

November 26, 2021

Leigh Barr
Jim Griswold
New Mexico Oil Conservation Division
1220 South St. Francis Drive
Santa Fe, New Mexico 87505

RE: Landfarm Monitoring and Sampling Report – 2020
And Treatment Zone Closure Sampling (Cell 1 and 4);
Permit # NM-02-0004
BMG's Centralized Surface Waste Management Facility
Rio Arriba County, New Mexico

Dear Ms. Barr and Mr. Griswold:

Between March and December 2020, Animas Environmental Services, LLC (AES) completed quarterly evaporation pond groundwater monitoring and sampling at the Benson-Montin-Greer Drilling Corporation (BMG) Centralized Surface Waste Management Facility (Landfarm), which is located in the NW¼ NW¼ Section 20, T25N, R1E, Rio Arriba County, New Mexico. In addition, in April 2020, AES conducted landfarm treatment zone soil sampling and landfarm vadose zone soil sampling in accordance with NMAC 19.15.36.15 for treatment zone and NMAC 19.15.26.20.A and 19.15.36.15 for the vadose zone. Routine and regularly scheduled sampling was not completed later in 2020 because of public health restrictions and considerations.

1.0 Site History

1.1 2008 Site Investigation

In April 2008, AES personnel confirmed the presence of liquid within the Interstitial Well at the Landfarm evaporation pond of the BMG Surface Waste Management Facility. Site investigation activities conducted in May 2008 confirmed that although the primary liner had failed, the integrity of the secondary liner was not compromised, and no release to the environment had occurred. As a precautionary measure, NMOCD requested that four groundwater monitor wells (MW-1 through MW-4) be installed around the evaporation pond and monitored quarterly in conjunction with ongoing Landfarm sampling. BMG installed a replacement 69 mil high density polyethylene (HDPE) primary liner over the existing secondary liner in late September 2008.

Leigh Barr, Jim Griswold Landfarm Monitoring and Sampling Report November 26, 2021; Page 2 of 11

1.2 Monitoring and Sampling, 2014 to 2019 (January 2020)

AES personnel conducted quarterly groundwater and landfarm sampling at the facility between March 2014 and 2019 (sampled in January 2020).

1.2.1 Background Sampling

On December 2, 2014, at the request of and in consultation with Brad Jones of the NMOCD, AES personnel collected three background vadose soil composite samples from separate locations found outside active operations areas at the Landfarm. Note that when the Landfarm was originally permitted, background sampling consisted of a limited list of parameters.

Samples were submitted for laboratory analysis. Sample locations are included on Figure 1 and Background Soil Sampling Analytical Results are included as Table 1. Proposed background thresholds were provided via email by Jim Griswold of NMOCD on October 6, 2016, and subsequent acceptance of background threshold concentrations was confirmed by BMG in October 2016. Background sample concentrations and associated approved NMOCD background levels are included in Table 1.

1.2.2 Evaporation Pond Groundwater Monitoring and Sampling

Groundwater analytical results from monitor wells MW-1 through MW-4 (located around the Evaporation Pond) have remained below laboratory detection limits for BTEX and TPH for all sampling events between 2014 and January 2020.

1.2.3 Landfarm Treatment Zone Sampling

Landfarm treatment zone samples had TPH concentrations below NMOCD Closure Action Levels for all events in Cell 2 and for several events in Cells 1, 3, and 4. Chloride concentrations were below the applicable NMOCD Closure Action Level for all sampling events between 2014 and January 2020.

1.2.4 Landfarm Vadose Zone Sampling

Vadose zone analytical results reported concentrations exceeding the NMOCD approved background threshold concentrations in all cells for various parameters, including TPH and chlorides. Additional exceedances have also been noted for fluoride, nitrate, sulfate, arsenic, barium, chromium, copper, iron, lead, manganese, and zinc.

Landfarm sampling results from 2014 to 2018 are detailed in the *Landfarm Monitoring* and *Sampling Report* dated April 19, 2019. Year 2019 including January 2020 sampling results are found in the *Landfarm Monitoring and Sampling Report* dated March 2, 2020.

Leigh Barr, Jim Griswold Landfarm Monitoring and Sampling Report November 26, 2021; Page 3 of 11

2.0 Evaporation Pond Groundwater Monitoring and Sampling, Q1 through Q4 2020

In accordance with the 2008 Sampling and Analysis Plan, groundwater monitoring and sampling of the evaporation pond monitor wells MW-1 through MW-4 (located around the perimeter of the Evaporation Pond) was conducted on:

- Q1 March 26, 2020
- Q2 June 24, 2020
- Q3 September 29, 2020; and
- Q4 December 8, 2020.

Samples were not collected from the Interstitial Well due to low yield.

All groundwater samples were submitted for laboratory analysis at Hall Environmental Analysis Laboratory (Hall) in Albuquerque, New Mexico, for the following parameters:

- Benzene, toluene, ethylbenzene, and xylene (BTEX) per USEPA Method 8260B;
- Total Petroleum Hydrocarbons (TPH) Gasoline Range Organics (GRO), Diesel Range Organics (DRO), and Motor Oil Range Organics (MRO) per USEPA Method 8015B;
- Chlorides per USEPA Method 300.0; and
- Total Dissolved Solids (TDS) Standard Method 2540C.

2..1 Groundwater Measurement Data

Prior to sample collection from the groundwater monitor wells, AES measured depth to water and recorded temperature, conductivity, dissolved oxygen (DO), pH, and oxidation reduction potential (ORP) for each well. Depth to water, when measurable, was recorded in the Interstitial Well. All data was recorded on Water Sample Collection Forms. A summary of water quality data is included in Table 2, and Water Sample Collection Forms are included in the Appendix.

2.3 Laboratory Analytical Results

All laboratory analytical results for MW-1 through MW-4 during each sampling event were below laboratory detection limits for BTEX and TPH (GRO, DRO, and MRO), except for MW-1 on September 29, 2020, which had a DRO concentration of 5.4 milligrams per liter (mg/L). Laboratory analytical results for the monitor well groundwater samples are presented on Table 3 and on Figure 2. Groundwater analytical laboratory reports are included in the Appendix.

Leigh Barr, Jim Griswold Landfarm Monitoring and Sampling Report November 26, 2021; Page 4 of 11

3.0 Landfarm Treatment Zones 2020

In accordance with the landfarm permit, BMG continues to till landfarm cells on a regular basis. However, BMG has not added any contaminated soils to any of the landfarm cells for at least 15 years, and they are working towards meeting requirements for closure of treatment cells.

3.1 Semi-Annual Treatment Zone Sampling

3.1.1 Treatment Zone Soil Sampling

In accordance with NMAC 19.15.36.15.D, AES personnel collected composite soil samples created from four randomly selected discrete samples from Cells 1 through 4 on April 2, 2020. Samples were collected from 0.5- to 1-foot below the treatment zone (TZ) surface.

Note that because of COVID restrictions, landfarm sampling was not completed in Q3 2020. Sampling dates, periods, sample IDs, and analysis parameters are included as follows:

Treatment Zone Semi-Annual Soil Sampling

Cells Sampled	Sampling Date	Sampling Period	Sample ID	Parameter(s) and USEPA Method(s)
1-4	April 2, 2020	SA1 2020	TZ-Cell #1 through #4	TPH - GRO/DRO/MRO (8015); Chloride (300.0)

3.1.2 Treatment Zone Analytical Results – Semi-Annual Sampling

For the April 2020 sampling event, TPH and chloride laboratory analytical results were below NMOCD Closure Action Levels in Cells 1 through 4.

3.2 Treatment Zone Closure Request Sampling, Cells 1 and 4

Cells 1 and 4 have been inactive for at least 15 years, and treatment zone soils in these cells have been below closure action levels for TPH and chloride since March 2016 and September 2014, respectively.

Treatment Zone Closure Action Levels are as follows:

- Benzene 0.2 milligrams per kilogram (mg/kg)
- Total BTEX 50 mg/kg
- Chloride 500 mg/kg
- TPH (GRO, DRO, MRO) 2,500 mg/kg

Leigh Barr, Jim Griswold Landfarm Monitoring and Sampling Report November 26, 2021; Page 5 of 11

■ TPH (GRO and DRO) – 500 mg/kg

In accordance with NMAC 19.15.36.F(2), samples were collected from Cells 1 and 4 on April 2, 2020, in anticipation of requesting cell closure.

3.2.1 Treatment Zone Closure Sampling, Cells 1 and 4

Sampling dates, IDs, and analysis parameters are included as follows:

Treatment Zone Closure Sampling, Cells 1 and 4 (NMAC 19.15.36.F(2))

Cells Sampled	Sampling Date	Sample ID	Parameter(s) and USEPA Method(s) NMAC 20.6.2.3103 (A and B)
1, 4	April 2, 2020	Cell 1 (CS-1), Cell 4 (CS-4)	Ethylene dibromide (EDB) 8011/504.1; PCBs 8082A; GRO/DRO/MRO 8015; PAHs 8310; Anions 300.0; Mercury 7471; Soil Metals 6010B; VOCs 8260B (including BTEX); pH 9040C

3.2.2 Treatment Zone Closure Sampling Results, Cells 1 and 4

VOCs, PAHs, and TPH (GRO/DRO/MRO) were not detected in soil samples collected from Cell 1 and 4 treatment zones. However, the following 11 parameters were detected *above* their respective laboratory practical quantitation limits (PQLs) with the following concentrations:

- Barium 73 mg/kg in Cell 1 (CS-1) and 110 mg/kg in Cell 4 (CS-4;
- Chromium 6.4 mg/kg (Cell 1) and 10 mg/kg (Cell 4);
- Copper 5.3 mg/kg (Cell 1) and 8.8 mg/kg (Cell 4);
- Fluoride 1.9 mg/kg (Cell 1) and 1.6 mg/kg (Cell 4);
- <u>Iron</u> 11,000 mg/kg (Cell 1) and 16,000 mg/kg (Cell 4);
- <u>Lead</u> 2.4 mg/kg (Cell 1) and 3.7 mg/kg (Cell 4);
- Manganese 240 mg/kg (Cell 1) and 270 mg/kg (Cell 4);
- Nitrate 5.9 mg/kg (Cell 1) and 6.2 mg/kg (Cell 4);
- Radioactivity (Combined Radium 226 & 228) 1.670 (Cell 1) and 1.524 (Cell 4);
- Sulfate 9.9 mg/kg (Cell 1) and 12 mg/kg (Cell 4); and
- Zinc 23 mg/kg (Cell 1) and 32 mg/kg (Cell 4).

Treatment zone sample locations from 2020 along with BTEX, TPH, and chloride analytical results are presented on Table 4 and on Figure 3. Laboratory analytical reports are presented in the Appendix.

Leigh Barr, Jim Griswold Landfarm Monitoring and Sampling Report November 26, 2021; Page 6 of 11

3.2.3 Risk Assessment Discussion, Cells 1 and 4

According to NMAC 20.6.2.3103, if concentrations exceed the PQL or approved background concentrations, then a risk assessment will be conducted to ensure that there are no impacts to fresh water, public health or the environment.

Comparison to NMOCD Approved Background Soil Concentrations

Each of the 11 parameters above PQLs also exceeded the NMOCD approved vadose zone background levels. However, when reviewing the range of vadose zone concentrations collected in 2014 and approved in 2016, the treatment zone concentrations fell within the range observed in background vadose zone concentrations. Treatment zone concentrations, the range of 2014 background vadose zone concentrations, and NMOCD approved background levels are included in Table 4B. Laboratory analytical reports are included in the Appendix.

Comparison to New Mexico Environment Department (NMED) Soil Screening Levels (SSLs)

Treatment zone soil analytical results from Cells 1 and 4 were also compared with New Mexico Environment Department (NMED) Soil Screening Levels (SSLs) for Soil Leaching (SL) to Groundwater with a dilution attenuation factor (DAF) of 20 (NMED SSG Summary Table A-1 June 2019). All 11 parameters that exceeded laboratory PQLs were found to be below NMED SSLs for leaching to groundwater. Parameters exceeding PQLs, associated concentrations, and the applicable NMED SSLs are presented in Table 4B.

Proposed Response Action for Closure of Treatment Cells 1 and 4

Treatment zone concentrations are believed to be protective of human health and the environment. No further response actions for Cells 1 and 4 are proposed.

4.0 Landfarm Vadose 7one

4.1 Vadose Zone Sampling

4.1.1 Quarterly/Semi-Annual

In accordance with NMAC 19.15.36.20.A (Transitional Provisions) for the existing permit and NMAC 19.15.36.15.E.2, four discrete and random soil samples were collected on April 2, 2020, from each of the four cells (Cells #1 through #4) at depths of 2.0 to 2.25 feet below the top of native ground surface. Each sample collection point was filled in with bentonite following sampling. The sampling date, period, cells, IDs, and analysis parameters are presented below.

Leigh Barr, Jim Griswold Landfarm Monitoring and Sampling Report November 26, 2021; Page 7 of 11

4.1.2 Annual Sampling

In accordance with the existing permit as well as transitional conditions outlined in NMAC 19.15.36.20.A, one random sample was collected in April 2020 from each cell for laboratory analyses of major cations/anions and RCRA 8 metals.

Vadose Zone Quarterly and Annual Sampling

Sampling Period	Sampling Date	Sample ID	Parameter(s) and USEPA Method(s)
Q1/SA1* 2020	April 2, 2020	Cell #1 VZ S1 – S4 Cell #2 VZ S1 – S4 Cell #3 VZ S1 – S4 Cell #4 VZ S1 – S4	TPH (418.1) BTEX (8260) Chloride (300.0)
Annual Sampling	April 2, 2020	Cell #1 VZ S-1, Cell #2 VZ S-1, Cell #3 VZ S-1, Cell #4 VZ S-1	Cations/Anions (300.0); RCRA Metals (6010B); Mercury (7471)

^{*}Samples only collected in April 2020 because of public health restrictions and considerations.

Vadose zone laboratory analytical results from 2020 are summarized in Table 5. Sample locations are presented on Figure 4. Laboratory reports are presented in the Appendix.

4.2 Vadose Zone Sampling Results

4.2.1 BTEX, TPH, Chloride

- BTEX concentrations below laboratory detection limit all cells;
- TPH Cell #3 exceedances, with concentrations ranging from 20 to 59 mg/kg;
 and
- Chloride Cell #1 exceedances (220 and 240 mg/kg).

Leigh Barr, Jim Griswold Landfarm Monitoring and Sampling Report November 26, 2021; Page 8 of 11

4.2.2 Cations/Anions and Metals

Vadose Zone Cations/Anions and Metals –
Concentrations Above Approved Background Levels – April 2020

Parameter	Cell 1 (mg/kg)	Cell 2 (mg/kg)	Cell 3 (mg/kg)	Cell 4 (mg/kg)
Fluoride				2.4
Nitrate	4.1	5.8	2.4	18
Sulfate	14	22	12	15
Arsenic		6.5		
Barium	75	110	74	110
Chromium	10	7.9		17
Lead	3.0	3.1	2.4	5.7

4.2.3 Risk Assessment Discussion, Vadose Zone

Comparison to NMOCD Approved Background Soil Concentrations

Each of the seven parameters listed in 4.2.2 are above NMOCD approved vadose zone background levels. However, when reviewing the range of vadose zone concentrations collected in 2014 and approved in 2016, the 2020 vadose zone concentrations fell within the range observed in background vadose zone concentrations, with the exception of arsenic in Cell 2. Vadose zone concentrations, the range of 2014 background vadose zone concentrations, and NMOCD approved background levels are included in Table 5B. Laboratory analytical reports are included in the Appendix.

<u>Comparison to New Mexico Environment Department (NMED) Soil Screening Levels (SSLs)</u>

Vadose zone concentrations were also compared with New Mexico Environment Department (NMED) Soil Screening Levels (SSLs) for Soil Leaching (SL) to Groundwater with a dilution attenuation factor (DAF) of 20 (NMED SSG Summary Table A-1 June 2019). All seven parameters that exceeded laboratory PQLs and NMOCD background levels were found to be below NMED SSLs for leaching to groundwater, with the exception of arsenic in Cell 2. Parameters exceeding PQLs, associated concentrations, and the applicable NMED SSLs are presented in Table 5B.

Proposed Response Action for Vadose Zone (Cell 2)

Further sampling for arsenic in Cell 2 is recommended as a response action. Note that 5 year monitoring of the vadose zone is planned and will include arsenic.

Leigh Barr, Jim Griswold Landfarm Monitoring and Sampling Report November 26, 2021; Page 9 of 11

5.0 Conclusions and Recommendations

5.1 Conclusions

AES personnel conducted quarterly groundwater and landfarm sampling at the BMG Surface Waste Management Facility in 2020. Groundwater was sampled quarterly throughout 2020; the landfarm was sampled in April 2020.

Groundwater analytical results from monitor wells MW-1 through MW-4 (located around the Evaporation Pond) have remained below laboratory detection limits for BTEX and TPH for all sampling events in 2020, with the exception of MW-1 which had a TPH-DRO concentration of 5.4 mg/L on September 29, 2020. The December 2020 sampling event reported a DRO concentration below detection limits in MW-1.

Landfarm treatment zone samples had TPH and chloride concentrations below NMOCD Closure Action Levels in Cells 1 through 4. Additionally, Cells 1 and 4 also had BTEX concentrations below laboratory detection limits. Samples from Cells 1 and 4 were laboratory analyzed for parameters included in NMAC 20.6.2.3103 (A and B), and results showed concentrations above detection limits and above NMOCD approved background levels detections for 11 different parameters. However, all were shown to be below NMED SSLs for soil leaching to groundwater (DAF 20). Therefore, treatment zone concentrations are believed to be protective of human health and the environment, and closure of Treatment Cells 1 and 4 are anticipated.

Vadose zone analytical results reported concentrations exceeding the NMOCD approved background threshold concentrations for TPH and chlorides, as well as seven different parameters in the vadose zone below the landfarm cells.

5.2 Recommendations and Scheduled Activities

- Groundwater Quarterly groundwater monitoring and sampling will continue according to the Sampling and Analysis Plan; AES will evaluate chloride and TDS concentrations in monitor wells along with changes in groundwater elevations to determine if concentrations have increased over time.
- Treatment Zone
 - Cells 1 and 4 AES recommends no further sampling since these cells meet closure criteria;
 - Cells 2 and 3 AES recommends sampling for TPH, BTEX, chlorides and the full parameter list from NMAC 20.6.2.3103 (A and B) in order to confirm whether these cells meet closure criteria.
- Vadose Zone Complete quarterly and semi-annual sampling for TPH, BTEX and chlorides. Additionally, as required in NMAC 19.15.36.15.E(3), 5-year monitoring and sampling should be scheduled to include a minimum of four randomly

Leigh Barr, Jim Griswold Landfarm Monitoring and Sampling Report November 26, 2021; Page 10 of 11

selected, independent samples from the vadose zone, for the constituents listed in Subsections A and B of NMAC 20.6.2.3103. Ensure that vadose zone sampling is done when landfarm is dry, and there is no chance that treatment zone soils or rain/snow can inadvertently migrate into the vadose zone test holes.

The next quarterly sampling event at the BMG Landfarm is scheduled for January 2022 (to cover Quarter 4 of 2021). Sampling events from 2021 will be discussed in the upcoming 2021 annual report.

If you have any questions regarding the site conditions or sampling results, please do not hesitate to contact Angela Ledgerwood (720) Elizabeth McNally at (505) 564-2281.

Sincerely,

David J. Reese

Environmental Scientist

David of Reve

Elizabeth McNally, P.E.

Uzsbuth V Mindly

Principal

Tables

- Table 1. Background Soil Sampling Analytical Results
- Table 2. Summary of Groundwater Measurement and Water Quality Data
- Table 3. Summary of Groundwater Analytical Results
- Table 4. Treatment Zone Soil Analytical Results
- Table 4B. Treatment Zone Concentrations, NMOCD Approved Background Levels & NMED SSLs
- Table 5. Vadose Zone Soil Analytical Results
- Table 5B. Vadose Zone Concentrations, NMOCD Approved Background Levels & NMED SSLs

Leigh Barr, Jim Griswold Landfarm Monitoring and Sampling Report November 26, 2021; Page 11 of 11

Figures

- Figure 1. Background Soil Samples, December 2014
- Figure 2. Evaporation Pond and Monitor Well Locations and Concentrations, 2020
- Figure 3. Treatment Zone Monitoring Locations and Results, 2020
- Figure 4. Vadose Zone Monitoring Locations, 2020

Appendix

Water and Soil Sample Collection Forms and Laboratory Analytical Reports, 2020

Cc: Matt Dimond

Benson-Montin-Greer Drilling Corporation

4900 College Blvd

Farmington, NM 87402

Shared Documents/Landfarm/Reports/2021.09.27 BMG Landfarm 2020 Report DR2 AL EM.docx

TABLE 1 APPROVED BACKGROUND SOIL LEVELS BMG Landfarm, Rio Arriba County, New Mexico

Parameter	USEPA Method	PQL (mg/kg) [†]	BS-SC-1 (mg/kg)	BS-SC-2 (mg/kg)	BS-SC-3 (mg/kg)	NMOCD Approved Background Value (mg/kg)
	Da	ate Sampled	12/2/2014	12/2/2014	12/2/2014	2016
TPH	418.1	20	<20	<20	<20	20
Benzene	8260	0.05	<0.048	<0.048	<0.048	0.05
Toluene	8260	0.05	<0.048	<0.048	<0.048	0.05
Ethylbenzene	8260	0.05	<0.048	<0.048	<0.048	0.05
Xylenes (OMP)	8260	0.05	<0.095	<0.096	<0.096	0.1
Chlorides	300.0	1.5	<7.5*	<1.5	6.1	25
NMAC 20.6.2.3103 (A and B)						
Arsenic	6010B	2.5	<2.5	<2.5	<13*	2.5
Barium	6010B	0.1	42	69	130*	42
Cadmium	6010B	0.1	<0.10	<0.10	<0.52*	0.1
Chromium	6010B	0.3	4.4	4.6	19*	4.4
Hexavalent Chromium	A 3500 Cr D	2	<2.0	<2.0	<2.0	2
Cyanide	9012B	_	<0.25	<0.25	<0.25	2.5
Fluoride	300.0	0.3	<1.5*	0.59	3.0	0.6
Lead	6010B	0.25	2.1	2.7	8.4*	2.1
Total Mercury	7471	0.03	<0.032	<0.032	<0.033	0.03
Nitrate (NO3 as N)	300.0	0.3	<1.5*	<0.30	0.45	0.3
Selenium	6010B	2.5	<2.5	<2.5	<13*	2.5
Silver	6010B	0.25	<0.25	<0.25	<1.3*	0.25
Uranium	6010B	2	<5.0	<5.1	<26*	5.0
Radioactivity (Combined Radium 226&228)	901.1 Gamma Spec	1.0 pCi/g	1.297	1.592	3.455	1.3
PCBs	8082	0.1	<0.14	<0.14	<0.14	0.14
Carbon Tetrachloride	8260	0.05	<0.048	<0.048	<0.048	0.05
1,2-dichloroethane (EDC)	8260	0.05	<0.048	<0.048	<0.048	0.05
1,1-dichloroethylene (1,1-DCE)	8260	0.05	<0.048	<0.048	<0.048	0.05
1,1,2,2-tetrachloroethylene (PCE)	8260	0.05	<0.048	<0.048	<0.048	0.05
1,1,2-trichloroethylene (TCE)	8260	0.05	<0.048	<0.048	<0.048	0.05
Methylene chloride (chloromethane)	8260	0.15	<0.14	<0.14	<0.14	0.15
Chloroform	8260	0.05	<0.048	<0.048	<0.048	0.05
1,1-dichloroethane	8260	0.05	<0.048	<0.048	<0.048	0.05
Ethylene dibromide (EDB)	8260	0.05	<0.048	<0.048	<0.048	0.05
1,1,1-trichloroethane	8260	0.05	<0.048	<0.048	<0.048	0.05
1,1,2-trichloroethane	8260	0.05	<0.048	<0.048	<0.048	0.05
1,1,2,2-tetrachloroethane	8260	0.05	<0.048	<0.048	<0.048	0.05
Vinyl chloride	8260	0.05	<0.048	<0.048	<0.048	0.05
Total naphthalene	8260	0.1	<0.095	<0.095	<0.095	0.1
1-methylnaphthalene	8260	0.2	<0.19	<0.19	<0.19	0.2
2-methylnaphthalene	8260	0.2	<0.19	<0.19	<0.19	0.2
Benzo-a-pyrene	8310	0.01	<0.010	<0.010	<0.010	0.01
Copper	6010B	0.3	3.4	5.4	14*	3.4
Iron	6010B	2.5	6,500*	10,000*	25,000*	6,500
Magnesium	6010B	25	960	980*	3,100*	na
Manganese	6010B	0.1	140	170	310*	140
Phenols	9066	0.67	<0.67	0.82	<0.67	0.67
Sulfate	300.0	1.5	<7.5*	<1.5	16	1.5
	Cannot be performed	-	-	-	-	
Total Dissolved Solids (TDS)	on soil	na	na	na	na	
Zinc	6010B	2.5	13	19	56*	13
pH	SM4500 H+B	na	8.42	7.78	7.95	

Notes:

Samples analyzed at Hall Environmental Analysis Laboratory, Albuquerque, NM

^{*}Practical Quantitation Limit

^{*}Sample was diluted - final PQL is multiplied by Dilution Factor

TABLE 2
SUMMARY OF GROUNDWATER MEASUREMENT AND WATER QUALITY DATA
BMG Landfarm, Rio Arriba County, New Mexico

Well ID	Date Measured	Top of Casing Elevation	Depth to Water	Water Level Elevation	Тетр.	Specific Conduct.	Dissolved Oxygen	pН	ORP
	Wieusureu	(ft amsl)	(ft)	(ft amsl)	(°C)	(mS)	(mg/L)	ρπ	(mV)
MW-1	29-Mar-13	NS	40.52	-40.52	12.09	0.707	6.60	7.36	20.5
MW-1	01-Jul-13	NS	41.70	-41.70	13.05	0.868	5.06	7.23	225.5
MW-1	09-Oct-13	NS	40.52	-40.52	12.59	0.831	17.23	7.02	205.5
MW-1	31-Mar-14	NS	40.51	-40.51	11.50	0.734	2.52	7.46	167.7
MW-1	30-Sep-14	NS	39.70	-39.70	12.92	0.901	NM	8.29	297.3
MW-1	02-Dec-14	NS	39.59	-39.59	11.66	0.928	NM	8.14	157.3
MW-1	26-Mar-15	NS	39.45	-39.45	11.99	0.853	2.36	7.53	210.9
MW-1	23-Jun-15	NS	39.50	-39.50	14.52	0.993	NM	7.44	127.8
MW-1	24-Sep-15	NS	39.57	-39.57	12.68	0.877	NM	7.30	85.9
MW-1	10-Dec-15	NS	39.39	-39.39	11.79	0.892	4.27	7.80	-192.0
MW-1	04-Mar-16	NS	39.36	-39.36	12.19	0.023	4.18	7.09	188.1
MW-1	17-Jun-16	NS	39.54	-39.54	12.50	1.242	8.79	6.95	118.2
MW-1	23-Sep-16	NS	39.66	-39.66	11.31	1.108	8.59	7.47	167.0
MW-1	19-Dec-16	NS	39.81	-39.81	10.93	0.995	5.06	7.59	168.6
MW-1	13-Apr-17	NS	39.82	-39.82	NM	NM	NM	NM	NM
MW-1	20-Jun-17	NS	39.88	-39.88	13.23	1.017	5.95	7.35	130.2
MW-1	14-Sep-17	NS	39.95	-39.95	14.11	1.007	7.90	7.35	190.8
MW-1	14-Dec-17	NS	39.64	-39.64	10.09	1.027	4.87	7.56	159.8
MW-1	14-Mar-18	NS	39.70	-39.70	12.09	0.832	6.10	7.52	87.8
MW-1	12-Jun-18	NS	39.93	-39.93	12.3	0.79	4.64	7.23	148.5
MW-1	17-Sep-18	NS	40.02	-40.02	12.7	0.686	4.86	7.49	153.3
MW-1	19-Dec-18	NS	40.12	-40.12	11.5	0.565	3.13	7.55	154.4
MW-1	28-Mar-19	NS	40.22	-40.22	12.3	0.863	6.75	7.35	220.2
MW-1	03-Jul-19	NS	39.04	-39.04	13.5	0.818	3.16	7.48	139.4
MW-1	30-Sep-19	NS	38.89	-38.89	12.6	0.846	3.09	6.66	163.8
MW-1	30-Jan-20	NS	38.88	-38.88	10.7	1.031	7.08	7.71	163.2
MW-1	26-Mar-20	NS	38.94	-38.94	11.8	1.02	5.45	7.34	184.8
MW-1	24-Jun-20	NS	39.11	-39.11	13.0	1.01	4.52	7.30	173.6
MW-1	29-Sep-20	NS	39.26	-39.26	15.7	0.864	5.14	7.40	168.2
MW-1	08-Dec-20	NS	39.37	-39.37	13.0	0.748	3.33	7.39	159.7
MW-2	29-Mar-13	NS	41.54	-41.54	11.84	1.268	3.74	7.42	20.4
MW-2	01-Jul-13	NS	41.70	-41.70	16.20	0.855	4.83	7.46	175.5
MW-2	09-Oct-13	NS	41.56	-41.56	11.89	0.830	17.26	6.96	208.9
MW-2	31-Mar-14	NS	41.70	-41.70	11.56	0.760	5.51	7.63	94.7

TABLE 2
SUMMARY OF GROUNDWATER MEASUREMENT AND WATER QUALITY DATA
BMG Landfarm, Rio Arriba County, New Mexico

Well ID	Date Measured	Top of Casing Elevation (ft amsl)	Depth to Water (ft)	Water Level Elevation (ft amsl)	Temp. (°C)	Specific Conduct. (mS)	Dissolved Oxygen (mg/L)	рН	ORP (mV)
MW-2	01-Oct-14	NS	40.82	-40.82	11.36	0.947	NM	8.18	294.0
MW-2	02-Dec-14	NS	40.68	-40.68	11.18	0.959	NM	8.76	135.2
MW-2	26-Mar-15	NS	40.62	-40.62	11.40	0.907	2.07	7.42	219.3
MW-2	23-Jun-15	NS	40.62	-40.62	13.42	1.004	NM	7.48	136.8
MW-2	24-Sep-15	NS	40.65	-40.65	12.81	0.961	NM	7.34	92.6
MW-2	10-Dec-15	NS	40.51	-40.51	11.46	1.050	5.17	7.85	-165.5
MW-2	04-Mar-16	NS	40.53	-40.53	12.02	1.751	6.41	7.31	176.3
MW-2	17-Jun-16	NS	40.62	-40.62	12.80	2.209	13.70	7.15	111.0
MW-2	23-Sep-16	NS	40.75	-40.75	11.10	1.987	7.93	7.41	183.4
MW-2	19-Dec-16	NS	40.86	-40.86	10.22	2.209	6.80	7.64	171.6
MW-2	13-Apr-17	NS	40.90	-40.90	NM	NM	NM	NM	NM
MW-2	20-Jun-17	NS	40.94	-40.94	13.04	2.808	8.50	7.36	150.9
MW-2	14-Sep-17	NS	41.01	-41.01	14.25	3.053	10.29	7.37	168.0
MW-2	14-Dec-17	NS	40.70	-40.70	9.87	2.189	6.87	7.53	198.7
MW-2	14-Mar-18	NS	40.74	-40.74	11.76	2.650	8.17	7.54	85.5
MW-2	12-Jun-18	NS	40.97	-40.97	12.1	2.18	7.86	7.24	168.5
MW-2	17-Sep-18	NS	41.06	-41.06	14.1	0.895	7.39	7.54	155.3
MW-2	19-Dec-18	NS	41.14	-41.14	11.0	1.540	5.60	7.43	151.2
MW-2	28-Mar-19	NS	40.52	-40.52	12.1	2.388	3.52	7.22	230.8
MW-2	03-Jul-19	NS	41.25	-41.25	13.0	1.423	4.53	7.57	142.8
MW-2	30-Sep-19	NS	39.93	-39.93	11.9	1.121	4.32	6.63	163.5
MW-2	30-Jan-20	NS	39.94	-39.94	10.7	1.522	9.04	7.74	177.8
MW-2	26-Mar-20	NS	40.01	-40.01	11.4	1.45	6.92	7.40	202.3
MW-2	24-Jun-20	NS	40.15	-40.15	14.0	1.79	6.35	7.32	174.7
MW-2	29-Sep-20	NS	40.31	-40.31	12.1	1.168	6.11	7.36	162.8
MW-2	08-Dec-20	NS	40.40	-40.40	11.8	1.114	6.70	7.40	162.0
MW-3	29-Mar-13	NS	40.77	-40.77	12.33	1.298	3.82	7.45	16.0
MW-3	01-Jul-13	NS	40.92	-40.92	14.02	0.427	6.21	7.32	131.5
MW-3	09-Oct-13	NS	40.83	-40.83	12.86	0.815	15.23	7.00	210.2
MW-3	31-Mar-14	NS	40.83	-40.83	11.38	0.729	5.33	7.51	144.6
MW-3	30-Sep-14	NS	40.13	-40.13	12.86	0.895	NM	7.96	339.0
MW-3	02-Dec-14	NS	39.98	-39.98	11.21	0.922	NM	8.39	145.9
MW-3	26-Mar-15	NS	39.92	-39.92	11.40	0.878	3.50	7.43	229.2
MW-3	23-Jun-15	NS	39.89	-39.89	13.39	0.919	NM	7.29	145.2

TABLE 2
SUMMARY OF GROUNDWATER MEASUREMENT AND WATER QUALITY DATA
BMG Landfarm, Rio Arriba County, New Mexico

Well ID	Date Measured	Top of Casing Elevation (ft amsl)	Depth to Water (ft)	Water Level Elevation (ft amsl)	Temp. (°C)	Specific Conduct. (mS)	Dissolved Oxygen (mg/L)	рН	ORP (mV)
MW-3	24-Sep-15	NS	39.98	-39.98	12.78	0.799	NM	6.24	132.7
MW-3	10-Dec-15	NS	39.81	-39.81	11.22	0.728	3.98	7.66	-147.7
MW-3	04-Mar-16	NS	39.82	-39.82	11.88	0.901	5.71	7.26	164.0
MW-3	17-Jun-16	NS	39.90	-39.90	12.94	0.922	8.04	6.86	92.9
MW-3	23-Sep-16	NS	40.03	-40.03	11.87	0.904	7.74	6.90	236.5
MW-3	19-Dec-16	NS	40.15	-40.15	9.84	0.884	6.33	7.54	166.4
MW-3	13-Apr-17	NS	40.18	-40.18	NM	NM	NM	NM	NM
MW-3	20-Jun-17	NS	40.23	-40.23	13.03	0.961	7.66	7.30	140.7
MW-3	14-Sep-17	NS	40.31	-40.31	13.20	0.982	7.30	7.31	160.5
MW-3	14-Dec-17	NS	40.01	-40.01	11.11	0.923	4.23	6.79	195.7
MW-3	14-Mar-18	NS	40.04	-40.04	12.09	0.825	6.63	7.49	84.9
MW-3	12-Jun-18	NS	40.25	-40.25	12.0	0.81	5.99	7.14	119.9
MW-3	17-Sep-18	NS	40.36	-40.36	13.4	0.770	4.75	7.42	155.9
MW-3	19-Dec-18	NS	40.43	-40.43	11.3	0.92	3.67	7.48	149.4
MW-3	28-Mar-19	NS	39.80	-39.80	12.7	0.898	1.17	7.24	222.7
MW-3	03-Jul-19	NS	39.45	-39.45	12.9	0.959	3.55	7.60	135.0
MW-3	30-Sep-19	NS	39.27	-39.27	13.1	1.017	3.65	6.67	146.4
MW-3	30-Jan-20	NS	39.24	-39.24	11.0	1.314	7.90	7.70	166.8
MW-3	26-Mar-20	NS	39.29	-39.29	11.9	1.35	5.26	7.30	204.0
MW-3	24-Jun-20	NS	39.45	-39.45	12.9	1.51	3.76	7.21	180.9
MW-3	29-Sep-20	NS	39.59	-39.59	13.0	1.295	5.56	7.27	165.0
MW-3	08-Dec-20	NS	39.69	-39.69	12.0	1.273	6.08	7.35	155.7
MW-4	29-Mar-13	NS	41.32	-41.32	11.25	1.388	7.14	7.32	20.6
MW-4	01-Jul-13	NS	41.47	-41.47	13.81	0.890	6.27	6.38	197.7
MW-4	09-Oct-13	NS	41.35	-41.35	12.82	0.840	20.23	7.05	215.1
MW-4	31-Mar-14	NS	41.34	-41.34	12.09	0.757	5.17	7.68	163.1
MW-4	30-Sep-14	NS	40.55	-40.55	12.24	0.940	NM	8.17	276.5
MW-4	02-Dec-14	NS	40.43	-40.43	11.48	0.938	NM	7.96	156.6
MW-4	26-Mar-15	NS	40.34	-40.34	12.08	0.902	2.81	7.33	217.1
MW-4	23-Jun-15	NS	40.36	-40.36	14.12	1.021	NM	7.32	147.3
MW-4	24-Sep-15	NS	40.43	-40.43	12.76	0.931	NM	7.18	99.7
MW-4	10-Dec-15	NS	40.26	-40.26	11.70	1.091	3.91	7.71	-190.2
MW-4	04-Mar-16	NS	40.24	-40.24	11.99	1.279	6.52	7.28	162.8
MW-4	17-Jun-16	NS	40.41	-40.41	12.78	1.537	12.28	6.95	104.4

TABLE 2
SUMMARY OF GROUNDWATER MEASUREMENT AND WATER QUALITY DATA
BMG Landfarm, Rio Arriba County, New Mexico

		Top of							
Well ID	Date Measured	Casing Elevation	Depth to Water	Water Level Elevation	Тетр.	Specific Conduct.	Dissolved Oxygen	рН	ORP
		(ft amsl)	(ft)	(ft amsl)	(°C)	(mS)	(mg/L)		(mV)
MW-4	23-Sep-16	NS	40.53	-40.53	11.47	1.589	9.68	7.51	174.8
MW-4	19-Dec-16	NS	40.67	-40.67	10.64	1.355	5.98	7.51	170.3
MW-4	13-Apr-17	NS	40.68	-40.68	NM	NM	NM	NM	NM
MW-4	20-Jun-17	NS	40.75	-40.75	13.89	1.336	7.70	7.29	141.9
MW-4	14-Sep-17	NS	40.83	-40.83	14.32	1.354	8.25	7.21	194.3
MW-4	14-Dec-17	NS	40.51	-40.51	10.18	1.387	5.52	7.37	193.6
MW-4	14-Mar-18	NS	40.56	-40.56	12.02	1.089	6.70	7.55	85.1
MW-4	12-Jun-18	NS	40.80	-40.80	12.1	1.03	5.59	7.16	141.6
MW-4	17-Sep-18	NS	40.90	-40.90	14.6	1.18	4.29	7.14	152.7
MW-4	19-Dec-18	NS	40.98	-40.98	11.8	0.94	3.84	7.38	134.7
MW-4	28-Mar-19	NS	39.40	-39.40	12.5	0.712	2.81	7.41	217.3
MW-4	03-Jul-19	NS	39.89	-39.89	12.2	0.760	4.59	7.77	133.4
MW-4	30-Sep-19	NS	39.78	-39.78	12.0	0.829	4.22	6.93	162.6
MW-4	30-Jan-20	NS	39.75	-39.75	10.6	1.129	7.66	7.67	153.9
MW-4	26-Mar-20	NS	39.81	-39.81	11.4	1.15	6.31	7.25	208.8
MW-4	24-Jun-20	NS	39.96	-39.96	12.3	1.05	5.20	7.11	198.1
MW-4	29-Sep-20	NS	40.11	-40.11	11.9	0.812	4.64	7.03	164.4
MW-4	08-Dec-20	NS	40.22	-40.22	11.7	0.811	4.25	7.32	174.0
Intstl Well	29-Mar-13	NS	9.77	-9.77	8.84	261.3	0.84	6.56	9.7
Intstl Well	01-Jul-13	NS	9.70	-9.70	18.31	86.76	3.79	7.14	9.6
Intstl Well	09-Oct-13	NS	9.82	-9.82	16.84	148.2	3.60	6.57	34.5
Intstl Well	31-Mar-14	NS	9.92	-9.92	7.65	139.2	2.01	6.68	93.9
Intstl Well	01-Oct-14	NS	9.50	-9.50	NM	NM	NM	NM	NM
Intstl Well	26-Mar-15	NS	9.83	-9.83	NM	NM	NM	NM	NM
Intstl Well	23-Jun-15	NS	10.66	-10.66	18.36	139.0	0.00	6.82	97.6
Intstl Well	24-Sep-15	NS	11.33	-11.33	20.42	139.3	2.87	7.06	73.4
Intstl Well	23-Sep-16	NS	NM	NM	NM	NM	NM	NM	NM
Intstl Well	19-Dec-16	NS	NM	NM	NM	NM	NM	NM	NM
Intstl Well	13-Apr-17	NS	10.16	-10.16	NM	NM	NM	NM	NM
Intstl Well	20-Jun-17	NS	NM	NM	NM	NM	NM	NM	NM
Intstl Well	14-Sep-17	NS	NM	NM	NM	NM	NM	NM	NM
Intstl Well	14-Dec-17	NS	NM	NM	NM	NM	NM	NM	NM
Intstl Well	14-Mar-18	NS	11.12	NM	NM	NM	NM	NM	NM
Intstl Well	12-Jun-18	NS	10.35	NM	NM	NM	NM	NM	NM

TABLE 2
SUMMARY OF GROUNDWATER MEASUREMENT AND WATER QUALITY DATA
BMG Landfarm, Rio Arriba County, New Mexico

Well ID	Date Measured	Top of Casing Elevation (ft amsl)	Depth to Water (ft)	Water Level Elevation (ft amsl)	Temp. (°C)	Specific Conduct. (mS)	Dissolved Oxygen (mg/L)	рН	ORP (mV)
Intstl Well	17-Sep-18	NS	10.74	NM	NM	NM	NM	NM	NM
Intstl Well	19-Dec-18	NS	10.18	NM	NM	NM	NM	NM	NM
Intstl Well	28-Mar-19	NS	10.71	-10.71	NM - Minimal Water Recharge				
Intstl Well	30-Sep-19	NS	9.91	-9.91		NM - Minin	nal Water Re	charge	
Intstl Well	30-Jan-20	NS	11.15	-11.15		NM - In:	sufficient Wa	ter	
Intstl Well	26-Mar-20	NS	11.12	-11.12		NM - In:	sufficient Wa	ter	
Intstl Well	24-Jun-20	NS	10.58	-10.58	NM - Insufficient Water				
Intstl Well	29-Sep-20	NS	10.61	-10.61	NM - Insufficient Water				
Intstl Well	08-Dec-20	NS	10.49	-10.49		NM - Ins	ufficient Wa	ter	

Notes: NM - Not Measured

NS - Not Surveyed

TABLE 3
SUMMARY OF GROUNDWATER ANALYTICAL RESULTS
BMG Landfarm, Rio Arriba County, New Mexico

Well ID	Date	Benzene (μg/L)	Toluene (μg/L)	Ethyl- Benzene (μg/L)	Total Xylenes (μg/L)	GRO (mg/L)	DRO (mg/L)	MRO (mg/L)	Chloride (mg/L)	TDS (mg/L)
	Method	8021B	8021B	8021B	8021B	8015D	8015D	8015D	300.0	SM2540C
NM WQC	STANDARD	5	1,000	700	620	0.0101*	0.0167*	NE	250**	1000**
MW-1	18-Sep-12	<2.0	<2.0	<2.0	<4.0	<0.10	<1.0	NA	11	654
MW-1	6-Dec-12	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	10	610
MW-1	29-Mar-13	<2.0	<2.0	<2.0	<4.0	<0.10	<1.0	<5.0	9.6	810
MW-1	1-Jul-13	<2.0	<2.0	<2.0	<4.0	<0.10	<1.0	<5.0	9.2	640
MW-1	9-Oct-13	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	9.7	690
MW-1	31-Mar-14	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	9.2	612
MW-1	30-Sep-14	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	10	614
MW-1	2-Dec-14	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	14	660
MW-1	26-Mar-15	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	14	580
MW-1	23-Jun-15	<2.0	<2.0	<2.0	<4.0	<0.10	<1.0	<5.0	61	720
MW-1	24-Sep-15	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	38	710
MW-1	10-Dec-15	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	43	627
MW-1	04-Mar-16	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	68	666
MW-1	17-Jun-16	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	96	769
MW-1	23-Sep-16	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	60	687
MW-1	19-Dec-16	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	48	658
MW-1	13-Apr-17	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	26	690
MW-1	20-Jun-17	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	25	662
MW-1	14-Sep-17	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	23	615
MW-1	14-Dec-17	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	22	620
MW-1	14-Mar-18	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	26	642
MW-1	12-Jun-18	<1.0	<1.0	<1.0	<1.5	<0.050	1.5	<5.0	19	620
MW-1	17-Sep-18	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	16	570

TABLE 3
SUMMARY OF GROUNDWATER ANALYTICAL RESULTS
BMG Landfarm, Rio Arriba County, New Mexico

Well ID	Date	Benzene (μg/L)	Toluene (μg/L)	Ethyl- Benzene (μg/L)	Total Xylenes (μg/L)	GRO (mg/L)	DRO (mg/L)	MRO (mg/L)	Chloride (mg/L)	TDS (mg/L)
	Method	8021B	8021B	8021B	8021B	8015D	8015D	8015D	300.0	SM2540C
NM WQCC	STANDARD	5	1,000	700	620	0.0101*	0.0167*	NE	250**	1000**
MW-1	19-Dec-18	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	16	595
MW-1	28-Mar-19	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	120	714
MW-1	03-Jul-19	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	31	715
MW-1	30-Sep-19	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	45	716
MW-1	30-Jan-20	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	28	730
MW-1	26-Mar-20	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	23	642
MW-1	24-Jun-20	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	18	648
MW-1	29-Sep-20	<1.0	<1.0	<1.0	<1.5	<0.050	5.4	<5.0	21	614
MW-1	08-Dec-20	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	22	634
MW-2	18-Sep-12	<2.0	<2.0	<2.0	<4.0	<0.10	<1.0	NA	30	615
MW-2	6-Dec-12	<2.0	<2.0	<2.0	<4.0	<0.10	<1.0	<5.0	32	500
MW-2	29-Mar-13	<2.0	<2.0	<2.0	<4.0	<0.10	<1.0	<5.0	28	590
MW-2	1-Jul-13	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	26	580
MW-2	9-Oct-13	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	26	790
MW-2	31-Mar-14	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	30	630
MW-2	1-Oct-14	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	31	632
MW-2	2-Dec-14	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	34	780
MW-2	26-Mar-15	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	33	600
MW-2	23-Jun-15	<2.0	<2.0	<2.0	<4.0	<0.10	<1.0	<5.0	33	720
MW-2	24-Sep-15	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	48	740
MW-2	10-Dec-15	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	170	902
MW-2	04-Mar-16	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	280	1,040

TABLE 3
SUMMARY OF GROUNDWATER ANALYTICAL RESULTS
BMG Landfarm, Rio Arriba County, New Mexico

Well ID	Date	Benzene (μg/L)	Toluene (μg/L)	Ethyl- Benzene (μg/L)	Total Xylenes (μg/L)	GRO (mg/L)	DRO (mg/L)	MRO (mg/L)	Chloride (mg/L)	TDS (mg/L)
	Method	8021B	8021B	8021B	8021B	8015D	8015D	8015D	300.0	SM2540C
NM WQCC	STANDARD	5	1,000	700	620	0.0101*	0.0167*	NE	250**	1000**
MW-2	17-Jun-16	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	460	1,400
MW-2	23-Sep-16	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	380	1,230
MW-2	19-Dec-16	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	470	1,370
MW-2	13-Apr-17	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	520	1,770
MW-2	20-Jun-17	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	770	2,160
MW-2	14-Sep-17	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	700	2,030
MW-2	14-Dec-17	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	770	2,400
MW-2	14-Mar-18	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	790	1,980
MW-2	12-Jun-18	<1.0	<1.0	<1.0	<1.5	<0.050	1.3	<5.0	620	1,890
MW-2	17-Sep-18	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	580	1,750
MW-2	19-Dec-18	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	600	1,420
MW-2	28-Mar-19	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	840	2,020
MW-2	03-Jul-19	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	310	1,060
MW-2	30-Sep-19	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	240	1,040
MW-2	30-Jan-20	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	240	950
MW-2	26-Mar-20	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	250	898
MW-2	24-Jun-20	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	310	1,030
MW-2	29-Sep-20	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	270	1,140
MW-2	08-Dec-20	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	300	902
MW-3	18-Sep-12	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	NA	23	690
MW-3	6-Dec-12	<2.0	<2.0	<2.0	<4.0	<0.10	<1.0	<5.0	22	600
MW-3	29-Mar-13	<2.0	<2.0	<2.0	<4.0	<0.10	<1.0	<5.0	20	680

TABLE 3
SUMMARY OF GROUNDWATER ANALYTICAL RESULTS
BMG Landfarm, Rio Arriba County, New Mexico

Well ID	Date	Benzene (μg/L)	Toluene (μg/L)	Ethyl- Benzene (μg/L)	Total Xylenes (μg/L)	GRO (mg/L)	DRO (mg/L)	MRO (mg/L)	Chloride (mg/L)	TDS (mg/L)
	Method	8021B	8021B	8021B	8021B	8015D	8015D	8015D	300.0	SM2540C
NM WQC	STANDARD	5	1,000	700	620	0.0101*	0.0167*	NE	250**	1000**
MW-3	1-Jul-13	<2.0	<2.0	<2.0	<4.0	<0.10	<1.0	<5.0	20	630
MW-3	9-Oct-13	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	21	620
MW-3	31-Mar-14	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	18	544
MW-3	30-Sep-14	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	19	574
MW-3	2-Dec-14	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	21	580
MW-3	26-Mar-15	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	23	601
MW-3	23-Jun-15	<2.0	<2.0	<2.0	<4.0	<0.10	<1.0	<5.0	24	680
MW-3	24-Sep-15	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	23	570
MW-3	10-Dec-15	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	22	540
MW-3	04-Mar-16	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	21	620
MW-3	17-Jun-16	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	22	600
MW-3	23-Sep-16	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	23	561
MW-3	19-Dec-16	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	24	534
MW-3	13-Apr-17	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	25	655
MW-3	20-Jun-17	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	28	590
MW-3	14-Sep-17	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	30	595
MW-3	14-Dec-17	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	32	598
MW-3	14-Mar-18	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	33	612
MW-3	12-Jun-18	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	37	626
MW-3	17-Sep-18	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	62	640
MW-3	19-Dec-18	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	76	688
MW-3	28-Mar-19	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	85	734
MW-3	03-Jul-19	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	120	780

TABLE 3
SUMMARY OF GROUNDWATER ANALYTICAL RESULTS
BMG Landfarm, Rio Arriba County, New Mexico

Well ID	Date	Benzene (μg/L)	Toluene (μg/L)	Ethyl- Benzene (μg/L)	Total Xylenes (μg/L)	GRO (mg/L)	DRO (mg/L)	MRO (mg/L)	Chloride (mg/L)	TDS (mg/L)
	Method	8021B	8021B	8021B	8021B	8015D	8015D	8015D	300.0	SM2540C
NM WQCC	STANDARD	5	1,000	700	620	0.0101*	0.0167*	NE	250**	1000**
MW-3	30-Sep-19	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	150	855
MW-3	30-Jan-20	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	160	920
MW-3	26-Mar-20	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	170	772
MW-3	24-Jun-20	<1.0	<1.0	<1.0	<1.0	<0.050	<1.0	<5.0	200	850
MW-3	29-Sep-20	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	240	1100
MW-3	08-Dec-20	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	290	960
MW-4	18-Sep-12	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	NA	16	660
MW-4	6-Dec-12	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	14	760
MW-4	29-Mar-13	<2.0	<2.0	<2.0	<4.0	<0.10	<1.0	<5.0	12	750
MW-4	1-Jul-13	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	10	608
MW-4	9-Oct-13	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	11	690
MW-4	31-Mar-14	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	12	600
MW-4	30-Sep-14	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	15	618
MW-4	2-Dec-14	<2.0	<2.0	<2.0	<4.0	<0.10	<1.0	<5.0	21	770
MW-4	26-Mar-15	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	34	615
MW-4	23-Jun-15	<2.0	<2.0	<2.0	<4.0	<0.10	<1.0	<5.0	73	1090
MW-4	24-Sep-15	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	97	635
MW-4	10-Dec-15	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	250	782
MW-4	04-Mar-16	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	170	721
MW-4	17-Jun-16	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	290	938
MW-4	23-Sep-16	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	250	879
MW-4	19-Dec-16	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	250	800

TABLE 3
SUMMARY OF GROUNDWATER ANALYTICAL RESULTS
BMG Landfarm, Rio Arriba County, New Mexico

Well ID	Date	Benzene (μg/L)	Toluene (μg/L)	Ethyl- Benzene (μg/L)	Total Xylenes (μg/L)	GRO (mg/L)	DRO (mg/L)	MRO (mg/L)	Chloride (mg/L)	TDS (mg/L)
	Method	8021B	8021B	8021B	8021B	8015D	8015D	8015D	300.0	SM2540C
NM WQC	STANDARD	5	1,000	700	620	0.0101*	0.0167*	NE	250**	1000**
MW-4	13-Apr-17	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	180	790
MW-4	20-Jun-17	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	180	744
MW-4	14-Sep-17	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	170	775
MW-4	14-Dec-17	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	170	754
MW-4	14-Mar-18	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	160	694
MW-4	12-Jun-18	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	150	751
MW-4	17-Sep-18	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	110	930
MW-4	19-Dec-18	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	94	644
MW-4	28-Mar-19	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	19	594
MW-4	03-Jul-19	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	84	620
MW-4	30-Sep-19	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	99	750
MW-4	30-Jan-20	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	110	790
MW-4	26-Mar-20	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	100	930
MW-4	24-Jun-20	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	63	840
MW-4	29-Sep-20	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	53	690
MW-4	08-Dec-20	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0	59	676
Intstl Well	18-Sep-12	<5.0	<5.0	<5.0	<10	<0.25	<3.0	NA	120,000	170,000
Intstl Well	6-Dec-12	<10	<10	<10	<20	<0.50	6.9	<5.0	110,000	159,000
Intstl Well	29-Mar-13	<10	<10	<10	<20	<0.50	3.8	<5.0	98,000	154,000
Intstl Well	1-Jul-13	<10	<10	<10	<20	<0.50	4.6	<5.0	80,000	145,000
Intstl Well	9-Oct-13	<10	<10	<10	<20	<0.50	36	9.5	90,000	144,000
Intstl Well	31-Mar-14	<1.0	<1.0	<1.0	<2.0	<0.050	3.1	<5.0	69,000	146,000

TABLE 3
SUMMARY OF GROUNDWATER ANALYTICAL RESULTS
BMG Landfarm, Rio Arriba County, New Mexico

Well ID	Date	Benzene (μg/L)	Toluene (μg/L)	Ethyl- Benzene (μg/L)	Total Xylenes (μg/L)	GRO (mg/L)	DRO (mg/L)	MRO (mg/L)	Chloride (mg/L)	TDS (mg/L)
	Method	8021B	8021B	8021B	8021B	8015D	8015D	8015D	300.0	SM2540C
NM WQCC	STANDARD	5	1,000	700	620	0.0101*	0.0167*	NE	250**	1000**
Intstl Well	3-Dec-14	<1.0	<1.0	<1.0	<2.0	0.087	6	<5.0	98,000	133,000
Intstl Well	24-Sep-15	<1.0	<1.0	<1.0	<2.0	0.074	2.8	<5.0	100,000	141,000
Intstl Well	23-Sep-16	<10	<10	<10	<20	<0.50	3.8	<5.0	88,000	138,000
Intstl Well	19-Dec-16	<5.0	<5.0	<5.0	<7.5	<0.25	2.9	<5.0	130,000	147,000
Intstl Well	14-Sep-17	<1.0	<1.0	<1.0	<2.0	<0.050	4.5	<5.0	97,000	118,000
Intstl Well	14-Dec-17	<1.0	<1.0	<1.0	<1.5	0.062	3.8	<5.0	67,000	126,000
Intstl Well	14-Mar-18	<5.0	<5.0	<5.0	<10	<0.25	4.2	<5.0	75,000	122,000
Intstl Well	12-Jun-18	<1.0	<1.0	<1.0	<1.5	0.11	3.7	<5.0	75,000	180,000
Intstl Well	17-Sep-18	<1.0	<1.0	<1.0	<2.0	0.13	3.5	<5.0	80,000	135,000
Intstl Well	19-Dec-18	<1.0	<1.0	<1.0	<2.0	0.052	2.8	<5.0	70,000	133,000
Evap Pond	3-Dec-14	190	240	14	88	1.2	9.2	<5.0	74,000	105,000
Evap Pond	24-Sep-15	13	13	1.0	5.6	0.11	2.9	<5.0	87,000	136,000
Evap Pond	19-Dec-16	4.3	23	<5.0	<7.5	0.87	6.1	<5.0	110,000	169,000
Evap Pond	14-Dec-17	44	43	3.9	22	0.53	9.6	<5.0	86,000	164,000
Evap Pond	17-Sep-18	<5.0	<5.0	<5.0	<10	<0.25	9.7	<5.0	180,000	295,000

*NMED Groundwater Screening Level source: Risk Assessment Guidance for Site Investigations & Remediation Vol. I, Table

**WQCC Standard for Domestic Water Supply

< Analyte not detected above listed method limit

NA Not Analyzed
NE Not Established

TPH Total Petroleum Hydrocarbons

GRO Gasoline Range Organics
DRO Diesel Range Organics
MRO Motor Oil Range Organics

TABLE 4
TREATMENT ZONE SOIL ANALYTICAL RESULTS
BMG Landfarm, Rio Arriba County, New Mexico

Treatment Zone Cell	Date	TPH (mg/kg)	GRO (mg/kg)	DRO (mg/kg)	MRO (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- Benzene (mg/kg)	Total Xylenes (mg/kg)	Chloride (mg/kg)
	Method	418.1	8015	8015D	8015D	8021B/ 8260B	8021B/ 8260B	8021B/ 8260B	8021B/ 8260B	300.0
NMOCD Clos Levels (2,500	_	GRO/DRO/ 00 GRO/DR		(0.2 (Benzen	e) / 50 (BTE	EX)	500
1	06-May-14	26	NM	NM	NM	NM	NM	NM	NM	120
1	30-Sep-14	NM	<4.7	620	2,200	NM	NM	NM	NM	140
1	02-Dec-14	NM	150	4,500	5,700	NM	NM	NM	NM	56
1	27-Mar-15	5,600	NM	NM	NM	NM	NM	NM	NM	<30
1	24-Sep-15	1,400	NM	NM	NM	NM	NM	NM	NM	<30
1	07-Mar-16	1,300	NM	NM	NM	NM	NM	NM	NM	45
1	22-Sep-16	1,100	NM	NM	NM	NM	NM	NM	NM	44
1	13-Apr-17	NM	<4.6	190	690	NM	NM	NM	NM	100
1	20-Sep-17	NM	<4.8	320	700	NM	NM	NM	NM	<30
1	13-Mar-18	NM	<4.9	49	160	NM	NM	NM	NM	240
1	17-Sep-18	NM	<4.9	<9.6	<48	NM	NM	NM	NM	110
1	02-Apr-20	NM	<4.9	18	65	<0.025	<0.049	<0.049	<0.099	18
2	6-May-14	780	NM	NM	NM	NM	NM	NM	NM	50
2	30-Sep-14	NM	<4.6	530	880	NM	NM	NM	NM	47
2	2-Dec-14	NM	6.2	1,400	1,200	NM	NM	NM	NM	13
2	27-Mar-15	160	NM	NM	NM	NM	NM	NM	NM	<30
2	24-Sep-15	1,100	NM	NM	NM	NM	NM	NM	NM	32
2	07-Mar-16	2,600	NM	NM	NM	NM	NM	NM	NM	<30
2	22-Sep-16	4,600	NM	NM	NM	NM	NM	NM	NM	38
2	13-Apr-17	NM	<4.7	1,100	2,000	NM	NM	NM	NM	<30
2	20-Sep-17	NM	<4.9	990	1,500	NM	NM	NM	NM	<30

TABLE 4
TREATMENT ZONE SOIL ANALYTICAL RESULTS
BMG Landfarm, Rio Arriba County, New Mexico

Treatment Zone Cell	Date	TPH (mg/kg)	GRO (mg/kg)	DRO (mg/kg)	MRO (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- Benzene (mg/kg)	Total Xylenes (mg/kg)	Chloride (mg/kg)
	Method	418.1	8015	8015D	8015D	8021B/ 8260B	8021B/ 8260B	8021B/ 8260B	8021B/ 8260B	300.0
NMOCD Clo Levels (2,500	-	GRO/DRO/ 00 GRO/DR			0.2 (Benzen	e) / 50 (BTE	EX)	500
2	13-Mar-18	NM	<4.8	1,500	2,200	NM	NM	NM	NM	<30
2	17-Sep-18	NM	32	2,000	2,600	NM	NM	NM	NM	<30
2	28-Mar-19	NM	<4.6	190	370	NM	NM	NM	NM	<60
2	02-Apr-20	NM	<4.9	630	1,000	NM	NM	NM	NM	<60
3	6-May-14	2,300	NM	NM	NM	NM	NM	NM	NM	<30
3	30-Sep-14	NM	10	1,800	2,100	NM	NM	NM	NM	<30
3	2-Dec-14	NM	<4.7	450	640	NM	NM	NM	NM	10
3	27-Mar-15	98	NM	NM	NM	NM	NM	NM	NM	<30
3	24-Sep-15	1,100	NM	NM	NM	NM	NM	NM	NM	<30
3	07-Mar-16	2,900	NM	NM	NM	NM	NM	NM	NM	<30
3	22-Sep-16	2,000	NM	NM	NM	NM	NM	NM	NM	<30
3	13-Apr-17	NM	<4.8	360	790	NM	NM	NM	NM	<30
3	20-Sep-17	NM	<4.7	660	1,400	NM	NM	NM	NM	<30
3	13-Mar-18	NM	<5.0	720	1,200	NM	NM	NM	NM	<30
3	17-Sep-18	NM	<4.6	240	420	NM	NM	NM	NM	<30
3	28-Mar-19	NM	<4.7	48	98	NM	NM	NM	NM	<60
3	02-Apr-20	NM	<4.9	630	1,000	NM	NM	NM	NM	<60
4	30-Sep-14	NM	<4.7	190	190	NM	NM	NM	NM	<30
4	2-Dec-14	NM	<4.6	130	190	NM	NM	NM	NM	29
4	27-Mar-15	2,200	NM	NM	NM	NM	NM	NM	NM	<30

TABLE 4 TREATMENT ZONE SOIL ANALYTICAL RESULTS BMG Landfarm, Rio Arriba County, New Mexico

Treatment Zone Cell	Date	TPH (mg/kg)	GRO (mg/kg)	DRO (mg/kg)	MRO (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- Benzene (mg/kg)	Total Xylenes (mg/kg)	Chloride (mg/kg)
	Method	418.1	8015	8015D	8015D	8021B/ 8260B	8021B/ 8260B	8021B/ 8260B	8021B/ 8260B	300.0
NMOCD Clo Levels (2,500	2,500	GRO/DRO/ 00 GRO/DR		0.2 (Benzene) / 50 (BTEX)			500	
4	24-Sep-15	370	NM	NM	NM	NM	NM	NM	NM	<30
4	07-Mar-16	190	NM	NM	NM	NM	NM	NM	NM	<30
4	22-Sep-16	410	NM	NM	NM	NM	NM	NM	NM	<30
4	13-Apr-17	NM	<5.0	650	1,000	NM	NM	NM	NM	<30
4	20-Sep-17	NM	<4.6	160	270	NM	NM	NM	NM	<30
4	13-Mar-18	NM	<5.0	83	140	NM	NM	NM	NM	<30
4	17-Sep-18	NM	<4.9	10	<46	NM	NM	NM	NM	<30
4	02-Apr-20	NM	<4.9	<9.2	<46	<0.024	<0.049	<0.049	<0.098	<7.5

Notes:

< Analyte not detected above listed method limit

NM Not Measured

TPH Total Petroleum Hydrocarbons

TABLE 4B
TREATMENT ZONE CONCENTRATIONS, NMOCD BACKGROUND LEVELS, AND NMED SSLs
BMG Landfarm, Rio Arriba County, New Mexico

Parameter	USEPA Method	TZ Cell #1 (mg/kg)	TZ Cell #4 (mg/kg)	Vadose Zone Background Concentration Ranges	NMOCD Approved Vadose Zone Background Value (mg/kg)	NMED SSL Leaching to GW DAF 20 (mg/kg)
	Date Sampled	4/2/2020	4/2/2020	2014	2016	2019
NMAC 20.6.2.3103 (A and B)						
Barium	6010B	73	110	42 - 130	42	2.70E+03
Chromium	6010B	6.4	10	4.4 - 19	4.4	2.05E+05
Copper	6010B	5.3	8.8	3.4 - 14	3.4	9.15E+02
Fluoride	300.0	1.9	1.6	0.6 - 3.0	0.6	1.20E+04
Iron	6010B	11,000	16,000	6,500 - 25,000	6,500	6.96E+03
Lead	6010B	2.4	3.7	2.1 - 8.4	2.1	2.70E+02
Manganese	6010B	240	270	140 - 310	140	2.63E+03
Nitrate (NO3 as N)	300.0	5.9	6.2	0.45	0.3	4.25E+02
Radioactivity (Combined Ra 226&228)	901.1 Gamma Spec	1.670	1.524	1.3 - 3.5	1.3	
Sulfate	300.0	9.9	12	1.5 - 16	1.5	
Zinc	6010B	23	32	13 - 56	13	7.41E+03

Notes:

Samples analyzed at Hall Environmental Analysis Laboratory, Albuquerque, NM

Vadose Zone Sample ID	Date	TPH mg/kg	GRO mg/kg	DRO mg/kg	MRO mg/kg	Benzene mg/kg	Toluene mg/kg	Ethyl- Benzene ma/ka	Total Xylenes ma/ka	Chloride mg/kg	Fluoride mg/kg
Analytical Method		418.1	8015D	8015M/D	8015M/D	8021B/ 8260B	8021B/ 8260B	8021B/ 8260B	8021B/ 8260B	300.0	300.0
Approved Background		20	20			0.05	0.05	0.05	0.1	25	0.6
Cell #1 S-1	13-Mar-18	<19	NM	NM	NM	<0.025	<0.050	<0.050	<0.10	630	NM
Cell #1 S-1	24-Jul-18	NM	<4.7	<9.8	<49	<0.023	<0.047	<0.047	<0.093	NM	NM
Cell #1 S-1	17-Sep-18	<19	NM	NM	NM	<0.025	<0.050	<0.050	<0.099	370	1.6
Cell #1 S-1	19-Dec-18	NM	<4.9	<9.8	68	<0.024	<0.049	<0.049	<0.097	NM	NM
Cell #1 S-1	28-Mar-19	<20	NM	NM	NM	<0.024	<0.047	<0.047	<0.095	210	NM
Cell #1 S-1	02-Apr-20	<17	NM	NM	NM	<0.025	<0.049	<0.049	<0.099	220	<1.5
Cell #1 S-2	13-Mar-18	<19	NM	NM	NM	<0.023	<0.047	<0.047	<0.094	<30	NM
Cell #1 S-2	24-Jul-18	NM	<4.9	<9.8	<49	<0.025	<0.049	<0.049	<0.098	NM	NM
Cell #1 S-2	17-Sep-18	<19	NM	NM	NM	<0.024	<0.047	<0.047	<0.095	36	1.9
Cell #1 S-2	19-Dec-18	NM	<4.9	<9.5	<47	<0.025	<0.049	<0.049	<0.099	NM	NM
Cell #1 S-2	28-Mar-19	<19	NM	NM	NM	<0.025	<0.050	<0.050	<0.10	66	NM
Cell #1 S-2	02-Apr-20	<18	NM	NM	NM	<0.024	<0.049	<0.049	<0.097	240	NM
Cell #1 S-3	13-Mar-18	<19	NM	NM	NM	<0.024	<0.048	<0.048	<0.096	<30	NM
Cell #1 S-3	24-Jul-18	NM	<4.9	<9.8	<49	<0.025	<0.049	<0.049	<0.099	NM	NM
Cell #1 S-3	17-Sep-18	<19	NM	NM	NM	<0.024	<0.048	<0.048	<0.096	<7.5	<1.5
Cell #1 S-3	19-Dec-18	NM	<4.8	<9.9	<4.9	<0.024	<0.048	<0.048	<0.096	NM	NM
Cell #1 S-3	28-Mar-19	<20	NM	NM	NM	<0.025	<0.049	<0.049	<0.099	<60	NM
Cell #1 S-3	02-Apr-20	<19	NM	NM	NM	<0.024	<0.049	<0.049	<0.098	<60	NM
Cell #1 S-4	13-Mar-18	<19	NM	NM	NM	<0.024	<0.049	<0.049	<0.097	<30	NM
Cell #1 S-4	24-Jul-18	NM	<5.0	<9.8	<49	<0.025	<0.050	<0.050	<0.099	NM	NM
Cell #1 S-4	17-Sep-18	<19	NM	NM	NM	<0.023	<0.046	<0.046	<0.092	<7.5	<1.5

Vadose Zone Sample ID	Date	TPH mg/kg	GRO mg/kg	DRO mg/kg	MRO mg/kg	Benzene mg/kg	Toluene mg/kg	Ethyl- Benzene ma/ka	Total Xylenes ma/ka	Chloride mg/kg	Fluoride mg/kg
Analytical Method		418.1	8015D	8015M/D	8015M/D	8021B/ 8260B	8021B/ 8260B	8021B/ 8260B	8021B/ 8260B	300.0	300.0
Approved Background		20	20			0.05	0.05	0.05	0.1	25	0.6
Cell #1 S-4	19-Dec-18	NM	<4.7	<9.6	<48	<0.024	<0.047	<0.047	<0.094	NM	NM
Cell #1 S-4	28-Mar-19	<20	NM	NM	NM	<0.025	<0.049	<0.049	<0.099	<60	NM
Cell #1 S-4	02-Apr-20	<19	NM	NM	NM	<0.025	<0.049	<0.049	<0.099	<60	NM
Cell #2 S-1	13-Mar-18	550	NM	NM	NM	<0.025	<0.049	<0.049	<0.098	<30	NM
Cell #2 S-1	24-Jul-18	NM	<5.0	<9.3	<46	<0.025	<0.050	<0.050	<0.10	NM	NM
Cell #2 S-1	17-Sep-18	<19	NM	NM	NM	<0.024	<0.047	<0.047	<0.094	10	<1.5
Cell #2 S-1	19-Dec-18	NM	<4.8	<9.8	<49	<0.024	<0.048	<0.048	<0.095	NM	NM
Cell #2 S-1	28-Mar-19	<19	NM	NM	NM	<0.024	<0.048	<0.048	<0.097	<60	NM
Cell #2 S-1	02-Apr-20	<19	NM	NM	NM	<0.025	<0.049	<0.049	<0.099	12	<1.5
Cell #2 S-2	13-Mar-18	<19	NM	NM	NM	<0.024	<0.049	<0.049	<0.098	<30	NM
Cell #2 S-2	24-Jul-18	NM	<4.6	<9.6	<48	<0.023	<0.046	<0.046	<0.092	NM	NM
Cell #2 S-2	17-Sep-18	<19	NM	NM	NM	<0.024	<0.049	<0.049	<0.098	12	<1.5
Cell #2 S-2	19-Dec-18	NM	<4.9	<9.6	<48	<0.024	<0.049	<0.049	<0.098	NM	NM
Cell #2 S-2	28-Mar-19	<20	NM	NM	NM	<0.024	<0.048	<0.048	<0.096	<59	NM
Cell #2 S-2	02-Apr-20	<20	NM	NM	NM	<0.024	<0.048	<0.048	<0.097	<60	NM
Cell #2 S-3	13-Mar-18	<19	NM	NM	NM	<0.024	<0.049	<0.049	<0.097	<30	NM
Cell #2 S-3	24-Jul-18	NM	4.7	<9.4	<47	<0.024	<0.047	<0.047	<0.094	NM	NM
Cell #2 S-3	17-Sep-18	<20	NM	NM	NM	<0.025	<0.050	<0.050	<0.099	10	<1.5
Cell #2 S-3	19-Dec-18	NM	<4.8	<9.5	<48	<0.024	<0.048	<0.048	<0.096	NM	NM
Cell #2 S-3	28-Mar-19	<20	NM	NM	NM	<0.024	<0.048	<0.048	<0.097	<60	NM

Vadose Zone Sample ID	Date	TPH mg/kg	GRO mg/kg	DRO mg/kg	MRO mg/kg	Benzene mg/kg	Toluene mg/kg	Ethyl- Benzene ma/ka	Total Xylenes ma/ka	Chloride mg/kg	Fluoride mg/kg
Analytical Method		418.1	8015D	8015M/D	8015M/D	8021B/ 8260B	8021B/ 8260B	8021B/ 8260B	8021B/ 8260B	300.0	300.0
Approved Background		20	20			0.05	0.05	0.05	0.1	25	0.6
Cell #2 S-3	02-Apr-20	<19	NM	NM	NM	<0.025	<0.050	<0.050	<0.10	<60	NM
Cell #2 S-4	13-Mar-18	<18	NM	NM	NM	<0.024	<0.047	<0.047	<0.095	<30	NM
Cell #2 S-4	24-Jul-18	NM	<5.0	<9.4	<47	<0.025	<0.050	<0.050	<0.10	NM	NM
Cell #2 S-4	17-Sep-18	<20	NM	NM	NM	<0.025	<0.049	<0.049	<0.099	40	0.35
Cell #2 S-4	19-Dec-18	NM	<4.7	17	<50	<0.024	<0.047	<0.047	<0.095	NM	NM
Cell #2 S-4	28-Mar-19	<20	NM	NM	NM	<0.025	<0.049	<0.049	<0.098	<61	NM
Cell #2 S-4	02-Apr-20	<19	NM	NM	NM	<0.025	<0.049	<0.049	<0.099	<60	NM
Cell #3 S-1	13-Mar-18	<19	NM	NM	NM	<0.024	<0.048	<0.048	<0.097	<30	NM
Cell #3 S-1	24-Jul-18	NM	<4.7	<9.3	<46	<0.024	<0.047	<0.047	<0.094	NM	NM
Cell #3 S-1	17-Sep-18	<20	NM	NM	NM	<0.024	<0.047	<0.047	<0.094	<7.5	<1.5
Cell #3 S-1	19-Dec-18	NM	<4.8	<10	<50	<0.024	<0.048	<0.048	<0.097	NM	NM
Cell #3 S-1	28-Mar-19	<19	NM	NM	NM	<0.024	<0.048	<0.048	<0.096	<60	NM
Cell #3 S-1	02-Apr-20	59	NM	NM	NM	<0.025	<0.050	<0.050	<0.10	11	<1.5
Cell #3 S-2	13-Mar-18	<19	NM	NM	NM	<0.024	<0.049	<0.049	<0.097	<30	NM
Cell #3 S-2	24-Jul-18	NM	<4.7	<9.2	<46	<0.023	<0.047	<0.047	<0.094	NM	NM
Cell #3 S-2	17-Sep-18	<20	NM	NM	NM	<0.024	<0.048	<0.048	<0.095	9.5	1.6
Cell #3 S-2	19-Dec-18	NM	<4.7	<9.7	<48	<0.023	<0.047	<0.047	<0.094	NM	NM
Cell #3 S-2	28-Mar-19	<19	NM	NM	NM	<0.024	<0.048	<0.048	<0.095	<60	NM
Cell #3 S-2	02-Apr-20	20	NM	NM	NM	<0.025	<0.050	<0.050	<0.099	<60	NM

Vadose Zone Sample ID	Date	TPH mg/kg	GRO mg/kg	DRO mg/kg	MRO mg/kg	Benzene mg/kg	Toluene mg/kg	Ethyl- Benzene ma/ka	Total Xylenes ma/ka	Chloride mg/kg	Fluoride mg/kg
Analytical Method		418.1	8015D	8015M/D	8015M/D	8021B/ 8260B	8021B/ 8260B	8021B/ 8260B	8021B/ 8260B	300.0	300.0
Approved Background		20	20			0.05	0.05	0.05	0.1	25	0.6
Cell #3 S-3	13-Mar-18	<19	NM	NM	NM	<0.023	<0.047	<0.047	<0.094	<30	NM
Cell #3 S-3	24-Jul-18	NM	<5.0	<9.7	<48	<0.025	<0.050	<0.050	<0.10	NM	NM
Cell #3 S-3	17-Sep-18	<19	NM	NM	NM	<0.024	<0.048	<0.048	<0.096	8.0	4.0
Cell #3 S-3	19-Dec-18	NM	<5.0	<9.7	<49	<0.025	<0.050	<0.050	<0.099	NM	NM
Cell #3 S-3	28-Mar-19	<20	NM	NM	NM	<0.023	<0.047	<0.047	<0.094	<60	NM
Cell #3 S-3	02-Apr-20	50	NM	NM	NM	<0.025	<0.049	<0.049	<0.098	<60	NM
Cell #3 S-4	13-Mar-18	<18	NM	NM	NM	<0.023	<0.046	<0.046	<0.093	<30	NM
Cell #3 S-4	24-Jul-18	NM	<4.8	<10	<50	<0.024	<0.048	<0.048	<0.095	NM	NM
Cell #3 S-4	17-Sep-18	<20	NM	NM	NM	<0.024	<0.047	<0.047	<0.095	8.0	<1.5
Cell #3 S-4	19-Dec-18	NM	<4.9	<10	<50	<0.024	<0.049	<0.049	<0.098	NM	NM
Cell #3 S-4	28-Mar-19	<18	NM	NM	NM	<0.025	<0.050	<0.050	<0.099	<60	NM
Cell #3 S-4	02-Apr-20	<18	NM	NM	NM	<0.024	<0.049	<0.049	<0.097	<60	NM
Cell #4 S-1	13-Mar-18	<18	NM	NM	NM	<0.024	<0.047	<0.047	<0.094	32	NM
Cell #4 S-1	24-Jul-18	NM	<4.6	<9.8	<49	<0.023	<0.046	<0.046	<0.092	NM	NM
Cell #4 S-1	17-Sep-18	<19	NM	NM	NM	<0.025	<0.049	<0.049	<0.099	<7.5	1.5
Cell #4 S-1	19-Dec-18	NM	<4.7	<9.5	<47	<0.024	<0.047	<0.047	<0.094	NM	NM
Cell #4 S-1	28-Mar-19	<19	NM	NM	NM	<0.023	<0.047	<0.047	<0.093	<60	NM
Cell #4 S-1	02-Apr-20	<19	NM	NM	NM	<0.025	<0.050	<0.050	<0.099	<7.5	2.4
Cell #4 S-2	13-Mar-18	<18	NM	NM	NM	<0.023	<0.046	<0.046	<0.092	<30	NM
Cell #4 S-2	24-Jul-18	NM	<4.9	<9.3	<47	<0.024	<0.049	<0.049	<0.098	NM	NM

TABLE 5 **VADOSE ZONE SOIL ANALYTICAL RESULTS**

Vadose Zone Sample ID	Date	TPH mg/kg	GRO mg/kg	DRO mg/kg	MRO mg/kg	Benzene mg/kg	Toluene mg/kg	Ethyl- Benzene ma/ka	Total Xylenes ma/ka	Chloride mg/kg	Fluoride mg/kg
Analytical Method		418.1	8015D	8015M/D	8015M/D	8021B/ 8260B	8021B/ 8260B	8021B/ 8260B	8021B/ 8260B	300.0	300.0
Approved Background		20	20			0.05	0.05	0.05	0.1	25	0.6
Cell #4 S-2	17-Sep-18	<19	NM	NM	NM	<0.024	<0.048	<0.048	<0.097	<7.5	3.3
Cell #4 S-2	19-Dec-18	NM	<4.7	<9.5	<48	<0.023	<0.047	<0.047	<0.093	NM	NM
Cell #4 S-2	28-Mar-19	<19	NM	NM	NM	<0.023	<0.047	<0.047	<0.093	<60	NM
Cell #4 S-2	02-Apr-20	<19	NM	NM	NM	<0.025	<0.050	<0.050	<0.10	<60	NM
Cell #4 S-3	13-Mar-18	<20	NM	NM	NM	<0.023	<0.047	<0.047	<0.093	<30	NM
Cell #4 S-3	24-Jul-18	NM	<4.8	<9.2	<46	<0.024	<0.048	<0.048	<0.097	NM	NM
Cell #4 S-3	17-Sep-18	<20	NM	NM	NM	<0.023	<0.046	<0.046	<0.092	<7.5	1.8
Cell #4 S-3	19-Dec-18	NM	<4.7	<9.7	<49	<0.024	<0.047	<0.047	<0.094	NM	NM
Cell #4 S-3	28-Mar-19	<19	NM	NM	NM	<0.024	<0.048	<0.048	<0.097	<60	NM
Cell #4 S-3	02-Apr-20	<18	NM	NM	NM	<0.025	<0.049	<0.049	<0.099	<60	NM
Cell #4 S-4	13-Mar-18	<20	NM	NM	NM	<0.025	<0.049	<0.049	<0.098	<30	NM
Cell #4 S-4	24-Jul-18	NM	<4.8	<9.6	<48	<0.024	<0.048	<0.048	<0.096	NM	NM
Cell #4 S-4	17-Sep-18	<19	NM	NM	NM	<0.024	<0.049	<0.049	<0.098	12	3.7
Cell #4 S-4	19-Dec-18	NM	<4.7	<9.9	<49	<0.023	<0.047	<0.047	<0.093	NM	NM
Cell #4 S-4	28-Mar-19	<20	NM	NM	NM	<0.023	<0.046	<0.046	<0.092	<60	NM
Cell #4 S-4	02-Apr-20	<18	NM	NM	NM	<0.025	<0.049	<0.049	<0.099	<60	NM

Notes:

Analyte not detected above listed method limit

Not Applicable NA Not Measured NM

Vadose Zone Sample ID	Date	Nitrate mg/kg	Sulfate mg/kg	Mercury mg/kg	Arsenic mg/kg	Barium mg/kg	Cadmium mg/kg	Calcium mg/kg	Chromium mg/kg	Copper mg/kg	Iron mg/kg	Lead mg/kg
Analytical Method		300.0	300.0	7471	6010B	6010B	6010B	6010B	6010B	6010B	6010B	6010B
Approved Background		0.3	1.5	0.03	2.5	42	0.1	NA	4.4	3.4	6500	2.1
Cell #1 S-1	13-Mar-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #1 S-1	24-Jul-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #1 S-1	17-Sep-18	5.8	9.6	<0.033	<12	130	<0.20	5,600	14	NM	NM	3.3
Cell #1 S-1	19-Dec-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #1 S-1	28-Mar-19	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #1 S-1	02-Apr-20	4.1	14	<0.033	<5.0	75	<0.20	5,600	10	NM	NM	3.0
Cell #1 S-2	13-Mar-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #1 S-2	24-Jul-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #1 S-2	17-Sep-18	6.4	18	<0.032	<4.8	120	<0.19	5,100	13	NM	NM	3.3
Cell #1 S-2	19-Dec-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #1 S-2	28-Mar-19	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #1 S-2	02-Apr-20	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #1 S-3	13-Mar-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #1 S-3	24-Jul-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #1 S-3	17-Sep-18	10	13	<0.033	<12	120	<0.20	4,400	12	NM	NM	3.9
Cell #1 S-3	19-Dec-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #1 S-3	28-Mar-19	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #1 S-3	02-Apr-20	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #1 S-4	13-Mar-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #1 S-4	24-Jul-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #1 S-4	17-Sep-18	24	28	<0.032	<4.9	78	<0.097	2,500	6.9	NM	NM	2.2

TABLE 5 VADOSE ZONE SOIL ANALYTICAL RESULTS

BMG Landfarm, Rio Arriba County, New Mexico	BMG Landfarm	, Rio Arriba	County,	New Mexico
---	--------------	--------------	---------	------------

Vadose Zone Sample ID	Date	Nitrate mg/kg	Sulfate mg/kg	Mercury mg/kg	Arsenic mg/kg	Barium mg/kg	Cadmium mg/kg	Calcium mg/kg	Chromium mg/kg	Copper mg/kg	Iron mg/kg	Lead mg/kg
Analytical Method		300.0	300.0	7471	6010B	6010B	6010B	6010B	6010B	6010B	6010B	6010B
Approved Background		0.3	1.5	0.03	2.5	42	0.1	NA	4.4	3.4	6500	2.1
Cell #1 S-4	19-Dec-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #1 S-4	28-Mar-19	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #1 S-4	02-Apr-20	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #2 S-1	13-Mar-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #2 S-1	24-Jul-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #2 S-1	17-Sep-18	2.7	70	<0.032	3.2	82	<0.099	1,800	4.4	NM	NM	2.3
Cell #2 S-1	19-Dec-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #2 S-1	28-Mar-19	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #2 S-1	02-Apr-20	5.8	22	<0.033	6.5	110	<0.20	4,000	7.9	NM	NM	3.1
Cell #2 S-2	13-Mar-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #2 S-2	24-Jul-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #2 S-2	17-Sep-18	8.2	90	<0.033	<5.0	95	<0.10	1,800	5.0	NM	NM	2.9
Cell #2 S-2	19-Dec-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #2 S-2	28-Mar-19	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #2 S-2	02-Apr-20	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #2 S-3	13-Mar-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #2 S-3	24-Jul-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #2 S-3	17-Sep-18	9.1	8.7	<0.033	<2.5	71	<0.10	1,300	4.4	NM	NM	1.9
Cell #2 S-3	19-Dec-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #2 S-3	28-Mar-19	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM

Vadose Zone Sample ID	Date	Nitrate mg/kg	Sulfate mg/kg	Mercury mg/kg	Arsenic mg/kg	Barium mg/kg	Cadmium mg/kg	Calcium mg/kg	Chromium mg/kg	Copper mg/kg	Iron mg/kg	Lead mg/kg
Analytical Method		300.0	300.0	7471	6010B	6010B	6010B	6010B	6010B	6010B	6010B	6010B
Approved Background		0.3	1.5	0.03	2.5	42	0.1	NA	4.4	3.4	6500	2.1
Cell #2 S-3	02-Apr-20	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #2 S-4	13-Mar-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #2 S-4	24-Jul-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #2 S-4	17-Sep-18	<0.30	51	<0.031	2.8	86	<0.099	4,200	4.0	NM	NM	2.7
Cell #2 S-4	19-Dec-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #2 S-4	28-Mar-19	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #2 S-4	02-Apr-20	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #3 S-1	13-Mar-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #3 S-1	24-Jul-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #3 S-1	17-Sep-18	4.6	8.5	<0.033	<2.4	55	<0.097	920	3.4	NM	NM	1.8
Cell #3 S-1	19-Dec-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #3 S-1	28-Mar-19	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #3 S-1	02-Apr-20	2.4	12	<0.033	<5.0	74	<0.20	1,100	3.8	NM	NM	2.4
Cell #3 S-2	13-Mar-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #3 S-2	24-Jul-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #3 S-2	17-Sep-18	1.9	64	<0.031	<5.0	67	<0.099	2,000	9.8	NM	NM	2.6
Cell #3 S-2	19-Dec-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #3 S-2	28-Mar-19	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #3 S-2	02-Apr-20	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM

Vadose Zone Sample ID	Date	Nitrate mg/kg	Sulfate mg/kg	Mercury mg/kg	Arsenic mg/kg	Barium mg/kg	Cadmium mg/kg	Calcium mg/kg	Chromium mg/kg	Copper mg/kg	Iron mg/kg	Lead mg/kg
Analytical Method		300.0	300.0	7471	6010B	6010B	6010B	6010B	6010B	6010B	6010B	6010B
Approved Background		0.3	1.5	0.03	2.5	42	0.1	NA	4.4	3.4	6500	2.1
Cell #3 S-3	13-Mar-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #3 S-3	24-Jul-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #3 S-3	17-Sep-18	2.6	190	<0.033	<12	100	<0.19	6,200	17	NM	NM	4.6
Cell #3 S-3	19-Dec-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #3 S-3	28-Mar-19	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #3 S-3	02-Apr-20	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #3 S-4	13-Mar-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #3 S-4	24-Jul-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #3 S-4	17-Sep-18	8.8	160	<0.032	<2.4	73	<0.097	2,000	7.1	NM	NM	2.7
Cell #3 S-4	19-Dec-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #3 S-4	28-Mar-19	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #3 S-4	02-Apr-20	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
C-II #4 C 1	13-Mar-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #4 S-1 Cell #4 S-1	24-Jul-18	NM	NM	NM	NM	NM	NM	NM		NM	NM	NM
Cell #4 S-1	17-Sep-18	10	11	<0.032	<5.0	80	<0.20	3,400	11	NM	NM	4.5
Cell #4 S-1	17-3ep-18 19-Dec-18	NM	NM	NM	NM	NM	NM	3,400 NM	NM	NM	NM	NM
Cell #4 S-1	28-Mar-19	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #4 S-1	02-Apr-20	18	15	<0.033	<12	110	<0.49	5,400	17	NM	NM	5.7
Cell #4 S-2	13-Mar-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #4 S-2	24-Jul-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM

Vadose Zone Sample ID	Date	Nitrate mg/kg	Sulfate mg/kg	Mercury mg/kg	Arsenic mg/kg	Barium mg/kg	Cadmium mg/kg	Calcium mg/kg	Chromium mg/kg	Copper mg/kg	Iron mg/kg	Lead mg/kg
Analytical Method		300.0	300.0	7471	6010B	6010B	6010B	6010B	6010B	6010B	6010B	6010B
Approved Background		0.3	1.5	0.03	2.5	42	0.1	NA	4.4	3.4	6500	2.1
Cell #4 S-2	17-Sep-18	5.9	14	<0.031	<4.8	80	<0.19	4,200	13	NM	NM	4.7
Cell #4 S-2	19-Dec-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #4 S-2	28-Mar-19	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #4 S-2	02-Apr-20	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #4 S-3	13-Mar-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #4 S-3	24-Jul-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #4 S-3	17-Sep-18	7.4	11	<0.032	<12	95	<0.19	5,500	15	NM	NM	5.1
Cell #4 S-3	19-Dec-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #4 S-3	28-Mar-19	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #4 S-3	02-Apr-20	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #4 S-4	13-Mar-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #4 S-4	24-Jul-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #4 S-4	17-Sep-18	3.7	24	<0.032	<5.0	170	<0.20	5,300	16	NM	NM	4.5
Cell #4 S-4	19-Dec-18	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #4 S-4	28-Mar-19	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Cell #4 S-4	02-Apr-20	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM

TABLE 5

VADOSE ZONE SOIL ANALYTICAL RESULTS

BMG Landfarm, Rio Arriba County, New Mexico

Vadose Zone Sample ID	Date	Magnesium mg/kg	Potassium mg/kg	Selenium mg/kg	Silver mg/kg	Sodium mg/kg
Analytical Method		6010B	6010B	6010B	6010B	6010B
Approved Background		NA	NA	2.5	0.25	NA
Cell #1 S-1	13-Mar-18	NM	NM	NM	NM	NM
Cell #1 S-1	24-Jul-18	NM	NM	NM	NM	NM
Cell #1 S-1	17-Sep-18	3,300	2,600	<12	<1.2	460
Cell #1 S-1	19-Dec-18	NM	NM	NM	NM	NM
Cell #1 S-1	28-Mar-19	NM	NM	NM	NM	NM
Cell #1 S-1	02-Apr-20	NM	1,600	<5.0	<0.50	270
Cell #1 S-2	13-Mar-18	NM	NM	NM	NM	NM
Cell #1 S-2	24-Jul-18	NM	NM	NM	NM	NM
Cell #1 S-2	17-Sep-18	2,600	2,100	<4.8	<0.48	160
Cell #1 S-2	19-Dec-18	NM	NM	NM	NM	NM
Cell #1 S-2	28-Mar-19	NM	NM	NM	NM	NM
Cell #1 S-2	02-Apr-20	NM	NM	NM	NM	NM
Cell #1 S-3	13-Mar-18	NM	NM	NM	NM	NM
Cell #1 S-3	24-Jul-18	NM	NM	NM	NM	NM
Cell #1 S-3	17-Sep-18	3,000	2,400	<12	<0.50	130
Cell #1 S-3	19-Dec-18	NM	NM	NM	NM	NM
Cell #1 S-3	28-Mar-19	NM	NM	NM	NM	NM
Cell #1 S-3	02-Apr-20	NM	NM	NM	NM	NM
Cell #1 S-4	13-Mar-18	NM	NM	NM	NM	NM
Cell #1 S-4	24-Jul-18	NM	NM	NM	NM	NM
Cell #1 S-4	17-Sep-18	1,900	1,400	<4.9	<0.24	87

Vadose Zone Sample ID	Date	Magnesium mg/kg	Potassium mg/kg	Selenium mg/kg	Silver mg/kg	Sodium mg/kg
Analytical Method		6010B	6010B	6010B	6010B	6010B
Approved Background		NA	NA	2.5	0.25	NA
Cell #1 S-4	19-Dec-18	NM	NM	NM	NM	NM
Cell #1 S-4	28-Mar-19	NM	NM	NM	NM	NM
Cell #1 S-4	02-Apr-20	NM	NM	NM	NM	NM
Cell #2 S-1	13-Mar-18	NM	NM	NM	NM	NM
Cell #2 S-1	24-Jul-18	NM	NM	NM	NM	NM
Cell #2 S-1	17-Sep-18	1,100	710	<2.5	<0.25	89
Cell #2 S-1	19-Dec-18	NM	NM	NM	NM	NM
Cell #2 S-1	28-Mar-19	NM	NM	NM	NM	NM
Cell #2 S-1	02-Apr-20	NM	1,500	<5.0	<0.50	160
Cell #2 S-2	13-Mar-18	NM	NM	NM	NM	NM
Cell #2 S-2	24-Jul-18	NM	NM	NM	NM	NM
Cell #2 S-2	17-Sep-18	1,200	750	<2.5	<0.25	90
Cell #2 S-2	19-Dec-18	NM	NM	NM	NM	NM
Cell #2 S-2	28-Mar-19	NM	NM	NM	NM	NM
Cell #2 S-2	02-Apr-20	NM	NM	NM	NM	NM
Cell #2 S-3	13-Mar-18	NM	NM	NM	NM	NM
Cell #2 S-3	24-Jul-18	NM	NM	NM	NM	NM
Cell #2 S-3	17-Sep-18	990	860	<2.5	<0.25	63
Cell #2 S-3	19-Dec-18	NM	NM	NM	NM	NM
Cell #2 S-3	28-Mar-19	NM	NM	NM	NM	NM

TABLE 5

VADOSE ZONE SOIL ANALYTICAL RESULTS

BMG Landfarm, Rio Arriba County, New Mexico

Vadose Zone Sample ID	Date	Magnesium mg/kg	Potassium mg/kg	Selenium mg/kg	Silver mg/kg	Sodium mg/kg
Analytical Method		6010B	6010B	6010B	6010B	6010B
Approved Background		NA	NA	2.5	0.25	NA
Cell #2 S-3	02-Apr-20	NM	NM	NM	NM	NM
Cell #2 S-4	13-Mar-18	NM	NM	NM	NM	NM
Cell #2 S-4	24-Jul-18	NM	NM	NM	NM	NM
Cell #2 S-4	17-Sep-18	1,000	620	<2.5	<0.25	120
Cell #2 S-4	19-Dec-18	NM	NM	NM	NM	NM
Cell #2 S-4	28-Mar-19	NM	NM	NM	NM	NM
Cell #2 S-4	02-Apr-20	NM	NM	NM	NM	NM
Cell #3 S-1	13-Mar-18	NM	NM	NM	NM	NM
Cell #3 S-1	24-Jul-18	NM	NM	NM	NM	NM
Cell #3 S-1	17-Sep-18	820	730	<2.4	<0.24	82
Cell #3 S-1	19-Dec-18	NM	NM	NM	NM	NM
Cell #3 S-1	28-Mar-19	NM	NM	NM	NM	NM
Cell #3 S-1	02-Apr-20	NM	730	<5.0	<0.50	110
Cell #3 S-2	13-Mar-18	NM	NM	NM	NM	NM
Cell #3 S-2	24-Jul-18	NM	NM	NM	NM	NM
Cell #3 S-2	17-Sep-18	1,900	1,700	<5.0	<0.25	100
Cell #3 S-2	19-Dec-18	NM	NM	NM	NM	NM
Cell #3 S-2	28-Mar-19	NM	NM	NM	NM	NM
Cell #3 S-2	02-Apr-20	NM	NM	NM	NM	NM

TABLE 5

VADOSE ZONE SOIL ANALYTICAL RESULTS

BMG Landfarm, Rio Arriba County, New Mexico

Vadose Zone Sample ID	Date	Magnesium mg/kg	Potassium mg/kg	Selenium mg/kg	Silver mg/kg	Sodium mg/kg
Analytical Method		6010B	6010B	6010B	6010B	6010B
Approved Background		NA	NA	2.5	0.25	NA
Cell #3 S-3	13-Mar-18	NM	NM	NM	NM	NM
Cell #3 S-3	24-Jul-18	NM	NM	NM	NM	NM
Cell #3 S-3	17-Sep-18	3,100	2,500	<4.9	<0.49	160
Cell #3 S-3	19-Dec-18	NM	NM	NM	NM	NM
Cell #3 S-3	28-Mar-19	NM	NM	NM	NM	NM
Cell #3 S-3	02-Apr-20	NM	NM	NM	NM	NM
Cell #3 S-4	13-Mar-18	NM	NM	NM	NM	NM
Cell #3 S-4	24-Jul-18	NM	NM	NM	NM	NM
Cell #3 S-4	17-Sep-18	1,500	1,200	<2.4	<0.24	110
Cell #3 S-4	19-Dec-18	NM	NM	NM	NM	NM
Cell #3 S-4	28-Mar-19	NM	NM	NM	NM	NM
Cell #3 S-4	02-Apr-20	NM	NM	NM	NM	NM
Cell #4 S-1	13-Mar-18	NM	NM	NM	NM	NM
Cell #4 S-1	24-Jul-18	NM	NM	NM	NM	NM
Cell #4 S-1	17-Sep-18	1,700	1,600	<5.0	<0.50	75
Cell #4 S-1	19-Dec-18	NM	NM	NM	NM	NM
Cell #4 S-1	28-Mar-19	NM	NM	NM	NM	NM
Cell #4 S-1	02-Apr-20	NM	2,600	<12	<1.2	190
Cell #4 S-2	13-Mar-18	NM	NM	NM	NM	NM
Cell #4 S-2	24-Jul-18	NM	NM	NM	NM	NM

Vadose Zone Sample ID	Date	Magnesium mg/kg	Potassium mg/kg	Selenium mg/kg	Silver mg/kg	Sodium mg/kg
Analytical Method		6010B	6010B	6010B	6010B	6010B
Approved Background		NA	NA	2.5	0.25	NA
Cell #4 S-2	17-Sep-18	1,800	1,600	<4.8	<0.48	85
Cell #4 S-2	19-Dec-18	NM	NM	NM	NM	NM
Cell #4 S-2	28-Mar-19	NM	NM	NM	NM	NM
Cell #4 S-2	02-Apr-20	NM	NM	NM	NM	NM
Cell #4 S-3	13-Mar-18	NM	NM	NM	NM	NM
Cell #4 S-3	24-Jul-18	NM	NM	NM	NM	NM
Cell #4 S-3	17-Sep-18	2,200	1,800	<4.8	<0.48	130
Cell #4 S-3	19-Dec-18	NM	NM	NM	NM	NM
Cell #4 S-3	28-Mar-19	NM	NM	NM	NM	NM
Cell #4 S-3	02-Apr-20	NM	NM	NM	NM	NM
Cell #4 S-4	13-Mar-18	NM	NM	NM	NM	NM
Cell #4 S-4	24-Jul-18	NM	NM	NM	NM	NM
Cell #4 S-4	17-Sep-18	2,300	2,200	<5.0	<0.50	120
Cell #4 S-4	19-Dec-18	NM	NM	NM	NM	NM
Cell #4 S-4	28-Mar-19	NM	NM	NM	NM	NM
Cell #4 S-4	02-Apr-20	NM	NM	NM	NM	NM

TABLE 5B VADOSE ZONE CONCENTRATIONS, NMOCD APPROVED BACKGROUND LEVELS, NMED SSLs BMG Landfarm, Rio Arriba County, New Mexico

Parameter	USEPA Method	VZ Cell #1 (mg/kg)	VZ Cell #2 (mg/kg)	VZ Cell #3 (mg/kg)	VZ Cell #4 (mg/kg)	NMOCD Approved Vadose Zone Background Levels (mg/kg)	Vadose Zone Background Concentration Ranges	NMED SSL Leaching to GW DAF 20 (mg/kg)
D	ate Sampled	4/2/2020	4/2/2020	4/2/2020	4/2/2020	2016	2014	2019
TPH	418.1	<17	<19	59	19	20	<pql< td=""><td>4.61E+03*</td></pql<>	4.61E+03*
Chloride	300.0	220	12	11	<7.5	25	1.5-6.5	NE
NMAC 20.6.2.3103	(A and B)							
Arsenic	6010B		6.5			2.5	2.5	5.83E+00
Barium	6010B	75	110	74	110	42	42 - 130	2.70E+03
Chromium	6010B	10	7.9	-	17	4.4	4.4 - 19	2.05E+05
Fluoride	300.0				2.4	0.6	0.6 - 3.0	1.20E+04
Lead	6010B	3.0	3.1	2.4	5.7	2.1	2.1 - 8.4	6.96E+03
Nitrate (NO3 as N)	300.0	4.1	5.8	2.4	18	0.3 (PQL)	0.45	4.25E+02
Sulfate	300.0	14	22	12	15	1.5	1.5 - 16	NE

Notes:

^{*}Unknown Oil - Table 6-4. Groundwater and SL-SSLs for TPH Mixtures, Risk Assessment Guidance for Investigations and Remediation (NMED 2019) Samples analyzed at Hall Environmental Analysis Laboratory, Albuquerque, NM Approved by NMOCD 2016

FIGURE 2

BENSON-MONTIN-GREER CENTRALIZED SURFACE WASTE MANAGEMENT FACILITY EVAPORATION POND AND MONITOR WELL LOCATIONS **2020 CONCENTRATIONS**

NW¼ NW¼, SECTION 20, T25N, R1E LLAVES, RIO ARRIBA COUNTY, NEW MEXICO

DRAWN BY:	DATE DRAWN:
C. Lameman	January 11, 2013
REVISIONS BY:	DATE REVISED:
C. Lameman	August 3, 2021
CHECKED BY:	DATE CHECKED:
CHECKED BY: D. Reese	DATE CHECKED: August 3, 2021

LEGEND

- x — FENCE

EARTH BERM (SECONDARY CONTAINMENT)

EXISTING POND LINER INTERSTITIAL MONITOR WELL

GROUNDWATER MONITOR WELL

BENZENE

TOLUENE

ETHYLBENZENE

TOTAL XYLENE

TOTAL PETROLEUM HYDROCARBONS

TDS TOTAL DISSOLVED SOLIDS

NOT DETECTED ND

PARTS PER MILLION

NOTE: SAMPLES WERE COLLECTED ON MARCH 26, JUNE 24, SEPTEMBER 29 AND DECEMBER 8, 2020. ALL SAMPLES ANALYZED PER EPA METHOD

8015B, 8021B, SM 2540C, AND 300.0.

SAMPLE ID	SAMPLE LOCATION	SAMPLE DATE	SAMPLE DEPTH (ft)	GRO (mg/kg)	DRO (mg/kg)	MRO (mg/kg)	CHLORIDE (mg/kg)
	NMOC	D CLOSURE AC	TION LEVELS 19.15.36.15)	2,500 GRO/DRO/MRO 500 GRO/DRO			500
TZ-Cell #1	CELL #1	2-Apr-20	0.5	<4.9	18	65	18
TZ-Cell #2	CELL #2	2-Apr-20	0.5	<4.9	630	1,000	<60
TZ-Cell #3	CELL #3	2-Apr-20	0.5	<4.9	870	1,600	<60
TZ-Cell #4	CELL #4	2-Apr-20	0.5	<4.9	<9.2	<46	<7.5
ALL SAMPLES	WERE COMPOSITE SAM	PLES.					

ANALYTICAL RESULTS FOR THE EDC, PCB, PAH, AND METAL ANALYSES ARE PRESENTED ON

TABLE 4B.

FIGURE 3

BENSON-MONTIN-GREER TREATMENT ZONE MONITORING **LOCATIONS AND RESULTS** 2020

NW½ NW½, SECTION 20, T25N, R12E LLAVES, RIO ARRIBA COUNTY, NEW MEXICO

LEGEND

APRIL 2020 SAMPLE LOCATIONS (FOR COMPOSITE SAMPLING)

D	EP	TH	TO	GR	OUN	DW.	ATE	R
	M	EΑ	SUF	REIV	IENT	FOF	RM	

Animas Environmental Services

624 E. Comanche St, Farmington NM 874 Tel. (505) 564-2281 animasenvironment

		Tel. (505) 564-2281 animasenvironmen
Project:	Groundwater Monitoring and Sampling	Project No.:
Site:	Evaporation Pond	Date: 3-24-20
Location:	BMG	Time: 925-//25
Tech:	CL/6B	Form:

Well ID	Depth to NAPL (ft)	Depth to Water (ft)	NAPL Thickness (ft)	Notes / Observations
MW-1	9:42 a	38.94	_	
MW-2		40.01		
MW-3		39.29	_	
MW-4		39.81	-	
Interstitial Well	_	11.12	_	

Wells measured with KECK water level or KECK interface tape, decontaminated between each well measurement.

MON	IITORING V	VELL SAMPLI	NG RECC	ORD	Animas Environmental Services			
Mon	itor Well No:	MW	-1		624 E. Comanche St., Farmington NM 87401			
				-	Tel. (505) 564-2281 Fax (505) 324-2022			
Site:	Evaporation (Pond				Project No.: AES	(555)51.2522	
	BMG Land 1				-	Date: 3-26-2	20	
	-	Monitoring and	Sampling			Arrival Time: 9:38		
	ng Technician:				2	Air Temp: 46°FCL	onely	
Purg	e / No Purge:				т.с	O.C. Elev. (ft):		
Well I	Diameter (in):	2			Total W	ell Depth (ft): 45.	61	
	al D.T.W. (ft):		Time:	9:40	7	(taken at initial gaugin	g of all wells)	
	m D.T.W. (ft):		Time:	9:42		(taken prior to purging	well)	
	al D.T.W. (ft):		Time:	9:56		(taken after sample col	·	
If N	NAPL Present:	D.T.P.:	D.T.W.		Thicl	kness: Time		
		Water Quali	ty Paramet	ers - Rec	orded Du		10-120 GB	
	Temp	Conductivity	DO	-	ORP	PURGED VOLUME		
Time	(deg C)	(μS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations	
9:46	12.5	1.04	4.38	7.30	191.9		dear INO Odor	
9:48	12.0	1.03	4.70	7.21	183.5	1.0	Justid Tansed / No Oder	
9:50	11.8	1.02	5.45	7.34	184.8	2.0	Tunbed / No Oder	
9:54								
							Samples Collected Low Recharge	
							pour removes	
	-							
	Analytical Par	rameters (includ	e analvsis r	nethod a	nd numb	per and type of sample	containers)	
_	F					als w/ HgCl2 preserve)		
		EDB per EPA Me	thod 504.1	(2 - 40 n	nt Vial w	/ Na2S2O3 preserve) @		
		Disposal of Purg	ged Water:	On brow	W- No.	drainage to ctarm	drain	
Co		les Stored on Ice				-		
	Chain of	Custody Record	Complete:	Yes				
		Analytical L	aboratory:	Hall Envi	ronment	al Analysis Laboratory, A	Albuquerque, NM	
Eauin	ment Used Du					erface Level, YSI Water (
-11-		-	/ Disposable					
Notes/Com	ments: (alc	lated Purge Vi						
	550,000	0	- 4					

MOI	NITORING V	VELL SAMPL	ING RECO	ORD	T	Animas Environme	ental Services
Mo	nitor Well No:	MW	'-2		6	24 E. Comanche St., Farr	nington NM 87401
				-		Tel. (505) 564-2281 Fax	ı I
Site	: Evaporation F	Pond			-	Project No.: AES	
Location	: BMG Land ?	Form Yord				Date: 3-26-2	0
	_	Monitoring and			2	Arrival Time: 10:19	
	ng Technician:				_	Air Temp: 46°F Cu	rudy
1	ge / No Purge:		e	_		O.C. Elev. (ft):	
	Diameter (in):			-			.56
	rial D.T.W. (ft):		Time:	10:2	*	_ (taken at initial gaugin	
	rm D.T.W. (ft): nal D.T.W. (ft):		Time:	10:2		_ (taken prior to purging	·
	NAPL Present:		D.T.W.			_(taken after sample co kness: Time	
	MAI E l'Tesent.						
		Water Quali	ity Paramet	ters - Re	corded D	uring Well Purging	26-20 6B
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(µS) (m͡S)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations
10:26	11.4	1.59	6.30	7.39	202.3	Initial	Chear No Odor
10:28	11.4	1.50	6.55	7,34	202.6	1.0	Tansed / No oder
10:30	11.4	1.45	6.92	7.40	2023	2.0	Tansed / No Oder
10:34							Samples Callected
			1				Low Recharge
		Y					
	Analysiaal Day		la a a la ! a .				
	Analytical Par	Parters (included	ie analysis	metnoa	and num	ber and type of sample	containers)
	Fi	ull VOCs per EPA	\ Method ક ે	260B (3 -	- 40 mL V	ials w/ HgCl2 preserve)	MATPH (GPO, DRO, MRD) PEN 699 8015 4-260 W. An
		EDB per EPA M	ethod 504.	1 (2 - 40	mL Vial w	/Na2S2O3 preserve)a	a
TDSSMAST	40c) and crusy	ides (300.0)	- (1-500	al place	tic (cool))	
7		Disposal of Pur	ged Water:	On Gran	and - No	drainage to Storm	drains
С		es Stored on Ice				0	
		Custody Record		-,			
					rironment	tal Analysis Laboratory,	Albuquerque, NM
Faui	nment Used Du		-			erface Level, YSI Water	
Equi	pinent osca be		v Disposabl		I ICCIA	errace Level, 151 Water	Quanty Weter
Notes /C=	monts A I				1		
ivotes/Con	iments: [Mcu	lated Purge	Volume	27.75	Gallons		

MON	ITORING V	VELL SAMPLI	NG RECC	Animas Environmental Services				
Mor	itor Well No:	MW	-3	62	24 E. Comanche St., Farn	nington NM 87401		
				1	Tel. (505) 564-2281 Fax	•		
Site:	Evaporation i	Pond				Project No.: AES		
Location:					-	Date: 3-26-20		
Project:	Groundwater	Monitoring and	Sampling		-	Arrival Time: 10:41		
Samplir	ng Technician:	9/6	В			Air Temp: 477 Cus	meli	
Purg	e / No Purge:	Purge			Т.С	D.C. Elev. (ft):		
Well	Diameter (in):	2		Total W	ell Depth (ft): 45.	.61		
Initial D.T.W. (ft): 39.29 Time: (0:4						(taken at initial gaugin	g of all wells)	
Confir	m D.T.W. (ft):	39.29	Time:	10:44		(taken prior to purging		
Fin	al D.T.W. (ft):	44.84	Time:	10:53		(taken after sample co		
If I	NAPL Present:	D.T.P.:	D.T.W.	Thicl	kness: Time			
		Water Quali	ty Paramet	ers - Rec	orded Du	diلم uring Well Purging	rated: 4512 3-26-20 GB	
	Temp	Conductivity	DO		ORP	PURGED VOLUME		
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations	
10:46	12.0	1.33	4.35	7.37	202.6	Initial	Quar/No odor	
10:48	12.0	1.34	4.99	7.29	203.2	1.0	Tunbid Tan sed / No Odar	
10:49	11.9	1.35	5.26	7.30	204.0		Tunbed Tan Sed. / No odar	
10:52	_						Samples Callected	
				1			low Rechange	
	Analytical Par	rameters (includ	e analysis ı	method a	nd numl	ber and type of sample	containers)	
	F	ull VOC s per EPA	Method-8	260B (3 -	40 mL Vi	ials w/ HgCl2 preserve)	7PH(600,000,1400)por	
						/ Na2S2O3 preserve)	- 1	
TOS DEN E	PAMetrod SN25	•				- Sount plastic (Cool)		
						drainage to Store	n drains	
Co	ollected Samp	les Stored on Ice				,	3 - 4, 5,	
		Custody Record						
				-	ronment	al Analysis Laboratory, A	Albuquerque, NM	
Eauir	ment Used Di	•	-	-		erface Level, YSI Water		
		-	/ Disposabl			,		
Notes/Com	ments: Cul a	ulated Punge	Volume ?	3 Gallon	A			
		-		- Varna				

MOI	NITORING V	VELL SAMPL	ING RECO	ORD		Animas Environme	ental Services		
Mo	nitor Well No:	MW	-4		63	624 E. Comanche St., Farmington NM 87401			
	mtor wen no.			-	"	Tel. (505) 564-2281 Fax	· I		
Site	: Evaporation I	Pond				Project No.: AES	(303) 324-2022		
	: BMG Land				-	Date: 3-26-2	7.0		
		Monitoring and	Sampling		-	Arrival Time: 10:59			
	ng Technician:					Air Temp: 44°FCL			
	ge / No Purge:				T.0	O.C. Elev. (ft):	J-1304		
Well	Diameter (in):	2		7		ell Depth (ft): 45	.64		
	ial D.T.W. (ft):		Time:	11:0	0	(taken at initial gaugin	g of all wells)		
Confi	rm D.T.W. (ft):	39.81	Time:	11:0	2	(taken prior to purging	well)		
	nal D.T.W. (ft):		Time:	11:1		_(taken after sample co	llection)		
lf	NAPL Present:	D.T.P.:	_ D.T.W.		Thic	kness: Time			
		Water Quali	ity Paramet	ters - Rec	orded Di		ondeal: YSIZ -26-Zo GB		
	Temp	Conductivity	DO		ORP	PURGED VOLUME			
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations		
11:04	11.5	1.14	5.51	7.34	205.3	'	Tunbid Tun Sed. / No Odar V. Tun Kin		
11:05	11.4	1.13	5.74	7.25	207.5	1.0	W. Tun be of I		
11:07	11.5	1.15	6.29	7.25	208.1		Brown Sed. No Odar V.T. Mabril Brown Sed. No Odar		
11:09	11.4	1.15	6.31	7.25	208.8	3.0	V. Tarbial Brown Sal. / No Odar		
11:13			0.71	1.2)	201.0	3.0	Samples Collected		
11.13							Jany ous concerta		
						1			
	Analytical Par	rameters (includ	le analysis i	method :	nd numl	ber and type of sample	containers)		
		arm.							
							PH (GRO, DRO, MRO) PER 3015 (1-250 M. ANNOUR (COS.))		
		EDB per EPA M	ethod 504.1	l (2 - 40 r	n L Vial w	/ Na2S2O3 preserve			
TOS per 6	EPA Mothed SM	2540c and Ch	orides per l	:PA Meta	ad 300.0	- 1-500ml plastic a	1 60		
		Disposal of Pur	ged Water:	On Gro	md-1	I drainage to Sto	7m dians		
С	ollected Sampl	les Stored on Ice							
		Custody Record							
		_	-		ironment	al Analysis Laboratory, A	Albuquerque NM		
Eau.i.	nment Head D					erface Level, YSI Water (
Equi	pinent osea Di		v Disposabl		Neck Int	errace Lever, 151 Water (Quality ivieter		
Natas (Ca					¥0				
ivotes/Com	iments: ('n(on	lated Pung	e Volume	= 36a	llous				

Site: Evaporation Pond Location: BMG Project: Groundwater Monitoring and Sampling Sampling Technician: CL [66] Purge / No Purge: Well Diameter (in): Final D.T.W. (ft): Final V.D. (token prior to burging well) Final D.T.W. (ft): Final D.T.	MON	NITORING V	VELL SAMPLI	NG RECO	RD		Animas Environme	ntal Services		
Tel. (505) 564-2281 Fax (505) 324-2022 Project No.: AES Date: \$-22.6-LD Arrival Time: \$-2.30 Air Temp: '4.64 Classely Final D.T.W. (ft): 11.12 Time: 11.20 (taken after sample collection) Final D.T.W. (ft): Time: (taken after sample collection) Water Quality Parameters - Recorded During Well Purging Temp Conductivity DO DR PURGED VOLUME (my/l) (deg C) (mg/t) pH (mv/l) (see reverse for calc.) Notes/Observations Analytical Parameters (include analysis method and number and type of sample containers) Full VOCs per EPA Method \$260B (3 - 40 mL Vials w/ HgCl2 preserve) EDB per EPA Method \$04.1 (2 - 40 mL Vials w/ Ass2503 preserve) Disposal of Purged Water: // A	Mor	nitor Well No:	Interstiti	al Well		62	24 E. Comanche St., Farn	nington NM 87401		
Site: Evaporation Pond Location: BMG Project: Groundwater Monitoring and Sampling Sampling Technician: Purge / No Purge: Purge Purge Well Diameter (in): 6 Initial D.T.W. (ft): I.I.2 Time: (token prior to purging well) If NAPL Present: D.T.P.: Water Quality Parameters - Recorded During Well Purging Time Temp (deg C) (ups) (ms) Full VOCs per EPA Method 82608 (3 - 40 mL Vials w/ HgCl2 preserve) EDB per EPA Method 504.1 (2 - 40 mL Vials w/ HgCl2 preserve) Disposal of Purged Water: W/A- Collected Samples Stored on Ice in Cooler: W/A- Chain of Custody Record Complete: Arival Time: 9: 30 Air Temp: (% ** Cusuluty III token at initial gauging of all wells) (token prior to purging well) (token ofter sample collection) If NAPL Present: D.T.P.: D.T.W.: Time: Water Quality Parameters - Recorded During Well Purging Temp (deg C) (µS) (mS) (mg/L) PH (mV) See reverse for calc.) Notes/Observations Full VOCs per EPA Method 82608 (3 - 40 mL Vials w/ HgCl2 preserve) EDB per EPA Method 504.1 (2 - 40 mL Vials w/ HgCl2 preserve) EDB per EPA Method 504.1 (2 - 40 mL Vials w/ HgCl2 preserve) Collected Samples Stored on Ice in Cooler: M/A- Chain of Custody Record Complete: M/A- Chain of Custody Record Complete: Arate Level, YSI Water Quality Meter and New Disposable Baller Notes/Comments: Na patch Law Cetanach from the patcing Samplic careal.					•					
Date: 3-26-LO	Site:	Evaporation F	Pond					(,		
Project: Groundwater Monitoring and Sampling Sampling Technician: CL [6-6] Purge No Purge: Purge Well Diameter (in): 6 Total Well Depth (ft): [7-5] Initial D.T.W. (ft): [7-2] Time: [7-20] (taken prior to purging well) Final D.T.W. (ft): [7-2] Time: [7-20] (taken prior to purging well) Final D.T.W. (ft): [7-2] Time: [7-20] (taken prior to purging well) If NAPL Present: D.T.P.: D.T.W.: Thickness: Time: [7-20] Time: [7-20] (taken prior to purging well) Temp Conductivity DO DR PURGED VOLUME (see reverse for calc.) Notes/Observations Time (deg C) (µS) (mS) (mg/L) pH (mV) (see reverse for calc.) Notes/Observations Analytical Parameters (include analysis method and number and type of sample containers) Full VOCs per EPA Method 8260B (3 - 40 mL Vials w/ HgCl2 preserve) EDB per EPA Method 504.1 (2 - 40 mL Vial w/ Na25203 preserve) Disposal of Purged Water: W/A- Collected Samples Stored on Ice in Cooler: W/A- Chain of Custody Record Complete: W/A- Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer	Location:	BMG				-	_	20		
Sampling Technician: Purge No Purge Purge Purge Purge No Purge Purge No Purge Purge No Purge Purge T.O.C. Elev. (ft): Initial D.T.W. (ft): 11.12 Time: 9:32 (taken at initial gauging of all wells) (taken after sample collection) If NAPL Present: D.T.P.: D.T.W.: Thickness: Time: (taken after sample collection) If NAPL Present: D.T.P.: D.T.W.: Thickness: Time: Time: (taken after sample collection) Time (deg C) (µS) (mS) (mg/L) pH (mV) (see reverse for calc.) Notes/Observations	Project:	Groundwater	Monitoring and	l Sampling						
Purge / No Purge: Purge Well Diameter (in): 6 Initial D.T.W. (ft): 11.72 Final D.T.W. (ft): (ft): 11.72 Final D.T.W. (ft): (ft): 11.72 Final D.T.W. (ft):	Samplir	ng Technician:	CL	6B				iridy		
Initial D.T.W. (ft): 11.12 Time: 1:32 (taken at initial gauging of all wells) (Confirm D.T.W. (ft): (1.12 Time: Time: (1.12 Time: Time: Time: Time: (1.12 Time: Ti	Purg	ge / No Purge:	Purg	e		T.0				
Confirm D.T.W. (ft):		• •					ell Depth (ft): //.54			
Final D.T.W. (ft): If NAPL Present: D.T.P.: Water Quality Parameters - Recorded During Well Purging Temp Conductivity DO ORP PURGED VOLUME (deg C) (µ5) (m5) (mg/L) pH (mV) (see reverse for calc.) Notes/Observations Analytical Parameters (include analysis method and number and type of sample containers) Full VOCs per EPA Method 8260B (3 - 40 mL Vials w/ HgCl2 preserve) EDB per EPA Method 504.1 (2 - 40 mL Vial w/ Na2S2O3 preserve) Disposal of Purged Water: W/A- Collected Samples Stored on Ice in Cooler: W/A- Chain of Custody Record Complete: W/A- Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling; Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer Notes/Comments: Na water New Archael Form the Purious Sample crowd.				Time:	9:32		_(taken at initial gaugin	g of all wells)		
Water Quality Parameters - Recorded During Well Purging Temp Conductivity DO ORP PURGED VOLUME (deg C) (μS) (mS) (mg/L) pH (mV) (see reverse for calc.) Notes/Observations Analytical Parameters (include analysis method and number and type of sample containers) Full VOCs per EPA Method 8260B (3 - 40 mL Vials w/ HgCl2 preserve) EDB per EPA Method 504.1 (2 - 40 mL Vial w/ Na25203 preserve) Disposal of Purged Water: N/A- Collected Samples Stored on Ice in Cooler: N/A- Chain of Custody Record Complete: N/A- Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer					11:2	0		•		
Water Quality Parameters - Recorded During Well Purging Temp Conductivity DD ORP PURGED VOLUME (see reverse for calc.) Notes/Observations Water Quality Parameters (mg/L) pH (mV) (see reverse for calc.) Notes/Observations Analytical Parameters (include analysis method and number and type of sample containers) Full VOCs per EPA Method 82608 (3 - 40 mL Vials w/ HgCl2 preserve) EDB per EPA Method 504.1 (2 - 40 mL Vial w/ Na25203 preserve) Disposal of Purged Water: W/A Collected Samples Stored on Ice in Cooler: W/A Chain of Custody Record Complete: W/A Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer Notes/Comments: Na Water Low From the Precious Sample execut.				. ,			-	· ·		
Time (deg C) (µS) (mS) (mg/L) pH (mV) (see reverse for calc.) Notes/Observations Notes/Observations	If I	NAPL Present:	D.T.P.:~	D.T.W.:		Thic	kness: Time			
Time (deg C) (µS) (mS) (mg/L) pH (mV) (see reverse for calc.) Notes/Observations			Water Quali	ty Paramete	ers - Rec	orded Du	uring Well Purging			
Analytical Parameters (include analysis method and number and type of sample containers) Full VOCs per EPA Method 8260B (3 - 40 mL Vials w/ HgCl2 preserve) EDB per EPA Method 504.1 (2 - 40 mL Vial w/ Na2S203 preserve) Disposal of Purged Water: N/A- Collected Samples Stored on Ice in Cooler: N/A- Chain of Custody Record Complete: N/A- Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer Notes/Comments: No water has returned from the precious Sacrefic event.		Temp	Conductivity	DO		ORP	PURGED VOLUME			
Full VOCs per EPA Method 8260B (3 - 40 mL Vials w/ HgCl2 preserve) EDB per EPA Method 504.1 (2 - 40 mL Vial w/ Na2S2O3 preserve) Disposal of Purged Water: N/A- Collected Samples Stored on Ice in Cooler: N/A- Chain of Custody Record Complete: N/A Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer Notes/Comments: No water has returned from the presions Sample event.	Time	(deg C)	(μS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations		
Full VOCs per EPA Method 8260B (3 - 40 mL Vials w/ HgCl2 preserve) EDB per EPA Method 504.1 (2 - 40 mL Vial w/ Na2S2O3 preserve) Disposal of Purged Water: N/A- Collected Samples Stored on Ice in Cooler: N/A- Chain of Custody Record Complete: N/A Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer Notes/Comments: No water has returned from the presions sample event.										
Full VOCs per EPA Method 8260B (3 - 40 mL Vials w/ HgCl2 preserve) EDB per EPA Method 504.1 (2 - 40 mL Vial w/ Na2S2O3 preserve) Disposal of Purged Water: N/A- Collected Samples Stored on Ice in Cooler: N/A- Chain of Custody Record Complete: N/A Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer Notes/Comments: No water has returned from the presions sample event.		1/	11/0	20	01	101	ITU			
Full VOCs per EPA Method 8260B (3 - 40 mL Vials w/ HgCl2 preserve) EDB per EPA Method 504.1 (2 - 40 mL Vial w/ Na2S2O3 preserve) Disposal of Purged Water: N/A- Collected Samples Stored on Ice in Cooler: N/A- Chain of Custody Record Complete: N/A Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer Notes/Comments: No water has returned from the presions sample event.		700	0077	LN	UL	1770	///			
Full VOCs per EPA Method 8260B (3 - 40 mL Vials w/ HgCl2 preserve) EDB per EPA Method 504.1 (2 - 40 mL Vial w/ Na2S2O3 preserve) Disposal of Purged Water: N/A- Collected Samples Stored on Ice in Cooler: N/A- Chain of Custody Record Complete: N/A Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer Notes/Comments: No water has returned from the presions sample event.										
Full VOCs per EPA Method 8260B (3 - 40 mL Vials w/ HgCl2 preserve) EDB per EPA Method 504.1 (2 - 40 mL Vial w/ Na2S2O3 preserve) Disposal of Purged Water: N/A- Collected Samples Stored on Ice in Cooler: N/A- Chain of Custody Record Complete: N/A Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer Notes/Comments: No water has returned from the presions sample event.		Dr	nni	115						
Full VOCs per EPA Method 8260B (3 - 40 mL Vials w/ HgCl2 preserve) EDB per EPA Method 504.1 (2 - 40 mL Vial w/ Na2S2O3 preserve) Disposal of Purged Water: N/A- Collected Samples Stored on Ice in Cooler: N/A- Chain of Custody Record Complete: N/A Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer Notes/Comments: No water has returned from the presions sample event.		KE	MUIN	65						
Full VOCs per EPA Method 8260B (3 - 40 mL Vials w/ HgCl2 preserve) EDB per EPA Method 504.1 (2 - 40 mL Vial w/ Na2S2O3 preserve) Disposal of Purged Water: N/A- Collected Samples Stored on Ice in Cooler: N/A- Chain of Custody Record Complete: N/A Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer Notes/Comments: No water has returned from the presions sample event.										
Full VOCs per EPA Method 8260B (3 - 40 mL Vials w/ HgCl2 preserve) EDB per EPA Method 504.1 (2 - 40 mL Vial w/ Na2S2O3 preserve) Disposal of Purged Water: N/A- Collected Samples Stored on Ice in Cooler: N/A- Chain of Custody Record Complete: N/A Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer Notes/Comments: No water has returned from the presions sample event.										
Full VOCs per EPA Method 8260B (3 - 40 mL Vials w/ HgCl2 preserve) EDB per EPA Method 504.1 (2 - 40 mL Vial w/ Na2S2O3 preserve) Disposal of Purged Water: N/A- Collected Samples Stored on Ice in Cooler: N/A- Chain of Custody Record Complete: N/A Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer Notes/Comments: No water has returned from the presions sample event.		-								
Full VOCs per EPA Method 8260B (3 - 40 mL Vials w/ HgCl2 preserve) EDB per EPA Method 504.1 (2 - 40 mL Vial w/ Na2S2O3 preserve) Disposal of Purged Water: N/A- Collected Samples Stored on Ice in Cooler: N/A- Chain of Custody Record Complete: N/A Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer Notes/Comments: No water has returned from the presions sample event.										
Full VOCs per EPA Method 8260B (3 - 40 mL Vials w/ HgCl2 preserve) EDB per EPA Method 504.1 (2 - 40 mL Vial w/ Na2S2O3 preserve) Disposal of Purged Water: N/A- Collected Samples Stored on Ice in Cooler: N/A- Chain of Custody Record Complete: N/A Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer Notes/Comments: No water has returned from the presions sample event.										
Full VOCs per EPA Method 8260B (3 - 40 mL Vials w/ HgCl2 preserve) EDB per EPA Method 504.1 (2 - 40 mL Vial w/ Na2S2O3 preserve) Disposal of Purged Water: N/A- Collected Samples Stored on Ice in Cooler: N/A- Chain of Custody Record Complete: N/A Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer Notes/Comments: No water has returned from the presions sample event.										
Full VOCs per EPA Method 8260B (3 - 40 mL Vials w/ HgCl2 preserve) EDB per EPA Method 504.1 (2 - 40 mL Vial w/ Na2S2O3 preserve) Disposal of Purged Water: N/A- Collected Samples Stored on Ice in Cooler: N/A- Chain of Custody Record Complete: N/A Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer Notes/Comments: No water has returned from the presions sample event.										
Full VOCs per EPA Method 8260B (3 - 40 mL Vials w/ HgCl2 preserve) EDB per EPA Method 504.1 (2 - 40 mL Vial w/ Na2S2O3 preserve) Disposal of Purged Water: N/A- Collected Samples Stored on Ice in Cooler: N/A- Chain of Custody Record Complete: N/A Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer Notes/Comments: No water has returned from the presions sample event.										
Disposal of Purged Water: NA Collected Samples Stored on Ice in Cooler: NA Chain of Custody Record Complete: NA Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer Notes/Comments: No water has returned from the precious sample event.		Analytical Par	rameters (includ	le analysis m	nethod a	nd numb	per and type of sample o	containers)		
Disposal of Purged Water: NA Collected Samples Stored on Ice in Cooler: NA Chain of Custody Record Complete: NA Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer Notes/Comments: No water has returned from the precious sample event.		F	uli VOCs per EPA	Method 82	60B (3 -	40 mL Vi	als w/ HgCl2 preserve)			
Disposal of Purged Water: N/A Collected Samples Stored on Ice in Cooler: N/A Chain of Custody Record Complete: N/A Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer Notes/Comments: No water has returned from the precious sample event.										
Collected Samples Stored on Ice in Cooler: W/A Chain of Custody Record Complete: W/A Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer Notes/Comments: No water has returned from the precious sample event.					(=		, managed proserve,			
Collected Samples Stored on Ice in Cooler: W/A Chain of Custody Record Complete: W/A Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer Notes/Comments: No water has returned from the precious sample event.			Disposal of Pure	ged Water:	NA					
Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer Notes/Comments: No water has retained from the precious sample event.	Co			-						
Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer Notes/Comments: No water has returned from the precious sample event.				-						
Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer Notes/Comments: No water has returned from the precious sample event.		onain or v				ronmont	al Analysis Laboratory A	Albuquerque NM		
and New Disposable Bailer Notes/Comments: No water has returned from the precious sample event.	Eastin	mont Head D.								
Notes/Comments: No water has returned from the precious sample event.	Equip	ment usea Di				keck into	errace Level, YSI Water (quality ivieter		
	Notes /Carr	mants. I								
No water retained while on breation. No Sampling.	ivotes/Com	ments: Na Wo	are how ret	whed from	n the	previ	ns sample event.			
NO WATER PETERME WHILL ON WEATHER . No Sampling.	11	aa	1 . 1 7	. /	L. e	4/ 0				
	NO WATE	n return	a while or	weat	un.	VO SA	mpling.			

			O GROUND		Animas Environmental Services 624 E. Comanche St, Farmington NM 87401 Tel. (505) 564-2281 animasenvironmental.com
Project:	Ground	water N	Monitoring and	d Sampling	Project No.:
Site:	Evapora				Date: 6-24-70
Location:	BMG				Time: 10/2-12/5
Tech:		Greg Br	roome / Corwin	Lameman	Form:
Well ID	Depti NAPL	h to (ft)	Depth to Water (ft)	NAPL Thickness (ft)	Notes / Observations
MW-1	_		39.41	-	
MW-2	_		40.15	-	
MW-3	_		39.45	_	
MW-4	_		39.96	_	
Interstitial Well	_		10.58	_	
				-	
P	1				
			1		
	1				
Wells measu	red with K	(ECK wa	ter level or KEC	K interface tape, decon	taminated between each well measurement.

MONITORING WELL SAMPLING RECORD						Animas Environmental Services			
Mon	nitor Well No:	MW	-1		624 E. Comanche St., Farmington NM 87401				
				-	Tel. (505) 564-2281 Fax (505) 324-2022				
Site:	Evaporation	Pond			Project No.: AES				
Location:	BMG					Date: 6-24-2	D D		
Project:	Groundwate	r Monitoring and	Sampling		_	Arrival Time: 11:40			
Samplin	ng Technician	a	16B		Air Temp: 807 Sunny				
Purg	ge / No Purge				T.0	O.C. Elev. (ft):			
Well I	Diameter (in)	2			Total W	ell Depth (ft): 45	.61		
Initi	al D.T.W. (ft)	39.11	Time:	11:4	7	(taken at initial gaugin	g of all wells)		
	m D.T.W. (ft)		Time:	[]:L	19	(taken prior to purging	well)		
	al D.T.W. (ft)			12:		(taken after sample co	•		
if N	NAPL Present	D.T.P.:	_ D.T.W	:	_ Thic	kness: Time	- Stranger		
		Water Quali	ty Parame	ters - Rec	orded Du	uring Well Purging # (6-24-70 GR		
	Temp	Conductivity	DO		ORP	PURGED VOLUME			
Time	(deg C)	(μS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations		
11:51	14.0	1.06	3.64	7.38	184.9	Inetial	Quar No odar		
11:53	12.8	1.62	4.03	7.29	180.8	1.0	Jed No odar		
11:55	13.2	1.02	4.33	7.29	172.0	2.0	Tan Sed No adar		
11:57	13.0	1-01	4.52	7.30	173.6	3.0	Tood / No Oder		
12:00							Samples Collected		
							3 4 5 5		
			-	-					
	Analytical Pa	rameters (includ	le analysis	method a	nd numl	ber and type of sample	containers)		
STEX and GR	co, DRO, MED_	ull VOCs per EPA	Method-8	260B (3 -	40 mL Vi	ials w/ HgCl2 preserve)	1-250 ml Amberglass non		
		-				/ Na2S2O3 preserve)			
nlondes+7	TDS perEPA	Wetherds SM25	40C and ?	380.6 (1-	-500mL	non)			
						s drainage to SW d	rains		
Co	ollected Samp	les Stored on Ice	in Cooler:	Nes		(
		Custody Record							
					ronment	tal Analysis Laboratory, <i>i</i>	Albuquerque. NM		
Equip	ment Used D					erface Level, YSI Water			
			v Disposab			.,	,		
otes/Com	ments: Colo	ulated Purge			llow				
		0							
eplaced P	ive were ca	10.							
						- ^	1		

MON	IITORING V	VELL SAMPLI	NG RECO	Animas Environmental Services				
Mon	itor Well No:	MW	-2		624 E. Comanche St., Farmington NM 87401			
				-	Tel. (505) 564-2281 Fax (505) 324-2022			
Site:	Evaporation F	Pond			1	Project No.: AES	(500) 601	
Location:		0114				Date: 6-24-24		
		Monitoring and	Sampling		-	Arrival Time: 11:13		
	ng Technician:				-	Air Temp: 80°F 34	LAN RADOL	
	e / No Purge:				т.0	O.C. Elev. (ft):	7,11000	
_	Diameter (in):			-		ell Depth (ft): 45.	.56	
	al D.T.W. (ft):		Time:	(1:2:		(taken at initial gaugin		
	m D.T.W. (ft):		Time:	11:2		(taken prior to purging		
	al D.T.W. (ft):			11:3	-	(taken after sample col		
		D.T.P.:				kness: Time	·	
		Water Quali	ty Paramet	ters - Rec	orded Du	uring Well Purging		
	Temp	Conductivity	DO		ORP	PURGED VOLUME		
Time	(deg C)	(μS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations	
	13.4						St.	
11:26		1.93	5.75	7.36	168.4	Initial	Oloudy No 6 dar	
(1:28	12.5	1,81	6.49	7.32	170.1	1.0	Sed / No oder	
11:30	14.0	1.79	6.35	7.32	174.7	2.0	Sed No Odar	
11:35	-					2.5	Samples Collected	
		5						
				-				
				-				
				-				
	Analytical Pa	rameters (includ	le analysis	method a	and num	ber and type of sample	containers)	
STEX and G	RAIDROLMES F	ull VOCs ner FP/	Method 8	24 + 84	40 ml V	ials w/ HgCl2 preserve)	1.25 cal cappea loss no	
-Dirigota O						// Na2S2O3 preserve) 44		
11.1								
Chlor des T	TUS PEN EXH	Methods 5425						
					nd-No	drawage to SW d	Leino	
C	ollected Samp	les Stored on Ico	e in Cooler:	Yy				
	Chain of	Custody Record	Complete	Yes				
		Analytical I	.aboratory:	: Hall Env	ironmen	tal Analysis Laboratory,	Albuquerque, NM	
Equip	oment Used D	uring Sampling:	Keck Wate	er Level o	Keck Int	terface Level, YSI Water	Quality Meter	
			w Disposab					
Notes/Com	ments: Calc	alated Auge			llors			
		-		, , , , , , , , , , , , , , , , , , ,				
Replace PV	c Well Cape							
-								

MON	IITORING W	VELL SAMPLI	NG RECC	Animas Environmental Services				
Mon	itor Well No:	MW-	-3		624 E. Comanche St., Farmington NM 87401 Tel. (505) 564-2281 Fax (505) 324-2022			
Site:	Evaporation P	ond			Project No.: AES			
Location:	BMG					Date: 6-24-24		
Project:	Groundwater	Monitoring and	Sampling			Arrival Time: 10:48		
Samplin	g Technician:	cu/	6 B			Air Temp: 80'F Sur	my	
Purg	e / No Purge:	Purge	9		т.с	D.C. Elev. (ft):		
Well I	Diameter (in):	2				ell Depth (ft): 45.	61	
Initi	al D.T.W. (ft):	39.45	Time:	10:53	5	(taken at initial gaugin	g of all wells)	
		39.45	Time:	10:5	7	(taken prior to purging	well)	
		44.82		11:0	9	(taken after sample col	lection)	
lf i	NAPL Present:	D.T.P.:_ ~	D.T.W.	:	Thicl	kness: Time	:	
		Water Quali	ty Paramet	ters - Rec	orded Du	uring Well Purging	-24-20 GB	
	Temp	Conductivity	DO		ORP	PURGED VOLUME		
Time	(deg C)	(μS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observation	
11:00	13.9	1.48	2.97	7.35	183.8	Initial	Gear/No oder/ hair	
11:02	13.7	1.47	2.83	7.23	182.7	1.0	Sed / No oder	
11:04	12.9	1.51	3.74	7.21	180-9	2.0	Tand I No Odor Samples Collected how Yield / Rechang	
(1:08						2.5	Samples Collected	
				77			hew Yield / Rechang	
				1				
	Analytical Pa	ramatars (inclus	lo analysis	method	and num	ber and type of sample	containers)	
BREX + 6R	A OPO MRO F	ull VOCs per EPA	A Method &	3260B-(3 -	40 mL V	ials w/ HgCl2 preserve)	1-250ml Amberglass A	
						الم (Na2S2O3 preserve) الم	-	
Chilorides+	TOS per ERA					- plastic non)		
		Disposal of Pur	ged Water	: OA toro	nud-	No drainage to 5	w draws	
С	ollected Samp	les Stored on Ico	e in Cooler	24				
	Chain of	Custody Record	Complete	: <u>Yn</u>				
		Analytical l	_aboratory	: Hall Env	ironmen	tal Analysis Laboratory,	Albuquerque, NM	
Equi	pment Used D	uring Sampling:	Keck Wate	er Level o	r Keck Int	terface Level, YSI Water	Quality Meter	
		and Nev	w Disposab	le Bailer				
Notes/Con	nments: کسک	culated Parge arrival - 1	Volume 2	36allon	<u>s</u>			
NA PVC	well cap a	ansival - 1	Replaced	,				
100								

MON	NITORING V	VELL SAMPLI	NG REC	Animas Environmental Services					
Mor	nitor Well No:	MW	-4		62	624 E. Comanche St., Farmington NM 87401			
					Tel. (505) 564-2281 Fax (505) 324-2022				
	Evaporation F	Pond				Project No.: AES			
Location:					Date: 10-24-2	20			
		Monitoring and		_ 1	Arrival Time: 10:2	4			
	ng Technician:		(6B			Air Temp: 78°FS	my		
_	ge / No Purge:		e	_		O.C. Elev. (ft):			
	Diameter (in):			_		ell Depth (ft): 45			
	ial D.T.W. (ft):		Time:	10:2		(taken at initial gaugin			
	m D.T.W. (ft): nal D.T.W. (ft):		Time:	_ M:3		_(taken prior to purging	•		
	NAPL Present:	<u> </u>	Time: D.T.W.	10:4		(taken after sample co			
	THE ETTESCHE					kness: Time			
				ters - Red	corded Du	uring Well Purging 🤲	6-24-2068		
	Temp	Conductivity	DO		ORP	PURGED VOLUME			
Time	(deg C)	(µS) (mS)	(mg/L)	pН	(mV)	(see reverse for calc.)	Notes/Observations		
10:33	14.2	1.06	5.10	7.52	202.6	Initral	acy No Odor had awh		
10:35	12.9	1.06	4.26	7.09	202.2	1.0	Sed No Odar		
10:37	12.2	1.05	5.03	7.08	200.3	2.0	Sed (No oday		
10:31	12.3	1.05	5.20	7.11	198.1	2.75	Sed/No Odor		
10:42							Samples Collected		
							7		
	Analytical Par	ameters (includ	e analysis	method :	and numb	per and type of sample	containers)		
TEX +GRO	DRO/MRO FI	ull VOC s per EPA	Method &	2608 (3 -	40 mL Vi	als w/ HgCl2 preserve),	1-250ml Amberglass non		
		EDB per EPA Me	ethod 504.:	1 (2 - 40 1	mL Vial w	/ Na2S2O3 preserve)	V		
chlorides+ T	05 Den EAD M	ethod SM25400	and 300.	.0 (1-50	some pla	istic non)			
						drainage to Swa	trains		
Co		es Stored on Ice				•			
	Chain of 6	Custody Record	Complete:	Yes					
				_	ironment	al Analysis Laboratory, A	Albuquerque, NM		
Equip	ment Used Du					erface Level, YSI Water (
			Disposabl				acauty Meter		
Notes/Com	ments: Pela.	Unted Purge	i		balland				
2220, 30111	- CANCO	Carlos Paris	VOLUME	7 2013	Devious.				

MON	IITORING V	VELL SAMPLI	NG RECO	ORD	Animas Environmental Services 624 E. Comanche St., Farmington NM 87401 Tel. (505) 564-2281 Fax (505) 324-2022			
Moni	itor Well No:	Interstitia	al Well					
				-				
	Evaporation (Pond			Project No.: AES			
Location:					Date: b-24-20			
		Monitoring and	Sampling		Arrival Time: 10:12			
	g Technician:	cy6	B			Air Temp: 76 F Sunn	М	
	e / No Purge:	Purge	е		T.0	O.C. Elev. (ft):		
	Diameter (in):	_			Total W	ell Depth (ft): 12.09		
	al D.T.W. (ft):	10.00	Time:	10:12		_(taken at initial gaugin	-	
	n D.T.W. (ft):		Time:	10:17	7	_(taken prior to purging		
	al D.T.W. (ft):		Time:	12:0		_(taken after sample col	•	
IT N	APL Present:	D.T.P.:	_ D.T.W.		Thic	kness: Time		
		Water Quali	ty Paramet	ers - Reco	orded Du	uring Well Purging		
	Temp	Conductivity	DO		ORP	PURGED VOLUME		
Time	(deg C)	(μS) (mS)	(mg/L)	рH	(mV)	(see reverse for calc.)	Notes/Observatio	
			CE	Z A	151	3 RDX	1	
)(0 /	101	O) DCOO	N	
		4						
					\			
					1			
		1 - 1						
		4						
					1			
	Analytical Par	ameters (includ	e analysis r	nethod a	nd numl	per and type of sample of	containers)	
	Fe	all VOCs per EPA	Method 82	260B (3 -	40 mL Vi	ials w/ HgCl2 preserve)c	_	
						/ Na2S2O3 preserve)		
						100		
		Disposal of Purg	ed Water:	NIA				
Col		es Stored on Ice						
		Custody Record						
	Citatii oi (-1 A 1 - 1 - 1 - 1 - A	и	
	mant Hand Du					al Analysis Laboratory, A		
Envisor	nent usea bu				Keck Inte	erface Level, YSI Water (Quality Meter	
Equipr		and Name		e Baller				
		and New						
		and New			es Coll	ected.		
					es Cull	ected.		

	1000 NO. 1000 NO. 1000 NO. 1	O GROUND JREMENT F	Animas Environmental Services 624 E. Comanche St, Farmington NM 87401 Tel. (505) 564-2281 animasenvironmental.com				
oject:	Groundwater N	/lonitoring and	Sampling	Project No.:			
te:	Evaporation Po	nd	1735 - 281 174 - 1840 - 1840 - 1840 - 1840 - 1840 - 1840 - 1840 - 1840 - 1840 - 1840 - 1840 - 1840 - 1840 - 1840 - 1840 -	Date:	9.29.20		
cation:	BMG			Time:	: 9:45		
ch:	G. Broom		500	Form:			
Well	Depth to	Depth to	NAPL		tes / Observations		

Well ID	Depth to NAPL (ft)	Depth to Water (ft)	NAPL Thickness (ft)	Notes / Observations
MW-1		39.26	-0- -0-	
MW-2		40,31	-0-	
MW-3		39.59	-0~	
MW-4		40,1	-0-	
Interstitial Well	-0-	10,41	-0-	
7				
			80	
	10 NOTE 10 NOT	77		
	S			
	-			
- /-				
200				
	<u></u>			
			;	
	-			

Wells measured with KECK water level or KECK interface tape, decontaminated between each well measurement.

itor Weli No:	Interstitia	l Well		62	4 E. Comanche St., Farm	ington NM 87401		
				624 E. Comanche St., Farmington NM 87401				
				Tel. (505) 564-2281 Fax (505) 324-2022				
Evaporation P	ond			Project No.: AES				
				_	Date: 9 - 29	20		
	Monitoring and	Sampling		<u></u>	Arrival Time: 9 45			
-				_	Air Temp: <u>リア^の/</u>	- -		
		3		т.С	D.C. Elev. (ft):			
		2		Total We	ell Depth (ft):			
al D.T.W. (ft):		-	<u> </u>					
Confirm D.T.W. (ft): Time:								
Final D.T.W. (ft): Time:					(taken after sample coll	ection)		
APL Present:		1000	W .		<u> </u>			
	Water Quali				ring Well Purging			
Temp	Conductivity	8	Call		PURGED VOLUME	······································		
A		20. 50.00	На		(see reverse for calc.)	Notes/Observation		
	, , ,					itotes/ observation		
Lo	us Yo					- 10		
	10 16		35					
- // /	$\mathcal{D} \subset \mathcal{N}$	V P I C				-		
	UZAN							
		-61	100					
		<u>'</u>						
1						10 SSS22		
5		, ,				See A See		
				-				
				***		ontainers)		
		2000	****					
	600000000000000000000000000000000000000							
per EPA Meth	od SM2540C and	d Chlorides	per EPA	Method	300.0 (1-500mL Plastic v	// no preserve)		
	Disposal of Purg	ed Water:			100 days			
llected Sampl	es Stored on Ice	in Cooler:	-		200			
Chain of (Custody Record	Complete:	100					
	Analytical L	aboratory: I	Hall Envi	ronment	al Analysis Laboratory. A	lbuquerque. NM		
ment Used Du								
					ovide Lettery for Water e	edunty Wieter		
monte:				<i>31</i> 1				
nents:	-			-				
			300			 		
	g Technician: e / No Purge: Diameter (in): al D.T.W. (ft): m D.T.W. (ft): lal D.T.W. (ft): lAPL Present: Temp (deg C) Analytical Par TPH (GRO per EPA Meth Chain of 6	Groundwater Monitoring and g Technician: e / No Purge: Purge: Diameter (in): al D.T.W. (ft): m D.T.W. (ft): lAPL Present: D.T.P.: Water Qualified Temp Conductivity (deg C) (µS) (mS) Analytical Parameters (includ) Full VOCs per EPA TPH (GRO/DRO/MRO) per per EPA Method SM2540C and Disposal of Purge per EPA Method SM2540C and Dispos	Groundwater Monitoring and Sampling g Technician: e / No Purge: Diameter (in): al D.T.W. (ft): Time: Time: D.T.W. (ft): Time: D.T.W.: Water Quality Parameter YSI Temp Conductivity DO (deg C) (μS) (mS) (mg/L) Analytical Parameters (include analysis m Full VOCs per EPA Method 80 TPH (GRO/DRO/MRO) per EPA Method per EPA Method SM2540C and Chlorides Disposal of Purged Water: Chain of Custody Record Complete: Analytical Laboratory: ment Used During Sampling: Keck Water and New Disposable	Groundwater Monitoring and Sampling g Technician: e / No Purge: Diameter (in): al D.T.W. (ft): Time: IAPL Present: D.T.P.: Water Quality Parameters - Rec. YSI Calik Temp	Groundwater Monitoring and Sampling g Technician: e / No Purge: Purge T.C. Diameter (in): 6 Total W. al D.T.W. (ft): Time: m D.T.W. (ft): Time: lAPL Present: D.T.P.: D.T.W.: Thick Water Quality Parameters - Recorded DuysI - Calibrated: Temp Conductivity DO ORP (deg C) (µS) (mS) (mg/L) pH (mV) LOW YE MO DEPT MODE MODE Analytical Parameters (include analysis method and number Mode Mode Mode Mode Mode Mode Full VOCs per EPA Method 8021 (3 - 40 mL Vizer Mode Mod	Groundwater Monitoring and Sampling g Technician: e / No Purge: Purge T.O.C. Elev. (ft): Diameter (in): al D.T.W. (ft): Ime: D.T.W. (ft): Ime: Itaken at initial gauging (taken after sample coll IAPL Present: D.T.P.: D.T.W.: Time: Water Quality Parameters - Recorded During Well Purging YSI - Calibrated: Temp Conductivity DO (µS) (mS) (mg/L) pH (mV) (see reverse for calc.) PURGED VOLUME (deg C) PURGED VOLUME (see reverse for calc.) Analytical Parameters (include analysis method and number and type of sample of the purging sampling: Keck Water Level or Keck Interface Level, YSI Water of and New Disposable Bailer		

by RCB	WTORMEN	VELL'SAMPLI	NG RECC)RD	Animas Environmental Services Page 63					
	nitor Well No:				624 E. Comanche St., Farmington NM 87401					
				<u>a</u>		Tel. (505) 564-2281 Fax				
Site	: Evaporation I	Pond		Vig.		Project No.: AES	(303) 324 2022			
Location					Date: 9 - 29 - 20					
		Monitoring and	l Sampling		- 1	Arrival Time: 12 2 8				
	ng Technician:				-1	Air Temp: 67%				
Pur	ge / No Purge:				- Т.0	O.C. Elev. (ft):				
Well	Diameter (in):	2	****	-	Total W	ell Depth (ft): 45.	61			
Init	ial D.T.W. (ft):	39.26	Time:	_12:3T)	(taken at initial gauging	g of all wells)			
Confi	rm D.T.W. (ft):	39.26	Time:	(737		(taken prior to purging	well)			
Fir	nal D.T.W. (ft):	45,03	Time:	1305		(taken after sample col	lection)			
If	NAPL Present:	D.T.P.:	_ D.T.W.	:	Thic	kness: Time:				
		Water Quali	-			uring Well Purging	, , , , , , , , , , , , , , , , , , ,			
5 Y S			YSI	Calib	rated:	DUDGED VOLUME				
000	Temp	Conductivity	DO		ORP	PURGED VOLUME				
Time	(deg C)	(μS) (mS)	(mg/L)	pH	(mV)	(see reverse for calc.)	Notes/Observations			
1237	13,10	809	3,90	7,22	11.2.5	Jetal	Clear			
1241	12.7	778	4.07	7,74	143,1	50	Cloudy			
1247	15,7	864	5,14	7,40	168,2	290	Jan			
					ļ					
23-3		Samples	Coll	oct ec	\					
			, , , , , , , , , , , , , , , , , , ,	(2)		****				
			-	 						
					1					
••••										
220										
						* ***				
							, — · · · · · · · · · · · · · · · · · ·			
	Analytical Pa	rameters (includ	de analysis	method a	nd num	ber and type of sample	containers)			
	824	Full VOCs per EP	A Method 8	8021 (3 - 4	40 ml Vi	als w/ HgCl2 preserve)				
						nL amber glass w/ no pr	ecerve)			
TD	***************************************		***			300.0 (1-500mL Plastic				
10.	5 per El A Med			0.50			wy no preservey			
_		Disposal of Pur	geo water:	_0v	grown	A				
Ç		les Stored on Ic			· · · · · ·		2 2			
	Chain of	Custody Record	Complete:	105						
		Analytical I	Laboratory:	Hall Env	ironmen	tal Analysis Laboratory, A	Albuquerque, NM			
Equi	pment Used D	uring Sampling:	Keck Wate	r Level or	Keck Int	erface Level, YSI Water	Quality Meter			
		and Nev	w Disposabl	le Bailer						
Notes/Con	nments:									
	121	-	÷		100					

ea by MG	WITORING ?	WELLYAMPL	ING RECO	DRD	Animas Environmental Services Page 04				
	nitor Well No:				624 E. Comanche St., Farmington NM 87401				
			* - 	-	Tel. (505) 564-2281 Fax (505) 324-2022				
Site	: Evaporation	Pond				Project No.: AES	(303) 324-2022		
Location					Date: 9.29.20				
		r Monitoring and	Sampling		- E	Arrival Time: 115 24			
Sampli	ng Technician	: (3,000)	\\\\\		•	Air Temp:/			
Pur	ge / No Purge	Purg			Т.С	D.C. Elev. (ft):			
Well	Diameter (in)	: 2			ell Depth (ft): 45	.56			
Init	ial D.T.W. (ft)	: 40,31	Time:	_		(taken at initial gaugin			
		40.31		1202	3.	(taken prior to purging	well)		
Fir	nal D.T.W. (ft)	43.09	Time:	1225		(taken after sample co	llection)		
lf	NAPL Present	: D.T.P.:	_ D.T.W.	<u> </u>	_ Thick	ness: Time	: <u> </u>		
		Water Qual				ring Well Purging			
·		1		Calib	rated:				
	Temp	Conductivity	DO		ORP	PURGED VOLUME			
Time	(deg C)	(μS) (mS)	(mg/L)	pΗ	(mV)	(see reverse for calc.)	Notes/Observations		
1207	13.3	1365	5.35	7.26	165.2	Intal	Clear		
1213	12,/	1168	6.11	7.36	162.8	1001	Tan		
				,		7.50	Tan		
1213		Scarle	(2) 0	1					
·····					70: 20:				
		 							
		 		- No.					
			<u> </u>						
									
					ws es				
		1874							
	Analytical Pa	rameters (includ	de analysis i	method a	nd numb	er and type of sample	containers)		
	······································								
- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	1000	30007				ls w/ HgCl2 preserve)	7.00		
TDS						L amber glass w/ no pr			
						300.0 (1-500mL Plastic			
		Disposal of Pur	ged Water:	60	9500	nd			
C	ollected Samp	les Stored on Ice	e in Cooler:	Yr	5				
	Chain of	Custody Record	Complete:	. V &	25				
		Analytical L	aboratory:	SO	/	al Analysis Laboratory,	Albuquerque, NM		
Equip	oment Used D					erface Level, YSI Water			
75 IS.			v Disposable				, , , , , , , , , , , , , , , , , , , ,		
Notes/Com	ments:			The second control of		***			
									
	<u> </u>								

ed by MAD	NITORING2	WELLSAMPL	ING REC	Animas Environmental Services					
Мо	nitor Well No	: MW	<i>1-</i> 4		624 E. Comanche St., Farmington NM 87401				
				-	Tel. (505) 564-2281 Fax (505) 324-2022				
Site	: Evaporation	Pond			Project No.: AES				
Location					_	Date: 9.20	1.20		
		er Monitoring and	d Sampling		-	Arrival Time: 10 0	5		
	ng Technician	,	ne		_	Air Temp: 47	0 [
	ge / No Purge		ge			O.C. Elev. (ft):			
	Diameter (in)	N N N N N N N N N N N N N N N N N N N		→			5.64		
Confi	rm D.T.W. (ft)	40.11	_ Time: Time:	1007		_(taken at initial gaugi			
Fir	nal D.T.W. (ft)	40.55		1008		_(taken prior to purgin			
	New March	: D.T.P.: C		1042		_(taken after sample c kness: <u>- つ</u> Tim	ollection)		
				-			e:		
_		water Quar		ters - Reco Calib		ıring Well Purging			
a k	Temp	Conductivity	DO		ORP	PURGED VOLUME			
Time	(deg C)	(μS) (mS)	(mg/L)	pН	(mV)	(see reverse for calc.) Notes/Observations		
10122	13.0	837	4,08	7,04	159,2	In tial	Clear No Color		
1027	12.0	812	41.03	7,01	163.7	1 90.1	Tan 10 ados		
1033	11.9	812	4.64	7.03	164,4		12 / 12 - 23		
				1,,0	702 7, 1	2_3a	Bry /NO Oden		
539		Samples	Colle	100					
						-			
	<u> </u>				455				
-									
	<u> </u>		-			· · · · · · · · · · · · · · · · · · ·			
		100							
·				-					
				-					
				3					
	Analytical Pa	rameters (includ	le analysis	method a	nd numb	er and type of sample	containers)		
*		Full VOCs per EP.	A Method 8	3021 (3 - 4	l0 mL Via	is w/ HgCl2 preserve)			
-						nL amber glass w/ no p	reservel		
TDS						300.0 (1-500mL Plastic			
		Disposal of Pur					try tro preservey		
Co	ollected Samo	les Stored on Ice	in Cooler	(194	6.490	na n			
3.		Custody Record					· · · · · · · · · · · · · · · · · · ·		
	Chain Of					al Ameliais IIII	A 11		
Fauin	ment Head D	AHAIYUCAL L	Kook West	nali ENVII	onment	al Analysis Laboratory,	Albuquerque, NM		
Equip	ment oseu D				keck inte	erface Level, YSI Water	Quality Meter		
lotos /Carr		and Nev	v Disposable	e baller					
iotes/Com	ments:								
			· -		J				

	ITORING W	ELL SAMPLIN	NG RECO	RD	Animas Environmental Service Page 67				
Moni	tor Well No:	MW-	1	Ĭ	624 E. Comanche St., Farmington NM 87401				
	-				Tel. (505) 564-2281 Fax (505) 324-2022				
Site:	Evaporation Po	ond				Project No.: AES			
Location:		22				Date: 12-8.			
		Monitoring and			, ,	Arrival Time: 11,28			
		6. Broom		· · · · · · · · · · · · · · · · · · ·		Air Temp: 34° /-			
	e / No Purge:	Purge	1			.C. Elev. (ft):	61		
	plameter (in): al D.T.W. (ft):	2 2 2 2	Time:	11:30		(taken at initial gauging			
	n D.T.W. (it):		Time:	11:31		(taken prior to purging	T		
	al D.T.W. (ft):		Time:	12:2		(taken after sample col			
	IAPL Present:		D.T.W.:			ness: Time			
		500	ty Paramet	ers - Reco	orded Du	ring Well Purging			
100		COMMONS (14 PROPERTY)	YSI		rated:		1		
	Temp	Conductivity	DO		ORP	PURGED VOLUME			
Time	(deg C)	(μS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)			
11:35	11.8	757	4.07	7.46	Hel.4)	Fritial	Clear / No od		
11:40	12,5	763	3.84	7.31	160,4	1991	Brn/Noodo		
11:46	13.0	748	<i>Ŝ</i> .33	7.39	159.7	Zga	Bin / No Odo		
		Low)/e.lo	<u> </u>		1			
11:52		Samp	ر مع	tolle	chan	<u>J</u>			
-			750.00						
						•	37 (2)		
		-			-				
			<u>. </u>	<u> </u>					
				1	<u> </u>	1			
	-		 						
				 		-			
			1			have and turns of cample	containers		
						ber and type of sample	Containers		
						als w/ HgCl2 preserve)			
						mL amber glass w/ no p			
TD:	S per EPA Met					300.0 (1-500mL Plastic			
						<u> </u>			
C	Collected Samp	oles Stored on Id	e in Cooler	:			****		
	Chain of	Custody Record							
						tal Analysis Laboratory,			
Equi	pment Used D	uring Sampling	: Keck Wate	er Level o	r Keck In	terface Level, YSI Wate	r Quality Meter		
		and Ne	w Disposab	le Bailer					
	nments:		101 0						
Notes/Cor		Purge 1							

Site: Electric Sampling Purge Well D Initia Confirm	Groundwater g Technician: e / No Purge: iameter (in): I D.T.W. (ft): n D.T.W. (ft): I D.T.W. (ft):	Monitoring and Purg 2	I Sampling		62	Animas Environme 4 E. Comanche St., Farn Tel. (505) 564-2281 Fax Project No.: AES Date: 12 8 Arrival Time: 10 5 Air Temp: 31° F	nington NM 87401 (505) 324-2022
Location: I Project: C Sampling Purge Well D Initia Confirm	BMG Groundwater g Technician: e / No Purge: iameter (in): I D.T.W. (ft): n D.T.W. (ft):	Monitoring and C. Brown Purg 2 40,40 40,40	e e			Project No.: AES Date: 12.8 Arrival Time: 105	20
Location: I Project: C Sampling Purge Well D Initia Confirm	BMG Groundwater g Technician: e / No Purge: iameter (in): I D.T.W. (ft): n D.T.W. (ft):	Monitoring and C. Brown Purg 2 40,40 40,40	e e		20	Date: 12-8 Arrival Time: 105	3
Project: C Sampling Purge Well D Initia Confirm Fina	Groundwater g Technician: e / No Purge: iameter (in): I D.T.W. (ft): n D.T.W. (ft): I D.T.W. (ft):	Purg 2 40,40 40.40	e e		20	Arrival Time: 105	3
Sampling Purge Well D Initia Confirm	g Technician: e / No Purge: iameter (in): I D.T.W. (ft): n D.T.W. (ft): I D.T.W. (ft):	Purg 2 40,40 40.40	e e	_	20		
Purge Well D Initia Confirm Fina	e / No Purge: iameter (in): I D.T.W. (ft): 1 D.T.W. (ft): I D.T.W. (ft):	Purg 2 40,40 40.40	e		т.с	Air Temp: ろパ F	
Well D Initia Confirm Fina	iameter (in): I D.T.W. (ft): 1 D.T.W. (ft): I D.T.W. (ft):	2 40.40 40.40	87000048		T.C	33.4 (1)	
Initia Confirm Fina	l D.T.W. (ft): n D.T.W. (ft): l D.T.W. (ft):	40.40	Time:).C. Elev. (ft):	
Confirm Fina	n D.T.W. (ft): I D.T.W. (ft):	40.40	ı ıme:		Total We	ell Depth (ft): 45	
Fina	I D.T.W. (ft):		Time:	1056		(taken at initial gaugin	- 11-2 Wallow Housewall Co.
			Time:	1058		(taken prior to purging (taken after sample co	
253		D.T.P.:		: -		-000 1700 ADM	:
			***************************************	200		ring Well Purging	•
			YSI		rated:	ing went diging	
0.00	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations
1/03	11.2	1211	5,70	7.43	1420	Intial	Clear / No odos
1108	11.6	1170	4.54	7.39	162.2	1921	Brm /No Odos
1113	11.8	1114	6.70	7.40	162.0	299	Brn / No Odos
			377			.,	
1118		Samo	رجاد	Colle	chro	J.	
			131 33	3			
							3 11
		ů.					
	-	············					
				1		<u> </u>	
	Analytical Da	ramatars (includ	l lo analysis	mothod o		per and type of sample	
							containers)
						ils w/ HgCl2 preserve)	
						nL amber glass w/ no pr	
TDS	per EPA Meth					300.0 (1-500mL Plastic	w/ no preserve)
		Disposal of Pur	ged Water:	_0h	900	und	· · · · · · · · · · · · · · · · · · ·
Col	llected Samp	les Stored on Ice			•		
	Chain of	Custody Record	Complete	<u> </u>	5		
		Analytical I	_aboratory:	Hall Envi	ronment	al Analysis Laboratory,	Albuquerque, NM
Equip	ment Used D	uring Sampling:	Keck Wate	r Level or	Keck Inte	erface Level, YSI Water	Quality Meter
		and Nev	w Disposab	le Bailer			
Notes/Comn				-			
	P	urge V	21 CC	3/c @) 2.	52 gal	
		J				V	

ed by RABi	Vitoking ² 4	MELL'SAMPLI	NG RECO	ORD	Animas Environmental Services age 69				
Moi	nitor Well No:	MW	-3		624 E. Comanche St., Farmington NM 87401				
3 - 2000			200		Tel. (505) 564-2281 Fax (505) 324-2022				
Site	: Evaporation f	ond			Project No.: AES				
Location	: BMG				•	Date:	12.8	20	
		Monitoring and				Arrival Time:	102	3	
Parada de la composición del composición de la c	ng Technician:					Air Temp:	290	p-	
	ge / No Purge:		e	_).C. Elev. (ft):	$\overline{}$		
	Diameter (in):					ell Depth (ft):			
	rm D.T.W. (π):	39.69	- 0	10124	_			g of all wells)	
		43.05	Time: Time:	10:25		(taken prior : (taken after :			
		D.T.P.: —	■ 10	1048	Thick	ness:	72	· · · · · · · · · · · · · · · · · · ·	
						ring Well Pur		•	
Î			YSI				B'''B		
	Temp	Conductivity	DO		ORP	PURGED V	OLUME		
Time	(deg C)	(μS) (mS)	(mg/L)	pН	(mV)	(see reverse	for calc.)	Notes/Observations	
1030	11.8	1278	4.29	7.38	160.2	Inia)	Clear/No Smel	
1034	11.6	1265	5.17	7.38	156.4	1501	1	Ben / Nosmel	
1039	12.0	1273	6.08	735	155.7	2 ga		Bin/No Smel	
1043		Low Ye.	0	ampl	05 C	ollpate	d		
					3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3				
	,			1			U 3, 37, 57, 57, 57, 57, 57, 57, 57, 57, 57, 5		
					3				
***						10000			
				1					
			77-70.00						
					2 2				
	Analytical Par	ameters (includ	de analysis	method a	nd numb	er and type (of sample	containers)	
<i>y</i>		ull VOCs per EP	A Method 8	8021 (3 - 4	IO mL Via	ls w/ HgCl2 p	reserve)	100 At 100	
	TPH (GRO	/DRO/MRO) pe	r EPA Meth	od 8015 (1 - 250 m	ıL amber glas	s w/ no pr	eserve)	
TD:	S per EPA Meth	iod SM2540C ar	nd Chlorides	s per EPA	Method :	300.0 (1-500r	nL Plastic v	w/ no preserve)	
	SHOOT CASE	Disposal of Pur	ged Water:	on	9.50	und	2,580		
C	ollected Samp	les Stored on Ico	e in Cooler:		· 5		4		
		Custody Record		-	5	***	iž.	<u>, , , , , , , , , , , , , , , , , , , </u>	
		50	9 5 9			al Analysis La	boratory.	Albuquerque, NM	
Eaui	pment Used Di	ring Sampling:		743676			***		
- 31 573			v Disposabl				J. Water	addity Motor	
Notes/Con	nments:	***************************************		2000 STEELEN TO STEEL			1000		
	Pu	rae vol	calc	(a)	2.89	امه ۶		·	
		3				J.			

IVICIN	HIOKING W	ELL'SAMPLI		, KD	Animas Environmental Services Page 70				
Mon	itor Well No:	MW-	-4	- 0	624 E. Comanche St., Farmington NM 87401				
					Tel. (505) 564-2281 Fax (505) 324-2022				
Site:	Evaporation P	ond				Project No.: AES	7~		
Location:				<u> </u>		Date: 12-8			
		Monitoring and	Sampling		F	Arrival Time: 9 '. 45			
APPENDICTOR OF THE PARTY OF	ng Technician:				т О	Air Temp: <u>28°F</u> .C. Elev. (ft):			
0.0	ge / No Purge: _. Diameter (in):		<u> </u>			Il Depth (ft): 45			
	A DESCRIPTION OF THE PROPERTY	40,22	Time:	9:46		(taken at initial gaugin			
	m D.T.W. (ft):		. Time:	9:47		(taken prior to purging	No. of the second secon		
	al D.T.W. (ft):		Time:	10:19		(taken after sample co	llection)		
	NAPL Present:		D.T.W.			ness: Time	:		
		Water Quali	ity Paramet	ters - Reco	rded Du	ring Well Purging			
			YSI	Calib	rated:				
	Temp	Conductivity	DO		ORP	PURGED VOLUME			
Time	(deg C)	(μS) (mS)	(mg/L)	pН			1 1 1		
9:56	11.8	799	4.40	7.69	175.7	Initial	Clear/No odos		
1001	11.4	800	3.86	7.41	175,3	lgal	Brown NO CO		
1006	11.7	811	4.25	7.32	174.0	2 gal	Brown/NO Odo		
				339					
1012	Sa	noles	Colle	act c	d _		3.2		

			*						
				<u> </u>					
. 8 250					_	<u> </u>	<u> </u>		
	<u> </u>					-			
							-		
<u> </u>							a containors)		
E 752	Analytical Pa	rameters (inclu	ide analysis	method a	and num	ber and type of sample	e containers)		
8		_ 				als w/ HgCl2 preserve)			
						nL amber glass w/ no p			
TD	S per EPA Met	hod SM2540C a	ınd Chloride	es per EPA	Method	300.0 (1-500mL Plastic	c w/ no preserve)		
		Disposal of Pu	rged Water	r:_ 0	Grou	, ~ /			
ļ	Collected Samp								
		Custody Recor		5%		-			
ļ						tal Analysis Laboratory	, Albuquerque, NM		
Eou	ipment Used [terface Level, YSI Wate			
			ew Disposal						
Notes/Co	mments:					<u> </u>			
, , , , ,	P	usgo Vo	1 cal	c. O	2.6	5 ga)	90-300		
		J -		Mass		J			
							W4 84		

MONI	TORING W	ELL'SAMPLIN	NG RECO	RD	Animas Environmental Services Page				
Monit	or Well No:	Interstitia	l Well		624 E. Comanche St., Farmington NM 87401				
	eranous estarologica				Tel. (505) 564-2281 Fax (505) 324-2022				
Site: I	vaporation Po	ond			Project No.: AES				
Location:		i i i i i i i i i i i i i i i i i i i				Date: 12-8-20	>		
Project: (Groundwater	Monitoring and	Sampling			Arrival Time: 9,35_	10 <u>20</u>		
Sampling	g Technician:	G. Brown	me			Air Temp: 28 F			
Purg€	/ No Purge:	Purge	<u> </u>	8		.C. Elev. (ft):			
	iameter (in): _					ell Depth (ft):			
Initia	il D.T.W. (ft):	10.49	Time:			(taken at initial gauging			
Confirm	n D.T.W. (ft):	10.49	Time:	9:40	<u></u>	(taken prior to purging			
Fina	al D.T.W. (ft):		Time:		This	(taken after sample coll			
If N	APL Present:				1782	kness: Time:			
	361	Water Quali				iring Well Purging			
· · ·	Town	Conductivity	YSI DO	callb	ORP	PURGED VOLUME			
	Temp	_	242 722	pH	(mV)	(see reverse for calc.)	Notes/Observat		
Time	(deg C)	(μS) (mS)	(mg/L)	рп	(1114)	(See reverse for early)	110100, 0120,100		
		N/00 1							
1715		Not	UCg.	<u> </u>					
				1 -					
		No	Jaw	ples					
			<u> </u>						
		Low	Ye.	, d\					
		W 350					700		
				-					
		-	-	-	 				
	Analytical Pa	rameters (inclu	de analysis —	method a	and num	ber and type of sample	containers)		
***		Full VOCs per Ef	PA Method	8021 (3 -	40 mL V	ials w/ HgCl2 preserve)			
	TPH (GRO	D/DRO/MRO) pe	er EPA Metl	nod 8015	(1 - 250	mL amber glass w/ no pi	eserve)		
TD:						l 300.0 (1-500mL Plastic			
	· · · · · · · · · · · · · · · · · · ·	Disposal of Pu							
	ollected Same	oles Stored on Id		65 65					
	_	Custody Record		100	*				
	Chamo				ironmer	ntal Analysis Laboratory,	Albuquerque, NN		
						nterface Level, YSI Water			
Equi	pment Used L		: Keck wat w Disposal		r Reck II	iteriace Level, 15: water	Quality Wicter		
		and ine	w Disposar	JIE Ballet					
	nments:								
Notes/Con					772_	3,0			
Notes/Con				100	25/25/16				
Notes/Con	38 38	34 6							

Project: Site: Location: Tech:		nd	ORM	Animas Environmental Services 624 E. Comanche St, Farmington NM 87401 Tel. (505) 564-2281 animasenvironmental.com Project No.: Date: 11 . 3 5 Form:
Well ID	Depth to	Depth to	NAPL Thickness (ft)	Notes / Observations
MW-1 MW-2 MW-3 MW-4 Interstitial Well	· 0 0 0 0 0-	39.37 40.40 39.69 40.22	- 6 0	
Wells measi	red with KECK w	ater level or KEC	Y interface tane. d	l econtaminated between each well measurement.

BMG Landfarm Sampling - Treatment Zone (TZ)

Date. 4- 2- 20	Date:	4	2-	20
----------------	-------	---	----	----

Cell #	1	11 1 (CS-1)		
Sample ID:	TZ-1A	T2-2A TZ-1B	Composió @ 9:47 Ce	1 TZ-1D
GPS:	36.35.874	34.38889		36.38960
(4 locations)	-106.86529	-106.86597	-106.86703	-106.86741
Time of sample:	9:37	9.40	9:43	945
Sample depth:	0.5	0.5	0.5	0.5
Soil characteristics:	hom. sord and clay	Book, Soul	Brown Sand, Dy	Bran, Sand, Dry
(odor, color, texture)	no oder, it stein	No DEV, NStancy	No Odar, No Staining	No Octor, No Farming

Cell #	2		Composite @ 10:04	Cell 2 (C5.2)
Sample ID:	T2-2A	TZ-2B	TZ-2C	TZ-2D
GPS:	36.39011	36.3899	36.38960	36.39012
(4 locations)	-106.86710	706.86645	-106.86597	-106.88667
Time of sample:	9:57	9,57	/p:00	10:02
Sample depth:	0.5	0.5	6.5	0.5
Soil characteristics:	Clay, Brown Moils	clay & Said Broom	Brown Sand Dry	Down, day & Soud
(odor, color, texture)	N.O. N.S.	Marsa Mr Stanin	No Odar, No Striking	No Oder, No Staining

Cell #	3 Composite o 16:23 Cell 3((5-3)					
Sample ID:	TZ-34	TZ-3B	TZ-3C	TZ-3D		
GPS:	36.38929	36.38451	3.38922	34.38887		
(4 locations)	-106.86514	-106-86398	-106.86439	-106.86447		
Time of sample:	(0:13	10:16	10:19	(0)21		
Sample depth:	0.5	0.5	0,8	0.5		
Soil characteristics:	Brown, Sand, By	Brown, Sand any	Clay & smal MORT	small clay, North		
(odor, color, texture)	No Oler, No Stran	No Odar No Stain	No o Lor, No Strang	No Odor, No Staining		

Cell #	4		Composite @ 10:37	Cell 4 ((5-4)
Sample ID:	TZ-24A	TZ-48	TZ-4C	1 TZ-4D
GPS:	36.38987	36.38923	36.3894	36.39841
(4 locations)	-106.86348	-106.86320	-106-86239	-106.86220
Time of sample:	16:27	/0:29	10:31	/4:33
Sample depth:	0.5	0.5	0.5	0.5
Soil characteristics:	Born, Mit Sand	Bonn , Most, Sud	Brown, Morro, Ind	Brown, Most, Soul
(odor, color, texture)	No Olar, No Staining	No Oter, No Staining	No Olar, NV Strang	No Der No Starring

BMG Landfarm Sampling - Vadose Zone (VZ)

Date: 4-2-20

Cell #				
Sample ID:	Cul #1 VZ	Cell #1 VZ	Cell #1 1/2	Cell #1 12
(S-1 through S-4)	S-1	5-2	8-3	5-4
GPS:	See TZ Nites			->
Time of sample:	10:52	11:01	11:09	11:16
Shovel depth:	2.0	2.0	2.0	2.25
Auger depth (2.5' total depth):	2.5	2.5	25	2.5
Soil characteristics:	Brown Sand and day . V. Noist	Boun, Sand and Clay. Dry	Boomer, Clay, Mois!	Tay Sand and Cruy
odor, color, texture)	No OLOV NO Strin	No oLor, No Shux	N-Staining	No Oter, No Staining

Cell#	2			
Sample ID: (S-1 through S-4)	Cell #2 ¥2 S-1	Cell #2 VZ 5-2	Cell #2 VZ 5-3	Cell #2 V2 5-4
GPS:	See TZ Notes -			>
Time of sample:	11:24	11:31	11338	11:47
Shovel depth:	2.05	2.25	2.6	2.0
Auger depth (2.5' total depth):	2.5	2.5	2.5	2.5
Soil characteristics: (odor, color, texture)	Ten-Sand, Moss T No Odor, Ne graining	Van, Sand, Moist No Oder No Staining	No odar No Stoining	No aler No Staining

Cell #	3			
Sample ID:	Ce11 #3 VZ	Cell #3 VZ	Ce11 #3 V-2	Cell #3 V2
(S-1 through S-4)	5-1	5-2	5-3	5-4
GPS:	See TZ Notes			->
Time of sample:	11:57	12:04	12=11	12:21
Shovel depth:	2.3	2.0	2.25	2.50
Auger depth (2.5' total depth):	2.5	2.5	2.5	25
Soil characteristics: odor, color, texture)	Tan Brown Sand Mott No Oder No Staining	Tanform, Sund No odar Most No Staining	Tan-Bran Soul & Clay Msist No Od or NS Staining	Byan, Farce & Clay Most No sawy No Staining

Cell #	4			
Sample ID:	Cell #4 V-Z	Ce11 # 4 1/2	GN #4 VZ	Cell #4 VZ
(S-1 through S-4)	S-1	5-2	5-3	5-4
GPS:	See TZ Notes	-		7
Time of sample:	12:33	14 12143	12:51	13:00
Shovel depth:	2.0	210	2.0	2.25
Auger depth (2.5' total depth):	2.5	2.5	2.5	2.5
Soil characteristics: (odor, color, texture)	Bran, Clay, Moist No Star No Staining	Brown, Gray, Moist No Staining	Born duy, Noist No Edw No Stanning	Braungsand, MENSA No Odor No Staining

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

April 07, 2020

Elizabeth McNally
Animas Environmental
604 Pinon Street
Farmington, NM 87401
TEL:
FAX

RE: BMG Landfarm OrderNo.: 2003C34

Dear Elizabeth McNally:

Hall Environmental Analysis Laboratory received 5 sample(s) on 3/27/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 4/7/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: MW-1

Project: BMG Landfarm
 Collection Date: 3/26/2020 9:54:00 AM

 Lab ID: 2003C34-001
 Matrix: AQUEOUS
 Received Date: 3/27/2020 8:10:00 AM

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE					Analyst: JME
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	4/1/2020 9:53:34 AM
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	4/1/2020 9:53:34 AM
Surr: DNOP	106	70-130	%Rec	1	4/1/2020 9:53:34 AM
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	23	5.0	mg/L	10	3/30/2020 5:22:24 PM
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: DJF
Benzene	ND	1.0	μg/L	1	4/4/2020 1:35:27 PM
Toluene	ND	1.0	μg/L	1	4/4/2020 1:35:27 PM
Ethylbenzene	ND	1.0	μg/L	1	4/4/2020 1:35:27 PM
Xylenes, Total	ND	1.5	μg/L	1	4/4/2020 1:35:27 PM
Surr: 1,2-Dichloroethane-d4	101	70-130	%Rec	1	4/4/2020 1:35:27 PM
Surr: 4-Bromofluorobenzene	96.2	70-130	%Rec	1	4/4/2020 1:35:27 PM
Surr: Dibromofluoromethane	106	70-130	%Rec	1	4/4/2020 1:35:27 PM
Surr: Toluene-d8	101	70-130	%Rec	1	4/4/2020 1:35:27 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: DJF
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/4/2020 1:35:27 PM
Surr: BFB	102	70-130	%Rec	1	4/4/2020 1:35:27 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: KS
Total Dissolved Solids	642	40.0 *D	mg/L	1	4/6/2020 12:28:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 11

CLIENT: Animas Environmental

Analytical Report Lab Order 2003C34

Date Reported: 4/7/2020

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: MW-2

Project: BMG Landfarm **Collection Date:** 3/26/2020 10:34:00 AM

Lab ID: 2003C34-002 **Matrix:** AQUEOUS **Received Date:** 3/27/2020 8:10:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE					Analyst: JME
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	4/1/2020 11:05:20 AM
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	4/1/2020 11:05:20 AM
Surr: DNOP	103	70-130	%Rec	1	4/1/2020 11:05:20 AM
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	250	50	mg/L	100	3/30/2020 6:01:01 PM
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: DJF
Benzene	ND	1.0	μg/L	1	4/4/2020 2:04:10 PM
Toluene	ND	1.0	μg/L	1	4/4/2020 2:04:10 PM
Ethylbenzene	ND	1.0	μg/L	1	4/4/2020 2:04:10 PM
Xylenes, Total	ND	1.5	μg/L	1	4/4/2020 2:04:10 PM
Surr: 1,2-Dichloroethane-d4	101	70-130	%Rec	1	4/4/2020 2:04:10 PM
Surr: 4-Bromofluorobenzene	99.1	70-130	%Rec	1	4/4/2020 2:04:10 PM
Surr: Dibromofluoromethane	108	70-130	%Rec	1	4/4/2020 2:04:10 PM
Surr: Toluene-d8	97.6	70-130	%Rec	1	4/4/2020 2:04:10 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: DJF
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/4/2020 2:04:10 PM
Surr: BFB	102	70-130	%Rec	1	4/4/2020 2:04:10 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: KS
Total Dissolved Solids	898	40.0	*D mg/L	1	4/6/2020 12:28:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 11

Date Reported: 4/7/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: MW-3

 Project:
 BMG Landfarm
 Collection Date: 3/26/2020 10:52:00 AM

 Lab ID:
 2003C34-003
 Matrix: AQUEOUS
 Received Date: 3/27/2020 8:10:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE					Analyst: JME
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	4/1/2020 11:29:20 AM
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	4/1/2020 11:29:20 AM
Surr: DNOP	99.0	70-130	%Rec	1	4/1/2020 11:29:20 AM
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	170	5.0	mg/L	10	3/30/2020 6:13:54 PM
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: DJF
Benzene	ND	1.0	μg/L	1	4/4/2020 2:32:41 PM
Toluene	ND	1.0	μg/L	1	4/4/2020 2:32:41 PM
Ethylbenzene	ND	1.0	μg/L	1	4/4/2020 2:32:41 PM
Xylenes, Total	ND	1.5	μg/L	1	4/4/2020 2:32:41 PM
Surr: 1,2-Dichloroethane-d4	101	70-130	%Rec	1	4/4/2020 2:32:41 PM
Surr: 4-Bromofluorobenzene	95.5	70-130	%Rec	1	4/4/2020 2:32:41 PM
Surr: Dibromofluoromethane	103	70-130	%Rec	1	4/4/2020 2:32:41 PM
Surr: Toluene-d8	96.7	70-130	%Rec	1	4/4/2020 2:32:41 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: DJF
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/4/2020 2:32:41 PM
Surr: BFB	97.7	70-130	%Rec	1	4/4/2020 2:32:41 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: KS
Total Dissolved Solids	772	40.0	*D mg/L	1	4/6/2020 12:28:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 11

Date Reported: 4/7/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: MW-4

 Project:
 BMG Landfarm
 Collection Date: 3/26/2020 11:13:00 AM

 Lab ID:
 2003C34-004
 Matrix: AQUEOUS
 Received Date: 3/27/2020 8:10:00 AM

Analyses	Result	RL Q	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE					Analyst: JME
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	4/1/2020 11:53:24 AM
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	4/1/2020 11:53:24 AM
Surr: DNOP	102	70-130	%Rec	1	4/1/2020 11:53:24 AM
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	100	5.0	mg/L	10	3/30/2020 6:39:37 PM
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: DJF
Benzene	ND	1.0	μg/L	1	4/4/2020 3:01:07 PM
Toluene	ND	1.0	μg/L	1	4/4/2020 3:01:07 PM
Ethylbenzene	ND	1.0	μg/L	1	4/4/2020 3:01:07 PM
Xylenes, Total	ND	1.5	μg/L	1	4/4/2020 3:01:07 PM
Surr: 1,2-Dichloroethane-d4	101	70-130	%Rec	1	4/4/2020 3:01:07 PM
Surr: 4-Bromofluorobenzene	99.9	70-130	%Rec	1	4/4/2020 3:01:07 PM
Surr: Dibromofluoromethane	103	70-130	%Rec	1	4/4/2020 3:01:07 PM
Surr: Toluene-d8	98.0	70-130	%Rec	1	4/4/2020 3:01:07 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: DJF
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/4/2020 3:01:07 PM
Surr: BFB	104	70-130	%Rec	1	4/4/2020 3:01:07 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: KS
Total Dissolved Solids	930	200	*D mg/L	1	4/6/2020 12:28:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 11

Date Reported: 4/7/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Trip Blank

Project: BMG Landfarm **Collection Date:**

Lab ID: 2003C34-005 **Matrix:** TRIP BLANK **Received Date:** 3/27/2020 8:10:00 AM

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: DJF
Benzene	ND	1.0	μg/L	1	4/4/2020 3:29:49 PM
Toluene	ND	1.0	μg/L	1	4/4/2020 3:29:49 PM
Ethylbenzene	ND	1.0	μg/L	1	4/4/2020 3:29:49 PM
Xylenes, Total	ND	1.5	μg/L	1	4/4/2020 3:29:49 PM
Surr: 1,2-Dichloroethane-d4	102	70-130	%Rec	1	4/4/2020 3:29:49 PM
Surr: 4-Bromofluorobenzene	99.0	70-130	%Rec	1	4/4/2020 3:29:49 PM
Surr: Dibromofluoromethane	106	70-130	%Rec	1	4/4/2020 3:29:49 PM
Surr: Toluene-d8	99.1	70-130	%Rec	1	4/4/2020 3:29:49 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 11

Hall Environmental Analysis Laboratory, Inc.

WO#: **2003C34**

07-Apr-20

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: MB SampType: mblk TestCode: EPA Method 300.0: Anions

Client ID: PBW Batch ID: R67712 RunNo: 67712

Prep Date: Analysis Date: 3/30/2020 SeqNo: 2337524 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride ND 0.50

Sample ID: LCS SampType: Ics TestCode: EPA Method 300.0: Anions

Client ID: LCSW Batch ID: R67712 RunNo: 67712

Prep Date: Analysis Date: 3/30/2020 SeqNo: 2337525 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 4.7 0.50 5.000 0 94.9 90 110

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quantitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 11

Hall Environmental Analysis Laboratory, Inc.

WO#: **2003C34 07-Apr-20**

Client: Animas Environmental
Project: BMG Landfarm

Sample ID: MB-51445 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range

Client ID: PBW Batch ID: 51445 RunNo: 67765

Prep Date: 3/31/2020 Analysis Date: 4/1/2020 SeqNo: 2340231 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Diesel Range Organics (DRO) ND 1.0

Diesel Range Organics (DRO) ND 1.0

Motor Oil Range Organics (MRO) ND 5.0

Surr: DNOP 0.96 1.000 96.5 70 130

Sample ID: MB-51446 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range

Client ID: PBW Batch ID: 51446 RunNo: 67765

Prep Date: 3/31/2020 Analysis Date: 4/1/2020 SeqNo: 2340232 Units: %Rec

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Surr: DNOP 1.1 1.000 110 70 130

Sample ID: LCS-51445 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range

Client ID: LCSW Batch ID: 51445 RunNo: 67765

Prep Date: 3/31/2020 Analysis Date: 4/1/2020 SeqNo: 2340233 Units: mg/L

SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result POI LowLimit HighLimit Qual Diesel Range Organics (DRO) 5.1 1.0 5.000 0 103 70 130 Surr: DNOP 0.50 0.5000 99.2 70 130

Sample ID: LCS-51446 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range

Client ID: LCSW Batch ID: 51446 RunNo: 67765

Prep Date: 3/31/2020 Analysis Date: 4/1/2020 SeqNo: 2340234 Units: %Rec

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Surr: DNOP 0.55 0.5000 110 70 130

Sample ID: 2003C34-001BMS SampType: MS TestCode: EPA Method 8015M/D: Diesel Range

Campion 15. 2000004 00 15 me Campingo. Inc

Client ID: **MW-1** Batch ID: **51445** RunNo: **67765**

Prep Date: 3/31/2020 Analysis Date: 4/1/2020 SeqNo: 2340237 Units: mg/L

SPK value SPK Ref Val %RPD **RPDLimit** Analyte Result PQL %REC LowLimit HighLimit Qual Diesel Range Organics (DRO) 4.9 1.0 5.000 n 98.1 70 130

Surr: DNOP 0.48 0.5000 96.8 70 130

Sample ID: 2003C34-001BMSD SampType: MSD TestCode: EPA Method 8015M/D: Diesel Range

Client ID: **MW-1** Batch ID: **51445** RunNo: **67765**

Prep Date: 3/31/2020 Analysis Date: 4/1/2020 SeqNo: 2340239 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Diesel Range Organics (DRO) 4.8 1.0 5.000 0 95.4 70 130 2.80 20

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 11

Hall Environmental Analysis Laboratory, Inc.

0.46

WO#: **2003C34**

07-Apr-20

Client: Animas Environmental

Project: BMG Landfarm

Surr: DNOP

Sample ID: 2003C34-001BMSD SampType: MSD TestCode: EPA Method 8015M/D: Diesel Range

Client ID: MW-1 Batch ID: 51445 RunNo: 67765

Prep Date: 3/31/2020 Analysis Date: 4/1/2020 SeqNo: 2340239 Units: mg/L

0.5000

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

91.7

70

130

0

0

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 11

Hall Environmental Analysis Laboratory, Inc.

WO#: **2003C34**

07-Apr-20

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: mb1	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	8260: Volatile	es Short L	ist	
Client ID: PBW	Batcl	h ID: A6	7855	F	RunNo: 6	7855				
Prep Date:	Analysis D	Date: 4/	4/2020	5	SeqNo: 2	343945	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	10		10.00		101	70	130			
Surr: 4-Bromofluorobenzene	9.3		10.00		93.1	70	130			
Surr: Dibromofluoromethane	11		10.00		108	70	130			
Surr: Toluene-d8	9.8		10.00		97.5	70	130			

Sample ID: 100ng btex Ics	Samp1	Type: LC	S4	Tes	tCode: El	PA Method	8260: Volatile	es Short L	.ist	
Client ID: BatchQC	Batcl	h ID: A6	7855	F	RunNo: 6	7855				
Prep Date:	Analysis D	Date: 4/	4/2020	9	SeqNo: 2	343946	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	98.5	80	120			
Toluene	21	1.0	20.00	0	105	80	120			
Ethylbenzene	21	1.0	20.00	0	105	80	120			
Xylenes, Total	65	1.5	60.00	0	109	80	120			
Surr: 4-Bromofluorobenzene	9.7		10.00		97.3	70	130			
Surr: Toluene-d8	10		10.00		99.9	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 11

Hall Environmental Analysis Laboratory, Inc.

WO#: 2003C34 07-Apr-20

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: mb1 SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: C67855 RunNo: 67855

Prep Date: Analysis Date: 4/4/2020 SeqNo: 2343984 Units: mg/L

SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result PQL LowLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 9.9 10.00 98.9 70 130

Sample ID: 2.5ug gro Ics SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSW Batch ID: C67855 RunNo: 67855

Prep Date: Analysis Date: 4/4/2020 SeqNo: 2343985 Units: mg/L

%RPD Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit **RPDLimit** Qual Gasoline Range Organics (GRO) 70 0.42 0.050 0.5000 O 84.8 130

Surr: BFB 70 10 10.00 101 130

Sample ID: 2003c34-001a ms SampType: MS TestCode: EPA Method 8015D: Gasoline Range

Client ID: MW-1 Batch ID: C67855 RunNo: 67855

Prep Date: Analysis Date: 4/4/2020 SeqNo: 2343987 Units: mg/L

Result SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte POI LowLimit Qual Gasoline Range Organics (GRO) 0.43 0.050 0.5000 0.01460 83.4 70 130

Surr: BFB 10.00 99.5 10 70 130

TestCode: EPA Method 8015D: Gasoline Range Sample ID: 2003c34-001a msd SampType: MSD

Client ID: MW-1 Batch ID: C67855 RunNo: 67855

Prep Date: Analysis Date: 4/4/2020 SeqNo: 2343988 Units: mg/L

PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual Gasoline Range Organics (GRO) 0.41 0.050 0.5000 0.01460 79.9 70 4.07 130 20 Surr: BFB 9.9 10.00 99.4 70 130 0 0

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded Н

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 10 of 11

Hall Environmental Analysis Laboratory, Inc.

WO#: **2003C34**

07-Apr-20

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: MB-51511 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 51511 RunNo: 67882

Prep Date: 4/2/2020 Analysis Date: 4/6/2020 SeqNo: 2345269 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-51511 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 51511 RunNo: 67882

Prep Date: 4/2/2020 Analysis Date: 4/6/2020 SeqNo: 2345270 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1010 20.0 1000 0 101 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 11 of 11

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

Sample Log-In Check List

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Client Name: A	nimas Environmental	Work Order Num	ber: 200	3C34		RcptNo: 1	
Received By:	Juan Rojas	3/27/2020 8:10:00	AM		Harring		
Completed By:	₋eaḥ Baca	3/27/2020 2:13:19	РМ		flansing		
Reviewed By:	B	3/30/20	1016		Last Jane		
Chain of Custo	<u>dy</u>						
1. Is Chain of Cust	ody sufficiently complete?		Yes	~	No 🗌	Not Present	
2. How was the sar	mple delivered?		Clie	<u>nt</u>			
Log In							
The second secon	made to cool the samples	?	Yes	V	No 🗆	NA 🗌	
4. Were all samples	s received at a temperatur	e of >0° C to 6.0°C	Yes	V	No 🗌	NA 🗆	
5. Sample(s) in pro	per container(s)?		Yes	✓	No 🗌		
6. Sufficient sample	volume for indicated test	(s)?	Yes	V	No 🗆		
7. Are samples (exc	cept VOA and ONG) prope	rly preserved?	Yes	~	No 🗌		
8. Was preservative	added to bottles?		Yes		No 🗸	NA 🗆	
9. Received at least	1 vial with headspace <1.	/4" for AQ VOA?	Yes	V	No 🗆	NA 🗆	
10, Were any sample	e containers received brok	en?	Yes		No 🗹	# of preserved	
11. Does paperwork (Note discrepand	match bottle labels? ies on chain of custody)		Yes	V	No 🗆	bottles checked for pH:	2 unless noted)
	ectly identified on Chain o	f Custody?	Yes	V	No 🗌	Adjusted?	
13. Is it clear what ar	alyses were requested?		Yes	V	No 🗌		
	times able to be met? omer for authorization.)		Yes	✓	No 🗆	Checked by: DA	D 3/30/20
Special Handling	g (if applicable)						
	ed of all discrepancies with	this order?	Yes		No 🗌	NA 🔽	
Person No	tified:	Date					
By Whom:		Via:	eM	ail 🗌	Phone Fax	☐ In Person	
Regarding							
Client Instr 16. Additional rema							
 Cooler Informa Cooler No 		Seal Intact Seal No	Seal D	ate	Signed By		
1 -(0.6 Good						

4
0
-
0
age
m
ñ
ш

Client: /	A 100 100 100 100 100 100 100 100 100 10									
	Animas E	ovironmen	Animas Environmental Services	X Standard	□ Rush			ANALYSIS	ANALYSIS LABORATORY	
				Project Name:	and the state of			www.hallenvironmental.com	nmental.com	
Mailing Address:	.s:	P.O. Box 8			bivio Landiarm	F	49	01 Hawkins NE -	4901 Hawkins NE - Albuquerque, NM 87109	710
		Farmington	Farmington, NM 87499-00008	Project #:	100000		<u> </u>	Tel. 505-345-3975	Fax 505-345-4107	_
Phone #:		505-564-2281	81		AES U4UBUS			Analysis Request	Request	
email or Fax#:		dreese@a	dreese@animasenvironmental.com Project Manager:	Project Manager:						
QA/QC Package:	ài			Elizabeth McNally, David Reese	id Reese		STO			
X Standard			□ Level 4 (Full Validation)				8 (0			
Accreditation:				Sampler: C	21/68		NRC			(N
□ NELAP		□ Other			X(Yes.)	INO 0.1-0:0:1	V/C			10
□ EDD (Type)				Sample Temperature:	-0-9-0-	9.0-	_	Э0t		Y) 2
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL NO.	втех 8021 (ояр) нат	TDS SM25		Air Bubble
3-76-20	45:6	Н20	MW-1	(3) 40 mL glass (1) 250 mL amber glass (1) 500 mL plastic	3-HgCl2 cool 2-Non	100,	× ×	× ×		
3-77-50	10.34	Н20	MW-2	(3) 40 mL glass (1) 250 mL amber glass (1)'500 mL plastic	3-HgCl2 cool 2-Non	1007	× ×	× ×		
3-21-20	ZS:0/	Н20	MW-3	(3) 40 mL glass (1) 250 mL amber glass (1) 500 mL plastic	3-HgCl2 cool 2-Non	3 2	× ×	× ×		
2.21-20	6:11	Н20	MW-4	(3) 40 mL glass (1) 250 mL amber glass (1) 500 mL plastic	3-HgCl2 cool 2-Non	300	×	× ×		
		1120	Linterstittial Well	(3) 40 mL glass (1) 250 mL amber glass (1) 500 mL plastic	3-HgCl2 cool		×	×		
		H20	Trip Blank		Cold	- 005	×			
Date: 7	Time:	Relingqished by:	by:[Received by:) Date	Time 1715	Remarks:	nazout toN	1 723/77/20	
Date: 70 T	Time:	Relinquished by:	idoele	101	Date 7	Time S:10				

Hall Environmental Analysis Laboratory
4901 Hawkins NE
Albuquerque, NM 87109
TEL: 505-345-3975 FAX: 505-345-4107
Website: clients.hallenvironmental.com

July 08, 2020

Elizabeth McNally
Animas Environmental
604 Pinon Street
Farmington, NM 87401
TEL:
FAX

RE: BMG Landfarm OrderNo.: 2006D79

Dear Elizabeth McNally:

Hall Environmental Analysis Laboratory received 4 sample(s) on 6/26/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 7/8/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: MW-1

Project: BMG Landfarm
 Collection Date: 6/24/2020 12:00:00 PM

 Lab ID: 2006D79-001
 Matrix: AQUEOUS
 Received Date: 6/26/2020 8:10:00 AM

Analyses	Result	RL Q	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE					Analyst: BRM
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	6/28/2020 10:51:15 AM
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	6/28/2020 10:51:15 AM
Surr: DNOP	125	70-130	%Rec	1	6/28/2020 10:51:15 AM
EPA METHOD 300.0: ANIONS					Analyst: CAS
Chloride	18	5.0	mg/L	10	6/28/2020 1:43:06 PM
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: DJF
Benzene	ND	1.0	μg/L	1	6/28/2020 5:36:24 PM
Toluene	ND	1.0	μg/L	1	6/28/2020 5:36:24 PM
Ethylbenzene	ND	1.0	μg/L	1	6/28/2020 5:36:24 PM
Xylenes, Total	ND	1.5	μg/L	1	6/28/2020 5:36:24 PM
Surr: 1,2-Dichloroethane-d4	104	70-130	%Rec	1	6/28/2020 5:36:24 PM
Surr: 4-Bromofluorobenzene	95.2	70-130	%Rec	1	6/28/2020 5:36:24 PM
Surr: Dibromofluoromethane	102	70-130	%Rec	1	6/28/2020 5:36:24 PM
Surr: Toluene-d8	107	70-130	%Rec	1	6/28/2020 5:36:24 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: DJF
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	6/28/2020 5:36:24 PM
Surr: BFB	106	70-130	%Rec	1	6/28/2020 5:36:24 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: KS
Total Dissolved Solids	648	40.0	*D mg/L	1	7/2/2020 7:20:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 9

Date Reported: 7/8/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: MW-2

 Project:
 BMG Landfarm
 Collection Date: 6/24/2020 11:35:00 AM

 Lab ID:
 2006D79-002
 Matrix: AQUEOUS
 Received Date: 6/26/2020 8:10:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE						Analyst: BRM
Diesel Range Organics (DRO)	ND	1.0		mg/L	1	6/28/2020 11:01:22 AM
Motor Oil Range Organics (MRO)	ND	5.0		mg/L	1	6/28/2020 11:01:22 AM
Surr: DNOP	135	70-130	S	%Rec	1	6/28/2020 11:01:22 AM
EPA METHOD 300.0: ANIONS						Analyst: CAS
Chloride	310	50	*	mg/L	100	6/28/2020 2:47:28 PM
EPA METHOD 8260: VOLATILES SHORT LIST						Analyst: DJF
Benzene	ND	1.0		μg/L	1	6/28/2020 6:06:54 PM
Toluene	ND	1.0		μg/L	1	6/28/2020 6:06:54 PM
Ethylbenzene	ND	1.0		μg/L	1	6/28/2020 6:06:54 PM
Xylenes, Total	ND	1.5		μg/L	1	6/28/2020 6:06:54 PM
Surr: 1,2-Dichloroethane-d4	104	70-130		%Rec	1	6/28/2020 6:06:54 PM
Surr: 4-Bromofluorobenzene	94.4	70-130		%Rec	1	6/28/2020 6:06:54 PM
Surr: Dibromofluoromethane	101	70-130		%Rec	1	6/28/2020 6:06:54 PM
Surr: Toluene-d8	105	70-130		%Rec	1	6/28/2020 6:06:54 PM
EPA METHOD 8015D: GASOLINE RANGE						Analyst: DJF
Gasoline Range Organics (GRO)	ND	0.050		mg/L	1	6/28/2020 6:06:54 PM
Surr: BFB	106	70-130		%Rec	1	6/28/2020 6:06:54 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst: KS
Total Dissolved Solids	1030	200	*D	mg/L	1	7/2/2020 7:20:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 9

Date Reported: 7/8/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: MW-3

 Project:
 BMG Landfarm
 Collection Date: 6/24/2020 11:08:00 AM

 Lab ID:
 2006D79-003
 Matrix: AQUEOUS
 Received Date: 6/26/2020 8:10:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE					Analyst: BRM
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	6/28/2020 11:11:30 AM
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	6/28/2020 11:11:30 AM
Surr: DNOP	127	70-130	%Rec	1	6/28/2020 11:11:30 AM
EPA METHOD 300.0: ANIONS					Analyst: CAS
Chloride	200	50	mg/L	100	6/28/2020 3:13:12 PM
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: DJF
Benzene	ND	1.0	μg/L	1	6/28/2020 6:37:36 PM
Toluene	ND	1.0	μg/L	1	6/28/2020 6:37:36 PM
Ethylbenzene	ND	1.0	μg/L	1	6/28/2020 6:37:36 PM
Xylenes, Total	ND	1.5	μg/L	1	6/28/2020 6:37:36 PM
Surr: 1,2-Dichloroethane-d4	105	70-130	%Rec	1	6/28/2020 6:37:36 PM
Surr: 4-Bromofluorobenzene	94.8	70-130	%Rec	1	6/28/2020 6:37:36 PM
Surr: Dibromofluoromethane	105	70-130	%Rec	1	6/28/2020 6:37:36 PM
Surr: Toluene-d8	106	70-130	%Rec	1	6/28/2020 6:37:36 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: DJF
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	6/28/2020 6:37:36 PM
Surr: BFB	103	70-130	%Rec	1	6/28/2020 6:37:36 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: KS
Total Dissolved Solids	850	200	*D mg/L	1	7/2/2020 7:20:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 9

Date Reported: 7/8/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: MW-4

 Project:
 BMG Landfarm
 Collection Date: 6/24/2020 10:42:00 AM

 Lab ID:
 2006D79-004
 Matrix: AQUEOUS
 Received Date: 6/26/2020 8:10:00 AM

Analyses	Result	RL Q	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE					Analyst: BRM
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	6/28/2020 11:21:51 AM
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	6/28/2020 11:21:51 AM
Surr: DNOP	93.0	70-130	%Rec	1	6/28/2020 11:21:51 AM
EPA METHOD 300.0: ANIONS					Analyst: CAS
Chloride	63	5.0	mg/L	10	6/28/2020 3:26:04 PM
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: DJF
Benzene	ND	1.0	μg/L	1	6/28/2020 7:08:00 PM
Toluene	ND	1.0	μg/L	1	6/28/2020 7:08:00 PM
Ethylbenzene	ND	1.0	μg/L	1	6/28/2020 7:08:00 PM
Xylenes, Total	ND	1.5	μg/L	1	6/28/2020 7:08:00 PM
Surr: 1,2-Dichloroethane-d4	101	70-130	%Rec	1	6/28/2020 7:08:00 PM
Surr: 4-Bromofluorobenzene	94.5	70-130	%Rec	1	6/28/2020 7:08:00 PM
Surr: Dibromofluoromethane	99.9	70-130	%Rec	1	6/28/2020 7:08:00 PM
Surr: Toluene-d8	107	70-130	%Rec	1	6/28/2020 7:08:00 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: DJF
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	6/28/2020 7:08:00 PM
Surr: BFB	105	70-130	%Rec	1	6/28/2020 7:08:00 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: KS
Total Dissolved Solids	840	200	*D mg/L	1	7/2/2020 7:20:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 9

Hall Environmental Analysis Laboratory, Inc.

WO#: **2006D79** *08-Jul-20*

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: MB SampType: mblk TestCode: EPA Method 300.0: Anions

Client ID: PBW Batch ID: R69982 RunNo: 69982

Prep Date: Analysis Date: 6/28/2020 SeqNo: 2430991 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride ND 0.50

Sample ID: LCS SampType: Ics TestCode: EPA Method 300.0: Anions

Client ID: LCSW Batch ID: R69982 RunNo: 69982

Prep Date: Analysis Date: 6/28/2020 SeqNo: 2430992 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 4.7 0.50 5.000 0 93.9 90 110

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 9

Hall Environmental Analysis Laboratory, Inc.

WO#: **2006D79**

08-Jul-20

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: LCS-53358 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range

Client ID: LCSW Batch ID: 53358 RunNo: 69959

Prep Date: 6/27/2020 Analysis Date: 6/28/2020 SeqNo: 2429996 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Diesel Range Organics (DRO)
 5.4
 1.0
 5.000
 0
 107
 70
 130

 Surr: DNOP
 0.52
 0.5000
 103
 70
 130

Sample ID: MB-53358 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range

Client ID: PBW Batch ID: 53358 RunNo: 69959

Prep Date: 6/27/2020 Analysis Date: 6/28/2020 SeqNo: 2429997 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Diesel Range Organics (DRO) ND 1.0

Motor Oil Range Organics (MRO) ND 5.0

Surr: DNOP 1.4 1.000 144 70 130 S

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 9

Hall Environmental Analysis Laboratory, Inc.

WO#: **2006D79**

08-Jul-20

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: mb1	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	8260: Volatile	s Short L	.ist	
Client ID: PBW	Batch	ID: A6	9970	F	RunNo: 6	9970				
Prep Date:	Analysis D	ate: 6/ 2	28/2020	S	SeqNo: 24	430532	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	10		10.00		99.6	70	130			
Surr: 4-Bromofluorobenzene	9.2		10.00		92.2	70	130			
Surr: Dibromofluoromethane	9.7		10.00		97.3	70	130			
Surr: Toluene-d8	10		10.00		104	70	130			

Sample ID: 100ng Ics	SampT	ype: LC	s	Tes	tCode: El	PA Method	8260: Volatile	es Short L	ist	
Client ID: LCSW	Batch	n ID: A6	9970	F	RunNo: 6	9970				
Prep Date:	Analysis D	oate: 6/	28/2020	5	SeqNo: 2	430533	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	103	70	130			
Toluene	20	1.0	20.00	0	101	70	130			
Surr: 1,2-Dichloroethane-d4	9.8		10.00		97.7	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		95.0	70	130			
Surr: Dibromofluoromethane	9.9		10.00		99.2	70	130			
Surr: Toluene-d8	9.5		10.00		94.6	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 9

Hall Environmental Analysis Laboratory, Inc.

WO#: **2006D79** *08-Jul-20*

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: mb1 SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: G69970 RunNo: 69970

Prep Date: Analysis Date: 6/28/2020 SegNo: 2430569 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 10 10.00 103 70 130

Sample ID: 2.5ug gro Ics SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSW Batch ID: G69970 RunNo: 69970

Prep Date: Analysis Date: 6/28/2020 SeqNo: 2430570 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Gasoline Range Organics (GRO)
 0.50
 0.050
 0.5000
 0
 99.2
 70
 130

 Surr: BFB
 10
 10.00
 103
 70
 130

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 9

Hall Environmental Analysis Laboratory, Inc.

WO#: **2006D79** *08-Jul-20*

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: MB-53443 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 53443 RunNo: 70111

Prep Date: 7/1/2020 Analysis Date: 7/2/2020 SegNo: 2436424 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-53443 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 53443 RunNo: 70111

Prep Date: 7/1/2020 Analysis Date: 7/2/2020 SeqNo: 2436425 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1000 20.0 1000 0 100 80 120

Sample ID: 2006D79-001CDUP SampType: DUP TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: MW-1 Batch ID: 53443 RunNo: 70111

Prep Date: 7/1/2020 Analysis Date: 7/2/2020 SeqNo: 2436431 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 652 40.0 0.615 10 *D

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 9 of 9

Hall Environmental Analysis Laboratory 4901 Hawkins NE

Sample Log-In Check List

Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

	nimas Environmental Services	Work Order Num	ber: 2006D79		RcptNo: 1	
Received By:	Scott Anderson	6/26/2020 8:10:00	АМ			
Completed By:	Emily Mocho	6/26/2020 8:38:25	АМ			
Reviewed By:	IR 6/26/20					
Chain of Custo						
1. Is Chain of Cus	tody complete?		Yes 🗸	No 🗌	Not Present	
2. How was the sa	mple delivered?		Courier			
Log In						
	made to cool the samp	les?	Yes 🗸	No 🗌	NA 🗆	
4. Were all sample	s received at a tempera	ture of >0° C to 6.0°C	Yes 🗸	No 🗆	NA 🗆	
5. Sample(s) in pro	oper container(s)?		Yes 🗸	No 🗆		
6, Sufficient sample	e volume for indicated to	est(s)?	Yes 🗸	No 🗆		
7. Are samples (ex	cept VOA and ONG) pro	operly preserved?	Yes 🗸	No 🗆		
8. Was preservative	e added to bottles?		Yes	No 🗸	NA 🗆	
9. Received at leas	t 1 vial with headspace	<1/4" for AQ VOA?	Yes	No 🗌	NA 🗹	
10. Were any samp	le containers received b	roken?	Yes	No 🗹	# of preserved	
A STATE OF THE PROPERTY OF THE PROPERTY OF	match bottle labels? cies on chain of custody)	Yes 🗸	No 🗆	bottles checked for pH: (<2 or >12	unless noted)
12. Are matrices cor	rectly identified on Chai	n of Custody?	Yes 🗸	No 🗌	Adjusted?	
13. Is it clear what a	nalyses were requested	?	Yes 🗸	No 🗆		0 1 -
	times able to be met? omer for authorization.)		Yes 🗹	No 🗆	Checked by:	PA 6. 3
	g (if applicable)					
	ed of all discrepancies v	with this order?	Yes	No 🗌	NA 🗹	
Person No	otified:	Date				
By Whom		Via:	eMail	Phone Fax	☐ In Person	
Regarding	ı:		V-07/20 3-0			
Client Inst	ructions:					
16. Additional rema	arks:					
17. Cooler Informa	THE RESERVE AND ADDRESS OF THE PARTY OF THE		ar war out	272.45		
Cooler No	Temp °C Condition 2.9 Good	Seal Intact Seal No Not Present	Seal Date	Signed By		
	3.1 Good	Not Present				

$\overline{}$
4
ਰ
-
O
age
a
ட

Client: A										
	Animas E.	Animas Environmental Services	Il Services	X Standard	□ Rush			ANA	ANALYSIS LABORATORY	
				Project Name:	action 1 2000	1		www.ha	www.hallenvironmental.com	
Mailing Address:	?:	P.O. Box 8			DIVIG LAIIUIAIIII		49	4901 Hawkins NE -	ins NE - Albuaueraue. NM 87109	10
		Farmington, I	Farmington, NM 87499-00008	Project #:	AEC 04000E		ř	Tel. 505-345-3975	5-3975 Fax 505-345-4107	
Phone #:		505-564-2281	1		AES 040005			4	Rec	
email or Fax#:		dreese@ani	dreese@animasenvironmental.com	Project Manager:						
QA/QC Package:	31			Elizabeth McNally, David Reese	id Reese		STO			
X Standard			□ Level 4 (Full Validation)				08 (
Accreditation:				Sampler: Z	2 cools 25		NRC			(1)
□ NELAP		□ Other		On Ice:		□ No	N/C			טגן
□ EDD (Type)				Sample Temperature:	34.101	2.5		O0t		V) >
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL NO.	втех 8021 (ОЯЭ) НЧТ	TDS SM25		Air Bubble
6-24-20	00:71	Н20	MW-1	(3) 40 mL glass (1) 250 mL amber glass (1) 560 mL plastic	3-HgCl2 cool- ct- 2-Non	100-	×	× ×		
6-24-20	11:32	Н20	MW-2	(3) 40 mL glass (1) 250 mL amber glass (1) 500 mL plastic	3-HgCl2 cael- c- 2-Non	-002	× ×	× ×		
6-24-20	89://	H20	MW-3	(3) 40 mL glass (1) 250 mL amber glass (1) 599 mL plastic	3-HgCl2 ceel 2-Non	-003	×	× ×		
1-24-20	77:01	Н20	MW-4	(3) 40 mL glass (1) 250 mL amber glass (1) \$40 mL plastic	3-HgCl2 cool %	1004	× ×	× ×		
		001	Heavy Industrial	(3) 40 mL glass	3-HgCl2			-	2	
		H20	Interstitial Well	(1) 250 mL amber glass (1) 500 mL plastic	cool 2-Non		× ×	×		
		Н20	Trip Blank		Cold	-600-	×			
			/		17	t Recleved Sp	26.2	26.26.20		
Date: Til	Time: (U28	Relinguished by:	\\ _\.	Received by:	Date 4/2	Time 1228 1628	Remarks:	Remarks: Low yield in	Remarks: Law yield wells. 11 Bottles Not completely filled out wise	
Date: / Til	Time:	Relinguished by:) . []	Received by:	Date	Time (C)	than	500ml		

Hall Environmental Analysis Laboratory
4901 Hawkins NE
Albuquerque, NM 87109
TEL: 505-345-3975 FAX: 505-345-4107
Website: clients.hallenvironmental.com

October 07, 2020

Elizabeth McNally Animas Environmental 624 E. Comanche Farmington, NM 87401 TEL: FAX

RE: BMG Landfarm OrderNo.: 2009H71

Dear Elizabeth McNally:

Hall Environmental Analysis Laboratory received 5 sample(s) on 9/30/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 10/7/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: MW-1

 Project:
 BMG Landfarm
 Collection Date: 9/29/2020 12:53:00 PM

 Lab ID:
 2009H71-001
 Matrix: AQUEOUS
 Received Date: 9/30/2020 7:35:00 AM

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE					Analyst: BRM
Diesel Range Organics (DRO)	5.4	1.0	mg/L	1	10/2/2020 1:54:34 PM
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	10/2/2020 1:54:34 PM
Surr: DNOP	104	70-130	%Rec	1	10/2/2020 1:54:34 PM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	21	5.0	mg/L	10	9/30/2020 5:24:53 PM
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: JMR
Benzene	ND	1.0	μg/L	1	10/6/2020 4:20:21 PM
Toluene	ND	1.0	μg/L	1	10/6/2020 4:20:21 PM
Ethylbenzene	ND	1.0	μg/L	1	10/6/2020 4:20:21 PM
Xylenes, Total	ND	1.5	μg/L	1	10/6/2020 4:20:21 PM
Surr: 1,2-Dichloroethane-d4	99.6	70-130	%Rec	1	10/6/2020 4:20:21 PM
Surr: Dibromofluoromethane	100	70-130	%Rec	1	10/6/2020 4:20:21 PM
Surr: Toluene-d8	98.4	70-130	%Rec	1	10/6/2020 4:20:21 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: JMR
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	10/6/2020 4:20:21 PM
Surr: BFB	97.6	70-130	%Rec	1	10/6/2020 4:20:21 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: KS
Total Dissolved Solids	614	40.0	*D mg/L	1	10/1/2020 2:01:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 11

Date Reported: 10/7/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: MW-2

 Project:
 BMG Landfarm
 Collection Date: 9/29/2020 12:18:00 PM

 Lab ID:
 2009H71-002
 Matrix: AQUEOUS
 Received Date: 9/30/2020 7:35:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE					Analyst: BRM
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	10/2/2020 2:04:19 PM
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	10/2/2020 2:04:19 PM
Surr: DNOP	110	70-130	%Rec	1	10/2/2020 2:04:19 PM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	270	50	* mg/L	100	9/30/2020 6:03:31 PM
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: JMR
Benzene	ND	1.0	μg/L	1	10/6/2020 5:49:26 PM
Toluene	ND	1.0	μg/L	1	10/6/2020 5:49:26 PM
Ethylbenzene	ND	1.0	μg/L	1	10/6/2020 5:49:26 PM
Xylenes, Total	ND	1.5	μg/L	1	10/6/2020 5:49:26 PM
Surr: 1,2-Dichloroethane-d4	103	70-130	%Rec	1	10/6/2020 5:49:26 PM
Surr: Dibromofluoromethane	104	70-130	%Rec	1	10/6/2020 5:49:26 PM
Surr: Toluene-d8	99.0	70-130	%Rec	1	10/6/2020 5:49:26 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: JMR
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	10/6/2020 5:49:26 PM
Surr: BFB	96.6	70-130	%Rec	1	10/6/2020 5:49:26 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: KS
Total Dissolved Solids	1140	100 *	D mg/L	1	10/1/2020 2:01:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 11

Date Reported: 10/7/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: MW-3

 Project:
 BMG Landfarm
 Collection Date: 9/29/2020 11:21:00 AM

 Lab ID:
 2009H71-003
 Matrix: AQUEOUS
 Received Date: 9/30/2020 7:35:00 AM

Analyses	Result	RL Q	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE					Analyst: BRM
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	10/2/2020 2:14:02 PM
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	10/2/2020 2:14:02 PM
Surr: DNOP	112	70-130	%Rec	1	10/2/2020 2:14:02 PM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	240	50	mg/L	100	9/30/2020 6:29:16 PM
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: JMR
Benzene	ND	1.0	μg/L	1	10/6/2020 7:18:18 PM
Toluene	ND	1.0	μg/L	1	10/6/2020 7:18:18 PM
Ethylbenzene	ND	1.0	μg/L	1	10/6/2020 7:18:18 PM
Xylenes, Total	ND	1.5	μg/L	1	10/6/2020 7:18:18 PM
Surr: 1,2-Dichloroethane-d4	104	70-130	%Rec	1	10/6/2020 7:18:18 PM
Surr: Dibromofluoromethane	106	70-130	%Rec	1	10/6/2020 7:18:18 PM
Surr: Toluene-d8	97.8	70-130	%Rec	1	10/6/2020 7:18:18 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: JMR
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	10/6/2020 7:18:18 PM
Surr: BFB	100	70-130	%Rec	1	10/6/2020 7:18:18 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: KS
Total Dissolved Solids	1100	100	*D mg/L	1	10/1/2020 2:01:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 11

Date Reported: 10/7/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: MW-4

 Project:
 BMG Landfarm
 Collection Date: 9/29/2020 10:39:00 AM

 Lab ID:
 2009H71-004
 Matrix: AQUEOUS
 Received Date: 9/30/2020 7:35:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE					Analyst: BRM
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	10/2/2020 2:23:43 PM
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	10/2/2020 2:23:43 PM
Surr: DNOP	114	70-130	%Rec	1	10/2/2020 2:23:43 PM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	53	5.0	mg/L	10	9/30/2020 6:42:07 PM
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: JMR
Benzene	ND	1.0	μg/L	1	10/6/2020 7:48:14 PM
Toluene	ND	1.0	μg/L	1	10/6/2020 7:48:14 PM
Ethylbenzene	ND	1.0	μg/L	1	10/6/2020 7:48:14 PM
Xylenes, Total	ND	1.5	μg/L	1	10/6/2020 7:48:14 PM
Surr: 1,2-Dichloroethane-d4	105	70-130	%Rec	1	10/6/2020 7:48:14 PM
Surr: Dibromofluoromethane	105	70-130	%Rec	1	10/6/2020 7:48:14 PM
Surr: Toluene-d8	96.9	70-130	%Rec	1	10/6/2020 7:48:14 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: JMR
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	10/6/2020 7:48:14 PM
Surr: BFB	97.0	70-130	%Rec	1	10/6/2020 7:48:14 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: KS
Total Dissolved Solids	690	100	*D mg/L	1	10/1/2020 2:01:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 11

Date Reported: 10/7/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Trip Blank

Project: BMG Landfarm Collection Date:

Lab ID: 2009H71-005 **Matrix:** TRIP BLANK **Received Date:** 9/30/2020 7:35:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: JMR
Benzene	ND	1.0	μg/L	1	10/6/2020 8:18:05 PM
Toluene	ND	1.0	μg/L	1	10/6/2020 8:18:05 PM
Ethylbenzene	ND	1.0	μg/L	1	10/6/2020 8:18:05 PM
Xylenes, Total	ND	1.5	μg/L	1	10/6/2020 8:18:05 PM
Surr: 1,2-Dichloroethane-d4	103	70-130	%Rec	1	10/6/2020 8:18:05 PM
Surr: 4-Bromofluorobenzene	107	70-130	%Rec	1	10/6/2020 8:18:05 PM
Surr: Dibromofluoromethane	104	70-130	%Rec	1	10/6/2020 8:18:05 PM
Surr: Toluene-d8	99.0	70-130	%Rec	1	10/6/2020 8:18:05 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 11

Hall Environmental Analysis Laboratory, Inc.

WO#: **2009H71** *07-Oct-20*

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: MB SampType: mblk TestCode: EPA Method 300.0: Anions

Client ID: PBW Batch ID: R72313 RunNo: 72313

Prep Date: Analysis Date: 9/30/2020 SeqNo: 2536157 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride ND 0.50

Sample ID: LCS SampType: Ics TestCode: EPA Method 300.0: Anions

Client ID: LCSW Batch ID: R72313 RunNo: 72313

Prep Date: Analysis Date: 9/30/2020 SeqNo: 2536158 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 4.6 0.50 5.000 0 92.6 90 110

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 11

Hall Environmental Analysis Laboratory, Inc.

2009H71 07-Oct-20

WO#:

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: MB-55602 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range

Client ID: PBW Batch ID: 55602 RunNo: 72349

Prep Date: 10/1/2020 Analysis Date: 10/2/2020 SeqNo: 2538618 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Diesel Range Organics (DRO) ND 1.0

Motor Oil Range Organics (MRO) ND 5.0

Surr: DNOP 1.1 1.000 107 70 130

Sample ID: LCS-55602 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range

Client ID: LCSW Batch ID: 55602 RunNo: 72349

Prep Date: 10/1/2020 Analysis Date: 10/2/2020 SeqNo: 2538619 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Diesel Range Organics (DRO)
 5.1
 1.0
 5.000
 0
 102
 70
 130

 Surr: DNOP
 0.53
 0.5000
 105
 70
 130

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 11

Hall Environmental Analysis Laboratory, Inc.

WO#: **2009H71**

07-Oct-20

Client: Animas Environmental
Project: BMG Landfarm

Sample ID: 100ng Ics	SampT	ype: LC	S	Tes	tCode: El	PA Method	8260: Volatile	es Short L	ist	
Client ID: LCSW	Batch	ID: R7	2450	RunNo: 72450						
Prep Date:	Analysis D	ate: 10	/6/2020	9	SeqNo: 2	542682	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	97.7	70	130			
Toluene	21	1.0	20.00	0	106	70	130			
Surr: 1,2-Dichloroethane-d4	9.7		10.00		96.8	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		107	70	130			
Surr: Dibromofluoromethane	9.9		10.00		99.1	70	130			
Surr: Toluene-d8	10		10.00		99.6	70	130			

Sample ID: mb1	SampT	уре: МЕ	BLK	TestCode: EPA Method 8260: Volatiles Short List							
Client ID: PBW	Batcl	Batch ID: R72450 RunNo: 72450									
Prep Date:	Analysis D	Date: 10	0/6/2020	\$	SeqNo: 2	542683	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	ND	1.0									
Toluene	ND	1.0									
Ethylbenzene	ND	1.0									
Xylenes, Total	ND	1.5									
Surr: 1,2-Dichloroethane-d4	9.6		10.00		95.9	70	130				
Surr: 4-Bromofluorobenzene	11		10.00		106	70	130				
Surr: Dibromofluoromethane	9.6		10.00		96.1	70	130				
Surr: Toluene-d8	9.8		10.00		98.0	70	130				

Sample ID: 2009h71-001ams	Samp1	Гуре: М .	3	Tes	tCode: El	PA Method	8260: Volatile	s Short L	.ist	
Client ID: MW-1	Batcl	h ID: R7	2450	RunNo: 72450						
Prep Date:	Analysis D	Date: 10)/6/2020	5	SeqNo: 2	542685	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	97.7	70	130			
Toluene	20	1.0	20.00	0	100	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		100	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		108	70	130			
Surr: Dibromofluoromethane	9.8		10.00		98.2	70	130			
Surr: Toluene-d8	9.8		10.00		97.6	70	130			

Sample ID: 2009h71-001amsd	SampT	ype: MS	SD	Tes	tCode: El	PA Method	8260: Volatile	s Short L	.ist	
Client ID: MW-1	Batch	ID: R7	2450	F	RunNo: 7 2	2450				
Prep Date:	Analysis D	ate: 10	/6/2020	8	SeqNo: 2	542686	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	96.2	70	130	1.59	20	
Toluene	19	1.0	20.00	0	95.6	70	130	4.54	20	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 11

Hall Environmental Analysis Laboratory, Inc.

WO#: **2009H71** *07-Oct-20*

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: 2009h71-001amsd	I SampT	уре: М \$	SD	Tes	tCode: El	PA Method	8260: Volatile	s Short L	.ist	
Client ID: MW-1	Batch	ID: R7	2450	F	RunNo: 7 2	2450				
Prep Date:	Analysis D	ate: 10	0/6/2020	S	SeqNo: 2	542686	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	10		10.00		102	70	130	0	0	
Surr: 4-Bromofluorobenzene	11		10.00		106	70	130	0	0	
Surr: Dibromofluoromethane	10		10.00		103	70	130	0	0	
Surr: Toluene-d8	9.9		10.00		99.3	70	130	0	0	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 11

Hall Environmental Analysis Laboratory, Inc.

2009H71 07-Oct-20

WO#:

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: 2.5ug gro Ics SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSW Batch ID: G72450 RunNo: 72450

Prep Date: Analysis Date: 10/6/2020 SeqNo: 2542705 Units: mg/L

SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result PQL LowLimit Qual Gasoline Range Organics (GRO) 0.46 0.050 0.5000 Λ 92.3 70 130

Surr: BFB 9.8 10.00 70 130

Sample ID: mb1 TestCode: EPA Method 8015D: Gasoline Range SampType: MBLK

Client ID: PBW Batch ID: G72450 RunNo: 72450

Prep Date: Analysis Date: 10/6/2020 SeqNo: 2542706 Units: mg/L

%RPD **RPDLimit** Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit Qual

Gasoline Range Organics (GRO) 0.050 ND

Surr: BFB 70 9.4 10.00 94.4 130

Sample ID: 2009h71-002ams SampType: MS TestCode: EPA Method 8015D: Gasoline Range

Client ID: MW-2 Batch ID: G72450 RunNo: 72450

Prep Date: Analysis Date: 10/6/2020 SeqNo: 2542709 Units: mg/L

PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual Gasoline Range Organics (GRO) 0.44 0.050 0.5000 0 88.4 70 130

Surr: BFB 10.00 95.5 9.5 70 130

TestCode: EPA Method 8015D: Gasoline Range Sample ID: 2009h71-002amsd SampType: MSD

Client ID: MW-2 Batch ID: G72450 RunNo: 72450

Prep Date: Analysis Date: 10/6/2020 SeqNo: 2542710 Units: mg/L

PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual Gasoline Range Organics (GRO) 0.40 0.050 0.5000 80.2 70 130 9.78 20 Surr: BFB 9.3 10.00 93.2 70 130 0 0

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded Н

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 10 of 11

Hall Environmental Analysis Laboratory, Inc.

WO#: **2009H71** *07-Oct-20*

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: MB-55575 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 55575 RunNo: 72318

Prep Date: 9/30/2020 Analysis Date: 10/1/2020 SeqNo: 2536400 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-55575 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 55575 RunNo: 72318

Prep Date: 9/30/2020 Analysis Date: 10/1/2020 SeqNo: 2536401 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 997 20.0 1000 0 99.7 80 120

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quantitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 11

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

Sample Log-In Check List

Client Name: A	nimas Env	ironmental S	e Work Order Nur	mber: 200	9H71		Ro	eptNo: 1
Received By:	Juan Rojas	5	9/30/2020 7:35:00) AM		flans	2j	
Completed By:	Isaiah Ortiz	z	9/30/2020 8:24:04	4 AM		I	OL	
Reviewed By:	291	30/20						
Chain of Custo	<u>idy</u>							
1. Is Chain of Cust	tody comple	ete?		Yes	~	No [Not Present	
2. How was the sa	mple delive	ered?		Cou	irier			
Log In								
3. Was an attempt	made to co	ool the sample	es?	Yes	V	No [□ NA	
4. Were all sample	s received	at a temperati	ure of >0° C to 6.0°C	Yes	~	No [NA NA	
5. Sample(s) in pro	oper contair	ner(s)?		Yes	~	No [
6. Sufficient sample	e volume fo	r indicated tes	st(s)?	Yes	~	No 🗆		
7. Are samples (ex	cept VOA a	nd ONG) proj	perly preserved?	Yes	V	No 🗆]	
8. Was preservative				Yes		No 🗸	NA NA	
9. Received at leas	st 1 vial with	headspace <	1/4" for AQ VOA?	Yes	~	No 🗆] NA	
10. Were any samp	le container	s received br	oken?	Yes		No 🔽	# of preserved	
11. Does paperwork				Yes	~	No 🗆	bottles checked for pH:	
(Note discrepand 12. Are matrices cor			of CustoduO			No [Adjusted	(<2 or >12 unless noted)
13. Is it clear what a			1 / 3 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2	Yes	V	No [/	1.7
14. Were all holding	and the second second	COLUMN STREET		Yes		No [Checked	by C12 9/30/20
(If no, notify cust				Yes	V	NO. L	, onconed	
Special Handlin	g (if appi	licable)						
15. Was client notifi	ied of all dis	crepancies w	ith this order?	Yes		No [□ NA	\checkmark
Person No	otified:		Dat	te:	_		-	
By Whom	I T		Via	: eN	lail 🗌	Phone F	ax In Person	
Regarding	j: [-						
Client Inst	tructions:							-
16. Additional rema	arks:							
17. Cooler Informa	ation							
Cooler No	Temp °C	Condition	Seal Intact Seal No	Seal D	Date	Signed By		
			Yes					
			Yes					
3 (0.2	Good	Yes					

Client											
Froject Name: Project Hit: AES 040605 Project Hit: Greese@enimasenvironmental.com Project Manager: Counter		nimas E	nvironmen	ital Services	X Standard	□ Rush			ANA	LYSIS LABORATORY	
##: Greese@animassenvironmental.com Project #: AES 040605 ##: Greese@animassenvironmental.com Project Manager: Signature					Project Name:	DNAC Londfor			www.ha	llenvironmental.com	
##: dreese@animasenvironmental com Project #: AES 040605 125	Mailing Address	14	P.O. Box 8			DIVIG LAIIUIA		49	01 Hawki		710
##: dreese@paintassenvironmental.com Project Manager: Container Type and # Time Matrix Sample Request ID Container Type and # Time Matrix Sample Request ID Container Type and # Time Matrix Sample Request ID Container Type and # Time Matrix Sample Request ID Container Type and # Time Matrix Sample Request ID Container Type and # Time Matrix Sample Request ID Container Type and # Time Matrix Sample Request ID Container Type and # Time Matrix Sample Request ID Container Type and # Time Matrix Sample Request ID Container Type and # Time Matrix Sample Request ID Container Type and # Time Matrix Sample Request ID Container Type and # Time Matrix Sample Request ID Container Type and # Time Matrix Sample Request ID Container Type and # Time Matrix Sample Request ID Container Type and # Time Matrix Sample Request ID Container Type and # Time Matrix Container Type and * Time Matrix Container Type and * Time Matrix Container Type and * Time Matrix Container			Farmingtor	, NM 87499-00008	Project #:	AEC 04060E		_ <u>₩</u>	1. 505-34		
##. Greese@animasenvironmental.com Project Manager: age: — Level 4 (Full Validation) Time Matrix Sample Request ID Container Type and # Preservative Cool (2.5.2 H2O MW-1 (1).250 m. labelete (2.4.0 m. labelete) 12.5.3 H2O MW-2 (1).250 m. labelete (2.4.0 m. labelete) 12.5.4 H2O MW-3 (1).250 m. labelete (2.4.0 m. labelete) 12.5.5 H2O MW-4 (1).250 m. labelete (2.4.0 m. labelete) 12.5.5 H2O MW-4 (1).250 m. labelete (2.4.0 m. labelete) 12.5.5 H2O MW-4 (1).250 m. labelete (2.4.0 m. labelete) 12.5.5 H2O MW-4 (1).250 m. labelete (2.4.0 m. labelete) 12.5.5 H2O MW-4 (1).250 m. labelete (2.4.0 m. labelete) 12.5.5 H2O MW-4 (1).250 m. labelete (2.4.0 m. labelete) 13.50 m. labelete (2.4.0 m. labelete) 14.5.5 MW-4 (1).250 m. labelete (2.4.0 m. labelete) 15.5.5 H2O MW-4 (1).250 m. labelete (2.4.0 m. labelete	hone #:		505-564-22	181		AES 040003			⋖	Re	
125 H20 MW-2 (1) 350 m. labert MW-3 (1) 350 m. labert MW-4 MW-4 (1) 350 m. labert	email or Fax#:		dreese@a	inimasenvironmental.com	Project Manager:						
125 H20	2A/QC Package:				Elizabeth McNally, Davi	id Reese		STO			
Time Matrix Sample Request ID Container Type and # Preservative Prese	K Standard			□ Level 4 (Full Validation)				08 (0			
Time Matrix Sample Request ID Container Type and # Preservative Type Container Type and # Preservative Type Container Type and # Type Container Type Container Type Type Container Type Container Type Type Container Type Container Type Container Type Type Container Type Type Container Type Container Type Type Container Type Type Type Type Container Type	Accreditation:				Sampler:			NBC		(IV	(N
1253 H20 MW-1 (1) 350 m.l. amber glass 3 HgCl2 Container Type and # Preservative Type Typ	NELAP		□ Other			XYes	□ No	V/O			10
125 H20 MW-1 (1) 350 mL glass 3-HgCl2 COOTAINET Type and # Preservative HEAL NO. COOTAINET Type and # Preservative HEAL NO. COOTAINET Type and # Preservative Type COOTAINET Extension COOTAINET	EDD (Type)				Sample Temperature:	8	narks .	2.7.			Y) s
1253 H20 MW-1 (1)50 mt. plasts 3-HgCl2 CO CO CO CO CO CO CO C	Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	2009 H71				Air Bubble
12 18 18 18 18 18 18 18		253	Н20	MW-1	(3) 40 mL glass (1) 250 mL amber glass (1) 500 mL plastic	3-HgCl2 cool 2-Non	3				
17.2 H20		218	Н20	Z-MM-2	(3) 40 mL glass (1) 250 mL amber glass (1) 500 mL plastic	3-HgCl2 cool 2-Non	700				
19-20 10.39 H20 MW-4 (1).550 mL amber glass 3-HgCl2 Cold		121	H20	E-MIN	(3) 40 mL glass (1) 250 mL amber glass (1) 500 mL plastic	3-HgCl2 cool 2-Non	500				
N/A H20 Interestical Well (1) 250 mL plastic 2-Non		639	H20	4-WM	(3) 40 mL glass (1) 250 mL amber glass (1) 500 mL plastic	3-HgCl2 cool 2-Non	78				
Time: Relinquished by: Received by: Received by: Time: Relinquished by: Time:	ν	11/4	Н20	2	(1) 250-m/samber glass (1) 500 mL plastic	e3-HgCl2 cgol 2-Ndn					
Time: Relinquished by: Received by: Receive			Н20	Trip Blank		Cold	500	×			
Time: Relinquished by: Received by: Received by: Neceived	1/257	me:	Relinguished	by:	71	Date 1991	Time 1735	Remarks:	0.0	101	
	Show		Relinquished	80.00	T	Date /	Time 7		5	9	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

April 21, 2020

Elizabeth McNally
Animas Environmental
604 Pinon Street
Farmington, NM 87401
TEL:
FAX:

RE: BMG Landfarm OrderNo.: 2004127

Dear Elizabeth McNally:

Hall Environmental Analysis Laboratory received 16 sample(s) on 4/3/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 4/21/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Cell #1 VZ S-1

 Project:
 BMG Landfarm
 Collection Date: 4/2/2020 10:52:00 AM

 Lab ID:
 2004127-001
 Matrix: SOIL
 Received Date: 4/3/2020 8:00:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: MRA
Fluoride	ND	1.5	mg/Kg	5	4/9/2020 7:56:25 AM
Chloride	220	7.5	mg/Kg	5	4/9/2020 7:56:25 AM
Nitrogen, Nitrite (As N)	ND	1.5	mg/Kg	5	4/8/2020 5:54:14 PM
Bromide	2.2	1.5	mg/Kg	5	4/8/2020 5:54:14 PM
Nitrogen, Nitrate (As N)	4.1	1.5	mg/Kg	5	4/8/2020 5:54:14 PM
Phosphorus, Orthophosphate (As P)	ND	7.5	mg/Kg	5	4/8/2020 5:54:14 PM
Sulfate	14	7.5	mg/Kg	5	4/8/2020 5:54:14 PM
EPA METHOD 7471: MERCURY					Analyst: pmf
Mercury	ND	0.033	mg/Kg	1	4/9/2020 3:33:32 PM
EPA METHOD 6010B: SOIL METALS					Analyst: ELS
Arsenic	ND	5.0	mg/Kg	2	4/20/2020 9:40:29 AM
Barium	75	0.20	mg/Kg	2	4/20/2020 9:40:29 AM
Cadmium	ND	0.20	mg/Kg	2	4/20/2020 9:40:29 AM
Calcium	5600	50	mg/Kg	2	4/20/2020 9:40:29 AM
Chromium	10	0.60	mg/Kg	2	4/20/2020 9:40:29 AM
Lead	3.0	0.60	mg/Kg	2	4/20/2020 9:40:29 AM
Molybdenum	ND	1.0	mg/Kg	2	4/20/2020 9:40:29 AM
Potassium	1600	100	mg/Kg	2	4/20/2020 9:40:29 AM
Selenium	ND	5.0	mg/Kg	2	4/20/2020 9:40:29 AM
Silver	ND	0.50	mg/Kg	2	4/20/2020 9:40:29 AM
Sodium	270	50	mg/Kg	2	4/20/2020 9:40:29 AM
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst: JMR
Benzene	ND	0.025	mg/Kg	1	4/8/2020 1:03:51 AM
Toluene	ND	0.049	mg/Kg	1	4/8/2020 1:03:51 AM
Ethylbenzene	ND	0.049	mg/Kg	1	4/8/2020 1:03:51 AM
Xylenes, Total	ND	0.099	mg/Kg	1	4/8/2020 1:03:51 AM
Surr: 1,2-Dichloroethane-d4	98.0	70-130	%Rec	1	4/8/2020 1:03:51 AM
Surr: 4-Bromofluorobenzene	95.5	70-130	%Rec	1	4/8/2020 1:03:51 AM
Surr: Dibromofluoromethane	106	70-130	%Rec	1	4/8/2020 1:03:51 AM
Surr: Toluene-d8	99.1	70-130	%Rec	1	4/8/2020 1:03:51 AM
EPA METHOD 418.1: TPH					Analyst: CFC
Petroleum Hydrocarbons, TR	ND	17	mg/Kg	1	4/9/2020

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 23

Date Reported: 4/21/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Cell #1 VZ S-2

 Project:
 BMG Landfarm
 Collection Date: 4/2/2020 11:01:00 AM

 Lab ID:
 2004127-002
 Matrix: SOIL
 Received Date: 4/3/2020 8:00:00 AM

Analyses	Result	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	240	60	mg/Kg	20	4/9/2020 8:33:38 AM
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst: JMR
Benzene	ND	0.024	mg/Kg	1	4/8/2020 1:32:36 AM
Toluene	ND	0.049	mg/Kg	1	4/8/2020 1:32:36 AM
Ethylbenzene	ND	0.049	mg/Kg	1	4/8/2020 1:32:36 AM
Xylenes, Total	ND	0.097	mg/Kg	1	4/8/2020 1:32:36 AM
Surr: 1,2-Dichloroethane-d4	95.7	70-130	%Rec	1	4/8/2020 1:32:36 AM
Surr: 4-Bromofluorobenzene	90.7	70-130	%Rec	1	4/8/2020 1:32:36 AM
Surr: Dibromofluoromethane	104	70-130	%Rec	1	4/8/2020 1:32:36 AM
Surr: Toluene-d8	97.2	70-130	%Rec	1	4/8/2020 1:32:36 AM
EPA METHOD 418.1: TPH					Analyst: CFC
Petroleum Hydrocarbons, TR	ND	18	mg/Kg	1	4/9/2020

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 23

Date Reported: 4/21/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Cell #1 VZ S-3

 Project:
 BMG Landfarm
 Collection Date: 4/2/2020 11:09:00 AM

 Lab ID:
 2004127-003
 Matrix: SOIL
 Received Date: 4/3/2020 8:00:00 AM

Analyses	Result	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	ND	60	mg/Kg	20	4/9/2020 8:46:03 AM
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst: JMR
Benzene	ND	0.024	mg/Kg	1	4/8/2020 2:01:20 AM
Toluene	ND	0.049	mg/Kg	1	4/8/2020 2:01:20 AM
Ethylbenzene	ND	0.049	mg/Kg	1	4/8/2020 2:01:20 AM
Xylenes, Total	ND	0.098	mg/Kg	1	4/8/2020 2:01:20 AM
Surr: 1,2-Dichloroethane-d4	98.0	70-130	%Rec	1	4/8/2020 2:01:20 AM
Surr: 4-Bromofluorobenzene	94.7	70-130	%Rec	1	4/8/2020 2:01:20 AM
Surr: Dibromofluoromethane	105	70-130	%Rec	1	4/8/2020 2:01:20 AM
Surr: Toluene-d8	96.7	70-130	%Rec	1	4/8/2020 2:01:20 AM
EPA METHOD 418.1: TPH					Analyst: CFC
Petroleum Hydrocarbons, TR	ND	19	mg/Kg	1	4/9/2020

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 23

Date Reported: 4/21/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Cell #1 VZ S-4

 Project:
 BMG Landfarm
 Collection Date: 4/2/2020 11:16:00 AM

 Lab ID:
 2004127-004
 Matrix: SOIL
 Received Date: 4/3/2020 8:00:00 AM

Analyses	Result	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	ND	60	mg/Kg	20	4/9/2020 8:58:28 AM
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst: JMR
Benzene	ND	0.025	mg/Kg	1	4/8/2020 2:30:03 AM
Toluene	ND	0.049	mg/Kg	1	4/8/2020 2:30:03 AM
Ethylbenzene	ND	0.049	mg/Kg	1	4/8/2020 2:30:03 AM
Xylenes, Total	ND	0.099	mg/Kg	1	4/8/2020 2:30:03 AM
Surr: 1,2-Dichloroethane-d4	96.9	70-130	%Rec	1	4/8/2020 2:30:03 AM
Surr: 4-Bromofluorobenzene	91.4	70-130	%Rec	1	4/8/2020 2:30:03 AM
Surr: Dibromofluoromethane	102	70-130	%Rec	1	4/8/2020 2:30:03 AM
Surr: Toluene-d8	101	70-130	%Rec	1	4/8/2020 2:30:03 AM
EPA METHOD 418.1: TPH					Analyst: CFC
Petroleum Hydrocarbons, TR	ND	19	mg/Kg	1	4/9/2020

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 23

Date Reported: 4/21/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Cell #2 VZ S-1

 Project:
 BMG Landfarm
 Collection Date: 4/2/2020 11:24:00 AM

 Lab ID:
 2004127-005
 Matrix: SOIL
 Received Date: 4/3/2020 8:00:00 AM

Analyses	Result	RL (Qual Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: MRA
Fluoride	ND	1.5	mg/Kg	5	4/9/2020 9:10:53 AM
Chloride	12	7.5	mg/Kg	5	4/9/2020 9:10:53 AM
Nitrogen, Nitrite (As N)	ND	1.5	mg/Kg	5	4/8/2020 7:45:22 PM
Bromide	ND	1.5	mg/Kg	5	4/8/2020 7:45:22 PM
Nitrogen, Nitrate (As N)	5.8	1.5	mg/Kg	5	4/8/2020 7:45:22 PM
Phosphorus, Orthophosphate (As P)	ND	7.5	mg/Kg	5	4/8/2020 7:45:22 PM
Sulfate	22	7.5	mg/Kg	5	4/8/2020 7:45:22 PM
EPA METHOD 7471: MERCURY					Analyst: pmf
Mercury	ND	0.033	mg/Kg	1	4/9/2020 3:35:34 PM
EPA METHOD 6010B: SOIL METALS					Analyst: ELS
Arsenic	6.5	5.0	mg/Kg	2	4/20/2020 9:42:17 AM
Barium	110	0.20	mg/Kg	2	4/20/2020 9:42:17 AM
Cadmium	ND	0.20	mg/Kg	2	4/20/2020 9:42:17 AM
Calcium	4000	130	mg/Kg	5	4/20/2020 11:54:43 AM
Chromium	7.9	0.60	mg/Kg	2	4/20/2020 9:42:17 AM
Lead	3.1	0.60	mg/Kg	2	4/20/2020 9:42:17 AM
Molybdenum	ND	1.0	mg/Kg	2	4/20/2020 9:42:17 AM
Potassium	1500	250	mg/Kg	5	4/20/2020 11:54:43 AM
Selenium	ND	5.0	mg/Kg	2	4/20/2020 9:42:17 AM
Silver	ND	0.50	mg/Kg	2	4/20/2020 9:42:17 AM
Sodium	160	130	mg/Kg	5	4/20/2020 11:54:43 AM
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst: JMR
Benzene	ND	0.025	mg/Kg	1	4/8/2020 2:58:51 AM
Toluene	ND	0.049	mg/Kg	1	4/8/2020 2:58:51 AM
Ethylbenzene	ND	0.049	mg/Kg	1	4/8/2020 2:58:51 AM
Xylenes, Total	ND	0.099	mg/Kg	1	4/8/2020 2:58:51 AM
Surr: 1,2-Dichloroethane-d4	97.7	70-130	%Rec	1	4/8/2020 2:58:51 AM
Surr: 4-Bromofluorobenzene	95.1	70-130	%Rec	1	4/8/2020 2:58:51 AM
Surr: Dibromofluoromethane	102	70-130	%Rec	1	4/8/2020 2:58:51 AM
Surr: Toluene-d8	96.5	70-130	%Rec	1	4/8/2020 2:58:51 AM
EPA METHOD 418.1: TPH					Analyst: CFC
Petroleum Hydrocarbons, TR	ND	19	mg/Kg	1	4/9/2020

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 23

Date Reported: 4/21/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Cell #2 VZ S-2

 Project:
 BMG Landfarm
 Collection Date: 4/2/2020 11:31:00 AM

 Lab ID:
 2004127-006
 Matrix: SOIL
 Received Date: 4/3/2020 8:00:00 AM

Analyses	Result	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	ND	60	mg/Kg	20	4/9/2020 9:23:17 AM
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst: JMR
Benzene	ND	0.024	mg/Kg	1	4/8/2020 3:27:34 AM
Toluene	ND	0.048	mg/Kg	1	4/8/2020 3:27:34 AM
Ethylbenzene	ND	0.048	mg/Kg	1	4/8/2020 3:27:34 AM
Xylenes, Total	ND	0.097	mg/Kg	1	4/8/2020 3:27:34 AM
Surr: 1,2-Dichloroethane-d4	97.8	70-130	%Rec	1	4/8/2020 3:27:34 AM
Surr: 4-Bromofluorobenzene	93.7	70-130	%Rec	1	4/8/2020 3:27:34 AM
Surr: Dibromofluoromethane	101	70-130	%Rec	1	4/8/2020 3:27:34 AM
Surr: Toluene-d8	98.0	70-130	%Rec	1	4/8/2020 3:27:34 AM
EPA METHOD 418.1: TPH					Analyst: CFC
Petroleum Hydrocarbons, TR	ND	20	mg/Kg	1	4/9/2020

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 23

Date Reported: 4/21/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Cell #2 VZ S-3

 Project:
 BMG Landfarm
 Collection Date: 4/2/2020 11:38:00 AM

 Lab ID:
 2004127-007
 Matrix: SOIL
 Received Date: 4/3/2020 8:00:00 AM

Analyses	Result	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	ND	60	mg/Kg	20	4/9/2020 10:00:31 AM
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst: JMR
Benzene	ND	0.025	mg/Kg	1	4/8/2020 3:56:17 AM
Toluene	ND	0.050	mg/Kg	1	4/8/2020 3:56:17 AM
Ethylbenzene	ND	0.050	mg/Kg	1	4/8/2020 3:56:17 AM
Xylenes, Total	ND	0.10	mg/Kg	1	4/8/2020 3:56:17 AM
Surr: 1,2-Dichloroethane-d4	98.5	70-130	%Rec	1	4/8/2020 3:56:17 AM
Surr: 4-Bromofluorobenzene	93.8	70-130	%Rec	1	4/8/2020 3:56:17 AM
Surr: Dibromofluoromethane	101	70-130	%Rec	1	4/8/2020 3:56:17 AM
Surr: Toluene-d8	99.2	70-130	%Rec	1	4/8/2020 3:56:17 AM
EPA METHOD 418.1: TPH					Analyst: CFC
Petroleum Hydrocarbons, TR	ND	19	mg/Kg	1	4/9/2020

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 23

Date Reported: 4/21/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Cell #2 VZ S-4

 Project:
 BMG Landfarm
 Collection Date: 4/2/2020 11:47:00 AM

 Lab ID:
 2004127-008
 Matrix: SOIL
 Received Date: 4/3/2020 8:00:00 AM

Analyses	Result	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	ND	60	mg/Kg	20	4/9/2020 10:12:55 AM
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst: JMR
Benzene	ND	0.025	mg/Kg	1	4/8/2020 4:25:00 AM
Toluene	ND	0.049	mg/Kg	1	4/8/2020 4:25:00 AM
Ethylbenzene	ND	0.049	mg/Kg	1	4/8/2020 4:25:00 AM
Xylenes, Total	ND	0.099	mg/Kg	1	4/8/2020 4:25:00 AM
Surr: 1,2-Dichloroethane-d4	99.8	70-130	%Rec	1	4/8/2020 4:25:00 AM
Surr: 4-Bromofluorobenzene	94.4	70-130	%Rec	1	4/8/2020 4:25:00 AM
Surr: Dibromofluoromethane	104	70-130	%Rec	1	4/8/2020 4:25:00 AM
Surr: Toluene-d8	98.2	70-130	%Rec	1	4/8/2020 4:25:00 AM
EPA METHOD 418.1: TPH					Analyst: CFC
Petroleum Hydrocarbons, TR	ND	19	mg/Kg	1	4/9/2020

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 23

Date Reported: 4/21/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Cell #3 VZ S-1

 Project:
 BMG Landfarm
 Collection Date: 4/2/2020 11:57:00 AM

 Lab ID:
 2004127-009
 Matrix: SOIL
 Received Date: 4/3/2020 8:00:00 AM

Analyses	Result	RL (Qual Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: MRA
Fluoride	ND	1.5	mg/Kg	5	4/9/2020 10:25:20 AM
Chloride	11	7.5	mg/Kg	5	4/9/2020 10:25:20 AM
Nitrogen, Nitrite (As N)	ND	1.5	mg/Kg	5	4/8/2020 8:47:06 PM
Bromide	ND	1.5	mg/Kg	5	4/8/2020 8:47:06 PM
Nitrogen, Nitrate (As N)	2.4	1.5	mg/Kg	5	4/8/2020 8:47:06 PM
Phosphorus, Orthophosphate (As P)	ND	7.5	mg/Kg	5	4/8/2020 8:47:06 PM
Sulfate	12	7.5	mg/Kg	5	4/8/2020 8:47:06 PM
EPA METHOD 7471: MERCURY					Analyst: pmf
Mercury	ND	0.033	mg/Kg	1	4/9/2020 5:24:52 AM
EPA METHOD 6010B: SOIL METALS					Analyst: ELS
Arsenic	ND	5.0	mg/Kg	2	4/20/2020 9:44:12 AM
Barium	74	0.20	mg/Kg	2	4/20/2020 9:44:12 AM
Cadmium	ND	0.20	mg/Kg	2	4/20/2020 9:44:12 AM
Calcium	1100	50	mg/Kg	2	4/20/2020 9:44:12 AM
Chromium	3.8	0.60	mg/Kg	2	4/20/2020 9:44:12 AM
Lead	2.4	0.60	mg/Kg	2	4/20/2020 9:44:12 AM
Molybdenum	ND	0.99	mg/Kg	2	4/20/2020 9:44:12 AM
Potassium	730	99	mg/Kg	2	4/20/2020 9:44:12 AM
Selenium	ND	5.0	mg/Kg	2	4/20/2020 9:44:12 AM
Silver	ND	0.50	mg/Kg	2	4/20/2020 9:44:12 AM
Sodium	110	50	mg/Kg	2	4/20/2020 9:44:12 AM
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst: JMR
Benzene	ND	0.025	mg/Kg	1	4/8/2020 4:53:19 AM
Toluene	ND	0.050	mg/Kg	1	4/8/2020 4:53:19 AM
Ethylbenzene	ND	0.050	mg/Kg	1	4/8/2020 4:53:19 AM
Xylenes, Total	ND	0.10	mg/Kg	1	4/8/2020 4:53:19 AM
Surr: 1,2-Dichloroethane-d4	101	70-130	%Rec	1	4/8/2020 4:53:19 AM
Surr: 4-Bromofluorobenzene	97.5	70-130	%Rec	1	4/8/2020 4:53:19 AM
Surr: Dibromofluoromethane	101	70-130	%Rec	1	4/8/2020 4:53:19 AM
Surr: Toluene-d8	94.2	70-130	%Rec	1	4/8/2020 4:53:19 AM
EPA METHOD 418.1: TPH					Analyst: CFC
Petroleum Hydrocarbons, TR	59	20	mg/Kg	1	4/15/2020

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 23

Date Reported: 4/21/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Cell #3 VZ S-2

 Project:
 BMG Landfarm
 Collection Date: 4/2/2020 12:04:00 PM

 Lab ID:
 2004127-010
 Matrix: SOIL
 Received Date: 4/3/2020 8:00:00 AM

Analyses	Result	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	ND	60	mg/Kg	20	4/9/2020 10:37:44 AM
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst: JMR
Benzene	ND	0.025	mg/Kg	1	4/8/2020 5:21:53 AM
Toluene	ND	0.050	mg/Kg	1	4/8/2020 5:21:53 AM
Ethylbenzene	ND	0.050	mg/Kg	1	4/8/2020 5:21:53 AM
Xylenes, Total	ND	0.099	mg/Kg	1	4/8/2020 5:21:53 AM
Surr: 1,2-Dichloroethane-d4	101	70-130	%Rec	1	4/8/2020 5:21:53 AM
Surr: 4-Bromofluorobenzene	95.9	70-130	%Rec	1	4/8/2020 5:21:53 AM
Surr: Dibromofluoromethane	103	70-130	%Rec	1	4/8/2020 5:21:53 AM
Surr: Toluene-d8	95.6	70-130	%Rec	1	4/8/2020 5:21:53 AM
EPA METHOD 418.1: TPH					Analyst: CFC
Petroleum Hydrocarbons, TR	20	19	mg/Kg	1	4/15/2020

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 23

Date Reported: 4/21/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Cell #3 VZ S-3

 Project:
 BMG Landfarm
 Collection Date: 4/2/2020 12:11:00 PM

 Lab ID:
 2004127-011
 Matrix: SOIL
 Received Date: 4/3/2020 8:00:00 AM

Analyses	Result	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	ND	60	mg/Kg	20	4/9/2020 10:50:08 AM
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst: JMR
Benzene	ND	0.025	mg/Kg	1	4/8/2020 5:50:25 AM
Toluene	ND	0.049	mg/Kg	1	4/8/2020 5:50:25 AM
Ethylbenzene	ND	0.049	mg/Kg	1	4/8/2020 5:50:25 AM
Xylenes, Total	ND	0.098	mg/Kg	1	4/8/2020 5:50:25 AM
Surr: 1,2-Dichloroethane-d4	99.3	70-130	%Rec	1	4/8/2020 5:50:25 AM
Surr: 4-Bromofluorobenzene	92.7	70-130	%Rec	1	4/8/2020 5:50:25 AM
Surr: Dibromofluoromethane	105	70-130	%Rec	1	4/8/2020 5:50:25 AM
Surr: Toluene-d8	96.5	70-130	%Rec	1	4/8/2020 5:50:25 AM
EPA METHOD 418.1: TPH					Analyst: CFC
Petroleum Hydrocarbons, TR	50	20	mg/Kg	1	4/15/2020

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 23

Date Reported: 4/21/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Cell #3 VZ S-4

 Project:
 BMG Landfarm
 Collection Date: 4/2/2020 12:21:00 PM

 Lab ID:
 2004127-012
 Matrix: SOIL
 Received Date: 4/3/2020 8:00:00 AM

Analyses	Result	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	ND	60	mg/Kg	20	4/9/2020 11:02:33 AM
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst: JMR
Benzene	ND	0.024	mg/Kg	1	4/8/2020 6:18:57 AM
Toluene	ND	0.049	mg/Kg	1	4/8/2020 6:18:57 AM
Ethylbenzene	ND	0.049	mg/Kg	1	4/8/2020 6:18:57 AM
Xylenes, Total	ND	0.097	mg/Kg	1	4/8/2020 6:18:57 AM
Surr: 1,2-Dichloroethane-d4	100	70-130	%Rec	1	4/8/2020 6:18:57 AM
Surr: 4-Bromofluorobenzene	96.4	70-130	%Rec	1	4/8/2020 6:18:57 AM
Surr: Dibromofluoromethane	104	70-130	%Rec	1	4/8/2020 6:18:57 AM
Surr: Toluene-d8	96.6	70-130	%Rec	1	4/8/2020 6:18:57 AM
EPA METHOD 418.1: TPH					Analyst: CFC
Petroleum Hydrocarbons, TR	ND	18	mg/Kg	1	4/9/2020

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 23

Date Reported: 4/21/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Cell #4 VZ S-1

 Project:
 BMG Landfarm
 Collection Date: 4/2/2020 12:33:00 PM

 Lab ID:
 2004127-013
 Matrix: SOIL
 Received Date: 4/3/2020 8:00:00 AM

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: MRA
Fluoride	2.4	1.5	mg/Kg	5	4/9/2020 11:14:58 AM
Chloride	ND	7.5	mg/Kg	5	4/9/2020 11:14:58 AM
Nitrogen, Nitrite (As N)	ND	1.5	mg/Kg	5	4/8/2020 10:13:33 PM
Bromide	ND	1.5	mg/Kg	5	4/8/2020 10:13:33 PM
Nitrogen, Nitrate (As N)	18	1.5	mg/Kg	5	4/8/2020 10:13:33 PM
Phosphorus, Orthophosphate (As P)	ND	7.5	mg/Kg	5	4/8/2020 10:13:33 PM
Sulfate	15	7.5	mg/Kg	5	4/8/2020 10:13:33 PM
EPA METHOD 7471: MERCURY					Analyst: pmf
Mercury	ND	0.033	mg/Kg	1	4/9/2020 3:37:36 PM
EPA METHOD 6010B: SOIL METALS					Analyst: ELS
Arsenic	ND	12	mg/Kg	5	4/20/2020 11:56:31 AM
Barium	110	0.49	mg/Kg	5	4/20/2020 11:56:31 AM
Cadmium	ND	0.49	mg/Kg	5	4/20/2020 11:56:31 AM
Calcium	5400	120	mg/Kg	5	4/20/2020 11:56:31 AM
Chromium	17	1.5	mg/Kg	5	4/20/2020 11:56:31 AM
Lead	5.7	1.5	mg/Kg	5	4/20/2020 12:55:09 PM
Molybdenum	ND	2.5	mg/Kg	5	4/20/2020 11:56:31 AM
Potassium	2600	250	mg/Kg	5	4/20/2020 11:56:31 AM
Selenium	ND	12	mg/Kg	5	4/20/2020 11:56:31 AM
Silver	ND	1.2	mg/Kg	5	4/20/2020 11:56:31 AM
Sodium	190	120	mg/Kg	5	4/20/2020 11:56:31 AM
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst: JMR
Benzene	ND	0.025	mg/Kg	1	4/8/2020 6:47:30 AM
Toluene	ND	0.050	mg/Kg	1	4/8/2020 6:47:30 AM
Ethylbenzene	ND	0.050	mg/Kg	1	4/8/2020 6:47:30 AM
Xylenes, Total	ND	0.099	mg/Kg	1	4/8/2020 6:47:30 AM
Surr: 1,2-Dichloroethane-d4	98.4	70-130	%Rec	1	4/8/2020 6:47:30 AM
Surr: 4-Bromofluorobenzene	95.1	70-130	%Rec	1	4/8/2020 6:47:30 AM
Surr: Dibromofluoromethane	101	70-130	%Rec	1	4/8/2020 6:47:30 AM
Surr: Toluene-d8	94.0	70-130	%Rec	1	4/8/2020 6:47:30 AM
EPA METHOD 418.1: TPH					Analyst: CFC
Petroleum Hydrocarbons, TR	ND	19	mg/Kg	1	4/9/2020

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 23

Date Reported: 4/21/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Cell #4 VZ S-2

 Project:
 BMG Landfarm
 Collection Date: 4/2/2020 12:43:00 PM

 Lab ID:
 2004127-014
 Matrix: SOIL
 Received Date: 4/3/2020 8:00:00 AM

Analyses	Result	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	ND	60	mg/Kg	20	4/9/2020 11:27:22 AM
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst: JMR
Benzene	ND	0.025	mg/Kg	1	4/8/2020 7:16:01 AM
Toluene	ND	0.050	mg/Kg	1	4/8/2020 7:16:01 AM
Ethylbenzene	ND	0.050	mg/Kg	1	4/8/2020 7:16:01 AM
Xylenes, Total	ND	0.10	mg/Kg	1	4/8/2020 7:16:01 AM
Surr: 1,2-Dichloroethane-d4	96.6	70-130	%Rec	1	4/8/2020 7:16:01 AM
Surr: 4-Bromofluorobenzene	96.4	70-130	%Rec	1	4/8/2020 7:16:01 AM
Surr: Dibromofluoromethane	99.5	70-130	%Rec	1	4/8/2020 7:16:01 AM
Surr: Toluene-d8	98.0	70-130	%Rec	1	4/8/2020 7:16:01 AM
EPA METHOD 418.1: TPH					Analyst: CFC
Petroleum Hydrocarbons, TR	ND	19	mg/Kg	1	4/9/2020

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 23

Date Reported: 4/21/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Cell #4 VZ S-3

 Project:
 BMG Landfarm
 Collection Date: 4/2/2020 12:51:00 PM

 Lab ID:
 2004127-015
 Matrix: SOIL
 Received Date: 4/3/2020 8:00:00 AM

Analyses	Result	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	ND	60	mg/Kg	20	4/9/2020 11:39:46 AM
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst: JMR
Benzene	ND	0.025	mg/Kg	1	4/8/2020 12:50:42 PM
Toluene	ND	0.049	mg/Kg	1	4/8/2020 12:50:42 PM
Ethylbenzene	ND	0.049	mg/Kg	1	4/8/2020 12:50:42 PM
Xylenes, Total	ND	0.099	mg/Kg	1	4/8/2020 12:50:42 PM
Surr: 1,2-Dichloroethane-d4	101	70-130	%Rec	1	4/8/2020 12:50:42 PM
Surr: 4-Bromofluorobenzene	97.8	70-130	%Rec	1	4/8/2020 12:50:42 PM
Surr: Dibromofluoromethane	99.5	70-130	%Rec	1	4/8/2020 12:50:42 PM
Surr: Toluene-d8	92.7	70-130	%Rec	1	4/8/2020 12:50:42 PM
EPA METHOD 418.1: TPH					Analyst: CFC
Petroleum Hydrocarbons, TR	ND	18	mg/Kg	1	4/9/2020

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 23

Date Reported: 4/21/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Cell #4 VZ S-4

 Project:
 BMG Landfarm
 Collection Date: 4/2/2020 1:00:00 PM

 Lab ID:
 2004127-016
 Matrix: SOIL
 Received Date: 4/3/2020 8:00:00 AM

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	ND	60	mg/Kg	20	4/9/2020 11:52:11 AM
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst: JMR
Benzene	ND	0.025	mg/Kg	1	4/8/2020 1:19:13 PM
Toluene	ND	0.049	mg/Kg	1	4/8/2020 1:19:13 PM
Ethylbenzene	ND	0.049	mg/Kg	1	4/8/2020 1:19:13 PM
Xylenes, Total	ND	0.099	mg/Kg	1	4/8/2020 1:19:13 PM
Surr: 1,2-Dichloroethane-d4	99.2	70-130	%Rec	1	4/8/2020 1:19:13 PM
Surr: 4-Bromofluorobenzene	96.4	70-130	%Rec	1	4/8/2020 1:19:13 PM
Surr: Dibromofluoromethane	103	70-130	%Rec	1	4/8/2020 1:19:13 PM
Surr: Toluene-d8	96.2	70-130	%Rec	1	4/8/2020 1:19:13 PM
EPA METHOD 418.1: TPH					Analyst: CFC
Petroleum Hydrocarbons, TR	ND	18	mg/Kg	1	4/9/2020

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 16 of 23

Hall Environmental Analysis Laboratory, Inc.

2004127 21-Apr-20

WO#:

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: MB-51658 SampType: mblk TestCode: EPA Method 300.0: Anions

Client ID: PBS Batch ID: 51658 RunNo: 67935

Prep Date: 4/8/2020 Analysis Date: 4/8/2020 SeqNo: 2348848 Units: mg/Kg

SPK value SPK Ref Val %RPD **RPDLimit** Analyte Result PQL %REC LowLimit HighLimit Qual

Nitrogen, Nitrite (As N) ND 0.30 Bromide ND 0.30 Nitrogen, Nitrate (As N) ND 0.30 Sulfate ND 1.5

Sample ID: LCS-51658 SampType: Ics TestCode: EPA Method 300.0: Anions

Client ID: LCSS Batch ID: 51658 RunNo: 67935

Prep Date: 4/8/2020 Analysis Date: 4/8/2020 SeqNo: 2348849 Units: mg/Kg

SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result POI Lowl imit HighLimit Qual Nitrogen, Nitrite (As N) 2.8 0.30 3.000 0 92.4 90 110 0 7.0 0.30 7.500 94.0 90 110 Bromide Nitrogen, Nitrate (As N) 7.0 0.30 7.500 0 93.8 90 110 0 92.8 Sulfate 28 1.5 30.00 90 110

Sample ID: 2004127-001AMS SampType: ms TestCode: EPA Method 300.0: Anions

Client ID: Cell #1 VZ S-1 Batch ID: 51658 RunNo: 67935

Prep Date: 4/8/2020 Analysis Date: 4/8/2020 SeqNo: 2348851

Units: mg/Kg SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result PQL LowLimit HighLimit Qual Nitrogen, Nitrite (As N) 2.6 1.5 3.000 0 87.1 80.6 104 Bromide 9.0 1.5 7.500 2.200 90.1 88.2 107 Nitrogen, Nitrate (As N) 4.067 86.7 76 11 1.5 7.500 118 Sulfate 40 7.5 30.00 13.54 89.7 53.8 147

Sample ID: 2004127-001AMSD SampType: msd TestCode: EPA Method 300.0: Anions

Client ID: Cell #1 VZ S-1 Batch ID: 51658 RunNo: 67935

Prep Date: 4/8/2020 Analysis Date: 4/8/2020 SeqNo: 2348852 Units: mg/Kg

SPK Ref Val %REC **RPDLimit** Analyte Result **PQL** SPK value LowLimit HighLimit %RPD Qual Nitrogen, Nitrite (As N) 2.6 1.5 3.000 0 86.4 80.6 20 104 0.692 Bromide 9.3 1.5 7.500 2.200 94.1 88.2 107 3.29 20 Nitrogen, Nitrate (As N) 11 1.5 7.500 4.067 93.3 76 118 4.52 20 Sulfate 41 7.5 30.00 13.54 90.3 53.8 147 0.469 20

Sample ID: MB-51658 SampType: mblk TestCode: EPA Method 300.0: Anions

Client ID: PBS Batch ID: 51658 RunNo: 68005

Prep Date: 4/8/2020 Analysis Date: 4/9/2020 SeqNo: 2350129 Units: mg/Kg

PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded Н

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Value above quantitation range Ε

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 17 of 23

Hall Environmental Analysis Laboratory, Inc.

WO#: **2004127**

21-Apr-20

Client: Animas Environmental
Project: BMG Landfarm

Sample ID: MB-51658 SampType: mblk TestCode: EPA Method 300.0: Anions

Client ID: PBS Batch ID: 51658 RunNo: 68005

Prep Date: 4/8/2020	Analysis D	ate: 4/ 9	9/2020	SeqNo: 2350129			Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.30								
Chloride	ND	1.5								
Nitrogen, Nitrite (As N)	ND	0.30								
Bromide	ND	0.30								
Nitrogen, Nitrate (As N)	ND	0.30								
Phosphorus, Orthophosphate (As P	ND	1.5								
Sulfate	ND	1.5								

Sample ID: LCS-51658	SampT	ype: Ics	;	Tes	tCode: EF	PA Method	300.0: Anion	s		
Client ID: LCSS	Batch	n ID: 51 0	658	F	RunNo: 68	8005				
Prep Date: 4/8/2020	Analysis D	Date: 4/	9/2020	8	SeqNo: 2	350130	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	1.5	0.30	1.500	0	101	90	110			
Chloride	14	1.5	15.00	0	94.4	90	110			
Nitrogen, Nitrite (As N)	2.8	0.30	3.000	0	94.4	90	110			
Bromide	7.3	0.30	7.500	0	96.8	90	110			
Nitrogen, Nitrate (As N)	7.2	0.30	7.500	0	96.3	90	110			
Phosphorus, Orthophosphate (As P	14	1.5	15.00	0	95.9	90	110			
Sulfate	28	1.5	30.00	0	94.8	90	110			

Sample ID: 2004127-001AMS	SampT	ype: ms	3	Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID: Cell #1 VZ S-1	Batch	n ID: 51 0	658	F	RunNo: 6	8005				
Prep Date: 4/8/2020	Analysis D	ate: 4/	9/2020	\$	SeqNo: 2	350132	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Nitrite (As N)	2.8	1.5	3.000	0	94.9	80.6	104			
Bromide	9.4	1.5	7.500	2.200	95.5	88.2	107			
Nitrogen, Nitrate (As N)	11	1.5	7.500	4.067	92.5	76	118			
Phosphorus, Orthophosphate (As P	ND	7.5	15.00	0	0	15	134			S
Sulfate	42	7.5	30.00	13.54	93.4	53.8	147			

Sample ID: 2004127-001AMSI	D SampT	ype: ms	sd	Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID: Cell #1 VZ S-1	Batch	n ID: 51 0	658	F	RunNo: 6	8005				
Prep Date: 4/8/2020	Analysis D	ate: 4/ 9	9/2020	8	SeqNo: 2	350133	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Nitrite (As N)	2.8	1.5	3.000	0	92.1	80.6	104	5.58	20	
Bromide	9.4	1.5	7.500	2.200	95.7	88.2	107	4.56	20	
Nitrogen, Nitrate (As N)	11	1.5	7.500	4.067	94.6	76	118	5.45	20	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 18 of 23

Hall Environmental Analysis Laboratory, Inc.

WO#: **2004127 21-Apr-20**

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: 2004127-001AMSD SampType: msd TestCode: EPA Method 300.0: Anions

Client ID: Cell #1 VZ S-1 Batch ID: 51658 RunNo: 68005

Prep Date: 4/8/2020 Analysis Date: 4/9/2020 SeqNo: 2350133 Units: mg/Kg

Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Phosphorus, Orthophosphate (As P	ND	7.5	15.00	0	0	15	134	0	20	S
Sulfate	43	7.5	30.00	13.54	97.3	53.8	147	5.50	20	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 19 of 23

Hall Environmental Analysis Laboratory, Inc.

WO#: 2004127

21-Apr-20

Client: Animas Environmental **Project: BMG** Landfarm

Sample ID: MB-51609 SampType: MBLK TestCode: EPA Method 418.1: TPH

Client ID: PBS Batch ID: 51609 RunNo: 67984

Prep Date: 4/7/2020 Analysis Date: 4/9/2020 SeqNo: 2349681 Units: mq/Kq

SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result PQL LowLimit HighLimit Qual

Petroleum Hydrocarbons, TR ND 20

Sample ID: LCS-51609 SampType: LCS TestCode: EPA Method 418.1: TPH

Client ID: LCSS Batch ID: 51609 RunNo: 67984

Prep Date: 4/7/2020 Analysis Date: 4/9/2020 SeqNo: 2349682 Units: mg/Kg

SPK value SPK Ref Val %REC **RPDLimit** Analyte Result PQL LowLimit HighLimit %RPD Qual

Petroleum Hydrocarbons, TR 140 20 100.0 136 62.5 123 S

Sample ID: LCSD-51609 SampType: LCSD TestCode: EPA Method 418.1: TPH

Client ID: LCSS02 Batch ID: 51609 RunNo: 67984

Prep Date: 4/7/2020 Analysis Date: 4/9/2020 SeqNo: 2349683 Units: mq/Kq

SPK value SPK Ref Val %REC Result POL HighLimit %RPD RPDI imit Qual Analyte I owl imit Petroleum Hydrocarbons, TR 140 20 100.0 139 62.5 2.03 20 S

Sample ID: MB-51800 SampType: MBLK TestCode: EPA Method 418.1: TPH

Client ID: PBS Batch ID: 51800 RunNo: 68123

Prep Date: 4/14/2020 Analysis Date: 4/15/2020 SeqNo: 2355144 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

20 Petroleum Hydrocarbons, TR ND

Sample ID: LCS-51800 SampType: LCS TestCode: EPA Method 418.1: TPH

Client ID: LCSS Batch ID: 51800 RunNo: 68123

Prep Date: 4/14/2020 Analysis Date: 4/15/2020 SeqNo: 2355145 Units: mg/Kg

Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

120 20 100.0 122 62.5 123 Petroleum Hydrocarbons, TR

Sample ID: LCSD-51800 SampType: LCSD TestCode: EPA Method 418.1: TPH

Client ID: LCSS02 Batch ID: 51800 RunNo: 68123

Prep Date: 4/14/2020 Analysis Date: 4/15/2020 SeqNo: 2355146 Units: mg/Kg

%RPD SPK value SPK Ref Val %REC Result PQL LowLimit HighLimit **RPDLimit** Qual Petroleum Hydrocarbons, TR 120 20 100.0 122 62.5 123

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded Н

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 20 of 23

Hall Environmental Analysis Laboratory, Inc.

0.49

WO#: **2004127**

21-Apr-20

Client: Animas Environmental

Project: BMG Landfarm

Surr: Toluene-d8

Sample ID: Ics-51562	SampT	ype: LC	s	Tes	tCode: El	PA Method	8260B: Volat	iles Short	List	
Client ID: LCSS	Batcl	n ID: 51	562	F	RunNo: 6	7929				
Prep Date: 4/4/2020	Analysis D	Date: 4/	7/2020	S	SeqNo: 2	347492	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.97	0.025	1.000	0	96.8	70	130			
Toluene	1.0	0.050	1.000	0	104	70	130			
Surr: 1,2-Dichloroethane-d4	0.47		0.5000		94.2	70	130			
Surr: 4-Bromofluorobenzene	0.48		0.5000		95.0	70	130			
Surr: Dibromofluoromethane	0.49		0.5000		98.8	70	130			

0.5000

97.0

70

130

Sample ID: mb-51562	SampT	Гуре: МЕ	BLK	Tes	tCode: El	PA Method	8260B: Volat	iles Short	List	
Client ID: PBS	Batcl	h ID: 51	562	F	RunNo: 6	7929				
Prep Date: 4/4/2020	Analysis D	Date: 4/	7/2020	5	SeqNo: 2	347493	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 1,2-Dichloroethane-d4	0.51		0.5000		103	70	130			
Surr: 4-Bromofluorobenzene	0.46		0.5000		92.7	70	130			
Surr: Dibromofluoromethane	0.52		0.5000		104	70	130			
Surr: Toluene-d8	0.50		0.5000		99.3	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 21 of 23

Hall Environmental Analysis Laboratory, Inc.

WO#: **2004127**

21-Apr-20

Client: Animas Environmental
Project: BMG Landfarm

Sample ID: MB-51676 SampType: MBLK TestCode: EPA Method 7471: Mercury

Client ID: PBS Batch ID: 51676 RunNo: 67998

Prep Date: 4/8/2020 Analysis Date: 4/9/2020 SeqNo: 2349831 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.033

Sample ID: LCSLL-51676 SampType: LCSLL TestCode: EPA Method 7471: Mercury

Client ID: BatchQC Batch ID: 51676 RunNo: 67998

Prep Date: 4/8/2020 Analysis Date: 4/9/2020 SeqNo: 2349832 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.033 0.006660 0 100 70 130

Sample ID: LCS-51676 SampType: LCS TestCode: EPA Method 7471: Mercury

Client ID: LCSS Batch ID: 51676 RunNo: 67998

Prep Date: 4/8/2020 Analysis Date: 4/9/2020 SeqNo: 2349833 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.16 0.033 0.1667 0 96.3 80 120

Sample ID: MB-51676 SampType: MBLK TestCode: EPA Method 7471: Mercury

Client ID: PBS Batch ID: 51676 RunNo: 67999

Prep Date: 4/8/2020 Analysis Date: 4/9/2020 SeqNo: 2349858 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.033

Sample ID: LCSLL-51676 SampType: LCSLL TestCode: EPA Method 7471: Mercury

Client ID: BatchQC Batch ID: 51676 RunNo: 67999

Prep Date: 4/8/2020 Analysis Date: 4/9/2020 SeqNo: 2349859 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.033 0.006660 0 113 70 130

Sample ID: LCS-51676 SampType: LCS TestCode: EPA Method 7471: Mercury

Client ID: **LCSS** Batch ID: **51676** RunNo: **67999**

Prep Date: 4/8/2020 Analysis Date: 4/9/2020 SeqNo: 2349860 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.17 0.033 0.1667 0 99.5 80 120

Mercury 0.17 0.033 0.1667 0 99.5 80

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 22 of 23

Hall Environmental Analysis Laboratory, Inc.

WO#: **2004127 21-Apr-20**

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: MB-51710 SampType: MBLK TestCode: EPA Method 6010B: Soil Metals

Client ID: PBS Batch ID: 51710 RunNo: 68257

Client ID: PBS	Batcr	1 ID: 51	/10	۲	kunno: 6	825 <i>1</i>				
Prep Date: 4/10/2020	Analysis D	ate: 4/	20/2020	5	SeqNo: 2	360966	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	ND	2.5								
Barium	ND	0.10								
Cadmium	ND	0.10								
Calcium	ND	25								
Chromium	ND	0.30								
Lead	ND	0.30								
Molybdenum	ND	0.50								
Potassium	ND	50								
Selenium	ND	2.5								
Silver	ND	0.25								
Sodium	ND	25								

Sample ID: LCS-51710	Samp1	ype: LC	:S	Tes	tCode: El	PA Method	6010B: Soil	Metals		
Client ID: LCSS	Batc	n ID: 51	710	F	RunNo: 6	8257				
Prep Date: 4/10/2020	Analysis D	Date: 4/	20/2020	9	SeqNo: 2	360967	Units: mg/k	ίg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	26	2.5	25.00	0	104	80	120			
Barium	26	0.10	25.00	0	102	80	120			
Cadmium	26	0.10	25.00	0	103	80	120			
Calcium	2500	25	2500	0	102	80	120			
Chromium	25	0.30	25.00	0	102	80	120			
Lead	25	0.30	25.00	0	99.3	80	120			
Molybdenum	26	0.50	25.00	0	104	80	120			
Potassium	2500	50	2500	0	101	80	120			
Selenium	26	2.5	25.00	0	105	80	120			
Silver	5.2	0.25	5.000	0	103	80	120			
Sodium	2500	25	2500	0	100	80	120			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 23 of 23

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name:	Animas En	vironmental	Work	Order Num	nber: 200	4127			RcptNo: 1	
Received By:	Juan Roja	ıs	4/3/202	0 8:00:00 A	AM		Hear	rang)		
Completed By:	Isaiah Ort	iz	4/3/202	0 8:38:36	AM		Jun	-0	2-4	
Reviewed By:	TO		4/3	0						
Chain of Cus	stody									
1. Is Chain of C	Custody suffici	ently complet	te?		Yes	~	No		Not Present	
2. How was the	sample deliv	ered?			Cou	<u>rier</u>				
Log In 3. Was an atter	mpt made to c	ool the samp	les?		Yes	V	No		NA 🗆	
4. Were all sam	ples received	at a tempera	ture of >0° C	to 6.0°C	Yes	V	No		NA 🗆	
5. Sample(s) in	proper contai	ner(s)?			Yes	•	No			
6. Sufficient san	nple volume fo	or indicated te	est(s)?		Yes	V	No			
7. Are samples	(except VOA	and ONG) pro	perly preserve	ed?	Yes	~	No			
8. Was preserva	ative added to	bottles?			Yes		No	V	NA 🗆	
9. Received at le	east 1 vial with	n headspace	<1/4" for AQ V	OA?	Yes		No		NA 🗹	
10. Were any sa	mple containe	rs received b	roken?		Yes		No	V	133.6	
11. Does paperw (Note discrep)		Yes	V	No		# of preserved bottles checked for pH: (<2 or >12	2 unless noted)
12. Are matrices					Yes	V	No		Adjusted?	
13, Is it clear wha	it analyses we	re requested	?		Yes	V	No			
14. Were all holdi (If no, notify c					Yes	V	No		Checked by: DA	D 4/3/20
Special Hand	ling (if app	licable)								
15. Was client no	otified of all dis	screpancies v	vith this order?		Yes		No		NA 🗹	
Person	Notified:			Date				_		
By Who	,			Via:	☐ eM	ail 🗌	Phone [Fax	☐ In Person	
Regard Client I	nstructions:									
16. Additional re	marks:									
17. Cooler Info	rmation									
Cooler No	the R. Starten State of the State of the	Condition	Seal Intact	Seal No	Seal D	ate	Signed	Bv	T .	
1	4.3	Good	Yes		- 541 5		- Janea	-,		
2	4.1	Good	Yes					-		

C	hain-o	f-Custo	dy Record	Turn-Around Time:					ы	ALI	EN	IVTE		IMEN	ITAI	
Client:	Animas E	nvironment	tal Services	X Standard	□ Rush		1=							ORAT	9.5067	6.4
				Project Name:	BMG Landfar	-	8						nental		IOIC	
Mailing Addre	ess:	PO Box 8			DIVIG Lanutan			490	01 Ha	awkir	ns NE	- Al	buau	erque,	. NM 8	8710
		Farmingto	n, NM 87499	Project #:	AFC 04050F						5-397			505-34		
Phone #:		505-564-2	281		AES 040605			M.		A	nalys	is Re	quest			
email or Fax#	:	dreese@a	nimasenvironmental.com	Project Manager:									П			T
QA/QC Packa	ge:			Elizabeth McNally/Dav	id Reese											
X Standard			□ Level 4 (Full Validation)	Walley States							SI					
Accreditation	:			Sampler: CL/GB]				nioir				1	Î
□ NELAP		□ Other		On Ice:	XYes	□No			0.0	S	s/A					ō
□ EDD (Type)				Sample Temperature:	4.4	-0.1=4.3		2.2	300	eta	ion) SS
Date 4-2-29	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL NO. 2004127	BTEX 8021	TPH 418.1	Chlorides 300.0	RCRA 8 Metals	Major Cations/Anions					Air Bubbles (Y or N)
3/31/2020	10:52	Soil	Cell #1 VZ S-1	2 - 4 oz jars 1 - 1 gal, ziplock bag	3 - Cool	-001	Х	Х	х	х	Х					
3/31/2020	11:01	Soil	Cell #1 VZ S-2	1 - 4 oz jars	Cool	-002	Х	Х	Х	-	1					
3/31/2020	(1:09	Soil	Cell #1 VZ S-3	1 - 4 oz jars	Cool	- 703	Х	Х	Х							
3/31/2028	11:14	Soil	Cell #1 VZ S-4	1 - 4 oz jars	Cool	-004	Х	Х	Х							
3/31/2020	11:24	Soil	Cell #2 VZ S-1	2 - 4 oz jars 1 - 1 gal, ziplock bag	3 - Cool	-005	Х	Х	Х	Х	Х					
3/31/2020	11:31	Soil	Cell #2 VZ S-2	1 - 4 oz jars	Cool	-006	Х	Х	X							
3/31/2020	11:38	Soil	Cell #2 VZ S-3	1 - 4 oz jars	Cool	-007	Х	Х	X							
3/31/2020	11:47	Soil	Cell #2 VZ S-4	1 - 4 oz jars	Cool	-0.08	Х	X	Х							
3/31/2020	11:57	Soil	Cell #3 VZ S-1	2 - 4 oz jars 1 - 1 gal, ziplock bag	3 - Cool	-009	Х	Х	Х	Х	Х					
3/31/2020	12:04	Soil	Cell #3 VZ S-2	1 - 4 oz jars	Cool	- 010	Х	X	Х							
3/31/2020	12:11	Soil	Cell #3 VZ S-3	1 - 4 oz jars	Cool	-011	Х	Х	Х						17	
3/31/2020	12:21	Soil	Cell #3 VZ S-4	1 - 4 oz jars	Cool	-012	Х	X	Х			Ш				
3/31/2020	12:33	Soil	Cell #4 VZ S-1	2 - 4 oz Jars 1 - 1 gal, ziplock bag	3 - Cool	- 013	X	X	X	Х	Х					
3/31/2020	12:43	Soil	Cell #4 VZ S-2	1 - 4 oz jars	Cool	-014	X	X	X						- 4	

C	hain-o	f-Custo	dy Record	Turn-Around Time:					ы	AII	EN	VID	ONM	ENIT	FAI
Client:	Animas E	nvironmen	tal Services	X Standard	□ Rush								VINITY VBOR	2127	7.7
				Project Name:	union No								ntal.co		JKI
Mailing Addre	ess:	PO Box 8			BMG Landfar	m		100							IM 8710
		Farmingto	n, NM 87499	Project #:	7.10 links.		7				-3975		ax 505		
Phone #:		505-564-2	281		AES 040605			M	1. 50.		_	s Requ		-545-	4107
email or Fax#:		dreese@a	nimasenvironmental.com	Project Manager:											
QA/QC Packag	ge:			Elizabeth McNally/Dav	id Reese										
X Standard			□ Level 4 (Full Validation)	. 10							SI				
Accreditation:				Sampler: CL/GB	,						nior				Î
□ NELAP		□ Other			X Yes	□No			0.0	S	s/A				, jo
□ EDD (Type)				Sample Temperature:	4-4-0			_	300	eta	ion	- 13			SS
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	4.2-0.1=4,1 HEAL No. 2004127	BTEX 8021	TPH 418.1	Chlorides 300.0	RCRA 8 Metals	Major Cations/Anions				Air Bubbles (Y or N)
3/31/2020	12:51	Soil	Cell #4 VZ S-3	1 - 4 oz jars	Cool	-015	Х	X	Х						
3/31/2020	13:60	Soil	Cell #4 VZ S-4	1 - 4 oz jars	Cool	-016	Х	Х	Х						
													-		
								-	-		-	-	-		+
											+	+	+		
											, la				
							-					-	1		
Date: 4/2/20	Time:	Relinguished	by;	Received by: / Muttue Walt	Date 4/2/20	Time 1712	Rema Cr, P				stions.	RCRA	8 meta	ls - As	, Ba, Cd,
Date: 4/2/20	Time:	Relinquished	by: Waller	Received by:		Time		,							
f necessary, sampl	es submitted t	to Hall Environme	ental may be subcontracted to othe	r accredited leboratories. This s	serves as notice of t	his possibility. Any sub-cont	racted da	ta will	be clea	arly no	tated o	n the an	alytical r	eport.	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

May 12, 2020

Elizabeth McNally
Animas Environmental
604 Pinon Street
Farmington, NM 87401
TEL:
FAX:

RE: BMG Landfarm OrderNo.: 2004162

Dear Elizabeth McNally:

Hall Environmental Analysis Laboratory received 4 sample(s) on 4/3/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 5/12/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Cell 1 (CS-1)

 Project:
 BMG Landfarm
 Collection Date: 4/2/2020 9:47:00 AM

 Lab ID:
 2004162-001
 Matrix: SOIL
 Received Date: 4/3/2020 8:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8011/504.1 MODIFIED: EDB					Analyst: JME
1,2-Dibromoethane	ND	0.096	μg/Kg	1	4/9/2020 3:01:44 PM
EPA METHOD 8082A: PCB'S					Analyst: TOM
Aroclor 1016	ND	0.024	mg/Kg	1	4/11/2020 11:17:56 PM
Aroclor 1221	ND	0.024	mg/Kg	1	4/11/2020 11:17:56 PM
Aroclor 1232	ND	0.024	mg/Kg	1	4/11/2020 11:17:56 PM
Aroclor 1242	ND	0.024	mg/Kg	1	4/11/2020 11:17:56 PM
Aroclor 1248	ND	0.024	mg/Kg	1	4/11/2020 11:17:56 PM
Aroclor 1254	ND	0.024	mg/Kg	1	4/11/2020 11:17:56 PM
Aroclor 1260	ND	0.024	mg/Kg	1	4/11/2020 11:17:56 PM
Surr: Decachlorobiphenyl	65.2	15-129	%Rec	1	4/11/2020 11:17:56 PM
Surr: Tetrachloro-m-xylene	64.0	16.1-131	%Rec	1	4/11/2020 11:17:56 PM
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst: JME
Diesel Range Organics (DRO)	18	9.2	mg/Kg	1	4/7/2020 3:19:10 PM
Motor Oil Range Organics (MRO)	65	46	mg/Kg	1	4/7/2020 3:19:10 PM
Surr: DNOP	95.1	55.1-146	%Rec	1	4/7/2020 3:19:10 PM
EPA METHOD 8310: PAHS					Analyst: TOM
Naphthalene	ND	1.1	mg/Kg	1	4/12/2020 3:27:54 PM
1-Methylnaphthalene	ND	1.1	mg/Kg	1	4/12/2020 3:27:54 PM
2-Methylnaphthalene	ND	1.1	mg/Kg	1	4/12/2020 3:27:54 PM
Benzo(a)pyrene	ND	0.045	mg/Kg	1	4/12/2020 3:27:54 PM
Surr: Benzo(e)pyrene	49.8	29-98.8	%Rec	1	4/12/2020 3:27:54 PM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Fluoride	1.9	1.5	mg/Kg	5	4/20/2020 6:16:09 PM
Chloride	18	7.5	mg/Kg	5	4/20/2020 6:16:09 PM
Nitrogen, Nitrite (As N)	ND	1.5	mg/Kg	5	4/20/2020 6:16:09 PM
Nitrogen, Nitrate (As N)	5.9	1.5	mg/Kg	5	4/20/2020 6:16:09 PM
Sulfate	9.9	7.5	mg/Kg	5	4/20/2020 6:16:09 PM
EPA METHOD 7471: MERCURY					Analyst: pmf
Mercury	ND	0.035	mg/Kg	1	4/14/2020 11:24:01 PM
EPA METHOD 6010B: SOIL METALS					Analyst: ELS
Antimony	ND	5.1	mg/Kg	2	4/20/2020 10:14:40 AM
Arsenic	ND	5.1	mg/Kg	2	4/20/2020 10:14:40 AM
Barium	73	0.20	mg/Kg	2	4/20/2020 10:14:40 AM
Beryllium	0.54	0.31	mg/Kg	2	4/20/2020 10:14:40 AM
Cadmium	ND	0.20	mg/Kg	2	4/20/2020 10:14:40 AM
Chromium	6.4	0.61	mg/Kg	2	4/20/2020 10:14:40 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 24

Date Reported: 5/12/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Cell 1 (CS-1)

 Project:
 BMG Landfarm
 Collection Date: 4/2/2020 9:47:00 AM

 Lab ID:
 2004162-001
 Matrix: SOIL
 Received Date: 4/3/2020 8:00:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed			
EPA METHOD 6010B: SOIL METALS					Analyst: ELS			
Copper	5.3	0.82	mg/Kg	2	4/20/2020 10:14:40 AM			
Iron	11000	260	mg/Kg	100	4/20/2020 9:18:11 AM			
Lead	2.4	0.61	mg/Kg	2	4/20/2020 12:58:54 PM			
Manganese	240	0.41	mg/Kg	2	4/20/2020 10:14:40 AM			
Selenium	ND	5.1	mg/Kg	2	4/20/2020 12:58:54 PM			
Silver	ND	0.51	mg/Kg	2	4/20/2020 10:14:40 AM			
Thallium	ND	5.1	mg/Kg	2	4/20/2020 10:14:40 AM			
Uranium	ND	10	mg/Kg	2	4/20/2020 10:14:40 AM			
Zinc	23	5.1	mg/Kg	2	4/20/2020 10:14:40 AM			
EPA METHOD 8260B: VOLATILES					Analyst: JMR			
Benzene	ND	0.025	mg/Kg	1	4/8/2020 1:47:57 PM			
Toluene	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM			
Ethylbenzene	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM			
Methyl tert-butyl ether (MTBE)	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM			
1,2,4-Trimethylbenzene	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM			
1,3,5-Trimethylbenzene	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM			
1,2-Dichloroethane (EDC)	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM			
1,2-Dibromoethane (EDB)	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM			
Naphthalene	ND	0.099	mg/Kg	1	4/8/2020 1:47:57 PM			
1-Methylnaphthalene	ND	0.20	mg/Kg	1	4/8/2020 1:47:57 PM			
2-Methylnaphthalene	ND	0.20	mg/Kg	1	4/8/2020 1:47:57 PM			
Acetone	ND	0.74	mg/Kg	1	4/8/2020 1:47:57 PM			
Bromobenzene	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM			
Bromodichloromethane	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM			
Bromoform	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM			
Bromomethane	ND	0.15	mg/Kg	1	4/8/2020 1:47:57 PM			
2-Butanone	ND	0.49	mg/Kg	1	4/8/2020 1:47:57 PM			
Carbon disulfide	ND	0.49	mg/Kg	1	4/8/2020 1:47:57 PM			
Carbon tetrachloride	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM			
Chlorobenzene	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM			
Chloroethane	ND	0.099	mg/Kg	1	4/8/2020 1:47:57 PM			
Chloroform	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM			
Chloromethane	ND	0.15	mg/Kg	1	4/8/2020 1:47:57 PM			
2-Chlorotoluene	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM			
4-Chlorotoluene	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM			
cis-1,2-DCE	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM			
cis-1,3-Dichloropropene	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM			
1,2-Dibromo-3-chloropropane	ND	0.099	mg/Kg	1	4/8/2020 1:47:57 PM			
Dibromochloromethane	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 24

Date Reported: 5/12/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Cell 1 (CS-1)

 Project:
 BMG Landfarm
 Collection Date: 4/2/2020 9:47:00 AM

 Lab ID:
 2004162-001
 Matrix: SOIL
 Received Date: 4/3/2020 8:00:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JMR
Dibromomethane	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM
1,2-Dichlorobenzene	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM
1,3-Dichlorobenzene	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM
1,4-Dichlorobenzene	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM
Dichlorodifluoromethane	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM
1,1-Dichloroethane	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM
1,1-Dichloroethene	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM
1,2-Dichloropropane	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM
1,3-Dichloropropane	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM
2,2-Dichloropropane	ND	0.099	mg/Kg	1	4/8/2020 1:47:57 PM
1,1-Dichloropropene	ND	0.099	mg/Kg	1	4/8/2020 1:47:57 PM
Hexachlorobutadiene	ND	0.099	mg/Kg	1	4/8/2020 1:47:57 PM
2-Hexanone	ND	0.49	mg/Kg	1	4/8/2020 1:47:57 PM
Isopropylbenzene	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM
4-Isopropyltoluene	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM
4-Methyl-2-pentanone	ND	0.49	mg/Kg	1	4/8/2020 1:47:57 PM
Methylene chloride	ND	0.15	mg/Kg	1	4/8/2020 1:47:57 PM
n-Butylbenzene	ND	0.15	mg/Kg	1	4/8/2020 1:47:57 PM
n-Propylbenzene	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM
sec-Butylbenzene	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM
Styrene	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM
tert-Butylbenzene	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM
1,1,1,2-Tetrachloroethane	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM
1,1,2,2-Tetrachloroethane	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM
Tetrachloroethene (PCE)	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM
trans-1,2-DCE	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM
trans-1,3-Dichloropropene	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM
1,2,3-Trichlorobenzene	ND	0.099	mg/Kg	1	4/8/2020 1:47:57 PM
1,2,4-Trichlorobenzene	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM
1,1,1-Trichloroethane	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM
1,1,2-Trichloroethane	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM
Trichloroethene (TCE)	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM
Trichlorofluoromethane	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM
1,2,3-Trichloropropane	ND	0.099	mg/Kg	1	4/8/2020 1:47:57 PM
Vinyl chloride	ND	0.049	mg/Kg	1	4/8/2020 1:47:57 PM
Xylenes, Total	ND	0.099	mg/Kg	1	4/8/2020 1:47:57 PM
Surr: Dibromofluoromethane	104	70-130	%Rec	1	4/8/2020 1:47:57 PM
Surr: 1,2-Dichloroethane-d4	101	70-130	%Rec	1	4/8/2020 1:47:57 PM
Surr: Toluene-d8	95.6	70-130	%Rec	1	4/8/2020 1:47:57 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 24

Date Reported: 5/12/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Cell 1 (CS-1)

 Project:
 BMG Landfarm
 Collection Date: 4/2/2020 9:47:00 AM

 Lab ID:
 2004162-001
 Matrix: SOIL
 Received Date: 4/3/2020 8:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JMR
Surr: 4-Bromofluorobenzene	99.9	70-130	%Rec	1	4/8/2020 1:47:57 PM
EPA METHOD 8015D MOD: GASOLINE RANGE					Analyst: JMR
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	4/8/2020 1:47:57 PM
Surr: BFB	102	70-130	%Rec	1	4/8/2020 1:47:57 PM
SM4500H+B/EPA 9040C					Analyst: JRR
рН	8.52		pH Units	1	4/9/2020 10:39:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 24

Date Reported: 5/12/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Cell 2 (CS-2)

 Project:
 BMG Landfarm
 Collection Date: 4/2/2020 10:04:00 AM

 Lab ID:
 2004162-002
 Matrix: SOIL
 Received Date: 4/3/2020 8:00:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE (ORGANICS					Analyst: JME
Diesel Range Organics (DRO)	630	180		mg/Kg	20	4/7/2020 2:06:36 PM
Motor Oil Range Organics (MRO)	1000	880		mg/Kg	20	4/7/2020 2:06:36 PM
Surr: DNOP	0	55.1-146	S	%Rec	20	4/7/2020 2:06:36 PM
EPA METHOD 300.0: ANIONS						Analyst: JMT
Chloride	ND	60		mg/Kg	20	4/20/2020 7:05:48 PM
EPA METHOD 8015D MOD: GASOLINE RA	ANGE					Analyst: JMR
Gasoline Range Organics (GRO)	ND	4.9		mg/Kg	1	4/8/2020 4:10:39 PM
Surr: BFB	99.5	70-130		%Rec	1	4/8/2020 4:10:39 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 24

Date Reported: 5/12/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Cell 3 (CS-3)

Project: BMG Landfarm
 Collection Date: 4/2/2020 10:23:00 AM

 Lab ID: 2004162-003
 Matrix: SOIL
 Received Date: 4/3/2020 8:00:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS					Analyst: JME
Diesel Range Organics (DRO)	870	200		mg/Kg	20	4/7/2020 2:31:09 PM
Motor Oil Range Organics (MRO)	1600	990		mg/Kg	20	4/7/2020 2:31:09 PM
Surr: DNOP	0	55.1-146	S	%Rec	20	4/7/2020 2:31:09 PM
EPA METHOD 300.0: ANIONS						Analyst: JMT
Chloride	ND	60		mg/Kg	20	4/20/2020 7:43:01 PM
EPA METHOD 8015D MOD: GASOLINE R	ANGE					Analyst: JMR
Gasoline Range Organics (GRO)	ND	4.9		mg/Kg	1	4/8/2020 5:36:00 PM
Surr: BFB	102	70-130		%Rec	1	4/8/2020 5:36:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 24

Date Reported: 5/12/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Cell 4 (CS-4)

 Project:
 BMG Landfarm
 Collection Date: 4/2/2020 10:35:00 AM

 Lab ID:
 2004162-004
 Matrix: SOIL
 Received Date: 4/3/2020 8:00:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA METHOD 8011/504.1 MODIFIED: EDB					Analyst: JME
1,2-Dibromoethane	ND	0.048	μg/Kg	1	4/9/2020 3:47:07 PM
EPA METHOD 8082A: PCB'S					Analyst: TOM
Aroclor 1016	ND	0.023	mg/Kg	1	4/11/2020 11:53:57 PM
Aroclor 1221	ND	0.023	mg/Kg	1	4/11/2020 11:53:57 PM
Aroclor 1232	ND	0.023	mg/Kg	1	4/11/2020 11:53:57 PM
Aroclor 1242	ND	0.023	mg/Kg	1	4/11/2020 11:53:57 PM
Aroclor 1248	ND	0.023	mg/Kg	1	4/11/2020 11:53:57 PM
Aroclor 1254	ND	0.023	mg/Kg	1	4/11/2020 11:53:57 PM
Aroclor 1260	ND	0.023	mg/Kg	1	4/11/2020 11:53:57 PM
Surr: Decachlorobiphenyl	66.8	15-129	%Rec	1	4/11/2020 11:53:57 PM
Surr: Tetrachloro-m-xylene	66.4	16.1-131	%Rec	1	4/11/2020 11:53:57 PM
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS				Analyst: JME
Diesel Range Organics (DRO)	ND	9.2	mg/Kg	1	4/8/2020 7:12:41 AM
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	4/8/2020 7:12:41 AM
Surr: DNOP	89.8	55.1-146	%Rec	1	4/8/2020 7:12:41 AM
EPA METHOD 8310: PAHS					Analyst: TOM
Naphthalene	ND	0.25	mg/Kg	1	4/12/2020 5:09:54 PM
1-Methylnaphthalene	ND	0.25	mg/Kg	1	4/12/2020 5:09:54 PM
2-Methylnaphthalene	ND	0.25	mg/Kg	1	4/12/2020 5:09:54 PM
Benzo(a)pyrene	ND	0.010	mg/Kg	1	4/12/2020 5:09:54 PM
Surr: Benzo(e)pyrene	49.6	29-98.8	%Rec	1	4/12/2020 5:09:54 PM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Fluoride	1.6	1.5	mg/Kg	5	4/20/2020 7:55:25 PM
Chloride	ND	7.5	mg/Kg	5	4/20/2020 7:55:25 PM
Nitrogen, Nitrite (As N)	ND	1.5	mg/Kg	5	4/20/2020 7:55:25 PM
Nitrogen, Nitrate (As N)	6.2	1.5	mg/Kg	5	4/20/2020 7:55:25 PM
Sulfate	12	7.5	mg/Kg	5	4/20/2020 7:55:25 PM
EPA METHOD 7471: MERCURY					Analyst: pmf
Mercury	ND	0.035	mg/Kg	1	4/14/2020 11:36:40 PM
EPA METHOD 6010B: SOIL METALS					Analyst: ELS
Antimony	ND	4.9	mg/Kg	2	4/20/2020 10:31:40 AM
Arsenic	ND	4.9	mg/Kg	2	4/20/2020 10:31:40 AM
Barium	110	0.20	mg/Kg	2	4/20/2020 10:31:40 AM
Beryllium	0.76	0.29	mg/Kg	2	4/20/2020 10:31:40 AM
Cadmium	ND	0.20	mg/Kg	2	4/20/2020 10:31:40 AM
Chromium	10	0.59	mg/Kg	2	4/20/2020 10:31:40 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 24

Date Reported: 5/12/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Cell 4 (CS-4)

 Project:
 BMG Landfarm
 Collection Date: 4/2/2020 10:35:00 AM

 Lab ID:
 2004162-004
 Matrix: SOIL
 Received Date: 4/3/2020 8:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 6010B: SOIL METALS					Analyst: ELS
Copper	8.8	0.79	mg/Kg	2	4/20/2020 10:31:40 AM
Iron	16000	250	mg/Kg	100	4/20/2020 9:19:58 AM
Lead	3.7	0.59	mg/Kg	2	4/20/2020 1:03:54 PM
Manganese	270	0.39	mg/Kg	2	4/20/2020 10:31:40 AM
Selenium	ND	4.9	mg/Kg	2	4/20/2020 1:03:54 PM
Silver	ND	0.49	mg/Kg	2	4/20/2020 10:31:40 AM
Thallium	ND	4.9	mg/Kg	2	4/20/2020 10:31:40 AM
Uranium	ND	9.8	mg/Kg	2	4/20/2020 10:31:40 AM
Zinc	32	4.9	mg/Kg	2	4/20/2020 10:31:40 AM
EPA METHOD 8260B: VOLATILES					Analyst: JMR
Benzene	ND	0.024	mg/Kg	1	4/8/2020 6:04:28 PM
Toluene	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
Ethylbenzene	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
Methyl tert-butyl ether (MTBE)	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
1,2,4-Trimethylbenzene	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
1,3,5-Trimethylbenzene	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
1,2-Dichloroethane (EDC)	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
1,2-Dibromoethane (EDB)	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
Naphthalene	ND	0.098	mg/Kg	1	4/8/2020 6:04:28 PM
1-Methylnaphthalene	ND	0.20	mg/Kg	1	4/8/2020 6:04:28 PM
2-Methylnaphthalene	ND	0.20	mg/Kg	1	4/8/2020 6:04:28 PM
Acetone	ND	0.73	mg/Kg	1	4/8/2020 6:04:28 PM
Bromobenzene	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
Bromodichloromethane	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
Bromoform	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
Bromomethane	ND	0.15	mg/Kg	1	4/8/2020 6:04:28 PM
2-Butanone	ND	0.49	mg/Kg	1	4/8/2020 6:04:28 PM
Carbon disulfide	ND	0.49	mg/Kg	1	4/8/2020 6:04:28 PM
Carbon tetrachloride	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
Chlorobenzene	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
Chloroethane	ND	0.098	mg/Kg	1	4/8/2020 6:04:28 PM
Chloroform	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
Chloromethane	ND	0.15	mg/Kg	1	4/8/2020 6:04:28 PM
2-Chlorotoluene	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
4-Chlorotoluene	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
cis-1,2-DCE	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
cis-1,3-Dichloropropene	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
1,2-Dibromo-3-chloropropane	ND	0.098	mg/Kg	1	4/8/2020 6:04:28 PM
Dibromochloromethane	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 24

Date Reported: 5/12/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Cell 4 (CS-4)

 Project:
 BMG Landfarm
 Collection Date: 4/2/2020 10:35:00 AM

 Lab ID:
 2004162-004
 Matrix: SOIL
 Received Date: 4/3/2020 8:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JMR
Dibromomethane	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
1,2-Dichlorobenzene	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
1,3-Dichlorobenzene	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
1,4-Dichlorobenzene	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
Dichlorodifluoromethane	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
1,1-Dichloroethane	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
1,1-Dichloroethene	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
1,2-Dichloropropane	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
1,3-Dichloropropane	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
2,2-Dichloropropane	ND	0.098	mg/Kg	1	4/8/2020 6:04:28 PM
1,1-Dichloropropene	ND	0.098	mg/Kg	1	4/8/2020 6:04:28 PM
Hexachlorobutadiene	ND	0.098	mg/Kg	1	4/8/2020 6:04:28 PM
2-Hexanone	ND	0.49	mg/Kg	1	4/8/2020 6:04:28 PM
Isopropylbenzene	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
4-Isopropyltoluene	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
4-Methyl-2-pentanone	ND	0.49	mg/Kg	1	4/8/2020 6:04:28 PM
Methylene chloride	ND	0.15	mg/Kg	1	4/8/2020 6:04:28 PM
n-Butylbenzene	ND	0.15	mg/Kg	1	4/8/2020 6:04:28 PM
n-Propylbenzene	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
sec-Butylbenzene	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
Styrene	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
tert-Butylbenzene	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
1,1,1,2-Tetrachloroethane	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
1,1,2,2-Tetrachloroethane	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
Tetrachloroethene (PCE)	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
trans-1,2-DCE	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
trans-1,3-Dichloropropene	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
1,2,3-Trichlorobenzene	ND	0.098	mg/Kg	1	4/8/2020 6:04:28 PM
1,2,4-Trichlorobenzene	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
1,1,1-Trichloroethane	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
1,1,2-Trichloroethane	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
Trichloroethene (TCE)	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
Trichlorofluoromethane	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
1,2,3-Trichloropropane	ND	0.098	mg/Kg	1	4/8/2020 6:04:28 PM
Vinyl chloride	ND	0.049	mg/Kg	1	4/8/2020 6:04:28 PM
Xylenes, Total	ND	0.098	mg/Kg	1	4/8/2020 6:04:28 PM
Surr: Dibromofluoromethane	103	70-130	%Rec	1	4/8/2020 6:04:28 PM
Surr: 1,2-Dichloroethane-d4	96.9	70-130	%Rec	1	4/8/2020 6:04:28 PM
Surr: Toluene-d8	93.6	70-130	%Rec	1	4/8/2020 6:04:28 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 24

Date Reported: 5/12/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Cell 4 (CS-4)

 Project:
 BMG Landfarm
 Collection Date: 4/2/2020 10:35:00 AM

 Lab ID:
 2004162-004
 Matrix: SOIL
 Received Date: 4/3/2020 8:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JMR
Surr: 4-Bromofluorobenzene	94.5	70-130	%Rec	1	4/8/2020 6:04:28 PM
EPA METHOD 8015D MOD: GASOLINE RANGE					Analyst: JMR
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	4/8/2020 6:04:28 PM
Surr: BFB	100	70-130	%Rec	1	4/8/2020 6:04:28 PM
SM4500H+B/EPA 9040C					Analyst: JRR
рН	8.29		pH Units	1	4/9/2020 10:39:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 24

ANALYTICAL REPORT

April 13, 2020

Ss

Cn

Sr

[°]Qc

Gl

ΑI

Hall Environmental Analysis Laboratory

L1206258 Sample Delivery Group: Samples Received: 04/07/2020

Project Number:

Description:

Report To:

4901 Hawkins NE

Albuquerque, NM 87109

Entire Report Reviewed By:

Dapline R Richards Daphne Richards

Project Manager

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
CELL 1 (CS-1) 2004162-001B L1206258-01	5
CELL 4 (CS-4) 2004162-004B L1206258-02	6
Qc: Quality Control Summary	7
Wet Chemistry by Method 9012B	7
Wet Chemistry by Method 9066	8
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	9
GI: Glossary of Terms	10
Al: Accreditations & Locations	11
Sc. Sample Chain of Custody	12

SAMPLE SUMMARY

Collected by

Collected date/time Received date/time

CELL 1 (CS-1) 2004162-001B L1206258-01 Solid				04/02/20 09:47	04/07/20 08	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1457525	1	04/09/20 09:00	04/10/20 13:08	SDL	Mt. Juliet, TN
Wet Chemistry by Method 9066	WG1457951	1	04/09/20 08:55	04/09/20 14:15	SDL	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1458188	1	04/09/20 19:52	04/10/20 04:34	ADF	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
CELL 4 (CS-4) 2004162-004B L1206258-02 Solid				04/02/20 10:35	04/07/20 08	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			- 1			
			date/time	date/time	,	
Wet Chemistry by Method 9012B	WG1457525	1		•	SDL	Mt. Juliet, TN
Wet Chemistry by Method 9012B Wet Chemistry by Method 9066		1	date/time	date/time	SDL SDL	Mt. Juliet, TN Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Japline R Richards

L1206258

SAMPLE RESULTS - 01

ONE LAB. NAPage 158 of 213

Collected date/time: 04/02/20 09:47

Wet Chemistry by Method 9012B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	04/10/2020 13:08	WG1457525

Wet Chemistry by Method 9066

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Total Phenol by 4AAP	ND	<u>J6</u>	0.670	1	04/09/2020 14:15	WG1457951

Cn

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Atrazine	ND		0.333	1	04/10/2020 04:34	WG1458188	
Pentachlorophenol	ND		0.333	1	04/10/2020 04:34	WG1458188	
Phenol	ND		0.333	1	04/10/2020 04:34	WG1458188	
(S) 2-Fluorophenol	64.0		12.0-120		04/10/2020 04:34	WG1458188	
(S) Phenol-d5	60.2		10.0-120		04/10/2020 04:34	WG1458188	
(S) Nitrobenzene-d5	52.7		10.0-122		04/10/2020 04:34	WG1458188	
(S) 2-Fluorobiphenyl	60.6		15.0-120		04/10/2020 04:34	WG1458188	
(S) 2,4,6-Tribromophenol	84.9		10.0-127		04/10/2020 04:34	WG1458188	
(S) p-Terphenyl-d14	67.6		10.0-120		04/10/2020 04:34	WG1458188	

[°]Qc

SAMPLE RESULTS - 02

ONE LAB. NA Page 159 of 213

Collected date/time: 04/02/20 10:35

Wet Chemistry by Method 9012B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	04/10/2020 13:11	WG1457525

Wet Chemistry by Method 9066

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Total Phenol by 4AAP	ND		0.670	1	04/09/2020 14:19	WG1457951

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/kg		mg/kg		date / time		
Atrazine	ND		0.333	1	04/10/2020 04:53	WG1458188	
Pentachlorophenol	ND		0.333	1	04/10/2020 04:53	WG1458188	
Phenol	ND		0.333	1	04/10/2020 04:53	WG1458188	
(S) 2-Fluorophenol	65.3		12.0-120		04/10/2020 04:53	WG1458188	
(S) Phenol-d5	62.9		10.0-120		04/10/2020 04:53	WG1458188	
(S) Nitrobenzene-d5	55.5		10.0-122		04/10/2020 04:53	WG1458188	
(S) 2-Fluorobiphenyl	62.3		15.0-120		04/10/2020 04:53	WG1458188	
(S) 2,4,6-Tribromophenol	92.1		10.0-127		04/10/2020 04:53	WG1458188	
(S) p-Terphenyl-d14	72.0		10.0-120		04/10/2020 04:53	WG1458188	

QUALITY CONTROL SUMMARY

ONE LAB. NA Page 160 of 213

Wet Chemistry by Method 9012B

L1206258-01,02

Method Blank (MB)

(MB) R3517472-1 04/10/20 13:03										
		MB Result	MB Qualifier	MB MDL	MB RDL					
	Analyte	mg/kg		mg/kg	mg/kg					
	Cyanide	U		0.0733	0.250					

L1206258-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1206258-02	04/10/20 13:11 • (DUP)	R3517472-5	04/10/20 13	3:12		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Cyanide	ND	0.000	1	0.000		20

L1206664-06 Original Sample (OS) • Duplicate (DUP)

(OS) I 1206664-06 04/10/20 13:32 • (DLIP) P3517472-8 04/10/20 13:33

(O3) L1200004-00 04/10/.	Original Result	,		DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Cyanide	U	0.000	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3517472-2 04/10/20 13:04										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
Cvanide	2.50	2.72	109	85.0-115						

L1206258-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1206258-01	04/10/20 13:08 • (N	1S) R3517472-3	04/10/20 13:09 •	• (MSD) R3517472	-4 04/10/20 13:10
	C :1 A			1100 D	10.0

,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Cyanide	1.67	ND	1.42	1.42	85.2	85.3	1	75.0-125			0.152	20

L1206664-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OC) 12066661 0E	∩//1∩/2∩ 12·2Q	- (MC) D2517/172 6	 (MSD) R3517472-7 	∩//1∩/2∩ 12·21

(OS) L1206664-05 04/10/	20 13:29 • (MS)	R351/4/2-6 0	4/10/20 13:30 •	• (MSD) R351/4	1/2-/ 04/10/20	13:31						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Cyanide	1.67	U	ND	0.452	0.000	27.2	1	75.0-125	J6	J3 J6	200	20

QUALITY CONTROL SUMMARY

ONE LAB. NAPagev161 of 213

Wet Chemistry by Method 9066

L1206258-01,02

Method Blank (MB)

(MB) R3517148-1 04/09/2	20 14:10			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Total Phenol by 4AAP	U		0.220	0.670

L1206258-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1206258-02 04/09/20 14:19 • (DUP) R3517148-5 04/09/20 14:20

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Total Phenol by 4AAP	ND	0.532	1	0.000		20

(LCS) R3517148-2 04/09/20 14:10

L1206258-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1206258-01_04/09/20 14:15 • (MS) R3517148-3_04/09/20 14:16 • (MSD) R3517148-4_04/09/20 14:17

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Total Phenol by 4AAP	16.7	ND	13.5	14.1	80.7	84.4	1	90.0-110	<u>J6</u>	<u>J6</u>	4.52	20

Hall Environmental Analysis Laboratory

QUALITY CONTROL SUMMARY

ONE LAB. NA Page 162 of 213

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L1206258-01,02

Method Blank (MB)

(MB) R3517469-2 04/10/2	0 02:19			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Atrazine	U		0.0938	0.333
Pentachlorophenol	U		0.0480	0.333
Phenol	U		0.00695	0.333
(S) Nitrobenzene-d5	66.4			10.0-122
(S) 2-Fluorobiphenyl	70.9			15.0-120
(S) p-Terphenyl-d14	79.6			10.0-120
(S) Phenol-d5	69.5			10.0-120
(S) 2-Fluorophenol	<i>75.5</i>			12.0-120
(S) 2,4,6-Tribromophenol	74.8			10.0-127

Laboratory Control Sample (LCS)

(LCS) R3517469-1 04/10	0/20 02:00				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Atrazine	0.666	0.539	80.9	43.0-120	
Pentachlorophenol	0.666	0.520	78.1	29.0-120	
Phenol	0.666	0.470	70.6	28.0-120	
(S) Nitrobenzene-d5			67.3	10.0-122	
(S) 2-Fluorobiphenyl			72.4	15.0-120	
(S) p-Terphenyl-d14			77.8	10.0-120	
(S) Phenol-d5			76.1	10.0-120	
(S) 2-Fluorophenol			80.9	12.0-120	
(S) 2,4,6-Tribromophenol			89.2	10.0-127	

L1205871-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Pentachlorophenol	0.666	U	0.490	0.495	73.6	74.3	2	10.0-160			1.02	31
Phenol	0.666	U	0.396	0.424	59.5	63.7	2	12.0-120			6.83	38
(S) Nitrobenzene-d5					47.1	45.9		10.0-122				
(S) 2-Fluorobiphenyl					63.7	65.2		15.0-120				
(S) p-Terphenyl-d14					74.8	85.3		10.0-120				
(S) Phenol-d5					64.8	67.5		10.0-120				
(S) 2-Fluorophenol					56.1	55.0		12.0-120				
(S) 2,4,6-Tribromophenol					60.4	62.2		10.0-127				

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.

Qualifier	Description

times of preparation and/or analysis.

	<u> </u>
J3	The associated batch QC was outside the established quality control range for precision.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.

Sample Summary (Ss)

This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana 1	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina 1	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

CHAIN OF CUSTODY RECORD

AGE:	OF:	7
1	1	

Hall Environmental Analysis L

Page 165 of 213

4901 H

B013

L1206258

Albuquerque, N. TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

SUB C	ONTRATOR PACE	TN COMPANY:	PACE TN		PHONE:	(800) 767-5859 FAX: (615) 758-5859
ADDRE	12065	Lebanon Rd			ACCOUNT #:	EMAIL:
CITY, S	STATE, ZIP: Mt. Ju	lliet, TN 37122			Par .	
ITEM	SAMPLE	CLIENT SAMPLE ID	BOTTLE TYPE	MATRIX	COLLECTION DATE	ANALYTICAL COMMENTS
1	2004162-001B	Cell 1 (CS-1)	8OZGU	Soil	4/2/2020 9:47:00 AM	1 Atrazine and Pentachlorophenol, Total Phenols and Total CN
2	2004162-004B	Cell 4 (CS-4)	80ZGU	Soil	4/2/2020 10:35:00 AM	1 Atrazine and Pentachlorophenol, Total Phenols and Total CN

Trease illettude tille EAB iD all	d the CLIENT	SAMPLE ID 0	n an imai reports. Prease e-m	Fed	45/0	om. Please return all coolers and blue ice. Thank you.
Relinquished By:	Date: 4/3/2020		Received By:	Date:	Time	REPORT TRANSMITTAL DESIRED: HARDCOPY (extra cost)
Relinquished By:	Date:	Time:	Received By:	Date:	Time:	FOR LAB USE ONLY Temp of samples 1.2+,1=1.3c A Attempt to Cool?
TAT: Sta	ndard 🗍 +	RUSH	Next BD 2nd I	BD 🗆 3n	d BD	RAD SCREEN: <0.5 mR/hr

Pace Analytical National	Center for T	esting & Innov	/ation	
Cooler	Receipt For	m		
Client: HALLENVANM			L120102	158
Cooler Received/Opened On: 4/1//	20	Temperature:	1.300	
Received by: Monica Rifenberrick				1
Signature:	Hope	lin		
Receipt Check List	1	NP	Yes	No
COC Seal Present / Intact?				
COC Signed / Accurate?	196 967			
Bottles arrive intact?				
Correct bottles used?	3 Obs. 31 33	The National Association		
Sufficient volume sent?				
If Applicable		A AND SOLD		
VOA Zero headspace?				The state of the s
Preservation Correct / Checked?			19 2 E. N	

May 11, 2020

Andy Freeman Hall Environmental 4901 Hawkins NE Albuquerque, NM 87109

RE: Project: 2004162

Pace Project No.: 30358865

Dear Andy Freeman:

Enclosed are the analytical results for sample(s) received by the laboratory on April 14, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jacquelyn Collins

jacquelyn.collins@pacelabs.com

Leignoly Cellins

(724)850-5612 Project Manager

Enclosures

cc: Ms. Jackie Ball, Hall Environmental Michelle Garcia, Hall Environmental

CERTIFICATIONS

Project: 2004162
Pace Project No.: 30358865

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Ohio EPA Rad Approval: #41249

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: 2004162
Pace Project No.: 30358865

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30358865001	2004162-001C Cell 1 (CS-1)	Solid	04/02/20 09:47	04/14/20 09:30
30358865002	2004162-004C Cell 4 (CS-4)	Solid	04/02/20 10:35	04/14/20 09:30

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: 2004162
Pace Project No.: 30358865

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30358865001	2004162-001C Cell 1 (CS-1)	EPA 901.1	MAH	2	PASI-PA
30358865002	2004162-004C Cell 4 (CS-4)	EPA 901.1	MAH	2	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

REPORT OF LABORATORY ANALYSIS

Greensburg, PA 15601 (724)850-5600

PROJECT NARRATIVE

Project: 2004162 Pace Project No.: 30358865

Method: EPA 901.1

Description: 901.1 Gamma Spec INGROWTH

Client: Hall Environmental Date: May 11, 2020

General Information:

2 samples were analyzed for EPA 901.1 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2004162
Pace Project No.: 30358865

Sample: 2004162-001C Cell 1 (CS-1) Lab ID: 30358865001 Collected: 04/02/20 09:47 Received: 04/14/20 09:30 Matrix: Solid

PWS: Site ID: Sample Type:

Results reported on a "dry-weight" basis

Parameters Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 901.1 1.063 ± 0.317 (0.236) Radium-226 pCi/g 05/08/20 14:54 13982-63-3 C:NA T:NA Radium-228 EPA 901.1 $0.607 \pm 0.502 \quad (0.556)$ pCi/g 05/08/20 14:54 15262-20-1 C:NA T:NA

Sample: 2004162-004C Cell 4 (CS-4) Lab ID: 30358865002 Collected: 04/02/20 10:35 Received: 04/14/20 09:30 Matrix: Solid

PWS: Site ID: Sample Type:

Results reported on a "dry-weight" basis

Parameters Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg Radium-226 EPA 901.1 $1.063 \pm 0.409 \quad (0.305)$ pCi/g 05/08/20 15:12 13982-63-3 C:NA T:NA Radium-228 EPA 901.1 1.461 ± 0.454 (0.252) pCi/g 05/08/20 15:12 15262-20-1 C:NA T:NA

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL - RADIOCHEMISTRY

Project: 2004162
Pace Project No.: 30358865

QC Batch: 394244 Analysis Method: EPA 901.1

QC Batch Method: EPA 901.1 Analysis Description: 901.1 Gamma Spec Ingrowth

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30358865001, 30358865002

METHOD BLANK: 1909588 Matrix: Solid

Associated Lab Samples: 30358865001, 30358865002

Parameter	Act ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers
Radium-226	0.029 ± 0.036 (0.184) C:NA T:NA	pCi/g	05/07/20 13:15	Ra
Radium-228	0.063 ± 0.092 (0.142) C:NA T:NA	pCi/g	05/07/20 13:15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALIFIERS

Project: 2004162
Pace Project No.: 30358865

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 05/11/2020 03:57 PM

Ra The reported Ra-226 results were determined by hermetically sealing the dried, processed sample in an appropriatesized can. Each sample was stored for a minimum of 21 days to ensure that equilibrium between Ra-226 and daughters Bi-214 and Pb-214 was achieved. Reported Ra-226 results were inferred from gamma peaks attributable to Bi-214 and Pb-214.

REPORT OF LABORATORY ANALYSIS

ENVIRONMENTAL LABORATORY ANALYSIS

4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975

Website: www.hallenvironmental.com

Hall Environmental Analysis Laboratory FAX: 505-345-4107

or:

CHAIN OF CUSTODY RECORD PAGE

SUB CONTRA	ATOR. Pace A	SUB CONTRATOR. Pace Analytical-PA	COMPANY:	Pace Analytical Services, Inc.	ervices, Inc	C. PHONE:	(724) 850-5600	FAX:	(724) 850-5601	
ADDRESS:	1638 R	1638 Roseytown Rd Ste 2,3,4	e 2,3,4			ACCOUNT #:		EMAIL:		
CITY, STATE,	ZIP. Greens	CITY, STATE, ZIP: Greensburg, PA 15601								
ITEM	SAMPLE	CLIENT SAMPLE ID	LEID	BOTTLE	MATRIX	COLLECTION	# CONTAINERS	NALYTICA	ANALYTICAL COMMENTS	
1 2004	4162-001C	2004162-001C Cell 1 (CS-1)		80ZGU	Soil	4/2/2020 9:47:00 AM	1 Ra226/228			100
2 2004	4162-004C	2 2004162-004C Cell 4 (CS-4)		802GU	Soil	4/2/2020 10:35:00 AM 1 Ra226/228	1 Ra226/228	The state of the s		003

MO#:30358865

1	μ
ļ	•
п	4
	ï
i	2
ľ	2
ì	٠
į	
٠	Ξ.
	,
1	Z
4	C
1	Ē
J	
3	Ξ
ì	,
į	
τ	1
2	Z
,	۳.
١	
i	ď
ŧ	
è	-
ï	١

Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.com. Please return all coolers and blue ice. Thank you.

Relinquished By:	L Date:	4/3/2020	Time: 1:04 PM R	Recognition of the second	2000	Rest 1/2	Degg//1998 (930)	REPORT TRANSMITTAL DESIRED:
Relinquished By:	Date:		Time:	Received By:	Da	Date:	Time:	☐ HARDCOPY (extra cost) ☐ FAX ☐ EMAIL ☐ ONLINE
Relinguished By:) ste		E L	Descripted Day			1	FOR LAB USE ONLY
			7	Ascerse by.	ភ <u>ុ</u>	Date:	ime:	Ç
TAT:	Standard	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	RUSH	Next BD	2nd BD	3rd BD		Temp of samples Attempt to Cool ?
e 9 o			į				<u> </u>	Соппленть:

Received by OCD: 1/19/2022 8:22:37 AM Pittsburgh Lab Sample Condition Upon Receipt

Pace Analytical*	Client Name:		H	2//	<u>BNIVONME</u> NK	Xolect ##	303588	6 5
Courier: Fed Ex Tracking #:]UPS □USPS □Client 102 2776 €	-	omme D	rcial	Pace Other		Label //	
Custody Seal on Coole	er/Box Present; // yes	□ n	10	Seals	intact: 🖵 yes 🔲	no	7	•
Thermometer Used				Vet	Blue None		~	
Cooler Temperature	Observed Temp	2	°C	Corre	ection Factor: -0 .	3c Final Tem	р: 7.9°С	
Temp should be above free	ezing to 6°C		_			_	-	•
					pH paper Lot#	Date and Initia contents:	ls of person examining	
Comments:		Yes	No.	N/A	. SL			
Chain of Custody Prese	nt:	//	<u> </u>	<u> </u>	1.			
Chain of Custody Filled	Out:	//	<u> </u>	 	2.			
Chain of Custody Reling	juished;	/			3.			
Sampler Name & Signat	ture on COC;	 	/	ļ	4.			
Sample Labels match C	OC:	L	71		5.			
-Includes date/time/lf		- }	し					
Samples Arrived within I		 / 			6,			
Short Hold Time Analys		-	/		7.			
Rush Turn Around Tim	e Requested;	ļ,	/_		8.			
Sufficient Volume:		//			9.			
Correct Containers Used		\vdash			10.			
-Pace Containers Use	ed:		/					
Containers Intact:		/		<u> </u>	11.			
Orthophosphate field filte		ļ		4	12.			
Hex Cr Aqueous sample		1.		<u> </u>	13.			
Organic Samples ched	cked for dechlorination:	<u> </u>			14.		· =	
Filtered volume received All containers have been ch		ļ		_	15.			
	•	کےا			16. MG4/15/20	20		
Non-aqueous matrix	rm, TOC, O&G, Phenolics,	Kadon,						
All containers meet meth requirements.	od preservation	/			Initial when completed	Date/time of preservation		
		L			Lot # of added preservative	prostration		
Headspace in VOA Vials	(>6mm):		/		17.			
Trip Blank Present:	4		/		18.			
Trip Blank Custody Seals								•
Rad Samples Screened	l < 0.5 mrem/hr				Initial when completed:	Date: 4//5/	2050	
Client Notification/ Res	olution:	: <i></i>						
Person-Gontacted	•			-Date/T	Fime:	Contacted-E	Зу:	
Comments/ Resolution							-	
☐ A check in this	box indicates that addit	ional i	inforn	nation	has been stored in e	reports.		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

J:\QAQC\Master\Document Management\Sample Mgt\Sample Condition Upon Receipt Pittsburgh (C056-9 5April2019)

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2004162**

12-May-20

Client: Animas Environmental
Project: BMG Landfarm

Sample ID: MB-51968 SampType: mblk TestCode: EPA Method 300.0: Anions

Client ID: PBS Batch ID: 51968 RunNo: 68287

Prep Date: 4/20/2020 Analysis Date: 4/20/2020 SeqNo: 2362456 Units: mg/Kg

Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Result Fluoride ND 0.30 Chloride ND 1.5 Nitrogen, Nitrite (As N) ND 0.30 Nitrogen, Nitrate (As N) ND 0.30 Sulfate ND 1.5

Sample ID: LCS-51968	SampT	ype: Ics	;	TestCode: EPA Method 300.0: Anions						
Client ID: LCSS	Batch	n ID: 51 9	968	RunNo: 68287						
Prep Date: 4/20/2020	Analysis D	ate: 4/	20/2020	S	SeqNo: 2	362457	Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	1.6	0.30	1.500	0	109	90	110			
Chloride	14	1.5	15.00	0	94.3	90	110			
Nitrogen, Nitrite (As N)	2.8	0.30	3.000	0	94.3	90	110			
Nitrogen, Nitrate (As N)	7.3	0.30	7.500	0	97.5	90	110			
Sulfate	29	1.5	30.00	0	95.2	90	110			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 24

OC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#:

2004162 12-May-20

Client: Animas Environmental **Project:** BMG Landfarm

Sample ID: MB-51671 SampType: MBLK TestCode: EPA Method 8011/504.1 Modified: EDB

Client ID: PBS Batch ID: 51671 RunNo: 67972

Prep Date: 4/9/2020 Analysis Date: 4/9/2020 SeqNo: 2349631 Units: µg/Kg

SPK value SPK Ref Val %REC LowLimit %RPD **RPDLimit** Analyte Result PQL HighLimit Qual

1,2-Dibromoethane ND 0.10

Sample ID: LCS-51671 SampType: LCS TestCode: EPA Method 8011/504.1 Modified: EDB

Client ID: LCSS Batch ID: 51671 RunNo: 67972

Prep Date: 4/9/2020 Analysis Date: 4/9/2020 SeqNo: 2349632 Units: µg/Kg

SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result PQL LowLimit HighLimit Qual

1.2-Dibromoethane 1.2 0.10 1.000 124

Sample ID: MB-51671 SampType: MBLK TestCode: EPA Method 8011/504.1 Modified: EDB

Client ID: PBS Batch ID: 51671 RunNo: 67972

Prep Date: 4/9/2020 Analysis Date: 4/9/2020 SeqNo: 2349634 Units: µq/Kq

Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDI imit Qual Analyte

1,2-Dibromoethane ND 0.10

Sample ID: 2004162-001AMS SampType: MS TestCode: EPA Method 8011/504.1 Modified: EDB

Client ID: Cell 1 (CS-1) Batch ID: 51671 RunNo: 67972

Prep Date: 4/9/2020 Analysis Date: 4/9/2020 SeqNo: 2349640 Units: µg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

1,2-Dibromoethane 0.5843 0.75 0.058 128 65 135

Sample ID: 2004162-001AMSD SampType: MSD TestCode: EPA Method 8011/504.1 Modified: EDB

Client ID: Cell 1 (CS-1) Batch ID: 51671 RunNo: 67972

Prep Date: 4/9/2020 Analysis Date: 4/9/2020 SeqNo: 2349641 Units: µq/Kq

Analyte Result PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual

1,2-Dibromoethane 0.73 0.066 0.6641 65 135 20 110 2.53

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded Н

Not Detected at the Reporting Limit

POL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 12 of 24

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2004162** *12-May-20*

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: MB-51569 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range Organics

Client ID: **PBS** Batch ID: **51569** RunNo: **67895**

Prep Date: 4/5/2020 Analysis Date: 4/7/2020 SeqNo: 2347143 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Diesel Range Organics (DRO) ND 10

Motor Oil Range Organics (MRO) ND 50

Surr: DNOP 9.4 10.00 94.3 55.1 146

Sample ID: LCS-51569 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics

Client ID: LCSS Batch ID: 51569 RunNo: 67895

4.5

Prep Date: 4/5/2020 Analysis Date: 4/8/2020 SeqNo: 2347144 Units: mg/Kg

5.000

SPK value SPK Ref Val Analyte Result PQL %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 47 10 50.00 94.3 70 130

90.0

55.1

146

Qualifiers:

Surr: DNOP

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 13 of 24

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

0.090

0.091

0.046

0.045

0.025

0.025

0.1250

0.1250

0.06250

0.06250

WO#: **2004162** *12-May-20*

Client: Animas Environmental
Project: BMG Landfarm

Sample ID: MB-51653	SampType: I	TestCode: EPA Method 8082A: PCB's							
Client ID: PBS	Batch ID:	51653	R	tunNo: 68	3036				
Prep Date: 4/8/2020	Analysis Date:	4/11/2020	S	SeqNo: 23	351814	Units: mg/Kg			
Analyte	Result PQI	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	ND 0.02	5							
Aroclor 1221	ND 0.02	5							
Aroclor 1232	ND 0.02	5							
Aroclor 1242	ND 0.02	5							
Aroclor 1248	ND 0.02	5							
Aroclor 1254	ND 0.02	5							
Aroclor 1260	ND 0.02	5							
Surr: Decachlorobiphenyl	0.026	0.06250		42.0	15	129			
Surr: Tetrachloro-m-xylene	0.028	0.06250		44.0	16.1	131			
Sample ID: LCS-51653	SampType: I	_cs	Test	tCode: EF	PA Method	8082A: PCB's	5		
Client ID: LCSS	Batch ID:	51653	RunNo: 68036						
Prep Date: 4/8/2020	Analysis Date:	4/11/2020	S	SeqNo: 23	351815	Units: mg/K	g		
Analyte	Result PQI	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

0

0

72.0

72.6

74.4

72.0

25.1

32.4

15

16.1

122

92.8

129

131

Sample ID: MB-51653	SampType: MBLK			TestCode: EPA Method 8082A: PCB's						
Client ID: PBS	Batch	n ID: 516	653	RunNo: 68036						
Prep Date: 4/8/2020	Analysis D	oate: 4/ 1	11/2020	S	SeqNo: 2	351826	Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	ND	0.025	•		•			•		•
Aroclor 1221	ND	0.025								
Aroclor 1232	ND	0.025								
Aroclor 1242	ND	0.025								
Aroclor 1248	ND	0.025								
Aroclor 1254	ND	0.025								
Aroclor 1260	ND	0.025								
Surr: Decachlorobiphenyl	0.026		0.06250		41.6	15	129			
Surr: Tetrachloro-m-xylene	0.026		0.06250		42.4	16.1	131			

Qualifiers:

Aroclor 1016

Aroclor 1260

Surr: Decachlorobiphenyl

Surr: Tetrachloro-m-xylene

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: **2004162** *12-May-20*

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: Ics-51562 SampType: LCS				Tes	tCode: El	PA Method	8260B: Volat	tiles		
Client ID: LCSS	Batch ID: 51562 RunNo: 67929									
Prep Date: 4/4/2020	Analysis [Date: 4/	7/2020	\$	SeqNo: 2347544 Units: mg/Kg					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.97	0.025	1.000	0	96.8	70	130			
Toluene	1.0	0.050	1.000	0	104	70	130			
Chlorobenzene	1.1	0.050	1.000	0	107	70	130			
1,1-Dichloroethene	1.1	0.050	1.000	0	105	70	130			
Trichloroethene (TCE)	0.91	0.050	1.000	0	91.4	70	130			
Surr: Dibromofluoromethane	0.49		0.5000		98.8	70	130			
Surr: 1,2-Dichloroethane-d4	0.47		0.5000		94.2	70	130			
Surr: Toluene-d8	0.49		0.5000		97.0	70	130			
Surr: 4-Bromofluorobenzene	0.48		0.5000		95.0	70	130			

Sample ID: mb-51562 SampType: MBLK TestCode: EPA Method 8260B: Volatiles

Client ID: PBS Batch ID: 51562 RunNo: 67929

Prep Date: 4/4/2020 Analysis Date: 4/7/2020 SeqNo: 2347545 Units: mg/Kg

Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit
ND	0.025					
ND	0.050					
ND	0.050					
ND	0.050					
ND	0.050					
ND	0.050					
ND	0.050					
ND	0.050					
ND	0.10					
ND	0.20					
ND	0.20					
ND	0.75					
ND	0.050					
ND	0.050					
ND	0.050					
ND	0.15					
ND	0.50					
ND	0.50					
ND	0.050					
ND	0.050					
ND	0.10					
ND	0.050					
ND	0.15					
	ND N	ND 0.20 ND 0.20 ND 0.75 ND 0.050 ND 0.050 ND 0.15 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.050 ND 0.050 ND 0.050 ND 0.050 ND 0.050	ND 0.20 ND 0.20 ND 0.75 ND 0.050 ND 0.050 ND 0.15 ND 0.50 ND 0.50 ND 0.50 ND 0.050 ND 0.050 ND 0.050 ND 0.050 ND 0.050	ND 0.20 ND 0.20 ND 0.75 ND 0.050 ND 0.050 ND 0.050 ND 0.15 ND 0.50 ND 0.50 ND 0.50 ND 0.050 ND 0.050 ND 0.050 ND 0.050 ND 0.050 ND 0.050	ND 0.20 ND 0.20 ND 0.75 ND 0.050 ND 0.050 ND 0.050 ND 0.15 ND 0.50 ND 0.50 ND 0.50 ND 0.050	ND 0.20 ND 0.20 ND 0.75 ND 0.050 ND 0.050 ND 0.050 ND 0.15 ND 0.50 ND 0.50 ND 0.50 ND 0.050 ND 0.050 ND 0.050 ND 0.050 ND 0.050 ND 0.050

Qualifiers:

2-Chlorotoluene

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 24

%RPD

RPDLimit

Qual

ND

0.050

Hall Environmental Analysis Laboratory, Inc.

WO#: **2004162**

12-May-20

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: mb-51562 SampType: MBLK TestCode: EPA Method 8260B: Volatiles

Client ID: PBS	Batch	n ID: 51	562	R	RunNo: 67	7929				
Prep Date: 4/4/2020	Analysis D	ate: 4/	7/2020	S	SeqNo: 23	347545	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
4-Chlorotoluene	ND	0.050								
cis-1,2-DCE	ND	0.050								
cis-1,3-Dichloropropene	ND	0.050								
1,2-Dibromo-3-chloropropane	ND	0.10								
Dibromochloromethane	ND	0.050								
Dibromomethane	ND	0.050								
1,2-Dichlorobenzene	ND	0.050								
1,3-Dichlorobenzene	ND	0.050								
1,4-Dichlorobenzene	ND	0.050								
Dichlorodifluoromethane	ND	0.050								
1,1-Dichloroethane	ND	0.050								
1,1-Dichloroethene	ND	0.050								
1,2-Dichloropropane	ND	0.050								
1,3-Dichloropropane	ND	0.050								
2,2-Dichloropropane	ND	0.10								
1,1-Dichloropropene	ND	0.10								
Hexachlorobutadiene	ND	0.10								
2-Hexanone	ND	0.50								
Isopropylbenzene	ND	0.050								
4-Isopropyltoluene	ND	0.050								
4-Methyl-2-pentanone	ND	0.50								
Methylene chloride	ND	0.15								
n-Butylbenzene	ND	0.15								
n-Propylbenzene	ND	0.050								
sec-Butylbenzene	ND	0.050								
Styrene	ND	0.050								
tert-Butylbenzene	ND	0.050								
1,1,1,2-Tetrachloroethane	ND	0.050								
1,1,2,2-Tetrachloroethane	ND	0.050								
Tetrachloroethene (PCE)	ND	0.050								
trans-1,2-DCE	ND	0.050								
trans-1,3-Dichloropropene	ND	0.050								
1,2,3-Trichlorobenzene	ND	0.10								
1,2,4-Trichlorobenzene	ND	0.050								
1,1,1-Trichloroethane	ND	0.050								
1,1,2-Trichloroethane	ND	0.050								
Trichloroethene (TCE)	ND	0.050								
Trichlorofluoromethane	ND	0.050								
1,2,3-Trichloropropane	ND	0.10								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 16 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: **2004162**

12-May-20

Client: Animas Environmental

Project: BMG Landfarm

;	Sample ID: mb-51562	SampType: MBLK	TestCode: EPA Method 8260B: Volatiles

Client ID: PBS Batch ID: 51562 RunNo: 67929

Prep Date: 4/4/2020	Analysis Date: 4/7/2020			S	SeqNo: 2	347545	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Vinyl chloride	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: Dibromofluoromethane	0.52		0.5000		104	70	130			
Surr: 1,2-Dichloroethane-d4	0.51		0.5000		103	70	130			
Surr: Toluene-d8	0.50		0.5000		99.3	70	130			
Surr: 4-Bromofluorobenzene	0.46		0.5000		92.7	70	130			

Sample ID: 2004162-002ams	SampT	ype: MS	3	Tes	tCode: El	PA Method	8260B: Volat	iles		
Client ID: Cell 2 (CS-2)	Batcl	n ID: 51	51562 RunNo: 67951							
Prep Date: 4/4/2020	Analysis D	ate: 4/	8/2020	\$	SeqNo: 2	348714	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.92	0.025	0.9990	0	92.2	70	130			
Toluene	0.97	0.050	0.9990	0	97.2	70	130			
Chlorobenzene	0.97	0.050	0.9990	0	96.9	70	130			
1,1-Dichloroethene	0.99	0.050	0.9990	0	99.5	70	130			
Trichloroethene (TCE)	0.90	0.050	0.9990	0	90.1	70	130			
Surr: Dibromofluoromethane	0.49		0.4995		97.8	70	130			
Surr: 1,2-Dichloroethane-d4	0.49		0.4995		98.1	70	130			
Surr: Toluene-d8	0.45		0.4995		91.0	70	130			
Surr: 4-Bromofluorobenzene	0.46		0.4995		91.4	70	130			

Sample ID: 2004162-002ams	d Samp	Туре: М	SD	Tes	tCode: El	PA Method	8260B: Volat	iles				
Client ID: Cell 2 (CS-2)	Batc	h ID: 51	562	F	RunNo: 67951							
Prep Date: 4/4/2020	Analysis [Date: 4/	8/2020	S	SeqNo: 2	348715	Units: mg/K	(g	.29 20 .71 20 .84 20 .118 20 .249 20 .0 0			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	0.94	0.025	0.9980	0	94.4	70	130	2.29	20			
Toluene	1.0	0.050	0.9980	0	100	70	130	2.71	20			
Chlorobenzene	1.0	0.050	0.9980	0	99.8	70	130	2.84	20			
1,1-Dichloroethene	1.0	0.050	0.9980	0	100	70	130	0.418	20			
Trichloroethene (TCE)	0.90	0.050	0.9980	0	89.9	70	130	0.249	20			
Surr: Dibromofluoromethane	0.49		0.4990		98.8	70	130	0	0			
Surr: 1,2-Dichloroethane-d4	0.47		0.4990		95.0	70	130	0	0			
Surr: Toluene-d8	0.47		0.4990		93.2	70	130	0	0			
Surr: 4-Bromofluorobenzene	0.47		0.4990		94.7	70	130	0	0			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 17 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: 2004162 12-May-20

Client: Animas Environmental **Project:** BMG Landfarm

Sample ID: MB-51730 SampType: MBLK TestCode: EPA Method 8310: PAHs

Client ID: PBS Batch ID: 51730 RunNo: 68048

Prep Date: 4/11/2020 Analysis Date: 4/12/2020 SeqNo: 2352250 Units: mg/Kg

PQL SPK value SPK Ref Val %REC LowLimit %RPD **RPDLimit** Analyte Result HighLimit Qual Naphthalene ND 0.25

1-Methylnaphthalene ND 0.25 ND 0.25 2-Methylnaphthalene Benzo(a)pyrene ND 0.010

Surr: Benzo(e)pyrene 0.36 0.5000 72.3 29 98.8

Sample ID: LCS-51730 SampType: LCS TestCode: EPA Method 8310: PAHs

Client ID: LCSS Batch ID: 51730 RunNo: 68048

Prep Date: 4/11/2020	Analysis Date: 4/12/2020			\$	SeqNo: 2352251 Units			Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Naphthalene	0.85	0.25	2.000	0	42.5	33	89.2				
1-Methylnaphthalene	0.88	0.25	2.000	0	43.8	35.1	91.5				
2-Methylnaphthalene	0.87	0.25	2.000	0	43.4	34.2	92.1				
Benzo(a)pyrene	ND	0.010	0.01250	0	30.0	15	98.1				
Surr: Benzo(e)pyrene	0.28		0.5000		55.8	29	98.8				

Sample ID: 2004162-001AMS SampType: MS TestCode: EPA Method 8310: PAHs

Client ID: Cell 1 (CS-1) Batch ID: 51730 RunNo: 68048

Prep Date: 4/11/2020 Analysis Date: 4/12/2020 SeqNo: 2352254 Units: mg/Kg

	,a., o.o -	- a.c. ,	,	•	, o q o		oto: Ilig/1	.9		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	ND	1.2	1.930	0	52.8	19	86.7			
1-Methylnaphthalene	ND	1.2	1.930	0	52.9	15	96.5			
2-Methylnaphthalene	ND	1.2	1.930	0	52.4	15.8	97.2			
Benzo(a)pyrene	ND	0.048	0.01206	0	60.0	15	112			
Surr: Benzo(e)pyrene	0.27		0.4824		56.8	29	98.8			

Sample ID: 2004162-001AMSD SampType: MSD TestCode: EPA Method 8310: PAHs

Client ID: Cell 1 (CS-1) Batch ID: 51730 RunNo: 68048

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '										
Prep Date: 4/11/2020	Analysis D	ate: 4/	: 4/12/2020 SeqNo: 2352255 Units: mg/Kg							
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	ND	1.2	1.984	0	49.6	19	86.7	0	61.3	
1-Methylnaphthalene	ND	1.2	1.984	0	47.6	15	96.5	0	56.7	
2-Methylnaphthalene	ND	1.2	1.984	0	47.5	15.8	97.2	0	66.9	
Benzo(a)pyrene	ND	0.050	0.01240	0	50.0	15	112	0	53.2	
Surr: Benzo(e)pyrene	0.24		0.4960		49.0	29	98.8	0	20	

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 18 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: **2004162**

12-May-20

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: MB-51730 SampType: MBLK TestCode: EPA Method 8310: PAHs
Client ID: PBS Batch ID: 51730 RunNo: 68048

Prep Date: 4/11/2020 Analysis Date: 4/12/2020 SeqNo: 2352268 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Naphthalene ND 0.25

1-Methylnaphthalene ND 0.25

 1-Methylnaphthalene
 ND
 0.25

 2-Methylnaphthalene
 ND
 0.25

 Benzo(a)pyrene
 ND
 0.010

Surr: Benzo(e)pyrene 0.36 0.5000 71.2 29 98.8

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 19 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: **2004162**

12-May-20

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: MB-51805 SampType: MBLK TestCode: EPA Method 7471: Mercury

Client ID: PBS Batch ID: 51805 RunNo: 68115

Prep Date: 4/14/2020 Analysis Date: 4/14/2020 SeqNo: 2354518 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.033

Sample ID: LLLCS-51805 SampType: LCSLL TestCode: EPA Method 7471: Mercury

Client ID: BatchQC Batch ID: 51805 RunNo: 68115

Prep Date: 4/14/2020 Analysis Date: 4/14/2020 SeqNo: 2354519 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.033 0.006660 0 97.6 70 130

Sample ID: LCS-51805 SampType: LCS TestCode: EPA Method 7471: Mercury

Client ID: LCSS Batch ID: 51805 RunNo: 68115

Prep Date: 4/14/2020 Analysis Date: 4/14/2020 SeqNo: 2354520 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.16 0.033 0.1667 0 97.9 80 120

Sample ID: 2004162-001AMS SampType: MS TestCode: EPA Method 7471: Mercury

Client ID: Cell 1 (CS-1) Batch ID: 51805 RunNo: 68115

Prep Date: 4/14/2020 Analysis Date: 4/14/2020 SeqNo: 2354526 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.18 0.034 0.1728 0.01011 98.3 80 120

Sample ID: 2004162-001AMSD SampType: MSD TestCode: EPA Method 7471: Mercury

Client ID: Cell 1 (CS-1) Batch ID: 51805 RunNo: 68115

Prep Date: 4/14/2020 Analysis Date: 4/14/2020 SeqNo: 2354527 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual LowLimit 0.17 0.034 0.1742 0.01011 80 3.69 20 Mercury 93.7 120

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 20 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: **2004162**

12-May-20

Client: Animas Environmental

Project: BMG Landfarm

Client ID: PBS Batch ID: 51785 RunNo: 68257

SampType: LCS

Prep Date: 4/14/2020	Analysis D	ate: 4/	20/2020	SeqNo: 2360972			Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	ND	2.5								
Arsenic	ND	2.5								
Barium	ND	0.10								
Beryllium	ND	0.15								
Cadmium	ND	0.10								
Chromium	ND	0.30								
Copper	ND	0.40								
Iron	ND	2.5								
Lead	ND	0.30								
Manganese	ND	0.20								
Selenium	ND	2.5								
Silver	ND	0.25								
Thallium	ND	2.5								
Uranium	ND	5.0								
Zinc	ND	2.5								

TestCode: EPA Method 6010B: Soil Metals

Campic 15. 200-31703	Tostodde. El A Meth					Ailiculou	00 10D. 00II I	victais				
Client ID: LCSS	Batch	n ID: 51	785	F	RunNo: 6	8257						
Prep Date: 4/14/2020	Analysis D	Date: 4/	20/2020	S	SeqNo: 2	360973	Units: mg/Kg					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Antimony	25	2.5	25.00	0	100	80	120					
Arsenic	24	2.5	25.00	0	97.3	80	120					
Barium	25	0.10	25.00	0	99.7	80	120					
Beryllium	26	0.15	25.00	0	105	80	120					
Cadmium	25	0.10	25.00	0	99.9	80	120					
Chromium	25	0.30	25.00	0	99.1	80	120					
Copper	26	0.40	25.00	0	104	80	120					
Iron	26	2.5	25.00	0	102	80	120					
Lead	24	0.30	25.00	0	95.7	80	120					
Manganese	25	0.20	25.00	0	99.5	80	120					
Selenium	25	2.5	25.00	0	100	80	120					
Silver	5.0	0.25	5.000	0	100	80	120					
Thallium	23	2.5	25.00	0	92.1	80	120					
Uranium	24	5.0	25.00	0	97.9	80	120					
Zinc	24	2.5	25.00	0	94.2	80	120					

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

Sample ID: LCS-51785

S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 21 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: **2004162**

12-May-20

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: 2004162-001AMS	SampT	SampType: MS TestCode: EPA Method					6010B: Soil I	Vietals			
Client ID: Cell 1 (CS-1)	Batcl	n ID: 51 7	785	F	RunNo: 6	8257					
Prep Date: 4/14/2020	Analysis Date: 4/20/2020			8	SeqNo: 2	361064	Units: mg/Kg				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Antimony	6.6	4.9	24.55	0	26.9	75	125			S	
Arsenic	26	4.9	24.55	3.631	91.0	75	125				
Barium	130	0.20	24.55	73.09	228	75	125			S	
Beryllium	24	0.29	24.55	0.5367	95.2	75	125				
Cadmium	22	0.20	24.55	0	89.3	75	125				
Chromium	31	0.59	24.55	6.376	100	75	125				
Copper	29	0.79	24.55	5.346	94.9	75	125				
Manganese	240	0.39	24.55	239.6	10.3	75	125			S	
Silver	3.4	0.49	4.909	0	68.8	75	125			S	
Thallium	18	4.9	24.55	0	74.5	75	125			S	
Uranium	21	9.8	24.55	1.540	80.3	75	125				
Zinc	45	4.9	24.55	22.69	89.9	75	125				

Sample ID: 2	2004162-001AMSD	SD	TestCode: EPA Method 6010B: Soil Metals										
Client ID:	Cell 1 (CS-1)	Batch	ID: 51 7	785	F	RunNo: 68257							
Prep Date:	4/14/2020	Analysis D	ate: 4/	20/2020	8	SeqNo: 2	361068	Units: mg/K	Units: mg/Kg				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Antimony	_	6.6	4.9	24.66	0	26.6	75	125	0.373	20	S		
Arsenic		24	4.9	24.66	3.631	82.7	75	125	7.82	20			
Barium		110	0.20	24.66	73.09	152	75	125	15.4	20	S		
Beryllium		24	0.30	24.66	0.5367	93.4	75	125	1.35	20			
Cadmium		21	0.20	24.66	0	86.9	75	125	2.23	20			
Chromium		30	0.59	24.66	6.376	94.3	75	125	4.52	20			
Copper		28	0.79	24.66	5.346	90.9	75	125	3.06	20			
Manganese		220	0.39	24.66	239.6	-62.0	75	125	7.64	20	S		
Silver		3.5	0.49	4.932	0	70.2	75	125	2.37	20	S		
Thallium		19	4.9	24.66	0	77.4	75	125	4.27	20			
Uranium		23	9.9	24.66	1.540	86.0	75	125	6.82	20			
Zinc		42	4.9	24.66	22.69	78.8	75	125	6.02	20			

Sample ID: 2004162-001AMS	SampT	ype: MS	3	Tes	tCode: El	PA Method	6010B: Soil I	Metals		
Client ID: Cell 1 (CS-1)	Batch	ID: 51 7	785	F	RunNo: 6	8257				
Prep Date: 4/14/2020	Analysis D	ate: 4/	20/2020	8	SeqNo: 2	361664	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Lead	24	0.59	24.55	2.442	87.1	75	125			
Selenium	23	4.9	24.55	0	92.6	75	125			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 22 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: **2004162** *12-May-20*

Qual

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: 2004162-001AMSD SampType: MSD TestCode: EPA Method 6010B: Soil Metals

Client ID: Cell 1 (CS-1) Batch ID: 51785 RunNo: 68257

Prep Date: 4/14/2020 Analysis Date: 4/20/2020 SeqNo: 2361665 Units: mg/Kg

Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit
Lead	24	0.59	24.66	2.442	86.1	75	125	0.580	20
Selenium	23	4.9	24.66	0	91.4	75	125	0.803	20

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 23 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: **2004162** *12-May-20*

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: Ics-51562	SampType: LCS	TestCode: EPA Method 8015D Mod: Gasoline Range
----------------------	----------------------	--

Client ID: LCSS Batch ID: 51562 RunNo: 67929

Prep Date: 4/4/2020 Analysis Date: 4/7/2020 SeqNo: 2347504 Units: mg/Kg

Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	21	5.0	25.00	0	83.5	70	130			
Surr: BFB	510		500.0		102	70	130			

Sample ID: mb-51562 SampType: MBLK TestCode: EPA Method 8015D Mod: Gasoline Range
Client ID: PBS Batch ID: 51562 RunNo: 67929

Prep Date: 4/4/2020 Analysis Date: 4/7/2020 SeqNo: 2347506 Units: mg/Kg

SPK value SPK Ref Val %REC LowLimit Analyte Result PQL HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) ND 5.0 Surr: BFB 490 70 500.0 98.9 130

Sample ID: 2004162-001ams SampType: MS TestCode: EPA Method 8015D Mod: Gasoline Range

Client ID: Cell 1 (CS-1) Batch ID: 51562 RunNo: 67951

Prep Date: 4/4/2020 Analysis Date: 4/8/2020 SeqNo: 2348743 Units: mg/Kg

SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result PQL LowLimit Qual Gasoline Range Organics (GRO) 19 4.9 24.70 0 75.4 70 130 Surr: BFB 520 494.1 105 70 130

Sample ID: 2004162-001amsd SampType: MSD TestCode: EPA Method 8015D Mod: Gasoline Range

Client ID: Cell 1 (CS-1) Batch ID: 51562 RunNo: 67951

Prep Date: 4/4/2020 Analysis Date: 4/8/2020 SeqNo: 2348744 Units: mg/Kg SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Result PQL LowLimit Qual Gasoline Range Organics (GRO) 18 25.00 73.0 70 5.0 130 2.04 20 Surr: BFB 520 500.0 103 70 130 0 0

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 24 of 24

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Cli	ient Name:	Animas Er	vironmental	Work	Order Num	ber: 200	4162			RcptNo	c1
Re	ceived By:	Juan Roj	as	4/3/202	0 8:00:00 A	M		Hear	Sally.		
Co	mpleted By:	Leah Bad	a	4/3/202	0 12:30:07	PM		Juan	(R.,		
Re	viewed By:	IO						Loaly	Jule		
Chi	ain of Cus	tody									
1. 1	ls Chain of C	ustody suffic	iently complet	e?		Yes	V	No		Not Present	
2.	How was the	sample deli	vered?			Clie	<u>nt</u>				
Lo	g In										
3. \	Was an attem	npt made to	cool the samp	es?		Yes	V	No		NA 🗌	
4. v	Vere all samp	oles received	l at a tempera	ture of >0° C	to 6.0°C	Yes	V	No		NA 🗆	
5. 8	Sample(s) in	proper conta	iner(s)?			Yes	V	No			
6. S	Sufficient sam	ple volume	for indicated te	st(s)?		Yes	V	No			
7. A	re samples (except VOA	and ONG) pro	perly preserve	ed?	Yes	V	No			
8. v	Vas preserva	tive added to	bottles?			Yes		No	~	NA 🗆	
9. R	Received at le	ast 1 vial wi	h headspace	<1/4" for AQ V	OA?	Yes		No !		NA 🗹	
10. V	Nere any san	nple contain	ers received b	oken?		Yes		No	V		
										# of preserved bottles checked	
	oes paperwo Note discrepa		ttle labels? ain of custody)			Yes	V	No		for pH:	r>12 unless noted)
			tified on Chair			Yes	V	No [Adjusted?	
13. Is	s it clear what	t analyses w	ere requested	?		Yes	V	No [
	Vere all holding for no, notify cu		e to be met? authorization.)			Yes	V	No		Checked by:	JR 4/3/20
Spe	cial Handl	ing (if ap	olicable)								
15.	Was client no	tified of all d	iscrepancies v	ith this order?	>	Yes		No		NA 🗹	
	Person	Notified:			Date				-		
	By Who		Via:	eM	ail 🔲	Phone	Fax	☐ In Person			
	Regardi										
	Client Instructions:										
16.	Additional re	marks:									
17.	Cooler Infor	mation									
98	Cooler No	The second of the second	Condition	Seal Intact	Seal No	Seal D	ate	Signed B	ly		
	1	4.3	Good								
	2	4.1	Good								

	Chain-c	of-Custo	dy Record	Turn-Around Time:						ALI	P 8.03	ITRA	BIRGE	0.152.0	
Client:	Animas I	Environmen	ital Services	X Standard	□ Rush						L ENVIRONMENTAL LYSIS LABORATORY				
				Project Name:	BMG Landfar	m							tal.com		
Mailing Addre	ess:	PO Box 8				3		490	01 Ha	wkir	s NE	- Albu	auerau	uerque, NM 87109	
		Farmingto	on, NM 87499	Project #:	AES 040605					05-345-3975 Fax 505-345					
Phone #:		505-564-2	2281		AL3 040003				1	Aı	nalysis	Reque			
email or Fax#		dreese@a	nimasenvironmental.com	Project Manager:			<u> </u>								
QA/QC Package: X Standard Level 4 (Full Validation)			Elizabeth McNally/Davi		0 (8015)		0.6.2.310								
Accreditation	:			Sampler: CL/GB				MR		C 2(2
□ NELAP		Other		On Ice: (XYes	□No	0.	30,		MA					0
□ EDD (Type)				Sample Temperature: $U - 0 - 1 = U - 3$			300	J, DI	1)	BN					S (
Date 4-2-20	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	11.2-0.1=4.1 HEAL NO. 2004162	Chlorides 300.0	TPH - GRO, DRO, MRO (8015)	BTEX (8021)	List A and B NMAC 20.6.2.3103					Air Bubbles (Y or N)
3/31/2026	9:47	Soil	Cell 1 (CS-1)	2 - 8 oz jars 1 - 1 Gal, Ziplock	3 -Cool	7001	Х	Х	Х	Х					
3/31/2020	10:04	Soil	Cell 2 (CS-1)(CS-2)	1 - 4 oz jars	Cool	- 007	Х	Х	Ī						
3/31/2020	10:23	Soil	Cell 3 (CS-3)	1 - 4 oz jars	Cool	-003	Х	Х							
3/31/2020	10:35	Soil	Cell 4 (CS-1)(CS-4)	2 - 8 oz jars 1 - 1 Gal. Ziplock	3 -Cool	-004	Х	Х	Х	Х					
												-			+
												+	+	+	+
											4		H		+
Date:	Time:	Relinquished	lby:	Received by: Received by:	Date	2/20 (712 Time							and B Nattached		4
1/2/20	les submitted	to Hall Environm	nental may be subcontracted to other	accredited laboratories. This se	rves as notice of th	is possibility. Any sub-contracte	ed data	will b	e clear	ly nota	ated on 1	the analy	tical repo	ort.	-

A.

20.6.2.3103 STANDARDS FOR GROUND WATER OF 10,000 mg/l TDS CONCENTRATION OR

LESS: The following standards are the allowable pH range and the maximum allowable concentration in ground water for the contaminants specified unless the existing condition exceeds the standard or unless otherwise provided in Subsection E of Section 20.6.2.3109 NMAC. Regardless of whether there is one contaminant or more than one contaminant present in ground water, when an existing pH or concentration of any water contaminant exceeds the standard specified in Subsection A, B, or C of this section, the existing pH or concentration shall be the allowable limit, provided that the discharge at such concentrations will not result in concentrations at any place of withdrawal for present or reasonably foreseeable future use in excess of the standards of this section. These standards shall apply to the dissolved portion of the contaminants specified with a definition of dissolved being that given in the publication "methods for chemical analysis of water and waste of the U.S. environmental protection agency," with the exception that standards for mercury, organic compounds and non-aqueous phase liquids shall apply to the total nonfiltered concentrations of the contaminants. If the secretary determines that there is a reasonable probability of facilitated contaminant transport by colloids or organic macromolecules, or that proper filtration procedures are not being followed, the discharger may be required to test for both filtered and nonfiltered portions of inorganic contaminants to develop appropriate protocol for monitoring contaminants that have the potential to migrate through the aquifer.

	lth Standards nerical Standards	old limits
— (a)	Antimony (Sb) (CAS 7440-36-0)	New
—(b)	Arsenic (As) (CAS 7440-38-2)0.01 mg/l	0.1
—(c)	Barium (Ba) (CAS 7440-39-3)2 mg/l	1.0
—(d)	Beryllium (be) (CAS 7440-41-7)0.004 mg/l	new
—(e)	Cadmium (Cd) (CAS 7440-43-9)	0.01
—(f)	Chromium (Cr) (CAS 7440-47-3)	
(g)	Cyanide (CN) (CAS 57-12-5)0.2 mg/l	
—(h)	Fluoride (F) (CAS 16984-48-8)	
—(i)	Lead (Pb) (CAS 7439-92-1)	0.05
— (j)	Total Mercury (Hg) (CAS 7439-97-6)0.002 mg/l	
— (k)	Nitrate (NO ₃ as N) (CAS 14797-55-8)10.0 mg/l	
— (n)	Nitrite (NO ₂ as N) (CAS 10102-44-0)	
— (m)	Selenium (Se) (CAS 7782-49-2)0.05 mg/l	
—(n)	Silver (Ag) (CAS 7440-224)	
—(o)	Thallium (Tl) (CAS 7440-28-0)0.002 mg/l	NZW
— (p)	Uranium (U) (CAS 7440-61-1)	5.0
(q)	Radioactivity: Combined Radium-226 (CAS 13982-63-3) and	3,0
	Radium-228 (CAS 15262-20-1)	30
—(r)	Benzene (CAS 71-43-2)0.005 mg/l	0.41
—(s)	Polychlorinated biphenyls (PCB's) (CAS 1336-36-3).0.0005 mg/l	0.01
— (t)	Toluene (CAS 108-88-3)1 mg/l	0.75
(u)	Carbon Tetrachloride (CAS 56-23-5)	6.01
—(v)	1,2-dichloroethane (EDC) (CAS 107-06-2)0.005 mg/l	6.61
—(w)	1,1-dichloroethylene (1,1-DCE) (CAS 75-35-4)0.007 mg/l	0 905
-(x)	tetrachloroethylene (PCE) (CAS 127-18-4)0.005 mg/l	0.62
— (y)	trichloroethylene (TCE) (CAS 79-01-6)0.005 mg/l	0.1
— (z)	ethylbenzene (CAS 100-41-4)	0.75
—(aa)	total xylenes (CAS 1330-20-7)	
—(bb)	methylene chloride (CAS 75-09-2)	1 0.1
—(cc)	chloroform (CAS 67-66-3)0.1 n	19/1
(dd)	1,1-dichloroethane (CAS 75-34-3)	5 mg/l
—(ee)	ethylene dibromide (EDB) (CAS 106-93-4)0.00005 mg/l	6.0001
(ff)	1,1,1-trichloroethane (CAS 71-55-6)0.2 mg/1	0.06
(gg)	1,1,2-trichloroethane (CAS 79-00-5)	0.01
(hh)	1,1,2,2-tetrachloroethane (CAS 79-34-5)0.0	1 mg/l
— (ii)	vinyl chloride (CAS 75-01-4)0.002 mg/l	0.001
—(jj)	PAHs: total naphthalene (CAS 91-20-3) plus monomethylnaphthalenes0	
—(kk)	benzo-a-pyrene (CAS 50-32-8)0.0002 mg/l	0.0007

	(ll)	cis-1,2-dichloroethene (CAS 156-59-2)0.07 mg/l	ren
	— (mm)	trans-1,2-dichloroethene (CAS 156-60-5)	new
	(nn)	1,2-dichloropropane (PDC) (CAS 78-87-5)	new
	(00)	styrene (CAS 100-42-5)	new
	— (pp)	1,2-dichlorobenzene (CAS 95-50-1)	new
	— (qq)	1,4-dichlorobenzene (CAS 106-46-7)	RUN
	- (rr)	1,2,4-trichlorobenzene (CAS 120-82-1)	new
	- (ss)	pentachlorophenol (CAS 87-86-5)	wer
	_ (tt)	atrazine (CAS 1912-24-9)	ren
١.	Standa	rde for Toyie Dellutants A	

(2) Standards for Toxic Pollutants. A toxic pollutant shall not be present at a concentration shown by credible scientific data and other evidence appropriate under the Water Quality Act, currently available to the public, to have potential for causing one or more of the following effects upon exposure, ingestion, or assimilation either directly from the environment or indirectly by ingestion through food chains: (1) unreasonably threatens to injure human health, or the health of animals or plants which are commonly hatched, bred, cultivated or protected for use by man for food or economic benefit; as used in this definition injuries to health include death, histopathologic change, clinical symptoms of disease, behavioral abnormalities, genetic mutation, physiological malfunctions or physical deformations in such organisms or their offspring; or (2) creates a lifetime risk of more than one cancer per 100,000 exposed persons.

(3) Standards for Non-Aqueous Phase Liquids. Non-aqueous phase liquid shall not be present floating atop of or immersed within ground water, as can be reasonably measured.

В.	Other	Standards for Domestic Water Supply	
	—(1)	Chloride (Cl) (CAS 16887-00-6)	
	— (2)	Copper (Cu) (CAS 7440-50-8)	
	-(3)	Iron (Fe) (CAS 7439-89-6)	
	(4)	Manganese (Mn) (CAS 7439-96-5)	
	—(5)	Phenols	
	— (6)	Sulfate (SO ₄) (CAS 14808-79-8)	
	— (7)	Total Dissolved Solids (TDS) TDS	
	— (8)	Zinc (Zn) (CAS 7440-66-6)	
	— (9)	pHbetween 6 and 9	
	— (10)	Methyl tertiary-hutyl ether (MTDE) (CAC 1624 04 4)	
C.	Standa	ards for Irrigation Use - Ground water shall meet the standards of Subscation A. D.	new
and C of this	section un	less otherwise provided.	
	-(1)	Aluminum (Al) (CAS 7429-90-5)	
	-(2)	Boron (B) (CAS 7440-42-8)	
	Ø(3) 📨	Cobalt (Co) (CAS 7440-48-4)	
	-(4)	Molybdenum (Mo) (CAS 7439-98-7)	
	(5)	Nickel (Ni) (CAS 7440-02-0)	
D.	For pur	poses of application of the amended numeric standards for arsenic, cadmium, lead,	

Hall Environmental Analysis Laboratory
4901 Hawkins NE
Albuquerque, NM 87109
TEL: 505-345-3975 FAX: 505-345-4107
Website: clients.hallenvironmental.com

December 22, 2020

Elizabeth McNally Animas Environmental 624 E. Comanche Farmington, NM 87401 TEL: FAX

RE: BMG Landfarm OrderNo.: 2012434

Dear Elizabeth McNally:

Hall Environmental Analysis Laboratory received 5 sample(s) on 12/9/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 12/22/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: MW-1

 Project:
 BMG Landfarm
 Collection Date: 12/8/2020 11:52:00 AM

 Lab ID:
 2012434-001
 Matrix: AQUEOUS
 Received Date: 12/9/2020 8:00:00 AM

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE					Analyst: BRM
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	12/11/2020 11:08:01 AM
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	12/11/2020 11:08:01 AM
Surr: DNOP	113	70-130	%Rec	1	12/11/2020 11:08:01 AM
EPA METHOD 300.0: ANIONS					Analyst: CAS
Chloride	22	2.5	mg/L	5	12/9/2020 3:51:30 PM
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: DJF
Benzene	ND	1.0	μg/L	1	12/18/2020 1:59:47 AM
Toluene	ND	1.0	μg/L	1	12/18/2020 1:59:47 AM
Ethylbenzene	ND	1.0	μg/L	1	12/18/2020 1:59:47 AM
Xylenes, Total	ND	1.5	μg/L	1	12/18/2020 1:59:47 AM
Surr: 1,2-Dichloroethane-d4	92.2	70-130	%Rec	1	12/18/2020 1:59:47 AM
Surr: Dibromofluoromethane	107	70-130	%Rec	1	12/18/2020 1:59:47 AM
Surr: Toluene-d8	95.2	70-130	%Rec	1	12/18/2020 1:59:47 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: DJF
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	12/18/2020 1:59:47 AM
Surr: BFB	94.8	70-130	%Rec	1	12/18/2020 1:59:47 AM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: MH
Total Dissolved Solids	634	40.0	*D mg/L	1	12/11/2020 3:18:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 10

Date Reported: 12/22/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: MW-2

 Project:
 BMG Landfarm
 Collection Date: 12/8/2020 11:18:00 AM

 Lab ID:
 2012434-002
 Matrix: AQUEOUS
 Received Date: 12/9/2020 8:00:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE						Analyst: BRM
Diesel Range Organics (DRO)	ND	1.0		mg/L	1	12/11/2020 11:36:45 AM
Motor Oil Range Organics (MRO)	ND	5.0		mg/L	1	12/11/2020 11:36:45 AM
Surr: DNOP	146	70-130	S	%Rec	1	12/11/2020 11:36:45 AM
EPA METHOD 300.0: ANIONS						Analyst: CAS
Chloride	300	10	*	mg/L	20	12/9/2020 4:28:45 PM
EPA METHOD 8260: VOLATILES SHORT LIST						Analyst: DJF
Benzene	ND	1.0		μg/L	1	12/18/2020 3:21:24 AM
Toluene	ND	1.0		μg/L	1	12/18/2020 3:21:24 AM
Ethylbenzene	ND	1.0		μg/L	1	12/18/2020 3:21:24 AM
Xylenes, Total	ND	1.5		μg/L	1	12/18/2020 3:21:24 AM
Surr: 1,2-Dichloroethane-d4	87.7	70-130		%Rec	1	12/18/2020 3:21:24 AM
Surr: Dibromofluoromethane	103	70-130		%Rec	1	12/18/2020 3:21:24 AM
Surr: Toluene-d8	92.9	70-130		%Rec	1	12/18/2020 3:21:24 AM
EPA METHOD 8015D: GASOLINE RANGE						Analyst: DJF
Gasoline Range Organics (GRO)	ND	0.050		mg/L	1	12/18/2020 3:21:24 AM
Surr: BFB	95.8	70-130		%Rec	1	12/18/2020 3:21:24 AM
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst: MH
Total Dissolved Solids	902	40.0	*D	mg/L	1	12/11/2020 3:18:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 10

Date Reported: 12/22/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: MW-3

 Project:
 BMG Landfarm
 Collection Date: 12/8/2020 10:43:00 AM

 Lab ID:
 2012434-003
 Matrix: AQUEOUS
 Received Date: 12/9/2020 8:00:00 AM

Analyses	Result	RL Qu	ial Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE					Analyst: BRM
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	12/11/2020 11:46:19 AM
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	12/11/2020 11:46:19 AM
Surr: DNOP	114	70-130	%Rec	1	12/11/2020 11:46:19 AM
EPA METHOD 300.0: ANIONS					Analyst: CAS
Chloride	290	10	* mg/L	20	12/9/2020 4:53:34 PM
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: DJF
Benzene	ND	1.0	μg/L	1	12/18/2020 3:48:38 AM
Toluene	ND	1.0	μg/L	1	12/18/2020 3:48:38 AM
Ethylbenzene	ND	1.0	μg/L	1	12/18/2020 3:48:38 AM
Xylenes, Total	ND	1.5	μg/L	1	12/18/2020 3:48:38 AM
Surr: 1,2-Dichloroethane-d4	88.3	70-130	%Rec	1	12/18/2020 3:48:38 AM
Surr: Dibromofluoromethane	104	70-130	%Rec	1	12/18/2020 3:48:38 AM
Surr: Toluene-d8	96.1	70-130	%Rec	1	12/18/2020 3:48:38 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: DJF
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	12/18/2020 3:48:38 AM
Surr: BFB	96.2	70-130	%Rec	1	12/18/2020 3:48:38 AM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: MH
Total Dissolved Solids	960	40.0 *	D mg/L	1	12/11/2020 3:18:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 10

Date Reported: 12/22/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: MW-4

 Project:
 BMG Landfarm
 Collection Date: 12/8/2020 10:12:00 AM

 Lab ID:
 2012434-004
 Matrix: AQUEOUS
 Received Date: 12/9/2020 8:00:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE						Analyst: BRM
Diesel Range Organics (DRO)	ND	1.0		mg/L	1	12/11/2020 11:55:52 AM
Motor Oil Range Organics (MRO)	ND	5.0		mg/L	1	12/11/2020 11:55:52 AM
Surr: DNOP	159	70-130	S	%Rec	1	12/11/2020 11:55:52 AM
EPA METHOD 300.0: ANIONS						Analyst: CAS
Chloride	59	2.5		mg/L	5	12/9/2020 5:05:59 PM
EPA METHOD 8260: VOLATILES SHORT LIST						Analyst: DJF
Benzene	ND	1.0		μg/L	1	12/18/2020 4:15:47 AM
Toluene	ND	1.0		μg/L	1	12/18/2020 4:15:47 AM
Ethylbenzene	ND	1.0		μg/L	1	12/18/2020 4:15:47 AM
Xylenes, Total	ND	1.5		μg/L	1	12/18/2020 4:15:47 AM
Surr: 1,2-Dichloroethane-d4	87.5	70-130		%Rec	1	12/18/2020 4:15:47 AM
Surr: Dibromofluoromethane	101	70-130		%Rec	1	12/18/2020 4:15:47 AM
Surr: Toluene-d8	97.1	70-130		%Rec	1	12/18/2020 4:15:47 AM
EPA METHOD 8015D: GASOLINE RANGE						Analyst: DJF
Gasoline Range Organics (GRO)	ND	0.050		mg/L	1	12/18/2020 4:15:47 AM
Surr: BFB	98.6	70-130		%Rec	1	12/18/2020 4:15:47 AM
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst: MH
Total Dissolved Solids	676	40.0	*	mg/L	1	12/11/2020 3:18:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 10

Date Reported: 12/22/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Client Sample ID: Trip Blank

Project: BMG Landfarm Collection Date:

Lab ID: 2012434-005 **Matrix:** TRIP BLANK **Received Date:** 12/9/2020 8:00:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: DJF
Benzene	ND	1.0	μg/L	1	12/18/2020 4:43:03 AM
Toluene	ND	1.0	μg/L	1	12/18/2020 4:43:03 AM
Ethylbenzene	ND	1.0	μg/L	1	12/18/2020 4:43:03 AM
Xylenes, Total	ND	1.5	μg/L	1	12/18/2020 4:43:03 AM
Surr: 1,2-Dichloroethane-d4	87.8	70-130	%Rec	1	12/18/2020 4:43:03 AM
Surr: Dibromofluoromethane	102	70-130	%Rec	1	12/18/2020 4:43:03 AM
Surr: Toluene-d8	96.2	70-130	%Rec	1	12/18/2020 4:43:03 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 10

Hall Environmental Analysis Laboratory, Inc.

WO#: **2012434**

22-Dec-20

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: MB SampType: mblk TestCode: EPA Method 300.0: Anions

Client ID: PBW Batch ID: R73911 RunNo: 73911

Prep Date: Analysis Date: 12/9/2020 SeqNo: 2606359 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride ND 0.50

Sample ID: LCS SampType: Ics TestCode: EPA Method 300.0: Anions

Client ID: LCSW Batch ID: R73911 RunNo: 73911

Prep Date: Analysis Date: 12/9/2020 SeqNo: 2606360 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 4.7 0.50 5.000 0 94.1 90 110

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quantitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 10

Hall Environmental Analysis Laboratory, Inc.

2012434 22-Dec-20

WO#:

Client: Animas Environmental
Project: BMG Landfarm

Sample ID: 2012434-001BMS SampType: MS TestCode: EPA Method 8015M/D: Diesel Range

Client ID: MW-1 Batch ID: 56916 RunNo: 73941

Prep Date: 12/10/2020 Analysis Date: 12/11/2020 SeqNo: 2608566 Units: mg/L

PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual Diesel Range Organics (DRO) 0 5.7 1.0 5.000 115 70 130 Surr: DNOP 0.61 0.5000 121 70 130

Sample ID: 2012434-001BMSD SampType: MSD TestCode: EPA Method 8015M/D: Diesel Range Client ID: MW-1 Batch ID: 56916 RunNo: 73941 Prep Date: 12/10/2020 Analysis Date: 12/11/2020 SeqNo: 2608567 Units: mg/L Result PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual

Analyte LowLimit Diesel Range Organics (DRO) 70 6.6 1.0 5.000 O 132 130 13.9 20 S Surr: DNOP 70 S 0.76 0.5000 152 130 0

Sample ID: LCS-56916 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Client ID: LCSW Batch ID: 56916 RunNo: 73941 Prep Date: 12/10/2020 Analysis Date: 12/11/2020 SeqNo: 2608571 Units: mg/L Result PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte LowLimit Qual Diesel Range Organics (DRO) 5.5 1.0 5.000 0 110 70 130 Surr: DNOP 130 0.61 0.5000 122 70

Sample ID: MB-56916 TestCode: EPA Method 8015M/D: Diesel Range SampType: MBLK Client ID: PBW Batch ID: 56916 RunNo: 73941 Prep Date: 12/10/2020 Analysis Date: 12/11/2020 SeqNo: 2608572 Units: mg/L PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Result LowLimit Qual Diesel Range Organics (DRO) ND 1.0

 Diesel Range Organics (DRO)
 ND
 1.0

 Motor Oil Range Organics (MRO)
 ND
 5.0

 Surr: DNOP
 1.1
 1.000
 108
 70
 130

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 7 of 10

Hall Environmental Analysis Laboratory, Inc.

WO#: **2012434**

22-Dec-20

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: mb1	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8260: Volatile	es Short L	ist	
Client ID: PBW	Batch	n ID: SL	74101	F	RunNo: 7	4101				
Prep Date:	Analysis D	ate: 12	2/17/2020	S	SeqNo: 2	614568	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.1		10.00		91.4	70	130			
Surr: 4-Bromofluorobenzene	9.9		10.00		99.4	70	130			
Surr: Dibromofluoromethane	10		10.00		102	70	130			
Surr: Toluene-d8	9.5		10.00		94.5	70	130			

Sample ID: 100ng Ics	Samp1	ype: LC	S	Tes	tCode: El	PA Method	8260: Volatile	es Short L	.ist	
Client ID: LCSW	Batcl	n ID: SL	.74101	F	RunNo: 7	4101				
Prep Date:	Analysis D	Date: 12	2/17/2020	9	SeqNo: 2	614569	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	101	70	130			
Toluene	20	1.0	20.00	0	97.5	70	130			
Surr: 1,2-Dichloroethane-d4	9.2		10.00		91.9	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		101	70	130			
Surr: Dibromofluoromethane	11		10.00		106	70	130			
Surr: Toluene-d8	9.3		10.00		92.7	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 10

Hall Environmental Analysis Laboratory, Inc.

WO#: **2012434 22-Dec-20**

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: mb2 SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: G74101 RunNo: 74101

Prep Date: Analysis Date: 12/18/2020 SeqNo: 2614699 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 9.7 10.00 96.6 70 130

Sample ID: 2.5ug gro Ics SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSW Batch ID: G74101 RunNo: 74101

Prep Date: Analysis Date: 12/17/2020 SeqNo: 2614700 Units: mg/L

%RPD Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit **RPDLimit** Qual Gasoline Range Organics (GRO) 70 0.41 0.050 0.5000 O 81.5 130

Surr: BFB 9.8 10.00 97.6 70 130

Sample ID: 2012434-001a ms SampType: MS TestCode: EPA Method 8015D: Gasoline Range

Client ID: MW-1 Batch ID: G74101 RunNo: 74101

Prep Date: Analysis Date: 12/18/2020 SeqNo: 2614702 Units: mg/L

PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual Gasoline Range Organics (GRO) 0.38 0.050 0.5000 0 76.5 70 130

Surr: BFB 9.5 10.00 94.6 70 130

Sample ID: 2012434-001a msd SampType: MSD TestCode: EPA Method 8015D: Gasoline Range

Client ID: MW-1 Batch ID: G74101 RunNo: 74101

Prep Date: Analysis Date: 12/18/2020 SeqNo: 2614703 Units: mg/L

PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual Gasoline Range Organics (GRO) 0.37 0.050 0.5000 73.7 70 3.73 130 20 Surr: BFB 9.7 10.00 97.1 70 130 0 0

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 9 of 10

Hall Environmental Analysis Laboratory, Inc.

WO#: **2012434 22-Dec-20**

Client: Animas Environmental

Project: BMG Landfarm

Sample ID: MB-56923 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 56923 RunNo: 73964

Prep Date: 12/10/2020 Analysis Date: 12/11/2020 SeqNo: 2608464 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-56923 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 56923 RunNo: 73964

Prep Date: 12/10/2020 Analysis Date: 12/11/2020 SeqNo: 2608465 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1010 20.0 1000 0 101 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 10 of 10

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

Sample Log-In Check List

Client Name: Animas Environmental Se	Work Order Number: 20	12434		RcptNo: 1
Received By: Isaiah Ortiz 12	2/9/2020 8:00:00 AM		INC	24
Completed By: Isaiah Ortiz 12	/9/2020 8:15:58 AM		エー	22
Reviewed By: SGL 12/9/20				
Chain of Custody				
1. Is Chain of Custody complete?	Ye	· 🗸	No 🗌	Not Present
2. How was the sample delivered?	Co	urier		
Log In				
3. Was an attempt made to cool the samples?	Yes	· •	No 🗌	NA 🗆
4. Were all samples received at a temperature of >	0° C to 6.0°C Yes		No 🗆	NA 🗆
5. Sample(s) in proper container(s)?	Yes	~	No 🗆	
6. Sufficient sample volume for indicated test(s)?	Yes	V	No 🗆	
7. Are samples (except VOA and ONG) properly pre	eserved? Yes	~	No 🗌	
8. Was preservative added to bottles?	Yes		No 🗸	NA 🗌
9. Received at least 1 vial with headspace <1/4" for	AQ VOA? Yes	V	No 🗌	NA 🗆
10. Were any sample containers received broken?	Yes		No 🗹	# of preserved
11. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes	V	No 🗆	bottles checked for pH: (<2 or >12 unless noted)
12. Are matrices correctly identified on Chain of Cust	ody? Yes	V	No 🗌	Adjusted?
13. Is it clear what analyses were requested?	Yes	V	No 🗌	
14. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes	V	No 🗌	Checked by: 12 19/20
Special Handling (if applicable)			-	
15. Was client notified of all discrepancies with this of	order? Yes		No 🗌	NA 🔽
Person Notified:	Date:			
By Whom:		lail 🗍	Phone Fax	In Person
Regarding:				
Client Instructions:				4
16. Additional remarks:				
17. Cooler Information Cooler No Temp °C Condition Seal Ir 1 4.2 Good Not Pres	TO THE RESERVED TO 12 TO	Date	Signed By	

		The state of the state of							1	TIP PROPERTY		
Project Name: Project Name: BMG Landfarm Www.hallenvir NE		Animas E	nvironment	tal Services	X Standard	□ Rush			4	NALYSIS	LABORATOR	>
## 190 Box 8 Farmington, NM 87499-00008 Project #: AES 040605 Tel. 505-345-3977					Project Name:	PN46 Landfa			WW	v.hallenviron	mental.com	
Faminington, NM 87499-00008 Project #: AES 040605 Project #: ARS 040605	Mailing Addres	35:	P.O. Box 8			DIVIG LAIIUIA		4	901 Ha		Albuquerque, NM	8710
Signature Sign			Farmington	, NM 87499-00008	Project #:	100000			rel. 505		Fax 505-345-410	10
Elizabeth McNally, David Reese	Phone #:		505-564-22	81		AES U4UBUS				Analysis R	equest	
1152 H20 MW-1 (1) 350 mL anberglass 3 HgCl2 COL	email or Fax#:		dreese@a.	nimasenvironmental.com	Project Manager:							-
Time Matrix Sample Request ID Sample Temperature: 4.1-6.1 Inf 4.2	QA/QC Packag	.:			Elizabeth McNally, Davi	id Reese		310	CTC			-
Time Matrix Sample Request ID Container Type and # Preservative HEALNo Color Colo	X Standard			□ Level 4 (Full Validation)				76 (0	00/0			_
Time Matrix Sample Request ID Container Type and # Preservative Type Typ	Accreditation:				Sampler:				2011			(10
116 Matrix Sample Request ID Container Type and # Preservative A A A A A A A A A	□ NELAP		□ Other		lce:	X Yes	□ No	v / O		0.		40
Time Matrix Sample Request ID Container Type and # Preservative HEALNO Cold C	□ EDD (Type)				Sample Temperature: 4	1.0+				300		Λ/ 3
1152 H20	Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	175, 172, 102 201, 24, 34,	1011		: Səbinold		Air Bubble
11 S		1157	H20	MW-1		3-HgCl2 cool 2-Non	00			×		
H20		11.6	H20	MW-2	(3) 40 mL glass (1) 250 mL amber glass (1) 500 mL plastic	3-HgCl2 cool 2-Non	700			×		
H20	12.8.20	1043	H20	MW-3	(3) 40 mL glass (1) 250 mL amber glass (1) 500 mL plastic	3-HgCl2 cool 2-Non	500			×		
Time: Relinquished by: Received by: Recei		210/	H20	MW-4	(3) 40 mL glass (1) 250 mL amber glass (1) 500 mL plastic	3-HgCl2 cool 2-Non	28	10000		×		
Time: Relinquished by: Received by: Received by: Received by: Relinquished by: Received by: Rece	Sample		Joseph J.	Interstitial Well	(1) 250 mL amber glass (1) 500 mL amber glass (1) 500 mL plastic	3-HgCl2 cool 2-Non				×		
Time: Relinquished by: U			H20	Trip Blank		Cold	SW	×				
Time: Relinquished by: Date Time	2620	Time:	Relinquished	3	Received by:	bate Date	Time 1010	Remark	S: Direc	t bill to BMG. (Call with Questions.	_
		ime:	Relinguished	N KOON	ived by:	12	ine O					

Jones, Brad A., EMNRD

From: Jones, Brad A., EMNRD

Sent: Wednesday, April 27, 2022 10:25 AM

To: bmg@bmgdrilling.com; zstradling@bmgdrilling.com

Cc: Elizabeth McNally

Subject: NM2-004 BMG 2020 Landfarm Monitoring and Sampling Report OCD Review Attachments: 2022 0427 NM2-004 BMG Corp 2020 Monitoring Report OCD Review.pdf

Matt, Zach, and Elizabeth,

Please see the attached. OCD has completed the review of the 2020 Landfarm Monitoring and Sampling Report . If you have any questions regarding this matter, please do not hesitate to contact me.

Sincerely,

Brad Jones

Brad A. Jones ● Environmental Scientist Specialist - Advanced Environmental Bureau
EMNRD - Oil Conservation Division
1220 S. Saint Francis Drive | Santa Fe, New Mexico 87505
(505) 469-7486 | brad.a.jones@state.nm.us
www.emnrd.nm.gov

State of New Mexico Energy, Minerals and Natural Resources Department

Michelle Lujan Grisham Governor

Sarah Cottrell Propst Cabinet Secretary

Adrienne Sandoval
Director, Oil Conservation Division

Todd E. Leahy, JD, PhD Deputy Secretary

April 27, 2022

Mr. Matt Dimond Benson-Montin-Greer Drilling Corp. 4900 College Boulevard Farmington, New Mexico 87402 bmg@bmgdrilling.com

RE: 2020 Landfarm Monitoring and Sampling Report

Benson-Montin-Greer Drilling Corp. (OGRID 2096)

Permit Number: NM2-004

Location: NW/4, NW/4 of Section 20, Township 25 North, Range 1 East, NMPM

Rio Arriba County, New Mexico

Mr. Dimond:

The Oil Conservation Division (OCD) has completed its review of Benson-Montin-Greer Drilling Corp's (BMG) 2020 Landfarm Monitoring and Sampling Report, dated November 26, 2021, for the BMG Landfarm under permit NM2-004. OCD's review of the annual report has resulted in the discovery of non-compliance to the requirements of 19.15.36 NMAC when a release has been detected from the required routine quarterly vadose zone monitoring. There seems to be some confusion of how to apply the transitional provisions of 19.15.36.20.A NMAC to the existing permit conditions which has resulted in performing the some of the landfarm monitoring incorrectly. Also, BMG has not complied with the Closure conditions of existing permit NM2-004 and the closure and post-closure requirements of 19.15.36.18 NMAC to pursue closure and post-closure of the landfarm.

Closure:

In accordance with Condition 2, under the heading of Closure of existing permit NM2-004, "A closure plan for the facility will be provided including the following OCD closure procedures: a) When the facility is to be closed no new material will be accepted; b) Any water not evaporated will be hauled to a commercial disposal facility; c) All liners will be removed; d) Tanks at the location will be emptied and any waste will be hauled to. a commercial disposal facility. The empty tanks will be removed; e) Existing landfarm soils will be remediated until they meet the OCD standards in effect at the time of closure; f) The soils beneath the landfarm will be characterized as to total petroleum hydrocarbons (TPH) and volatile aromatic organics (BTEX) content to determine potential migration of contamination; g) The soils beneath the evaporation pond and produced water receiving and treatment area will be characterized as to total petroleum hydrocarbons (TPH) and volatile aromatic organics (BTEX) content to determine potential migration of contamination; h) Contaminated soils exceeding OCD closure standards for the site will be removed or remediated; i) The area will be contoured, seeded with native grasses, and allowed to return to its natural state. If the landowner desires to keep existing structures, 1220 South St. Francis Drive • Santa Fe. New Mexico 87505

Benson-Montin-Greer Drilling Corp. NM2-004 April 27, 2022 Page 2 of 4

berms, and fences for future alternative uses the structures may be left in place; and j) Closure will be pursuant to all OCD requirements in effect at the time of closure, and any other applicable local, state and/or federal regulations."

Pursuant to 19.15.36.18.A(5) NMAC, "Closure shall proceed in accordance with the approved closure and post closure plan and schedule and modifications or additional requirements the division imposes." OCD has no record of BMG submitting a closure and post-closure care plan and/or schedule for review. Without an OCD approved closure and post closure plan and schedule, BMG is currently considered to be in an operational status with the landfarm. To be approved to pursue closure and post-closure, BMG must comply with the existing closure permit conditions of permit NM2-004 and the closure and post-closure requirements of 19.15.36.18 NMAC by providing notice and submitting a closure and post closure plan and a proposed schedule for closure for OCD's review and consideration of approval. This will ensure that the correct constituents required of 19.15.36.15.F(5) NMAC are analyzed and assessed for closure. Submit the required closure and post closure plan and proposed schedule as a stand-alone separate request through OCD Permitting as a "Non-Fee SWMF Submittal."

Vadose Zone Monitoring:

In accordance with 19.15.36.15.E(2) NMAC, "The operator shall compare each result to the higher of the PQL or the background soil concentrations to determine whether a release has occurred." OCD wishes the clarify the that the background soil concentrations are based upon background samples with detected concentrations and the PQL is based upon background samples with only non-detects, which are demonstrated on Table 1 of the report. For a proper and acceptable vadose zone monitoring demonstration the vadose samples must be analyzed with a reporting limit at or below the OCD approved background concentration and/or PQL for each constituent to determine if a release has occurred. OCD brings this topic up because several constituents were assessed by a reporting limit that was more than 2 to 5 times greater than the background value approved by OCD. The laboratory results demonstrate that Arsenic was assessed with a reporting limit of 5 mg/kg and as high as 12 mg/kg for Cell 4, when the OCD approved background is 2.5 mg/kg; Chloride was assessed with a reporting limit of 60 mg/kg, when the OCD approved background is 25 mg/kg; Cadmium was assessed with a reporting limit of 0.2 mg/kg, when the OCD approved background is 0.1 mg/kg; Selenium was assessed with a reporting limit of 12 mg/kg, when the OCD approved background is 2.5 mg/kg; Silver was assessed with a reporting limit of 1.2 mg/kg, when the OCD approved background is 0.25 mg/kg; Nitrate was assessed with a reporting limit of 1.5 mg/kg, when the OCD approved background is 0.3 mg/kg. OCD is unable to accept any non-detect vadose zone monitoring results that utilized a reporting limit greater than the 2016 OCD approved soils background concentrations and PQLs, due to it being an incomplete assessment for an unauthorized release.

Pursuant to 19.15.36.15.E(5) NMAC, "If vadose zone sampling results show that the concentrations of TPH, BTEX or chlorides exceed the higher of the PQL or the background soil concentrations, then the operator shall notify the division's environmental bureau of the exceedance and shall immediately collect and analyze a minimum of four randomly selected, independent samples for TPH, BTEX, chlorides and the constituents listed in Subsections A and B of 20.6.2.3103 NMAC. The operator shall submit the results of the re-sampling event and a response action plan for the division's approval within 45 days of the initial notification. The response action plan shall address changes in the landfarm's operation to prevent further contamination and, if necessary, a plan for remediating existing contamination." On Table 5, BMG documented exceedances of Chloride for Cell 1 and exceedances of TPH for Cell 3. Instead of providing OCD the required notice, performing the required additional vadose zone monitoring, comparing the additional sampling results to the 2016 OCD approved background, and submitting a response action plan as required of 19.15.36.15.E(5) NMAC, BMG compared the routine quarterly

Benson-Montin-Greer Drilling Corp. NM2-004 April 27, 2022 Page 3 of 4

vadose zone results with the New Mexico Environment Department (NMED) Soil Screening Levels (SSLs) for Soil Leaching (SL) to Groundwater with a dilution attenuation factor (DAF) of 20. BMG is required to comply and implement the requirements of 19.15.36.15.E(5) NMAC. OCD is unable to accept the Proposed Response Action for Vadose Zone (Cell 2), provided in Section 4.2.3 of the 2020 Landfarm Monitoring and Sampling Report since it is not based upon actions (additional sampling) and laboratory analytical results required of 19.15.36.15.E(5) NMAC.

OCD wishes to clarify that 19.15.36.15.E(5) NMAC requires 4 samples to be taken around the sample location of each detected vadose zone release and demonstrated exceedance to investigate and determine if additional constituents are associated with the detected release locations of TPH, BTEX and/or chloride from the routine quarterly vadose zone monitoring. In the future, immediately provide the notice to OCD of the detected releases of TPH, BTEX, and chlorides from the routine quarterly vadose zone monitoring and complete the additional sampling and analysis required of 19.15.36.15.E(5) NMAC. If compliance with the additional sampling required of 19.15.36.15.E(5) NMAC coincides with a routine vadose zone sampling event, please perform each sampling event separately. The next routine vadose zone sampling event should not be performed in the same vicinity in which releases were detected from the previous routine sampling event and the additional investigation of 19.15.36.15.E(5) NMAC is required.

OCD also recommends reviewing the OCD April 21, 2021 policy on *How to address a release to the vadose zone at a Part 36 landfarm pursuant to Part 29* at the following hyperlink: https://www.emnrd.nm.gov/ocd/wp-content/uploads/sites/6/2021-0421-How-to-address-a-release-to-the-vadose-zone-at-a-Part-36-landfarm-pursuant-to-Part-29.pdf. This document is to advise parties on how to address the following scenario: When a landfarm operator completes the release response sampling required of 19.15.36.15.E(5) NMAC and submits a response action plan proposing to remediate the "unauthorized" releases discovered in the vadose zone pursuant to 19.15.29 NMAC and OCD approves the response action plan.

OCD wishes to notify BMG that the last 5-year vadose zone sampling event required of 19.15.36.15.E(3) NMAC occurred between May 6th and 8th of 2014 and is approximately 3 years past due. Based upon this notice, OCD expects BMG to perform the 5-year vadose sampling event required of 19.15.36.15.E(3) NMAC within the calendar year of 2022.

Treatment Zone Monitoring:

As clarified above regarding the evaluation of potential landfarm closure, BMG must comply with the closure conditions of the existing permit and demonstrate compliance to 19.15.36.18 NMAC by providing notice and submitting a closure/post-closure plan and schedule to OCD for review and approval prior to implementing any closure and/or post-closure activities.

In the closure and post-closure plan, BMG will need to resolve the issue regarding the proper assessment of the correct constituents required of 19.15.36.15.F(5) NMAC. Pursuant to 19.15.36.15.F(5) NMAC, "the concentration of constituents listed in Subsections A and B of 20.6.2.3103 NMAC shall be determined by EPA SW-846 methods 6010B or 6020 or other methods approved by the division." Based upon the 2016 OCD approved background, this would include the following: arsenic, barium, cadmium, chromium, copper, iron, lead, manganese, selenium, silver, and zinc all by EPA Method 6010B, along with mercury by EPA Method 7471(which can also be determined by EPA methods 6010B or 6020). BMG should limit the discussion of the compliance of 19.15.36.15.F(5) NMAC to the constituents listed in Subsections A and B of 20.6.2.3103 NMAC determined by EPA SW-846 methods 6010B or 6020 or other methods approved by the division, as identified above.

Benson-Montin-Greer Drilling Corp. NM2-004 April 27, 2022 Page 4 of 4

Regarding BMG's proposed risk assessment discussion in Section 3.2.3 and the application of a dilution attenuation factor (DAF) of 20, Section 4.4 of the 2019 New Mexico Environment Department Risk Assessment Guidance for Site Investigations and Remediation, Volume I states "NMED believes that a DAF of 20 for a 0.5 acre source area_is protective of groundwater in New Mexico. If the default DAF is not representative of conditions at a specific site, then it is appropriate to calculate a site-specific DAF based upon available site data."

Section 4.7 further clarifies "Larger source sizes result in lower DAFs. The default DAF used to develop SL-SSLs for a 0.5 acre source may not be protective of groundwater at sites larger than 0.5 acre." Due to the landfarm cells exceeding the 0.5-acre size consideration, OCD is open to the consideration of the use one of the two approaches, if applicable, recognized in Section 4.7 of the risk assessment guidance or provide a written justification for the use of a DAF of 20 for a 0.5 acre source area. BMG can propose the new DAF assessment or justification for the use of a DAF of 20 in the closure and post-closure plan. Ensure the closure and post-closure plan demonstrates that BMG is considering and proposing the lowest concentration based upon all the exposure routes considered in the 2019 New Mexico Environment Department Risk Assessment Guidance for Site Investigations and Remediation.

Table 4B does not consider any other exposure pathway other than groundwater. The NMED SSL exposure limit for total chromium for Construction Worker Soil (Noncancer) of 1.34E+02 or 134 mg/kg is much lower than the proposed groundwater (DAF 20) of 2.05E+05 or 205,000 mg/kg. Ensure that the lowest applicable NMED SSL exposure limit is compared to the exceedance. OCD wishes to inform BMG that Table 4B demonstrates the detected concentrations for Iron of 11,000 mg/kg and 16,000 mg/kg for Cells 1 and 4 from the April 2, 2020 sampling event exceed the 2016 OCD approved background value of 6,500 mg/kg and the NMED SSL Target Soil Leachate Concentration of 6.96E+03 mg/kg (or 6,960 mg/kg) for groundwater with a DAF of 20. OCD brings this issue up due to BMG's conclusion provided in Section 5.1 of the report which states "all were shown to be below NMED SSLs for soil leaching to groundwater (DAF 20). Therefore, treatment zone concentrations are believed to be protective of human health and the environment, and closure of Treatment Cells 1 and 4 are anticipated." Keep in mind that 19.15.36.15.F(5) NMAC requires BMG to "propose closure standards based upon individual site conditions that protect *fresh water*, *public health and the environment*."

OCD also noticed that BMG did not determine the TPH results by EPA method 418.1 as required of 19.15.36.15.F(3) NMAC. BMG used the sum of GRO, DRO, and MRO determined by EPA Methods 8015 and 8015D. BMG must request the use of the sum of GRO, DRO, and MRO determined by EPA Methods 8015 and 8015D to be used in lieu of EPA method 418.1 in the closure and post-closure plan to obtain OCD approval for use of another EPA method.

If there are any questions regarding this matter, please do not hesitate to contact me at (505) 469-7486 or brad.a.jones@state.nm.us.

Respectfully,

Brad A. Jones

Environmental Specialist

Cc: Elizabeth McNally, Animas Environmental Services, LLC, emcnally@animasenvironmental.com

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 73138

CONDITIONS

Operator:	OGRID:
BENSON-MONTIN-GREER DRILLING CORP	2096
4900 College Blvd.	Action Number:
Farmington, NM 87402	73138
	Action Type:
	[C-137] Non-Fee SWMF Submittal (SWMF NON-FEE SUBMITTAL)

CONDITIONS

Created By		Condition Date
bjones	OCD emailed the review to Matt Dimond and Zach Stradling (BMG) and Elizabeth McNally (Animas) on April 27, 2022. Please see the OCD Response attached to the end of the report. If you have questions regarding this matter, please do not hesitate to contact me.	4/27/2022