BW - 8

FIRST SEMI-ANNUAL REPORT

2022

Released to Imaging: 10/14/2022 1:59:30 PM

September 21, 2022

Mr. Carl Chavez New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505-4225

Re: Semiannual Groundwater Monitoring and O&M Report January 1 through June 30, 2022 Salty Dog Brine Station, Lea County, New Mexico

Dear Mr. Chavez:

On behalf of PAB Services, Inc., Daniel B. Stephens & Associates, Inc. (DBS&A) is submitting the enclosed groundwater monitoring and operation and maintenance (O&M) report for the Salty Dog brine station located in Lea County, New Mexico. Semiannual groundwater monitoring activities were completed at the site on June 9 and 10, 2022.

Please call us at (505) 822-9400 if you have any questions or require additional information.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

John Ayarbe, P.G. Senior Hydrogeologist

JA/rpf Enclosure cc: Pieter Bergstein, PAB Services, Inc. First Semiannual 2022 Groundwater Monitoring and Operation and Maintenance Report Salty Dog Brine Station Lea County, New Mexico

Prepared for New Mexico Energy, Minerals and Natural Resources Department, Oil Conservation Division Santa Fe, New Mexico

Prepared by

6020 Academy NE, Suite 100 Albuquerque, New Mexico 87109 www.dbstephens.com DB19.1198

September 21, 2022

Released to Imaging: 10/14/2022 1:59:30 PM

Table of Contents

1.	Introduction	1
2.	Scope of Work	2
3.	Monitoring Activities	2
	3.1 Fluid Level Measurement	2
	3.2 Groundwater Sampling	4
4.	Analytical Results	4
	4.1 Former Brine Pond Area Wells	5
	4.2 Brine Well Area Wells	6
5.	Groundwater Extraction System O&M	8
	5.1 Former Brine Pond Area	8
	5.2 Brine Well Area	9
	5.3 Facility and Extraction System Maintenance	9
	5.4 Future Extraction System Operation	9
6.	Recommendations	9
Refer	rences	10

List of Figures

- 1 Site Location Map
- 2 Former Brine Pond Area Potentiometric Surface Elevations, June 2022
- 3 Playa Lake and Brine Well Area Potentiometric Surface Elevations, June 2022
- 4 Former Brine Pond Area Chloride Concentrations in Groundwater, June 2022
- 5 Playa Lake and Brine Well Area Chloride Concentrations in Groundwater, June 2022

List of Tables

1	Fluid Level Measurements, June 9, 2022	3
2	Chloride Groundwater Analytical Data	5
3	Groundwater Analytical Results, MW-3	7
4	Average Groundwater Extraction Rates	8

List of Appendices

- A Laboratory Analytical Report
- B Field Notes
- C Historical Data

1. Introduction

Daniel B. Stephens & Associates, Inc. (DBS&A) has prepared this groundwater monitoring and operation and maintenance (O&M) report for submission to the New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division (OCD) Environmental Bureau on behalf of PAB Services, Inc. (PAB) for the Salty Dog brine station (the site) located in Lea County, New Mexico (Figure 1). The report summarizes activities conducted at the site during the reporting period of January 1 through June 30, 2022. Groundwater monitoring and O&M during the reporting period was conducted in accordance with discharge permit BW-8 (DP-BW-8), which was last renewed on May 17, 2019 (NMEMNRD OCD, 2019).

The site consists of a northern portion, where the brine pond was located prior to closure in October 2008, and a southern portion, where the brine well is located. The brine pond area and the brine well area are separated by approximately 2,500 feet, joined by a dirt road (Figure 1). Injection water for the brine well comes from two fresh water supply wells (FWS-1 and FWS-2) and from remedial pumping at a recovery well in the brine well area (RW-2). FWS-2 is an auxiliary supply well that is used when FWS-1 and RW-2 are being serviced or when additional fresh water is needed.

Brine that is produced for sale is stored at a tank battery on the southern boundary of the former brine pond area. The tank battery consists of six 750-barrel aboveground storage tanks (ASTs) surrounded by a berm (Figure 1). A concrete truck loading pad with two brine filling stations is located north of the tank battery. An operations shed is located adjacent to the loading pad to the west.

The former brine pond area has 6 monitor wells (PMW-1, DBS-1R, and DBS-2 through DBS-5), 1 nested well (NW-1), 1 fresh water supply well (FWS-1), and a former recovery well (RW-1). The brine well area has 10 monitor wells (MW-2 through MW-6, DBS-6 through DBS-10), 1 nested well (NW-2), 1 fresh water supply well (FWS-2), and 1 recovery well (RW-2) (Figure 1).

In April 2012, DBS&A installed groundwater extraction systems at the site to provide hydraulic containment and removal of chloride-impacted groundwater in the former brine pond and brine well areas (DBS&A, 2009a and 2009b). The extraction systems consist of wells, submersible pumps, conveyance lines, electrical power, and controls to extract impacted groundwater. Extracted groundwater is conveyed to the on-site ASTs for reinjection at the brine well. Although groundwater extraction at well RW-1 was stopped in 2015, pumping at well FWS-1

September 21, 2022 DB19.1198 | Salty Dog SA1_921.docx

provides hydraulic containment and removal of chloride-impacted groundwater in the former brine pond area; well FWS-1 is located approximately 50 feet southeast of RW-1. Extraction at RW-1 was stopped because the water level at the well had declined and was near the bottom of the well. Pumping at RW-2 provides hydraulic containment and removal of chloride-impacted groundwater in the brine well area.

2. Scope of Work

The scope of work for semiannual groundwater monitoring conducted in June 2022 consisted of (1) measuring groundwater levels in and collecting groundwater samples from 12 monitor wells and (2) performing maintenance on the groundwater extraction systems, as necessary. Groundwater samples were submitted to Hall Environmental Analysis Laboratory (HEAL) in Albuquerque, New Mexico for chloride analysis using U.S. Environmental Protection Agency (EPA) method 300.0. Section 2A.1 of DP-BW-8 requires that PAB collect one groundwater sample to be analyzed for general chemistry and other inorganic constituents, in addition to chloride. In consultation with Carl Chavez (OCD), DBS&A selected monitor well MW-3 for these additional analyses. Appendices A and B provide the laboratory report and field notes, respectively.

The monitor wells included in the sampling program were selected in October 2010 in consultation with Jim Griswold, the OCD Project Manager for the site at that time. The sampled monitor wells are shown in Figures 2 through 5.

3. Monitoring Activities

The following subsections describe the groundwater monitoring activities conducted in June 2022. The laboratory report and chain of custody documentation are provided in Appendix A. Field notes recorded during groundwater monitoring activities are provided in Appendix B. Historical groundwater monitoring data are provided in Appendix C.

3.1 Fluid Level Measurement

On June 9, 2022, DBS&A measured water levels in monitor wells DBS-1R, DBS-2 through DBS-5, and PMW-1 in the former brine pond area (Figure 2) and in wells DBS-6, DBS-8 through DBS-10, MW-3, and MW-5 in the brine well area (Figure 3) using a properly decontaminated electronic

water level meter. Table 1 reports the water level measurements and groundwater elevations. Appendix C provides historical groundwater level data.

Monitor Well	Screen Interval (feet bgs)	Top of Casing Elevation (feet msl)	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)
DBS-1R	58.0–78.0	3,817.00	72.80	3,744.20
DBS-2	58.0–78.0	3,820.50	74.89	3,745.61
DBS-3	56.0–76.72	3,816.66	69.57	3,747.09
DBS-4	56.0–76.0	3,820.37	75.30	3,745.07
DBS-5	56.9–76.9	3,820.66	71.99	3,748.67
DBS-6	56.7–76.7	3,812.65	69.79	3,742.86
DBS-8	55.2–75.2	3,810.70	67.84	3,742.86
DBS-9	48.0–68.0	3,806.26	60.95	3,745.31
DBS-10	57.2–77.2	3,807.48	67.28	3,740.20
PMW-1	63–78	3,821.17	75.97	3,745.20
MW-3	NA	3,812.05	70.60	3,741.45
MW-5	112–132	3,808.96	67.59	3,741.37

Table 1.Fluid Level Measurements, June 9, 2022

bgs = Below ground surface msl = Above mean sea level btoc = Below top of casing

NA = Not available

During this reporting period, the average depths to water beneath the former brine pond area and brine well area were 73.42 feet below top of casing (btoc) and 67.34 feet btoc, respectively. Water levels in the former brine pond area declined relative to those of the last monitoring event in November 2021, declining on average by 1.98 feet. Water levels in the brine well area also declined—by 0.75 foot on average.

Figures 2 and 3 present potentiometric surface maps for the former brine pond area and the brine well area, respectively. The direction of groundwater flow beneath the former brine pond area remains to the southeast; the hydraulic gradient was approximately 0.0060 foot per foot (ft/ft) this reporting period (Figure 2). The direction of groundwater flow beneath the brine well area also remains to the southeast; the hydraulic gradient in this area was approximately

0.0055 ft/ft this reporting period (Figure 3). Both FWS-1 and RW-2 were pumping during this reporting period.

3.2 Groundwater Sampling

On June 9 and 10, 2022, groundwater samples were collected from monitor wells DBS-1R, DBS-3 through DBS-6, DBS-8 through DBS-10, MW-3, MW-5, and PMW-1. No sample was collected from well DBS-2 because there was insufficient water to sample. The samples were collected following standard sampling procedures developed from EPA guidance. Before sampling, each well was purged of a minimum of three casing volumes using a dedicated bailer to ensure that a representative groundwater sample was collected. While purging, DBS&A measured water quality field parameters consisting of temperature, specific conductance, and pH. Sample containers were filled, labeled, and placed in an ice-filled cooler. Groundwater samples were submitted under chain of custody to HEAL for analysis.

Samples of the brine well injection water and the produced brine were also collected to meet requirements under DP-BW-8. Analytical results of these samples will be presented in the 2022 annual Class III well report.

4. Analytical Results

Table 2 reports the chloride analytical results for the groundwater samples. Figures 4 and 5 show the distribution of chloride in groundwater beneath the former brine pond area and the brine well area, respectively. The complete laboratory report and chain of custody documentation are provided in Appendix A. Field notes recorded during groundwater monitoring activities are provided in Appendix B. Historical groundwater quality data are provided in Appendix C.

Monitor Well	Date	Chloride Concentration (mg/L)
NM	1WQCC Standard	250
DBS-1R	6/9/2022	940
DBS-2	6/9/2022	NS
DBS-3	6/9/2022	57
DBS-4	6/9/2022	44
DBS-5	6/9/2022	200
DBS-6	6/9/2022	290
DBS-8	6/9/2022	37
DBS-9	6/9/2022	350
DBS-10	6/9/2022	530
PMW-1	6/9/2022	13,000
MW-3	6/10/2022	5,100
MW-5	6/10/2022	590

Table 2. Chloride Groundwater Analytical Data

Bold indicates that value equals or exceeds the applicable standard. All samples analyzed using EPA method 300.0.

NMWQCC = New Mexico Water Quality Control Commission

mg/L = Milligrams per liter

NS = Not sampled

4.1 Former Brine Pond Area Wells

Well PMW-1, located just upgradient of FWS-1, continues to exhibit chloride concentrations above the New Mexico Water Quality Control Commission (NMWQCC) standard of 250 milligrams per liter (mg/L) (Figure 4). The chloride concentration at PMW-1 fluctuates (likely in response to pumping conditions at FWS-1) and increased from 9,800 mg/L in November 2021 to 13,000 mg/L in June 2022 (Appendix C).

Well DBS-1R is located downgradient of well PMW-1 and pumping well FWS-1 (Figure 4). In November 2020, the chloride concentration at DBS-1R exceeded the NMWQCC standard for the first time since 2017 (Appendix C). The chloride concentration at DBS-1R remains elevated, but decreased from 2,100 mg/L in November 2021 to 940 mg/L in June 2022.

The chloride concentration at upgradient monitor well DBS-5 was 200 mg/L, below the NMWQCC standard.

The chloride plume in the former brine pond area remains bounded by the existing monitor well network (Figure 4). The chloride concentration at downgradient monitor well DBS-4 remains stable and below the NMWQCC standard, as do chloride concentrations at the two cross-gradient monitor wells, DBS-2 and DBS-3 (Appendix C).

4.2 Brine Well Area Wells

Monitor well MW-3 (the well closest to extraction well RW-2) and downgradient monitor wells MW-5 and DBS-10 continue to exhibit chloride concentrations above the NMWQCC standard (Figure 5). The highest chloride concentration is observed at MW-3, where the chloride concentration was 5,100 mg/L this reporting period, decreasing from 6,100 mg/L in November 2021. The chloride concentrations at DBS-10 and MW-5 remained similar during this reporting period. The chloride concentration at DBS-10 decreased from 560 mg/L in November 2021 to 530 mg/L in June 2022, while the chloride concentration at MW-5 decreased from 680 mg/L (November 2021) to 590 mg/L (June 2022) (Appendix C).

The chloride concentration at cross-gradient monitor well DBS-6, which met the NMWQCC standard between June 2017 and November 2020 (Appendix C), exceeded the NMWQCC standard during this reporting period (290 mg/L) (Table 2).

The chloride concentration at upgradient monitor well DBS-9 was 350 mg/L during this reporting period, exceeding the NMWQCC standard. Chloride concentrations at DBS-9 fluctuate around the standard (Appendix C).

Section 2A.1 of DP-BW-8 requires that PAB collect one groundwater sample to be analyzed for general chemistry and several other groundwater constituents. Monitor well MW-3 was selected for this additional analysis because it is located downgradient of the location of the brine well. Groundwater at MW-3 has historically shown chloride impacts. Analytical results for the MW-3 sample are provided in Table 3.

At the request of the OCD, DBS&A collected a water quality sample from the Ranch Headquarters Supply Well during the June 2022 monitoring event. The sample was collected from a hose bibb, as it could not be collected directly from the well. Water from the hose bibb was allowed to run for several minutes before the sample was collected. The water quality sample that was collected is believed to be representative of the groundwater supplied by the

September 21, 2022 DB19.1198 | Salty Dog SA1_921.docx

Ranch Headquarters Supply Well. Residential water treatment was not apparent. The chloride concentration of the sample was 54 mg/L (Appendix A). The Ranch Headquarters Supply Well had not been sampled since June 2008, when the chloride concentration was 35.4 mg/L.

	Concentration (mg/L ^a)					
Constituent	NMWQCC Standard	MW-3 (6/10/2022)				
Alkalinity, total	NS	195.9				
Bicarbonate	NS	195.9				
Calcium, total	NS	680				
Carbonate	NS	<2.0				
Bromide	NS	2.0				
Chloride	250	5,100				
Fluoride	1.6	<1.0				
Magnesium, total	NS	110				
Nitrate + nitrite (as N)	10.0	<4.0				
Orthophosphate (as P)	NS	<5.0 H				
pH (s.u.)	6–9	7.48 H				
Potassium, total	NS	12				
Sodium, total	NS	2,400				
Sulfate	600	250				
Total dissolved solids	1,000	10,800 D				

Table 3. Groundwater Analytical Results, MW-3

Bold indicates that value exceeds New Mexico Water Quality Control Commission (NMWQCC) standard.

^a Unless otherwise noted

NS = No standard

s.u. = Standard units

H = Holding time for preparation or analysis exceeded

D = Sample diluted due to matrix

5. Groundwater Extraction System O&M

Groundwater extraction from fresh water supply well FWS-1 and recovery well RW-2 provides hydraulic containment and removal of chloride-impacted groundwater in the former brine pond area and brine well area, respectively. PAB began remedial groundwater extraction in April 2012 (Appendix C). Extracted groundwater is used as injection water at the brine well or is sold as fresh water.

Table 4 shows the average groundwater extraction rates for the two wells during this reporting period. The rates were determined using totalizer flow meter readings.

Recovery Well	Date	Average Extraction Rate ^a (gpm)
FWS-1	6/9/2022	8.6
RW-2	6/9/2022	5.8

Table 4. Average Groundwater Extraction Rates

^a Average extraction rates based on totalizer flow meter readings on 11/28/2021 and 6/9/2022. gpm = Gallons per minute

5.1 Former Brine Pond Area

The average pumping rate at well FWS-1 during this reporting period was 8.6 gallons per minute (gpm) (Table 4). The average pumping rate during the previous reporting period was 3.9 gpm (Appendix C).

In the former brine pond area, monitor wells PMW-1 and DBS-1R are the only wells to exhibit chloride concentrations above the NMWQCC standard (Figure 4). The chloride concentration at DBS-1R had been meeting the NMWQCC standard until November 2020. PAB has increased the pumping rate at FWS-1 to address the elevated chloride concentration at DBS-1R. The chloride concentration at DBS-1R decreased during this reporting period, from 2,100 mg/L (November 2021) to 940 mg/L (June 2022). The chloride concentration at well DBS-4, located downgradient of well DBS-1R, remains stable and below the NMWQCC standard (Figure 4).

5.2 Brine Well Area

During this reporting period, the average pumping rate at well RW-2 was 5.8 gpm (Table 4). The average pumping rate during the previous reporting period was 17.6 gpm (Appendix C).

Pumping at well RW-2 is providing hydraulic containment and removal of chloride-impacted groundwater originating from the area upgradient of the recovery well. Groundwater extraction from this well is preventing further degradation of downgradient and cross-gradient water quality. Chloride concentrations at monitor wells MW-5 (downgradient) and DBS-6 (cross gradient) have decreased since PAB began remedial groundwater extraction at well RW-2 (Appendix C). Chloride concentrations at downgradient monitor wells DBS-10 and MW-5 decreased this reporting period relative to the previous reporting period.

5.3 Facility and Extraction System Maintenance

There were no maintenance issues during this reporting period.

On June 9, 2022, Atkins Engineering Associates Inc. surveyed the five surface subsidence monitoring points that were installed at the site in March 2018 (DBS&A, 2018). The survey was conducted in accordance with Condition 2.B.1 of DP-BW-8 (NMEMNRD OCD, 2019). Results of the survey were reported to Carl Chavez on June 15, 2022, and will be included in the 2022 annual Class III well report.

5.4 Future Extraction System Operation

PAB will continue groundwater extraction from the fresh water supply well FWS-1 and recovery well RW-2 to provide hydraulic containment and removal of chloride impacted groundwater.

PAB will continue semiannual groundwater monitoring at the selected wells to collect data used to assess the effectiveness of the remedial groundwater extraction measures.

6. Recommendations

Based on the current groundwater monitoring results and site O&M activities, DBS&A offers the following recommendations:

• Continue groundwater extraction at FWS-1 to provide hydraulic containment and removal of the chloride plume in the former brine pond area.

- Continue groundwater extraction at RW-2 to provide hydraulic containment and removal of the chloride plume in the brine well area.
- To the extent practical, attempt to balance groundwater extraction between FWS-1 and RW-2.

In addition, DBS&A and PAB will complete the following activities at the site in 2022 to meet the requirements of DP-BW-8:

- Continue to conduct semiannual groundwater monitoring and O&M of the extraction systems at the site.
- Conduct semiannual surveys of the surface subsidence survey monitoring points.
- Recalibrate or replace totalizer meters as needed.

References

- Daniel B. Stephens & Associates (DBS&A). 2009a. *Recovery well installation and pump test report, Salty Dog Brine Station, Lea County, New Mexico*. Prepared for New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division, Environmental Bureau. November 20, 2009.
- DBS&A. 2009b. *Preliminary conceptual remedial design report, Salty Dog Brine Station, Lea County, New Mexico*. Prepared for New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division, Environmental Bureau. December 31, 2009.
- DBS&A. 2018. Letter report from John Ayarbe and Michael D. McVey to Carl Chavez, New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division, Environmental Bureau, regarding Installation of a monitor well and subsidence survey monitoring points at the Salty Dog Brine Station (API No. 30-025-26307). June 25, 2018.
- New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Department (NMEMNRD OCD). 2019. Discharge Permit (BW-8), Standard Energy, UIC Class III Brine Well Brine Supply Well No.1 API No. 30-025-26307 UL: J Section 5 Township 19 South, Range 36 East, Lea County, New Mexico. May 17, 2019.

Figures

•

DB19.1198

S:/PROJECTS\DB19.1198_SALTY_DOG_2019\GIS\MXDS\REPORT\2022_1SA\FIG01_SITE_LOCATION_MAP.MXD

8/30/2022 Released to Imaging: 10/14/2022 1:59:30 PM

Former Brine Pond Area Potentiometric Surface Elevations June 2022

\$;\PROJECTS\DB19.1198_SALTY_DOG_2019\GIS\MXDS\REPORT2022_1SA\FIG02_GWE_202206_BRINE_STATION.MXD

9/7/2022 Released to Imaging: 10/14/2022 1:59:30 PM

Daniel B. Stephens & Associates, Inc.

DB19.1198

Received by OCD: 9/27/2022 4:47:04 PM

202206 GWE 2019/GIS/MXDS/REPORT/2022_1SA/FIG03_ s:\PROJECTS\DB19.1198_SALTY_D0G_

9/7/2022 Released to Imaging: 10/14/2022 1:59:30 PM

Received by OCD: 9/27/2022 4:47:04 PM

DOG S:\PROJECTS\DB19.1198_SALTY_

Figure 4

Received by OCD: 9/27/2022 4:47:04 PM

8/30/2022 Released to Imaging: 10/14/2022 1:59:30 PM

Figure 5

Appendix A

Laboratory Analytical Report

July 14, 2022

John Ayarbe Daniel B. Stephens & Assoc. 6020 Academy NE Suite 100 Albuquerque, NM 87109 TEL: FAX:

OrderNo.: 2206811

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

RE: Salty Dog

Dear John Ayarbe:

Hall Environmental Analysis Laboratory received 14 sample(s) on 6/15/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report

Hall Environmental Analysis	Lab Order 2206811 Date Reported: 7/14/2022						
CLIENT: Daniel B. Stephens & Assoc.		Client Sample ID: DBS-1R					
Project: Salty Dog		Collection Date: 6/9/2022 4:08:00 PM					
Lab ID: 2206811-001	Matrix: GROUNDWA Received Date: 6/15/2022 10:30:00 AM						
Analyses	Result R	L Qual Units DF Date Analyzed Batch					
EPA METHOD 300.0: ANIONS		Analyst: JMT					
Chloride	940	50 * mg/L 100 6/15/2022 6:21:58 PM R88776					

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: *

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 21

Hall Environmental Analysis Laboratory, Inc.					Analytical Report Lab Order 2206811 Date Reported: 7/14/2	022
CLIENT: Daniel B. Stephens & Assoc.		Client	Sample II	D: DE	3 S-3	
Project: Salty Dog		Colle	ection Dat	e: 6/9	0/2022 3:24:00 PM	
Lab ID: 2206811-002	Matrix: GROUND	WA Rec	eived Dat	e: 6/1	5/2022 10:30:00 AM	ſ
Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	st: JMT
Chloride	57	5.0	mg/L	10	6/15/2022 6:34:51 PM	R88776

Qualifiers: *

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 21

.

Released to Imaging: 10/14/2022 1:59:30 PM

Hall Environmental Analysis Laboratory, Inc.					Analytical Report Lab Order 2206811 Date Reported: 7/14/2022			
CLIENT: Daniel B. Stephens & Assoc.		Client	Sample II	D: DE	3S-4			
Project: Salty Dog		Coll	ection Dat	e: 6/9	0/2022 2:42:00 PM			
Lab ID: 2206811-003	Matrix: GROUND	WA Re	ceived Dat	e: 6/1	5/2022 10:30:00 AM			
Analyses	Result	RL Qu	ual Units	DF	Date Analyzed	Batch		
EPA METHOD 300.0: ANIONS					Analys	it: JMT		
Chloride	44	5.0	mg/L	10	6/15/2022 7:26:17 PM	R88776		

Qualifiers: *

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 21

Hall Environmental Analysis	Laboratory, Inc	•		Analytical Report Lab Order 2206811 Date Reported: 7/14/2	2022
CLIENT: Daniel B. Stephens & Assoc.		Client	Sample I	D: DBS-5	
Project: Salty Dog		Coll	ection Dat	e: 6/9/2022 4:45:00 PM	
Lab ID: 2206811-004	Matrix: GROUND	VA Re	ceived Dat	e: 6/15/2022 10:30:00 AN	Ν
Analyses	Result	RL Qu	al Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				Analy	vst: JMT
Chloride	200	5.0	mg/L	10 6/15/2022 7:52:01 PM	1 R88776

Qualifiers: *

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 21

Hall Environmental Analysis Laboratory, Inc.					Analytical Report Lab Order 2206811 Date Reported: 7/14/2022			
CLIENT: Daniel B. Stephens & Assoc.		Cli	ient S	ample I	D: DBS-6			
Project: Salty Dog		(Collec	tion Dat	te: 6/9/2022 6:44:00 PM			
Lab ID: 2206811-005	Matrix: GROUND	WA	Recei	ived Dat	te: 6/15/2022 10:30:00 AN	1		
Analyses	Result	RL	Qual	Units	DF Date Analyzed	Batch		
EPA METHOD 300.0: ANIONS					Analys	st: JMT		
Chloride	290	50	*	mg/L	100 6/15/2022 8:30:35 PM	R88776		

Qualifiers: *

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 21

Hall Environmental Analysis Laboratory, Inc.					Analytical Report Lab Order 2206811 Date Reported: 7/14/2022			
CLIENT: Daniel B. Stephens & Assoc. Project: Salty Dog Lab ID: 2206811-006	Matrix: GROUNDW	Colleo		t e: 6/9	8S-8 //2022 6:16:00 PM 5/2022 10:30:00 AM			
Analyses	Result	RL Qua	l Units	DF	Date Analyzed	Batch		
EPA METHOD 300.0: ANIONS Chloride	37	5.0	mg/L	10	Analys 6/15/2022 8:43:27 PM	t: JMT R88776		

Qualifiers: * Value

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 21

Hall Environmental Analysis	Laboratory, Inc	•			Analytical Report Lab Order 2206811 Date Reported: 7/14/2	022
CLIENT: Daniel B. Stephens & Assoc.		Cli	ient Sa	ample I	D: DBS-9	
Project: Salty Dog		(Collect	tion Dat	te: 6/9/2022 5:40:00 PM	
Lab ID: 2206811-007	Matrix: GROUNDW	VA	Recei	ved Dat	te: 6/15/2022 10:30:00 AM	1
Analyses	Result	RL	Qual	Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	st: JMT
Chloride	350	50	*	mg/L	100 6/15/2022 9:22:01 PM	R88776

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 21

.

Released to Imaging: 10/14/2022 1:59:30 PM

Hall Environmental Analysis	Laboratory, Inc	∕ ●			Analytical Report Lab Order 2206811 Date Reported: 7/14/2	022
CLIENT: Daniel B. Stephens & Assoc.		Clie	nt Sam	ple ID:	: DBS-10	
Project: Salty Dog		Co	ollection	Date:	6/9/2022 7:25:00 PM	
Lab ID: 2206811-008	Matrix: GROUND	WA R	Received	I Date:	6/15/2022 10:30:00 AM	1
Analyses	Result	RL (Qual U	nits	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analy	st: JMT
Chloride	530	50	* m	ig/L	100 6/15/2022 10:13:28 PM	M R88776

Qualifiers: *

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 21

Hall Environmental Analysis	Laboratory, Inc.			Analytical Report Lab Order 2206811 Date Reported: 7/14 /	
CLIENT: Daniel B. Stephens & Assoc. Project: Salty Dog Lab ID: 2206811-009	Matrix: GROUNDW	Coll		D: MW-5 te: 6/10/2022 3:35:00 PM te: 6/15/2022 10:30:00 Al	
Analyses	Result	RL Qu	al Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS Chloride	590	50 *	* mg/L	Analy 100 6/15/2022 10:39:11 F	/st: JMT M R88776

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit
- ND PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 9 of 21

Hall Environmental Analysis	Laboratory, Inc.			Analytical Report Lab Order 2206811 Date Reported: 7/14/2	022			
CLIENT: Daniel B. Stephens & Assoc.		Client S	ample I	D: PMW-1				
Project: Salty Dog		Collec	tion Dat	te: 6/9/2022 8:24:00 PM				
Lab ID: 2206811-010	Matrix: GROUNDWA	Matrix: GROUNDWA Received Date: 6/15/2022 10:30:00 AM						
Analyses	Result	RL Qual	Units	DF Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS				Analy	st: JTT			
Chloride	13000	500 *	mg/L	1E+ 6/27/2022 12:11:08 PI	M R89065			

Qualifiers: *

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 21

Hall Environmental Analysis	Laboratory, Inc			Analytical Report Lab Order 2206811 Date Reported: 7/14/2	
CLIENT: Daniel B. Stephens & Assoc.		Client	Sample II): Ranch Well	
Project: Salty Dog		Colle	ection Date	e: 6/10/2022 10:27:00 AM	N
Lab ID: 2206811-011	Matrix: GROUND	WA Rec	eived Date	e: 6/15/2022 10:30:00 AN	M
Analyses	Result	RL Qu	al Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				Analy	/st: JMT
Chloride	54	5.0	mg/L	10 6/15/2022 11:17:45 P	M R88776

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 21

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2206811

Date Reported: 7/14/2022

CLIENT	Daniel B. Stephens & Assoc.	(Client Sample ID: MW-3
Project:	Salty Dog		Collection Date: 6/10/2022 1:38:00 PM
Lab ID:	2206811-012	Matrix: GROUNDWA	Received Date: 6/15/2022 10:30:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
SPECIFIC GRAVITY						Analyst	CAS
Specific Gravity	1.000	0			1	6/30/2022 3:28:00 PM	R89169
EPA METHOD 300.0: ANIONS						Analyst	: ЈМТ
Fluoride	ND	1.0		mg/L	10	6/16/2022 12:34:56 AM	R88776
Chloride	5100	250	*	mg/L	500	6/27/2022 12:24:00 PM	R89065
Bromide	2.0	1.0		mg/L	10	6/16/2022 12:34:56 AM	R88776
Phosphorus, Orthophosphate (As P)	ND	5.0	Н	mg/L	10	6/16/2022 12:34:56 AM	R88776
Sulfate	250	5.0		mg/L	10	6/16/2022 12:34:56 AM	R88776
Nitrate+Nitrite as N	ND	4.0		mg/L	20	6/27/2022 2:58:28 PM	R89065
SM2510B: SPECIFIC CONDUCTANCE						Analyst	CAS
Conductivity	17000	100		µmhos/c	10	6/20/2022 1:03:46 PM	R88891
SM2320B: ALKALINITY						Analyst	CAS
Bicarbonate (As CaCO3)	195.9	20.00		mg/L Ca	1	6/16/2022 2:16:25 PM	R88821
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	6/16/2022 2:16:25 PM	R88821
Total Alkalinity (as CaCO3)	195.9	20.00		mg/L Ca	1	6/16/2022 2:16:25 PM	R88821
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	: KS
Total Dissolved Solids	10800	200	*D	mg/L	1	6/20/2022 12:44:00 PM	68166
SM4500-H+B / 9040C: PH						Analyst	CAS
pH	7.48		н	pH units	1	6/16/2022 2:16:25 PM	R88821
EPA 6010B: TOTAL RECOVERABLE METALS						Analyst	JRR
Calcium	680	100		mg/L	100	6/16/2022 12:41:23 PM	68150
Magnesium	110	100		mg/L	100	6/16/2022 12:41:23 PM	68150
Potassium	12	1.0		mg/L	1	6/16/2022 12:22:17 PM	68150
Sodium	2400	100		mg/L	100	6/16/2022 12:41:23 PM	68150

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level. **Qualifiers:**

- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range RL Reporting Limit
- Page 12 of 21

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2206811

Date Reported: 7/14/2022

CLIENT: Project: Lab ID:	Daniel B. Stephens & Assoc. Salty Dog 2206811-013	Client Sample ID: Brine Collection Date: 6/10/2022 3:58:00 PM Matrix: GROUNDWA Received Date: 6/15/2022 10:30:00 AM								
Analyses		Re	sult	RL	Qual	Units	DF	Date Anal	yzed	Batch
SPECIFIC	C GRAVITY								Analyst	CAS
Specific (Gravity		1.200	0			1	6/30/2022 3	:28:00 PM	R89169
EPA MET	HOD 300.0: ANIONS								Analyst	ЈМТ
Chloride		17	0000	10000	*	mg/L	2E+	- 6/16/2022 1	:13:30 AM	R88776
SM25400	MOD: TOTAL DISSOLVED SOL	IDS							Analyst	KS
Total Dis	solved Solids	32	6000	2000	*D	mg/L	1	6/20/2022 1	2:44:00 PM	68166
SM4500-	H+B / 9040C: PH								Analyst	CAS
pН			7.13		н	pH units	1	6/16/2022 1	2:07:45 PM	R88821
EPA 6010	B: TOTAL RECOVERABLE MET	TALS							Analyst	JRR
Sodium		5	6000	1000		mg/L	1E+	- 6/16/2022 1	2:43:36 PM	68150

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 13 of 21
Analytical Report

Hall Environmental Analysis Laboratory, Inc.

EPA 6010B: TOTAL RECOVERABLE METALS

Lab Order 2206811 Date Reported: 7/14/2022

Analyst: JRR

100 6/16/2022 12:47:59 PM 68150

CLIENT: Project: Lab ID:	Daniel B. Stephens & Assoc Salty Dog 2206811-014	e. Matrix: GROUNI	(Collect		e: 6/1	0/2022 4:5	50:00 PM :30:00 AM	
Analyses		Result					Date Ana		Batch
SPECIFIC	C GRAVITY							Analyst	CAS
Specific	Gravity	0.9959	0			1	6/30/2022	3:28:00 PM	R89169
EPA ME	THOD 300.0: ANIONS							Analyst	: ЈМТ
Chloride		590	50	*	mg/L	100	6/16/2022	1:39:12 AM	R88776
SM25400	MOD: TOTAL DISSOLVED	SOLIDS						Analyst	KS
Total Dis	solved Solids	1470	20.0	*	mg/L	1	6/20/2022	12:44:00 PM	68166
SM4500-	H+B / 9040C: PH							Analyst	CAS
pН		7.57		н	pH units	s 1	6/16/2022	12:12:18 PM	R88821

300

100

mg/L

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Sodium

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank в
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 14 of 21

Received by OCD: 9/27/2022 4:47:04 PM

Hall Environmental Analysis Laboratory

July 13, 2022

Sample Delivery Group:

L1505736 06/16/2022

Samples Received: Project Number:

Description:

Report To:

Andy Freeman 4901 Hawkins NE Albuquerque, NM 87109

Ср Тс Ss Cn Sr ʹQc Gl A Sc

Entire Report Reviewed By: John V Hautins

John Hawkins Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Released to Imaging: 040/14/2022 1:59:30 PM Hall Environmental Analysis Laboratory

PROJECT:

SDG: L1505736

DATE/TIME: 07/13/22 16:37

PAGE: 1 of 9

TABLE OF CONTENTS

Cp: Cover Page		
Tc: Table of Content	5	
Ss: Sample Summar	,	
Cn: Case Narrative		
Sr: Sample Results		
2206811-012C MW	-3	L1505736-01
Qc: Quality Control S	um	ımary
Wet Chemistry by	Me	thod 2580
GI: Glossary of Term	5	
Al: Accreditations &	_oc	ations
Sc: Sample Chain of	Cu	stody

Page 39 of 109

1

2 3 4

5 5

6 6

7

8 9 ² Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al ⁹ Sc

Released to Imaging: 10/14/2022 1:59:30 PM Hall Environmental Analysis Laboratory PROJECT:

SDG: L1505736 DATE/TIME: 07/13/22 16:37

ME: 16:37 PAGE: 2 of 9 Received by OCD: 9/27/2022 4:47:04 PM

SAMPLE SUMMARY

Page 40 of 109

			Collected by	Collected date/time	e Received dat	te/time	
2206811-012C MW-3 L1505736-01 GW				06/10/22 13:38	06/16/22 09:	00	1
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			2
Wet Chemistry by Method 2580	WG1891794	1	07/13/22 13:16	07/13/22 13:16	ARD	Mt. Juliet, TN	

³ Ss
⁴ Cn
⁵ Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

Τс

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

John V Hankins

John Hawkins Project Manager

DATE/TIME: 07/13/22 16:37

PAGE: 4 of 9

Received by OCD: C/77/2023 4:47:04 PM Collected date/time: 06/10/22 13:38

SAMPLE RESULTS - 01

Page 42 of 109

Wet Chemistry by Method 2580

	 Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	mV			date / time		2
ORP	176	<u>T8</u>	1	07/13/2022 13:16	WG1891794	¯Тс

ΡM	
7:04	
4:4	0
2022	
/27/	N = 1 =
27	1 N
6	1
184	Mot Chome of the W
ġ.	0.10
$\sum_{i=1}^{n}$	141

Б

Ss

Ч

ğ

Ū

Š

Sc

₹

QUALITY CONTROL SUMMARY DUP Diff Limits DUP Diff Limits **DUP Diff Limits DUP Diff Limits** N M ٧ л Ч 2 m 20 20 20 20 DUP Qualifier DUP Qualifier DUP Qualifier DUP Qualifier DUP Diff Dilution DUP Diff Dilution DUP Diff DUP Diff L1508843-02 Original Sample (OS) • Duplicate (DUP) 0.000 0.700 0.500 L1512255-02 Original Sample (OS) • Duplicate (DUP) L1505736-01 Original Sample (OS) • Duplicate (DUP) L1512255-03 Original Sample (OS) • Duplicate (DUP) L1510492-01 Original Sample (OS) • Duplicate (DUP) ٧n Ъ ЛV 1.00 M۷ (OS) L1508843-02 07/13/22 13:16 • (DUP) R3814296-4 07/13/22 13:16 (OS) L1512255-03 07/13/22 13:16 • (DUP) R3814296-7 07/13/22 13:16 (OS) L1505736-01 07/13/22 13:16 • (DUP) R3814296-3 07/13/22 13:16 (OS) L1512255-02 07/13/22 13:16 • (DUP) R3814296-6 07/13/22 13:16 (OS) L1510492-01 07/13/22 13:16 • (DUP) R3814296-5 07/13/22 13:16 Dilution Dilution *____* Original Result DUP Result -82.3 ٧ 176 2 M 2 M 197 2 M 166 Wet Chemistry by Method 2580 -83.5 МV Ъ M۷ Ъ 176 198 166 Analyte Analyte Analyte Analyte ORP ORP ORP ORP

DUP Diff Limits

DUP Qualifier

DUP Diff

Dilution

٦

Ъ

20

2.30

91.3

93.6

Ъ

2 M

Analyte

ORP

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

/22 13:16
296-2 07/13/22 13
(LCSD) R38142
07/13/22 13:16 •
CS) R3814296-1 0
LCS

	Diff Limits	шV	20
	LCS Qualifier LCSD Qualifier Diff	ММ	2.70
	Rec. Limits	%	90.0-110
	LCSD Rec.	%	102
0	LCS Rec.	%	99.2
01.CI 77/CI//0	LCSD Result	шV	110
20) KJ014790-7	Spike Amount LCS Result	шV	107
) - 10 · 10 · (FC	Spike Amou	шV	108
(FC3) K3014230-1 01/13/22 13.10 • (FC3D) K3014230-2 01/13/22 13.10		Analyte	ORP

Released to Imagingやその対対2022 1:59:30 PM Hall Environmental Analysis Laboratory

PROJECT:

L1505736 SDG:

07/13/22 16:37 DATE/TIME:

6 of 9

PAGE:

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
Т8	Sample(s) received past/too close to holding time expiration.

Received by OCD: 9/27/2022 4:47:04 PM CCREDITATIONS & LOCATIONS

Page 4	5 oj	f 1	<i>09</i>
--------	------	-----	-----------

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
ldaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
ouisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1505736

LABORATORY	ORY					Δ	D176		UNEDSITE: WWW.hallenvironmental.com
SUB CONTRATOR: Pace TN ADDRESS: 12065 LG	Pace TN 12065 Lebanon Rd	COMPANY:	PACE TN			PHONE: ACCOUNT #:	(800) 767-5859	59 FAX: EMAIL:	(615) 758-5859
CITY, STATE, ZIP. Mt. J.	Mt. Juliet, TN 37122								
SAMPLE SAMPLE	CLIENT SAMPLE ID	EID	BO	BOTTLE TYPE N	MATRIX	COLLECTION DATE	# CONTAINERS	ANALYTICAL	UL 505736
220	-MM		125HDP		Groundw 6/10	Groundw 6/10/2022 1:38:00 PM	1 ORP		10-
							on clisiz	24	
	200 200 200								
							COC COC BOLT BOLT COCF COCF	COC Seal Present/Intact: COC Signed/Accurate: Bottles arrive intact: Correct bottles used: Sufficient volume sent: RAD Screen <0.5 mR/hr:	Receipt Checklast 8089 38 N VOA ZIF Applicable N VOA ZIF Applicable N PCA TS, THOS N PCA TS, THOS
SPECIAL INSTRUCTIONS/COMMENTS: Please include the LAB ID and the	L COMMENTS: B ID and the CLIENT 5	AMPLE ID on a	ll final reports. Ple	case e-mail	results to lab(ahallenvironment	al.com. Please return	PECIAL INSTRUCTIONS/COMMENTS: Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.com. Please return all coolers and blue ice. Thank you.	ank you.
Relinquished By: OM	J	Time: 11:00 AM	Received By: Mad	7 20	V Date	pliper Time	C HAH	REPORT TRA HARDCOPY (extra cost)	REPORT TRANSMITTAL DESIRED: 000
Relinquished By: Relinquished By:	Date: Date:	Time: Time:	Received By: A Received By:		Date:	Time:	T. see		FOR LAB USE ONLY C Attenue to Cood 2
TAT:	Standard 🖞	RUSH	Next BD	2nd BD	BD []	3rd BD	TCITI	1 cmb of sampres	

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: Project:	Daniel B. Salty Dog	-	& Asso	DC.							
Sample ID:	МВ	SampT	ype: mb	lk	Tes	tCode: EF	PA Method	300.0: Anions			
Client ID:	PBW	Batch	n ID: R8	8776	F	RunNo: 88	8776				
Prep Date:		Analysis D	Date: 6/	15/2022	S	SeqNo: 31	151883	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride		ND	0.10								
Chloride		ND	0.50								
Bromide		ND	0.10								
Phosphorus, O	rthophosphate (As P)	ND	0.50								
Sulfate		ND	0.50								
Sample ID:	LCS	SampT	ype: Ics		Tes	tCode: EF	PA Method	300.0: Anions			
Client ID:	LCSW	Batch	n ID: R8	8776	F	RunNo: 88	8776				
Prep Date:		Analysis D	Date: 6/*	15/2022	S	SeqNo: 31	151884	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride		0.51	0.10	0.5000	0	102	90	110			
Chloride		4.7	0.50	5.000	0	94.9	90	110			
Bromide		2.5	0.10	2.500	0	99.6	90	110			
Phosphorus, O	rthophosphate (As P)	4.6	0.50	5.000	0	92.0	90	110			
Sulfate		10	0.50	10.00	0	102	90	110			
Sample ID:	2206811-001AMS	SampT	ype: ms	i	Tes	tCode: EF	PA Method	300.0: Anions			
Client ID:	DBS-1R	Batch	n ID: R8	8776	F	RunNo: 88	8776				
Prep Date:		Analysis D	Date: 6/	15/2022	5	SeqNo: 31	151886	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride		5.8	1.0	5.000	0.9770	95.9	79.7	110			
Bromide		25	1.0	05.00							
			1.0	25.00	0.6060	99.0	91.2	106			
Sulfate		170	5.0	25.00 100.0	0.6060 62.38	99.0 104	91.2 90.5	106 112			
	2206811-001AMSD			100.0	62.38	104	90.5				
	2206811-001AMSD DBS-1R	SampT	5.0	100.0 d	62.38 Tes	104	90.5 PA Method	112			
Sample ID:		SampT	5.0 Type: ms n ID: R8	100.0 d 8776	62.38 Tes	104 stCode: EF	90.5 PA Method 3776	112			
Sample ID: Client ID:		SampT Batch	5.0 Type: ms n ID: R8	100.0 d 8776 15/2022	62.38 Tes	104 tCode: EF RunNo: 88	90.5 PA Method 3776	112 300.0: Anions	%RPD	RPDLimit	Qual
Sample ID: Client ID: Prep Date: Analyte		SampT Batch Analysis D	5.0 Type: ms n ID: R8 Date: 6/1	100.0 d 8776 15/2022	62.38 Tes F	104 stCode: EF RunNo: 88 SeqNo: 31	90.5 PA Method 3776 151887	112 300.0: Anions Units: mg/L	%RPD 0.0866	RPDLimit 20	Qual
Sample ID: Client ID: Prep Date: Analyte Fluoride		SampT Batch Analysis D Result	5.0 Type: ms ID: R8 Date: 6 / PQL	100.0 d 8776 15/2022 SPK value	62.38 Tes F SPK Ref Val	104 ttCode: EF RunNo: 88 SeqNo: 31 %REC	90.5 PA Method 3776 151887 LowLimit	112 300.0: Anions Units: mg/L HighLimit			Qual
Sample ID: Client ID: Prep Date: Analyte Fluoride Bromide		SampT Batch Analysis D Result 5.8	5.0 Type: ms ID: R8 Date: 6/ PQL 1.0	100.0 d 8776 15/2022 SPK value 5.000	62.38 Tes F SPK Ref Val 0.9770	104 stCode: EF RunNo: 88 SeqNo: 31 %REC 96.0	90.5 PA Method 3776 151887 LowLimit 79.7	112 300.0: Anions Units: mg/L HighLimit 110	0.0866	20	Qual
Client ID: Prep Date: Analyte Fluoride Bromide Sulfate		SampT Batch Analysis D Result 5.8 25 170	5.0 Type: ms n ID: R8 Date: 6/ PQL 1.0 1.0	100.0 d 8776 15/2022 SPK value 5.000 25.00 100.0	62.38 Tes F SPK Ref Val 0.9770 0.6060 62.38	104 etCode: EF RunNo: 88 SeqNo: 31 %REC 96.0 98.8 104	90.5 PA Method 8776 151887 LowLimit 79.7 91.2 90.5	112 300.0: Anions Units: mg/L HighLimit 110 106	0.0866 0.162	20 20	Qual
Sample ID: Client ID: Prep Date: Analyte Fluoride Bromide Sulfate	DBS-1R	SampT Batch Analysis D Result 5.8 25 170 SampT	5.0 ype: ms b ID: R8 Date: 6/ PQL 1.0 1.0 5.0	100.0 d 8776 15/2022 SPK value 5.000 25.00 100.0	62.38 Tes SPK Ref Val 0.9770 0.6060 62.38 Tes	104 etCode: EF RunNo: 88 SeqNo: 31 %REC 96.0 98.8 104	90.5 PA Method 8776 151887 LowLimit 79.7 91.2 90.5 PA Method	112 300.0: Anions Units: mg/L HighLimit 110 106 112	0.0866 0.162	20 20	Qual
Sample ID: Client ID: Prep Date: Analyte Fluoride Bromide Sulfate Sample ID:	DBS-1R 2206811-011AMS	SampT Batch Analysis D Result 5.8 25 170 SampT	5.0 ype: ms 1D: R8 Date: 6/ PQL 1.0 1.0 5.0 ype: ms 1D: R8	100.0 d 8776 15/2022 SPK value 5.000 25.00 100.0	62.38 Tes SPK Ref Val 0.9770 0.6060 62.38 Tes F	104 ttCode: EF RunNo: 88 SeqNo: 31 %REC 96.0 98.8 104 ttCode: EF	90.5 PA Method 8776 151887 LowLimit 79.7 91.2 90.5 PA Method 8776	112 300.0: Anions Units: mg/L HighLimit 110 106 112	0.0866 0.162	20 20	Qual

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 15 of 21

.

2206811

14-Jul-22

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: Project:	Daniel B. Salty Dog	-	& Asso	ос.							
Sample ID:	2206811-011AMS	SampT	ype: ms		Tes	stCode: EF	A Method	300.0: Anions			
Client ID:	Ranch Well	Batch	ID: R8	8776	F	RunNo: 88	3776				
Prep Date:		Analysis D	ate: 6/	15/2022	Ş	SeqNo: 31	151912	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride		5.4	1.0	5.000	0.6930	94.9	79.7	110			
Chloride		100	5.0	50.00	53.87	97.8	86.3	114			
Bromide		24	1.0	25.00	0	97.2	91.2	106			
Sulfate		160	5.0	100.0	60.34	101	90.5	112			
Sample ID:	2206811-011AMSD	SampT	ype: ms	d	Tes	stCode: EF	A Method	300.0: Anions			
Client ID:	Ranch Well	Batch	ID: R8	8776	F	RunNo: 88	3776				
Prep Date:		Analysis D	ate: 6/*	15/2022	:	SeqNo: 31	151913	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride		5.5	1.0	5.000	0.6930	96.1	79.7	110	1.17	20	
Chloride		100	5.0	50.00	53.87	99.5	86.3	114	0.855	20	
Bromide		24	1.0	25.00	0	98.0	91.2	106	0.762	20	
Sulfate		160	5.0	100.0	60.34	103	90.5	112	1.01	20	
Sample ID:	MB	SampT	ype: mb	lk	Tes	A Method					
Client ID:	PBW	Batch	1D: R8	9065	F	RunNo: 8 9	9065				
Prep Date:		Analysis D	ate: 6/2	27/2022	:	SeqNo: 31	63601	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	0.50								
Nitrate+Nitrite	as N	ND	0.20								
Sample ID:	LCS	SampT	ype: Ics		Tes	stCode: EF	PA Method	300.0: Anions			
Client ID:	LCSW	Batch	1D: R8	9065	F	RunNo: 8 9	9065				
Prep Date:		Analysis D	ate: 6/2	27/2022	\$	SeqNo: 31	63602	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		4.7	0.50	5.000	0	94.9	90	110			
Nitrate+Nitrite	as N	3.6	0.20	3.500	0	102	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Limit

Page 16 of 21

2206811

14-Jul-22

Client:	Daniel B	. Stephens	& Asso	oc.							
Project:	Salty Dog	3									
Sample ID:	lcs-1 99.6uS eC	SampT	Гуре: Ics		Tes	tCode: SN	/12510B: Sp	ecific Condu	ictance		
Client ID:	LCSW	Batc	h ID: R8	8891	F	RunNo: 88	3891				
Prep Date:		Analysis [Date: 6/ 2	20/2022	S	SeqNo: 31	156279	Units: µmho	os/cm		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Conductivity		100	10	99.60	0	103	85	115			

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 17 of 21

2206811

14-Jul-22

Client: Project:	Daniel B. Salty Dog	-	& Asso	DC.							
Sample ID:	MB-68150	SampT	ype: ME	BLK	Tes	stCode: EF	PA 6010B: T	otal Recovera	able Meta	ls	
Client ID:	PBW	Batch	ID: 68	150	F	RunNo: 88	3834				
Prep Date:	6/15/2022	Analysis D	ate: 6/	16/2022	S	SeqNo: 31	54017	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium		ND	1.0	0		, or (2 C	20112		, o. t. 2		
Magnesium		ND	1.0								
Potassium		ND	1.0								
Sodium		ND	1.0								
Sample ID:	LCS-68150	SampT	ype: LC	S	Tes	stCode: EF	PA 6010B: T	otal Recovera	able Meta	ls	
Client ID:	LCSW	Batch	ID: 68	150	RunNo: 88834						
Prep Date:	6/15/2022	Analysis D	ate: 6/	16/2022	\$	SeqNo: 31	154019	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium		50	1.0	50.00	0	100	80	120			
Magnesium		50	1.0	50.00	0	99.0	80	120			
Potassium		49	1.0	50.00	0	97.0	80	120			
Sodium		47	1.0	50.00	0	94.1	80	120			
Sample ID:	2206811-012BMS	SampT	ype: MS	6	Tes	stCode: EF	PA 6010B: T	otal Recovera	able Meta	ls	
Client ID:	MW-3	Batch	ID: 68	150	F	RunNo: 88	8834				
Prep Date:	6/15/2022	Analysis D	ate: 6/	16/2022	5	SeqNo: 31	54026	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Potassium		62	1.0	50.00	12.40	99.4	75	125			
Sample ID:	2206811-012BMSD	SampT	ype: MS	SD	Tes	tCode: EF	PA 6010B: T	otal Recovera	able Meta	ls	
Client ID:	MW-3	Batch	ID: 68	150	F	RunNo: 88	3834				
Prep Date:	6/15/2022	Analysis D	ate: 6/	16/2022	5	SeqNo: 31	54030	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

Potassium

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

62

1.0

50.00

12.40

B Analyte detected in the associated Method Blank

99.8

75

125

0.353

- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Limit

Page 18 of 21

20

2206811

14-Jul-22

Client: Project:	Daniel B. Stephens Salty Dog	s & Assoc.								
Sample ID: mb-1	alk Samp	Type: mblk		Test	Code: SN	/12320B: All	alinity			
Client ID: PBW	Bato	h ID: R88821		Ru	unNo: 88	8821				
Prep Date:	Analysis	Date: 6/16/20	22	Se	eqNo: 31	53402	Units: mg/L	CaCO3		
Analyte	Result		K value SP	YK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity (as CaC	O3) ND	20.00								
Sample ID: Ics-1	alk Samp	Type: Ics		Test	Code: SN	12320B: All	alinity			
Client ID: LCSV	Bato	h ID: R88821		Ru	unNo: 88	8821				
Prep Date:	Analysis	Date: 6/16/20	22	Se	eqNo: 31	53403	Units: mg/L	CaCO3		
Analyte	Result	PQL SP	K value SP	YK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity (as CaC	03) 75.00	20.00	80.00	0	93.8	90	110			
Sample ID: mb-2	alk Samp	Type: mblk		Test	Code: SN	12320B: All	alinity			
Client ID: PBW	Bato	h ID: R88821		Ru	unNo: 88	8821				
Prep Date:	Analysis	Date: 6/16/20	22	Se	eqNo: 31	53425	Units: mg/L	CaCO3		
Analyte	Result	PQL SP	K value SP	YK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity (as CaC	O3) ND	20.00								
Sample ID: Ics-2	alk Samp	Type: Ics		Test	Code: SN	12320B: All	alinity			
Client ID: LCSV	Bato	h ID: R88821		Ru	unNo: 88	821				
Prep Date:	Analysis	Date: 6/16/20	22	Se	eqNo: 31	53426	Units: mg/L	CaCO3		
Analyte	Result	PQL SP	K value SP	YK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity (as CaC	03) 75.16	20.00	80.00	0	93.9	90	110			

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 19 of 21

2206811

14-Jul-22

Client:	Daniel B.	Stephens	& Asso	oc.							
Project:	Salty Dog										
Sample ID:	2206811-012ADUP	SampT	ype: DU	P	Tes	tCode: Sp	ecific Grav	/ity			
Client ID:	MW-3	Batch	n ID: R8	9169	F	RunNo: 8 9	9169				
Prep Date:		Analysis D	Date: 6/3	30/2022	S	SeqNo: 31	169253	Units:			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Specific Gravity		1.000	0						0.0300	20	

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 20 of 21

2206811

14-Jul-22

	Daniel B. Stephens & Assoc. Salty Dog
Sample ID: MB-6816	6 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids
Client ID: PBW	Batch ID: 68166 RunNo: 88869
Prep Date: 6/17/20	22 Analysis Date: 6/20/2022 SeqNo: 3155242 Units: mg/L
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Total Dissolved Solids	ND 20.0
Sample ID: LCS-681	66 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids
Client ID: LCSW	Batch ID: 68166 RunNo: 88869
Prep Date: 6/17/20	22 Analysis Date: 6/20/2022 SeqNo: 3155243 Units: mg/L
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Total Dissolved Solids	1040 20.0 1000 0 104 80 120

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 21 of 21

2206811

14-Jul-22

	RONMENTAI			all Environn EL: 505-345 Website: wy	490 Albuquerg	01 Hawk 1ue, NM 505-345	ins NE 87109 Sar 5-4107	nple Log-In	P Check Lis
Client Name:	Daniel B. Ste Assoc.	phens &	Wor	k Order Nu	mber: 2200	6811		RcptN	o: 1
Received By:	Cheyenne C	Cason	6/15/2	022 10:30:0	00 AM		Chul Claul		
Completed By:	Cheyenne C	ason	6/15/2	022 10:36:	32 AM		Chul		
Reviewed By:	KOG	Ь	15.2	2					
Chain of Cus	stody								
1. Is Chain of C	Custody complet	e?			Yes	\checkmark	No 🗌	Not Present	
2. How was the	sample deliver	ed?			UPS				
Log In									
3. Was an atter	npt made to coc	ol the samp	oles?		Yes	\checkmark	No 🗌	NA 🗌	
4. Were all sam	ples received at	a tempera	ature of >0° C	to 6.0°C	Yes	✓	No 🗌	NA 🗌	
5. Sample(s) in	proper containe	er(s)?			Yes	✓	No 🗌		
6. Sufficient san	nple volume for i	indicated t	est(s)?		Yes	~	No 🗌		
7. Are samples	except VOA and	d ONG) pr	operly preserv	ed?	Yes	~	No 🗌		
8. Was preserva	tive added to bo	ottles?			Yes		No 🗹	NA 🗌	
9. Received at le	east 1 vial with h	eadspace	<1/4" for AQ	/OA?	Yes		No 🗌	NA 🗸	
10. Were any sar	mple containers	received b	roken?		Yes		No 🗹	# of preserved	
11. Does paperwo (Note discrepa	ork match bottle ancies on chain)		Yes	✓	No 🗌	bottles checked for pH:	or >12 unless note
12. Are matrices of	correctly identifie	ed on Chai	n of Custody?		Yes	\checkmark	No 🗌	Adjusted? V	
13. Is it clear wha			?		Yes	\checkmark	No 🗌		
14. Were all holdi (If no, notify c	ng times able to ustomer for auth				Yes	\checkmark	No 🗌	Checked by:	mc Glist
Special Handl	ing (if applic	cable)							
15. Was client no	tified of all discr	epancies v	with this order	?	Yes		No 🗌	NA 🗹	
Person	Notified:			Date	e: [and a second second	an an an a star and a star and a star and a star and a star a		
By Who	om:			Via:	🗌 eMa	il 🗌 F	Phone 🗌 Fax	In Person	
Regardi Client Ir	ing:								
16. Additional rer	p								
17. <u>Cooler Infor</u> Cooler No	1	Condition	Seal Intact	Cool Ma	0		0		
1		ood	Not Present	Seal No	Seal Da	le	Signed By		

Page 54 of 109

•

Page 1 of 1

HALLENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com Hawkins NE - Albuquerque, NM 87109 505-345-3975 Fax 505-345-4107 Analysis Request	PAHs by 8310 or 8270SIMS RCRA 8 Metals Cl, F, Br, NO ₃ , NO ₂ , PO ₄ , SO ₄ 8260 (VOA) 8270 (Semi-VOA) Total Coliform (Present/Absent) آرا صالح 300, آ				Page 1 oF 2 sub-contracted data will be clearly notated on the analytical report.
HALL ANAL www.hč 4901 Hawkins NE Tel. 505-345-3975	BTEX / MTBE / TMB's (8021) TPH:8015D(GRO / DRO / MRO) 8081 Pesticides/8082 PCB's EDB (Method 504.1)				Remarks:
Turn-Around Time: Standard Rush Project Name: Sculdy Deg Project #: Project #:	Project Manager: John Ayarbe Sampler: Kork Magar On Ice: 加Yes No # of Coolers: (Cooler Temp(including CF): 4.1-024.1 (°C) Container Preservative HEAL No. Type and # Type 2200 &10	none col	203 204 605 605	607 668 610	Time: Relinquished by: Received by: Via: Date Time Time: Relinquished by: Received by: Via: Date Time 1315 Not Not Via: Date Time 1315 Not Not Via: Date Time 1315 Not Not Via: Date Time 17ime: Relinquished by: Not Via: Date Time 17ime: Relinquished by: Not Via: Date Time 16 Not Not Not Not Not
Chain-of-Custody Record Client: 085よA Mailing Address: A&G 0FF/・Ca Phone #: 505, 833.9400	email or Fax#: <i>SAywrbe cgeo - Icgic.com</i> QA/QC Package: Calandard Cevel 4 (Full Validation) Accreditation: Az Compliance NELAC Other EDD (Type) #	GW DBS-1R , / DBS-3 ,	085-5 085-5 085-6 085-80	V 1935 / DBS-7 / V 8-10-39 1535 / DBS-10 / V 2-10-20 1627 / PMW-1 / V	If necessary, samples submitted to Hall Environmental may be subcon

.

Mel 08:92:1 2202/41/01 :gnigaml of besaeled

Hall ENVIRONMENTAL HALL ENVIRONMENTAL ANALYSIS LABORATORY ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request	О О BTEX / МТВЕ / ТМВ's (8021) BTEX / МТВЕ / ТМВ's (8021) TPH:8015D(GRO / DRO / МRO) 8081 Pesticides/8082 PCB's BOB1 Pesticides/8082 PCB's FDB (Method 504.1) PAHs by 8310 or 8270SIMS RCRA 8 Metals CI, F, Br, NO3, NO2, PO4, SO4. BS70 (Semi-VOA) S270 (Semi-VOA) S270 (Semi-VOA) DA: Coliform (Present/Absent) Sec:Fize (Inductance Conductance Bicarboache Allacting Conductance Condition G Condition G Condition G Condition G Condition G	× · · · · · · · · · · · · · · · · · · ·		Remarks: Poge 2 P 2 this possibility. Any sub-contracted data will be clearly notated on the analytical renort
Chain-of-Custody Record Turn-Around Time: Client: DB S4 A Xstandard Rush Mailing Address: Project Name: Sally Dog Phone #: S05. 822.04/00 Project #: Angle	Image: Image	GW MW-3 r 4 Paly Varies	16.30 V - LAJection V 3 Poly V 014	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the paraktical data will be clearly notated on the analytical neoticed data will be clearly notated on the analytical neoticed data will be clearly notated on the analytical neoticed data will be clearly notated on the analytical neoticed data will be clearly notated on the analytical neoticed data will be clearly notated on the analytical neoticed data will be clearly notated on the analytical neoticed data will be clearly notated on the analytical neoticed data will be clearly notated on the analytical neoticed data will be clearly notated on the analytical neoticed data will be clearly notated on the analytical neoticed data will be clearly notated on the analytical neoticed.

Appendix B

Field Notes

.

DIGON

Sampler:

Sample Date: 6-9-

Sheet # __1_ of _1_

Daniel B. Stephens & Associates, Inc.

GROUNDWATER ELEVATION DATA SHEET

Project Name: Salty Dog

Project #: _DB19.1198

Project Manager: John Ayarbe

ID pre -1R 68. -1R 66. -2 66. -3 66. -3 66. -3 66. -3 66. -3 67. 6 67. 7 65. 8 65. 9 58.	10 66 44 24 99 52	7,2.80 7,4.89 69.57 75.30 71,99 69.79 68.29 19:44 67.84	Total Depth 74.42 75.35 74.76 78.81 75.38 76.02 69.91	<u>Comments:</u> (well dia., sampled, condition) <u>No Somple - Ned dry</u> <u>v</u> <u>v</u> WL only <u>v</u>
-1R -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	10 66 44 24 99 52	69.57 75.30 71.99 69.79 68.29 1 0:4 4 67.84	75.35 74.76 78.81 75.38 76.02 69.91	V V WL only
$ \begin{array}{c c} -2 & \\ -3 & \\ -3 & \\ -3 & \\ -3 & \\ -3 & \\ \hline -4 & \\ -5 &$	10 66 44 24 99 52	69.57 75.30 71.99 69.79 68.29 1 0:4 4 67.84	74.76 78.81 75.38 76.02 69.91	V V WL only
-3 <u>71.</u> <u>4</u> <u>5</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>7</u> <u>6</u> <u>65.</u> <u>7</u> <u>8</u> <u>58.</u> <u>58.</u> <u>58.</u>	10 66 44 24 99 52	69.57 75.30 71.99 69.79 68.29 1 0:4 4 67.84	78.81 75.38 76.02 69.91	V V WL only
4 <u>6</u> 6 <u>6</u> <u>6</u> <u>65.</u> 8 <u>58.</u> <u>58.</u>	44 24 99 52	71,99 69,79 68.29 1 2:4 4 67.84	<u>75.38</u> <u>76.02</u> <u>69.91</u>	
5 <u>67.</u> 6 <u>65.</u> 7 <u>65.</u> 8 <u>58.</u>	<u>24</u> 99 52	69,79 68.29 1 0:4 4 67.84	<u>76.02</u> <u>69.91</u>	
6 65.9 7 65.9 8 58.9	<u>99</u> 52	68.29 1 2:4 4 67.84	<u>69.91</u>	
7 <u>65.</u> 8 <u>58.</u> :	<u>52</u> -	12:44 67.84		
8 <u>58.:</u>				\mathcal{V}
58.:	53	1.01	(
		60.95	<u>67.55</u>	
10 <u>65.</u> 1	<u>11</u>	67.28 67.38 67.34	<u>78.11</u>	
2 65.4	15	67.38 67.84	=	we only
68.1	8	70.60	<u>147.13</u>	· · ·
	2	70.44		WL only
	0	67.59	<u>128.78</u>	1-5
<u>66.7</u>	<u>0</u>	69.04		WL only
1 71.7		75.97	<u>77.73</u>	i
A Tor ents:	Falizer =	5108863 C 5108863 C	1059 6	9.22 - broken / disconnected from, Not working
	$ \begin{array}{r} \underline{68.1} \\ \underline{65.3} \\ \underline{66.7} \\ \underline{71.7} \\ \underline{71.7} \\ \underline{9} \\ \overline{101} \\ \overline{1011} \\ \overline{101} \\ \overline{101}$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

FWS-1 Totalizer = 3496239 C 1947 6-9-22 p. wipp S//Projects/ES08.0118.06_Salty_Dog_2016/Field Forms/SD GW Elevation.docx

Released to Imaging: 10/14/2022 1:59:30 PM

GROUNDWATER MONITORING DATA SHEET		
	1	

Project Name: <u>Salty Dog</u> Project #: <u>DB19.1198.00</u> Project Manager: <u>John Ayarbe</u>)	Sampler: Sample Date Sample Time	V Morgon - 6.9-26 : 1608	λ
Well #: DBS-1R			11.	1
Well Diameter:2"	(inches)	Height of Wate	r Column: 160	$\frac{l}{l}$ (feet)
Depth to NAPL:	(feet btoc)	Casing Volume:	X O.JE	(gal)
Depth to Water: 72.80	(feet btoc)	Purge Volume:	0.78	(gal)
Total Depth of Well: 74.42	(feet)	Purge Method:	Grab 49" for	y baile
Note: One casing volume (SCH 40 PVC): 2.0)" ID casing = 0.	16 gal/ft; 4.0" = 0.65 g	gal/ft; 6.0" = 1.47 gal	//ft

Groundwater Parameters:

	Casing Volume	рН	Temp (ੴ) °℃	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
1538	Initial	7.20	20.5	2800	224.2	0-53	very
1540	1	7.36	195	3085	219.5	0.56	ч г
1543	2	7.43	19.5	3117	215.2	0.78	Ч
[08	3	7,36	20.2	3136	206.6	0.46	Boderake
10							

Sample Description: <u>1 poly</u>	. Kidama ta alian	2

Gom dry e 1543. Waited for recove Physical Observations: Collect Sa

Analytical Method(s): ____Chloride

T:\Admin\Field Forms\Att 1.5-1_GROUNDWATER MONITORING DATA SHEET_rev1.pdf

GROUNDWATER MONITORING DATA SHEET						
Project Name: Salty Dog	Sampler:	Y. Maryon				
Project #: DB19.1198.00	Sample Date:	69.92				
Project Manager: John Ayarbe	Sample Time:					
Well #: DBS-2		Less 19 reality				
Well Diameter: <u>2"</u> (in	ches) Height of Water	r Çolumn: <u>(). 46 (</u> feet)				
	btoc) Casing Volume:	0,07 Ø (gal)				
Depth to Water: 74.89 (feet	btoc) Purge Volume:	(gal)				
Total Depth of Well: 75.35	(feet) Purge Method:	Grab				
Note:						

One casing volume (SCH 40 PVC): 2.0" ID casing = 0.16 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 gal/ft

Groundwater Parameters:

Casing Volume	рН	Temp (°F)	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
Initial						
1	NI	\mathbf{A}				
2	1 /1	1				
3						

Sample Description: 1-poly None
Physical Observations: 15:00 - brill has nonimal water on end-no- in reservoir - Not enough water to sample
Analytical Method(s): Chloride

T:\Admin\FieldForms\Att 1.5-1_GROUNDWATER MONITORING DATA SHEET_rev1.pdf

GROUNDWATER MONITORING DATA SHEET

Project Name:		Sampler:	Y. Mogan	
Project #: <u>DB19.1198.00</u>		Sample Date:	6-9,22	
Project Manager: John Ayarbe		Sample Time	: [524	
Well #: DBS-3				
Well Diameter:2"		Height of Wate		_(feet)
Depth to NAPL:	_(feet btoc)	Casing Volume:	0.83	_(gal)
Depth to Water: 69.57	_(feet btoc)	Purge Volume:	2.49	_(gal)
Total Depth of Well: 74.76	(feet)	Purge Method:	<u>Grab</u> <u>48</u> " fa	y built
Note: One casing volume (SCH 40 PVC): 2.0"	' ID casing = 0	.16 gal/ft; 4.0" = 0.65 g	gal/ft; 6.0" = 1.47 gal/ft	

Groundwater Parameters:

	Casing Volume	рН	Temp (° ₽)	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
1514	Initial	7.31	20.8	594	253.4	0,58	Slight
1517	1	7,59	19.7	581	2329	0.56	Very
1520	2	-758	19.7	580	226-1	0.76	ц
1524	3	7.49	20.1	573	226.1	0.73	И
		×					

Sample Description: <u>1 poly</u>	
Physical Observations: by furbid	
. J	

Analytical Method(s): _____Chloride

T:\Admin\Field Forms\Att 1.5-1_GROUNDWATER MONITORING DATA SHEET_rev1.pdf

GROUNDWATER MONITORING DATA SHEET

Project Name: Salty Dog		Sampler:	Y. Maga	l	
Project #: DB19.1198.00	×	Sample Date:	-6.9.2	2	
Project Manager: John Ayarbe		Sample Time:	1442		
Well #:				5.10	
Well Diameter: <u>2</u> "	_(inches)	Height of Water	Column:_	3,49	_(feet)
Depth to NAPL:	(feet btoc)	Casing Volume:	0,56		_(gal)
Depth to Water: 75.30	(feet btoc)	Purge Volume:	. 7	11001	_(gal)
Total Depth of Well: 78.81	(feet)	Purge Method:	Grab /		ailer
Note: One casing volume (SCH 40 PVC): 2.0" I	D casing = 0.	16 gal/ft; 4.0" = 0.65 g	al/ft; 6.0" = 1	وروم 47 gal/ft.	

Groundwater Parameters:

	Casing Volume	рН	Temp (°F)	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
1430	Initial	\$ 7.67	20.7	617	197.7	0.40	Slight
1435	1	7.65	20.7	561	197.7	0.51	Very
1438	2	7.58	19.8	562	196-l	0.66	"
1442	3	7,58	30.0	558	193.0	0.80	м
•	1		Ĵ				

Sample Description: <u>1 p</u>	oly			
			94	
Physical Observations:	Nerz	furbid		

Analytical Method(s): _____Chloride___

T:\Admin\Field Forms\Att 1.5-1_GROUNDWATER MONITORING DATA SHEET_rev1.pdf

GROUNDWATER MONITORING DATA SHEET						
Project Name: Salty Dog	Sampler: <u>/.//b</u> .Rcn Sample Date: <u>6-9.22</u>					
Project #: <u>DB19.1198.00</u>	Sample Date:6-9.70*					
Proje ct Manager: <u>John Ayarbe</u>	Sample Time: <u>/6</u> 4 /					
Well #: DBS-5	- 2 19					
Well Diameter:2"	(inches) Height of Water Column: $\frac{3.37}{\sqrt{100}}$ (feet)					
Depth to NAPL:(feet btoc) Casing Volume: 0, 07 (gal)					
Depth to Water: 71.99(feet btoc) Purge Volume:1.63(gal)					
Total Depth of Well: 75.38	(feet) Purge Method: <u>Grab fily bailer - 48</u> "					
Note:) casing = 0.16 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 gal/ft					

Groundwater Parameters:

	Casing Volume	рН	Temp (℃F) ℃	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
11.28	Initial	7,61	210	1414	198,0	0,51	Very
1633	1	127	20.2	1273	198.7	0.64	u
638	2	7.20	Jo , J	1246	102.8	0.75	L.
641	3	7,20	2012	(233	900.D	0.77	u

Sample Description: <u>1 poly</u>	
Physical Observations: Very furthing	- Short water column

Analytical Method(s): <u>Chloride</u>

T \Admin\Field Forms\Att 1 5-1_GROUNDWATER MONITORING DATA SHEET_rev1 pdf

GROUNDWATER MONITORING DATA SHEET					
Project Name: Salty Dog	Sampler: K. Margan				
Project #: DB19.1198.00	Sample Date:				
Project Manager: John Ayarbe	Sample Time:				
Well #: DBS-6	1 12				
Well Diameter: <u>2"</u> (inches)	Height of Water Column: <u>6, 23 (</u> feet) asing Volume: <u>1, 0</u> (gal)				
Depth to NAPL:(feet btoc) Ca	asing Volume:(gal)				
Depth to Water: 67, 19 (feet btoc) Pr	urge Volume:3.0(gal)				
Total Depth of Well: 76.02 (feet)	Purge Method: Grab 48" Poly baile				
Note: One casing volume (SCH 40 PVC): 2.0" ID casing = 0.16					

Groundwater Parameters:

	Casing Volume	рН	Temp	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
1830	Initial	7.34	20.2	1382	187.0	0.59	very
1834	1	7.33	19.7	1392	180.4	0,63	K
1837	2	7.29	19.6	1425	181.6	0.73	Nerte
1849	3	7.30	19.6	1445	170.8	0.71	10

Sample Descrip	otion: <u>1</u>	poly
----------------	-----------------	------

Physical Observations: Moderede

turbiding

Analytical Method(s): _____Chloride

T:\Admin\Field Forms\Att 1.5-1_GROUNDWATER MONITORING DATA SHEET_rev1.pdf

GROUNDWATER MONITORING DATA SHEET

Project Name: <u>Salty Dog</u> Project #: <u>DB19.1198.00</u> Project Manager: <u>John Ayarbe</u>		_ Sampler: Sample Date Sample Time	V Musgen :
Well #: DBS-8			2 7
Well Diameter:2"	(inches)	Height of Wate	er Column: 2.07 (feet)
Depth to NAPL:	_(feet btoc) (Casing Volume:_	()_33(gal)
Depth to Water: 67.84	_(feet btoc) F	Purge Volume:	し. D(gal)
Total Depth of Well: 69.91	(feet)	Purge Method:	Grab, 48" for boile
Note: One casing volume (SCH 40 PVC): 2.0"			J.

Groundwater Parameters:

	Casing Volume	рН	Temp ∢°F) ₀C	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
1802	Initial	7.53	21.9	637	162.0	0.54	Slight
107	1	7.50	20.9	597	163.9	0.64	Very
01	2	7.46	20-1	594	168.0	0.65	11
1811	- 3	7,47	20.5	593	162.7	0.83	٨٦
1916							

Sample Description: <u>1 poly</u>

Physical Observations: Very fubid

Analytical Method(s): ____Chloride

T.\Admin\FieldForms\Att 1.5-1_GROUNDWATER MONITORING DATA SHEET_rev1.pdf

GROUNDWATER MONITORING DATA SHEET					
Project Name: Salty Dog	Sampler:/	Morgan			
Project #: DB19.1198.00	Sample Date:	6-9-22			
Project Manager: John Ayarbe	Sample Time:				
Well #:		1 1			
Well Diameter:2" (inc	hes) Height of Water C	olumn: 6.6 (feet)			
Depth to NAPL:(feet I	otoc) Casing Volume:				
	otoc) Purge Volume:				
Total Depth of Well: 67.55	feet) Purge Method: <u>Gr</u>	rab, 48" foly bails			
Note: One casing volume (SCH 40 PVC): 2.0" ID casin					

Groundwater Parameters:

	Casing Volume	рН	Temp (∰) ⇒℃	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
1051	Initial	7.04	19,5	2596	703,7	0.47	Slight
197	1	690	19,3	2034	198.9	0.50	Merse
:733	2	7.19	19.5	1995	184.8	0.65	rc
140	3	7.19	195	1646	130.4	0.78	ïL
`							

Samp	le [Descri	ption:	1	pol	V

Physical Observations: moderately furbid

Analytical Method(s): _____Chloride

TAdmin/Field Forms/Att 1 5-1_GROUNDWATER MONITORING DATA SHEET_rev1.pdf

GROUNDWATER MONITORING DATA SHEET

Project Name: Salty Dog	Sampler: Y. Marsa	
Project #: <u>DB19.1198.00</u>	Sample Date:69-J.2_	
Project Manager: John Ayarbe	Sample Time: <i>1925</i>	
Well #: DBS-10		_
Well Diameter:2"	(inches) Height of Water Column: [0, §3]	(feet)
Depth to NAPL:		(gal)
Depth to Water: 67,38		(gal)
Total Depth of Well:78.11	(feet) Purge Method: <u>Grab 48^{er} fal</u>	bailer
Note:	ID casing = 0.16 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 gal/ft	

Groundwater Parameters:

	Casing Volume	рН	Temp (型) いこ	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
1905	Initial	7.24	20.7	2091	c 70. l	0.58	Nore
1914	1	7.74	19,5	2418	187.5	0.67	Slight
1918	2	7.22	19.5	2139	187.7	0.88	Aderade
1925	3	7.22	19,5	2130	187.9	0.79	n.
				.)		and the second	

Sample Description: <u>1 poly</u>	
Physical Observations: Moderate two biddy	

Analytical Method(s): _____Chloride

T:\Admin\FieldForms\Att1.5-1_GROUNDWATER MONIFORING DATA SHEET_rev1.pdf

GROUNDWATER MONITORING DATA SHEET

Project Name: <u>Salty Dog</u> Project #: <u>DB19.1198.00</u> Project Manager: <u>John Ayarbe</u>	Sampler: V. Murgan Sample Date: 6.10.22 Sample Time: 13:38
Well #: MW-3	AI CR
Well Diameter: <u>2"</u> (inches)	Height of Water Column: 76.53 (feet)
Depth to NAPL:(feet btoc) (Casing Volume: 12.25 (gal)
	Purge Volume: <u>36.8</u> (gal)
Total Depth of Well: <u>147.13</u> (feet)	Purge Method: Grab, viz 45" foly beiles
Note: One casing volume (SCH 40 PVC): 2.0" ID casing = 0.1	

1

Groundwater Parameters:

	Casing Volum e	рН	Temp	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
1140	Initial	6,99	21.4	2700	187.6	0.62	None
1221	1	7.01	20.5	3208	88.5	157	1(
1300	2	6.71	20.4	14494	203.9	0.61	ic
13138	3	6.97	20,5	15186	186.5	0.63	<i>v</i> ,
		and the second					

	Sample Description:	1 poly (unpreserved	Chloride),	Water Quality Suite
--	---------------------	---------------------	------------	---------------------

Physical Observations: Non two bio

Analytical Method(s): _____Chloride

T:\Admin\Field Forms\Au).5-1_GROUNDWATER MONITORING DATA SHEET_rev1.pdf

GROUNDWATER MONITO	DRING DATA SHEET
Project Name: Salty Dog	Sampler: V Morgan
Project #: DB19.1198.00	- Sample Date:
Project Manager: John Ayarbe	Sample Time: <u>1535</u>
Well #: MW-5	1 LiCe
Well Diameter: <u>2"</u> (inches)	Height of Water Column: 6/9 (feet)
Depth to NAPL:(feet btoc) Ca	asing Volume:(gal)
Depth to Water: 67.59 (feet btoc) Pu	urge Volume:(gal)
Total Depth of Well: 128.78 (feet)	Purge Method: Grab
Note: One casing volume (SCH 40 PVC): 2.0" ID casing = 0.16	gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 gal/ft

Groundwater Parameters:

	Casing Volume	рН	Temp	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
1413	Initial	7.94	21.2	194/	1.45.2	0.46	None
	1	6,98	20.5	1967	187.8	0,78	L
	2	7.07	204	2051	176.8	0.61	1/
1535	3	6.93	JO.J	191.7	189.7	0.82	1
					the starting the starting line		

Sample Description: <u>1 poly</u>

Physical Observations: ______Nor

Non - twid

Analytical Method(s): _____Chloride___

T:\Admin\Field Forms\Att 1.5-1_GROUNDWATER MONITORING DATA SHEET_rev1.pdf

GROUNDWATER MONITORING DATA SHEET

Project Name: <u>Salty Dog</u> Project #: <u>DB19.1198.00</u> Project Manager: John Ayarbe		Sampler: Sample Date: Sample Time:	6-9.22	
Well #: PMW-1			19	/
Well Diameter: <u>2</u> "	(inches)	Height of Water	Column: <u>[- [</u>	(feet)
Depth to NAPL:	_(feet btoc)	Casing Volume:	0.32	(gal)
Depth to Water: <u>75.97</u>	_(feet btoc)	Purge Volume:	.94	(gal)
Total Depth of Well: 77.73	(feet)	Purge Method:	Grab	
Note:				

One casing volume (SCH 40 PVC): 2.0" ID casing = 0.16 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 gal/ft

Groundwater Parameters:

	Casing Volume	рН	Temp (°F)	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
QD20	Initial	7.21	20.4	30,109	144.6	0.71	Shight
2024	1	7,36	19,5	30,481	126.2	0,68	Molecule
	2						
	3						
						the state of the s	

Sample Description: <u>1 poly</u>

	1/20m	J. thil	S. M.		 	
Physical Observations:	VO	punc	Joure	~		
Analytical Method(s):	Chloride					

T:\Admin\Field Forms\Att 1.5-1_GROUNDWATER MONITORING DATA SHEET_rev1.pdf

GROUNDWATER MONITORING DATA SHEET

Project Name: Sally Log Project #: NBA . 1198. 00 Project Manager: S. Ayustu	Sampler: V. A.y. Sample Date: G. 10-92 Sample Time: Jog 7
Well #: Rajch Well	
Well Diameter:(inches)	Height of Water Column:(feet)
Depth to NAPL:(feet btoc)	Casing Volume:(gal)
Depth to Water:(feet btoc)	Purge Volume:(gal)
Total Depth of Well:(feet)	Purge Method: <u>Spidor</u> Flow
Note: One casing volume (SCH 40 PVC): 2.0" ID casing = 0.1	∽ 6 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 gal/ft

Groundwater Parameters:

	Casing Volume	pН	Temp (°C)	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
1013	Initial	8.18	J5.e	650	116,0	1.39	Mre
102	1	1.77	72,7	639	145.9	0.67	u
	2		v				
	3			а *1			

e NW Corner of W. Sliget Sample Description: From foli 300' NW of Spizot - a is N' Spigot conversed in insulation - No access point observed. prive well Rhysical Observations: ~200 west of 1000 3/4" goden hose to channel purge water away ouse. Remined hose for scruple ster 15-min pe Nouro in Sorges up Analytical Method(s): fuge was 60 & directly From Spigot

GROUNDWATER MONITORING DATA SHEET									
Project Name: Salty Dog		Sampler:	Y. Mosgar						
Project #: DB19.1198.00		Sample Date	6-1	0.22					
Project Manager: John Ayarbe		Sample Time	1558						
Well #: Injection Brine									
Well Diameter:2"	(inches)	Height of Wate	r Column:	(feet)					
Depth to NAPL:	_(feet btoc)	Casing Volume:		(gal)					
Depth to Water:	_(feet btoc)	Purge Volume:	0 10	(gal)					
Total Depth of Well:	(feet)	Purge Method:	Grab C Script	port					
Note: One casing volume (SCH 40 PVC): 2.0'	" ID casing = 0.								

Groundwater Parameters:

Casing Volume	рН	Temp (97) °C	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
Initial	6.04	24-1	224,572	207.9	0.49	Kery
1		•				
2						
3						

Sample Description: 3 poly 2 THE M Daupin I um house C Sample fort in fund sked above broke well Deservations: - while water - very Sulty - Initially thought was fort for injection Barnphing. Wrong, This is Collecter C Physical Observations: _ while Water - Nor this Analytical Method(s): <u>Chloride, TDS, Spec Gravity, pH, and Na</u> Par Brine
	Dier -
Daniel	
Daniel	- Contract

Daniel B. Stephens & Associates, Inc.

GROUNDWATER MONIT	ORING DATA SHEET
Project Name: Salty Dog Project #: <u>DB19.1198.00</u> Project Manager: John Ayarbe	Sampler:/. <i>Morga</i> Sample Date:22 Sample Time:5D
Well #: Brine Injection Well Diameter:(inches)	Height of Water Column:(feet)
Depth to NAPL:(feet btoc) (Depth to Water:(feet btoc) {	Casing Volume: (gal) Purge Volume: Section (gal)
Total Depth of Well:(feet) Note: One casing volume (SCH 40 PVC): 2.0" ID casing = 0.1	Purge Method: Grab - Fill line

Groundwater Parameters:

	Casing Volume	рН	Temp (1859) ° C	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
1650	Initial	8.25	20.2	2085	163,0	391	None
100	1						
	2						
	3						

Fresh writer Collevel From Fill Sample Description: 3 poly tarks. tweed value brown 4)rench line

Tested SC in 2 Separte, Physical Observations: Non-tubid Clear contrinuis

Analytical Method(s): _____Sodium, Chloride, TDS, Spec Gravity, pH

T:\Admin\Field Forms\Att 1.5-1_GROUNDWATER MONITORING DATA SHEET_rev1.pdf

Received by OCD: 9/27/2022 4:47:04 PM	Page 74 of 109
	Tailgate Safety Meeting
os Daniel B. Stephens & Associates	s, Inc.
Project ID: Silty Locg Location: Hobbs, NM Project Manager: J. A yorbe Health & Safety Officer: Y. Morga	Day:
Check Topics Discussed	No. of Personnel Present:
Scheduled Activities:	· · · · · · · · · · · · · · · · · · ·
Chemical/Physical Hazards Contaminants of Concern Material Safety Data Sheets Overhead & Underground Utilities Extraordinary Site Conditions - Co Lifting/Slips/Trips/Falls Heat/Cold Stress (Inc. Sunburn) Other: <u>Jehn</u> Snekes First Aid	Vehicle/Heavy Equipment Drill Rig "KILL" Switches Operation & Inspection Preventive Maintenance Rotating Augers/Moving Parts Sanitation & Hygiene Drinking Water/Fluids Restrooms Personal Cleanliness
Personal Protective Equipment - Level D Hard Hats/Hearing Protection Steel-Toed Boots Glasses/Goggles/Shields Gloves Contingency: Level C Respirators & Tyvek/Saranex Emergency Procedures/Site Safety "Buddy System" Communication Facility-Specific Regulations Rally Point	Housekeeping Waste Containers Waste Materials Waste Water/Decon. Water Fire Prevention Locations of Extinguishers Smoking Hot Work Explosive & Flammable Liquids Other:
	lington Hury Dero 911
Safety Meeting Attendees:	
69.22 <u>Name</u> Signature 69.22 <u>York Margon</u> <u>Hole Mon</u> 6-10-22 York Marine <u>April Mar</u>	Name Signature

Daniel B. Stephens & Associates, Inc.

GROUNDWATER METER CALIBRATION SHEET

Project Name: Salty Dog	Sampler: V. Morgo
Project #:	Date: 6.9.22
Project Manager: J, Ayarbe	

<u>Hq</u>	<u>Temp (°C)</u>	Comments				
(4) (7) 7,04	33.5	No cul needed 6/10-705				
<u>SpCon (μs/cm)</u>	Temp (°C)	Comments				
1418	33.2	No Cal needed G/10 1416				
ORP (mv)	Temp (°C)	Comments				
205. (-> 220	32,3	G/10 219.1				
Dissolved O ₂	<u>Temp (°C)</u>	Comments				
(%)						
(mg/L) 0.36	32.3					
Pressure	<u>Temp (°C)</u>	Comments				
(mmHg) (()8	32.4					

KI RO Comments:

Released to Imaging: 10/14/2022 1:59:30 PM

- (ga-940, clear) but hezy (dur, save) 15 mph - (ga-940, clear) but hezy (dur, save) 15 mph - cg30, cleve carls bad and Jason 1030, hrive cns/ke (and Jason) 575-300-9353. Contact, 423'll ret - lous Rwid hug - lectry 2,3 gon to groud - wat brine lectry 2,3 gon to 55 Rwid reder = 510386.3 - 1055 Rwid Reder = 510386.3 - Akting - 2 Roble Onsite : - Construl Savue Are piccise place - Robe lest 2 Lines - perabets Ver try to) brive well near by - Kond Weul ine Sh 6-10-10F well - Joson- has been ver burg yet help warked ever de sin jeb 2 markes ago, sells ante Correl - FWS-2 well whok he surveyed. A la derend. 0 3 Station 1m Ceith Sprach Laberts JAN @ anne 1 Released to Imaging: 10/14/2022 1:59:30 PM Received by OCD: 9/27/2022 4:47:04 PM

- To- 133, 10-15ner loss March March March March March 103, 10-153, 10-153, 10-15ner clear the loss of Plage 67 of 1093 Very while - Salty: i doct sare - Hed Some controlon re: i doct sare locations - J. A. corread we should called albert Injection & brown huks where stan super " Fresh webt 4 - 1705 - Lewer Site 10 Port 1 į Met every weber to called in baller - 2000 - Fringh Sarph BBS-3 Abs.4 DBS-1R, DBS-2 (On) DBS-3 Abs.4 Peder braken Front Pipe - is ause of le.K. - Start Samples - all Wells Via kilo CC-2-3 the 2034 - collect MMU-1 after 2038 - Lowe Sile and of the way 3130 - Check in hole 1 - Ktuss. 2 Pumping - ho totalizar -1415 - Calibrate 452 Pro Released to Imaging: 10/14/2022 1:59:30 PM Received by OCD: 9,27/2022 4:47:04 PM 1205 Rw-J reference 5 4:11 D65-10,

Appendix C

Historical Data

•

Monitor Well DBS-1	Screen Interval (feet bgs) 56.0–76.0	Top of Casing Elevation ^a (feet msl) 3,817.09	Date Measured 4/08/2009 5/11/2011	Depth to Water (feet btoc) 62.38 64.70	Groundwater Elevation (feet msl) 3,754.71 3,752.39
			10/04/2011	Well de	estroyed
DBS-1R	58.0–78.0	3,817.00 ^b	4/30/2012	63.60	3,753.40
			9/10/2012	65.65	3,751.35
			6/23/2013	64.40	3,752.60
			1/09/2014	67.23	3,749.77
			4/07/2014	66.36	3,750.64
			3/20/2015	67.17	3,749.83
			7/01/2015	67.92	3,749.08
			9/29/2015	67.07	3,749.93
			12/16/2015	67.54	3,749.46
			3/22/2016	66.61	3,750.39
			6/08/2016	66.23	3,750.77
			9/13/2016	67.43	3,749.57
			12/01/2016	67.31	3,749.69
			6/20/2017	69.60	3,747.40
			12/19/2017	67.80	3,749.20
			6/18/2018	67.45	3,749.55
			11/07/2018	68.71	3,748.29
			6/03/2019	68.25	3,748.75
			12/17/2019	70.41	3,746.59
			6/23/2020	68.66	3,748.34
			11/21/2020	68.94	3,748.06
			6/02/2021	69.95	3,747.05
			11/28/2021	70.06	3,746.94
			6/9/2022	72.80	3,744.20

Table C-1.Historical Fluid Level MeasurementsPage 1 of 13

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.

bgs = Below ground surface

btoc = Below top of casing NA = Not available

msl = Above mean sea level

Monitor Well	Screen Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)
DBS-2	58.0–78.0	3,820.50	4/08/2009	65.45	3,755.05
			5/11/2011	66.80	3,753.70
			10/04/2011	65.87	3,754.63
			2/08/2012	65.96	3,754.54
			4/30/2012	66.26	3,754.24
			9/10/2012	67.45	3,753.05
			6/23/2013	67.03	3,753.47
			1/09/2014	69.08	3,751.42
			4/07/2014	68.67	3,751.83
			3/20/2015	69.32	3,751.18
			6/30/2015	69.29	3,751.21
			9/29/2015	69.41	3,751.09
			12/16/2015	69.71	3,750.79
			3/22/2016	69.13	3,751.37
			6/08/2016	68.91	3,751.59
			9/13/2016	69.76	3,750.74
			12/01/2016	69.73	3,750.77
			6/20/2017	71.33	3,749.17
			12/19/2017	70.42	3,750.08
			6/18/2018	70.25	3,750.25
			11/07/2018	71.07	3,749.43
			6/03/2019	70.94	3,749.56
			12/17/2019	72.43	3,748.07
			6/23/2020	71.54	3,748.96
			11/21/2020	71.57	3,748.93
			6/02/2021	72.43	3,748.07

Table C-1. Historical Fluid Level Measurements Page 2 of 13

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.

bgs = Below ground surface

btoc = Below top of casing msl = Above mean sea level NA = Not available

Monitor Well	Screen Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)
DBS-2 (cont.)	58.0–78.0	3,820.50	11/28/2021	72.81	3,747.69
			6/9/2022	74.89	3,745.61
DBS-3	56.0–76.72	3,816.66	4/08/2009	60.67	3,755.99
			5/11/2011	61.25	3,755.41
			10/04/2011	61.25	3,755.41
			2/08/2012	61.11	3,755.55
			4/30/2012	61.41	3,755.25
			9/10/2012	61.81	3,754.85
			6/23/2013	62.08	3,754.58
			1/09/2014	63.30	3,753.36
			4/07/2014	63.43	3,753.23
			3/20/2015	63.93	3,752.73
			6/30/2015	63.99	3,752.67
			9/29/2015	64.17	3,752.49
			12/16/2015	64.41	3,752.25
			3/22/2016	63.88	3,752.78
			6/08/2016	63.92	3,752.74
			9/13/2016	64.56	3,752.10
			12/01/2016	64.59	3,752.07
			6/20/2017	65.52	3,751.14
			12/19/2017	65.54	3,751.12
			6/18/2018	65.60	3,751.06
			11/07/2018	66.11	3,750.55
			6/03/2019	66.10	3,750.56
			12/17/2019	66.96	3,749.70
			6/23/2020	66.81	3,749.85
			11/21/2020	66.67	3,749.99

Table C-1.Historical Fluid Level MeasurementsPage 3 of 13

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.

bgs = Below ground surface b

msl = Above mean sea level

btoc = Below top of casing NA = Not available

	l age 4 01 15				
Monitor Well	Screen Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)
DBS-3 (cont.)	56.0–76.72	3,816.66	6/02/2021	67.50	3,749.16
			11/28/2021	68.12	3,748.54
			6/9/2022	69.57	3,747.09
DBS-4	56.0–76.0	3,820.37	4/08/2009	66.27	3,754.10
			5/11/2011	67.23	3,753.14
			10/04/2011	66.67	3,753.70
			2/08/2012	66.76	3,753.61
			4/30/2012	67.02	3,753.35
			9/10/2012	67.78	3,752.59
			6/23/2013	67.70	3,752.67
			1/09/2014	69.37	3,751.00
			4/07/2014	69.23	3,751.14
			3/20/2015	69.81	3,750.56
			6/30/2015	69.85	3,750.52
			9/29/2015	70.00	3,750.37
			12/16/2015	70.25	3,750.12
			3/22/2016	69.74	3,750.63
			6/08/2016	69.62	3,750.75
			9/13/2016	70.35	3,750.02
			12/01/2016	70.38	3,749.99
			6/20/2017	71.67	3,748.70
			12/19/2017	71.08	3,749.29
			6/18/2018	70.98	3,749.39
			11/07/2018	71.61	3,748.76
			6/03/2019	71.66	3,748.71
			12/17/2019	72.90	3,747.47
			6/23/2020	72.36	3,748.01

Table C-1.Historical Fluid Level MeasurementsPage 4 of 13

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.

bgs = Below ground surface

btoc = Below top of casing NA = Not available

msl = Above mean sea level

Monitor Well	Screen Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)
DBS-4 (cont.)	56.0–76.0	3,820.37	11/21/2020	72.33	3,748.04
			6/02/2021	73.05	3,747.32
			11/28/2021	73.57	3,746.80
			6/9/2022	75.30	3,745.07
DBS-5	56.9–76.9	3,820.66	4/08/2009	62.99	3,757.67
			5/11/2011	63.45	3,757.21
			10/04/2011	63.41	3,757.25
			2/08/2012	63.46	3,757.20
			4/30/2012	63.70	3,756.96
			9/10/2012	63.92	3,756.74
			6/23/2013	64.30	3,756.36
			1/09/2014	65.28	3,755.38
			4/07/2014	65.48	3,755.18
			3/20/2015	65.90	3,754.76
			7/01/2015	66.18	3,754.48
			9/29/2015	66.25	3,754.41
			12/16/2015	66.47	3,754.19
			3/22/2016	66.08	3,754.58
			6/08/2016	66.16	3,754.50
			9/13/2016	66.64	3,754.02
			12/01/2016	66.72	3,753.94
			6/20/2017	67.60	3,753.06
			12/19/2017	67.88	3,752.78
			6/18/2018	68.04	3,752.62
			11/07/2018	68.47	3,752.19
			6/03/2019	68.44	3,752.22
			12/17/2019	69.13	3,751.53

Table C-1.Historical Fluid Level MeasurementsPage 5 of 13

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.

bgs = Below ground surface b

msl = Above mean sea level

btoc = Below top of casing NA = Not available

1	age 0 01 15				
Monitor Well	Screen Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)
DBS-5 (cont.)	56.9–76.9	3,820.66	6/23/2020	66.26	3,754.40
			11/21/2020	69.08	3,751.58
			6/02/2021	69.88	3,750.78
			11/28/2021	70.60	3,750.06
			6/9/2022	71.99	3,748.67
DBS-6	56.7–76.7	3,812.65	4/07/2009	62.75	3,749.90
			5/11/2011	63.11	3,749.54
			10/04/2011	63.16	3,749.49
			2/08/2012	63.20	3,749.45
			4/30/2012	63.43	3,749.22
			9/10/2012	63.60	3,749.05
			6/23/2013	63.74	3,748.91
			1/09/2014	64.00	3,748.65
			4/07/2014	64.22	3,748.43
			3/19/2015	64.78	3,747.87
			7/01/2015	64.81	3,747.84
			9/29/2015	65.48	3,747.17
			12/16/2015	65.26	3,747.39
			3/22/2016	65.38	3,747.27
			6/08/2016	65.37	3,747.28
			9/13/2016	65.51	3,747.14
			12/01/2016	65.51	3,747.14
			6/20/2017	65.81	3,746.84
			12/19/2017	66.29	3,746.36
			6/18/2018	66.45	3,746.20
			11/07/2018	66.62	3,746.03
			6/03/2019	67.24	3,745.41

Table C-1.Historical Fluid Level MeasurementsPage 6 of 13

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.

bgs = Below ground surface

btoc = Below top of casing NA = Not available

msl = Above mean sea level

Monitor Well	Screen Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)
DBS-6 (cont.)	56.7–76.7	3,812.65	12/17/2019	67.95	3,744.70
			6/23/2020	68.29	3,744.36
			11/21/2020	68.38	3,743.27
			6/02/2021	68.72	3,743.93
			11/28/2021	69.27	3,743.38
			6/9/2022	69.79	3,742.86
DBS-7	55.1–75.1	3,810.21	4/07/2009	61.74	3,748.47
DBS-8	55.2–75.2	3,810.70	4/07/2009	61.20	3,749.50
			5/11/2011	61.67	3,749.03
			10/04/2011	61.71	3,748.99
			2/08/2012	61.77	3,748.93
			4/30/2012	62.00	3,748.70
			9/10/2012	62.15	3,748.55
			6/23/2013	62.28	3,748.42
			1/09/2014	62.47	3,748.23
			4/07/2014	62.67	3,748.03
			3/19/2015	63.19	3,747.51
			6/30/2015	63.25	3,747.45
			9/29/2015	63.82	3,746.88
			12/16/2015	63.58	3,747.12
			3/22/2016	63.76	3,746.94
			6/08/2016	63.72	3,746.98
			9/13/2016	63.83	3,746.87
			12/01/2016	63.79	3,746.91
			6/20/2017	64.09	3,746.61
			12/19/2017	64.53	3,746.17
			6/18/2018	64.70	3,746.00

Table C-1.Historical Fluid Level MeasurementsPage 7 of 13

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.

bgs = Below ground surface

msl = Above mean sea level

btoc = Below top of casing NA = Not available

Monitor Well Screen Interval (feet bgs) Top of Casing Elevation" (feet msl) Depth to Masured Groundwater (feet btoc) DBS-8 (cont.) 55.2-75.2 3,810.70 11/07/2018 64.82 3,745.88 6/03/2019 66.52 3,745.81 12/17/2019 66.12 3,744.58 6/02/2020 66.42 3,744.58 6/02/2021 66.91 3,743.79 11/21/2020 66.55 3,744.15 6/02/2021 66.91 3,743.79 11/28/2021 67.33 3,743.37 6/9/2022 67.84 3,742.86 DBS-9 48.0-68.0 3,806.26 4/08/2009 53.93 3,752.33 5/11/2011 54.39 3,751.87 10/04/2011 54.59 3,751.73 4/30/2012 54.53 3,751.73 4/30/2012 54.68 3,745.18 9/10/2012 54.68 3,745.19 6/23/2013 55.04 3,751.73 4/30/2012 54.51 3,749.75 6/23/2013 55.05 3,749.74 7/01		uge 0 01 10				
6/03/2019 65.52 3,745.18 12/17/2019 66.12 3,744.58 6/23/2020 66.42 3,744.15 6/02/2021 66.91 3,743.79 11/21/2020 66.55 3,744.15 6/02/2021 66.91 3,743.79 11/28/2021 67.33 3,743.37 6/9/2022 67.84 3,742.86 DBS-9 48.0-68.0 3,806.26 4/08/2009 53.93 3,752.33 5/11/2011 54.39 3,751.87 10/04/2011 54.59 3,751.73 4/30/2012 54.68 3,751.58 9/10/2012 54.77 3,751.49 6/23/2013 55.04 3,751.22 1/09/2014 55.27 3,750.19 4/07/2014 55.56 3,750.12 9/29/2015 56.49 3,749.74 7/01/2015 56.14 3,750.12 9/29/2015 56.49 3,749.74 12/16/2015 56.52 3,749.74 3/22/2016 56.51 3,749.75 6/08/2016 56.64 3,749.76 <td></td> <td>Interval</td> <td>Casing Elevation ^a</td> <td></td> <td>Water</td> <td>Elevation</td>		Interval	Casing Elevation ^a		Water	Elevation
12/17/2019 66.12 3,744.58 6/23/2020 66.42 3,744.28 11/21/2020 66.55 3,744.15 6/02/2021 66.91 3,743.79 11/28/2021 67.33 3,743.37 6/9/2022 67.84 3,742.86 DBS-9 48.0-68.0 3,806.26 4/08/2009 53.93 3,752.33 5/11/2011 54.39 3,751.87 10/04/2011 54.59 3,751.67 2/08/2012 54.53 3,751.58 9/10/2012 54.53 3,751.58 9/10/2012 54.68 3,751.58 9/10/2012 54.54 3,751.22 1/09/2014 55.27 3,750.31 7/01/2015 55.64 3,750.12 9/29/2015 56.49 3,749.74 3/22/2016 56.51 3,749.75 12/16/2015 56.52 3,749.74 3/22/2016 56.51 3,749.75 12/01/2016 56.81 3,749.75 6/08/2016 56.64 3,749.75 12/01/2016 56.81 3,749.35 6/2	DBS-8 (cont.)	55.2–75.2	3,810.70	11/07/2018	64.82	3,745.88
6/23/2020 66.42 3,744.28 11/21/2020 66.55 3,744.15 6/02/2021 66.91 3,743.79 11/28/2021 67.33 3,743.37 6/9/2022 67.84 3,742.86 DBS-9 48.0-68.0 3,806.26 4/08/2009 53.93 3,752.33 5/11/2011 54.39 3,751.87 10/04/2011 54.59 3,751.67 2/08/2012 54.53 3,751.73 4/30/2012 54.68 3,751.58 9/10/2012 54.77 3,751.49 6/23/2013 55.04 3,751.22 1/09/2014 55.27 3,750.12 9/10/2015 56.52 3,749.74 3/19/2015 56.52 3,749.74 3/19/2015 56.51 3,749.75 9/29/2015 56.64 3,749.75 9/29/2015 56.51 3,749.75 6/08/2016 56.64 3,749.75 6/08/2016 56.64 3,749.75 6/08/2016 56.81				6/03/2019	65.52	3,745.18
11/21/2020 66.55 3,744.15 6/02/2021 66.91 3,743.37 11/28/2021 67.33 3,743.37 6/9/2022 67.84 3,742.86 DBS-9 48.0-68.0 3,806.26 4/08/2009 53.93 3,752.33 5/11/2011 54.39 3,751.87 10/04/2011 54.59 3,751.67 2/08/2012 54.53 3,751.73 4/30/2012 54.68 3,751.58 9/10/2012 54.77 3,751.49 6/23/2013 55.04 3,751.22 1/09/2014 55.27 3,750.70 3/19/2015 55.95 3,750.12 9/29/2015 56.14 3,750.12 9/29/2015 56.49 3,749.77 12/16/2015 56.52 3,749.74 3/22/2016 56.51 3,749.75 6/08/2016 56.64 3,749.75 6/08/2016 56.64 3,749.38 6/20/2017 57.28 3,749.38 3/21/2016 56.88 3,749.38				12/17/2019	66.12	3,744.58
6/02/2021 66.91 3,743.79 11/28/2021 67.33 3,743.37 6/9/2022 67.84 3,742.86 DBS-9 48.0-68.0 3,806.26 4/08/2009 53.93 3,752.33 5/11/2011 54.39 3,751.87 10/04/2011 54.59 3,751.67 2/08/2012 54.53 3,751.73 4/30/2012 54.68 3,751.28 9/10/2012 54.68 3,751.22 1/09/2014 55.04 3,751.22 1/09/2014 55.27 3,750.99 4/07/2014 55.56 3,750.70 3/19/2015 55.95 3,750.31 7/01/2015 56.49 3,749.77 12/16/2015 56.52 3,749.74 3/22/2016 56.51 3,749.75 6/08/2016 56.64 3,749.45 3/22/2016 56.81 3,749.75 6/08/2016 56.64 3,749.45 3/22/2016 56.81 3,749.45 12/01/2016 56.88 3,749.38 6/20/2017 57.28 3,748.98				6/23/2020	66.42	3,744.28
11/28/2021 67.33 3,743.37 6/9/2022 67.84 3,742.86 DBS-9 48.0-68.0 3,806.26 4/08/2009 53.93 3,752.33 5/11/2011 54.39 3,751.87 10/04/2011 54.59 3,751.67 2/08/2012 54.53 3,751.73 4/30/2012 54.68 3,751.58 9/10/2012 54.77 3,751.49 6/23/2013 55.04 3,751.22 1/09/2014 55.27 3,750.70 3/19/2015 55.95 3,750.31 7/01/2015 56.14 3,750.12 9/29/2015 56.49 3,749.77 12/16/2015 56.52 3,749.74 3/22/2016 56.51 3,749.75 6/08/2016 56.64 3,749.45 12/01/2016 56.88 3,749.38 6/20/2017 57.28 3,748.98				11/21/2020	66.55	3,744.15
DBS-9 48.0-68.0 3,806.26 4/08/2009 53.93 3,752.33 5/11/2011 54.39 3,751.87 10/04/2011 54.39 3,751.87 10/04/2011 54.59 3,751.67 2/08/2012 54.53 3,751.73 4/30/2012 54.68 3,751.58 9/10/2012 54.68 3,751.22 1/09/2014 55.04 3,751.22 1/09/2014 55.27 3,750.99 4/07/2014 55.56 3,750.12 9/29/2015 56.49 3,742.86 3/19/2015 55.95 3,751.22 1/09/2014 55.25 3,750.31 7/01/2015 56.14 3,750.12 9/29/2015 56.49 3,749.74 3/22/2016 56.51 3,749.74 3/22/2016 56.51 3,749.75 6/08/2016 56.64 3,749.45 3/20/16 56.81 3,749.45 12/01/2016 56.81 3,749.45 3/20/2017 57.28 3,749.38				6/02/2021	66.91	3,743.79
DBS-9 48.0-68.0 3,806.26 4/08/2009 53.93 3,752.33 5/11/2011 54.39 3,751.87 10/04/2011 54.59 3,751.67 2/08/2012 54.53 3,751.73 4/30/2012 54.68 3,751.28 9/10/2012 54.77 3,751.49 6/23/2013 55.04 3,751.22 1/09/2014 55.27 3,750.31 7/01/2015 56.14 3,750.12 9/29/2015 56.49 3,749.77 12/16/2015 56.52 3,749.74 3/22/2016 56.51 3,749.75 6/08/2016 56.64 3,749.45 12/01/2016 56.88 3,749.38 6/20/2017 57.28 3,749.38				11/28/2021	67.33	3,743.37
5/11/201154.393,751.8710/04/201154.593,751.672/08/201254.533,751.734/30/201254.683,751.589/10/201254.773,751.496/23/201355.043,751.221/09/201455.273,750.994/07/201455.563,750.703/19/201555.953,750.317/01/201556.143,750.129/29/201556.493,749.7712/16/201556.523,749.743/22/201656.513,749.629/13/201656.813,749.386/20/201757.283,748.98				6/9/2022	67.84	3,742.86
10/04/201154.593,751.672/08/201254.533,751.734/30/201254.683,751.589/10/201254.773,751.496/23/201355.043,751.221/09/201455.273,750.994/07/201455.563,750.703/19/201555.953,750.317/01/201556.143,750.129/29/201556.493,749.7712/16/201556.523,749.743/22/201656.513,749.756/08/201656.643,749.4512/01/201656.883,749.386/20/201757.283,748.98	DBS-9	48.0–68.0	3,806.26	4/08/2009	53.93	3,752.33
2/08/201254.533,751.734/30/201254.683,751.589/10/201254.773,751.496/23/201355.043,751.221/09/201455.273,750.994/07/201455.563,750.703/19/201555.953,750.317/01/201556.143,750.129/29/201556.493,749.7712/16/201556.523,749.743/22/201656.513,749.756/08/201656.643,749.629/13/201656.883,749.386/20/201757.283,748.98				5/11/2011	54.39	3,751.87
4/30/201254.683,751.589/10/201254.773,751.496/23/201355.043,751.221/09/201455.273,750.994/07/201455.563,750.703/19/201555.953,750.317/01/201556.143,750.129/29/201556.493,749.7712/16/201556.523,749.743/22/201656.513,749.756/08/201656.643,749.629/13/201656.813,749.4512/01/201656.883,749.386/20/201757.283,748.98				10/04/2011	54.59	3,751.67
9/10/201254.773,751.496/23/201355.043,751.221/09/201455.273,750.994/07/201455.563,750.703/19/201555.953,750.317/01/201556.143,750.129/29/201556.493,749.7712/16/201556.523,749.743/22/201656.513,749.756/08/201656.643,749.629/13/201656.813,749.4512/01/201656.883,749.386/20/201757.283,748.98				2/08/2012	54.53	3,751.73
6/23/201355.043,751.221/09/201455.273,750.994/07/201455.563,750.703/19/201555.953,750.317/01/201556.143,750.129/29/201556.493,749.7712/16/201556.523,749.743/22/201656.513,749.756/08/201656.643,749.4512/01/201656.883,749.386/20/201757.283,748.98				4/30/2012	54.68	3,751.58
1/09/201455.273,750.994/07/201455.563,750.703/19/201555.953,750.317/01/201556.143,750.129/29/201556.493,749.7712/16/201556.523,749.743/22/201656.513,749.756/08/201656.643,749.629/13/201656.813,749.4512/01/201656.883,749.386/20/201757.283,748.98				9/10/2012	54.77	3,751.49
4/07/201455.563,750.703/19/201555.953,750.317/01/201556.143,750.129/29/201556.493,749.7712/16/201556.523,749.743/22/201656.513,749.756/08/201656.643,749.629/13/201656.813,749.4512/01/201656.883,749.386/20/201757.283,748.98				6/23/2013	55.04	3,751.22
3/19/2015 55.95 3,750.31 7/01/2015 56.14 3,750.12 9/29/2015 56.49 3,749.77 12/16/2015 56.52 3,749.74 3/22/2016 56.51 3,749.75 6/08/2016 56.64 3,749.62 9/13/2016 56.81 3,749.45 12/01/2016 56.88 3,749.38 6/20/2017 57.28 3,748.98				1/09/2014	55.27	3,750.99
7/01/201556.143,750.129/29/201556.493,749.7712/16/201556.523,749.743/22/201656.513,749.756/08/201656.643,749.629/13/201656.813,749.4512/01/201656.883,749.386/20/201757.283,748.98				4/07/2014	55.56	3,750.70
9/29/201556.493,749.7712/16/201556.523,749.743/22/201656.513,749.756/08/201656.643,749.629/13/201656.813,749.4512/01/201656.883,749.386/20/201757.283,748.98				3/19/2015	55.95	3,750.31
12/16/201556.523,749.743/22/201656.513,749.756/08/201656.643,749.629/13/201656.813,749.4512/01/201656.883,749.386/20/201757.283,748.98				7/01/2015	56.14	3,750.12
3/22/2016 56.51 3,749.75 6/08/2016 56.64 3,749.62 9/13/2016 56.81 3,749.45 12/01/2016 56.88 3,749.38 6/20/2017 57.28 3,748.98				9/29/2015	56.49	3,749.77
6/08/2016 56.64 3,749.62 9/13/2016 56.81 3,749.45 12/01/2016 56.88 3,749.38 6/20/2017 57.28 3,748.98				12/16/2015	56.52	3,749.74
9/13/201656.813,749.4512/01/201656.883,749.386/20/201757.283,748.98				3/22/2016	56.51	3,749.75
12/01/201656.883,749.386/20/201757.283,748.98				6/08/2016	56.64	3,749.62
6/20/2017 57.28 3,748.98				9/13/2016	56.81	3,749.45
				12/01/2016	56.88	3,749.38
12/19/2017 57.67 3,748.59				6/20/2017	57.28	3,748.98
				12/19/2017	57.67	3,748.59

Table C-1.Historical Fluid Level MeasurementsPage 8 of 13

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.

bgs = Below ground surface

btoc = Below top of casing NA = Not available

msl = Above mean sea level

Monitor Well	Screen Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)
DBS-9 (cont.)	48.0–68.0	3,806.26	6/18/2018	57.98	3,748.28
			11/07/2018	58.22	3,748.04
			6/03/2019	58.53	3,747.73
			12/17/2019	59.25	3,747.01
			6/23/2020	59.55	3,746.71
			11/21/2020	59.64	3,746.62
			6/02/2021	59.95	3,746.31
			11/28/2021	60.48	3,745.78
			6/9/2022	60.95	3,745.31
DBS-10	57.2–77.2	3,807.48	6/18/2018	64.46	3,743.02
			11/07/2018	64.66	3,742.82
			6/03/2019	65.11	3,742.37
			12/17/2019	65.80	3,741.68
			6/23/2020	66.03	3,807.48
			11/21/2020	66.23	3,741.25
			6/02/2021	66.52	3,740.96
			11/28/2021	67.03	3,740.45
			6/9/2022	67.28	3,740.20
NW-1s	52.95-72.95	3,817.33	4/08/2009	62.35	3,754.98
NW-1m	99.31–119.31	3,817.35	4/08/2009	62.25	3,755.10
NW-1d	149.45–169.45	3,817.35	4/08/2009	62.04	3,755.31
NW-2s	53.35–73.35	3,812.50	4/08/2009	63.08	3,749.42
NW-2m	93.72–113.72	3,812.45	4/08/2009	63.27	3,749.18
NW-2d	126.87–146.87	3,812.46	4/08/2009	66.41	3,746.05
PMW-1	63–78	3,821.17	6/23/2008	67.51	3,753.66
			4/08/2009	65.97	3,755.20
			5/11/2011	68.70	3,752.47

Table C-1.Historical Fluid Level MeasurementsPage 9 of 13

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.

bgs = Below ground surface

btoc = Below top of casing

msl = Above mean sea level

NA = Not available

					1
Monitor Well	Screen Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)
PMW-1 (cont.)	63–78	3,821.17	10/04/2011	66.95	3,754.22
			2/08/2012	66.69	3,754.48
			4/30/2012	67.27	3,753.90
			9/10/2012	69.77	3,751.40
			6/23/2013	68.40	3,752.77
			1/09/2014	71.24	3,749.93
			4/07/2014	69.97	3,751.20
			3/20/2015	70.78	3,750.39
			7/01/2015	71.41	3,749.76
			9/29/2015	70.76	3,750.41
			12/16/2015	71.03	3,750.14
			3/22/2016	70.30	3,750.87
			6/08/2016	69.65	3,751.52
			9/13/2016	71.08	3,750.09
			12/01/2016	70.97	3,750.20
			6/20/2017	73.06	3,748.11
			12/19/2017	71.19	3,749.98
			6/18/2018	70.97	3,750.20
			11/07/2018	72.52	3,748.65
			6/03/2019	71.76	3,749.41
			12/17/2019	76.25	3,744.92
			6/23/2020	72.03	3,749.14
			11/21/2020	72.19	3,748.98
			6/02/2021	73.10	3,748.07
			11/28/2021	73.49	3,747.68
			6/9/2022	75.97	3,745.20
MW-1	120–140	NA	6/23/2008	59.90	NA

Table C-1.Historical Fluid Level MeasurementsPage 10 of 13

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.

bgs = Below ground surface

msl = Above mean sea level

btoc = Below top of casing NA = Not available

oove mean sea level

Monitor Well	Screen Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)
MW-2	127–147	3,812.68	6/23/2008	61.42	3,751.26
			4/07/2009	61.65	3,751.03
MW-3	NA	3,812.05	6/23/2008	62.06	3,749.99
			4/07/2009	62.02	3,750.03
			5/11/2011	62.91	3,749.14
			10/04/2011	62.91	3,749.14
			2/08/2012	62.95	3,749.10
			4/30/2012	63.39	3,748.66
			9/10/2012	63.50	3,748.55
			6/23/2013	63.36	3,748.69
			1/09/2014	63.55	3,748.50
			4/07/2014	63.88	3,748.17
			3/19/2015	64.27	3,747.78
		7/01/2015	64.34	3,747.71	
			9/29/2015	67.94	3,744.11
			12/16/2015	64.75	3,747.30
			3/22/2016	64.84	3,747.21
			6/08/2016	64.89	3,747.16
			9/13/2016	66.33	3,745.72
			12/01/2016	66.66	3,745.39
			6/20/2017	65.56	3,746.49
			12/19/2017	65.70	3,746.35
			6/18/2018	66.52	3,745.53
			11/07/2018	66.09	3,745.96
			6/03/2019	68.18	3,743.87
			12/17/2019	67.38	3,744.67
			6/23/2020	69.16	3,742.89

Table C-1.Historical Fluid Level MeasurementsPage 11 of 13

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.

bgs = Below ground surface

msl = Above mean sea level

btoc = Below top of casing NA = Not available

September 21, 2022

DB19.1198 | TC-1_GW Elvtn.docx

	U				
Monitor Well MW-3 (cont.)	Screen Interval (feet bgs) NA	Top of Casing Elevation ^a (feet msl) 3,812.05	Date Measured 11/21/2020	Depth to Water (feet btoc) 67.73	Groundwater Elevation (feet msl) 3,744.32
			6/02/2021 11/28/2021 6/9/2022	69.83 68.62 70.60	3,742.22 3,743.43 3,741.45
MW-4	111–131	3,811.33	6/23/2008 4/07/2009	62.12 62.51	3,749.21 3,748.82
MW-5	112–132	3,808.96	6/23/2008 4/07/2009 5/11/2011	60.60 60.79 61.17	3,748.36 3,748.17 3,747.79
			10/04/2011 2/08/2012	61.72 61.23	3,747.79 3,747.24 3,747.73
			4/30/2012 9/10/2012	61.50 61.65	3,747.46 3,747.31
			6/23/2013 1/09/2014 4/07/2014	61.75 61.90 62.18	3,747.21 3,747.06 3,746.78
			3/19/2014 6/30/2015	62.96 62.71	3,746.00 3,746.25
			9/29/2015 12/16/2015	63.92 63.02	3,745.04 3,745.94
			3/22/2016 6/08/2016	63.14 63.47	3,745.82 3,745.49
			9/13/2016 12/01/2016	63.66 63.70	3,745.30 3,745.26
			6/21/2017 12/19/2017 6/18/2018	63.62 65.02 64.32	3,745.34 3,743.94 3,744.64

Table C-1.Historical Fluid Level MeasurementsPage 12 of 13

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.

bgs = Below ground surface

msl = Above mean sea level

btoc = Below top of casing NA = Not available

Monitor Well	Screen Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)
MW-5 (cont.)	112–132	3,808.96	11/07/2018	64.34	3,744.62
			06/03/2019	65.30	3,743.66
			12/17/2019	65.57	3,743.39
			6/23/2020	66.26	3,742.70
			11/21/2020	66.00	3,742.96
			6/02/2021	66.70	3,742.26
			11/28/2021	66.85	3,742.11
			6/9/2022	67.59	3,741.37
MW-6	NA	3,810.17	6/23/2008	62.17	3,748.00
			4/07/2009	62.41	3,747.76

Table C-1.Historical Fluid Level MeasurementsPage 13 of 13

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.

bgs = Below ground surface msl = Above mean sea level btoc = Below top of casing NA = Not available

Table C-2.	Historical Chloride Groundwater Analytical Data
	Page 1 of 14

		Chloride Concentration
Monitor Well	Date	(mg/L) ^a
NI	MWQCC Standard	250
DBS-1	4/08/2009	320
	5/12/2011	940
	10/04/2011	Well destroyed
DBS-1R	5/01/2012	3,000
	9/11/2012	3,200
	6/25/2013	3,300
	1/10/2014	1,000
	4/08/2014	1,700
	3/20/2015	1,200
	7/01/2015	860
	9/30/2015	670
	12/17/2015	760
	3/23/2016	560
	6/09/2016	570
	09/14/2016	360
	12/01/2016	360
	6/20/2017	320
	12/20/2017	190
	6/19/2018	190
	11/08/2018	180
	6/03/2019	190
	12/18/2019	210
	6/23/2020	220
	11/21/2020	530
	6/02/2021	2,200
	11/28/2021	2,100
	6/9/2022	940

Bold indicates that value exceeds the applicable standard.

^a All samples analyzed using EPA method 300.0, unless otherwise noted.

^b Samples analyzed using Standard Method 4500-Cl B.

Page 2		Gibulluwater All	alytical
		Chloride Concentration	
Monitor Well	Date	(mg/L) ^a	
N	MWQCC Standard	250	
DBS-2	4/08/2009	14	
	5/12/2011	25	

10/05/2011

2/09/2012

5/01/2012 9/11/2012

6/25/2013 1/10/2014

4/08/2014 3/20/2015

6/30/2015

9/30/2015

Historical Chloride Groundwater Analytical Data Table C-2

18

22 24

44 36

45 22

29

28

40

	12/17/2015	35
	3/23/2016	46
	6/09/2016	41
	9/14/2016	41
	12/02/2016	53
	6/20/2017	59
	12/20/2017	37
	6/18/2018	47
	11/08/2018	47
	6/03/2019	42
	12/17/2019	68
	6/24/2020	66
	11/21/2020	81
	6/02/2021	85

Bold indicates that value exceeds the applicable standard.

^a All samples analyzed using EPA method 300.0, unless otherwise noted.

^b Samples analyzed using Standard Method 4500-Cl B.

Table C-2.	Historical Chloride Groundwater Analytical Data
	Page 3 of 14

		Chloride Concentration
Monitor Well	Date	(mg/L) ^a
N/	MWQCC Standard	250
DBS-2 (cont.)	11/28/2021	100
	6/9/2022	NS
DBS-3	4/08/2009	36
	5/12/2011	35
	10/05/2011	34
	2/09/2012	34
	5/01/2012	33
	9/11/2012	34
	6/24/2013	32
	1/10/2014	34
	4/08/2014	32
	3/20/2015	35
	6/30/2015	35
	9/30/2015	34
	12/17/2015	34
	3/23/2016	36
	6/09/2016	35
	9/14/2016	37
	12/02/2016	37
	6/20/2017	39
	12/20/2017	42
	6/18/2018	47
	11/08/2018	46
	6/03/2019	46
	12/17/2019	48
	6/24/2020	50
	11/21/2020	49

Bold indicates that value exceeds the applicable standard.

^a All samples analyzed using EPA method 300.0, unless otherwise noted.

^b Samples analyzed using Standard Method 4500-Cl B.

mg/L = Milligrams per liter NS = Not sampled

Released to Imaging: 10/14/2022 1:59:30 PM

Monitor Well	Date	Chloride Concentration (mg/L) ^a
	IMWQCC Standard	250
DBS-3 (cont.)	6/03/2021	52
	11/28/2021	53
	6/9/2022	57
DBS-4	4/08/2009	38
	5/12/2011	33
	10/05/2011	32
	2/09/2012	32
	5/01/2012	31
	9/11/2012	32
	6/25/2013	31
	1/10/2014	32
	4/08/2014	30
	3/20/2015	33
	6/30/2015	31
	9/30/2015	33
	12/17/2015	35
	3/23/2016	38
	6/09/2016	35
	9/14/2016	37
	12/02/2016	41
	6/20/2017	35
	12/20/2017	32
	6/19/2018	39
	11/08/2018	35
	6/03/2019	30
	12/17/2019	35
	6/23/2020	35

Table C-2.Historical Chloride Groundwater Analytical Data
Page 4 of 14

Bold indicates that value exceeds the applicable standard.

^a All samples analyzed using EPA method 300.0, unless otherwise noted.

^b Samples analyzed using Standard Method 4500-Cl B.

Monitor Well	Date	Chloride Concentration (mg/L) ^a
^	IMWQCC Standard	250
DBS-4 (cont.)	11/21/2020	37
	6/03/2021	39
	11/28/2021	40
	6/9/2022	44
DBS-5	4/08/2009	65
	5/12/2011	140
	10/05/2011	140
	2/09/2012	140
	4/30/2012	150
	9/11/2012	160
	6/24/2013	160
	1/10/2014	180
	4/08/2014	160
	3/20/2015	140
	7/01/2015	140
	9/30/2015	150
	12/17/2015	160
	3/23/2016	150
	6/09/2016	150
	9/14/2016	170
	12/02/2016	170
	6/20/2017	170
	12/20/2017	170
	6/18/2018	180
	11/08/2018	170
	6/03/2019	280
	12/18/2019	160

Table C-2.Historical Chloride Groundwater Analytical DataPage 5 of 14

Bold indicates that value exceeds the applicable standard.

^a All samples analyzed using EPA method 300.0, unless otherwise noted.

^b Samples analyzed using Standard Method 4500-Cl B.

Monitor Well	Date	Chloride Concentration (mg/L) ^a
	IMWQCC Standard	250
DBS-5 (cont.)	6/24/2020	190
	11/21/2020	190
	6/03/2021	170
	11/28/2021	200
	6/9/2022	200
DBS-6	4/07/2009	380
	5/12/2011	410
	10/05/2011	400
	2/09/2012	380
	4/30/2012	400
	9/11/2012	390
	6/24/2013	340
	1/10/2014	390
	4/07/2014	400
	3/19/2015	370
	7/01/2015	360
	9/30/2015	370
	12/17/2015	380
	3/23/2016	310
	6/09/2016	300
	9/14/2016	290
	12/02/2016	300
	6/21/2017	240
	12/19/2017	200
	6/19/2018	210
	11/08/2018	190
	6/03/2019	180

Table C-2.Historical Chloride Groundwater Analytical Data
Page 6 of 14

Bold indicates that value exceeds the applicable standard.

^a All samples analyzed using EPA method 300.0, unless otherwise noted.

^b Samples analyzed using Standard Method 4500-Cl B.

Monitor Well	Date	Chloride Concentration (mg/L) ^a
N	MWQCC Standard	250
DBS-6 (cont.)	12/17/2019	220
	6/24/2020	230
	11/21/2020	230
	6/03/2021	250
	11/28/2021	270
	6/9/2022	290
DBS-7	4/07/2008	570
DBS-8	4/07/2009	58
	5/12/2011	36
	10/05/2011	140
	2/09/2012	41
	4/30/2012	41
	9/10/2012	42
	6/24/2013	45
	1/09/2014	38
	4/07/2014	36
	3/19/2015	36
	7/01/2015	34
	9/30/2015	35
	12/17/2015	33
	3/23/2016	35
	6/09/2016	34
	9/14/2016	34
	12/02/2016	33
	6/21/2017	33
	12/19/2017	28
	6/19/2018	33

Table C-2.Historical Chloride Groundwater Analytical DataPage 7 of 14

Bold indicates that value exceeds the applicable standard.

^a All samples analyzed using EPA method 300.0, unless otherwise noted.

^b Samples analyzed using Standard Method 4500-Cl B.

Page 8		
Monitor Well	Date	Chloride Concentration (mg/L) ^a
NI	MWQCC Standard	250
DBS-8 (cont.)	11/08/2018	30
	6/03/2019	35
	12/17/2019	30
	6/24/2020	34

Table C-2. Historical Chloride Groundwater Analytical Data

1WQCC Standard 11/08/2018	250
11/08/2018	22
	30
6/03/2019	35
12/17/2019	30
6/24/2020	34
11/21/2020	34
6/03/2021	35
11/28/2021	35
6/9/2022	37
4/08/2009	210
5/12/2011	600
10/05/2011	440
2/09/2012	290
4/30/2012	330
9/11/2012	320
6/24/2013	200
1/10/2014	170
4/07/2014	220
3/19/2015	260
7/01/2015	210
9/30/2015	260
12/17/2015	230
3/23/2016	200
6/09/2016	190
9/14/2016	190
12/02/2016	180
6/21/2017	200
12/20/2017	230
	12/17/2019 6/24/2020 11/21/2020 6/03/2021 11/28/2021 6/9/2022 4/08/2009 5/12/2011 10/05/2011 2/09/2012 4/30/2012 9/11/2012 6/24/2013 1/10/2014 4/07/2014 3/19/2015 7/01/2015 9/30/2015 12/17/2015 3/23/2016 6/09/2016 9/14/2016 12/02/2016

Bold indicates that value exceeds the applicable standard.

^a All samples analyzed using EPA method 300.0, unless otherwise noted.

^b Samples analyzed using Standard Method 4500-Cl B.

Monitor Well Date Chloride Concentration (mg/L) ^a DBS-9 (cont.) 6/19/2018 260 6/03/2019 160 12/17/2019 220 6/03/2019 160 12/17/2019 220 6/03/2021 280 6/03/2021 290 11/21/2020 280 6/03/2021 290 11/28/2021 300 6/9/2022 350 DBS-10 6/19/2018 690 11/08/2018 590 6/03/2019 510 12/17/2019 540 6/03/2019 510 11/28/2021 560 11/21/2020 620 6/03/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 NW-1s 4/08/2009 38 NW	iuge	J U I I	
NMWQCC Standard 250 DBS-9 (cont.) 6/19/2018 260 6/03/2019 160 12/17/2019 220 6/24/2020 360 11/21/2020 280 6/03/2021 290 11/28/2021 300 6/9/2022 350 DBS-10 6/19/2018 690 11/08/2018 590 6/03/2019 510 12/17/2019 540 6/03/2019 510 12/17/2019 540 6/03/2021 560 11/21/2020 620 6/03/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 NW-1s 4/08/2009 57 NW-1a 4/08/2009 38 NW-2a 4/08/2009 570 NW-2d<	Monitor Well	Date	Concentration
6/03/2019 160 12/17/2019 220 6/24/2020 360 11/21/2020 280 6/03/2021 290 11/28/2021 300 6/9/2022 350 DBS-10 6/19/2018 690 11/08/2018 590 6/03/2021 560 11/08/2018 590 6/03/2019 510 12/17/2019 540 6/03/2021 560 11/21/2020 620 6/03/2021 560 11/21/2020 620 6/03/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 NW-1s 4/08/2009 630 NW-1m 4/08/2009 57 NW-1d 4/08/2009 38 NW-2s 4/08/2009 570 NW-2d 4/08/2009 570 <t< td=""><td>٨</td><td>IMWQCC Standard</td><td></td></t<>	٨	IMWQCC Standard	
12/17/2019 220 6/24/2020 360 11/21/2020 280 6/03/2021 290 11/28/2021 300 6/9/2022 350 DBS-10 6/19/2018 690 11/08/2018 590 6/03/2019 510 12/17/2019 540 6/24/2020 660 11/08/2018 590 6/03/2019 510 12/17/2019 540 6/24/2020 660 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 NW-1s 4/08/2009 630 NW-1m 4/08/2009 38 NW-2s 4/08/2009 38 NW-2s 4/08/2009 570 NW-2d 4/08/2009 570 NW-2d 4/08/2009 9,500 ^b	DBS-9 (cont.)	6/19/2018	260
6/24/2020 360 11/21/2020 280 6/03/2021 290 11/28/2021 300 6/9/2022 350 DBS-10 6/19/2018 690 11/08/2018 590 6/03/2019 510 12/17/2019 540 6/24/2020 560 11/21/2020 620 6/03/2021 560 11/21/2020 620 6/03/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 6/9/2022 530 NW-1s 4/08/2009 57 NW-1d 4/08/2009 57 NW-1d 4/08/2009 38 NW-2s 4/08/2009 570 NW-2c 4/08/2009 570 NW-2d 4/08/2009 570 NW-2d 4/08/2009 570 NW-2d 4/08/2009 570 NW-2d 4/08/2009 570		6/03/2019	160
11/21/2020 280 6/03/2021 290 11/28/2021 300 6/9/2022 350 DBS-10 6/19/2018 690 11/08/2018 590 6/03/2019 510 12/17/2019 540 6/24/2020 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 NW-1s 4/08/2009 57 NW-1d 4/08/2009 57 NW-2s 4/08/2009 570 NW-2cm 4/08/2009 570 NW-2d 4/08/2009 570 NW-2d 4/08/2009 570 NW-2d 4/08/2009		12/17/2019	220
6/03/2021 290 11/28/2021 300 6/9/2022 350 DBS-10 6/19/2018 690 11/08/2018 590 6/03/2019 510 12/17/2019 540 6/24/2020 560 11/21/2020 6220 6/03/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 NW-1s 4/08/2009 57 NW-1m 4/08/2009 38 NW-2s 4/08/2009 570 NW-2m 4/08/2009 570 NW-2d 4/08/2009 4,700 PMW-1 2/27/2008 9,500 ^b 5/30/2008 8,600 ^b 6/23/2008 1		6/24/2020	360
11/28/2021 300 6/9/2022 350 DBS-10 6/19/2018 690 11/08/2018 590 6/03/2019 510 12/17/2019 540 6/24/2020 560 11/21/2020 620 6/03/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 6/9/2022 530 NW-1s 4/08/2009 630 NW-1m NW-1d 4/08/2009 38 NW-2s NW-2s 4/08/2009 570 NW-2d 4/08/2009 570 NW-2d 4/08/2009 570 570 NW-2d 8,600 ^b 5/30/2008 8,600 ^b 5/30/2008 8,600 ^b 5/30/2008		11/21/2020	280
6/9/2022 350 DBS-10 6/19/2018 690 11/08/2018 590 6/03/2019 510 12/17/2019 540 6/24/2020 560 11/21/2020 620 6/03/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 6/9/2022 530 NW-1s 4/08/2009 57 NW-1d 4/08/2009 57 NW-2s 4/08/2009 410 NW-2cm 4/08/2009 570 NW-2d 4/08/2009 4,700 PMW-1 2/27/2008 9,500 b 5/30/2008 8,600 b 6/23/2008		6/03/2021	290
DBS-10 6/19/2018 690 11/08/2018 590 6/03/2019 510 12/17/2019 540 6/24/2020 560 11/21/2020 620 6/03/2021 560 11/21/2020 620 6/03/2021 560 11/28/2021 560 11/28/2021 560 11/28/2021 560 6/9/2022 530 NW-1s 4/08/2009 630 NW-1m 4/08/2009 57 NW-1d 4/08/2009 38 NW-2s 4/08/2009 570 NW-2d 4/08/2009 570 NW-2d 4/08/2009 4,700 PMW-1 2/27/2008 9,500 ^b 5/30/2008 8,600 ^b 6/23/2008 12,700		11/28/2021	300
11/08/2018 590 6/03/2019 510 12/17/2019 540 6/24/2020 560 11/21/2020 620 6/03/2021 560 11/28/2021 560 11/28/2021 560 6/9/2022 530 NW-1s 4/08/2009 630 NW-1m 4/08/2009 38 NW-2s 4/08/2009 38 NW-2s 4/08/2009 570 NW-2d 4/08/2009 570 NW-2d 4/08/2009 4,700 PMW-1 2/27/2008 9,500 ^b 5/30/2008 8,600 ^b		6/9/2022	350
6/03/2019 510 12/17/2019 540 6/24/2020 560 11/21/2020 620 6/03/2021 560 11/28/2021 560 11/28/2021 560 6/9/2022 530 NW-1s 4/08/2009 630 NW-1m 4/08/2009 57 NW-1d 4/08/2009 38 NW-2s 4/08/2009 570 NW-2m 4/08/2009 570 NW-2d 4/08/2009 570 NW-2d 5/30/2008 8,600 b 5/30/2008 8,600 b 5/30/2008	DBS-10	6/19/2018	690
12/17/2019 540 6/24/2020 560 11/21/2020 620 6/03/2021 560 11/28/2021 560 11/28/2021 560 6/9/2022 530 NW-1s 4/08/2009 630 NW-1m 4/08/2009 57 NW-1d 4/08/2009 38 NW-2s 4/08/2009 570 NW-2m 4/08/2009 570 NW-2d 4/08/2009 570 NW-2d 4/08/2009 570 NW-2d 8,600 b 5/30/2008 6/23/2008 12,700		11/08/2018	590
6/24/2020 560 11/21/2020 620 6/03/2021 560 11/28/2021 560 11/28/2021 560 6/9/2022 530 NW-1s 4/08/2009 630 NW-1m 4/08/2009 57 NW-1d 4/08/2009 38 NW-2s 4/08/2009 410 NW-2m 4/08/2009 570 NW-2d 4/08/2009 570 NW-2d 5/30/2008 8,600 b 5/30/2008 8,600 b 5/30/2008		6/03/2019	510
11/21/2020 620 6/03/2021 560 11/28/2021 560 6/9/2022 530 NW-1s 4/08/2009 630 NW-1m 4/08/2009 57 NW-1d 4/08/2009 38 NW-2s 4/08/2009 570 NW-2m 4/08/2009 570 NW-2d 4/08/2009 570 NW-1 2/27/2008 9,500 b 5/30/2008 8,600 b 6/23/2008		12/17/2019	540
6/03/2021 560 11/28/2021 560 6/9/2022 530 NW-1s 4/08/2009 630 NW-1m 4/08/2009 57 NW-1d 4/08/2009 38 NW-2s 4/08/2009 570 NW-2m 4/08/2009 570 NW-2d 4/08/2009 570 NW-1 6/23/2008 8,600 b		6/24/2020	560
11/28/2021 560 6/9/2022 530 NW-1s 4/08/2009 630 NW-1m 4/08/2009 57 NW-1d 4/08/2009 38 NW-2s 4/08/2009 410 NW-2m 4/08/2009 570 NW-2d 4/08/2009 4,700 PMW-1 2/27/2008 9,500 ^b 5/30/2008 8,600 ^b 6/23/2008 12,700		11/21/2020	620
6/9/2022 530 NW-1s 4/08/2009 630 NW-1m 4/08/2009 57 NW-1d 4/08/2009 38 NW-2s 4/08/2009 410 NW-2m 4/08/2009 570 NW-2d 4/08/2009 4,700 PMW-1 2/27/2008 9,500 ^b 5/30/2008 8,600 ^b 6/23/2008 12,700		6/03/2021	560
NW-1s 4/08/2009 630 NW-1m 4/08/2009 57 NW-1d 4/08/2009 38 NW-2s 4/08/2009 410 NW-2m 4/08/2009 570 NW-2d 4/08/2009 570 PMW-1 2/27/2008 9,500 b 5/30/2008 8,600 b 6/23/2008		11/28/2021	560
NW-1m 4/08/2009 57 NW-1d 4/08/2009 38 NW-2s 4/08/2009 410 NW-2m 4/08/2009 570 NW-2d 4/08/2009 4,700 PMW-1 2/27/2008 9,500 b 5/30/2008 8,600 b 6/23/2008		6/9/2022	530
NW-1d 4/08/2009 38 NW-2s 4/08/2009 410 NW-2m 4/08/2009 570 NW-2d 4/08/2009 4,700 PMW-1 2/27/2008 9,500 b 5/30/2008 8,600 b 6/23/2008	NW-1s	4/08/2009	630
NW-2s 4/08/2009 410 NW-2m 4/08/2009 570 NW-2d 4/08/2009 4,700 PMW-1 2/27/2008 9,500 b 5/30/2008 8,600 b 6/23/2008	NW-1m	4/08/2009	57
NW-2m 4/08/2009 570 NW-2d 4/08/2009 4,700 PMW-1 2/27/2008 9,500 b 5/30/2008 8,600 b 6/23/2008	NW-1d	4/08/2009	38
NW-2d 4/08/2009 4,700 PMW-1 2/27/2008 9,500 b 5/30/2008 8,600 b 6/23/2008 12,700	NW-2s	4/08/2009	410
PMW-1 2/27/2008 9,500 ^b 5/30/2008 8,600 ^b 6/23/2008 12,700	NW-2m	4/08/2009	570
5/30/20088,600 b6/23/200812,700	NW-2d	4/08/2009	
6/23/2008 12,700	PMW-1	2/27/2008	9,500 ^b
		5/30/2008	8,600 ^b
4/08/2009 11,000		6/23/2008	12,700
		4/08/2009	11,000

Table C-2.Historical Chloride Groundwater Analytical DataPage 9 of 14

Bold indicates that value exceeds the applicable standard.

^a All samples analyzed using EPA method 300.0, unless otherwise noted.

^b Samples analyzed using Standard Method 4500-Cl B.

		Chloride Concentration
Monitor Well	Date	(mg/L) ^a
	NMWQCC Standard	250
PMW-1 (cont.)	5/12/2011	13,000
	10/05/2011	12,000
	2/09/2012	12,000
	5/01/2012	12,000
	9/11/2012	14,000
	6/25/2013	14,000
	1/10/2014	11,000
	4/08/2014	12,000
	3/20/2015	8,500
	7/01/2015	8,600
	9/30/2015	9,700
	12/17/2015	9,800
	3/23/2016	8,200
	6/09/2016	8,500
	9/14/2016	9,300
	12/01/2016	8,300
	6/20/2017	13,000
	12/20/2017	12,000
	6/19/2018	9,600
	11/08/2018	10,000
	6/03/2019	11,000
	12/18/2019	3,400
	6/23/2020	11,000
	11/21/2020	8,200
	6/02/2021	6,800
	11/28/2021	9,800
	6/9/2022	13,000

Table C-2.Historical Chloride Groundwater Analytical Data
Page 10 of 14

Bold indicates that value exceeds the applicable standard.

^a All samples analyzed using EPA method 300.0, unless otherwise noted.

^b Samples analyzed using Standard Method 4500-Cl B.

I age	1 age 11 01 14	
Monitor Well	Date	Chloride Concentration (mg/L) ^a
	NMWQCC Standard	250
MW-1	5/30/2008	75 ^b
	6/23/2008	243
MW-2	2/27/2008	120 ^b
	5/30/2008	80 ^b
	6/23/2008	1,480
	4/07/2009	1,200
	6/19/2018	390
MW-3	2/27/2008	348 ^b
	5/30/2008	360 ^b
	6/23/2008	1,090
	4/07/2009	17,000
	5/12/2011	16,000
	10/05/2011	14,000
	2/09/2012	15,000
	4/30/2012	14,000
	9/10/2012	16,000
	6/24/2013	12,000
	1/10/2014	10,000
	4/07/2014	12,000
	3/19/2015	9,700
	7/01/2015	10,000
	9/30/2015	9,600
	12/17/2015	5,100
	3/23/2016	8,200
	6/09/2016	9,400
	9/14/2016	9,100

Table C-2.Historical Chloride Groundwater Analytical DataPage 11 of 14

Bold indicates that value exceeds the applicable standard.

^a All samples analyzed using EPA method 300.0, unless otherwise noted.

12/02/2016

11,000

^b Samples analyzed using Standard Method 4500-Cl B.

		Chloride Concentration
Monitor Well	Date	(mg/L) ^a
	IMWQCC Standard	250
MW-3 (cont.)	6/21/2017	10,000
	12/20/2017	8,300
	6/19/2018	7,300
	11/08/2018	8,000
	6/03/2019	8,000
	12/18/2019	7,400
	6/24/2020	6,400
	11/21/2020	7,100
	6/03/2021	4,400
	11/28/2021	6,100
	6/10/2022	5,100
MW-4	2/27/2008	476 ^b
	5/30/2008	512 ^b
	6/23/2008	5,730
	4/07/2009	6,600
MW-5	2/27/2008	1,280 ^b
	5/30/2008	1,220 ^b
	6/23/2008	1,260
	4/07/2009	1,300
	5/12/2011	1,500
	10/05/2011	1,500
	2/09/2012	1,500
	4/30/2012	1,400
	9/10/2012	1,500
	6/24/2013	1,300
	1/10/2014	1,300
	4/07/2014	1,300

Table C-2.Historical Chloride Groundwater Analytical Data
Page 12 of 14

Bold indicates that value exceeds the applicable standard.

^a All samples analyzed using EPA method 300.0, unless otherwise noted.

^b Samples analyzed using Standard Method 4500-Cl B.

Monitor Well	Date	Chloride Concentration (mg/L) ^a
N	MWQCC Standard	250
MW-5 (cont.)	3/19/2015	1,200
	7/01/2015	1,200
	9/30/2015	1,000
	12/17/2015	1,000
	3/23/2016	980
	6/09/2016	970
	9/14/2016	1,000
	12/02/2016	710
	6/21/2017	870
	12/19/2017	850
	6/19/2018	840
	11/08/2018	680
	6/03/2019	610
	12/18/2019	550
	6/24/2020	660
	11/21/2020	710
	6/03/2021	640
	11/28/2021	680
	6/10/2022	590
MW-6	2/27/2008	32 ^b
	5/30/2008	36 ^b
	6/23/2008	31.4
	4/07/2009	25
Ranch Headquarters	6/23/2008	35.4
Supply Well	6/10/2022	54

Table C-2.Historical Chloride Groundwater Analytical Data
Page 13 of 14

Bold indicates that value exceeds the applicable standard.

^a All samples analyzed using EPA method 300.0, unless otherwise noted.

^b Samples analyzed using Standard Method 4500-Cl B.

mg/L = Milligrams per liter NS = Not sampled

Released to Imaging: 10/14/2022 1:59:30 PM

Table C-2.Historical Chloride Groundwater Analytical Data
Page 14 of 14

Monitor Well	Date	Chloride Concentration (mg/L) ^a
NI	MWQCC Standard	250
Brine Station Fresh	2/27/2008	630 ^b
Water Supply Well	5/30/2008	590 ^b
	6/23/2008	650

Bold indicates that value exceeds the applicable standard.

^a All samples analyzed using EPA method 300.0, unless otherwise noted.

mg/L = Milligrams per liter NS = Not sampled

^b Samples analyzed using Standard Method 4500-Cl B.

Recovery		Average Extraction Rate ^a
Well	Date	(gpm)
RW-1	4/07/2012	Groundwater extraction started
	5/01/2012	2.1
	9/11/2012	2.9
	6/25/2013	4.1
	11/15/2013	3.6
	3/20/2015 ^b	2.4
	6/30/2015	
FWS-1	12/17/2015	
	3/22/2016	12.8
	6/08/2016	33.9
	9/13/2016	5.4
	12/02/2016	39.7
	6/20/2017	32.7
	12/19/2017	37.3
	6/18/2018	15.4
	11/08/2018	22.4
	6/03/2019 ^c	23.9
	12/18/2019	27.7
	6/23/2020	21.2
	11/21/2020	7.6
	6/02/2021	5.7
	11/28/2021	3.9
	6/9/2022	8.6
RW-2	4/06/2012	Groundwater extraction started
	5/01/2012	2.5
	9/11/2012	4.3
	12/14/2012	3.9
	6/25/2013 ^d	_
	9/21/2013 ^e	2.9
	9/30/2015	68
	12/17/2015	44
	3/22/2016	32

Table C-3.Historical Average Groundwater Extraction RatesPage 1 of 2

Notes are provided at the end of the table.

	0	
Recovery Well	Date	Average Extraction Rate ^a (gpm)
RW-2 (cont.)	6/08/2016	9.0
	9/13/2016	5.7
	12/01/2016 ^f	
	6/20/2017 ^f	
	12/19/2017	12.4
	6/19/2018	5.2
	10/10/2018 ^g	3.4
	6/03/2019	7.0
	12/18/2019	14.9
	6/23/2020	16.7
	11/21/2020	3.9
	6/02/2021	11.5
	11/28/2021	17.6
	6/9/2022	5.8

Table C-3.Historical Average Groundwater Extraction Rates
Page 2 of 2

^a Average extraction rates based on totalizer flow meter readings and/or fresh water production records.

^b Pumping at RW-1 stopped because pumping of FWS-1 lowered groundwater levels at RW-1, precluding groundwater extraction at RW-1. Pumping at FWS-1 provides hydraulic containment and removal of chloride-impacted groundwater in the former brine pond area.

^c New meter on December 3, 2019; well stopped pumping on May 11, 2019.

^d New pump installed in RW-2 and started on June 25, 2013.

^e Meter and pump were removed from RW-2 on approximately September 21, 2013 by facility manager to install a new, larger-capacity pump.

^f Meter was inoperable because it was damaged. Meter was replaced in November 2017.

^g Meter read on November 8, 2018, but well had not been pumped since October 10, 2018; average extraction rate between June 18 and October 10, 2018 is reported.

gpm = Gallons per minute

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

COMMENTS

Action 146675

COMMENTS	
Operator: SALTY DOG INC	OGRID: 184208
P.O. Box 513 Hobbs, NM 88240	Action Number: 146675
	Action Type: [UF-DP] Brine Facility Discharge Plan (DISCHARGE PLAN BRINE EXTRACTION)

COMMENTS

Created By	Comment	Comment Date
cchavez	First Semi-Annual GW Monitor Rpt.	10/14/2022

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 146675

CONDITIONS	
Operator:	OGRID:
SALTY DOG INC	184208
P.O. Box 513	Action Number:
Hobbs, NM 88240	146675
	Action Type: [UF-DP] Brine Facility Discharge Plan (DISCHARGE PLAN BRINE EXTRACTION)

CONDITIONS

Created E	y Condition	Condition Date
cchave	Similar to DBS-2, continue to assess wells where water level trends indicate the potential to drop below well screen and assess the need to deepen key wells exhibiting significant GW levels above WQCC Stds.	10/14/2022