CASE NO.

6608

APPlication,
Transcripts,
Small Exhibits,

ETC.

STATE OF NEW MEXICO ENERGY AND MINERALS DEPARTMENT OIL CONSERVATION DIVISION State Land Office Building Santa Fe, New Mexico 25 July 1979

EXAMINER HEARING

IN THE MATTER OF:

Application of Getty Oil Company for a dual completion, Lea County, New Mexico,

CASE 6607

Application of Getty Oil Company for pool) creation and special pool rules, Lea County, New Mexico.

CASE 6608

BEFORE: Daniel S. Nutter

TRANSCRIPT OF HEARING

APPEARANCES

For the Oil Conservation Division:

Ernest L. Padilla, Esq. Legal Counsel for the Division State Land Office Bldg. Santa Fe, New Mexico 87503

For the Applicant:

William F. Carr, Esq. CAMPBELL AND BLACK P. A. Jefferson Place Santa Fe, New Mexico 87501

11

12

13

14

15

17

18

19

20

INDEX

20

21

H. W. TERRY

Direct Examination by Mr. Carr	3
Cross Examination by Mr. Nutter	11

EXHIBITS

Applicant Exhibit One, Plat	5
Applicant Exhibit Two, Log	5
Applicant Exhibit Three, Sketch	6
Applicant Exhibit Four, Report	6
Applicant Exhibit Five, Cross Section	8

11

15

18 19

21

23

24

25

MR. NUTTER: We'll call next Case Number

6607.

MR. PADILLA: Application of Getty Oil Company for a dual completion, Lea County, New Mexico.

MR. CARR: Mr. Examiner, inasmuch as this and the following case involve the same well and the testimony would overlap, we would request that the cases be consolidated for the purpose of testimony.

MR. NUTTER: At this time we'll call Case Number 6608.

MR. PADILLA: Application of Getty Oil Company for pool creation and special pool rules, Lea County, New Mexico.

MR. NUTTER: Cases Numbers 6607 and 6608 will be consolidated for purposes of hearing.

Please proceed.

MR. CARR: Mr. Examiner, I'd like the record to reflect that the witness is the same witness who testified in the previous hearing and that he is under oath.

MR. NUTTER: Mr. Terry is still under oath.

H. W. TERRY

being called as a witness and having been duly sworn upon his oath, testified as follows, to-wit:

20 22

LLY WALTON BOYD FFED SHORTHAND REPORTER Plass Blanca (605) 471-2413 ata Fe, New Messico 87841

7

10

11

12

13

15

16

17

18

19

20

21

22

23

24

25

DIRECT EXAMINATION

BY MR. CARR:

- Q Will you state your full name?
- A. My name is Herman W. Terry.
- And you are the same Mr. Terry who testified in the previous case.
 - A. Yes, I am.
- Q Are you familiar with the application in the cases which have been consolidated in this hearing?
 - A. Yes, I am.

MR. CARR: Mr. Examiner, are the witness' qualifications acceptable?

MR. NUTTER: Yes, they are.

- Q (Mr. Carr continuing.) Will you briefly state, Mr. Terry, what Getty is seeking with these applications?
- A It's seeking approval for dual completion in our Getty 36 State Com Well No. 1 in the Morrow and Wolfcamp formations, creation of a new Wolfcamp oil pool and special temporary pool rules for the Wolfcamp, which include 160-acre spacing for the Wolfcamp.
- Mr. Terry, will you refer to what has been marked for identification as Getty's Exhibit Number One and explain to the Examiner what this is and what it shows?

10

11

12

13

15

16

17

20

21

22

23

24

A.	This is a plat of a portion of the Grama	ı
Ridge East Fiel	ld, showing the wells in the area. It's be	er
contoured on th	he top of the Wolfcamp marker.	

- And does this plat reflect the location of the subject well?
- A Yes, it does. The well is located 1980 feet from the north line, 1650 feet from the west line, Section 36, Township 21 South, Range 34 East.
- Q Mr. Terry, are there other Wolfcamp wells or pools in the area?
 - A No, there are not.
- Q Are there other dual completions in the area?
- A Yes, there are other dual completions but not in the Wolfcamp and the Morrow.
- Q Are there other wells in the immediate vicinity which are completed in the same zones as the two zones in the GEtty 36?
 - A Not in the same two zones. No.
- Q. Will you now refer to what has been marked as Exhibit Number Two and review this for the Examiner?
- A This is a compensated neutron formation density for the Getty 36 State Com Well No. 1. The perforations in both the Wolfcamp and the Morrow have been marked. It shows good porosity through the Wolfcamp zone.

12

13

15

16

17

19

20

21

22

23

24

25

	(ን	Now	will	you	refe	r to	Getty's	Exhibit	Num-
ber	Three	and	review	this	for	the	Exam	iner?		

This is a diagrammatic sketch of our Getty 36 State Com Well No. 1, showing the completion of the well. We have -- we have two tubing strings, both 2-3/8ths. We have a Baker Model DD packer set at 12,000 feet; five 20-foot blast joints. Our multiple perforations are shown at 12,940 to 950. The short string side, the Wolfcamp perforations are at 17:320 to 11,335. We have a Baker Model AL-5 dual packer set at 10,505. We have a 4-1/2 inch 11.6 pound S-95 liner set at 13,349, cemented with 255 sacks.

In your opinion does this completion conform to good engineering practices and will it effectively prevent communication between the zones?

A Yes, it will.

MR. NUTTER: What is the depth of that liner again?

A 13,349.

MR. NUTTER: Thank you.

Mr. Terry, in your opinion is the method of completion the best way to complete this well for the recovery of the hydrocarbons in the two zones involved?

A It's the most economical way.

Q Will you now refer to what has been marked for identification as Exhibit Number Four and review this

LLY WALTON BOYD PRED SHORTHAND REPORTER Plans Blacon (1615) 471-441 hts Po., New Mondon 1759.

11

12

13

15

17

18

19

20

21

for the Examiner?

Exhibit Number Four is a bottom hole pressure report for bottom hole pressure test that we ran in the Wolfcamp. We flowed the Wolfcamp approximately 3-1/2 hours. The well had been shut in for approximately an hour when the bomb was set at 10,450.

It shows a bottom hole pressure of 7057 at this depth and it gives an indication of excellent permeability in the Wolfcamp.

- Q Did you take other tests on the well?
- A. We flow tested the well. The Wolfcamp produced at a rate of 4,232,000 cubic feet of gas per day and 685 barrels of oil per day.
 - What sort of a GOR does this give?
 - A This is approximately a 6000-to-1.
- @ Mr. Terry, are you convinced that you have
 an oil reservoir here?
 - A No, we're not convinced that it is oil.
- Q And that is the reason you are requesting that the rules be temporary.
- A. We are requesting that the rules be temporary and the case be re-opened in December after we've obtained more data on the reservoir.
- At the present time, based on the information you've been able to gain from the tests you've run on

SALLY WALTON BOYE
CENTIFIED SHONTHAND REPORTE
3)39 Place (6-6) A11-446
Smale Pe, New Mordon 37101

10

11

12

13

15

16

17

19

20

21

22

23

24

the Wolfcamp, what conclusions can you reach about it?

A The Wolfcamp appears to have good permeability and porosity. It appears to be very evident that one well will drain 160 acres.

- A Have you run any tests on the Morrow?
- A The Morrow was flow tested. It flowed at a rate of 1,662,000 cubic feet of gas per day; 36 barrels of condensate per day.
- Q Will Getty run tests to assure that there is no communication between the zones in this well and report those tests to the Commission?
 - A Yes, we will.
- Q Will the well be produced to assure no commingling of the hydrocarbons?
 - A Yes, it will.
- Are you planning to meter each zone separately?
 - A Yes, we will.
- Q. And it will be quipped so that the pressure of each of the separate reservoirs may be determined?
 - A Yes, it will.
- A This is Stepco cross section of the East

 Grama Ridge Field, showing the Getty State 36 Com Well NO.

10

11

12

13

14

15

16

17

18

20

21

22

23

24

l and several other wells in the area.

From this, this indicates that there aren't any other wells completed in the Wolfcamp in this area.

Q This also contains a log of the Getty 35 State Well, is that correct?

A That's correct.

Q And it shows the Bone Springs completion in that well.

A. Yes, sir.

MR. NUTTER: Now which are the 36 State and the 35 State in this exhibit?

A Right up at the top.

MR. NUTTER: Well, it's too far away. I can't read it.

A Okay, the 36 State is the -- the 36 is the fourth one from the left; the 35 is the third one from the left.

MR. NUTTER: Okay.

A. And the perforations in both wells are marked.

Mr. Terry, what area are you requesting be included in this new pool?

The northwest quarter section of Section 36.

And this acreage in the Wolfcamp has been

10

11

12

13

74

15

16

17

18

19

20

21

proven productive of hydrocarbons, is that correct?

- A We feel that it has from the flow tests.
- Q Do you believe that granting this application will avoid the drilling of unnecessary wells and also reduce the risk of drilling an excessive number of wells?
 - A Yes, it will.
- Q Do you have a recommendation to make to the Examiner as to the spacing of wells in the nex pool?
- A. That any well be not closer than 660 feet to a quarter section line, nor closer than 330 feet to a quarter quarter section line.
- And, Mr. Terry, in your opinion will granting this application be in the interest of conservation, the prevention of waste, and the protection of correlative rights?
 - A Yes, sir.

Five will be admitted in evidence.

- Q Were Exhibits One through Five prepared by you or under your direction and supervision?
 - A Yes, they were.

MR. CARR: At this time, Mr. Examiner, I would offer into evidence Getty Exhibits One through Five.

MR. NUTTER: Getty Exhibits One through

Now, Mr. Terry -- are you through?

MR. CARR: Yes, sir, I am.

CROSS EXAMINATION

BY MR. NUTTER:

Mr. Terry, on this cross section it appears that the lower producing interval is the exact equivalent in each of the two wells.

A. Yes, sir, in the Morrow.

Then when you look at the upper zone that is dually completed, the 35 - 1 is up there in the Bone Springs, I believe it is.

A Yes, sir, that's correct.

And you're completed here in the Wolfcamp formation.

Now, that one in the Bone Springs is definitely an oil well, isn't it?

A It's definitely an oil well. There's no question about it.

Q And this Wolfcamp may or may not be an cil well or a gas well. You haven't decided yet.

A We haven't. We're not sure either way.

Q Well, your GOR is 6000-to-1. What is the gravity of this 685 barrels per day that you're producing?

A The gravity is 49.4. It's a clear liquid.

Q It would have the appearance of a condensate.

A Yes, sir.

SALLY WALLON BOYOUTER CENTIFIED SWOTHAND REPORTER 2021 Plats Shock (506) 471-446. Sinth Fe, New Mexico 37101

11

12

13

15

16

17

18

19

20

25

Even though the gravity may not indicate

SALLY WALTON BOY CERTIFIED SHORTHAND REPORT 1920 Par. Banca (605) 411-24 1

2

it.

10

11

12

13

14

15

16

17

18

19

21

22

23

A.	In	December	of	this	year.
----	----	----------	----	------	-------

Q So that would actually be less than six months in duration, or maybe the rules would be in effect approximately six months.

- A That's right.
- Q. Does either zone make water, Mr. Terry?
- A. Very little. It would be -- the Morrow made just a slight amount. The Wolfcamp was almost too small to measure.

MR. NUTTER: Are there any further questions of Mr. Terry?

He may be excused.

Do you have anything further, Mr. Carr?

MR. CARR: Nothing further, Mr. Examiner.

MR. NUTTER: Does anyone have anything they wish to offer in Case Number 6607 and 6608?

We'll the cases under advisement.

(Hearing concluded.)

REPORTER'S CERTIFICATE

I, SALLY WALTON BOYD, a Court Reporter, DO HEREBY
CERTIFY that the foregoing and attached Transcript of
Hearing before the Oil Conservation Division was reported
by me; that said transcript is a full, true, and correct
record of the hearing, prepared by me to the best of my
ability, knowledge, and skill, from my notes taken at the
time of the hearing.

Sally W. Boyd, C.S.R.

I do hereby certify that the foregoing is a complete record of the proceedings in the Examiner hearing of Case No. 607 6608

Oil Conservation Division Examiner

SALLY WALTON BOYD
ENTIFE SHOATHAND REPORTER
OUT PLANT BLANCE (515) 471-2462
Hanta Po. Now Morico 11161

CORE LABORATORIES, INC. Potrolous Reservoir Engineering DALLAS, TEXAS

Preliminary Report

for

GETTY OIL COMPANY

State 36 No. 1 Well Wildcat Lea County, New Mexico

BEFORE EXAMINER NUTTER
OIL CONSERVATION DIVISION

GETTY EXHIBIT NO. F

CASE NO. 6608 respected

CORE LABORATORIES, INC. Petroleum Reservoir Engineering

DALLAS TEXAS 75207 November 15, 1979

RESERVOIR FLUID DIVISION

Getty Oil Company
P. O. Box 730
Hobbs, New Mexico 88240

Attention: Mr. Peter Botes

Subject: Preliminary Report Reservoir Fluid Study

State 36 No. 1 Well

Wildcat

Lea County, New Mexico Our File Number: RFL 79619

Gentlemen:

Duplicate samples of separator gas and separator liquid were collected from the subject well by Tefteller, Inc. on September 9, 1979. These samples were forwarded to our Dallas laboratory for use in a reservoir fluid study. Presented in this preliminary report are the results obtained to date using these samples.

Upon arrival in the laboratory the separator gas was analyzed through heptanes plus using chromatography, while the separator liquid was also analyzed to heptanes plus using low temperature fractional distillation equipment along with chromatography. After the separator gas flow rate was corrected using factors which are shown on page one, the producing gas-liquid ratio was calculated to be 4438 cubic feet of separator gas at 15.025 psia and 60°F. per barrel of stock tank liquid at 60°F. In the laboratory it was determined that this was the equivalent of 3588 standard cubic feet of separator gas per barrel of separator liquid at 490 psig and 78°F. The measured compositions of the separator products were used in conjunction with this producing gas-liquid ratio to calculate the composition of the producing well stream material. These compositions are shown on page two. In the laboratory the separator products were physically recombined to this producing gas-liquid ratio for use in the entire reservoir fluid study.

A portion of the reservoir fluid was charged to a high pressure visual cell and heated to the reservoir temperature of 196°F. During constant composition expansion pressure volume relations performed at this temperature, the fluid existed as a single phase gas at pressures above 5018 psig at which pressure a retrograde dew point was observed. A comparison of this dew point pressure to the reservoir pressure of 7255 psig indicates that the fluid currently exists in the reservoir in an undersaturated condition. The results of the pressure volume relation measurements are shown on page three.

The sample in the cell was repressured to a single phase condition after which it was subjected to a constant volume depletion. After the sample volume was established at the dew point pressure, the sample was subjected to a series of pressure expansions and constant pressure displacements with each displacement terminating at the original sample volume at the dew point pressure. During each of these displacements the volume of retrograde liquid accumulation was monitored.

Getty Oil Company State 36 No. 1 Well

These data presented on pages four and five show that the maximum accumulation is approximately 37.1 percent of the hydrocarbon pore space occurring at approximately 3150 psig. The liquid phase saturation at 0 pressure and 196°F. was 24.5 percent of the hydrocarbon pore space.

The constant volume depletion will be performed in our laboratory one more time in a similar manner described above, however, instead of measuring the liquid accumulation, the main purpose of the second depletion will be to analyze the equilibrium gas phase produced at various depletion pressure points. Volumetric data such as expansions from reservoir conditions to atmospheric conditions will also be measured at this time. These data will be sent to you as soon as it is completed.

We wish to thank Getty Oil Company for this opportunity to be of service. If you should have any questions regarding these data or if we may be of further assistance, please do not hesitate to contact us.

Very truly yours,

Core Laboratories, Inc.

P. L. Moses, Manager Reservoir Fluid Analysis

PLM:FBV:sm
6 cc.-Addressee
1 cc.-Mr. Jim Eakin
Getty Oil Co.
P. O. Box 1231
Midland, Texas 79702

CORE LABORATORIES, INC.

Petroleum Reservoir Engineering DALLAS, TEXAS 75707

Company Getty Oil Company Date Sampled September 9, 1979			× 48 ·
State State State State State New Mexico			File RFL 79619
State State State State New Mexico	Company Getty Oil Company	Date Sampled	September 9, 1979
Field Wildcat State New Mexico	Well State 36 No. 1		
FORMATION CHARACTERISTICS			
Note			
Date First Well Completed Original Reservoir Pressure Original Produced Gas-Liquid Ratio 5082 7255 PSIG ® 11328 Ft.	FORMATION (CHARACTERISTICS	
Original Reservoir Pressure		_Wolf	Camp
Original Produced Gas-Liquid Ratio Froduction Rate Following Bottom Hole Pressure Gange Following Bottom Hole Pressure Gange Following Bottom Hole Pressure Following Bottom Hole Pressure Following Separator Pressure Following Separator Pressure Following Separator Temperature Following Separ			, 19 79
Production Rate Separator Pressure and Temperature Liquid Gravity at 60°F. 49.7		_7255	
Separator Pressure and Temperature Liquid Gravity at 60°F. 49.7		_5082	
Liquid Gravity at 60°F. 49.7 7636 Ft. Subsea			
Name			
NELL CHARACTERISTICS	· · · · · · · · · · · · · · · · · · ·		
SAMPLING CONDITIONS Ft.	Datum	<u> 7636</u>	Ft.Subsea
Total Depth 13266 PBTD	WELL CHAI	RACTERISTICS	
Total Depth	Elevation	3692	r KB Ft.
Producing Interval 11320-11335	Total Depth		
Tubing Size and Depth	Producing Interval		
Open Flow Potential 7.82 (Estimated) MMSCF/Day Last Reservoir Pressure Date 255 6846 PSIG © 11328 Ft. Reservoir Temperature September 12 , 19 79 Ft. Status of Well Flowing Fr. © 10505 Ft. Flowing Tubing Pressure Amerada Amerada PSIG Flowing Bottom Hole Pressure 6092 PSIG Frimary Separator Pressure 490 PSIG Primary Separator Temperature 78 °F. Secondary Separator Pressure PSIG 78 °F. Secondary Separator Temperature 49.7 API © 60°F. PSIG Field Stock Tank Liquid Gravity 49.7 API © 60°F. API © 60°F. Primary Separator Gas Production Rate 2887 MSCF/Day Pressure Base 15.025 PSIA MSCF/Day Temperature Base 60 °F. Compressibility Factor (Fg) 1.0476 Bols/Day Gas Gravity (Laboratory) 0.688 Bols/Day Primary Separator Gas/Stock Tank Liquid Ratio	Tubing Size and Depth		'8 In. to 10495 Ft.
Last Reservoir Pressure Date Reservoir Temperature Status of Well Pressure Gauge SAMPLING CONDITIONS Flowing Tubing Pressure Flowing Bottom Hole Pressure Frimary Separator Pressure Secondary Separator Temperature Field Stock Tank Liquid Gravity Pressure Base Pressure Base Compressibility Factor (Fpv) Gas Gravity (Laboratory) Gas Gravity Factor (Fg) Stock Tank Liquid Production Rate @ 60 °F. Primary Separator Gas/Stock Tank Liquid Ratio Or 225.33 Bbls/MSCF/ September 12 September 12 September 12 187* °F. © 10505 Ft. September 12 187* °F. © 10505 PSIG 490 PSIG 490 PSIG 490 PSIG 490 PSIG 490 PSIG 692		· · · · · · · · · · · · · · · · · · ·	1.000.10
Reservoir Temperature Status of Well Pressure Gauge SAMPLING CONDITIONS Flowing Tubing Pressure Flowing Bottom Hole Pressure Frimary Separator Pressure Secondary Separator Temperature Field Stock Tank Liquid Gravity Primary Separator Gas Production Rate Pressure Base Compressibility Factor (Fpv) Gas Gravity (Laboratory) Gas Gravity Factor (Fg) Stock Tank Liquid Production Rate © 60 °F. Primary Separator Gas/Stock Tank Liquid Ratio Or September 12 187* °F. © 10505 Ft. 187* °F. © 10505 Ft. 6092 PSIG 6092 PSIG 6092 PSIG 78 6092 PSIG 78 6092 PSIG 78 6490 PSIG 6092 PSIG 78 FF. 61092 FF. 61092 FF. 61092 FF. 61092 FF. 61092 FF. 61093 FF.	Last Reservoir Pressure		6846 PSIG @ 11328 Ft.
Reservoir Temperature Status of Well Pressure Gauge SAMPLING CONDITIONS Flowing Tubing Pressure Flowing Bottom Hole Pressure Frimary Separator Pressure Primary Separator Temperature Secondary Separator Temperature Field Stock Tank Liquid Gravity Pressure Base Pressure Base Pressure Base Temperature Base Gas Gravity (Laboratory) Gas Gravity Factor (F _p) Primary Separator Gas/Stock Tank Liquid Ratio Or PSIGNAME Primary Separator Gas/Stock Tank Liquid Ratio Or PSIGNAME PROVING CONDITIONS PSIGNAME PSIG	Date	44/.	ember 12 , 19 79
SAMPLING CONDITIONS SAMPLING CONDITIONS		187*	
Flowing Tubing Pressure Flowing Bottom Hole Pressure Frimary Separator Pressure Primary Separator Temperature Secondary Separator Temperature Field Stock Tank Liquid Gravity Pressure Base Gas Gravity (Laboratory) Gas Gravity Factor (Fg) Stock Tank Liquid Production Rate e 60 °F. Primary Separator Gas/Stock Tank Liquid Ratio Or Stock Tank Liquid Production Rate e 60 °F. Primary Separator Gas/Stock Tank Liquid Ratio Or Stock Tank Liquid Production Rate e 60 °F. Bbls/MscF		Flow	ving
Flowing Tubing Pressure Flowing Bottom Hole Pressure Frimary Separator Pressure Primary Separator Temperature Secondary Separator Pressure Secondary Separator Temperature Field Stock Tank Liquid Gravity Primary Separator Gas Production Rate Pressure Base Temperature Base Compressibility Factor (Fpv) Gas Gravity (Laboratory) Gas Gravity Factor (Fg) Stock Tank Liquid Production Rate @ 60 °F. Bbls/Day SCF/Bbl SCF/Bbl Bbls/NMSCF	Pressure Gauge	Amer	ada
Flowing Bottom Hole Pressure Primary Separator Pressure Primary Separator Temperature Secondary Separator Pressure Secondary Separator Temperature Field Stock Tank Liquid Gravity Pressure Base Pressure Base Compressibility Factor (F _p) Gas Gravity (Laboratory) Gas Gravity Factor (F _p) Flowing Bottom Hole Pressure 490 78 78 Fr. 78 PSIG 49.7 API © 60°F. 2887 MSCF/Day 1.0477 0.688 1.0477 0.688 Gas Gravity (Laboratory) Gas Gravity Factor (F _p) Frimary Separator Gas/Stock Tank Liquid Ratio Primary Separator Gas/Stock Tank Liquid Ratio or 25.33 Bbls/MMSCF	SAMPLING	CONDITIONS	
Flowing Bottom Hole Pressure Primary Separator Pressure Primary Separator Temperature Secondary Separator Pressure Secondary Separator Temperature Field Stock Tank Liquid Gravity Pressure Base Pressure Base Compressibility Factor (Fp) Gas Gravity (Laboratory) Gas Gravity Factor (Fp) Finary Separator Gas Production Rate Compressibility Factor (Fp) Gas Gravity Factor (Fp) Gas Gravity Factor (Fp) Frimary Separator Gas/Stock Tank Liquid Ratio Or Compressibility Factor Gas/Stock Tank Liquid Ratio Compressibility Factor Gas/Stock Tank Liquid Ratio Gas/Stock Tank Liquid Ratio Gas/Stock Tank Liquid Ratio Gas/Stock Tank Liquid Ratio Gas/Stock Tank Liqui	Flowing Tubing Pressure	3510	PSIG
Primary Separator Pressure Primary Separator Temperature Secondary Separator Pressure Secondary Separator Temperature Field Stock Tank Liquid Gravity Primary Separator Gas Production Rate Pressure Base Pressure Base Pressure Base Field Stock Tank Liquid Gravity Pressure Base Pressure Base Pressure Base Field Stock Tank Liquid Gravity Pressure Base Pressure Base Field Stock Tank Liquid Factor (Fpv) Finary Separator Gas Production Rate Field Stock Tank Liquid Ratio Field Stock Tank Liquid Production Rate Field Stock Tank Liquid Ratio Field St		****	
Primary Separator Temperature Secondary Separator Pressure Secondary Separator Temperature Field Stock Tank Liquid Gravity Primary Separator Gas Production Rate Pressure Base Temperature Base Compressibility Factor (F _{pv}) Gas Gravity (Laboratory) Gas Gravity Factor (F _g) Stock Tank Liquid Production Rate @ 60 °F. Primary Separator Gas/Stock Tank Liquid Ratio Or 2887 MSCF/Day MSCF/Day F. 650.54 Bbls/Day SCF/Bbl Or 225.33 Bbls/MSCF			PSIG
Secondary Separator Pressure Secondary Separator Temperature Field Stock Tank Liquid Gravity Primary Separator Gas Production Rate Pressure Base Temperature Base Compressibility Factor (F _p) Gas Gravity (Laboratory) Gas Gravity Factor (F _g) Stock Tank Liquid Production Rate @ 60 °F. Primary Separator Gas/Stock Tank Liquid Ratio or PSIG 49.7 API @ 60°F. 2887 MSCF/Day 15.025 PSIA 60 °F. 650.54 Bbls/Day SCF/Bbl Or Bbls/MSCF			°F.
Secondary Separator Temperature Field Stock Tank Liquid Gravity Primary Separator Gas Production Rate Pressure Base Compressibility Factor (Fpv) Gas Gravity (Laboratory) Gas Gravity Factor (Fg) Stock Tank Liquid Production Rate 60 °F. Primary Separator Gas/Stock Tank Liquid Ratio Or 2887 MSCF/Day MSCF/Day 1.0477 0.688 650.54 Bbls/Day SCF/Bbl SCF/Bbl Bbls/MSCF			PSIG
Field Stock Tank Liquid Gravity Primary Separator Gas Production Rate Pressure Base Compressibility Factor (F _{pv}) Gas Gravity (Laboratory) Gas Gravity Factor (F _g) Stock Tank Liquid Production Rate 60 °F. Primary Separator Gas/Stock Tank Liquid Ratio Or 2887 MSCF/Day MSCF/Day 1.0477 0.688 650.54 Bbls/Day SCF/Bbl 3CF/Bbl Bbls/MSCF			°F.
Pressure Base 15.025 PSIA Temperature Base 60 °F. Compressibility Factor (Fpv) 1.0477 Gas Gravity (Laboratory) 0.688 Gas Gravity Factor (Fp) 1.2056 Stock Tank Liquid Production Rate 60 °F. 650.54 Bbls/Day Primary Separator Gas/Stock Tank Liquid Ratio or 225.33 Bbls/MSCF		49.7	API @ 60°F.
Pressure Base 15.025 PSIA Temperature Base 60 °F. Compressibility Factor (Fpv) 1.0477 Gas Gravity (Laboratory) 0.688 Gas Gravity Factor (Fg) 1.2056 Stock Tank Liquid Production Rate 60 °F. 650.54 Bbls/Day Primary Separator Gas/Stock Tank Liquid Ratio or 225.33 Bbls/MMSCF	Primary Separator Gas Production Rate	2887	MSCF/Day
Compressibility Factor (F _{pV}) 1.0477 Gas Gravity (Laboratory) 0.688 Gas Gravity Factor (F _g) 1.2056 Stock Tank Liquid Production Rate @ 60 °F. 650.54 Bbls/Day Primary Separator Gas/Stock Tank Liquid Ratio or 225.33 Bbls/MSCF	Pressure Base 15		
Gas Gravity (Laboratory) 0.688 Gas Gravity Factor (Fg) 1.2056 Stock Tank Liquid Production Rate @ 60 °F. 650.54 Bbls/Day Primary Separator Gas/Stock Tank Liquid Ratio or 225.33 Bbls/MSCF	Temperature Base 60	°F.	
Gas Gravity (Laboratory) 0.688 Gas Gravity Factor (Fg) 1.2056 Stock Tank Liquid Production Rate @ 60 °F. 650.54 Bbls/Day Primary Separator Gas/Stock Tank Liquid Ratio or 225.33 Bbls/MSCF	Compressibility Factor (F_{nv}) 1.	0477	
Stock Tank Liquid Production Rate @ 60 °F. 650.54 Bbls/Day Primary Separator Gas/Stock Tank Liquid Ratio or 225.33 Bbls/MMSCF	Gas Gravity (Laboratory) - ()	688	
Stock Tank Liquid Production Rate @ 60 °F. 650.54 Bbls/Day Primary Separator Gas/Stock Tank Liquid Ratio or 225.33 Bbls/MSCF	Gas Gravity Factor (F_{σ}) 1.	2056	
Primary Separator Gas/Stock Tank Liquid Ratio 4438 SCF/Bb1 or 225.33 Bb1s/MSCF		F. 450	Bbls/Dav
or <u>225.33</u> Bb1s/MSCF	Primary Separator Gas/Stock Tonk Liquid		CCC (D) 1
			D1.1 - (\D)CCC
	Sampled by		
REMARKS:	REMARKS:		

*Temperature extrapolated to mid point of perforation = 196°F.

These analysis, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Inc. and to officers and employees, assume no responsibility and make no warranty for representations as to the productivity, proper operation, or prefitableness of any oil, gas or other mineral well or and in connection with which such report is used or relied upon.

CORE LABORATORIES, INC. Petroleum Reservoir Engineering

DALLAS, TEXAS

Page	_2	of_	5	
File	RFL	79619		

Well State 36 No. 1

Hydrocarbon Analyses of Separator Products and Calculated Well Stream

	Separator Liquid	Separator (Gas	Well Stre	am
Component	Mol Per Cent	Mol Per Cent	GPM	Mol Per Cent	GPM
Hydrogen Sulfide	Nil	Nil		Nil	
Carbon Dioxide	Nil	0.12		0.10	
Nitrogen	0.16	1.14		0.94	
Methane	11.74	81.81		67.81	
Ethane	8.81	10.87	2.964	10.46	
Propane	9.79	3.92	1.100	5.09	1.428
iso-Butane	2.49	0.50	0.167	0.90	0.300
n-Butane	7.04	0.91	0.293	2.13	0.685
iso-Pentane	3.33	0.18	0.067	0.81	0.302
n-Pentane	3.83	0.18	0.067	0.91	0.336
Hexanes	5.63	0.10	0.042	1.21	0.503
Heptanes plus	47.18	0.27	0.125	9.64	6.563
•	100.00	$\frac{100.00}{100}$	4.825	$\frac{100.00}{100}$	$\frac{0.303}{10.117}$
				1 men	10
					ار معمود
				me present	and and
Properties of Heptanes plus				or hep	wa
API gravity @ 60° F.	44.5			no ference oil reserve	1,90
Specific gravity @ 60/60° F.	0.8041			0.802	1, ,,
Molecular weight	171	103 (assum	ad)	169	
Molecular weight		103 (a55um	euj	109	
Calculated separator gas gravity Calculated gross heating value for					
per cubic foot of dry gas @ 15.0	025 psia and 60° F.				
Primary separator gas collected	@ 490 psig and	d <u>78</u> •F.			
Primary separator liquid collecte	• • •				
Primary separator gas/separator	r liquid ratio 3	588 SCF/Bbl @	9 78°F		
Primary separator liquid/stock t			°F./per Bb	1 0 60°E	
-	•	U		re ou r.	
Primary separator gas/well stream ra: Stock tank iiquid/well stream ra:		800.17 MSCF/MM 80.30 Bbls/MMS			

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS. TEXAS

Page	of	_5	
File	RFL 79619		
Well	State 36 No	n. 1	

Pressure-Volume Relations of Reservoir Fluid at 196°F.
(Constant Composition Expansion)

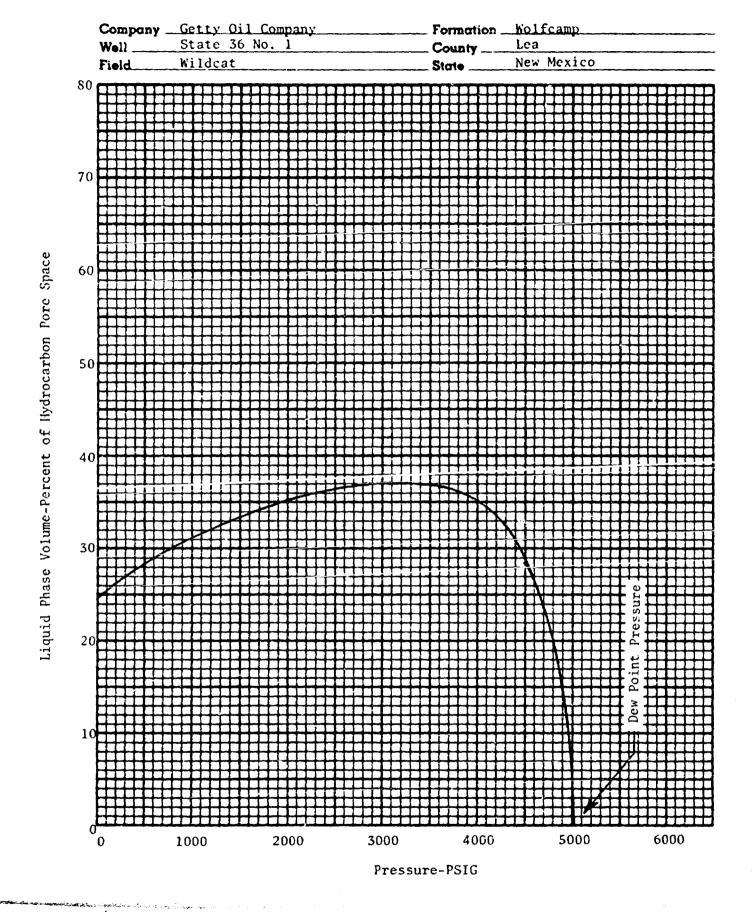
Pressure	Relative
PSIG	Volume
	
8000	0,8946
7630	0,9034
7255 Reservoir Pressure	0.9115
7100	0.9172
6700	0.9291
6300	0.9421
6000	0.9532
5700·	0.9655
5450	0.9769
5300	0.9843
5150	0.9929
5050	0.9974
5018 Dew Point Pressure	1.0000
5008	1.0006
4950	1.0049
4850	1.0119
4700	1.0240
4500	1.0422
4250	1.0687
3950	1.1089
3500	1.1860
3000	1.3198
2500	1.5253
2000	1.8695
1600	2.3295
1300	2.8763
1000	3.7825

These analyses, episions or interpretations are based on observations and material supplied by the elient to whom, and for whose excitative and established this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Inc. and its efficary and employees, assume an expressibility and make no warranty or representations as to the predestivity, preper operation, or profitchioness of any oil, gas or other mineral well or essential with which much report to used or celled syon.

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS, TEXAS 75207

Page_	4_of_5	_
File	RFI, 79619	_
Well_	State 36 No. 1	

Retrograde Condensation During Gas Depletion at 196 °F.


Pressure PSIG	Retrograde Liquid Volume Percent of Hydrocarbon Pore Space
	0.0
5018 Dew Point Pressure	0.0
5012	0.8
5008	1.4
4950	11.2
4850	17.8
4700	23.7
4500	28.6
4300	32.9
3600 72.50 77.19	36.7
3600 2800 37.1 % 2000 His at	37.0
2000	35.2
1300 keap	for the 32.5
700	29.7
ů Ž	24.5

There analyses, epinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential 1800, this report is made. The interpretations or opinions expressed represent the heat judgment of Core Laboratories, Inc. (all errors and emissions excepted); but Core Laboratories, Inc. and its efficers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operations of any other and the productivity of the confidence of one of the core mineral well or and is connected with which cosh report is used or relied upon.

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS, TEXAS

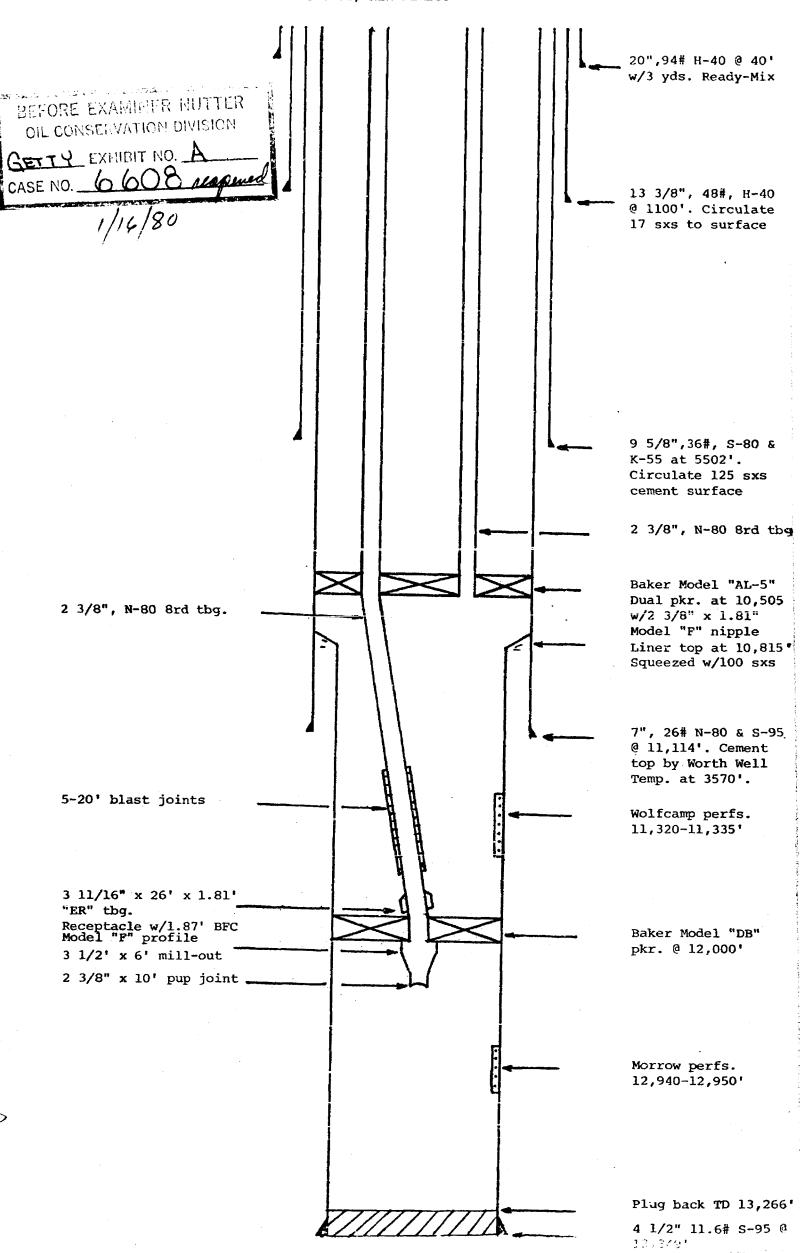
Page 5 of 5 File RFL 79619

Retrograde Liquid Accumulation During Depletion at 196°F.

LARRY KEHOE SECRETARY

Other

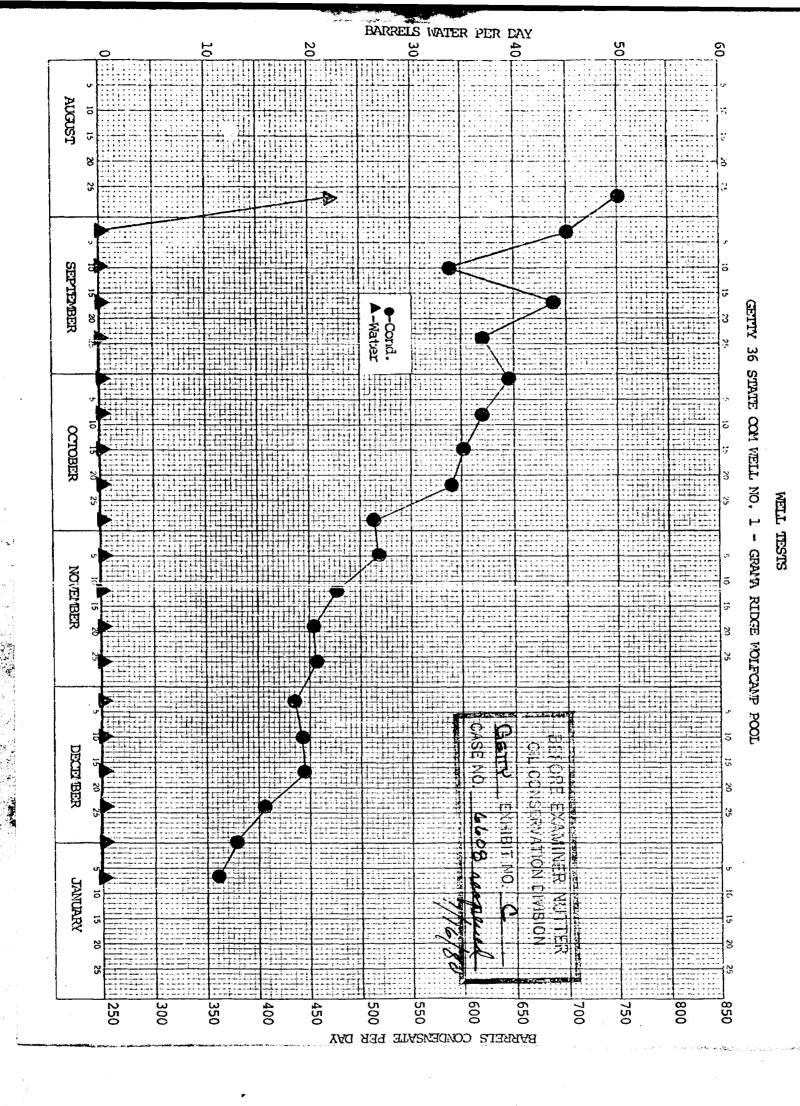
STATE OF NEW MEXICO ENERGY AND MINERALS DEPARTMENT

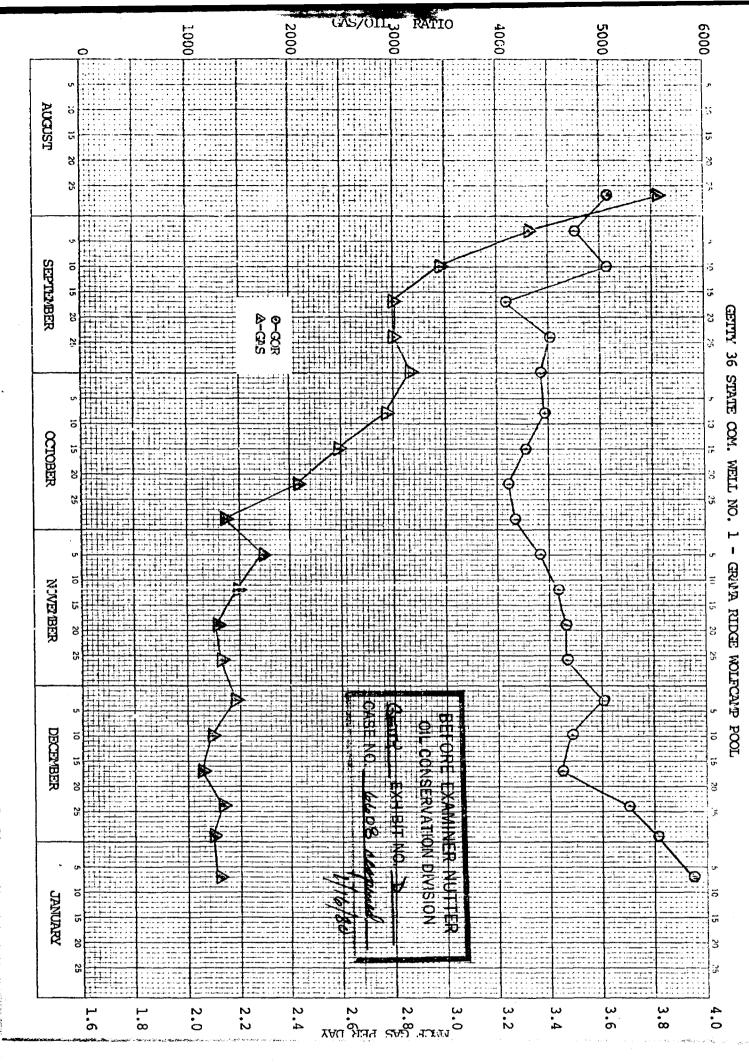

OIL CONSERVATION DIVISION

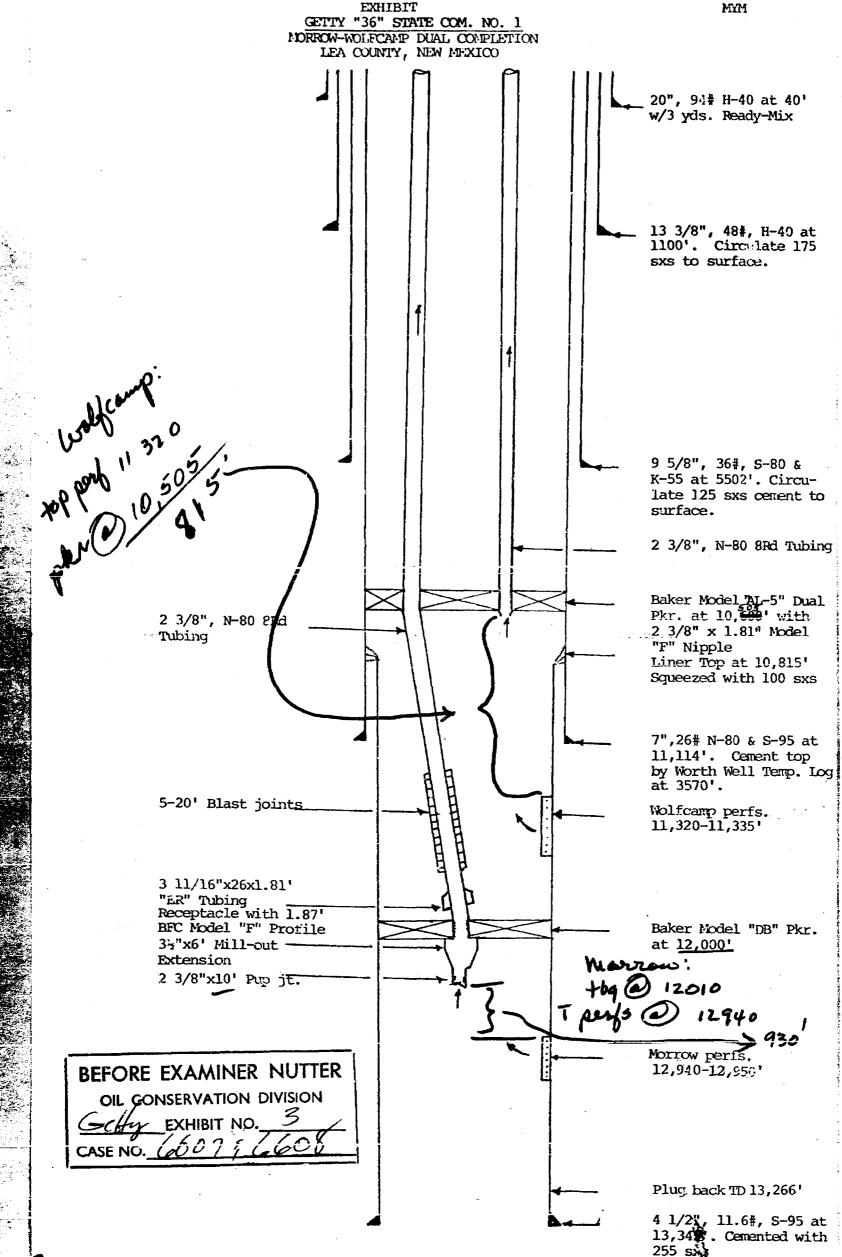
POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87501 (505) 827-2434

February 27, 1980

Mr. William F. Carr Campbell and Black Attorneys at Law Post Office Box 2208 Santa Fe, New Mexico	Re:	ORDER NOApplicant:	6608 R-6088-A and	-
		OCD (Get1	y Oil Company	Z)
Dear Sir:				
Enclosed herewith are two or Division order recently entry truly, Yours very truly, JOE D. RAMEY Director				
TDD /54				
JDR/fd				
Copy of order also sent to:				
Hobbs OCD x Artesia OCD x Aztec OCD				


CETTY "36" STATE COM. NO. 1 MORROW-WOLFCAMP DUAL COMPLETION LEA COUNTY, NEW MEXICO


WELL TESTS
GETTY 36 STATE COM. WELL NO. 1 - WOLFCAMP


DATE	MCFGPD	CONDENSATE BBLS/DAY	WATER BBLS/DAY	GOR
8/27/79	3822	752	22	5082/1
9/3/79	3333	701	0	4755/1
9/10/79	2980	589	0	5060/1
9/17/79	2808	685	0	4099/1
9/24/79	2801	620	0	4518/1
10/1/79	2866	645	0	4444/1
10/8/79	2772	620	С	4472/1
10/15/79	2594	605	0	4288/1
10/22/79	2425	590	0	4110/1
10/29/79	2143	514	0	4170/1
11/5/79	2287	516	0	4432/1
11/12/79	2197	477	0	4596/1
11/19/79	2117	454	0	4663/1
11/26/79	2128	457	0	4655/1
12/3/79	2181	435	0	5015/1
12/10/79	2089	442	0	4727/1
12/17/79	2052	445	0	4611/1
12/24/79	2138	406	0	5267/1
12/31/79	2096	378	0	5544/1
1/7/80	2117	360	0	5882/1

BEFORE EXAMINER NUTTER
OIL CONSERVATION DIVISION
GETT? EXHIBIT NO. B
CASE NO. 6608

WELL TESTS

JARREL SERVICES, INC.

POST OFFICE BOX 1654

PHONE TOS 393-8396

HOBBS, NEW MEXICO 88240

COMPANY: Getty Oil Company

WELL: Getty 36 State Com, No. 1 FIELD: Undesignated Wolfcamp

CHRONOLOGICAL PRESSURE DATA

DATE	STATUS OF WELL	TIME	ELASPED HRS.	TIME MIN.	SURFACE TBG	PRESSURE CSG	BHP € (10450'	.)
<u> </u>								
1979 7/4	Shut in 1.0 hr. Run							
	Tandem Bombs & Hung	11.20 AM	1	00	4865	PKR .	7051	
_	Bombs off @ 10450'	11:30 AM 12:30	2	00	_	-	7051	
	Shut in	1:30	3	00	-	_	7057	
	11 _. 11	2:3	4	00	_	_	7057	
	**	3:30	. 5	00	-	-	7 057	
	** **	4:30	6	00	-	_	7057	
	"	5:30	7	00	-		7057	
	99	6:30	8	,00	-	-	7057	
	Attempted to PU11 BOMBS	7:30	9	00		-	7 057	

BEFORE EXAMINER NUTTER

OIL CONSERVATION DIVISION

HAL, EXHIBIT NO. 4

CASE NO. 6607 36608

STATE OF NEW MEXICO ENERGY AND MINERALS DEPARTMENT OIL CONSERVATION DIVISION

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION DIVISION FOR THE PURPOSE OF CONSIDERING:

> CASE NO. 6608 Order No. R-6088-B

IN THE MATTER OF CASE 6608 BEING REOPENED PURSUANT TO THE PROVISIONS OF ORDER NO. R-6088, WHICH ORDER ESTABLISHED SPECIAL RULES AND REGULATIONS FOR THE GRAMA RIDGE-WOLFCAMP POOL, LEA COUNTY, NEW MEXICO, INCLUDING A PROVISION FOR 160-ACRE PRORATION UNITS.

ORDER OF THE DIVISION

BY THE DIVISION:

This cause came on for hearing at 9 a.m. on January 16, 1980, at Santa Fe, New Mexico, before Examiner Daniel S. Nutter.

NOW, on this 26th day of Pebruary, 1980, the Division Director, having considered the testimony, the record, and the recommendations of the Examiner, and being fully advised in the premises.

FINDS:

- (1) That due public notice having been given as required by law, the Division has jurisdiction of this cause and the subject matter thereof.
- (2) That by Order No. R-6088, dated August 28, 1979, the Division created, defined, and classified the Grama Ridge-Wolfcamp Oil Pool, Lea County, New Mexico, and temporary special rules and regulations were promulgated therefor, including a provision for 160-acre spacing units.
- (3) That pursuant to the provisions of Order No. R-6088, this case was reopened to allow the operators in the subject pool to appear and show whether the Grama Ridge-Wolfcamp Pool is in fact an oil reservoir or a gas reservoir, and if it is an oil reservoir, to show cause why said pool should not be developed on less than 160-acre spacing units.

-2-Case No. 6608 Order No. R-6088-B

- (4) That the evidence establishes that the Grama Ridge-Wolfcamp Pool reservoir is not an oil reservoir, nor is it a gas reservoir in the usual sense, but that it is in fact a retrograde condensate gas reservoir.
- (5) That the Grama Ridge-Wolfcamp Pool should be reclassified in accordance with Finding No. (4) above, and it should be redesignated as the Grama Ridge-Wolfcamp Gas Pool.
- (6) That the Special Rules and Regulations promulgated by Order No. R-6088 should be rescinded, and new Special Rules and Regulations pertinent to a retrograde gas condensate reservoir promulgated.
- (7) That in order to prevent the economic loss caused by the drilling of unnecessary wells, to avoid the augmentation of risk arising from the drilling of an excessive number of wells, to prevent reduced recovery which might result from the drilling of too few wells, and to otherwise prevent waste and protect correlative rights, the Grama Ridge-Wolfcamp Gas Pool should be subject to the well location and acreage dedication requirements of Rule 104 C II of the Division Rules and Regulations.
- (8) That insufficient evidence was available at the January 16, 1980, hearing of this case to determine the proper rate of withdrawals on a permanent basis for the Grama Ridge-Wolfcamp Gas Pool, and therefore another hearing should be called in May, 1980, at which time all interested parties should appear and present evidence as to the maximum efficient rate of withdrawals which should be permitted in this retrograde condensate gas reservoir.
- (9) That pending an order issuing from the aforesaid May hearing on this matter, withdrawals from wells completed in the subject reservoir should be limited to some reasonable amount to avert waste and prevent reservoir damage.
- (10) That pending such order, a reasonable maximum rate of withdrawal from each well in the Grama Ridge-Wolfcamp Gas Pool is 1500 MCF of gas per day at the surface.
- (11) That an order based on the above findings is in the interest of conservation, will prevent waste, will not impair but will protect correlative rights, and should be approved.

-3-Case No. 6608 Order No. R-6088-3

IT IS THEREFORE ORDERED:

(1) That the Grama Ridga-Wolfcamp Pool as heretofore classified and defined is hereby reclassified as a retrograde gas condensate reservoir and redesignated as the Grama Ridge-Wolfcamp Gas Pool, with vertical limits comprising the Wolfcamp formation and horizontal limits comprising the following described area:

TOWNSHIP 21 SOUTH, RANGE 34 EAST, NMPM Section 36: SW/4

(2) That Order No. R-6088 which promulgated Special Rules and Regulations for said Grama Ridge-Wolfcamp Fool is hereby rescinded and new Special Rules and Regulations for the Grama Ridge-Wolfcamp Gas Pool, Lea County, New Mexico, are hereby promulgated as follows:

SPECIAL RULES AND REGULATIONS FOR THE GRAMA RIDGE-WOLFCAMP GAS POOL

- RULE 1. Each well completed or recompleted in the Grama Ridge-Wolfcamp Gas Pool or in the Wolfcamp formation within one mile of the Grama Ridge-Wolfcamp Gas Pool, and not nearer to nor within the limits of another designated Wolfcamp pool, shall be spaced, drilled, operated, and prorated in accordance with the Special Rules and Regulations hereinafter set forth.
- RULE 2. Each well completed or recompleted in the Grama Ridge-Wolfcamp Gas Pool shall be located on a standard unit containing 320 acres, more or less, comprising any two contiguous quarter sections of a single governmental section, being a legal subdivision of the United States Public Land Surveys. Exceptions to this rule are subject to the provisions of Rule 104 D II of the Division Rules and Regulations.
- RULE 3. Each well shall be located no nearer than 660 feet to the nearest side boundary of the tract nor nearer than 1980 feet to the nearest end boundary of the tract. Exceptions to this rule are subject to the provisions of Rule 104 F of the Division Rules and Regulations.
- RULE 4. A gas well on a standard unit in the Grama Ridge-Wolfcamp Gas Pool shall be permitted to produce no more than 1,500 MCF of gas per day at standard surface conditions during the effective period of these pool rules. This shall be known as the daily allowable.

-4-Case No. 6608 Order No. R-6088-

RULE 5. The operator of each newly completed well shall cause a gas-liquid ratio test to be taken on the well upon recovery of all load oil from the well. Any well which is shut in shall be exempted from the gas-liquid ratio test requirement so long as it remains shut in. The initial gas-liquid ratio test shall be taken in the manner prescribed by Rule 6.

RULE 6. Gas-liquid ratio tests shall be taken on all wells during the months of April and October of each year. The initial gas-liquid ratio test shall suffice as the first semi-annual test. Tests shall be 24-hour tests, being the final 24 hours of a 72-hour period during which the well shall be produced at a constant normal rate of production. Results of such tests shall be filed on Division Form C-116 on or before the 10th day of the following month. At least 72 hours prior to commencement of any such gas-liquid ratio tests, each operator shall file with the appropriate district office of the Division a test schedule for its wells specifying the time each of its wells is to be tested. Copies of the test schedule shall also be furnished to all offset operators.

Special tests shall also be taken at the request of the Division Director and may also be taken at the option of the operator. Such special tests shall be taken in accordance with the procedures outlined hereinabove, including notification to the Division and offset operators.

RULE 7. An initial shut-in pressure test shall be taken on each gas well and shall be reported to the Division on Form C-125.

RULE 8. Any well completed after the effective date of these rules shall receive an allowable only upon receipt by the appropriate Division district office of Division Forms C-104 and C-116, properly executed. The District Supervisor of the Division's district office is hereby authorized to assign a temporary gas allowable to wells connected to a gas transportation facility during the recovery of load oil, which allowable shall not exceed the amounts set forth in Rule 4 of these rules.

RULE 9. The Grama Ridge-Wolfcamp Gas Pool gas proration period shall be the proration month which shall begin at 7 a.m. on the first day of the month and shall end at 7 a.m. on the first day of the next succeeding month.

-5-Case No. 6608 Order No. R-6088-B

- RULE 10. (a) Any gas well which has an underproduced status at the end of any gas provation period, shall carry such underproduction into subsequent periods.
- (b) Underproduction in excess of three times the current monthly allowable shall not be carried forward but shall be cancelled. For the purpose of these rules, the monthly allowable shall be the daily allowable times the number of days in the month.
- (c) Overproduction during any month shall be applied to a well's cumulative underproduction, if any, calculated in accordance with Paragraphs (a) and (b) above.
- RULE 11. Any gas well which has an overproduced status at the end of any gas proration period shall carry such overproduction into subsequent periods. If at any time a well is overproduced an amount exceeding three times its current monthly allowable, it shall be shut in during that month and each succeeding month until the well is overproduced less than three times its current monthly allowable.
- RULE 12. The allowable assigned to a well during any one month in excess of the production for the same month shall be applied against the overproduction carried into such period in determining the amount of overproduction, if any, which has not been compensated for.
- RULE 13. The Division may allow overproduction to be compensated for at a lesser rate than would be the case if the well were completely shut in upon a showing after notice and hearing that complete shut in of the well would result in material damage to the well or reservoir.
- RULE 14. The monthly gas production from each gas well shall be metered separately and the gas production therefrom shall be reported to the Division on Form C-115 so as to reach the Division on or before the 24th day of the month next succeeding the month in which the gas was produced. The operator shall show on such report what disposition has been made of the produced gas.
- RULE 15. Bach purchaser or taker of gas shall submit a report to the Division so as to reach the Division on or before the 15th day of the month next succeeding the month in which the gas was purchased or taken. Such report shall be filed on Form C-111 with the wells being listed in the same order as they are listed on the appropriate provation schedule.

-6-Case No. 6608 Order No. R-6088-B

RULE 16. Failure to comply with any provision of these rules shall result in the immediate cancellation of allowable assigned to the affected well. No further allowable shall be assigned until all rules and regulations have been complied with. The Division Director shall notify the operator of the well and purchaser in writing of the date of allowable cancellation and the reason therefor.

RULE 17. All transporters or users of gas shall file gas well connection notices with the Division as soon as possible after the date of connection.

IT IS PURTHER ORDERED:

- (1) That the cumulative casinghead gas over/under production status for each well in the Grama Ridge-Wolfcamp Pool immediately prior to the effective date of this order shall be the beginning status for wells in the Grama Ridge-Wolfcamp Gas Pool at 7:00 o'clock a.m. on the effective date of this order.
- (2) That the effective date of this order shall be March 1, 1980.
- (3) That, pursuant to Paragraph A. of Section 70-2-18, NMSA 1978, existing wells in the Grama Ridge-Wolfcamp Gas Pool shall have dedicated thereto 320 acres, in accordance with the foregoing pool rules or, pursuant to Paragraph C. of said Section 70-2-18, existing wells may have non-standard spacing or proration units established by the Division and dedicated thereto.

Failure to file new Forms C-102 with the Division dedicating 320 acres to a well or to obtain a non-standard unit approved by the Division within 60 days from the date of this order shall subject the well to cancellation of allowable.

- (4) That this cause shall be reopened at an examiner hearing during May, 1980, to permit the operators in said pools to appear and present evidence to establish the proper rates of production for wells in the subject pool.
- (5) That jurisdiction of this cause is retained for the entry of such further orders as the Division may deem necessary.

-7-Case No. 6608 Order No. R-6088-B

DONE at Santa Fe, New Mexico, on the day and year hereinabove designated.

STATE OF NEW MEXICO
OIL CONSERVATION DIVISION

JOE D. RAMEY Director

STATE OF NEW MEXICO ENERGY AND MINERALS DEPARTMENT OIL CONSERVATION DIVISION

CASE NO. 6608 Order No. R-6088-A

APPLICATION OF GETTY OIL COMPANY FOR POOL CREATION AND SPECIAL POOL RULES, LEA COUNTY, NEW MEXICO.

NUNC PRO TUNC ORDER

BY THE DIVISION:

It appearing to the Division that Order No. R-6088, dated August 28, 1979, does not correctly state the intended order of the Division,

IT IS THEREFORE ORDERED:

- (1) That Paragraph (1) on Page 2 of Order No. R-6088, Case No. 6608, be and the same is hereby corrected to read in its entirety as follows:
 - "(1) That effective September I, 1979, a new pool in Lea County, New Mexico, classified as an oil pool for Wolfcamp production, is hereby created and designated the Grama Ridge-Wolfcamp Pool, with vertical limits comprising the Wolfcamp formation and horizontal limits comprising the following-described area:

TOWNSHIP 21 SOUTH, RANGE 34 EAST, NMPM Section 36: SW/4"

(2) That this order shall be effective nunc pro tunc as of August 28, 1979.

DONE at Santa Fe, New Mexico, on this 26th day of February, 1980.

> STATE OF NEW MEXICO OIL CONSERVATION DIVISION

JOE D. RAMEY Director

fd/

STATE OF NEW MEXICO ENERGY AND MINERALS DEPARTMENT OIL CONSERVATION DIVISION

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION DIVISION FOR THE PURPOSE OF CONSIDERING:

> CASE NO. 6608 Order No. R-6088

APPLICATION OF GETTY OIL COMPANY FOR POOL CREATION AND SPECIAL POOL RULES, LEA COUNTY, NEW MLKICO.

ORDER OF THE DIVISION

BY THE DIVISION:

This cause came on for hearing at 9 a.m. on July 25, 1979, at Santa Fe, New Mexico, before Examiner Daniel S. Nutter.

NOW, on this 28th day of August, 1979, the Division Director, having considered the testimony, the record, and the recommendations of the Examiner, and being fully advised in the premises,

FINDS:

- (1) That due public notice having been given as required by law, the Division has jurisdiction of this cause and the subject matter thereof.
- (2) That the applicant, Getty Oil Company, seeks the creation of a new oil pool for Wolfcamp production in Lea County, New Mexico.
- (3) That the applicant also seeks the promulgation of special rules for said pool, including a provision for 150-acre proration units.
- (4) That the evidence presently available indicates that applicant's Getty 36 State Well No. 1, located in Unit F of Section 36, Township 21 South, Range 34 East, NMPM, Lea County, New Mexico, has discovered a separate common source of supply which should be designated the Grama Ridge-Wolfcamp Pool; that the vertical limits of the pool should be the Wolfcamp formation, and that the horizontal limits of said pool should be as follows:

TOWNSHIP 21 SOUTH, RANGE 34 EAST, NMPM Section 36: NW/4

-2-Case No. 6608 Order No. R-6068

- (5) That in order to prevent the economic loss caused by the drilling of unnecessary wells, to avoid the augmentation of risk arising from the drilling of an excessive number of wells, to prevent reduced recovery which might result from the drilling of too few wells, and to otherwise prevent waste and protect correlative rights, temporary special rules and regulations providing for 160-acre spacing units should be promulgated for the Grama Ridge-Wolfcamp Pool.
- (6) That the temporary special rules and regulations should provide for limited well locations in order to assure orderly development of the pool and protect correlative rights.
- (7) That the temporary special rules and regulations should provide for a depth bracket allowable of 605 barrels.
- (8) That the temporary special rules and regulations should be established for a 6-month period in order to allow the operators in the subject pool to gather reservoir information to establish the area that can be efficiently and economically drained and developed by one well.
- (9) That this case should be reopened at an examiner hearing in January, 1980, at which time the operators in the subject pool should be prepared to appear and show whether this pool should be classified as an oil reservoir or as a gas reservoir, and if it is an oil reservoir, to show cause why it should not be developed on 40-acre spacing units.

IT IS THEREFORE ORDERED:

(1) That effective August 1, 1979, a new pool in Lea County, New Mexico, classified as an oil pool for Wolfcamp production, is hereby created and designated the Grama Ridge-Wolfcamp Pool, with vertical limits comprising the Wolfcamp formation and horizontal limits comprising the following-described area:

TOWNSHIP 21 SOUTH, RANGE 34 EAST, NMPM Section 36: SW/4

(2) That temporary Special Rules and Regulations for the Grama Ridge-Wolfcamp Pool, Lea County, New Mexico, are hereby promulgated as follows:

SPECIAL RULES AND REGULATIONS FOR THE GRAMA RIDGE-WOLFCAMP POOL

RULE 1. Each well completed or recompleted in the Grama

-3-Case No. 6608 Order No. R-6088

Ridge-Wolfcamp Pool or in the Wolfcamp formation within one mile of the Grama Ridge-Wolfcamp Pool, and not nearer to nor within the limits of another designated Wolfcamp pool, shall be spaced, drilled, operated, and prorated in accordance with the Special Rules and Regulations hereinafter set forth.

- RULE 2. Each well completed or recompleted in the Grama Ridge-Wolfcamp Pool shall be located on a unit containing 160 acres, more or less, substantially in the form of a square, which is a quarter section being a legal subdivision of the United States Public Lands Survey.
- RULE 3. Each well completed or recompleted in said pool shall not be drilled closer than 660 feet to any quarter section line nor closer than 330 feet to any quarter-quarter section line.
- RULE 4. For good cause shown, the Division Director may grant an exception to the requirements of Rule 2 without notice and hearing when the application is for a non-standard unit comprising less than 160 acres. All operators offsetting the proposed non-standard unit shall be notified of the application by registered or certified mail, and the application shall state that such notice has been furnished. The Division Director may approve the application if, after a period of 30 days, no offset operator has entered an objection to the formation of such non-standard unit.

The allowable assigned to any such non-standard unit shall bear the same ratio to a standard allowable in the Grama Ridge-Wolfcamp Pool as the acreage in such non-standard unit bears to 160 acres.

RULE 5. A standard proration unit (158 through 162 acres) in the Grama Ridge-Wolfcamp Pool shall be assigned a depth bracket allowable of 605 barrels, subject to the market demand percentage factor, and in the event there is more than one well on a 160-acre proration unit, the operator may produce the allowable assigned to the unit in any proportion.

IT IS FURTHER ORDERED:

(3) That the locations of all wells presently drilling to or completed in the Grama Ridge-Wolfcamp Pool or in the Wolfcamp formation within one mile thereof are hereby approved; that the operator of any well having an unorthodox location shall notify the Hobbs district office of the Division in writing of the name and location of the well on or before September 1, 1979.

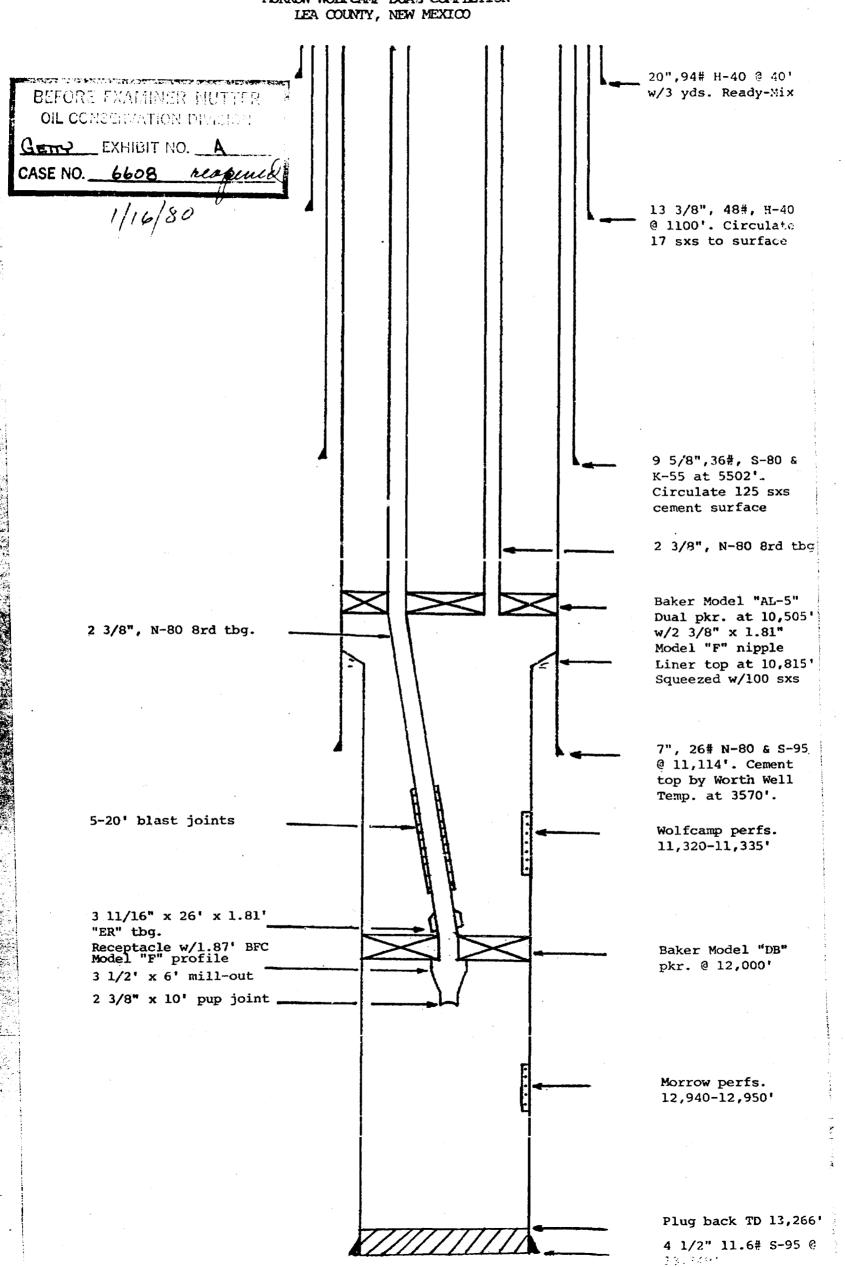
-4-Case No. 6608 Order No. R-6088

(4) That, pursuant to Paragraph A. of Section 70-2-18, NMSA 1978, contained in Chapter 271, Laws of 1969, existing wells in the Grama Ridge-Wolfcamp Pool shall have dedicated thereto 160 acres in accordance with the foregoing pool rules; or, pursuant to Paragraph C. of said Section 70-2-18, existing wells may have non-standard spacing or proration units established by the Division and dedicated thereto.

Failure to file new Forms C-102 with the Division dedicating 160 acres to a well or to obtain a non-standard unit approved by the Division within 60 days from the date of this order shall subject the well to cancellation of allowable. Until said Form C-102 has been filed or until a non-standard unit has been approved, and subject to said 60-day limitation, unit has been approved, and subject to said 60-day limitation, unit has been approved, and subject to said 60-day limitation, unit has been approved, and subject to said 60-day limitation, unit has been approved, and subject to said 60-day limitation, unit has been approved, and subject to said 60-day limitation, unit has been approved, and subject to said 60-day limitation, unit has been approved, and subject to said 60-day limitation, unit has been approved, and subject to said 60-day limitation, unit has been approved, and subject to said 60-day limitation, unit has been approved, and subject to said 60-day limitation, unit has been approved, and subject to said 60-day limitation, unit has been approved, and subject to said 60-day limitation, unit has been approved, and subject to said 60-day limitation, unit has been approved, and subject to said 60-day limitation, unit has been approved and subject to said 60-day limitation, unit has been approved and subject to said 60-day limitation, unit has been approved, and subject to said 60-day limitation, unit has been approved and subject to said 60-day limitation, unit has been approved and subject to said 60-day limitation, unit has been approved and subject to said 60-day limitation, unit has been approved and subject to said 60-day limitation, unit has been approved and subject to said 60-day limitation, unit has been approved and subject to said 60-day limitation, unit has been approved and subject to said 60-day limitation, unit has been approved and subject to said 60-day limitation, unit has been approved and subject been approved and subject been approved and subject been approved and subject been appr

- (5) That this case shall be reopened at an examiner hearing in January, 1980, at which time the operators in the subject pool should be prepared to appear and show whether the subject pool is in fact an oil reservoir or a gas reservoir, subject pool is an oil reservoir, to show cause why the Grama and if it is an oil reservoir, to show cause why the Grama Ridge-Wolfcamp Pool should not be developed on 40-acre spacing units.
- (6) That jurisdiction of this cause is retained for the entry of such further orders as the Division may deem necessary.

DONE at Santa Fe, New Mexico, on the day and year hereinabove designated.


> STATE OF NEW MEXICO OIL CONSERVATION DIVISION

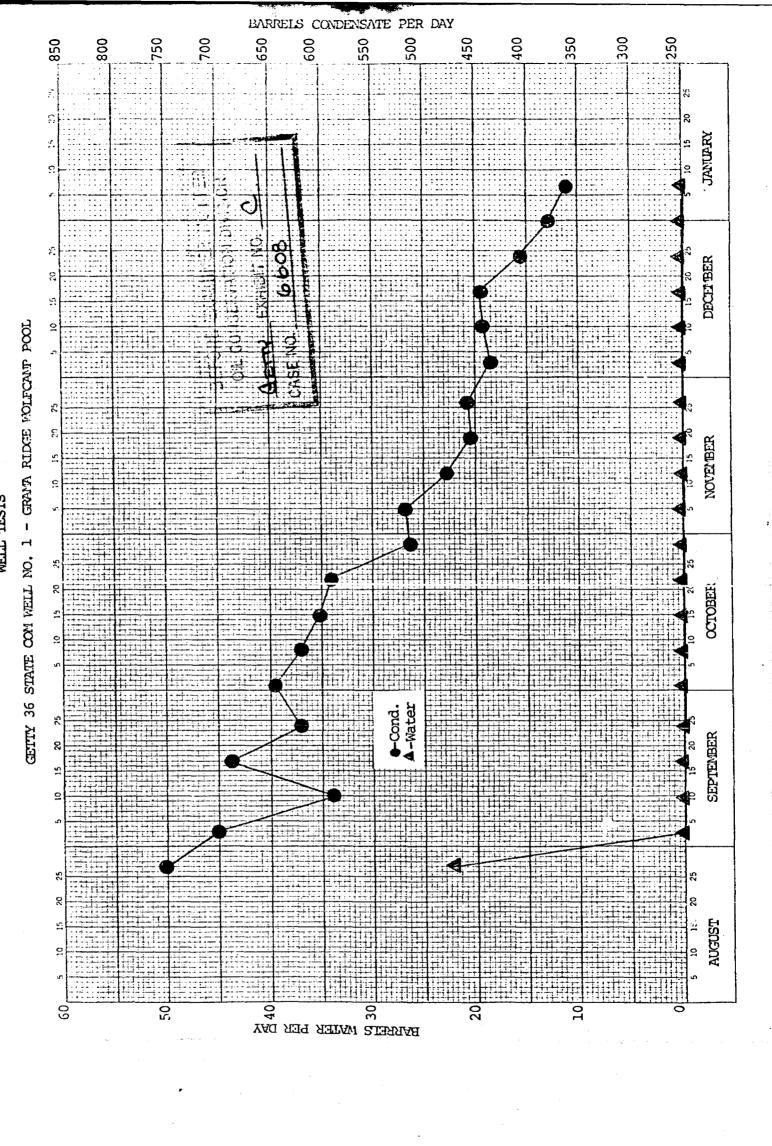
JOE D. RAMEY

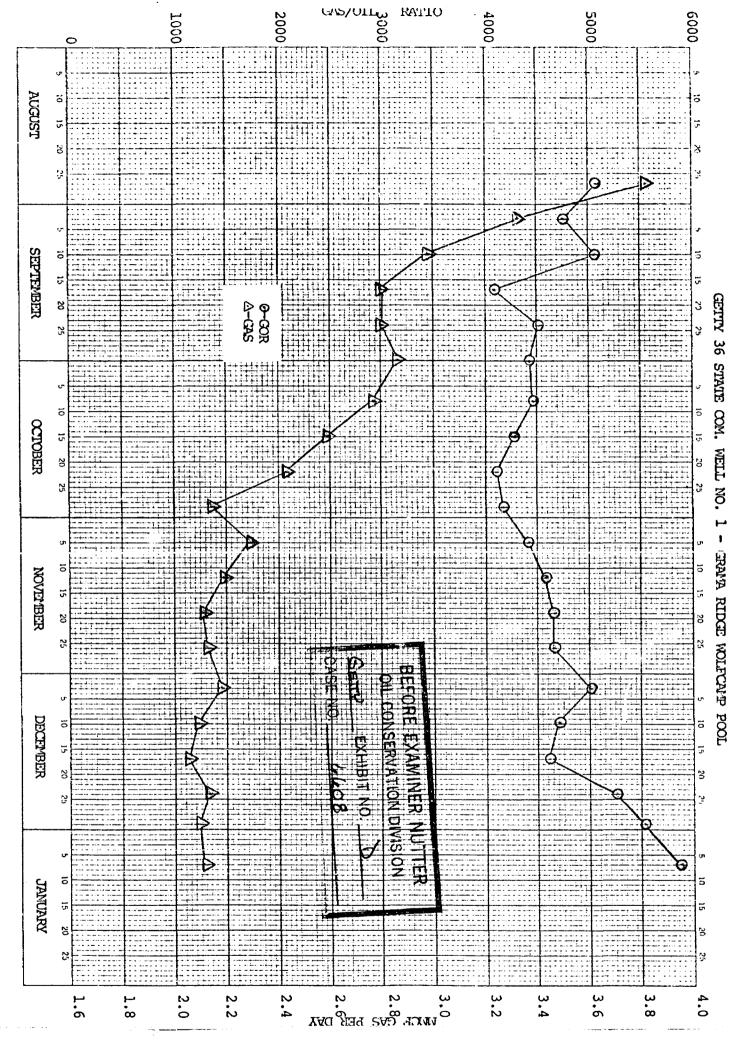
EAL

Ed/

MORROW-WOLFCAMP DUAL COMPLETION
LES COUNTY NEW MEXICO

WELL TESTS
GETTY 36 STATE COM. WELL NO. 1 - WOLFCAMP


DATE	MCFGPD	CONDENSATE BBLS/DAY	WATER BBLS/DAY	GOR
8/27/79	3822	752	22	
9/3/79	3333	701	0	5082/1
9/10/79	2980	589	0	4755/1
9/17/79	2808	685	0	5060/1
9/24/79	2801	620		4099/1
10/1/79	2866	645	0	4518/1
10/8/79	2772	620	0	4444/1
10/15/79	2594	605	0	4472/1
10/22/79	2425		0	4288/1
10/29/79	2143	590	0	4110/1
11/5/79	2287	514	0	4170/1
11/12/79		516	0	4432/1
•	2197	477	0	4596/1
11/19/79	2117	454	0	4663/1
11/26/79	2128	457	0	4655/1
12/3/79	2181	435	0	5015/1
12/10/79	2089	442	0	4727/1
12/17/79	2052	445	U	4611/1
12/24/79	2138	406	0	5267/1
12/31/79	2096	378	0	5544/1
1/7/80	2117	360	0	5882/1


BEFORE EXAMINER NUTTER
OIL CONSERVATION DIVISION

GETY EXHIBIT NO. B

CASE NO. 6608 respense

1/16/80

CORE LABORATORIES, INC Petroleum Reservoir Engineering DALLAS, TEXAS

Preliminary Report

for

GETTY OIL COMPANY

State 36 No. 1 Well Wildcat Lea County, New Mexico

BEFORE EXAMINER NUTTER
OIL CONSERVATION DIVISION

GETTY EXHIBIT NO. E

CASE NO. 6608 respect

CORE LABORATORIES, INC.

Petrolcum Reservon Engineering
DALLAS, TEXAS 75207
November 15, 1979

RESERVOIR PLUID DIVISION

Getty Oil Company
P. O. Box 730
Hobbs, New Mexico 88240

Attention: Mr. Peter Botes

Subject: Preliminary Report

Reservoir Fluid Study State 36 No. 1 Well

Wildcat

Lea County, New Mexico Our File Number: RFL 79619

Gentlemen:

Duplicate samples of separator gas and separator liquid were collected from the subject well by Tefteller, Inc. on September 9, 1979. These samples were forwarded to our Dallas laboratory for use in a reservoir fluid study. Presented in this preliminary report are the results obtained to date using these samples.

Upon arrival in the laboratory the separator gas was analyzed through heptanes plus using chromatography, while the separator liquid was also analyzed to heptanes plus using low temperature fractional distillation equipment along with chromatography. After the separator gas flow rate was corrected using factors which are shown on page one, the producing gas-liquid ratio was calculated to be 4438 cubic feet of separator gas at 15.025 psia and 60°F. per barrel of stock tank liquid at 60°F. In the laboratory it was determined that this was the equivalent of 3588 standard cubic feet of separator gas per barrel of separator liquid at 490 psig and 78°F. The measured compositions of the separator products were used in conjunction with this producing gas-liquid ratio to calculate the composition of the producing well stream material. These compositions are shown on page two. In the laboratory the separator products were physically recombined to this producing gas-liquid ratio for use in the entire reservoir fluid study.

A portion of the reservoir fluid was charged to a high pressure visual cell and heated to the reservoir temperature of 196°F. During constant composition expansion pressure volume relations performed at this temperature, the fluid existed as a single phase gas at pressures above 5018 psig at which pressure a retrograde dew point was observed. A comparison of this dew point pressure to the reservoir pressure of 7255 psig indicates that the fluid currently exists in the reservoir in an undersaturated condition. The results of the pressure volume relation measurements are shown on page three.

The sample in the cell was repressured to a single phase condition after which it was subjected to a constant volume depletion. After the sample volume was established at the dew point pressure, the sample was subjected to a series of pressure expansions and constant pressure displacements with each displacement terminating at the original sample volume at the dew point pressure. During each of these displacements the volume of retrograde liquid accumulation was monitored.

These data presented on pages four and five show that the maximum accumulation is approximately 37.1 percent of the hydrocarbon pore space occurring at approximately 3150 psig. The liquid phase saturation at 0 pressure and 196°F, was 24.5 percent of the hydrocarbon pore space.

The constant volume depletion will be performed in our laboratory one more time in a similar manner described above, however, instead of measuring the liquid accumulation, the main purpose of the second depletion will be to analyze the equilibrium gas phase produced at various depletion pressure points. Volumetric data such as expansions from reservoir conditions to atmospheric conditions will also be measured at this time. These data will be sent to you as soon as it is completed.

We wish to thank Getty Oil Company for this opportunity to be of service. If you should have any questions regarding these data or if we may be of further assistance, please do not hesitate to contact us.

Very truly yours,

Core Laboratories, Inc.

P. L. Moses, Manager Reservoir Fluid Analysis

PLM:FBV:sm
6 cc.-Addressee
1 cc.-Mr. Jim Eakin
Getty Oil Co.
P. O. Box 1231
Midland, Texas 79702

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS, TEXAS 78207

Original Produced Gas-Liquid Ratio 5082 SCF/Bb1 Production Rate 752 Bb1s/Day Separator Pressure and Temperature Liquid Gravity at 60°F. PSIG °F. Liquid Gravity at 60°F. 49.7 API WELL CHARACTERISTICS Elevation 3692 KB Ft. Subsea FIX Subsea WELL CHARACTERISTICS Elevation 3692 KB Ft. Subsea FIX Subsea WELL CHARACTERISTICS Elevation Total Depth 13266 PBTD Ft. Producing Interval 11320-11335 Ft. Tubing Size and Depth 2-3/8 In. to 10495 Ft. Open Flow Potential 2-3/8 In. to 10495 Ft. Date Pressure Filiasce PSIG PSIG Separator Pressure Separator PSIG Separator PSIG SAMPLING CONDITIONS Flowing Bottom Hole Pressure Separator Temperature <t< th=""><th></th><th></th><th>Page_1of</th></t<>			Page_1of
New New Mexico			File RFL 79619
New Mexico	Company Getty Oil Company	_ Date Sample	ed September 9, 1979
FORMATION CHARACTERISTICS Formation Name Molfcamp	Well State 36 No. 1	County	
Pormation Name	Field Wildcat	State	New Mexico
Date First Well Completed	FORMATION CH	LARACTER ISTICS	
Date First Well Completed Original Reservoir Pressure 7255	Formation Name	Wo	1 fcamp
Original Reservoir Pressure 7255 PSIG © 11328 Ft. Original Produced Gas-Liquid Ratio 5082 SCF/Bb1 Production Rate 752 Bb1s/Day Separator Pressure and Temperature 7636 PSIG °F. Liquid Gravity at 60°F. 49.7 API API 7636 Ft. Subses Ft. Subses WELL CHARACTERISTICS Elevation 3692 KB Ft. Total Depth 13266 PBID Ft. Producing Interval 11320-11335 Ft. Tubing Size and Depth 2-3/8 In. to 10495 Ft. Open Flow Potential 7.82 (Estimated) MISCF/Day Last Reservoir Pressure 187* Estimated) MISCF/Day Reservoir Temperature 187* Estimated) MISCF/Day Status of Well Pressure Base 187* Ft. © 10505 Ft. Sampled by PSIG PSIG Primary Separator Temperature 6092 PSIG Primary Separator Temperature 78 °F. Primary Separator Temperature <td>Date First Well Completed</td> <td></td> <td>1v 2 ,19 79</td>	Date First Well Completed		1v 2 ,19 79
Original Produced Gas-Liquid Ratio 5082 SCF/Bb1 Production Rate 752 Bb1s/Day Separator Pressure and Temperature 49.7 API Liquid Gravity at 60°F. 49.7 API NELL CHARACTERISTICS NELL CHARACTERISTICS Ft. Subsea Elevation 3692 KB Ft. Total Depth 13266 PBTD Ft. Producing Interval 11320-11325 Ft. Tubing Size and Depth 2-3/8 In. to 10495 Ft. Open Flow Potential 1320-11325 Ft. Last Reservoir Pressure 7.32 (Estimated) MMSCF/Day Date Separator Pressure 187* 6246 PBTD MMSCF/Day Reservoir Temperature 7.32 (Estimated) MMSCF/Day Reservoir Temperature 187* 6246 PBTD MMSCF/Day Status of Well Ft. Ft. Pressure Gauge Amerada PSIC Status of Well Ft. Prowing Temperature Ft. Flowing Bottom Hole Pressure 6092 PSIC Primary Separator Temperatur			
Production Rate Separator Pressure and Temperature Liquid Gravity at 60°F. 49.7 API			
Separator Pressure and Temperature 49,7			
Liquid Gravity at 60°F. Datum WELL CHARACTERISTICS Ft. Subsea Well CHARACTERISTICS Elevation Total Depth Producing Interval Tubing Size and Depth Open Flow Potential Open Flow Potential Table Pressure Pressure Date Reservoir Pressure Reservoir Temperature Status of Well Pressure Gauge SAMPLING CONDITIONS Flowing Flowing Flowing Tubing Pressure Flowing Bottom Hole Pressure Flowing Bottom Hole Pressure Flowing Bottom Hole Pressure Primary Separator Pressure Primary Separator Temperature Secondary Separator Temperature Field Stock Tank Liquid Gravity Primary Separator Gas Production Rate Pressure Base Pressure Base Compressibility Factor (Fp.) Gas Gravity (Laboratory) Gas Gravity Factor (Fg.) Table Primary Separator Gas/Stock Tank Liquid Ratio Or 225.33 Bbls/MMSCF TI AP1. Gas Ft. Subsea Ft. Separator Ft. Sep	Separator Pressure and Temperature		
Datum WELL CHARACTERISTICS Ft. Subseau	Liquid Gravity at 60°F.	49	
NELL CHARACTERISTICS	· · · · · · · · · · · · · · · · · · ·		<u> </u>
Elevation	WELL CHARA		30
Total Depth			
Producing Interval			<u> </u>
Tubing Size and Depth			200 1010
Den Flow Potential			<u> </u>
Date September 1328			10124
Date Reservoir Temperature 187* °F. © 10505 °Ft.		<u>7.</u>	
Reservoir Temperature Status of Well Pressure Gauge SAMPLING CONDITIONS Flowing Tubing Pressure Flowing Bottom Hole Pressure Flowing Separator Pressure Primary Separator Temperature Secondary Separator Pressure Secondary Separator Pressure Field Stock Tank Liquid Gravity Primary Separator Gas Production Rate Pressure Base Compressibility Factor (Fpv) Gas Gravity (Laboratory) Gas Gravity Factor (Fpv) Flowing F			
Status of Well Pressure Gauge SAMPLING CONDITIONS Flowing Tubing Pressure Flowing Bottom Hole Pressure Flowing Bottom Hole Pressure Frimary Separator Pressure Primary Separator Temperature Fecondary Separator Temperature Field Stock Tank Liquid Gravity Primary Separator Gas Production Rate Pressure Base Pressure Base Compressibility Factor (Fpv) Gas Gravity (Laboratory) Gas Gravity Factor (Fg) Stock Tank Liquid Production Rate @ 60 °F. Primary Separator Gas/Stock Tank Liquid Ratio Or Stock Tank Liquid Production Rate @ 60 °F. Sampled by Flowing Amerada PSIG 6092 PSIG 78 9490 PSIG 78 949.7 API © 60°F. 2887 MSCF/Day PID 1.0477 O.688 O.688 O.688 O.688 O.688 O.688 O.688 O.688 O.688 O.54 Bbls/Day Primary Separator Gas/Stock Tank Liquid Ratio Or 225.33 Bbls/MMSCF Sampled by		Se	
SAMPLING CONDITIONS SAMPLING CONDITIONS		18	7* F. @ <u>10505</u> Ft.
Flowing Tubing Pressure Flowing Bottom Hole Pressure Finary Separator Pressure Finary Separator Temperature Field Stock Tank Liquid Gravity Frimary Separator Gas Production Rate Fressure Base Fressure Fresure Fressure Fressure Fressure Fressure Fressure Fressure Fressur		<u>F1</u>	owing
Flowing Tubing Pressure Flowing Bottom Hole Pressure Primary Separator Pressure Primary Separator Temperature Secondary Separator Pressure Secondary Separator Temperature Field Stock Tank Liquid Gravity Pressure Base Pressure Base Pressure Base Pressure Base Found of the production Rate Found of the production Rate Point Rate Found of the production R	Pressure Gauge	_ Am	erada
Flowing Bottom Hole Pressure Primary Separator Pressure Primary Separator Temperature Primary Separator Pressure Secondary Separator Pressure Secondary Separator Temperature Field Stock Tank Liquid Gravity Pressure Base Pressure Base Pressure Base Compressibility Factor (Fpv) Gas Gravity (Laboratory) Gas Gravity Factor (Fg) Stock Tank Liquid Production Rate @ 60 °F. Primary Separator Gas/Stock Tank Liquid Ratio Sampled by 6092 PSIO 490 78 6490 PSIO 78 F. 649.7 API © 60°F. 2887 MSCF/Day API © 60°F. 650.54 Bbls/Day 650.54 Bbls/Day 78 Bbls/MSCF Bbls/MSCF Bbls/MSCF Sampled by	SAMPLING C	CONDITIONS	
Primary Separator Pressure Primary Separator Temperature Secondary Separator Pressure Secondary Separator Temperature Secondary Separator Temperature Field Stock Tank Liquid Gravity Primary Separator Gas Production Rate Pressure Base Compressibility Factor (Fpv) Gas Gravity (Laboratory) Gas Gravity Factor (Fg) Stock Tank Liquid Production Rate @ 60 °F. Primary Separator Gas/Stock Tank Liquid Ratio Sampled by 49.7 API @ 60°F. 2887 MSCF/Day API @ 60°F. 60 °F. 60 °F. 650.54 Bbls/Day SCF/Bbl SCF/Bbl SCF/Bbl Sampled by		_35	10 PSIG
Primary Separator Temperature Secondary Separator Pressure Secondary Separator Temperature Field Stock Tank Liquid Gravity Primary Separator Gas Production Rate Pressure Base Pressure Base Temperature Base Compressibility Factor (Fpv) Gas Gravity (Laboratory) Gas Gravity Factor (Fg) Stock Tank Liquid Production Rate @ 60 °F. Primary Separator Gas/Stock Tank Liquid Ratio Or 225.33 Bbls/MSCF Sampled by		60	
Secondary Separator Pressure Secondary Separator Temperature Field Stock Tank Liquid Gravity Primary Separator Gas Production Rate Pressure Base Temperature Base Compressibility Factor (Fpv) Gas Gravity (Laboratory) Gas Gravity Factor (Fg) Stock Tank Liquid Production Rate @ 60 °F. Primary Separator Gas/Stock Tank Liquid Ratio Or Sampled by PSIC 49.7 API @ 60°F. API @ 60°F. 1.0477 0.688 0.688 50.54 Bbls/Day SCF/Bbl SCF/Bbl SCF/Bbl SCF/Bbl		49	0 PSIG
Secondary Separator Pressure Secondary Separator Temperature Field Stock Tank Liquid Gravity Primary Separator Gas Production Rate Pressure Base Pressure Base Field Stock Tank Liquid Factor (Fpv) Finally Factor (Fpv) Fi	Primary Separator Temperature	78	°F.
Field Stock Tank Liquid Gravity Primary Separator Gas Production Rate Pressure Base Pressure Base Scompressibility Factor (Fpv) 1.0477 Gas Gravity (Laboratory) 0.688 Gas Gravity Factor (Fpv) 1.2056 Stock Tank Liquid Production Rate 6 60 °F. Primary Separator Gas/Stock Tank Liquid Ratio or 225.33 Sampled by API 6 60°F. MSCF/Day MSCF/Day API 6 60°F. 650.54 Bbls/Day API 6 60°F. 650.54 Bbls/Day API 6 60°F. 650.54 Bbls/Day API 6 60°F. 650.54 Bbls/MSCF	Secondary Separator Pressure		PSIG
Primary Separator Gas Production Rate Pressure Base Separator Gas Production Rate Pressure Base Temperature Base Compressibility Factor (Fpv) Gas Gravity (Laboratory) Gas Gravity Factor (Fg) Stock Tank Liquid Production Rate 0 60 °F. Primary Separator Gas/Stock Tank Liquid Ratio Or Stock Tank Diquid Production Rate 0 60 °F. Sampled by MSCF/Day MSCF/Day ASST MSCF	Secondary Separator Temperature	<u></u>	°F.
Primary Separator Gas Production Rate Pressure Base Temperature Base Compressibility Factor (F _p) Gas Gravity (Laboratory) Gas Gravity Factor (F _g) Stock Tank Liquid Production Rate @ 60 °F. Primary Separator Gas/Stock Tank Liquid Ratio Sampled by MSCF/Day MSCF/Day MSCF/Day A	Field Stock Tank Liquid Gravity	49	.7 ° API © 60°F.
Pressure Base 15.025 PSIA Temperature Base 60 °F. Compressibility Factor (Fpv) 1.0477 Gas Gravity (Laboratory) 0.688 Gas Gravity Factor (Fg) 1.2056 Stock Tank Liquid Production Rate 6 60 °F. 650.54 Bbls/Day Primary Separator Gas/Stock Tank Liquid Ratio or 225.33 Bbls/MMSCF Sampled by TI			11007 15
Temperature Base 60 °F. Compressibility Factor (Fpv) 1.0477 Gas Gravity (Laboratory) 0.688 Gas Gravity Factor (Fg) 1.2056 Stock Tank Liquid Production Rate 6 60 °F. 650.54 Bbls/Day Primary Separator Gas/Stock Tank Liquid Ratio or 225.33 Bbls/MMSCF Sampled by TI			
Compressibility Factor (F _{pV}) 1.0477 Gas Gravity (Laboratory) 0.688 Gas Gravity Factor (F _g) 1.2056 Stock Tank Liquid Production Rate @ 60 °F. 650.54 Bbls/Day Primary Separator Gas/Stock Tank Liquid Ratio or 225.33 Bbls/MMSCF Sampled by TI			
Gas Gravity (Laboratory) O.688 Gas Gravity Factor (Fg) 1.2056 Stock Tank Liquid Production Rate 0 60 °F. 650.54 Bbls/Day Primary Separator Gas/Stock Tank Liquid Ratio or 225.33 Bbls/MMSCF Sampled by TI		477	
Gas Gravity Factor (Fg) 1.2056 Stock Tank Liquid Production Rate @ 60 °F. 650.54 Bbls/Day Primary Separator Gas/Stock Tank Liquid Ratio or 225.33 Bbls/MMSCF TI	Gas Gravity (Laboratory) PV 0.68		
Stock Tank Liquid Production Rate @ 60 °F. Primary Separator Gas/Stock Tank Liquid Ratio or 225.33 Bbls/MMSCF Sampled by TI			
Primary Separator Gas/Stock Tank Liquid Ratio or 225.33 Bbls/MMSCF		• 65	n 54 Bbls/Day
Sampled by or 225.33 Bbls/MMSCF	Primary Separator Gas/Stock Tank Liquid F		COT (DL)
Sampled by TI			DL 1 - ARKCCE
			2
	REMARKS:		

*Temperature extrapolated to mid point of perforation = 196°F.

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitablement of any oil, easy or other mineral well or sand in connection with which such report is used or relief upon.

CORE LABORATORIES, INC.

Petroleum Reservoir Engineering
DALLAS, TEXAS

Page	2	_of	5
File	RFL 79619	<u> </u>	
Well	State 36	No. 1	

Hydrocarbon Analyses of Separator Products and Calculated Well Stream

	Separator Liquid	Separator (Gas	Well Stre	am
Component	Mol Per Cent	Mol Per Cent	GPM	Mol Per Cent	GPM
					•
Hydrogen Sulfide	Nil	Ni1		Ni1	
Carbon Dioxide	Nil	0.12		0.10	
Nitrogen	0.16	1.14		0.94	
Methane	11.74	81.81		67.81	
Ethane	8.81	10.87	2.964	10.46	
Propane	9.79	3.92	1.100	5.09	1.428
iso-Butane	2.49	0.50	0.167	0.90	0.300
n-Butane	7.04	0.91	0.293	2.13	0.685
iso-Pentane	3.33	0.18	0.067	0.81	0.302
n-Pentane	3.83	0.18	0.067	0.91	0.336
Hexanes	5.63	0.10	0.042	1.21	0.503
Heptanes plus	47.18	0.27	0.125	9.64	6.563
	100.00	$\overline{100.00}$	4.825	100.00	10.117

Properties of Heptanes plus

API gravity @ 60° F.	<u>44.5</u>		
Specific gravity @ 60/60° F.	0.8041		_0_802
Molecular weight	171	<u>103 (assumed)</u>	169

Calculated separator gas gravity (air = 1.000) = 0.688 Calculated gross heating value for separator gas = 1224 BTU per cubic foot of dry gas @ 15.025 psia and 60° F.

Primary separator gas/separator liquid ratio	3588SCF/Bbl @ 78°F.
Primary separator liquid/stock tank liquid ratio	1.237 Bbls @ 78°F./per Bb1 @ 60°F.
Primary separator gas/well stream ratio	800.17 MSCF/MMSCF
Stock tank liquid/well stream ratio	180.30Bbls/MMSCF

These analysis, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or productives, and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or productives of any sil, gas or other mineral well or sand in connection with which such reports is used or relief unon.

CORE LABORATORIES, INC Petroleum Reservoir Engineering DALLAS, TEXAS

Page	_3of5
File_	RFL 79619
Well	State 36 No. 1

Pressure-Volume Relations of Reservoir Fluid at 196°F.
(Constant Composition Expansion)

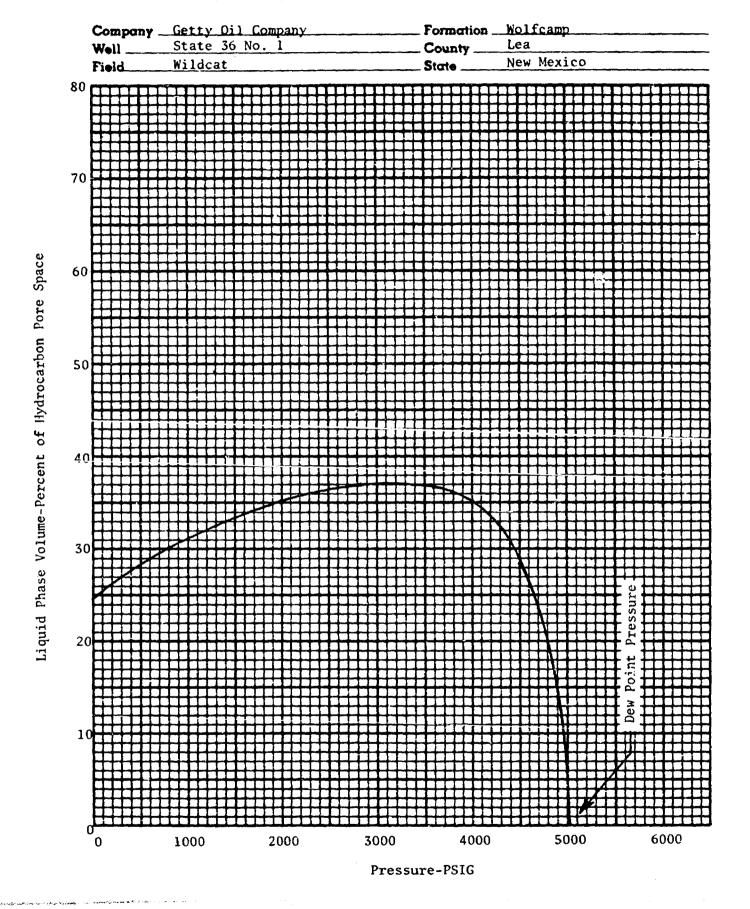
Pressure PSIG	Relative Volume
	0.8946
8000	0.9034
7630	0.9115
7255 Reservoir Pressure	0.9172
7100	0.9291
6700	0.9421
6300	0.9532
6000	0.9655
5700	0.9769
5450	0.9843
5300	0.9929
5150	0.9974
5050	1.0000
5018 Dew Point Pressure	1.0006
5008	1.0049
4950	1.0119
4850	1.0240
4700	1.0422
4500	1.0687
4250	1,1089
3950	1.1860
3500	1.3198
3000	1.5253
2500	1.8695
2000	2.3295
1600	2.8763
1300	3.7825
1000	

These analyses, epinions or interpretations are based on observations and material supplied by the superstands. Inc. (all errors and emissions employees) this report is made. The interpretations or spinions expressed represent the heat judgment of Core Laboratories. Inc. and its officers and employees, annuance no responsibility and such no warranty or representations as to the predectivity, proper operation of the productivity and such no warranty or representations as to the predectivity, proper operation of the productivity and such as well as the productivity of the productiv

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS, TEXAS 75207

Page_	_4of5
	RFL 79619
Well	State 36 No. 1

Retrograde Condensation During Gas Depletion at 196 °F.


Pressure PSIG	Retrograde Liquid Volume Percent of Hydrocarbon Pore Space
5018 Dew Point Pressure	0.0
5008	0.8
4950	1.4
4850	11,2
	17.8
4700	23.7
4500	28.6
4300	32.9
3600	36.7
2800	37.0
2000	35.2
1300	32.5
700	29.7
0	- • •
	24.5

discrete is made. The interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use. this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted): but tion, or profits inc. and its officers and employees, assume an engagement of make no warranty or representations as to the preductivity, proper opera-

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS, TEXAS

Page 5 of 5 File RFL 79619

Retrograde Liquid Accumulation During Depletion at 196°F.

CASE 6795: Application of Torreon Oil Company for a waterflood project, Sandoval County, New Mexico.

Applicant, in the above-styled cause, seeks authority to institute a waterflood project in the San Luis-Mesaverde Oil Pool by the injection of water into the Menafee formation through its San Luis Fed. Wells Nos. 1 and 2, located in Unit K of Section 21, Township 18 South, Range 3 East. Applicant further seeks an administrative procedure for approval of additional producing and injection wells at unorthodox locations in said project.

CASE 6608: (Reopened and Readvertised)

In the matter of Case 6608 being reopened pursuant to the provisions of Order No. R-6088 which order created the Grama Ridge-Wolfcamp Pool with temporary special rules and regulations with provisions for 160-acre spacing. All interested parties may appear and show cause whether the Grama Ridge-Wolfcamp Pool is in fact an oil reservoir or a gas reservoir, and if it is an oil reservoir, show cause why the Grama Ridge-Wolfcamp Pool should not be developed on less than 160-acre spacing units.

CASE 6771: (Continued from January 3, 1980, Examiner Hearing)

Application of Getty Oil Company for a non-standard gas proration unit, Lea County, New Mexico. Applicant, in the above-styled cause, seeks approval of a 160-acre non-standard gas proration unit comprising the E/2 SW/4 of Section 31, Township 24 South, Range 37 East, and the NW/4 NE/4 and NE/4 NW/4 of Section 6, Township 25 South, Range 37 East, Jalmat Gas Pool, to be dedicated to a well to be drilled at a standard location thereon.

CASE 6767: (Continued from January 3, 1980, Examiner Hearing)

Application of Alpha Twenty-One Production Company for two non-standard gas proration units, unorthodox well location, and approval of infill drilling, Lea County, New Mexico. Applicant, in the above-styled cause, seeks approval of a 40-acre non-standard proration unit comprising the NW/4 NW/4 of Section 27, Township 25 South, Range 37 East, Jalmat Gas Pool, to be dedicated to El Paso Natural Gas Company's Harrison Well No. 2, and also a 200-acre unit comprising the S/2 N/2 and NE/4 NW/4 of said Section 27 to be dedicated to a well to be drilled at an unorthodox location 1980 feet from the North line and 560 feet from the West line of Section 27. Applicant further seeks a finding that the drilling of the latter well is necessary to effectively and efficiently drain that portion of an existing proration unit which cannot be so drained by the existing well.

Dockets Nos. 3~80 and 4~80 are tentatively set for January 30 and February 13, 1980. Applications for hearing must be filed at least 22 days in advance of hearing date.

DOCKET: EXAMINER HEARING - WEDNESDAY - JANUARY 16, 1980

9 A.M. - OIL CONSERVATION DIVISION CONFERENCE ROOM, STATE LAND OFFICE BUILDING, SANTA FE, NEW MEXICO

- The following cases will be heard before Daniel S. Nutter, Examiner, or Richard L. Stamets, Alternate Examiner:

 ALLOWABLE: (1) Consideration of the allowable production of gas for February, 1980, from fifteen prorated pools in Lea, Eddy, and Chaves Counties, New Mexico.
 - (2) Consideration of the allowable production of gas for February, 1980, from four prorated pools in San Juan, Rio Arriba, and Sandoval Counties, New Mexico.
- CASE 6787: In the matter of the hearing called by the Oil Conservation Division on its own motion to consider the approval of 12 non-standard proration units ranging in size from 261.51 acres to 334.24 acres for 320-acre spaced pools, and 19 non-standard proration units ranging in size from 162.65 acres to 207.57 acres for 160-acre spaced pools, all of the aforesaid units being in and resulting from the irregular size and shape of Sections 1 thru 7 and 18, 19, 30, and 31, along the North and West sides of Township 28 North, Range 3 West, Rio Arriba County.
- CASE 6788: Application of Amoco Production Company for a dual completion, Lea County, New Mexico.

 Applicant, in the above-styled cause, seeks approval for the dual completion (conventional) of its South Matrix Unit Well No. 35 located in Unit F of Section 15, Township 24 South, Range 37 East, to produce gas from the Fowler-Upper Paddock Pool and oil from the Fowler-Drinkard Pool thru parallel strings of tubing.
- Application of Knox Industries, Inc. for an unorthodox oil well location, Lea County, New Mexico.

 Applicant, in the above-styled cause, seeks an exception to the well location requirements of the Scharb-Bone Springs Pool as promulgated by Order No. R-2589 to permit its New Mexico State Well No. 2 to be drilled in Unit H of Section 1, Township 19 South, Range 34 East, the E/2 NE/4 of said Section 1 to be dedicated to the well.
- CASE 6790: Application of Merrion & Bayless for gas well commingling, San Juan County, New Mexico.

 Applicant, in the above-styled cause, seeks permission to temporarily commingle certain of its Pictured Cliffs gas wells in Sections 1, 2, 3, 9, 10, and 11, Township 26 North, Range 13 West, in a common gathering system and meter the entire lease output through the purchaser's sales meter located in Unit M or said Section 7.
- CASE 6784: (Continued from January 3, 1980, Examiner Hearing)

Application of Merrion & Bayless for a non-standard proration unit and an unorthodox gas well location, San Juan County, New Mexico. Applicant, in the above-styled cause, seeks approval for a 640-acre non-standard gas proration unit comprising the W/2 of Section 18 and the W/2 of Section 19. Township 32 North, Range 14 West, Barker Creek-Paradox Pool, to be dedicated to its Ute Well No. 7 at an unorthodox location 1685 feet from the South line and 3335 feet from the East line of said Section 19.

In the alternative, applicant seeks an order force pooling all of said Section 19 to form a standard 640-acre unit.

- CASE 6791: Application of Holly Energy, Inc. for an unorthodox gas well location, Eddy County, New Mexico.

 Applicant, in the above-styled cause, seeks approval for the unorthodox location of its State 30

 Well No. 1, a Morrow test to be drilled 660 feet from the North line and 840 feet from the East

 line of Section 30, Township 17 South, Range 28 East, the N/2 of said Section 30 to be dedicated
 to the well.
- CASE 6792: Application of Florida Exploration Company for a non-standard gas proration unit, Eddy County, New Mexico. Applicant, in the above-styled cause, seeks approval of a 324.25-acre non-standard gas proration unit comprising Lots 1 and 2 and N/2 NE/4 of Section 33 and Lots 2, 3, and 4 and NW/4 NE/4 and N/2 NW/4 of Section 34, all in Township 26 South, Range 30 East, Ross Draw Area, to be dedicated to a well to be drilled at a standard location thereon.
- CASE 6793: Application of Meadco Properties, Ltd. for an exception to Order No. R-111-A, Eddy County, New Mexico. Applicant, in the above-styled cause, seeks an exception to the casing-cementing rules of Order No. R-111-A to permit a proposed well in Unit E of Section 4, Township 21 South, Range 29 East, to be completed by setting surface casing at 550 feet and production casing at total depth and cementing both casing strings to the surface.
- CASE 6794: Application of Caulkins Oil Company for downhole commingling, Rio Arriba County, New Mexico.

 Applicant, in the above-styled cause, seeks approval for the downhole commingling of Tocito Callup and Dakota production in the wellbore of its Breech "D" Well No. 140 located in Unit A of Section 11, Township 26 North, Range 6 West.

CAMPBELL AND BLACK, P.A.

JACK M. CAMPBELL BRUCE D. BLACK MICHAEL B. CAMPBELL WILLIAM F. CARR PAUL R. CALDWELL POST OFFICE BOX 2208

JEFFERSON PLACE

\$ANTA FE, NEW MEXICO 87501

TELEPHONE (808) 988-4421

DEC 0 3 197929 1979

OIL CONSTRUCTION DIVISION

SANTA FE

Mr. Joe D. Ramey Division Director Oil Conservation Division New Mexico Department of Energy & Minerals Post Office Box 2088 Santa Fe, New Mexico 87501

Re: Case No. 6608: Application of Getty Oil Company for Pool Creation and Special Pool Rules, Lea County, New Mexico

Dear Mr. Ramey:

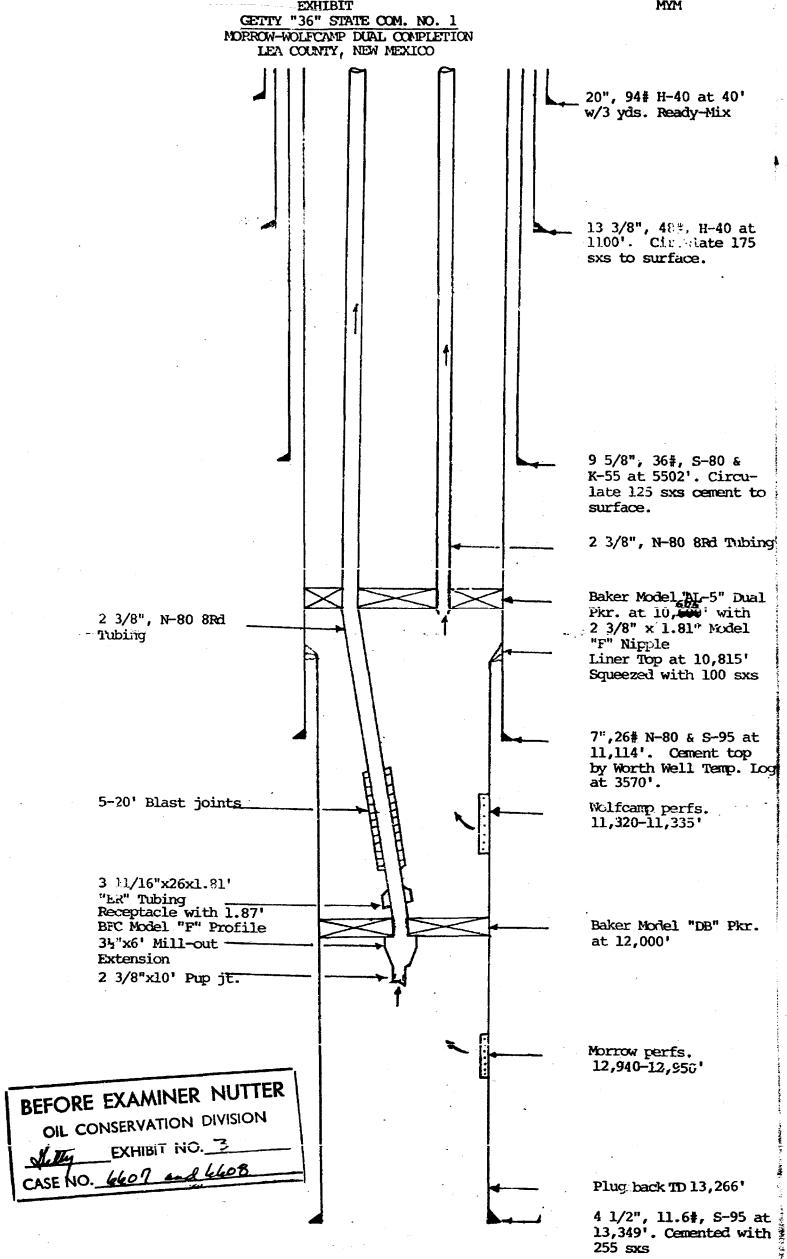
On August 28, 1979, the Division entered its order in the above-referenced matter creating temporary pool rules for the Grama Ridge-Wolfcamp Pool. This order (Order No. R-6088) provided that this matter be reopened at an examiner hearing in January 1980, at which time operators in the subject pool should be prepared to show whether the subject pool is in fact an oil reservoir or a gas reservoir.

Getty Oil Company requests that this case be heard at the examiner hearing scheduled for January 16, 1980.

Your consideration of this request is appreciated.

Very truly yours

William F. Carr


WFC:lr

cc: Mr. Herman Terry

Exhibir # 2 1/4 6607-6608

av a weee log - in lare

like 6607

BRUCE KING GOVERNOR LARRY REHOE

STATE OF NEW MEXICO ENERGY AND MINERALS DEPARTMENT OIL CONSERVATION DIVISION

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 8750 BIOSI 827-2434

Mr. William F. Carr	Re:	ORDER NO. R-6088	
Campbell & Black Attorneys at Law Post Office Box 2208 Santa Fe, New Mexico	87501 ·	Applicant:	
		Getty Oil Company	
Dear Sir:		·	
Enclosed herewith an Division order recen		of the above-referenced n the subject case.	
JOE D. RAMEY Director			
JDR/fd			
Copy of order also	sent to:		
Hobbs OCD X Artesia OCD X Aztec OCD			
Other			

Dockets Nos. 29-79 and 31-79 are tentatively set for hearing on August 8 and 22, 1979. Applications for hearing must be filed at least 22 days in advance of hearing date.

DOCKET: COMMISSION HEARING - TUESDAY - JULY 24, 1979

OIL CONSERVATION COMMISSION - 9 A.M. - ROOM 205 STATE LAND OFFICE BUILDING, SANTA FE, NEW MEXICO

CASE 6596: Application of Harvey E. Yates Company for pool creation and special pool rules, Eddy County, New Mexico. Applicant, in the above-styled cause, aceks the creation of a new Upper Pennsylvanian gas pool to be designated as the Southeast Indian Basin-Upper Pennsylvanian Gas Pool for its Southeast Indian Basin Well No. 1 located in Unit A of Section 23, Township 22 South, Range 23 East, and special pool rules therefor including 320-acre gas well spacing.

CASE 6597:

Application of Harvey E. Yates Company for an unorthodox gas well location, Eddy County, New Mexico. Applicant, in the above-styled cause, seeks approval for the unorthodox location of its Southeast Indian Basin Well No. 2, an Upper Pennsylvanian well to be drilled 660 feet from the North and West lines of Section 24, Township 22 South, Range 23 East, with the N/2 or all of said Section 24 to be dedicated to the well, depending on the outcome of Case No. 6596.

Docket No. 28-79

DGCKET: EXAMINER HEARING - WEDNESDAY - JULY 25, 1979

9 A.M. - OIL CONSERVATION DIVISION CONFERENCE ROOM, STATE LAND OFFICE BUILDING, SANTA FE, NEW MEXICO

The following cases will be heard before Daniel S. Nutter, Examiner, or Richard L. Stamets, Alternate Examiner:

CASE 6545: (Continued from June 27, 1979, Examiner Hearing)

In the matter of the hearing called by the Oil Conservation Division on its own motion to permit Corinne Grace, Travelers Indemnity Company, and all other interested parties to appear and show cause why the Kuklah Baby Well No. 1 located in Unit G of Section 24, Township 22 South, Range 26 East, Eddy County, New Mexico, should not be plugged and abandoned in accordance with a Division-approved plugging program.

CASE 6598: Application of Gulf Oil Corporation for downhole commingling. Rio Arriba County, New Mexico.

Applicant, in the above-styled cause, seeks approval for the downhole commingling of Otero-Gallup and Basin-Dakota production in the wellbores of its Apache Federal Wells No. 8 located in Unit C of Section 8 and No. 9 located in Unit D of Section 17, both in Township 24 North, Range 5 West.

Application of Gulf Oil Corporation for downhole commingling, Lea County, New Mexico.

Applicant, in the above-styled cause, seeks approval for the downhole commingling of Fusselman and Montoya production, North Justis Field, in the wellbore of its W. A. Ramsay Well No. 4 located in Unit M of Section 36, Township 24 South, Range 37 East.

Application of Mesa Petroleum Company for compulsory pooling, Eddy County, New Mexico.

Applicant, in the above-styled cause, seeks an order pooling all mineral interests in the Morrow formation underlying the E/2 of Section 10, Township 16 South, Range 27 East, to be dedicated to a well to be drilled at a standard location thereon. Also to be considered will be the cost of drilling and completing said well and the allocation of the cost thereof as well as actual operating costs and charges for supervision. Also to be considered will be the designation of applicant as operator of the well and a charge for risk involved in drilling said well.

CASE 6601: Application of Harvey E. Yates Company for compulsory pooling, Lea County, New Mexico.

Applicant, in the above-styled cause, seeks an order pooling all mineral interests in the Wolfcamp through Mississippian formations underlying the E/2 of Section 8, Township 14 South, Range 36 East, to be dedicated to a well to be drilled at a standard location thereon. Also to be considered will be the cost of drilling and completing said well and the allocation of the cost thereof as well as actual operating costs and charges for supervision. Also to be considered will be the designation of applicant as operator of the well and a charge for risk involved in drilling said well.

CASE 6602: Application of Tenneco Oil Company for an unorthodox well location, Eddy County, New Mexico.

Applicant, in the above-styled cause, seeks approval for the unorthodox location of its Federal 33

C No. 2 Well 1010 feet from the North line and 1710 feet from the West line of Section 33, Township 17 South, Range 29 East, South Empire-Wolfcamp Pool, the E/2 NW/4 of said Section 33 to be dedicated to the well.

CASE 6603: (This case will be continued to the August 8 hearing.)

Application of Conoco Inc. for downhole commingling, Lea County, New Mexico. Applicant, in the above-styled cause, seeks approval for the downhole commingling of Penrose Skelly and Eumont production in the wellbore of its Hawk B-1 Well No. 12 located in Unit 0 of Section 8, Township 21 South, Range 37 East.

- CASE 6604:

 Application of Cities Service Company for rescission of Division Order No. R-5921, Eddy County,
 New Mexico. Applicant, in the above-styled cause, seeks the rescission of Order No. R-5921 which
 order provided for the compulsory pooling of all of the mineral interests in the Pennsylvanian
 formation underlying the S/2 of Section 8, Township 23 South, Range 28 East.
- CASE 6605:

 Application of Estoril Producing Corporation for compulsory pooling and an unorthodox gas well location, Lea County, New Mexico. Applicant, in the above-styled cause, seeks an order pooling all mineral interests in the Morrow formation underlying the V/2 of Section 15, Township 20 South, Range 34 East, to be dedicated to a well to be drilled at an unorthodox location 660 feet from the North and West lines of said Section 15. Also to be considered will be the cost of drilling and completing said well and the allocation of the cost thereof as well as actual operating costs and charges for supervision. Also to be considered will be the designation of applicant as operator of the well and a charge for risk involved in drilling said well.
- CASE 6564: (Continued and Readvertised)

Application of Herndon Oil & Gas Co. for an unorthodox oil well location, Lea County, New Mexico. Applicant, in the above-styled cause, seeks approval for the unorthodox location of its O. A. Woody Well No. 1 to be drilled 2310 feet from the North line and 330 feet from the West line of Section 35, Township 16 South, Range 38 East, Knowles-Devonian Pool.

- Application of Getty Oil Company for salt water disposal, Lea County, New Mexico.

 Applicant, in the above-styled cause, seeks authority to dispose of produced salt water in the Yates formation in the open-hole interval from 3810 feet to 4169 feet in its State "AA" Well No. 1 located in Unit I of Section 35, Township 21 South, Range 34 East.
- CASE 6607: Application of Getty Oil Company for a dual completion, Lea County, New Mexico.

 Applicant, in the above-styled cause, seeks approval for the dual completion of its Getty 36 State
 Well No. 1 located in Unit F of Section 36, Township 21 South, Range 34 East, to produce oil from
 the Wolfcamp formation and gas from the Morrow formation through parallel strings of tubing.
- CASE 6608: Application of Getty 0:1 Company for pool creation and special pool rules, Lea County, New Mexico.

 Applicant, in the above-styled cause, seeks the creation of a new Wolfcamp oil pool for its Getty

 36 State Well No. 1 located in Unit F of Section 36, Township 21 South, Range 34 East, and special rules therefor, including 160-acre oil well spacing.
 - Application of Napeco Inc. for pool creation and special pool rules, Eddy County, New Mexico.

 Applicant, in the above-styled cause, seeks the creation of a new Strawn oil pool for its Benson

 Deep Unit Well No. 1 located in Unit 0 of Section 33, Township 18 South, Range 30 East, and

 special rules therefor, including 160-acre spacing and standard well locations.
 - CASE 6610: Application of Koch Industries, Inc. for salt water disposal, Lea County, New Mexico.

 Applicant, in the above-styled cause, seeks authority to dispose of produced salt water in the Rustler formation through the perforated interval from 1190 feet to 1210 feet in its Wills "A" Well No. 7 located in Unit E of Section 35, Township 26 South, Range 37 East, Rhodes Field.
 - CASE 6611: Application of Cabot Corp. for salt water disposal, Lea County, New Mexico.

 Applicant, in the above-styled cause, seeks approval for the disposal of produced salt water in the Devonian formation through the perforated interval from 12,156 feet to 12,574 feet in its Reed Well No. 1 located in Unit H of Section 35, Township 13 South, Range 37 East, King Field.
 - CASE 6487: (Continued from May 23, 1979, Examiner Hearing)

Application of El Paso Natural Gas Company for approval of infill drilling, Lea County, New Mexico. Applicant, in the above-styled cause, seeks a waiver of existing well-spacing requirements and a finding that the drilling of its Shell E State Com Well No. 2 located in Unit N of Section 6, Township 21 South, Range 36 East, Eumont Gas Pool, Lea County, New Mexico, is necessary to effectively and efficiently drain that portion of the proration unit which cannot be so drained by the existing well.

CASZ 6471: (Continued from May 23, 1979, Examiner Hearing)

Application of Consolidated Oil & Gas, Inc. for approval of infill drilling, San Juan County, New Mexico. Applicant, in the above-styled cause, seeks a waiver of existing well-spacing requirements and a finding that the drilling of its Freeman Well No. 1-A to be located in Unit C of Section 11, Township 31 North, Range 13 West, Basin-Dakota Pool, San Juan County, New Mexico, is necessary to effectively and efficiently drain that portion of the proration unit which cannot be so drained by the existing well.

CASE 6472: (Continued from May 23, 1979, Examiner Hearing)

Application of Consolidated Oil & Gas, Inc. for approval of infill drilling, Rio Arriba County, New Mexico. Applicant, in the above-styled cause, seeks a waiver of existing well-spacing requirements and a finding that the drilling of its Jenny Well No. 1-A to be located in Unit P of Section 13, Township 20 North, Range 4 West, Basin-Dakota Pool, Rio Arriba County, New Mexico, is necessary to effectively and efficiently drain that portion of the proration unit which cannot be so drained by the existing well.

CASE 6473: (Continued from May 23, 1979, Examiner Hearing)

Application of Consolidated Oil & Gas, Inc. for approval of infill drilling, Rio Arriba County, New Mexico. Applicant, in the above-styled cause, seeks a waiver of existing well-spacing requirements and a finding that the drilling of its McIntyre Well No. 1-A to be located in Unit K of Section 11, Township 26 North, Range 4 West, Basin-Dakota Pool, Rio Arriba County, New Mexico, is necessary to effectively and efficiently drain that portion of the proration unit which cannot be so drained by the existing well.

CASE 6474: (Continued from May 23, 1979, Examiner Hearing)

Application of Consolidated Oil & Gas, Inc. for approval of infill drilling, San Juan County, New Mexico. Applicant, in the above-styled cause, seeks a waiver of existing well-spacing requirements and a finding that the drilling of its Williams Well No. 1-A to be located in Unit C of Section 24, Township 31 North, Range 13 West, Basin-Dakota Pool, San Juan County, New Mexico, is necessary to effectively and efficiently drain that portion of the proration unit which cannot be so drained by the existing well.

CASE 6475: (Continued from May 23, 1979, Examiner Hearing)

Application of Consolidated Oil & Gas. Inc. for approval of infill drilling, San Juan County, New Mexico. Applicant, in the above-styled cause, seeks a waiver of existing well-spacing requirements and a finding that the drilling of its Montoya Well No. 1-A to be located in Unit I of Section 35, Township 32 North, Range 13 West, Basin-Dakota Pool, San Juan County, New Mexico, is necessary to effectively and efficiently drain that portion of the provation unit which cannot be so drained by the existing well.

CASE 6535: (Continued from June 13, 1979, Examiner Hearing)

Application of Torreon Oil Company for a waterflood ploject, Sandoval County, New Mexico. Applicant, in the above-styled cause, seeks authority to institute a waterflood project in the San Luis-Mesaverde Pool by the injection of water into the Menefee formation through two wells located in Section 21, Township 18 North, Range 3 West, Sandoval County, New Mexico.

CASE 6579: (Continued from June 27, 1979, Examiner Hearing)

Application of R. N. Hillin for an unorthodox well location and approval of infill drilling, Eddy County, New Mexico. Applicant, in the above-styled cause, seeks a waiver of existing well spacing requirements and a finding that the drilling of a Morrow gas well at an unorthodox location 800 feet from the South line and 2000 feet from the East line of Section 34, Township 19 South, Range 28 East, is necessary to effectively and efficiently drain that portion of the E/2 of said Section 34 which cannot be so drained by the existing well.

CASE 6580: (Continued from June 27, 1979, Examiner Hearing) (This case will be continued to the August 22 hearing.)

Application of Continental Oil Company for a carbon dioxide injection project, Lea County, New Mexico. Applicant, in the above-styled cause, seeks authority to initiate a pilot carbon dioxide injection project in the Grayburg-San Andres formation in Units H and I of Section 20, Township 17 South, Range 32 East, Maljamar Pool, for tertiary recovery purposes.

CASE 6270: (Continued from July 11, 1979, Examiner Hearing)

In the matter of Case 6270 being reopened pursuant to the provisions of Order No. R-5771 which order created the South Peterson-Fusselman Pool, Roosevelt County, New Mexico, and provided for 80-acre spacing. All interested parties may appear and show cause why said pool should not be developed on 40-acre spacing units.

CASE 6590: (Continued from July 11, 1979, Examiner Hearing)

Application of Grace Petroleum Corporation for compulsory pooling and an unorthodox gas well location, Lea County, New Mexico. Applicant, in the above-styled cause, seeks an order pooling all mineral interests in the Morrow formation underlying Lots 9, 10, 15, and 16 and the SE/4 of Section 6, Township 21 South, Range 32 East, to be dedicated to a well to be drilled at an unorthodox location 4650 feet from the South line and 660 feet from the East line of said Section 6. Also to be considered will be the cost of drilling and completing said well and the allocation of the costs thereof as well as actual operating costs and charges for supervision. Also to be considered will be the designation of applicant as operator of the well and a charge for risk involved in drilling said well.

CAMPBELL AND BLACK, P.A.

JACK M. CAMPBELL BRUCE D. BLACK MICHAEL B. CAMPBELL WILLIAM F. CARR PAUL R. CALDWELL POST OFFICE BOX 220B

JEFFERSON PLACE

SANTA FE. NEW MEXICO 87501

TELEPHONE (505) 988-4421

July 3, 1979

Mr. Joe D. Ramey, Division Director Oil Conservation Division New Mexico Department of Energy and Minerals Post Office Box 2088 Santa Fe, New Mexico 87501

RE: Application of Getty Oil Company for Pool Creation, Special Pool Rules and Dual Completion, Lea County, New Mexico.

Dear Mr. Ramey:

Enclosed herewith, in triplicate, is the application of Getty Oil Company in the above referenced matter.

The applicant requests that this case be set for hearing at the Examiner Hearings scheduled to be held on July 25, 1979.

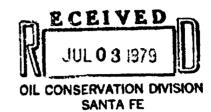
Your attention to this matter is appreciated.

Very truly yours,

William F. Carr

WFC/tn

Enclosure


cc:

Mr. Herman Terry Getty Oil Company Post Office Box 730 Hobbs, New Mexico 88240

BEFORE THE OIL CONSERVATION DIVISION NEW MEXICO DEPARTMENT OF ENERGY AND MINERALS

IN THE MATTER OF THE APPLICATION OF GETTY OIL COMPANY FOR POOL CREATION, SPECIAL POOL RULES, AND DUAL COMPLETION, LEA COUNTY, NEW MEXICO.

Case No. 6609

APPLICATION

Comes now GETTY OIL COMPANY, by their undersigned attorneys, and hereby makes application for an order designating a new pool as a result of the discovery of oil in the Wolfcamp formation in its Getty 36 State No. 1 Well located 1980 feet from the North line and 1650 feet from the West line in Unit F of Section 36, Township 21 South, Range 34 East, Lea County, New Mexico and for promulgation of special pool rules, including (1) 160-acre oil spacing or proration units in the Wolfcamp formation on a permanent basis or, in the alternative, on a temporary basis and (2) the dedication of all of the northwest quarter of said Section 36 to the Getty 36 State No. 1 Well. Applicant further seeks authorization to dually complete the subject well in the Wolfcamp and Morrow formations and in support of this application would show the commission:

- 1. That Getty Oil Company is the owner and operator of the Getty 36 State No. 1 Well.
- 2. That while drilling said well to test the Morrow formation, Applicant discovered oil in paying quantities in the Wolfcamp formation.
- 3. That Applicant believes that the following described lands are reasonably proven to be productive of oil in paying quantities from the Wolfcamp formation and should be included in the original definition of a new pool to be created because of said

discovery:

Township 21 South, Range 34 East, N.M.P.M.

Section 36: NW/4

- 4. That in order to avoid economic loss caused by the drilling of unnecessary wells, to avoid augmentation of risk arising from the drilling of an excessive number of wells and to otherwise prevent waste and protect relative rights, special pool rules and regulations providing for 160-acre spacing units in the Wolfcamp should be promulgated for the new pool.
- 5. That Applicant desires to complete its said well as a dual completion: to produce oil from the Wolfcamp formation from the interval between 11,320 feet and 11,335 feet, and to produce gas from the Morrow formation from the interval between 12,940 feet and 12,950 feet. The said oil to be produced through 2-3/8 inch tubing set at 10,600 feet and the gas to be produced through 2-3/8 tubing set at 12,000 feet.
- 6. That a Baker Model K Dual Packer has been set at 10,600 feet and a Baker Model D Packer has been set at 12,000 feet.
- 7. That the granting of this application will avoid waste, allow the recovery of oil and gas which might not otherwise be recovered, and will not violate correlative rights.

WHEREFORE, GETTY OIL COMPANY, requests that this application be set for hearing before a duly appointed examiner of the Oil Conservation Division on July 25, 1979, that notice be given as required by law and the rules of the Division, and that the application be approved.

Respectfully submitted,

CAMPBELL AND BLACK, P.A. Attorneys for Applicant Post Office Box 2208 Santa Fe, New Mexico 87501

y Typean

BEFORE THE OIL CONSERVATION DIVISION NEW MEXICO DEPARTMENT OF ENERGY AND MINERALS

IN THE MATTER OF THE APPLICATION OF GETTY OIL COMPANY FOR POOL CREATION, SPECIAL POOL RULES, AND DUAL COMPLETION, LEA COUNTY, NEW MEXICO.

Case No. 6608

JUL 0 3 :979

OIL CONSERVATION DIVISION

APPLICATION

SANTA FE
Comes now GETTY OIL COMPANY, by their undersigned attorneys,
and hereby makes application for an order designating a new pool as

and hereby makes application for an order designating a new pool as a result of the discovery of oil in the Wolfcamp formation in its Getty 36 State No. 1 Well located 1980 feet from the North line and 1650 feet from the West line in Unit F of Section 36, Township 21 South, Range 34 East, Lea County, New Mexico and for promulgation of special pool rules, including (1) 160-acre oil spacing or proration units in the Wolfcamp formation on a permanent basis or, in the alternative, on a temporary basis and (2) the dedication of all of the northwest quarter of said Section 36 to the Getty 36 State No. 1 Well. Applicant further seeks authorization to dually complete the subject well in the Wolfcamp and Morrow formations and in support of this application would show the commission:

- 1. That Getty Oil Company is the owner and operator of the Getty 36 State No. 1 Well.
- 2. That while drilling said well to test the Morrow formation, Applicant discovered oil in paying quantities in the Wolfcamp formation.
- 3. That Applicant believes that the following described lands are reasonably proven to be productive of oil in paying quantities from the Wolfcamp formation and should be included in the original definition of a new pool to be created because of said

discovery:

Township 21 South, Range 34 East, N.M.P.M.

Section 36: NW/4

- 4. That in order to avoid economic loss caused by the drilling of unnecessary wells, to avoid augmentation of risk arising from the drilling of an excessive number of wells and to otherwise prevent waste and protect relative rights, special pool rules and regulations providing for 160-acre spacing units in the Wolfcamp should be promulgated for the new pool.
- 5. That Applicant desires to complete its said well as a dual completion: to produce oil from the Wolfcamp formation from the interval between 11,320 feet and 11,335 feet, and to produce gas from the Morrow formation from the interval between 12,940 feet and 12,950 feet. The said oil to be produced through 2-3/8 inch tubing set at 10,600 feet and the gas to be produced through 2-3/8 tubing set at 12,000 feet.
- 6. That a Baker Model K Dual Packer has been set at 10,600 feet and a Baker Model D Packer has been set at 12,000 feet.
- 7. That the granting of this application will avoid waste, allow the recovery of oil and gas which might not otherwise be recovered, and will not violate correlative rights.

WHEREFORE, GETTY OIL COMPANY, requests that this application be set for hearing before a duly appointed examiner of the Oil Conservation Division on July 25, 1979, that notice be given as required by law and the rules of the Division, and that the application be approved.

Respectfully submitted,

CAMPBELL AND BLACK, P.A. Attorneys for Applicant Post Office Box 2208 Santa Fe, New Mexico 87501

y 5/ Will

William F. Car

STATE OF NEW MEXICO ENERGY AND MINERALS DEPARTMENT OIL CONSERVATION DIVISION

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION DIVISION FOR THE PURPOSE OF CONSIDERING:

CASE NO. 6608 Order No. R-6088

20

APPLICATION OF GETTY OIL COMPANY FOR POOL CREATION AND SPECIAL POOL RULES, LEA COUNTY, NEW MEXICO.

ORDER OF THE DIVISION

BY THE DIVISION:

This cause came on for hearing at 9 a.m. on July 25, 1979, at Santa Fe, New Mexico, before Examiner Daniel S'

NOW, on this _____ day of August, 1979, the Division Director, having considered the testimony, the record, and the recommendations of the Examiner, and being fully advised in the premises,

FINDS:

- (1) That due public notice having been given as required by law, the Division has jurisdiction of this cause and the subject matter thereof.
- (2) That the applicant, Getty Oil Company, seeks the creation of a new oil pool for Wolfcamp production in Lea County, New Mexico.
- (3) That the applicant also seeks the promulgation of special rules for said pool, including a provision for 160-acre proration units.
- (4) That the evidence presently available indicates that applicant's Getty 36 State Well No. 1, located in Unit F of Section 36, Township 21 South, Range 34 East, NMPM, Lea County, New Mexico, has discovered a separate common source of supply more properly defined as the Bone Spring formation which should be designated the Grama Ridge- Welfcamp Pool; that the vertical limits of the pool should be the Welfcamp, formation, and that the horizontal limits of said pool should be as follows:

TOWNSHIP 21 SOUTH, RANGE 34 EAST, NMPM Section 36: NW/4

- (5) That in order to prevent the economic loss caused by the drilling of unnecessary wells, to avoid the augmentation of risk arising from the drilling of an excessive number of wells, to prevent reduced recovery which might result from the drilling of too few wells, and to otherwise prevent waste and protect correlative rights, temporary special rules and regulations providing for 160-acre spacing units should be promulgated for the Grama Ridge-Welfers Pool.
- (6) That the temporary special rules and regulations should provide for limited well locations in order to assure orderly development of the pool and protect correlative rights.
- (7) That the temporary special rules and regulations should provide for a depth bracket allowable of 605 barrels.
- (8) That the temporary special rules and regulations should be established for a 6-menth period in order to allow the operators in the subject pool to gather reservoir information to establish the area that can be efficiently and economically drained and developed by one well.
- (9) That this case should be reopened at an examiner hearing in January 1980, at which time the operators in the subject pool should be prepared to appear to show cause why should not be developed on 40-acre spacing units.

IT IS THEREFORE ORDERED:

(1) That effective August 1, 1979, a new pool in Lea County, New Mexico, classified as an oil pool for welf-camp production, is hereby created and designated the Grama Ridge-Welf-camp. Pool, with vertical limits comprising the Welf-camp formation and horizontal limits comprising the following-described area:

TOWNSHIP 21 SOUTH, RANGE 34 EAST, NMPM Section 36: SW/4

(2) That temporary Special Rules and Regulations for the Grama Ridge-Wolfcania: Pool, Lea County, New Mexico, are hereby promulgated as follows:

SPECIAL RULES AND REGULATIONS FOR THE GRAMA RIDGE- WOLFCAMP POOL

RULE 1. Each well completed or recompleted in the Grama Ridge-Welftamp Pool or in the Welftamp formation within one mile of the Grama Ridge-Welftamp Pool, and not nearer to

nor within the limits of another designated Welframp pool, shall be spaced, drilled, operated, and prorated in accordance with the Special Rules and Regulations hereinafter set forth.

- RULE 2. Each well completed or recompleted in the Grama Ridge-Welferup : Pool shall be located on a unit containing 160 acres, more or less, substantially in the form of a square, which is a quarter section being a legal subdivision of the United States Public Lands Survey.
- RULE 3. Each well completed or recompleted in said pool shall not be drilled closer than 660 feet to any quarter section line nor closer than 330 feet to any quarter-quarter section line.
- RULE 4. For good cause shown, the Division Director may grant an exception to the requirements of Rule 2 without notice and hearing when the application is for a non-standard unit comprising less than 160 acres. All operators offsetting the proposed non-standard unit shall be notified of the application by registered or certified mail, and the application shall state that such notice has been furnished. The Division Director may approve the application if, after a period of 30 days, no offset operator has entered an objection to the formation of such non-standard unit.

The allowable assigned to any such non-standard unit shall bear the same ratio to a standard allowable in the Grama Ridge-well-cool as the acreage in such non-standard unit bears to 160 acres.

RULE 5. A standard proration unit (158 through 162 acres) in the Grama Ridge-Welffer Pool shall be assigned a depth bracket allowable of barrels, subject to the market demand percentage factor, and in the event there is more than one well on a 160-acre proration unit, the operator may produce the allowable assigned to the unit in any proportion.

IT IS FURTHER ORDERED:

(3) That the lo

- or completed in the Grama Ridge-Nell Pool or in the Bene Spring formation within one mile thereof are hereby approved; that the operator of any well having an unorthodox location shall notify the Hobbs district office of the Division in writing of the name and location of the well on or before September 1979.
- (4) That, pursuant to Paragraph A. of Section 70-2-18, NMSA 1978, contained in Chapter 271, Laws of 1969, existing wells in the Grama Ridge-Wolffen p, Pool shall have dedicated

wolfcomp

thereto 160 acres in accordance with the foregoing pool rules; or, pursuant to Paragraph C. of said Section 70-2-18, existing wells may have non-standard spacing or proration units established by the Division and dedicated thereto.

Failure to file new Forms C-102 with the Division dedicating 160 acres to a well or to obtain a non-standard unit approved by the Division within 60 days from the date of this order shall subject the well to cancellation of allowable. Until said Form C-102 has been filed or until a non-standard unit has been approved, and subject to said 60-day limitation, each well presently drilling to or completed in the Grama Ridge-Well-camp Pool or in the Welframp formation within one mile thereof shall receive no more than one-quarter of a standard allowable for the pool. whether the Subject pool is in fact an ail reservoir or a gas reservoir and if it is an ail reservoir to (5) That this case shall be reopened at an examiner hearing in James 1950, at which time the operators in the subject pool should be prepared to appear and show cause why the Grama Ridge-Welframp Pool should not be developed on 40-acre

- Grama Ridge-Welfcamp Pool should not be developed on 40-acre spacing units.
- (6) That jurisdiction of this cause is retained for the entry of such further orders as the Division may deem necessary.

DONE at Santa Fe, New Mexico, on the day and year hereinabove designated.

> STATE OF NEW MEXICO OIL CONSERVATION_DIVISION

OE D. RAMEY Director

SEAL

STATE OF NEW MEXICO ENERGY AND MINERALS DEPARTMENT OIL CONSERVATION DIVISION

	CASE NO. 6608
	Order No. R- 6088-A
APPLICATION OF GETTY OIL COMPANY	
FOR POOL CREATION AND SPECIAL POOL RULES	· •
LEA COUNTY, NEW MEXICO.	$\sum_{i=1}^{n} a_i x_i = \sum_{i=1}^{n} a_i x_i $
NUNC PRO TUNC O	RDER
BY THE DIVISION:	
It appearing to the Division	
dated August 28 , 19 79	, does not correctly state the
intended order of the Division,	
IT IS THEREFORE ORDERED:	
(1) That Paragraph (1) on Page 2 of	Order No. R-6088, Case No. 6608, he
and the same is hereby corrected to read	in its entirety as follows:
"(1) That effective September	1, 1979, a new pool in Lea
County, New Mexico, classified as an	oil pool for Wolfcamp
production, is hereby created and de	signated the Grama Ridge-
Wolfcamp Pool, with vertical limits	comprising the Wolfcamp
formation and horizontal limits comp	rising the following-
described area:	
TOWNSHIP 2! SOUTH, RANGE 34 E Section 36: SW/4*/	AST, NMPM
(2) That this order shall be effect	eve <u>nunc pro tunc</u> as of August 28, 1979.
DONE at Santa Fe, New Mexico, on thi	sday of January 1980.
and was hard be affected to the stand of the	ir 69 ⁴ 1,19 9W

3

ROUGH

dr/

STATE OF NEW MEXICO ENERGY AND MINERALS DEPARTMENT OIL CONSERVATION DIVISION

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION DIVISION FOR THE PURPOSE OF CONSIDERING:

CASE NO. 6608

Order No. R-6275 6088-B

IN THE MATTER OF CASE 6608 BEING REOPENED PURSUANT TO THE PROVISIONS OF ORDER NO. R-6088, WHICH ORDER ESTABLISHED SPECIAL RULES AND REGULATIONS FOR THE GRAMA RIDGE-WOLFCAMP POOL, LEA COUNTY, NEW MEXICO, INCLUDING A PROVISION FOR 160-ACRE PRORATION UNITS.

ORDER OF THE DIVISION

BY THE DIVISION:

This cause came on for hearing at 9 a.m. on January 16 19 80 , at Santa Fe, New Mexico, before Examiner Daniel S. Nutter NOW, on this ______, 19 80 ____, the Division Director, having considered the testimony, the record, and the recommendations of the Examiner, and being fully advised in the premises,

FINDS:

- That due public notice having been given as required by law, the Division has jurisdiction of this cause and the subject matter thereof.
- (2) That by Order No. R-6088, dated August 28, 1979, the Division created, defined, and classified the Grama Ridge Wolfcamp Oil Pool, Lea County, New Mexico, and temporary special

rules and regulations were promulgated therefor, including a provision for 160-acre spacing units.

- (3) That pursuant to the provisions of Order No. R-6088, this case was reopened to allow the operators in the subject pool to appear and show whether the Grama Ridge-Wolfcamp Pool is in fact an oil reservoir or a gas reservoir, and if it is an oil reservoir, to show cause why said pool should not be developed on less than 160-acre spacing units.
- (4) That the evidence establishes that the Grama Ridge-Wolfcamp Pool reservoir is not an oil reservoir, nor is it a gas reservoir in the usual sense, but that it is in fact a retrograde condensate gas reservoir.
- (5) That the Grama Ridge-Wolfcamp Pool should be reclassified in accordance with Finding No. (4) above, and it should be redesignated as the Grama Ridge-Wolfcamp Gas Pool.
- (6) That the Special Rules and Regulations promulgated by Order No. R-6088 should be rescinded, and new special Rules and Regulations pertinent to a retrograde gas condensate reservoir promulgated.
- (7) That in order to prevent the economic loss caused by the drilling of unnecessary wells, to avoid the augmentation of risk arising from the drilling of an excessive number of wells, to prevent reduced recovery which might result from the drilling of too few wells, and to otherwise prevent waste and protect correlative rights, the Grama Ridge-Wolfcamp Gas Pool should be subject to the well location and acreage dedication requirements of Rule 104 C II of the Division Rules and Regulations.
- (8) That insufficient evidence was available at the January 16, 1980, hearing of this case to determine the proper rate of withdrawals on a permanent basis for the Grama Ridge-Wolfcamp Gas Pool, and therefore another hearing should

be called in May, 1980, at which time all interested parties should appear and present evidence as to the maximum efficient rate of withdrawals which should be permitted in this retrograde condensate gas reservoir.

- (9) That pending an order issuing from the aforesaid May hearing on this matter, withdrawals from wells completed in the subject reservoir should be limited to some reasonable amount to avert waste and prevent reservoir damage.
- (10) That pending such order, a reasonable maximum Affect rate of withdrawal from each well in the Grama Ridge-Wolfcamp Gas Pool is 1500 MCF of gas per day at the surface.
- (11) That an order based on the above findings is in the interest of conservation, will prevent waste, will not impair but will protect correlative rights, and should be approved.

IT IS THEREFORE ORDERED:

(1) That the Grama Ridge-Wolfcamp Pool as heretofore classified and defined is hereby reclassified as a retrograde gas condensate reservoir and redesignated as the Grama Ridge-Wolfcamp Gas Pool, with vertical limits comprising the Wolfcamp formation and horizontal limits comprising the following described area:

TOWNSHIP 21 SOUTH, RANGE 34 EAST, NMPM Section 36: SW/4

(2) That Order No. R-6088 which promulgated Special Rules and Regulations for said Grama Ridge Wolfcamp Pool is hereby rescinded and new Special Rules and Regulations for the Grama Ridge Wolfcamp Gas Pool, Lea County, New Mexico, are hereby promulgated as follows:

SPECIAL RULES AND REGULATIONS FOR THE GRAMA RIDGE-WOLFCAMP GAS POOL

RULE 1. Each well completed or recompleted in the Grama Ridge-Wolfcamp Gas Pool or in the Wolfcamp formation within one mile of the Grama Ridge-Wolfcamp Gas Pool, and not nearer

to nor within the limits of another designated Wolfcamp pool, shall be spaced, drilled, operated, and prorated in accordance with the Special Rules and Regulations hereinafter set forth.

RULE 2. Each well completed or recompleted in the Grama Ridge-Wolfcamp Gas Pool shall be located on a standard unit containing 320 acres, more or less, comprising any two contiguous quartersex quarter sections of a single governmental section, being a legal subdivision of the United States Public Land Surveys. Exceptions to this rule are subject to the provisions of Rule 104 D II of the Division Rules and Regulations.

RULE 3. Each well shall be located no nearer than 660 feet to the nearest side boundary of the tract nor nearer than 1980 feet to the nearest end boundary of the tract. Exceptions to this rule are subject to the provisions of Rule 104 F of the Division Rules and Regulations.

RULE 4. A gas well in the Grama Ridge-Wolfcamp Gas Pool shall be permitted to produce no more than 1,500 MCF of gas per day at standard surface conditions during the effective period of these pool rules. This shall be known as the daily allowable.

RULE 5. The operator of each newly completed well shall cause a gas-liquid ratio test to be taken on the well upon recovery of all load oil from the well. Any well which is shut in shall be exempted from the gas-liquid ratio test requirement so long as it remains shut in. The initial gas-liquid ratio test shall be taken in the manner prescribed by Rule 6.

RULE 6. Gas-liquid ratio tests shall be taken on all wells during the months of April and October of each year. The initial gas-liquid ratio test shall suffice as the first

semi-annual test. Tests shall be 24-hour tests, being the final 24 hours of a 72-hour period during which the well shall be produced at a constant normal rate of production.

Results of such tests shall be filed on Division Form C-116 on or before the 10th day of the following month. At least 72 hours prior to commencement of any such gas-liquid ratio tests, each operator shall file with the appropriate district office of the Division a test schedule for its wells specifying the time each of its wells is to be tested. Copies of the test schedule shall also be furnished to all offset operators.

Special tests shall also be taken at the request of the Division Director and may also be taken at the option of the operator. Such special tests shall be taken in accordance with the procedures outlined hereinabove, including notification to the Division and offset operators.

RULE 7. An initial shut-in pressure test shall be taken on each gas well and shall be reported to the Division on Form C-125.

RULE 1. Any well completed after the effective date of these rules shall receive an allowable only upon receipt by the appropriate Division district office of Division Forms C-104 and C-115, properly executed. The District Supervisor of the Division's district office is hereby authorized to assign a temporary gas allowable to wells connected to a gas transportation facility during the recovery of load oil, which allowable shall not exceed the amounts set forth in Rule 4 of these rules.

RULE 965. The associated gas provation period shall be the provation month which shall begin at 7 a.m. on the first day of the month and shall end at 7 a.m. on the first day of the next succeeding month.

- RULE 13. (à) Any associated gas well which has an under-produced status at the end of any associated gas proration period, shall carry such underproduction into subsequent periods.
- (b) Underproduction in excess of three times the current monthly allowable shall not be carried forward but shall be cancelled. For purposes of these rules, the monthly allowable shall be the full monthly allowable which would be assigned an associated gas well with the same acreage dedication in the the daily allowable times the number of days in the month.
- (c) Overproduction during any month shall be applied to a well's cumulative underproduction, if any, calculated in accordance with Paragraphs (a) and (b) above.
- RULE 11. Any associated gas well which has an overproduced status at the end of any associated gas proration period shall carry such overproduction into subsequent periods. If at any time a well is overproduced an amount exceeding three times its current monthly allowable, it shall be shut in during that month and each succeeding month until the well is overproduced less than three times its current monthly allowable.
- RULE 12. The allowable assigned to a well during any one month of an associated gas provation period in excess of the production for the same month shall be applied against the overproduction carried into such period in determining the amount of overproduction, if any, which has not been compensated for.
- RULE 18. The Division may allow overproduction to be compensated for at a lesser rate than would be the case if the well were completely shut in upon a showing after notice and hearing that complete shut in of the well would result in material damage to the well or reservoir.

P. REPORTING OF PRODUCTION

- RULE 14. The monthly gas production from each gas well shall be metered separately and the gas production therefrom shall be reported to the Division on Form C-115 so as to reach the Division on or before the 24th day of the month next succeeding the month in which the gas was produced. The operator shall show on such report what disposition has been made of the produced gas.
- RULE 15. Each purchaser or taker of gas shall submit a report to the . Division so as to reach the Division on or before the 15th day of the month next succeeding the month in which the gas was purchased or taken. Such report shall be filed on Form C-111 with the wells being listed in the same order as they are listed on the appropriate proration schedule.
- RULE 16. Failure to comply with any provision of these rules shall result in the immediate cancellation of allowable assigned to the affected well. No further allowable shall be assigned until all rules and regulations have been complied with. The Division Director shall notify the operator of the well and purchaser in writing of the date of allowable cancellation and the reason therefor.
- RULE 17. All transporters or users of gas shall file gas well connection notices with the Division as soon as possible after the date of connection.

IT IS FURTHER ORDERED:

- (1) That the cumulative casinghead gas over/under production status for each well in the Grama Ridge Wolfcamp Pool immediately prior to the effective date of this order shall be the beginning status for wells in the Grama Ridge-Wolfcamp Gas Pool at 7:00 o'clock a.m. on the effective date of this order.
- (2) That the effective date of this order shall be March 1, 1980.
- (3) That, pursuant to Paragraph A. of Section 70-2-18, NMSA 1978, existing wells in the Grama Ridge Wolfcamp Gas Pool shall have dedicated thereto 320 acres, in accordance with the foregoing pool rules or, pursuant to Paragraph C. of said Section 70-2-18, existing wells may have non-standard spacing or proration units established by the Division and dedicated thereto.

Failure to file new Forms C-102 with the Division dedicating 320 acres to a well or to obtain a non-standard unit approved by the Division within 60 days from the date of this order shall subject the well to cancellation of allowable.

- (4) That this cause shall be reopened at an examiner hearing during May, 1980, to permit the operators in said pools to appear and present evidence to establish the proper rates of production for wells in the subject pool.
- (5) That jurisdiction of this cause is retained for the entry of such further orders as the Commission may deem necessary.

DONE at Santa Fe, New Mexico, on the day and year hereinabove designated.

JARREL SERVICES, INC.

POST OFFICE BOX 1654

PHONE 805 393-8396

HOBBS, NEW MEXICO 88240

	WELL: Getty 36 Sta	ite Com, No.			PIELD: Und	losignated	Wolfcamp	
		CHRONO	LOGICAL	PRESSUR	E DATA			
DATE	STATUS OF WELL	TIME	ELASPED HRS.	TIME MIN.	SURFACE TBG	PRESSURE CSG	BHP € (10450'	
979								
/4	Shut in 1.0 hr. Run							
, ,	Tandem Bombs & Hung						•	
	Bombs off @ 10450'	11:30 AM	ì	00	4865	PKR	7051	•
	Shut in	12:30	2	00	- ,	-	7051	-
	, the second sec	1:30	3	00	-	-	7 057	
	II .	2:3.	4	00	_	-	7057	
	**	3:30	5	00	-	-	7057	
	11	4:30	6	00	-	-	7057	
		5:30	7	00	-		7057	
	17	6:30	8	. 00	-	-	7057	
	Attempted to PUll							
	BOMBS	7:30	9	00	-	-	7057	
6 9.	Attempted to PU11 BOMBS republic with morrow and L +25+ fland 4	o e Q	4	688	52,00 5 hop	of/Ro	4	
49.	i and in		· ·	50. 50.	5 hop Rapp an	of/Ro	reserve	
49. Os	je Zar		· ·	SO have	_ 0	y Res	pen est	ie)
49.	et couring seek 6 ms	ed the Venton To	Ley b	SO	ORE EXA	MINER N	UTTER ISON	ie)
49.	et comme cek 6 mi correccións	ed the true of tru	Ley l	BEF O HATEL	ORE EXA IL CONSERV EXHI NO. 6607	MINER N ATION DIVI	UTTER ISION	
49.	et comme cek 6 mi correccións	ed the true of tru	Ley l	BEF O HATEL	ORE EXA	MINER N ATION DIVI	UTTER ISION	