the Devonian formation through the perforated interval from 12,156 feet to 12,574 feet in its Reed Well No. 1 located in Unit H of Section 35, Township 13 South, Range 37 East, King Field.
- CASE 6487: (Continued from May 23, 1979, Examiner Hearing)

Application of El Paso Natural Gas Company for approval of infill drilling, Lea County, New Mexico. Applicant, in the above-styled cause, seeks a waiver of existing well-spacing requirements and a finding that the drilling of its Shell E State Com Well No. 2 located in Unit N of Section 6, Township 21 South, Range 36 East, Eumont Gas Pool, Lea County, New Mexico, is necessary to effectively and efficiently drain that portion of the proration unit which cannot be so drained by the existing

CASE 6471: (Continued from May 23, 1979, Examiner Hearing)

Application of Consolidated Oil & Gas, Inc. for approval of infill drilling, San Juan County, New Nuxico. Applicant, in the above-styled cause, seeks a waiver of existing well-spacing requirements and a finding that the drilling of its Freeman Well No. 1-A to be located in Unit C of Section 11, Township 31 North, Range 13 West, Basin-Dakota Pool, San Juan County, New Mexico, is necessary to effectively and efficiently drain that poxtion of the proration unit which cannot be so drained by the existing well.

CASE 6472: (Continued from May 23, 1979, Examiner Hearing)

Application of Consolidated 0:1 & Gas, Inc. for approval of infill drilling, Rio Arriba County, New Mexico. Applicant, in the above-styled cause, seeks a waiver of existing well-spacing requirements and a finding that the drilling of its Jenny Well No. 1-A to be located in Unit F of Section 13, Township 26 North, Range 4 West, Basin-Dakota Pool, Rio Arriba County, New Mexico, is necessary to effectively and efficiently drain that portion of the proration unit which cannot be so drained by the existing well.

CASE 6473: (Continued from May 23, 1979, Examiner Hearing)

Application of Consolidated Oil & Gas, Inc. for approval of infill drilling, Rio Arriba County, New Mexico. Applicant, in the above-styled cause, seeks a waiver of existing well-spacing requirements and a finding that the drilling of its McIntyre Well No. 1-A to be located in Unit K of Section 11, Township 26 North, Range 4 West, Basin-Dakota Pool, Rio Arriba County, New Mexico, is necessary to effectively and efficiently drain that portion of the proration unit which cannot be so drained by the existing well.

CASE 6474: (Continued from May 23, 1979, Examiner Hearing)

Application of Consolidated Oil & Gas, Inc. for approval of infill drilling, San Juan County, New Mexico. Applicant, in the above-styled cause, seeks a waiver of existing well-spacing requirements and a finding that the drilling of its Williams Well No. 1-A to be located in Unit C of Section 24, Township 31 North, Range 13 West, Basin-Dakota Pool, San Juan County, New Mexico, is necessary to effectively and efficiently drain that portion of the proration unit which cannot be so drained by the existing well.

CASE 6475: (Continued from May 23, 1979, Examiner Hearing)

Application of Consolidated Oil & Gas, Inc. for approval of infill drilling, San Juan County, New Mexico. Applicant, in the above-styled cause, seeks a waiver of existing well-spacing requirements and a finding that the drilling of its Montoya Well No. 1-A to be located in Unit I of Section 35, Township 32 North, Range 13 West, Basin-Dakota Pool, San Juan County, New Mexico, is necessary to effectively and efficiently drain that portion of the proration unit which cannot be so drained by the existing well.

CASE 6535: (Continued from June 13, 1979, Examiner Hearing)

Application of Torreon Oil Company for a waterflood project, Sandoval County, New Mexico. Applicant, in the above-styled cause, seeks authority to institute a waterflood project in the San Luis-Mesaverde Pool by the injection of water into the Menefee formation through two wells located in Section 21, Township 18 North, Range 3 West, Sandoval County, New Mexico.

CASE 6579: (Continued from June 27, 1979, Examiner Hearing)

Application of R. N. Hillin for an unorthodox well location and approval of infill drilling, Eddy County, New Mexico. Applicant, in the above-styled cause, seeks a waiver of existing well spacing requirements and a finding that the drilling of a Morrow gas well at as unorthodox location 800 feet from the South line and 2000 feet from the East line of Section 34, Township 19 South, Range 28 East, is necessary to effectively and efficiently drain that portion of the E/2 of said Section 34 which cannot be so drained by the existing well.

CASE 6580: (Continued from June 27, 1979, Examiner Hearing) (This case will be continued to the August 22 hearing.)

Application of Continental Oil Company for a carbon dioxide injection project, Lea County, New Mexico. Applicant, in the above-styled cause, seeks authority to initiate a pilot carbon dioxide injection project in the Grayburg-San Andres formation in Units H and I of Section 20, Township 17 South, Range 32 East, Maljamar Pool, for tertiary recovery purposes.

CASE 6270: (Continued from July 11, 1979, Examiner Hearing)

In the matter of Case 6270 being reopened pursuant to the provisions of Order No. R-5771 which order created the South Peterson-Fusselman Pool, Roosevelt County, New Mexico, and provided for 80-acre spacing. All interested parties may appear and show cause why said pool should not be developed on 40-acre spacing units.

CASE 6590: (Continued from July 11, 1979, Examiner Hearing)

Application of Grace Petroleum Corporation for compulsory pooling and an unorthodox gas well location, Lea County, New Mexico. Applicant, in the above-styled cause, seeks an order pooling all mineral interests in the Morrow formation underlying Lots 9, 10, 15, and 16 and the SE/4 of Section 6, Township 21 South, Range 32 East, to be dedicated to a well to be drilled at an unorthodox location 4650 feet from the South line and 660 feet from the East line of said Section 6. Also to be considered will be the cost of drilling and completing said well and the allocation of the costs thereof as well as actual operating costs and charges for supervision. Also to be considered will be the designation of applicant as operator of the well and a charge for risk involved in drilling said well.

JAMES E SPERLING
JOSEPH E ROEHL
GEORGE T. MARRIS, JR.
DANIEL A. SISK
I.ELAND S. SEDBERRY, JR.
ALLEN C. DEWEY, JR.
FRANK M. ALLEN, JR.
JAMES A. PARKER
JOHN R. COONEY
KENNETH L. HARRIGAN
PETER J. ADANG
DALE W. ER
DENNIS J. FALK
JOE R. O. FULCHER
ARTHUR O. MELENDRES
JAMES P. HOUGHTON

LAW OFFICES

MODRALL, SPERLING, ROEHL, HARRIS & SISK

PUBLIC SERVICE BUILDING

P. O. BOX 2166

ALBUQUERQUE, NEW MEXICO 87103

505-243-4511

OHN F. SIMMS J. R. MODRALL (1885-1954) (1902-1977)

AUGUSTUS T. SEYMOUR

JUDY A. FRY
PAUL M. FISH
MARK B. THOMPSON EI
GEORGE J. HOPKINS
JEFFREY W. LOUBET
RUTH M. SCHIFANI
THOMAS L. JOHNSON
LYNN H. SLADE
ALAN KONRAD
ZACHARY L. MCCORMICK
THURMAN W. MOORE EI
CLIFFORD R. ATKINSON
COUGLAS A. BAKER
SUSAN R. STOCKSTILL

July 16, 1979

OIL CONSERVATION DIVISION SANTA FE

Mr. Joe D. Ramey
Secretary-Director
Oil Conservation Division
Department of Energy & Minerals
P. O. Box 2088
Santa Fe, New Mexico 87501

Re: Application of Gulf Oil Corporation for Downhole Commingling, Rio Arriba County, New Mexico

Case No. 6598

Application of Gulf Oil Corporation for Downhole Commingling, Lea County, New Mexico Case No. 6599

Dear Mr. Ramey:

We are enclosing an Entry of Appearance on behalf of Gulf Oil Corporation in Case Nos. 6598 and 6599, both of which have been docketed for Examiner's Hearing on July 25,

Wery truly yours,

James E. Sperling

/jev Enclosures

cc: Mr. Morgan L. Copeland, w/encl.

Mr. Terry I. Cross, w/encl.

BEFORE THE OIL CONSERVATION DIVISION STATE OF NEW MEXICO

IN THE MATTER OF THE APPLICATION OF GULF OIL CORPORATION FOR APPROVAL OF DOWNHOLE COMMINGLING, RIO ARRIBA COUNTY, NEW MEXICO

Case No. 6598

ENTRY OF APPEARANCE

The undersigned, Modrall, Sperling, Roehl, Harris & Sisk, of Albuquerque, New Mexico, hereby enter their appearance on behalf of the applicant, Gulf Oil Corporation, with its house counsel of Midland, Texas.

MODRALL SPERLING ROEHL HARRIS & SISK

y: X (MUS) CA

James E. Sperling, Attorneys

Gulf Oil Corporation

P. Ø. Box 2168

Albuquerque, New Mexico 87103 Telephone: (505) 243-4511

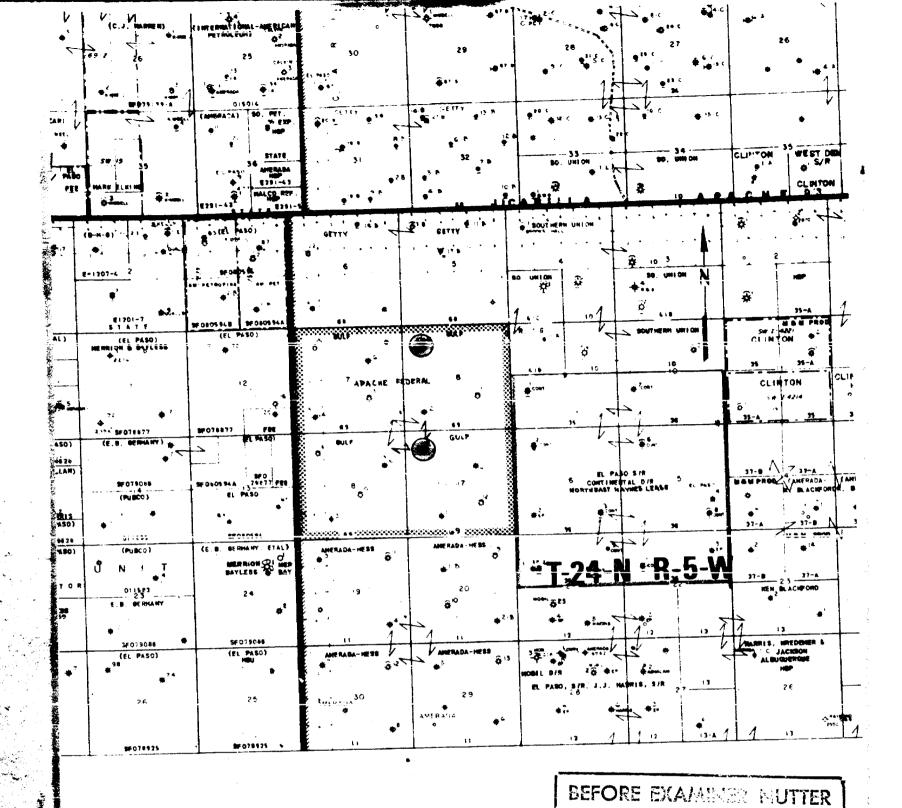


Exhibit No. 1 Case No. 4598 Date: 7-25-79

Gulf Oil Corporation
Apache Federal Lease
T-24-N, R-5-W Rio Arriba Co. N. M.

Wells proposed for downhole commingling

OIL CONSERVATION

CASE NO.

MISION

Diagrammatic Sketch Showing PRESENT & PROPOSED INSTALLATION APACHE FEDERAL WELL NO. 8 UNIT D. SEC. 8, T-24-N, R-5-W RIO ARRIBA COUNTY, NEW MEXICO GULF OIL CORPORATION __ PROPOSED — - PRESENT-KDB Elev. 6599' GL Elev. 6585' 8-5/8", 24 lb. Csg. @ 300', cmt. circ. Top of cement @ 3106'_ 2-3/8" Tubing -Gallup Perfs. 5675'-5744' Baker Model "D" Packer @ 5**800'** -Dakota Perfs. 6783'-6856' CIBP @ 68761 5-1/2", 14 & 15.5 lb. Csg. @ 7045' w/1125 sx. cmt. TD 7045' BEFORE EXAMINER NUTTER EXHIBIT NO .__ ELIVATION DIVISION CASE NO._ DATE_

Diagrammatic Sketch Showing PRESENT & PROPOSED INSTALLATION APACHE FEDERAL WELL NO. 9 UNIT D, SEC. 17,T-24-N, R-5-W RIO ARRIBA COUNTY, NEW MEXICO GULF OIL CORPORATION - PROPOSED-- PRESENT ---KDB Elev. 6551' GL Elev. 6533' 8-5/8", 24 lb. Csg. @-236' w/175 sx. cmt. circ. Baker Stage Collar @ 2467'-Dr. 1960 1-string 2-1/16" Tbg. (2nd. string removed 7-64) 1-string 2-1/16" Tbg-Baker Parallel String Anchor @ 5509' Gallup Perfs. 5514'-5626'-Baker Model "D" Packer @ 5650° Dakota Perfs. 6638'-6692'-- PBTD 6786' 5-1/2", 14 lb.-15.5 lb. Csg.-@ 6821' w/347 sx. cmt. TD 6870' BEFORE EXAMINER NUTTER OIL COMMERMATION DIVISION EXHABIT NO. 2-B EXHIBIT NO. 2-B

CASE NO.

CASE NO. 6598

DATE

7-25-79

EXHIBIT NO. 3

CASE NO. 4589

DATE: 7-25-79

GULF OIL CORPORATION

WELL DATA

(1) Operator: Gulf Oil Corporation
Post Office Box 670
Hobbs, New Mexico 88240

(2) Well Name & Location:

Apache Federal Lease Well No. 8 990' FNL and 990' FWL of Section 8, T-24-N, R-5-W Ric Arriba County, New Mexico

Apache Federal Lease Well No. 9 990' FNL and 990' FWL of Section 17, T-24-N, R-5-W Rio Arriba County, New Mexico

See Exhibit 1 for map.

(3) Pools: Otero Gallup (Oil) (5514'-5744')
Basin Dakota (Gas) (6638'-6856')

Well No. 8 dualled under Order R-1660. Well No. 9 dualled under Order DC-1014.

- (4) Current Production: Twenty-four hour tests unavailable. See Production Decline Curves and Tables.
- (5) Production Decline and Well History: See attached curves for decline.

Well No. 8 was spudded April 1, 1959 and drilled to a total depth of 7,045'; 5½' production casing was set at that depth. The well was dually completed in the Otero-Gallup and Basin Dakota Pools (present pool designations). The Dakota was perforated 6922'-6968' and treated with 1000 gallons of mud acid. A bridge plug was set at 6876' and with 1000 gallons of mud acid. A bridge plug was set at 6876' and with 1000 gallons of mud acid. A bridge plug was set at 6876' and with 1000 gallons of mud acid. A bridge plug was set at 6876' and with 1000 gallons of mud acid. A bridge plug was set at 6876' and with 1000 gallons of mud acid. A bridge plug was set at 6876' and with 1000 gallons of mud acid. A bridge plug was set at 6876' and with 1000 gallons of mud acid. A bridge plug was set at 6876' and with 1000 gallons of mud acid. A bridge plug was set at 6876' and with 1000 gallons of mud acid. A bridge plug was set at 6876' and with 1000 gallons of mud acid. A bridge plug was set at 6876' and with 1000 gallons of mud acid. A bridge plug was set at 6876' and with 1000 gallons of mud acid. A bridge plug was set at 6876' and with 1000 gallons of mud acid. A bridge plug was set at 6876' and with 1000 gallons of mud acid. A bridge plug was set at 6876' and with 1000 gallons of mud acid. A bridge plug was set at 6876' and treated with 1000 gallons of mud acid. A bridge plug was set at 6876' and treated with 1000 gallons of mud acid. A bridge plug was set at 6876' and treated with 1000 gallons of mud acid. A bridge plug was set at 6876' and treated with 1000 gallons of mud acid. A bridge plug was set at 6876' and treated with 1000 gallons of mud acid. A bridge plug was set at 6876' and treated with 1000 gallons of mud acid. A bridge plug was set at 6876' and treated with 1000 gallons of mud acid. A bridge plug was set at 6876' and treated with 1000 gallons of mud acid. A bridge plug was set at 6876' and treated with 1000 gallons of mud acid. A bridge plug was set at 6876' and treated with 1000 gallons of mud acid. A bridge pl

The Gallup zone was perforated 5676'-5744' and treated with 750 gallons of acid, 30,000 gallons of oil, 22,000 lbs. of 20-40 mesh sand, and 8,000 lbs. of 10-20 mesh sand. Absolute Open Flow was 2,150 MCF and age. Last production from this zone was in December of 1964.

Well No. 9 was spudded September 4, 1960 and drilled to a total depth of 6838'. The $5\frac{1}{2}$ " casing was cemented at 6821'. The well was dually completed in the Basin Dakota and Otero-Gallup Pools. The Dakota zone

Gulf 6538

CASE NO. 3

CASE NO. 6598

DATE: 7-25-79

GULF OIL CORPORATION

WELL DATA

PAGE TWO

was perforated 6638'-6692' and fracture treated with 56,000 gallons of water and 50,000 lbs. of 20-40 mesh sand. The open flow potential was 4.000 MCF per day.

The Gallup zone was perforated 5514'-5626' and fracture treated with 20,000 gallons of water and 20,000 lbs. of 10-20 mesh sand. It pumped 12 barrels of oil, a trace of water, and 40 MCF gas on 24 hour potential test. This zone last produced in June of 1964.

(6) Bottom Hole Pressure:
From the 1978 Packer Leakage Test, the following data is available:

 Well No. 8
 Well No. 9

 Gallup
 999 psi CITP
 1249 psi CITP

 Dakota
 898 psi CITP
 859 psi CITP

It would appear that once the Gallup zone is on production again, bottom hole pressures for the two zones will be equivalent, causing no cross-flow problems.

(7) Fluid Characteristics:

Over the past year, the Basin Dakota gas zone in each well has averaged approximately 140 MCF per day, with between 1.0 and 1.6 barrels per day of condensate. This constitutes a fairly dry gas.

The last year of production from the Gallup zone (1964) averaged 16 MCFPD with no produced condensate in the Well No. 8, and 55 MCFPD with 2 barrels of condensate per day in the Well No. 9. Both wells tended to load up with liquids, which ultimately necessitated temporary abandonment. It is felt that commingling of the two pays in each well will provide sufficient gas to lift the liquids and prevent the wells from loading up.

The experience of Continental Oil Company on their Northeast Haynes Lease to the east is sufficient evidence that the fluids from these two pay zones are compatable. Continental has been commingling the same two pays since April, 1976.

- (8) Value of Commingled Production: No adverse change in the value of production is anticipated. The Gallup zone cannot be economically produced except by down-hole commingling with the Dakota zone.
- (9) All offset operators were notified of this application by copy of our letter of June 28, 1979 requesting that the matter be set for hearing. A list of those offset operators is attached.

BEFORE EXAMPLER MUTTER
OIL CONSERVATION DIVISION
GULF EXAMPLES NO. 5-4

EXHIBIT NO. <u>5-A</u>

CASE NO. <u>6598</u>

DATE: 7-25-79

PRODUCTION HISTORY - OTERO-GALLUP POOL
APACHE FEDERAL LEASE, WELL NOS. 8 AND 9
RIO ARRIBA COUNTY, NEW MEXICO
GULF OIL CORPORATION

A STATE OF THE STA							
	V	Well No. 8		Well No. 9			
		DAILY AVERAGE				DAILY	VERAGE
	GAS (MCF)	GAS (MCFPD)	GAS (MCF)	OIL (BBLS)	WATER (BBLS)) OIL (BOPD)
1960							
OC	T 66	2					
NO		60	840	138	112	28	4.6
DE		16	1,550	167		50	5.4
ANNUAL	2,860	31	2,390	305	112	39	5.0
1961							
JA	N 115	4	1,550	139		50	4.5
FE		98	1,550	116		55	4.1
MA		58	1,550	123		50	4.0
AP		89	1,200	92		40	3.1
MA		28	1,200	93		39	3.0
JU	ท 593	20	1,200	102		40	3.4
JU	L 535	17	1,200	89	2	39	2.9
AU	G 153	5	1,200	96		39	3.1
SE	PT		1,200	87		40	2.9
OC	T		1,200	86		39	2.8
NO	y 769	26	1,200	90		40	3.0
DE	C299	10	1,200	90		39	2.9
ANNUAL	10,568	29	15,450	1,203	2	42	3.3
1962							
JA	พ 83	3	1,200	68		39	2.2
FE	в 343	12	1,200	69	8	43	2.5
MA	.R 280	9	1,200	82	10	39	2.6
AF		19	1,200	57	7	40	1.9
MA	Y 370	12	1,200	93	12	39	3.0
JU	N 324	11		89	12		3.0
JU		6		110	12	÷ -	3.5
AU	G 231	7	1,440	7 5	12	46	2.4

EXHIBIT NO. 5-A

CASE NO. 6598

DATE: 7-25-79

PRODUCTION HISTORY - OTERO-GALLUP POOL

APACHE FEDERAL LEASE, WELL NOS. 8 AND 9

RIO ARRIBA COUNTY, NEW MEXICO

GULF OIL CORPORATION

PAGE TWO

	We:	11 No. 8		Well No. 9			
		DAILY AVERAGE				DAILYA	VERAGE
	GAS (MCF)	GAS (MCFPD)	GAS (MCF)	OIL (BBLS)	WATER (BBLS)	GAS (MCFPD)	OIL (BOPD)
SEPT	330	11	1,052	57	10	35	1.9
OCT	875	28	1,661	90	20	54	2.9
NOV	904	30	1,144	62	20	38	2.1
DEC	687	22	1,163	63	25	38	2.0
ANNUAL	5,189	14	12,460	915	148	34	2.5
1963							
JAN	308	10	1,551	86		50	2.8
FEB	549	20	1,107	60		40	2.1
MAR	815	26	794	43		26	1.4
APR	580	19	276	15		9	0.5
MAY	1,019	33	1,551	82		50	2.6
JUN	829	28	1,366	74		46	2.5
JUL	818	26	1,458	76		47	2.5
AUG	733	24	1,514	82	• •	49	2.6
SEPT	452	<u>15</u> .	1,144	62		38	2.1
OCT	751	24	2,040	67		66	2.2
NOV	811	27	1,290	43		43	1.4
DEC	733	24	1,110	37		36	1.2
ANNUAL	8,398	23	15,201	727		42	2.0
1964							
JAN	867	28	2,130	74		69	2.4
FEB	471	16	2,550	85		91	3.0
MAR	409	13	1,140	38		37	1.2
APR	901	30	1,290	43	- -	43	1.4
MAY	522	17					

EXHIBIT NO. _____

CASE NO.

DATE: 7-25-79

PRODUCTION HISTORY - OTERO-GALLUP POOL
APACHE FEDERAL LEASE, WELL NOS. 8 AND 9

RIO ARRIBA COUNTY, NEW MEXICO

GULF OIL CORPORATION

PAGE THREE

	Wel	1 No. 8		Well No. 9			
	GAS (MCF)	DAILY AVERAGE GAS (MCFFD)	GAS (MCF)	OIL (BBLS)	WATER (BBLS)	DAILYA' GAS (MCFPD)	
Jun	363	12	1,200	40		40	1.3
JUL	553	18		• •			
AUG	390	13	<u> </u>		4 3		
SEPT	386	13					
OCT	754	24					
NOA	655	22					
DEC	496	16			≥9 €		
ANNUAL	6,767	19	8,310	280	-	55	1.9

L CONSERVATION DIVISION ORE EXAMINER NUTTER EXHIBIT NO. 5-8

EXHIBIT NO. 5-8

CASE NO. 6598

DATE: 7-25-75

PRODUCTION HISTORY - BASIN DAKOTA POOL APACHE PEDERAL LEASE, WELL NOS. 8 AND 9

RIO ARRIBA COUNTY, NEW MEXICO CULF OIL CORPORATION

Well No. 8

	1975 1976 1977	1971 1972 1973 1974	1966 1967 1968 1969 1969	1960 1961 1962 1963 1964	
FEB MAR APR MAY JUL AUG SEPT OCT NOV DEC ANNUAL	TAN				
2,985 4,238 5,054 4,489 2,627 5,027 4,775 4,936 4,471 3,191 5,138 51,530	56,030 55,664 4,599	65,878 65,156 63,001 61,357		32,061 73,960 71,111 59,352 90,964 87,248	GAS (MCF)
45 62 59 42 32 26 39 35 88 81	663 702 45	862 895 866 830	1,195 1,352 1,242 970 995	763 1,622 1,451 651 1,318 1,318	OIL (BBLS)
107 145 145 168 162 165 165 166 166	15.4 14.8	180 179 173 168	206 222 232 190 192	356* 203 195 163 249 239	DAILY A GAS (MCFPD)
1.6 1.4 1.9 1.0 0.8 1.3 1.1 2.9	1.8 1.9	2222	22.74	4.5 4.0 4.0 4.2	VERAGE OIL (BOPD)
4,237 5,446 5,037 4,507 3,837 5,609 4,752 5,086 4,647 3,789 4,761 57,125	65,307 61,631 5,417	85,589 75,647 72,003 68,326	101,785 103,168 97,338 87,216 78,255	62,062 99,653 65,347 99,933 124,015	GAS (MCF)
20 17 8 12 20 25 12 20 18 17 18	323 272 30	234 403 329 334	581 457 561 431 413	507 739 511 586 733	OIL (BBLS)
151 176 168 145 128 181 153 170 150 154	179 169 175	234 207 197 187	279 283 267 239 214	170 273 179 274 340	GAS (MCFPD)
0.5 0.3 0.4 0.6 0.6 0.6	1.0	0.99	21111	11.4 1.6 2.0	OIL (BOPD)

EXHIBIT NO. 5-B

CASE NO. 6-98

DATE: 7-25-79

PRODUCTION HISTORY - BASIN DAKOTA POOL APACHE FEDERAL LEASE, WELL NOS. 8 AND 9

RIO ARRIBA COUNTY, NEW MEXICO GULF OIL CORPORATION

PAGE TWO

			1978														
			JAN	7 F.		FLAIR	APR	MAY	JUN	JUL	AUG	SEPT	OCT	NOV	DEC	ANNUAL	T C
		GIS (MCF)	4.377	4.445	. 370	7,017	3,775	4.582	4,100	4,839	4.876	4.028	4,706	3,196	3,797	51,100	4.271
Well No. 8		OIL (BBLS)	40	38	1.7	Ť	65	43	38	54	59	34	63	50	44	575	14
No. 8	DAILYA	GAS (MCFPD)** OIL (B	151	159	190	100	126	148	137	156	157	183	152	107	141	149	:147
	ERAGE	OIL (BOPD)	1.4	1.4	၁ ု		2.2	1.4	1.3	1.7	1.9	1.5	2.0	1.7	1.6	1.7	0.5
		GAS (MCF)	4,695	4,722	4 580	1,000	4,157	4,264	3,955	4,358	4,432	3,549	4,319	3,330	3,846	50,207	4,380
Well No. 9		OIL (BBLS)	25	18	45) (25	18	17	23	22	19	<u> </u>	24	18	285	ω
No. 9	2	GAS (MCFPD) ***	151	157	148		139	138	132	141	143	118	139	111	124	146	156
	ILY AVERAGE	OIL (BOPD)	08	06	20	9	00	06	0,6	0.7	0.7	0.9) <u>.</u>) C	0.7	٠ «	0.3

^{* 90} Days.

^{**} Number of producing days varies " not always full month.

Diagrammatic Sketch Showing

PRESENT & PROPOSED INSTALLATION

APACHE FEDERAL WELL NO. 9 UNIT D, SEC. 17,T-24-N, R-5-W RIO ARRIBA COUNTY, NEW MEXICO GULF OIL CORPORATION

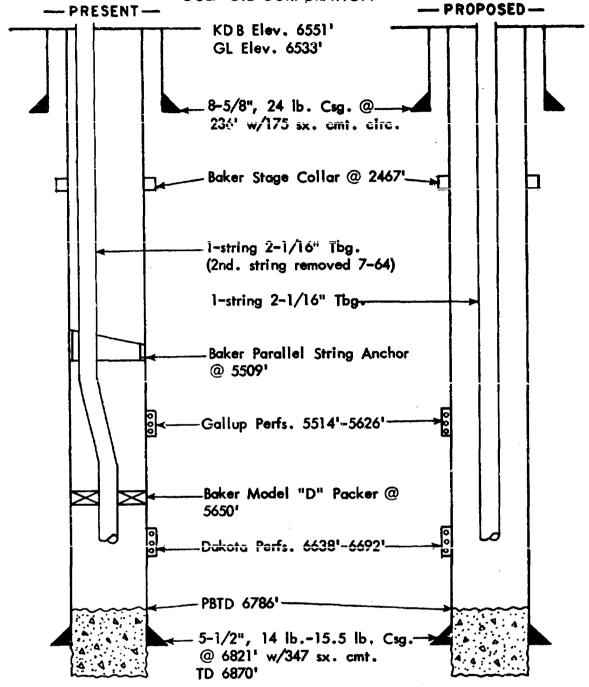


EXHIBIT NO. 2-B CASE NO. 6598

EXHIBIT NO. 3

CASE NO. 6598

DATE: 7-25-79

GULF OIL CORPORATION

WELL DATA

(1) Operator: Gulf Oil Corporation
Post Office Box 670
Hobbs, New Mexico 88240

(2) Well Name & Location:

Apache Federal Lease Well No. 8 990' FNL and 990' FWL of Section 8, T-24-N, R-5-W Rio Arriba County, New Mexico

Apache Federal Lease Well No. 9 990' FNL and 990' FWL of Section 17, T-24-N, R-5-W Rio Arriba County, New Mexico

See Exhibit 1 for map.

(3) Pools: Otero Gallup (Oil) (5514'-5744')
Basin Dakota (Gas) (6638'-6856')

Well No. 8 dualled under Order R-1660. Well No. 9 dualled under Order DC-1014.

- (4) Current Production: Twenty-four hour tests unavailable. See Production Decline Curves and Tables.
- (5) Production Decline and Well History: See attached curves for decline.

Well No. 8 was spudded April 1, 1959 and drilled to a total depth of 7,045'; 5½" production casing was set at that depth. The well was dually completed in the Otero-Gallup and Basin Dakota Pools (present pool designations). The Dakota was perforated 6922'-6968' and treated with 1000 gallons of mud acid. A bridge plug was set at 6876' and additional Dakota was perforated at 6783'-6856'. This zone was fracture treated with 30,912 gallons of oil and 30,000 lbs. of 20-40 mesh sand. Initially, the Dakota zone flowed with an Absolute Open Flow of 2,775 MCF per day.

The Gallup zone was perforated 5676'-5744' and treated with 750 gallons of acid, 30,000 gallons of oil, 22,000 lbs. of 20-40 mesh sand, and 8,000 lbs. of 10-20 mesh sand. Absolute Open Flow was 2,150 MCF per day. Last production from this zone was in December of 1964.

Well No. 9 was spudded September 4, 1960 and drilled to a total depth of 6838'. The $5\frac{1}{2}$ ' casing was cemented at 6821'. The well was dually completed in the Basin Dakota and Otero-Gallup Pools. The Dakota zone

Gulf

-

CASE NO. 3

CASE NO. 6598

DATE: 7-25-79

GULF OIL CORPORATION

WELL DATA

PAGE TWO

was perforated 6638'-6692' and fracture treated with 56,000 gallons of water and 50,000 lbs. of 20-40 mesh sand. The open flow potential was 4,000 MCF per day.

The Gallup zone was perforated 5514:-5626: and fracture treated with 20,000 gallons of water and 20,000 lbs. of 10-20 mesh sand. It pumped 12 barrels of oil, a trace of water, and 40 MCF gas on 24 hour potential test. This zone last produced in June of 1964.

(6) Bottom Hole Pressure:
From the 1978 Packer Leakage Test, the following data is available:

 Well No. 8
 Well No. 9

 Gallup
 999 psi CITP
 1249 psi CITP

 Dakota
 898 psi CITP
 859 psi CITP

It would appear that once the Gallup zone is on production again, bottom hole pressures for the two zones will be equivalent, causing no cross-flow problems.

(7) Fluid Characteristics:

Over the past year, the Basin Dakota gas zone in each well has averaged approximately 140 MCF per day, with between 1.0 and 1.6 barrels per day of condensate. This constitutes a fairly dry gas.

The last year of production from the Gallup zone (1964) averaged 16 MCFPD with no produced condensate in the Well No. 8, and 55 MCFPD with 2 barrels of condensate per day in the Well No. 9. Both wells tended to load up with liquids, which ultimately necessitated temporary abandonment. It is felt that commingling of the two pays in each well will provide sufficient gas to lift the liquids and prevent the wells from loading up.

The experience of Continental Oil Company on their Northeast Haynes Lease to the east is sufficient evidence that the fluids from these two pay zones are compatable. Continental has been commingling the same two pays since April, 1976.

- (8) Value of Commingled Production: No adverse change in the value of production is anticipated. The Gallup zone cannot be economically produced except by down-hole commingling with the Dakota zone.
- (9) All offset operators were notified of this application by copy of our letter of June 28, 1979 requesting that the matter be set for hearing. A list of those offset operators is attached.

EXHIBIT NO. 5-8

CASE NO. 6598

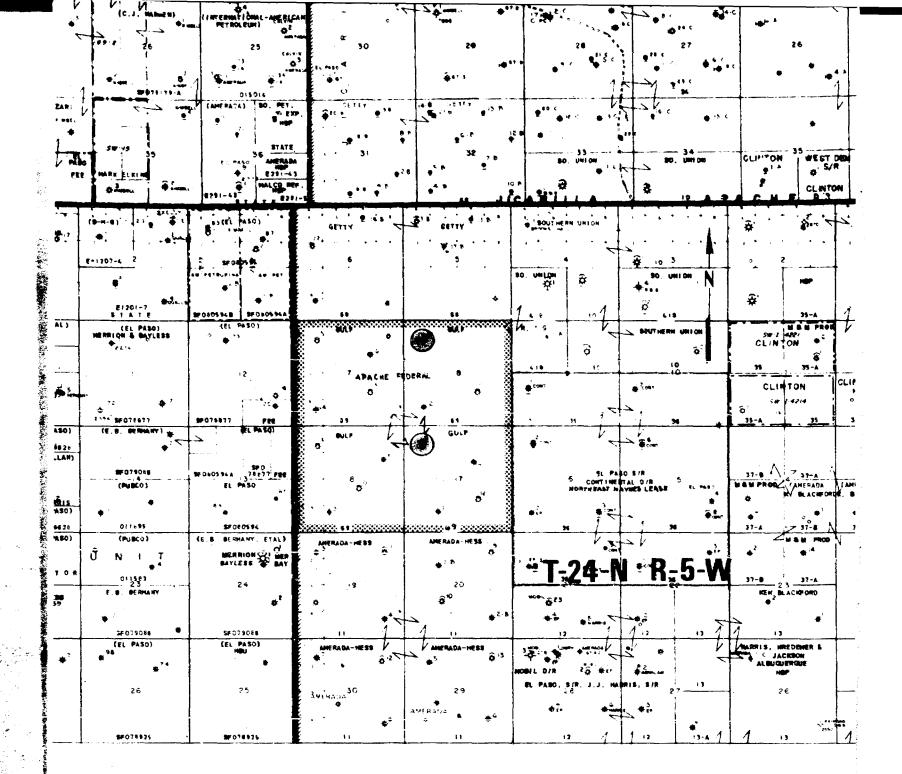
DATE: 7-25-72

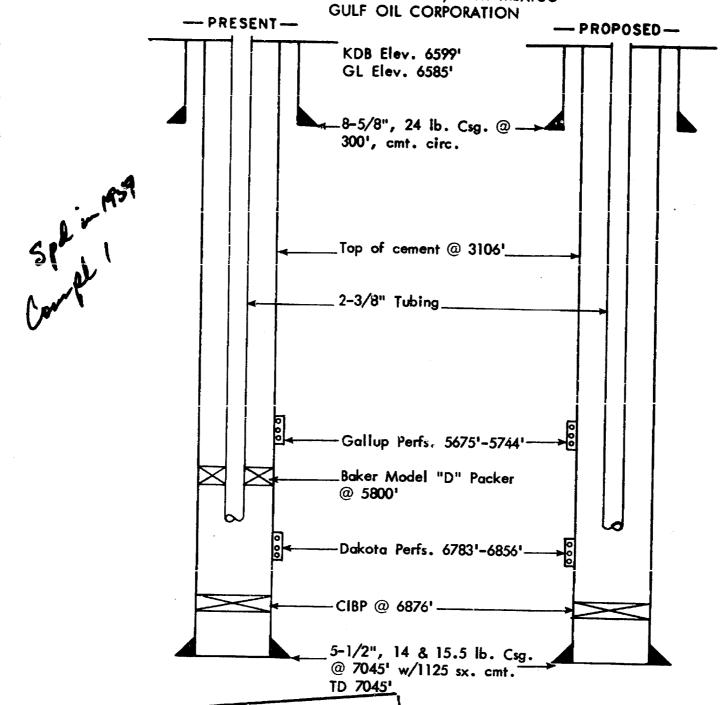
PRODUCTION HISTORY - BASIN DAKOTA POOL APACHE FEDERAL LEASE, WELL NOS. 8 AND 9

R:O ARRIBA COUNTY, NEW MEXICO GULF OIL CORPORATION

JAN FEB MAR APR JUN JUL AUG SEPT OCT NOV DEC ANNUAL	
4,599 2,985 4,238 5,054 4,489 2,527 5,027 4,775 4,936 4,936 4,471 3,191 5,138 51,530	GAS (MCF) 32,061 73,960 71,111 59,352 90,964 87,248 75,294 81,178 69,415 69,898 62,260 65,878 65,156 63,001 61,357 56,030 55,664
45 45 45 59 42 32 38 88 88 81	Well No. OIL (BBLS) 763 1,622 1,451 651 1,318 1,545 1,195 1,352 1,242 970 995 862 895 866 830 663 702
148 107 137 168 145 88 162 154 165 144 106 166	8 D A I L Y A GAS (MCFPD) 203 195 163 249 239 206 222 190 192 171 180 179 173 168 154
1.4 1.6 1.4 1.9 1.0 0.8 1.3 1.3	VERAGE OIL (BOPD) 8.5* 4.4 4.0 1.8 3.6 4.2 3.7 2.7 2.7 2.4 2.5 1.8 1.8
5,417 4,237 5,446 5,037 4,507 3,837 5,609 4,752 5,086 4,647 3,789 4,761	GAS (MCF) 62,062 99,653 65,347 99,933 124,015 101,785 103,168 97,338 87,216 78,255 85,589 75,647 72,003 68,326 65,307 61,631
30 20 17 8 12 20 25 12 20 18 17 18	Well No. OIL (BBLS) 507 739 511 586 733 581 4457 561 4413 413 234 403 329 334 323 272
175 151 176 168 145 128 181 153 170 150 154	9 D A I L Y A GAS (MCFPD) 170 273 179 274 340 279 283 283 267 239 214 239 214 239 2114 239 2114 239 2114 239 2114 239 2114 2119 1197 1197 1197
0.6	VERAGE OIL (BOPD) 1.4 2.0 1.4 1.6 2.0 1.3 1.3 1.3 1.2 0.6 0.9 0.9 0.9

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974




Exhibit No. 1
Case No. 4598
Date: 7-25-79
Gulf Oil Corporation
Apache Federal Lease
T-24-N, R-5-W Rio Arriba Co. N. M.

Wells proposed for downhole commingling

Diagrammatic Sketch Showing

PRESENT & PROPOSED INSTALLATION

APACHE FEDERAL WELL NO. 8
UNIT D. SEC. 8, T-24-N, R-5-W
RIO ARRIBA COUNTY, NEW MEXICO

BEFORE EXAMINER NUTTER

OIL CONSERVATION DIVISION

GULF EXHIBIT NO. 2-4

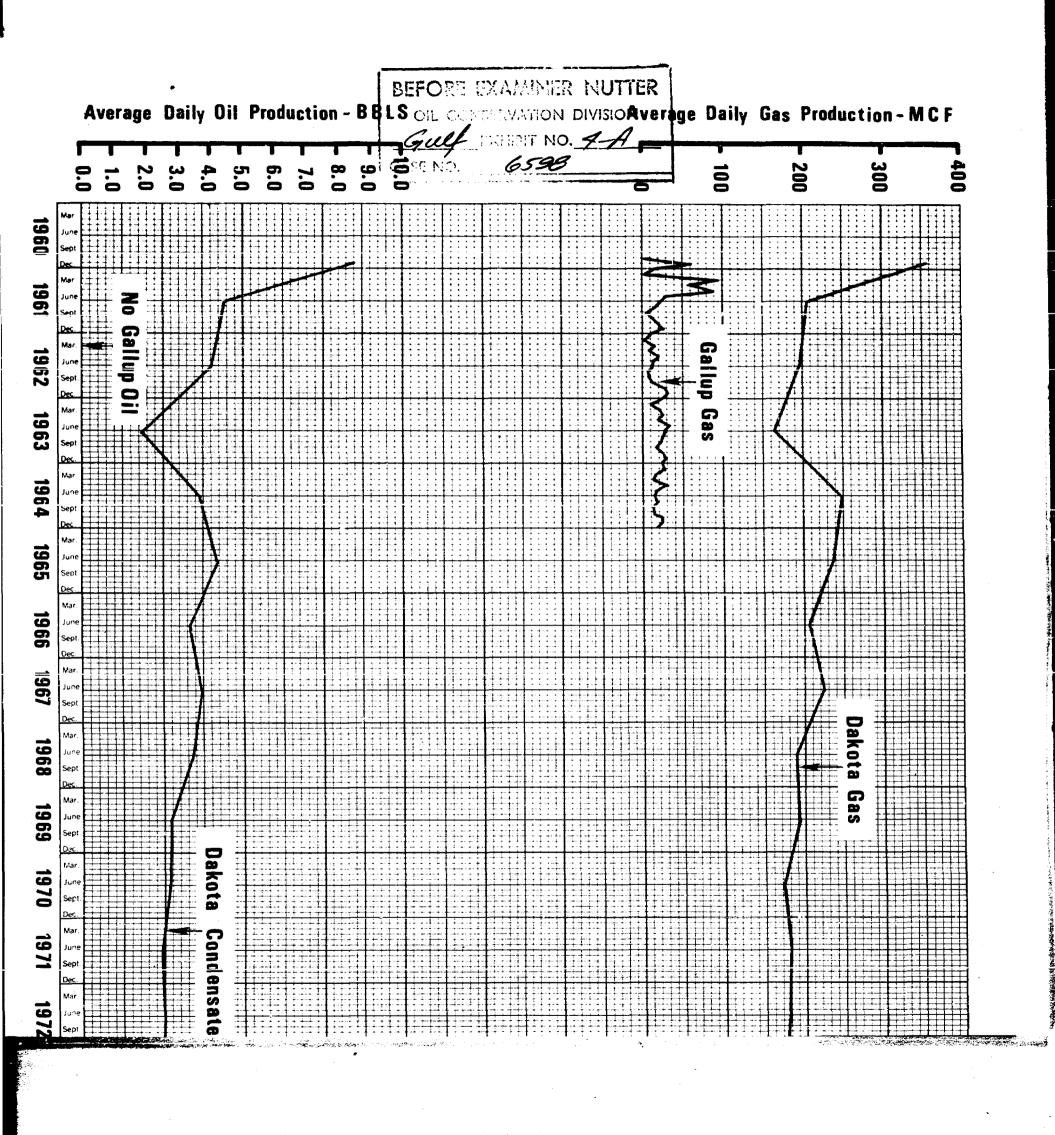

CASE NO. 6598

EXHIBIT NO. 2-A

CASE NO. 6598

DATE 7-25-79

Diagrammatic Sketch Showing PRESENT & PROPOSED INSTALLATION APACHE FEDERAL WELL NO. 9 UNIT D, SEC. 17,T-24-N, R-5-W RIO ARRIBA COUNTY, NEW MEXICO GULF OIL CORPORATION _ PROPOSED — -PRESENT-KDB Elev. 6551' GL Elev. 6533' 8-5/8", 24 lb. Csg. @-236' w/175 sx. cmt. circ. Baker Stage Collar @ 2467'-1-string 2-1/16" Tbg. (2nd. string removed 7-64) 1-string 2-1/16" Tbg-Baker Parallel String Anchor @ 55091 Gallup Perfs. 5514'-5626'-Baker Model "D" Packer @ 56501 Dakota Perfs. 6638'-6692'-PBTD 6786" 5-1/2", 14 lb.-15.5 lb. Csg.-@ 6821' w/347 sx. cmt. TD 6870' BEFORE BRAMERER NUTTER LION DIVISION 10.2-8 EXHIBIT NO .. CASE NO._

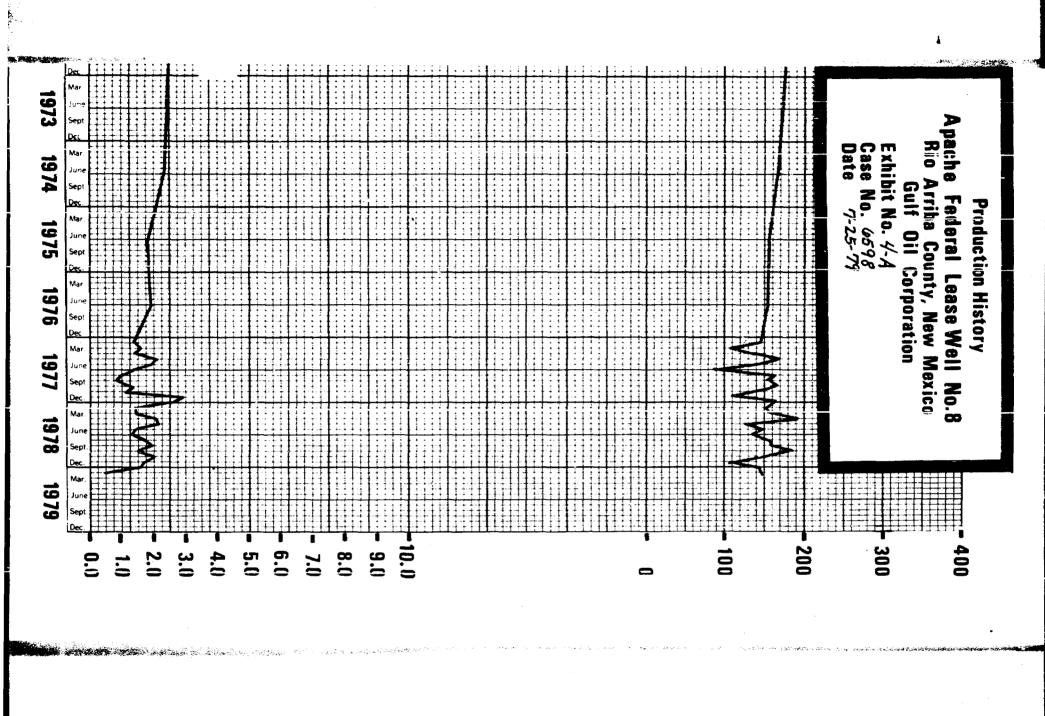


EXHIBIT NO. 3

CASE NO. 6598

DATE: 7-25-79

GULF OIL CORPORATION

WELL DATA

(1) Operator: Gulf Oil Corporation
Post Office Box 670
Hobbs, New Mexico 88240

(2) Well Name & Location:

Apache Federal Lease Well No. 8 990' FNL and 990' FWL of Section 8, T-24-N, R-5-W Rio Arriba County, New Mexico

Apache Federal Lease Well No. 9 990' FNL and 990' FWL of Section 17, T-24-N, R-5-W Rio Arriba County, New Mexico

See Exhibit 1 for map.

(3) Pools: Otero Gallup (Oil) (5514'-5744')
Basin Dakota (Gas) (6638'-6856')

Well No. 8 dualled under Order R-1660. Well No. 9 dualled under Order DC-1014.

- (4) Current Production: Twenty-four hour tests unavailable. See Production Decline Curves and Tables.
- (5) Production Decline and Well History: See attached curves for decline.

Well No. 8 was spudded April 1, 1959 and drilled to a total depth of 7,045'; 5½" production casing was set at that depth. The well was dually completed in the Otero-Gallup and Basin Dakota Pools (present pool designations). The Dakota was perforated 6922'-6968' and treated with 1000 gallons of mud acid. A bridge plug was set at 6876' and additional Dakota was perforated at 6783'-6856'. This zone was fracture treated with 30,912 gallons of oil and 30,000 lbs. of 20-40 mesh sand. Initially, the Dakota zone flowed with an Absolute Open Flow of 2,775 MCF per day.

The Gallup zone was perforated 5676'-5744' and treated with 750 gallons of acid, 30,000 gallons of oil, 22,000 lbs. of 20-40 mesh sand, and 8,000 lbs. of 10-20 mesh sand. Absolute Open Flow was 2,150 MCF per day. Last production from this zone was in December of 1964.

Well No. 9 was spudded September 4, 1960 and drilled to a total depth of 6838'. The $5\frac{1}{2}$ casing was cemented at 6821'. The well was dually completed in the Basin Dakota and Otero-Gallup Pools. The Dakota zone

BEFORE EXAMELES MUTTER

OIL COLLEGEVATION EVISION

GULF EXHIBIT FO. 3

CASE NO. 6598

WHICH MUTTER BEFC. CON MERCON

EXHIBIT NO. 5-A

CASE NO. 4598

DATE: 7-25-79

PRODUCTION HISTORY - OTERO-GALLUP POOL APACHE FEDERAL LEASE, WELL NOS. 8 AND 9

RIO ARRIBA COUNTY, NEW MEXICO

GULF OIL CORPORATION

		Wel	11 No. 8		Well No. 9			
			DAILY AVERAGE				DAILY	AVERAGE
		GAS (MCF)	GAS (MCFPD)	GAS (MCF)	OIL (BBLS)	WATER (BBLS)	GAS (MCFPD) OIL (BOPD)
1960								
	OCT	66	Ź			- 4 ==		
	NOV	1,793	60	840	138	112	28	4.6
	DEC	501	16	1,550	167		50	5.4
ANNUAL		2,860	31	2,390	305	112	39	5.0
1961								
	JAN	115	4	1,550	139		50	4.5
	FEB	2,734	98	1,550	116		55	4.1
	MAR	1,812	58	1,550	123		50	4.0
	APR	2,676	89	1,200	92		40	3.1
	MAY	882	28	1,200	93		39	3.0
	JUN	593	20	1,200	102		40	3.4
	JUL	535	17	1,200	89	2	39	2.9
	AUG	153	5	1,200	96		39	3.1
	SEPT			1,200	87		40	2.9
	OCT			1,200	86		39	2.8
	ЙОÅ	769	26	1,200	90		40	3.0
4.5	DEC	299	10	1,200	90 .		39	2.9
ANNUAL		10,568	29	15,450	1,203	2	42	3.3
1962								
	JAN	83	3	1,200	68		3 9	2.2
•	FEB	343	12	1,200	69	8	43	2.5
	MAR	280	9	1,200	82	10	39	2.6
	APR	564	19	1,200	57	7	40	1.9
	MAY	370	12	1,200	93	12	39	3.0
	JUN	324	11	-´	89	12		3.0
	JUL	198	6		110	12	<u> </u>	3.5
	ÁUG	231	7	1,440	75	12	46	2.4

EXHIBIT NO. <u>5-A</u>

CASE NO. <u>6598</u>

DATE: 2-25:79

PRODUCTION HISTORY - OTERO-GALLUP POOL
APACHE FEDERAL LEASE, WELL NOS. 8 AND 9
RIO ARRIBA COUNTY, NEW MEXICO
GULF OIL CORPORATION
PAGE TWO

		Wel	1 No. 8		Well No. 9			
			DAILY AVERAGE				DAILY A	VERAGE
		GAS (MCF)	GAS (MCFPD)	GAS (MCF)	OIL (BBLS)	WATER (BBLS)	GAS (MCFPD)	CIL (BOPD)
	SEPT	330	11	1,052	57	10	35	1.9
	OCT	875	28	1,661	90	20	54	2.9
	NOV	904	30	1,144	62	20	38	2.1
	DEC	687	22	1,163	63	25	38	2.0_
ANNUAL	· · · · · · · · · · · · · · · · · · ·	5,189	14	12,460	915	148	34	2.5
1963								
	JAN	308	10	1,551	86	·	50	2.8
	FEB	549	20	1,107	60		40	2.1
	MAR	815	26	794	43		26	1.4
	APR	580	19	276	15		9	0.5
	MAY	1,019	33	1,551	82		50	2.6
	JUN	829	28	1,366	74		46	2.5
	JUL	818	26	1,458	76		47	2.5
	AUG	733	24	1,514	82		49	2.6
	SEPT	452	15	1,144	62		38	2.1
	OCT	751	24	2,040	67		66	2.2
	NOV	811	27	1,290	43		43	1.4
	DEC	733	24	1,110	37		36	1.2
ANNUAL		8,398	23	15,201	727		42	2.0
1964								
	JAN	867	28	2,130	74		69	2.4
	FEB	471	16	2,550	85		91	3.0
	MAR	409	13	1,140	38		37	1.2
	APR	901	30	1,290	43		43	1.4
	MAY	522	17					• •

EXHIBIT NO. <u>5-A</u>
CASE NO. <u>6598</u>
DATE: 7-25-79

PRODUCTION HISTORY - OTERO-GALLUP POOL APACHE FEDERAL LEASE, WELL NOS. 8 AND 9 RIO ARRIBA COUNTY, NEW MEXICO

GULF OIL CORPORATION PAGE THREE

	Wel	1 No. 8		Well No. 9			
	GAS (MCF)	DAILY AVERAGE GAS (MCFPD)	CAS (MCF)	OIL (BBLS)	WATER (BBLS)	DAILYA GAS (MCFPD)	VERAGE) OIL (BOID)
JUN	363	12	1,200	40		40	1.3
JUL	553	18					
AUG	390	13		; 			
SEPT	386	13					
OCT	754	24		·			- -
NOV	655	22	~				
DEC	496	16					
ANNUAL	6,767	19	8,310	280		55	1.9

would commet of Dist super probably subt known Dak prod from betal and allocate betal and allocate

/

. . . .

•

.

.

ŧ

UTTER NOSESC POR

EXHIBIT NO. 5-B

CASE NO. 6598

DATE: 7-25-79

PRODUCTION HISTORY - BASIN DAKOTA POOL APACHE FEDERAL LEASE, WELL NOS. 8 AND 9 RIO ARRIBA COUNTY, NEW MEXICO GULF OIL CORPORATION

	1976 1977	1975	1973 1974	1972	1971	1970	1969	1968	1967	1066	1065	1964	1963	1962	1961	1960	
FEB MAR APR MAY JUN JUL AUG SEPT OCT NOV DEC ANNUAL	TAN																
2,985 4,238 5,054 4,489 2,627 5,027 4,775 4,936 4,471 3,191 5,138 5,138	55,664 4.599	56,030	63,001 61.357	65,156	65,878	62,260	69,898	69,415	81,178	73 20%	87 2/8	90, 964	5,4,352	71,111	73,960	32,061	GAS (MCF)
45 45 45 42 42 32 33 88 81	702 45	663	866 830	895	862	995	970	1,242	1.352	1 195	1 545	1.318	651	1,451	1,622	763	OIL (BBLS)
107 145 145 145 162 154 156 166	153 168	154	1/3 168	179	180	171	192	190	22:2	ب ا ا	220	24.9	163	195	203	356*	GAS (MCFPD)
1.6 1.4 1.9 1.0 0.8 1.3 1.3		1.8	•	•	•	-	-	•	•			•	•	•	4.4	8.5*	OIL (BOPD)
4, 237 5, 446 5, 037 4, 507 3, 837 5, 609 4, 752 5, 086 4, 647 3, 789 4, 761 57, 125	5,417	65,307	68,326	75,647	85,589	78,255	87,216	97,338	103,168	101,785	124,015	99,933	65,347	99,653	62,062	1	GAS (MCF)
20 17 8 12 20 25 12 20 18 17 18	30	32 3 9 7 9	334	403	234	413	431	561	457	581	733	586	511	739	507	1 1	C. (BBLS)
151 176 168 145 128 128 153 170 150 126 154	175	179 169	187	207 187	234	214	239	267	283	279	340	274	179	273	1/0	1 1 1 1	CIAS (MCFPD)
0.0000000000000000000000000000000000000	1.0	0.0	0.9	0 c	• •	, <u>, , , , , , , , , , , , , , , , , , </u>	1.2	т. Гл	1.3	1.6	2.0	1.6	1.4	2.0		4 1 ~ 1	OIL (BCPD)

Well No. 8 DAILY AVERAGE DAILY AVERAGE
CAS (MCFPD) OIL (BCPD)

Well No. 9

The state of the s

EXHIBIT NO.

CASE POOL

APACHE FEDERAL LEASE, WELL NOS. 8 AND 9

RIO ARRIBA COUNTY, NEW MEXICO

GULF OIL CORPORATION

PAGE TWO

1979	1978	
JAN	JAN FEB MAR APR MAY JUN JUL AUG SEPT OCT NOV DEC ANNUAL	
4,271	4,377 4,445 4,379 3,775 4,582 4,100 4,839 4,876 4,028 4,028 4,706 3,196 3,196 3,797	GAS (MCF)
14	40 47 50 54 54 54 54 54 54 54 54	Well No. 8 D L OIL (BBLS) GAN
147	151 159 190 126 148 137 156 157 183 152 107 141	DAILYAVERA GAS (MCFPD)** OIL (
0.5	1.4 1.4 1.3 1.5 1.7	OIL (BOPD)**
4,380	4,695 4,722 4,580 4,157 4,264 3,955 4,358 4,432 3,549 4,319 3,330 3,846 50,207	GAS (MCF)
&	18 45 18 18 17 17 22 31 285	Well No. 9 OIL (BBLS) GA
156	151 148 139 138 132 141 143 118 139 1111 124	DAILY AVERAG GAS (MCFPD)** OIL (BOP
0.3	0.8 0.6 0.6 0.7 0.7 0.8	VERAGE OIL (BOPD)**

** Number of producing days varies - not always full month.

^{* 90} Days.

EXHIBIT NO. 5-B

CASE NO. 6578

DATE: 7-25-79

PRODUCTION HISTORY - BASIN DAKOTA POOL APACHE FEDERAL LEASE, WELL NOS. 8 AND 9 RIO ARRIBA COUNTY, NEW MEXICO GULF OIL CORPORATION

PAGE TWC

1979											1978			
JAN	DEC	OCT NOV	SEPT	AUG		NUL	YAY	APR	MAR	FEB	JAN			
4,271	3,797 51,100	4,706 3,196	4,028	4.876	4.839	4,100	4,582	3,775	4,379	4,445	4,377	GIS (MCF)		
14	575	63 50	34	59	54	ა ა	43	65	47	38	40	OIL (BBLS)		Well No. 8
147	141	152 107	183	157	156	137	148	126	190	159	151	GAS (MCFPD) ** OIL (B	DAILY AV	No. 8
0.5	1.6	2.0 1.7	1.5	1.9	1.7	1.3	1.4	2,2	2.0	1.4	1.4	OIL (BOPD)**	ERAGE	
4,380	3,846 50,207	4,319 3,330	3,549	4,432	4,358	3,955	4,264	4,157	4,580	4,722	4,695	GAS (MCF)		
œ	285	31 24	19	22	23	17	18	25	45	18	25	OIL (BBLS)		Well No. 9
156	146	139 111	118	143	141	132	138	139	148	157	151	GAS (MCFPD)**	DAILY AVERAG	Vo. 9
0.3	0.7	0.8	• • • •	0.7	0.7	0.6	0.6	0.0	2.0	0.6	0.8	OIL (FOPD) **	VERAGE	

^{* 90} Days.

^{**} Number of producing days varies - not always full month.

EXHIBIT NO. 5-A

CASE NO. 6598

DATE: 7-25-79

PRODUCTION HISTORY - OTERO-GALLUP POOL APACHE FEDERAL LEASE, WELL NOS. 8 AND 9

RIO ARRIBA COUNTY, NEW MEXICO

GULF OIL CORPORATION

PAGE THREE

	Wei	ĺ No. 8		Well No. 9		DAILYA	VERAGE
	GAS (MCF)	DAILY AVERAGE GAS (MCFPD)	GAS (MCF)	OIL (BBLS)	WATER (BBLS)	GAS (MCFPD)	OIL (BOPD)
JUN JUL AUG SEPT OCT NOV	363 553 390 386 754 655	12 18 13 13 24 22	1,200	40 	 	40 	1.3
DEC.	496 6,767	<u>16</u> 19	8,310	280	- T	55	1.9

EXHIBIT NO.__CASE NO. ___

DATE: 7-25-79

PRODUCTION HISTORY - OTERO-GALLUP POOL APACHE FEDERAL LEASE, WELL NOS. 8 AND 9

RIO ARRIBA COUNTY, NEW MEXICO
GULF OIL CORPORATION

PAGE TWO

		Well	No. 8		Well No. 9			
			DAILY AVERAGE				DAILY A	VERAGE
	GAS	(MCF)	GAS (MCFPD)	GAS (MCF)	OIL (BBLS)	WATER (BBLS)	GAS (MCFPD)	OIL (BOPD)
SE	PT 3	330	11	1,052	57	10	35	1.9
OC	T 8	375	28	1,661	90	20	54	2.9
NO	V 9	904	30	1,144	62	20	38	2.1
DE	C	587	22	1,163	63	25	38	$\frac{2.0}{2.5}$
ANNUAL	5,1	189	14	12,460	915	148	34	2.5
1963								
JA	N :	308	10	1,551	86		50	2.8
FE	В .	549	20	1,107	60		40	2.1
MA	R 8	315	26	794	43		26	1.4
AP	r <u> </u>	580	19	276	1 5		9	0.5
MA	Y 1,0	019	33	1,551	82		50	2.6
JU	N 8	329	28	1,366	74		46	2.5
JU	L S	818	26	1,458	76		4.7	2.5
AU	G	733	24	1,514	82		49	2.6
SE	PT 4	452	15	1,144	62		38	2.1
OC	T	751	24	2,040	67		66	2.2
NO		311	27	1,290	43		43	1.4
DE		733	24	1,110	37		<u>36</u> 42	1.2
ANNUAL	8,3	398	23	15,201	727		42	2.0
1964								
JA	n 8	867	28	2,130	74		69	2.4
FE	B 4	471	16	2,550	35		91	3.0
MA	R	409	13	1,140	38		3 7	1.2
AF	R !	901	30	1,290	43		43	1.4
MA	Y .	522	17					

Amerada - Hess Corporation Post Office Drawer 840 Seminole, Texas 79360 ATTN: Mr. Grant Miller

Supron Energy Corporation Building 5, Fifth Floor 10,300 N. Central Expressway Dallas, Texas 75231 ATTN: Mr. Haskell Fleetwood

American Petrofina Company Post Office Box 1311 Big Spring, Texas 79720 ATTN: Mr. R. C. Bott

Merrion & Bayless Post Office Box 1541 Farmington, New Mexico 87401

United States Geological Survey Federal Building 701 Camino Del Rio Durango, Colorado 81301 Continental Oil Company Post Office Box 460 Hobbs, New Mexico 88240 ATTN: Mrs. Katie Jiminez

Getty Oil Company Post Office Box 1231 Midland, Texas 79702 ATTN: Mr. Joe King

El Paso Natural Gas Company Post Office Box 1492 El Paso, Texas 79978 ATTN: Mr. Bob Manning

Amerada - Hess Corporation Post Office Drawer 840 Seminole, Texas 79360 ATTN: Mr. Grant Miller

Supron Energy Corporation Building 5, Fifth Floor 10,300 N. Central Expressway Dallas, Texas 75231 ATTN: Mr. Haskell Fleetwood

American Petrofina Company Post Office Box 1311 Big Spring, Texas 79720 ATTN: Mr. R. C. Bott

Merrion & Bayless Post Office Box 1541 Farmington, New Mexico 87401

United States Geological Survey Federal Building 701 Camino Del Rio Durango, Colorado 81301 Continental Oil Company Post Office Box 460 Hobbs, New Mexico 88240 ATTN: Mrs. Katie Jiminez

Getty Oil Company Post Office Box 1231 Midland, Texas 79702 ATTN: Mr. Joe King

El Paso Natural Gas Company Post Office Box 1492 El Paso, Texas 79978 ATTN: Mr. Bob Manning

Amerada - Hess Corporation Post Office Drawer 840 Seminole, Texas 79360 ATTN: Mr. Grant Miller

Supron Energy Corporation Building 5, Fifth Floor 10,300 N. Central Expressway Dallas, Texas 75231 ATTN: Mr. Haskell Fleetwood

American Petrofina Company Post Office Box 1311 Big Spring, Texas 79720 ATTN: Mr. R. C. Bott

Merrion & Bayless Post Office Box 1541 Farmington, New Mexico 87401

United States Geological Survey Federal Building 701 Camino Del Rio Durango, Colorado 81301 Continental Oil Company Post Office Box 460 Hobbs, New Mexico 88240 ATTN: Mrs. Katie Jiminez

Getty Oil Company Post Office Box 1231 Midland, Texas 79702 ATTN: Mr. Joe King

El Paso Natural Gas Company Post Office Box 1492 El Paso, Texas 79978 ATTN: Mr. Bob Manning

July 2, 1979

Case 6598

New Mexico Oil Conservation Division P.O. Box 2088 Santa Fe, NM 87501

ROBERT L. BAYLESS

ATTN: Mr. Joe D. Ramey

RE: Exception to Rule 303A, Downhole Commingling Request. OCD - Dist. 3

Gentlemen:

Regarding the June 28 letter from Gulf Oil Exploration and Production Company to you requesting a hearing to be set to consider an exception to the above referred to Rule on their Apache Federal Lease well nos. 8 & 9, Merrion & Bayless has no objection to this downhole commingling.

Yours truly,

MERRION & BAYLESS

RLB/pb

xc: Gulf Oil

Gulf Oil Exploration and Production Company

J. M. Thacker
GENERAL MANAGER PRODUCTION
SOUTHWEST DISTRICT

June 28, 1979

OIL CONSERVATION DIVISION

Post Office Box 2088
Santa Fe, New Mexico 87501

ATTENTION: Mr. Joe D. Ramey

New Mexico Oil Conservation Division

. - 1 000 - 1 1

RE: Exception to Rule 303A, Downhole Commingling Request. OCD - District 3.

Gentlemen:

Gulf Oil Corporation proposes to downhole commingle production from the Otero Gallup oil zone and the Basin Dakota gas zone in our Apache Federal Lease (Jicarilla Tribe Contract No. 69) Well Nos. 8 and 9, located in Sections 8 and 17 of T-24-N, R-5-W in Rio Arriba County, New Mexico.

Gulf respectfully requests that a hearing be set at the earliest possible time to consider an exception to Statewide Rule 303A which would grant authority to downhole commingle the two subject zones in our Apache Federal Well Nos. 8 and 9. Offset operators and the USGS are being notified by copy of this letter.

Yours very truly,

R. H. PEACOCK
Manager-Operations

BSS:kag

cc: NHOCD - District 3

USGS

Offset Operators (9)

A DIVISION OF GULF OIL CORPORATION

Amerada - Hess Corporation Post Office Drawer 840 Seminole, Texas 79360 ATTN: Mr. Grant Miller

Supron Energy Corporation Building 5, Fifth Floor 10,300 N. Central Expressway Dallas, Texas 75231 ATTN: Mr. Haskell Fleetwood

American Petrofina Company Post Office Box 1311 Big Spring, Texas 79720 ATTN: Mr. R. C. Bott

Merrion & Bayless Post Office Box 1541 Farmington, New Mexico 87401

United States Geological Survey Federal Building 701 Camino Del Rio Durango, Colorado 81301 Continental Oil Company On Signature Oil Company On Signature Oil Company Oil Signature Oil Company Oil Signature Oil Company Oil Signature Oil Company Oil Continental Oil Contin

Getty Oil Company Post Office Box 1231 Midland, Texas 79702 ATTN: Mr. Joe King

El Paso Natural Gas Company Post Office Box 1492 El Paso, Texas 79978 ATTN: Mr. Bob Manning

STATE OF NEW MEXICO ENERGY AND MINERALS DEPARTMENT OIL CONSERVATION DIVISION

IN THE MAITER OF THE HEARING CALLED BY THE OIL CONSERVATION DIVISION FOR THE PURPOSE OF CONSTRERING:

CASE NO. 6598
Order No. <u>R-6076</u>
APPLICATION OF GULF OIL CORPORATION
FOR DOWNHOLE COMMINGLING, RIO ARRIBA
ORDER OF THE DIVISION
BY THE DIVISION:
This cause came on for hearing at 9 a.m. on July 25
19 79 , at Santa Fe, New Mexico, before Examiner Daniel S.
Nutter •
NOW, on this day of August, 19 79, the
Division Director, having considered the testimony, the record,
and the recommendations of the Examiner, and being fully
advised in the premises,
FINDS:
(1) That due public notice having been given as required
by law, the Division has jurisdiction of this cause and the
subject matter thereof.
(2) That the applicant, Gulf Oil Corporation , is
the owner and operator of the Apache Federal Wells No. 8
nd No. 9 located in Unit D of Section 17, both in located in Unit D of Section 8/ , Township 24 North
Range 5 West , NMPM, Rio Arriba County, New Mexico.
(3) That the applicant seeks authority to commingle
Otero-Gallup and Basin Dakota production
within the wellbores of the above-described wells.

(4) That from thezone, the
subject well is capable of low marginal production only.
(5) That from the Basin-Dakota zone, the
subject well is capable of low marginal production only.
(6) That the proposed commingling may result in the recover
of additional hydrocarbons from each of the subject pools, thereb
preventing waste, and will not violate correlative rights.
(7) That the reservoir characteristics of each of the
subject zones are such that underground waste would not be caused
by the proposed commingling provided that the well is not shut-in
for an extended period.
(8) That to afford the Division the opportunity to ssess
the potential for waste and to expeditiously order appropriate
remedial action, the operator should notify the Aztec
district office of the Division any time the subject well is
shut-in for 7 consecutive days.
(9) That in order to allocate the commingled production
to each of the commingled zones in the subject well.
percent of the commingledpreduction should be
allocated to the Otero-Gallup zone, and
percent of the commingled production to the
Pasin-Daketa zone.
(ALTERNATE)
(9) That in order to allocate the commingled production to
each of the commingled zones in the wells, applicant should
consult with the supervisor of the Aztec district office
consult with the supervisor of the Aztec district office of the Division and determine an allocation formula for each of
of the Division and determine an allocation formula for each of
of the Division and determine an allocation formula for each of
of the Division and determine an allocation formula for each of

į.

ことのとうとはなるとのなるとなるとはない

IT IS THEREFORE ORDERED:

(1) That th applicant, Gulf Oil Corporation , is
hereby authorized to commingle Otero-Gallup and
Basin-Dakota production within the wellbore of
the Apache Federal Wells No. 8 , located in Unit D of and No. 9 located in Unit D of Section 17, both in Section 8/ , Township 24 North , Range 5 West ,
NMPM, Rio Arriba County, New Mexico.
(2) That the applicant shall consult with the Supervisor
of the Aztec district office of the Division and
determine an allocation formula for the allocation of production
to each zone in each of the subject wells.
(ALTERNATE)
(2) That percent of the commingled
production shall be allocated to the Otero-Gallup
Otero-Gallin
zone and percent of the commingled
zone and percent of the commingled
production shall be allocated to the Basin-Dakota
production shall be allocated to the Basin-Dakota
production shall be allocated to the Basin-Dakota
production shall be allocated to the Basin-Dakota zone. (3) That the operator of the subject well shall immediately
production shall be allocated to the
production shall 1 allocated to theBasin-Dakota zone. (3) That the operator of the subject well shall immediately notify the Division'sAztec district office any time the well has been shut-in for 7 consecutive days and shall concurrently
production shall 1 allocated to theBasin-Dakota zone. (3) That the operator of the subject well shall immediately notify the Division'sAztec district office any time the well has been shut-in for 7 consecutive days and shall concurrently present, to the Division, a plan for remedial action.
production shall 1 allocated to theBasin-Dakota zone. (3) That the operator of the subject well shall immediately notify the Division'sAztec district office any time the well has been shut-in for 7 consecutive days and shall concurrently present, to the Division, a plan for remedial action. (4) That jurisdiction of this cause is retained for the
production shall be allocated to theBasin-Dakota zone. (3) That the operator of the subject well shall immediately notify the Division'sAztec district office any time the well has been shut-in for 7 consecutive days and shall concurrently present, to the Division, a plan for remedial action. (4) That jurisdiction of this cause is retained for the entry of such further orders as the Division may deem necessary.