

November 6, 2020

District Supervisor
Oil Conservation Division, District 1
1625 North French Drive
Hobbs, New Mexico 88240

Re: Release Characterization, Remediation and Closure Report

ConocoPhillips

MCA 274 Wellhead Release Unit Letter A, Section 28, Township 17 South, Range 32 East

Lea County, New Mexico Incident # nRM2025239946

Sir or Madam:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips (COP) to assess a release that occurred at the Maljamar Cooperative Agreement (MCA) 274 well pad (API No. 30-025-23731). The release footprint is located in Public Land Survey System (PLSS) Unit Letter A, Section 28, Township 17 South, Range 32 East, in Lea County, New Mexico (Site). The approximate release point occurred at coordinates 32.809323°, -103.767055° as shown on Figures 1 and 2.

BACKGROUND

According to the State of New Mexico C-141 Initial Report (Attachment A), the release was discovered on August 20, 2020. The initial C-141 form had to be revised as the reported release date (May 10, 2020) was incorrect on the initial submittal. The C-141 was revised, resubmitted on September 29, 2020 and accepted by the NMOCD on September 30, 2020.

As documented on the C-141 form, a casing leak at the wellhead led to the release of approximately 30 barrels (bbls.) of produced water encompassing an area of approximately 2,735 square feet (sf) on the caliche well pad. The New Mexico Oil Conservation District (NMOCD) was notified via email on August 21, 2020. No materials were recovered after the release. The release area footprint was bermed and fenced as a portion of initial response activities.

SITE CHARACTERIZATION

A site characterization was performed and no watercourses, sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, playa lakes, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the distances specified in 19.15.0029 New Mexico Administrative Code (NMAC). The Site is in an area of low karst potential.

The Site is within a New Mexico oil and gas production area. According to the New Mexico Office of the State Engineers (NMOSE) database, there are nine (9) water wells within a ½ mile (800-meter) radius of the Site with an average depth to groundwater at 82 feet (ft.) below ground surface (bgs). The site characterization data is included in Appendix B.

REGULATORY FRAMEWORK

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action

Release Characterization, Remediation, and Closure Report November 6, 2020

ConocoPhillips

levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil.

Based on the site characterization, the RRALs for the Site are as follows:

Constituent	RRAL
Chloride (0-4 ft bgs)	600 mg/kg
Chloride (>4 ft bgs)	10,000 mg/kg
TPH	2,500 mg/kg
BTEX	50 mg/kg
Benzene	10 mg/kg

INITIAL RESPONSE AND SITE ASSESSMENT

As mentioned above, the release area footprint was fenced and bermed as a portion of initial response. In accordance with 19.15.29.8. B. (4) NMAC that states "the responsible party may commence remediation immediately after discovery of a release", COP elected to begin remediation of the impacted area in September 2020. The footprint of the release was excavated to approximately 1 ft bgs to remove the visually impacted soils as shown in Figure 3. All the excavated material was transported offsite for proper disposal. Approximately 180 cubic yards of material were transported to the R360 facility in Hobbs, New Mexico. Copies of the waste manifests are included in Appendix E.

In order to properly characterize the release footprint and achieve horizontal and vertical delineation of the release extent, Tetra Tech personnel conducted soil sampling following excavation activities. A total of seven (7) borings were initially installed within and outside the release footprint using a hand auger on September 15, 2020. Three (3) borings were installed inside the excavated area footprint on the north (V-1), northeast (V-2) and southwest (V-3) of the release point to a depth of 4 ft bgs to achieve vertical delineation. Boring logs are included in Appendix D. Four (4) borings (H-1 through H-4) were installed along the perimeter of the excavated area to achieve horizontal delineation. Soil samples collected were field screened for salinity parts per million (ppm) using an ExStik II EC 400 meter.

A total of thirteen (13) samples were collected from the seven (7) borings and submitted to Pace Analytical National Center for Testing & Innovation (Pace) in Nashville, Tennessee to be analyzed on a rush turnaround for chlorides via EPA Method 300.0, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. A copy of the laboratory analytical report and chain-of-custody documentation are included in Appendix C.

After review of the analytical results from the initial sampling events, the release extent was not bound horizontally at boring location H-4. Three additional boring locations (H-5, H-6 and H-7) were drilled and sampled to complete horizontal delineation to the east, northeast, and southeast on September 24, 2020. The approximate release extent and boring locations are shown in Figure 3. A total of three (3) surface (0-1') samples were collected from the three borings and submitted to Pace to be analyzed on a rush turnaround for chlorides, TPH, and BTEX. A copy of the laboratory analytical report and chain-of-custody documentation are included in Appendix C. Photographic documentation of the release extent is included in Appendix F.

SUMMARY OF SAMPLING RESULTS

Results from the September 2020 soil sampling events are summarized in Table 1. As mentioned, the analytical results associated with boring location H-4 exceeded the Site chloride reclamation RRAL of 600 mg/kg in the 0'-1' sample interval. The analytical results associated with boring location V-1 exceeded the chloride reclamation RRAL in the 2'-3' sample interval. Analytical results from the remainder of the sample intervals analyzed in the assessment were below the applicable Site RRALs.

Release Characterization, Remediation, and Closure Report November 6, 2020

ConocoPhillips

REMEDIATION ACTIVITIES

Based on the analytical results, COP removed the remaining impacted material as shown in Figure 4. Visually impacted soils were initially excavated based on the assessment data. Excavation continued until a representative sample from the walls and bottom of the excavation had a field screening value inferred as lower than the RRALs for the site.

The soil in the vicinity of boring H-4 was excavated to 1' bgs based on the assessment data. The remainder of the footprint had been previously excavated to 1' bgs. Impacted soil in the vicinity of V-1 was then excavated to 3' bgs. After field screening, this area was extended westward to the western boundary of the release footprint. Soil in the vicinity of V-3 needed no additional excavation post-initial response. Soil north of the V-2 boring location was excavated to 2' bgs. Soil in the southwestern portion of the footprint was also excavated an additional foot to 2' bgs. Soil in the western central portion of the release was excavated an additional six inches to 1.5' bgs. Impacted soils were excavated using heavy equipment (backhoes and track hoes) until a representative sample from the walls and bottom of the excavation was below the RRALs. Approximately 314 cubic yards of material were transported to the R360 facility in Hobbs, New Mexico. Copies of the waste manifests are included in Appendix E.

CONFIRMATION SAMPLING RESULTS

In accordance with 19.15.29.12(D)(1)(b) NMAC, ConocoPhillips conducted confirmation sampling of the remediated area for verification of remedial activities where each sidewall and floor sample was representative of approximately 200 square feet. A total of fourteen (14) floor sample locations and twenty-four (24) sidewall sample locations were used during the remedial activities in October 2020. Confirmation samples were placed into laboratory-provided sample containers, transferred under chain-of-custody, and analyzed for TPH, BTEX, and chloride within appropriate holding times by Pace. Once results were received that were below the applicable RRALs, the excavation was backfilled with clean material to surface grade.

The excavation encompassed a surface area of approximately 3,435 square feet. Each confirmation sample laboratory analytical result was directly compared to the proposed RRALs to demonstrate compliance. All final confirmation soil samples (floor and sidewall) were below the respective RRALs for BTEX, TPH and chlorides. Results from the October 2020 confirmation sampling events are summarized in Table 2.

CONCLUSION

ConocoPhillips has completed remediation at the release site. This final closure report has been submitted within 90 days of discovery of the release. This final closure report details the release characterization and remediation activities and the results of the confirmation sampling. If you have any questions concerning the soil assessment, the remediation work, or confirmation sampling for the Site, please call me at (512) 338-2861 or Greg at (432) 682-4559.

Sincerely,

Tetra Tech, Inc.

Christian M. Llull, P.G. Project Manager

cc:

Mr. Marvin Soriwei, RMR – ConocoPhillips Mr. Charles Beauvais, GPBU - ConocoPhillips Greg W. Pope, P.G. Program Manager

Release Characterization, Remediation, and Closure Report November 6, 2020

ConocoPhillips

LIST OF ATTACHMENTS

Figures:

Figure 1 – Overview Map

Figure 2 – Site Location/Topographic Map

Figure 3 – Approximate Release Extent, Initial Response and Assessment

Figure 4 – Remediation Extents and Confirmation Sample Locations

Tables:

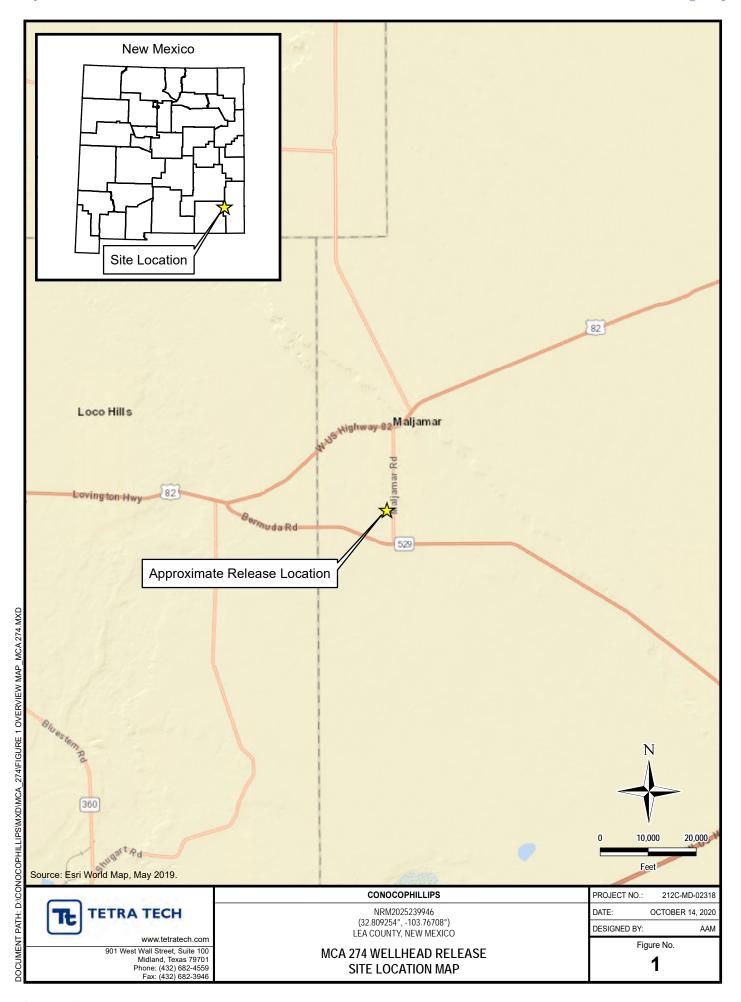
Table 1 – Summary of Analytical Results – Initial Assessment

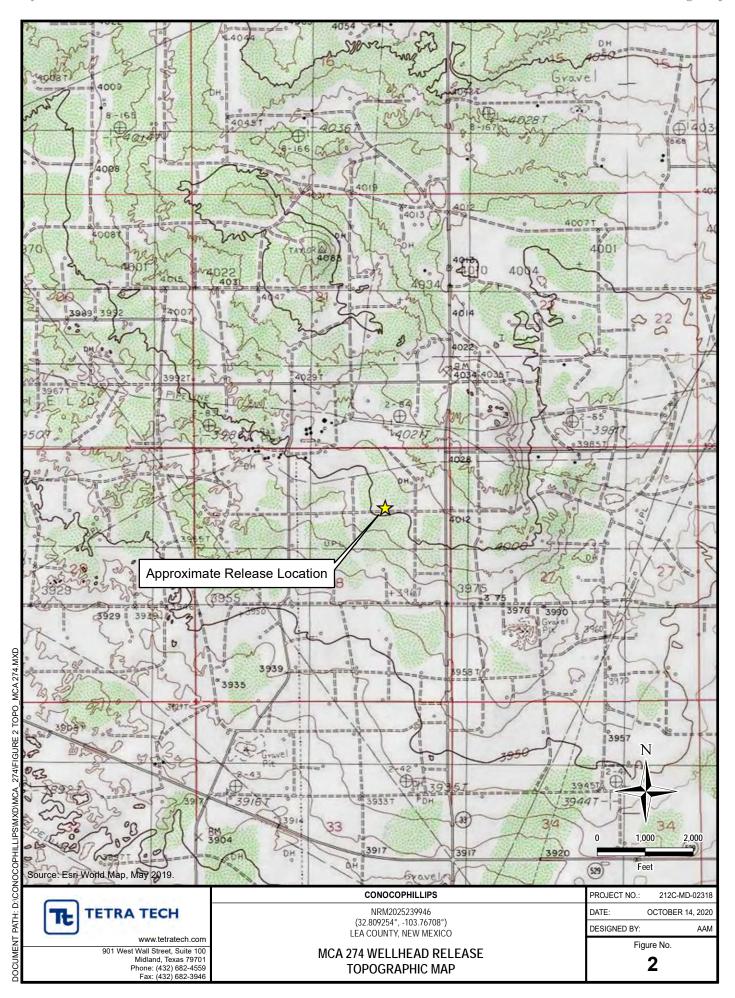
Table 2 – Summary of Analytical Results – Confirmation Sampling

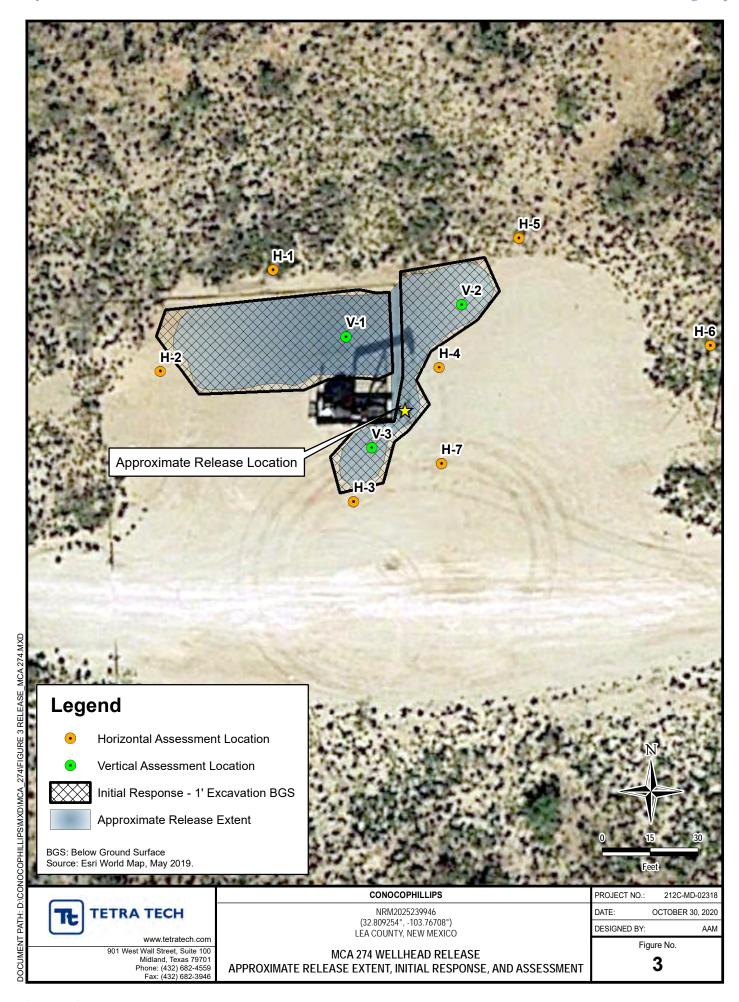
Appendices:

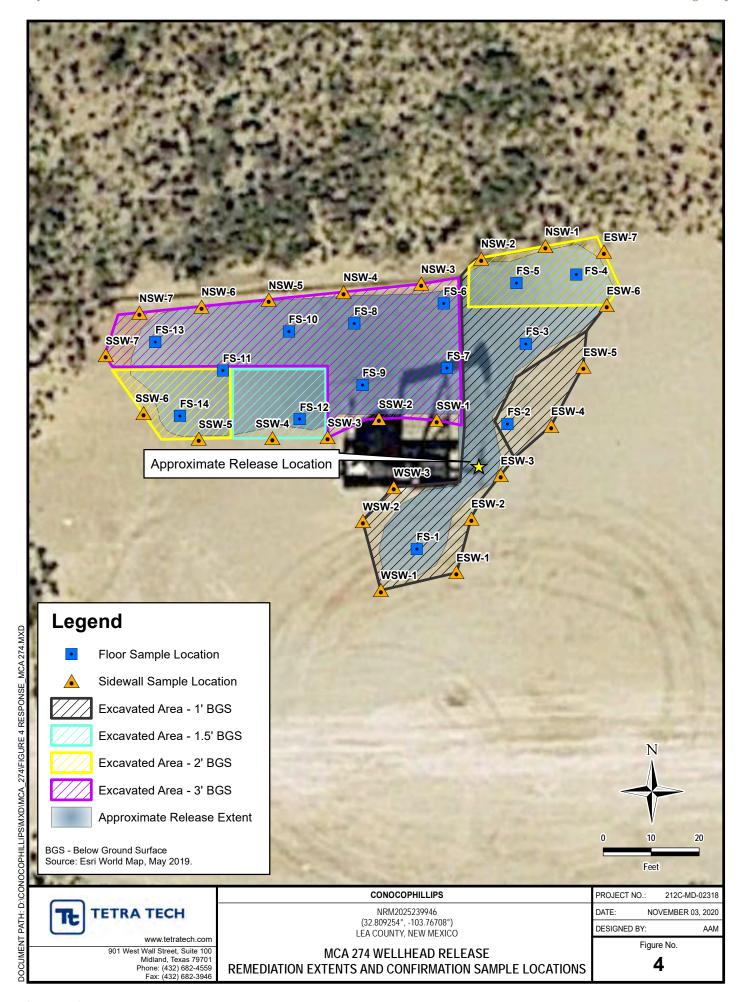
Appendix A – C-141 Forms

Appendix B – Site Characterization Data


Appendix C - Laboratory Analytical Data


Appendix D - Soil Boring Logs


Appendix E – Waste Manifests


Appendix F – Photographic Documentation

FIGURES

TABLES

TABLE 1 SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT - nRM2025239946 CONOCOPHILLIPS MCA 274 WELLHEAD RELEASE

LEA COUNTY, NM

Sample Depth Field Screening Results				BTEX ²								TPH ³								
	Commis Data	Sample Depth Interval	Field Screen	ling Kesuits	Chloride ¹	Danzana	Talvana	Toluene		Ethylbenzene			Total BTEX	GRO⁴		DRO		ORO		Total TPH
Sample ID	Sample Date	interval	Chloride	PID		Benzene	Toluene					Total Xylenes		C ₃ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀		(GRO+DRO+ORO)
		ft. bgs	рр	m	mg/kg (Q mg/kg () mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
H-1	9/15/2020	0-1	130	-	< 22.2	< 0.00123	< 0.00617		< 0.00308		< 0.00802		-	< 3.08		2.62	J	11.9		14.5
H-2	9/15/2020	0-1	230	-	67.0	< 0.00142	< 0.00712		< 0.00357		< 0.00926		-	< 3.57		3.18	J	5.26		8.44
H-3	9/15/2020	0-1	120	-	128	< 0.00127	< 0.00637		< 0.00318		< 0.00828		-	< 3.18		1.67	J	6.14		7.81
H-4	9/15/2020	0-1	130	-	971	< 0.00123	< 0.00615		< 0.00307		< 0.00800		-	< 3.08		2.69	J	10.9		13.6
H-5	9/24/2020	0-1	-	-	13.1	J NA	NA		NA		NA		-	NA		NA		NA		-
H-6	9/24/2020	0-1	-	-	74.3	NA	NA		NA		NA		-	NA		NA		NA		-
H-7	9/24/2020	0-1	-	-	171	NA	NA		NA		NA		-	NA		NA		NA		-
		1-2	340	-	379	< 0.00104	< 0.00522		< 0.00261		< 0.00678		-	< 2.61		< 4.08		0.675	J	0.675
V-1	9/15/2020	2-3	480	-	879	< 0.00190	< 0.00949		< 0.00475		< 0.0123		-	< 4.75		< 5.74		1.21	J	1.21
		3-4	499	-	381	< 0.00111	< 0.00556		< 0.00278		< 0.00722		-	< 2.78		2.01	J	5.58		7.59
		1-2	300	-	92.7	< 0.00113	< 0.00566		< 0.00283		< 0.00735		-	< 2.83		< 4.25		1.50	J	1.50
V-2	9/15/2020	2-3	410	-	436	< 0.00236	< 0.0118		< 0.00591		< 0.0154		-	< 5.91		< 6.69		3.61	J	3.61
		3-4	570	-	322	< 0.00128	< 0.00639		< 0.00320		< 0.00830		-	< 3.20		2.90	J	8.09		11.0
	<u> </u>	1-2	413	-	237	< 0.00152	< 0.00762		< 0.00381		< 0.00990		-	< 3.81		3.45	J	2.15	J	5.60
V-3	9/15/2020	2-3	403	-	514	< 0.00109	< 0.00547		< 0.00274		< 0.00712		-	< 2.74		< 4.13		0.846	J	0.846
		3-4	350	-	472	< 0.00113	< 0.00566		< 0.00283		< 0.00735		-	< 2.83		< 4.26		1.36	J	1.36

NOTES:

ft. Feet

bgs Below ground surfaceppm Parts per million

mg/kg Milligrams per kilogram

NA Sample not analyzed for constituent

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organicsDRO Diesel range organics

Bold and italicized values indicate exceedance of proposed RRALs

1 EPA Method 300.0

2 EPA Method 8260B

3 EPA Method 80154 EPA Method 8015D/GRO

QUALIFIERS:

J The identification of the analyte is acceptable; the reported value is an estimate.

Received by OCD: 11/6/2020 1:39:16 PM

TABLE 2

SUMMARY OF ANALYTICAL RESULTS

CONFIRMATION SAMPLING - nRM2025239946

CONOCOPHILLIPS

MCA 274 WELLHEAD RELEASE LEA COUNTY, NM

								BTEX ²								TF	H³			
6 1 10		Chloride ¹				5.1 11	Ethylbenzene Total Xylenes Total BTEX		T I DTFV	GRO ⁴ DRO			ORO			Total TPH				
Sample ID	Sample Date			Benzene		Toluene		Ethylbenzen	е	Total Xylene	s	Iotal BIEX	C ₃ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀		(GRO+DRO+ORO)	
		mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	
FS-1	10/19/2020	315		< 0.00102		< 0.00511		< 0.00256		< 0.00665		-	0.0393	ВЈ	< 4.05		< 4.05		0.0393	
FS-2	10/21/2020	190		0.000823	J	< 0.00693		< 0.00346		0.00284	J	0.00366	0.0333	ВJ	< 4.77	J6	0.945	J	0.978	
FS-3	10/21/2020	229		< 0.00107		< 0.00533		< 0.00266		< 0.00693		-	0.0290	ВJ	< 4.13		1.28	J	1.31	
FS-4	10/21/2020	196		< 0.00136		< 0.00681		< 0.00341		0.00263	J	0.00263	< 0.118		< 4.72		0.568	J	0.568	
FS-5	10/21/2020	30.6		< 0.00117		< 0.00585		< 0.00292		0.00140	J	0.00140	0.0254	ВJ	< 4.34		1.27	J	1.30	
FS-6	10/21/2020	< 24.4		< 0.00144		< 0.00721		< 0.00360		0.00223	J	0.00223	0.0273	ВЈ	< 4.88		0.690	J	0.717	
FS-7	10/21/2020	23.1		< 0.00108		< 0.00542		< 0.00271		0.00156	J	0.00156	0.0230	ВJ	< 4.17		2.92	J	2.94	
FS-8	10/21/2020	12.8	J	< 0.00114		< 0.00569		< 0.00284		0.00142	J	0.00142	0.0296	ВЈ	< 4.27		0.878	J	0.908	
FS-9	10/21/2020	< 21.3		< 0.00113		< 0.00564		< 0.00282		0.00120	J	0.00120	0.0352	BJ	1.81	J	1.06	J	2.91	
FS-10	10/21/2020	178		< 0.00140		< 0.00700		< 0.00350		0.00152	J	0.00152	0.0346	BJ	< 4.79		0.941	J	0.976	
FS-11	10/21/2020	< 21.4		< 0.00114		< 0.00570		< 0.00285		0.00180	J	0.00180	0.0267	BJ	1.94	J	2.62	J	4.59	
FS-12	10/21/2020	142		< 0.00142		< 0.00712		< 0.00356		0.00320	J	0.00320	0.0310	BJ	< 4.85		0.796	J	0.827	
FS-13	10/21/2020	< 22.3		< 0.00123		< 0.00616		< 0.00308		0.00154	J	0.00154	0.0273	BJ	< 4.46		3.44	J	3.47	
FS-14	10/21/2020	84.8		< 0.00101		< 0.00505		< 0.00253		0.00168	J	0.00168	0.0280	BJ	< 4.02		2.51	J	2.54	
NSW-1	10/20/2020	< 20.2		< 0.00102		< 0.00512		< 0.00256		< 0.00665		-	< 0.101		7.22		15.3		22.5	
NSW-2	10/20/2020	40.1		0.00107	В	0.00435	J	< 0.00257		0.00256	J	0.0080	< 0.102		11.9		38.7		50.6	
NSW-3	10/20/2020	13.3	J	< 0.00102		< 0.00510		< 0.00255		< 0.00663		-	< 0.101		4.32		23.4		27.7	
NSW-4	10/20/2020	< 20.1		< 0.00101		< 0.00504		< 0.00252		< 0.00655		-	0.0231	J	< 4.02		2.39	BJ	2.41	
NSW-5	10/20/2020	< 20.1		0.00114	В	0.00518		< 0.00252		0.00192	J	0.0082	< 0.100		< 4.02		4.64	В	4.64	
NSW-6	10/20/2020	12.9	J	< 0.00102		< 0.00509		< 0.00255		< 0.00662		-	< 0.101		< 4.04		5.64		5.64	
NSW-7	10/20/2020	15.1	J	< 0.00101		< 0.00504		< 0.00252		< 0.00655		-	< 0.100		1.96	J	7.98		9.94	
ESW-1	10/19/2020	195		< 0.00115		< 0.00576		< 0.00288		< 0.00749		-	0.0330	ВЈ	< 4.30		< 4.30		0.0330	
ESW-2	10/19/2020	227		< 0.00102		< 0.00510		< 0.00255		< 0.00662		-	0.0322	ВЈ	< 4.04		< 4.04		0.0322	
ESW-3	10/20/2020	295		< 0.00101		< 0.00504		< 0.00254		< 0.00659		-	< 0.101		2.74	J	5.71		8.45	
ESW-4	10/20/2020	90.7		< 0.00102		< 0.00510		< 0.00255		< 0.00663		-	< 0.101		< 4.04		3.23	ВЈ	3.23	
ESW-5	10/20/2020	< 23.5		< 0.00134		< 0.00672		< 0.00336		< 0.00874		-	< 0.117		7.22		5.00	В	12.2	
ESW-6	10/20/2020	90		< 0.00102		< 0.00508		< 0.00254		< 0.00661		-	0.0252	J	3.94	J	17.7		21.7	
ESW-7	10/20/2020	243		< 0.00137		< 0.00683		< 0.00342		< 0.00888	J3		< 0.118		< 4.73		4.01	ВЈ	4.01	
SSW-1	10/20/2020	221		< 0.00106		< 0.00530		< 0.00265		< 0.00689		-	0.0690	J	< 4.12		2.47	ВЈ	2.54	
SSW-2	10/20/2020	430		< 0.00108		< 0.00539		< 0.00269		< 0.00701		-	< 0.104	Ť	< 4.16		1.94	ВЈ	1.94	
SSW-3	10/20/2020	192		< 0.00101		< 0.00504		< 0.00252	† 	< 0.00655	†	-	0.0392	J	< 4.02	1	3.79	BJ	3.83	
SSW-4	10/20/2020	193		< 0.00101		< 0.00504		< 0.00252	1	< 0.00655	1	-	0.0639	j	< 4.01		2.97	BJ	3.03	
SSW-5	10/20/2020	73.9		< 0.00101		< 0.00512		< 0.00256		< 0.00666		-	0.0228	j	2.52	J	12.6	+	15.1	
SSW-6	10/20/2020	54.3		< 0.00101		< 0.00507		< 0.00254	1	< 0.00659	1	-	< 0.101		1.80	J	3.16	ВЈ	4.96	
SSW-7	10/20/2020	21.9		< 0.00101		< 0.00504		< 0.00252		< 0.00655		-	< 0.100		< 4.01	Ť	3.67	ВЈ	3.67	
WSW-1		479					 		 		 			l n /		+		 '		
WSW-1	10/19/2020		-	< 0.00101 < 0.00101	-	< 0.00504 < 0.00507	-	< 0.00252	-	< 0.00655	-	-	0.0297	BJ	2.19	+	15.0	-	25.4	
WSW-2 WSW-3	10/19/2020	201 174	-	< 0.00101	-	< 0.00507	-	< 0.00253 < 0.00263	-	< 0.00659 < 0.00684	-	-	0.0289	BJ	< 4.11	J	7.26 4.58	-	9.48	
VV 5 VV - 5	10/19/2020	1/4		< 0.00105		< U.UU320		< 0.00263		< 0.00084		-	0.0300	ВJ	< 4.11		4.58		4.01	

NOTES:

bgs Below ground surface

ppm Parts per million mg/kg Milligrams per kilogram

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics

DRO Diesel range organics

ORO Oil range organics

B The same analyte is found in the associated blank.

1 EPA Method 300.0

2 EPA Method 8260B

3 EPA Method 8015 4 EPA Method 8015D/GRO

QUALIFIERS:

Bold and italicized values indicate exceedance of proposed RRALs

J The identification of the analyte is acceptable; the reported value is an estimate.

APPENDIX A C-141 Forms

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Incident ID	nRM2025239946
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

_	-	coPhillips (Company	OGRID 217817								
Contact Name	Vaggaman		Contact Telephone 505-577-9071									
Contact email	Kelsy.	Waggaman	@ConocoPh	nillips.cor	nIncident#	(assigned by OCD))					
Contact mailin	ng address	29 Vacuui	m Complex I	Lane, Lo	vington, N	IM 88260						
Location of Release Source												
Latitude 3 2	2.8092	2 5 4					03.767082					
(NAD 83 in decimal degrees to 5 decimal places)												
Site Name M	CA 274				Site Type	Well Site						
Date Release I	Discovered	5/10/20 8/	/20/2020]	API# (if app	licable) 3002	2523731					
Unit Letter	Section	Township	Range		Coun	ty	_					
А	28	17S	32E		Lea							
Surface Owner:	Surface Owner: State Federal Tribal Private (Name: Nature and Volume of Release											
Crude Oil	Material		1 (111)		ions or specific	s or specific justification for the volumes provided below)						
		Volume Rele	· / 0		Volume Recovered (bbls) 0							
Produced V	Water	Volume Rele		30	Volume Recovered (bbls) 0							
			tration of dissolver >10,000 mg/l		de in the Yes No							
☐ Condensat	e	Volume Rele	ased (bbls)		Volume Recovered (bbls)							
Natural Ga	as	Volume Rele	ased (Mcf)		Volume Recovered (Mcf)							
Other (describe) Volume/Weight Released (provide units						Volume/Weig	ght Recovered (provide units)					
Cause of Rele	Cause of Release					1						
Casing leak												

Received by OCD: 11/6/2020 1:39:16 PM State of New Mexico Page 2 Oil Conservation Division Page 15 of 203

Incident ID	nRM2025239946	
District RP		
Facility ID		
Application ID		

Was this a major release as defined by	If YES, for what reason(s) does the responsible party consider this a major release?
19.15.29.7(A) NMAC?	The release exceeded 25 bbls of produced water.
X Yes □ No	
103 [] 110	
If YES, was immediate n	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?
	was given to Bradford Billings and Jim Griswold, OCD by Kelsy
vvaggaman, Cono	coPhillips Environmental Coordinator on 8/21/20.
	Initial Response
The responsible	party must undertake the following actions immediately unless they could create a safety hazard that would result in injury
The source of the rele	ease has been stopped.
The impacted area ha	as been secured to protect human health and the environment.
X Released materials ha	ave been contained via the use of berms or dikes, absorbent pads, or other containment devices.
All free liquids and r	ecoverable materials have been removed and managed appropriately.
If all the actions describe	d above have <u>not</u> been undertaken, explain why:
D. 10 15 20 0 D. (4) ND	
	AC the responsible party may commence remediation immediately after discovery of a release. If remediation a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred
within a lined containment	nt area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.
	ormation given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and
public health or the environ	required to report and/or file certain release notifications and perform corrective actions for releases which may endanger ment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have
	gate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws
and/or regulations.	The control of the opening of the companies of the compan
Printed Name: Kelsy V	Vaggaman Title: Environmental Coordinator
Signature: Kuylu	Date:9/2/20
_{email:} Kelsy.Wag	gaman@ConocoPhillips.com Telephone: 505-577-9071
nRM2025239946 inc	ident number. C-141 resubmitted with corrections via the payment portal on 9/29/2020. cml
OCD Only	
	Datas
Received by:	Date:

Received by OCD: 11/6/2020 1:39:16 PM From C-141 State of New Mexico Page 3 Oil Conservation Division

	Page 16 of 203
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)					
Did this release impact groundwater or surface water?	☐ Yes ☐ No					
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ☐ No					
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ☐ No					
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ☐ No					
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ☐ No					
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ☐ No					
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ☐ No					
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ☐ No					
Are the lateral extents of the release overlying a subsurface mine?						
Are the lateral extents of the release overlying an unstable area such as karst geology?						
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ☐ No					
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ☐ No					
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.						
Characterization Report Checklist: Each of the following items must be included in the report.						
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. Field data Data table of soil contaminant concentration data Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release Boring or excavation logs Photographs including date and GIS information Topographic/Aerial maps Laboratory data including chain of custody						

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 11/6/2020 1:39:16 PM State of New Mexico
Page 4 Oil Conservation Division

Page	<i>17</i>	of 2	03
------	-----------	------	----

Incident ID		
District RP		
Facility ID		
Application ID		

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.							
Printed Name:	Title:						
Printed Name: Signature:	Date:						
email:	Telephone:						
OCD Only							
Received by:	Date:						

Received by OCD: 11/6/2020 1:39:16 PM State of New Mexico
Page 5 Oil Conservation Division

PM State of New Mexico Incident ID

Incident ID		
District RP		
Facility ID		
Application ID		

Remediation Plan

Remediation Plan Checklist: Each of the following items must b	e included in the plan.
 □ Detailed description of proposed remediation technique □ Scaled sitemap with GPS coordinates showing delineation poin □ Estimated volume of material to be remediated □ Closure criteria is to Table 1 specifications subject to 19.15.29. □ Proposed schedule for remediation (note if remediation plan tin 	12(C)(4) NMAC
Deferral Requests Only: Each of the following items must be con-	nfirmed as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around p deconstruction.	roduction equipment where remediation could cause a major facility
☐ Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human healt	n, the environment, or groundwater.
	e and remediate contamination that pose a threat to groundwater, acceptance of a C-141 report does not relieve the operator of
Printed Name:	Title:
Printed Name: Signature:	Date:
email:	Telephone:
OCD O-I	
OCD Only	
Received by:	Date:
Approved	Approval
Signature:	Date:

Received by OCD: 11/6/2020 1:39:16 PM State of New Mexico
Page 6 Oil Conservation Division

Incident ID
District RP
Facility ID
Application ID

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following it	items must be included in the closure report.
A scaled site and sampling diagram as described in 19.15.29.	11 NMAC
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	s of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: appropriate OD	C District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and rehuman health or the environment. In addition, OCD acceptance of compliance with any other federal, state, or local laws and/or regular restore, reclaim, and re-vegetate the impacted surface area to the coaccordance with 19.15.29.13 NMAC including notification with 19.15.29.1	ations. The responsible party acknowledges they must substantially onditions that existed prior to the release or their final land use in OCD when reclamation and re-vegetation are complete. Title:
email:	Telephone:
OCD Only	
Received by:	Date:
remediate contamination that poses a threat to groundwater, surface party of compliance with any other federal, state, or local laws and	
Closure Approved by:	Date:
Printed Name:	Title:

APPENDIX B Site Characterization Data

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW#### in the POD suffix indicates the POD has been replaced & no longer serves a water right

(R=POD has been replaced, O=orphaned,

closed)

(quarters are 1=NW 2=NE 3=SW 4=SE) C=the file is (quarters are smallest to

largest) (NAD83 UTM in meters) (In feet)

	POD												
	Sub-		QQ	Q								Wa	ater
POD Number	Code basin	County	64 16	3 4	Sec	Tws	Rng	X	Υ	Distance De _l	othWellDept	thWaterCol	umn
RA 12020 POD3	RA	LE	2 1	2	28	17S	32E	615152	3631019	342	112	83	29
RA 12522 POD3	RA	LE	4 4	3	28	17S	32E	614980	3631093	526	100		
RA 12521 POD1	RA	LE	3 3	4	21	17S	32E	615127	3631271 🌕	546	105	92	13
RA 12721 POD2	RA	LE	1 1	4	28	17S	32E	615055	3630407	549	124	75	49
RA 12522 POD2	RA	LE	2 2	1	28	17S	32E	614949	3631098	555	100		
RA 12522 POD1	RA	LE	3 3	4	21	17S	32E	614941	3631122	575	100		
RA 12020 POD1	RA	LE	2 2	1	28	17S	32E	614828	3630954	614	120	81	39
RA 10175	RA	LE	2	1	28	17S	32E	614814	3631005*	641	158		
RA 12042 POD1	RA	LE	2 2	1	28	17S	32E	614891	3631181	648	400		

Average Depth to Water: Minimum Depth:

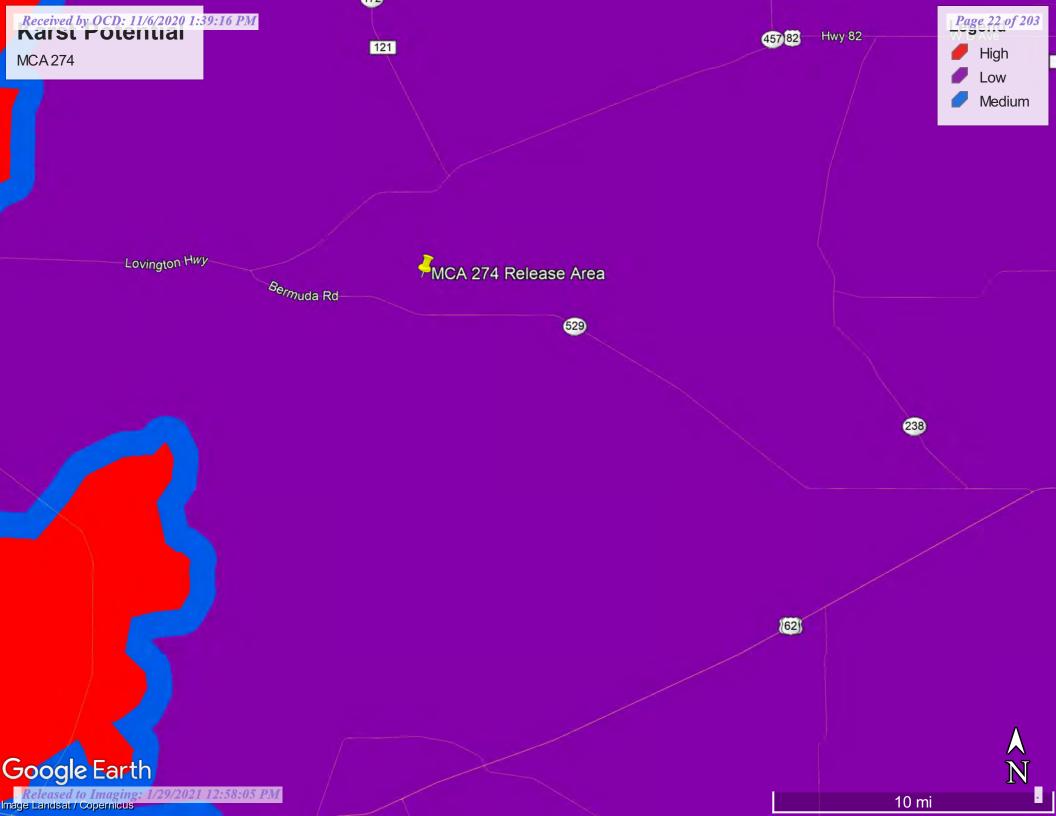
> Maximum Depth: 92 feet

82 feet

75 feet

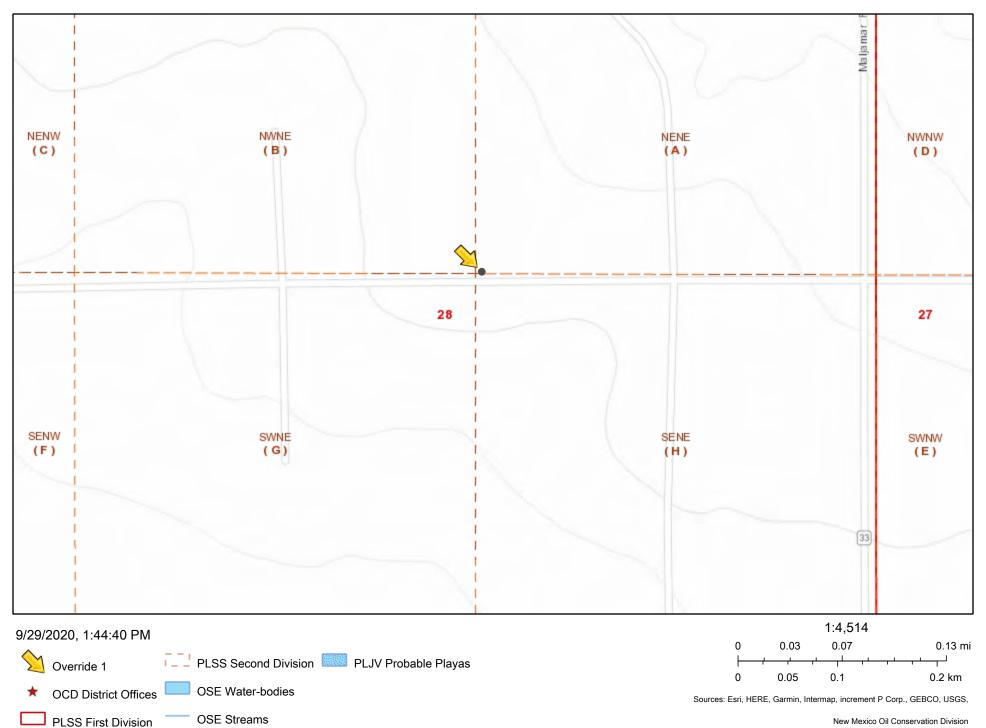
Record Count:

UTMNAD83 Radius Search (in meters):


Easting (X): 615425.83 Northing (Y): 3630813.52 Radius: 800

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.


9/29/20 1:53 PM

WATER COLUMN/ AVERAGE DEPTH TO

. Released to Imaging: 1/29/2021 12:58:05 PM

Water Bodies

APPENDIX C Laboratory Analytical Data

ANALYTICAL REPORT

September 21, 2020

ConocoPhillips - Tetra Tech

Sample Delivery Group: L1263783

Samples Received: 09/18/2020

Project Number: 212C-MD-02318

Description: MCA 274 Wellhead Release

Site: LEA COUNTY, NEW MEXICO

Report To: Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
H-1 (0-1) L1263783-01	7
H-2 (0-1) L1263783-02	8
H-3 (0-1) L1263783-03	9
H-4 (0-1) L1263783-04	10
V-1 (1-2) L1263783-05	11
V-1 (2-3) L1263783-06	12
V-1 (3-4) L1263783-07	13
V-2 (1-2) L1263783-08	14
V-2 (2-3) L1263783-09	15
V-2 (3-4) L1263783-10	16
V-3 (1-2) L1263783-11	17
V-3 (2-3) L1263783-12	18
V-3 (3-4) L1263783-13	19
Qc: Quality Control Summary	20
Total Solids by Method 2540 G-2011	20
Wet Chemistry by Method 300.0	22
Volatile Organic Compounds (GC) by Method 8015D/GRO	23
Volatile Organic Compounds (GC/MS) by Method 8260B	25
Semi-Volatile Organic Compounds (GC) by Method 8015	26
GI: Glossary of Terms	27
Al: Accreditations & Locations	28

Sc: Sample Chain of Custody

29

SAMPLE SUMMARY

, , , , , , , , , , , , , , , , , , , ,	SAMPLE	3 O IVIII	VIARI		ONL	LAB. INF.
H-1 (0-1) L1263783-01 Solid			Collected by	Collected date/time 09/15/20 00:00	Received da 09/18/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1545817	1	09/19/20 18:06	09/19/20 18:24	KBC	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1545923	1	09/20/20 08:12	09/20/20 11:16	ST	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1545900	25	09/15/20 00:00	09/19/20 20:52	DWR	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1545892	1	09/15/20 00:00	09/19/20 11:53	BMB	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1545989	1	09/19/20 19:02	09/20/20 08:18	JN	Mt. Juliet, TN
H-2 (0-1) L1263783-02 Solid			Collected by	Collected date/time 09/15/20 00:00	Received da 09/18/20 09	
M ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1545817	1	09/19/20 18:06	09/19/20 18:24	KBC	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1545923	1	09/20/20 08:12	09/20/20 11:35	ST	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1545900	33.3	09/15/20 00:00	09/19/20 21:15	DWR	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1545892	1.33	09/15/20 00:00	09/19/20 12:13	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1545989	1	09/19/20 19:02	09/20/20 07:19	JN	Mt. Juliet, TN
H-3 (0-1) L1263783-03 Solid			Collected by	Collected date/time 09/15/20 00:00	Received da 09/18/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1545817	1	09/19/20 18:06	09/19/20 18:24	KBC	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1545923	1	09/20/20 08:12	09/20/20 12:12	ST	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1545900	30	09/15/20 00:00	09/19/20 21:37	DWR	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1545892	1.2	09/15/20 00:00	09/19/20 12:33	BMB	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1545989	1	09/19/20 19:02	09/20/20 08:33	JN	Mt. Juliet, TN
H-4 (0-1) L1263783-04 Solid			Collected by	Collected date/time 09/15/20 00:00	Received da 09/18/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1545817	1	09/19/20 18:06	09/19/20 18:24	KBC	Mt. Juliet, TN
/et Chemistry by Method 300.0	WG1545923	5	09/20/20 08:12	09/20/20 13:44	ST	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1545900	29.8	09/15/20 00:00	09/19/20 22:00	DWR	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1545892	1.19	09/15/20 00:00	09/19/20 12:53	BMB	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1545989	1	09/19/20 19:02	09/20/20 08:48	JN	Mt. Juliet, TN
V-1 (1-2) L1263783-05 Solid			Collected by	Collected date/time 09/15/20 00:00	Received da 09/18/20 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
otal Solids by Method 2540 G-2011	WC1E4E017	1	date/time	date/time	VDC	Mt. Juliet, TN
•	WG1545817 WG1545023	1	09/19/20 18:06	09/19/20 18:24	KBC	
Vet Chemistry by Method 300.0	WG1545923	1	09/20/20 08:12	09/20/20 14:02	ST	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1545900	25 1	09/15/20 00:00	09/19/20 22:23	DWR	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1545892	1	09/15/20 00:00	09/19/20 13:13	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1545989	1	09/19/20 19:02	09/20/20 06:06	JN	Mt. Juliet, TN

SAMPLE SUMMARY

Received by Octo. 11/0/2020 1.57.10 11/1	SAMPLES	SAMPLE SUMMARY							
V-1 (2-3) L1263783-06 Solid			Collected by	Collected date/time 09/15/20 00:00	Received da 09/18/20 09				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location			
Total Solids by Method 2540 G-2011	WG1545817	1	09/19/20 18:06	09/19/20 18:24	KBC	Mt. Juliet, TN			
Net Chemistry by Method 300.0	WG1545923	1	09/20/20 08:12	09/20/20 14:21	ST	Mt. Juliet, TN			
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1545900	25	09/15/20 00:00	09/19/20 23:08	DWR	Mt. Juliet, TN			
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1545892	1	09/15/20 00:00	09/19/20 13:33	BMB	Mt. Juliet, TN			
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1545989	1	09/19/20 19:02	09/20/20 06:20	JN	Mt. Juliet, TN			
V-1 (3-4) L1263783-07 Solid			Collected by	Collected date/time 09/15/20 00:00	Received da 09/18/20 09				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location			
Total Solids by Method 2540 G-2011	WG1545817	1	09/19/20 18:06	09/19/20 18:24	KBC	Mt. Juliet, TN			
Net Chemistry by Method 300.0	WG1545923	5	09/20/20 08:12	09/20/20 14:39	ST	Mt. Juliet, TN			
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1545900	27	09/15/20 00:00	09/19/20 23:31	DWR	Mt. Juliet, TN			
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1545892	1.08	09/15/20 00:00	09/19/20 13:53	BMB	Mt. Juliet, TN			
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1545989	1	09/19/20 19:02	09/20/20 08:04	JN	Mt. Juliet, TN			
V-2 (1-2) L1263783-08 Solid			Collected by	Collected date/time 09/15/20 00:00	Received da 09/18/20 09				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location			
Total Solids by Method 2540 G-2011	WG1545817	1	09/19/20 18:06	09/19/20 18:24	KBC	Mt. Juliet, TN			
Vet Chemistry by Method 300.0	WG1545923	1	09/20/20 08:12	09/20/20 14:58	ST	Mt. Juliet, TN			
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1545900	25	09/15/20 00:00	09/19/20 23:54	DWR	Mt. Juliet, TN			
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1545892	1	09/15/20 00:00	09/19/20 14:13	BMB	Mt. Juliet, TN			
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1545989	1	09/19/20 19:02	09/20/20 06:35	JN	Mt. Juliet, TN			
V-2 (2-3) L1263783-09 Solid			Collected by	Collected date/time 09/15/20 00:00	Received da 09/18/20 09				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location			
Total Solids by Method 2540 G-2011	WG1545817	1	09/19/20 18:06	09/19/20 18:24	KBC	Mt. Juliet, TN			
Net Chemistry by Method 300.0	WG1545923	1	09/20/20 08:12	09/20/20 15:16	ST	Mt. Juliet, TN			
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1545900	25	09/15/20 00:00	09/20/20 00:17	DWR	Mt. Juliet, TN			
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1545892	1	09/15/20 00:00	09/19/20 14:33	BMB	Mt. Juliet, TN			
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1545989	1	09/19/20 19:02	09/20/20 06:50	JN	Mt. Juliet, TN			
V-2 (3-4) L1263783-10 Solid			Collected by	Collected date/time 09/15/20 00:00	Received da 09/18/20 09				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location			
Total Solids by Method 2540 G-2011	WG1545817	1	09/19/20 18:06	09/19/20 18:24	KBC	Mt. Juliet, TN			
Wet Chemistry by Method 300.0	WG1545923	1	09/20/20 08:12	09/20/20 15:34	ST	Mt. Juliet, TN			
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1545904	25.3	09/15/20 00:00	09/19/20 17:22	JAH	Mt. Juliet, TN			
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1545892	1.01	09/15/20 00:00	09/19/20 14:53	BMB	Mt. Juliet, TN			

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1545989

09/19/20 19:02

JN

Mt. Juliet, TN

09/20/20 07:05

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 8015

SAMPLE SUMMARY

V-3 (1-2) L1263783-11 Solid			Collected by	Collected date/time 09/15/20 00:00	Received da 09/18/20 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1545818	1	09/19/20 18:27	09/19/20 18:56	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1545923	1	09/20/20 08:12	09/20/20 15:53	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1545904	25	09/15/20 00:00	09/19/20 17:45	JAH	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1545892	1	09/15/20 00:00	09/19/20 15:13	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1545989	1	09/19/20 19:02	09/20/20 05:36	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
V-3 (2-3) L1263783-12 Solid				09/15/20 00:00	09/18/20 09:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1545818	1	09/19/20 18:27	09/19/20 18:56	KBC	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1545923	1	09/20/20 08:12	09/20/20 16:11	ST	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1545904	25.8	09/15/20 00:00	09/19/20 18:07	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1545892	1.03	09/15/20 00:00	09/19/20 15:33	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1545989	1	09/19/20 19:02	09/20/20 03:38	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
V-3 (3-4) L1263783-13 Solid				09/15/20 00:00	09/18/20 09:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1545818	1	09/19/20 18:27	09/19/20 18:56	KBC	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1545923	1	09/20/20 08:12	09/20/20 16:30	ST	Mt. Juliet, TN

WG1545904

WG1545892

WG1545989

25

1

1

09/15/20 00:00

09/15/20 00:00

09/19/20 19:02

09/19/20 18:30

09/19/20 15:53

09/20/20 03:53

Mt. Juliet, TN

Mt. Juliet, TN

Mt. Juliet, TN

JAH

 BMB

JN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

²To

ONE LAB. NA Page 31 of 203

SAMPLE RESULTS - 01

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.2		1	09/19/2020 18:24	WG1545817

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		10.2	22.2	1	09/20/2020 11:16	WG1545923

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.670	3.08	25	09/19/2020 20:52	WG1545900
(S) a,a,a-Trifluorotoluene(FID)	96.3			77.0-120		09/19/2020 20:52	WG1545900

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

			•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000576	0.00123	1	09/19/2020 11:53	WG1545892
Toluene	U		0.00160	0.00617	1	09/19/2020 11:53	WG1545892
Ethylbenzene	U		0.000909	0.00308	1	09/19/2020 11:53	WG1545892
Total Xylenes	U		0.00109	0.00802	1	09/19/2020 11:53	WG1545892
(S) Toluene-d8	113			75.0-131		09/19/2020 11:53	WG1545892
(S) 4-Bromofluorobenzene	96.1			67.0-138		09/19/2020 11:53	WG1545892
(S) 1,2-Dichloroethane-d4	96.4			70.0-130		09/19/2020 11:53	WG1545892

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.62	<u>J</u>	1.79	4.44	1	09/20/2020 08:18	WG1545989
C28-C40 Oil Range	11.9		0.304	4.44	1	09/20/2020 08:18	WG1545989
(S) o-Terphenyl	69.7			18.0-148		09/20/2020 08:18	WG1545989

ONE LAB. NAT Page 32 of 203

SAMPLE RESULTS - 02

Collected date/time: 09/15/20 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.1		1	09/19/2020 18:24	<u>WG1545817</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	67.0		9.57	20.8	1	09/20/2020 11:35	WG1545923

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.774	3.57	33.3	09/19/2020 21:15	WG1545900
(S) a,a,a-Trifluorotoluene(FID)	96.1			77.0-120		09/19/2020 21:15	WG1545900

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000665	0.00142	1.33	09/19/2020 12:13	WG1545892
Toluene	U		0.00185	0.00712	1.33	09/19/2020 12:13	WG1545892
Ethylbenzene	U		0.00105	0.00357	1.33	09/19/2020 12:13	WG1545892
Total Xylenes	U		0.00125	0.00926	1.33	09/19/2020 12:13	WG1545892
(S) Toluene-d8	113			<i>75.0-131</i>		09/19/2020 12:13	WG1545892
(S) 4-Bromofluorobenzene	93.4			67.0-138		09/19/2020 12:13	WG1545892
(S) 1,2-Dichloroethane-d4	94.3			70.0-130		09/19/2020 12:13	WG1545892

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.18	<u>J</u>	1.68	4.16	1	09/20/2020 07:19	WG1545989
C28-C40 Oil Range	5.26		0.285	4.16	1	09/20/2020 07:19	WG1545989
(S) o-Terphenyl	70.5			18.0-148		09/20/2020 07:19	WG1545989

ONE LAB. NA Page 33 of 203

SAMPLE RESULTS - 03

Collected date/time: 09/15/20 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.8		1	09/19/2020 18:24	<u>WG1545817</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	128		9.51	20.7	1	09/20/2020 12:12	WG1545923

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.691	3.18	30	09/19/2020 21:37	WG1545900
(S) a,a,a-Trifluorotoluene(FID)	96.3			77.0-120		09/19/2020 21:37	WG1545900

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000594	0.00127	1.2	09/19/2020 12:33	WG1545892
Toluene	U		0.00166	0.00637	1.2	09/19/2020 12:33	WG1545892
Ethylbenzene	U		0.000938	0.00318	1.2	09/19/2020 12:33	WG1545892
Total Xylenes	U		0.00113	0.00828	1.2	09/19/2020 12:33	WG1545892
(S) Toluene-d8	111			75.0-131		09/19/2020 12:33	WG1545892
(S) 4-Bromofluorobenzene	92.7			67.0-138		09/19/2020 12:33	WG1545892
(S) 1,2-Dichloroethane-d4	92.2			70.0-130		09/19/2020 12:33	WG1545892

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.67	<u>J</u>	1.66	4.13	1	09/20/2020 08:33	WG1545989
C28-C40 Oil Range	6.14		0.283	4.13	1	09/20/2020 08:33	WG1545989
(S) o-Terphenyl	76.2			18.0-148		09/20/2020 08:33	WG1545989

ONE LAB. NA Page 34 of 203

SAMPLE RESULTS - 04

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.2		1	09/19/2020 18:24	WG1545817

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	971		46.8	102	5	09/20/2020 13:44	WG1545923

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.669	3.08	29.8	09/19/2020 22:00	WG1545900
(S) a,a,a-Trifluorotoluene(FID)	96.1			77.0-120		09/19/2020 22:00	<u>WG1545900</u>

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

9	'	, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000575	0.00123	1.19	09/19/2020 12:53	WG1545892
Toluene	U		0.00160	0.00615	1.19	09/19/2020 12:53	WG1545892
Ethylbenzene	U		0.000907	0.00307	1.19	09/19/2020 12:53	WG1545892
Total Xylenes	U		0.00109	0.00800	1.19	09/19/2020 12:53	WG1545892
(S) Toluene-d8	116			<i>75.0-131</i>		09/19/2020 12:53	WG1545892
(S) 4-Bromofluorobenzene	92.6			67.0-138		09/19/2020 12:53	WG1545892
(S) 1,2-Dichloroethane-d4	93.4			70.0-130		09/19/2020 12:53	WG1545892

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.69	<u>J</u>	1.64	4.07	1	09/20/2020 08:48	WG1545989
C28-C40 Oil Range	10.9		0.279	4.07	1	09/20/2020 08:48	WG1545989
(S) o-Terphenyl	79.6			18.0-148		09/20/2020 08:48	WG1545989

ONE LAB. NA Page 35 of 203

SAMPLE RESULTS - 05

Collected date/time: 09/15/20 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>	
Analyte	%			date / time		
Total Solids	98.0		1	09/19/2020 18:24	WG1545817	

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	379		9.39	20.4	1	09/20/2020 14:02	WG1545923

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.567	2.61	25	09/19/2020 22:23	WG1545900
(S) a,a,a-Trifluorotoluene(FID)	95.8			77.0-120		09/19/2020 22:23	WG1545900

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000487	0.00104	1	09/19/2020 13:13	WG1545892
Toluene	U		0.00136	0.00522	1	09/19/2020 13:13	WG1545892
Ethylbenzene	U		0.000769	0.00261	1	09/19/2020 13:13	WG1545892
Total Xylenes	U		0.000919	0.00678	1	09/19/2020 13:13	WG1545892
(S) Toluene-d8	112			75.0-131		09/19/2020 13:13	WG1545892
(S) 4-Bromofluorobenzene	85.5			67.0-138		09/19/2020 13:13	WG1545892
(S) 1,2-Dichloroethane-d4	92.9			70.0-130		09/19/2020 13:13	WG1545892

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.64	4.08	1	09/20/2020 06:06	WG1545989
C28-C40 Oil Range	0.675	<u>J</u>	0.280	4.08	1	09/20/2020 06:06	WG1545989
(S) o-Terphenyl	84.9			18.0-148		09/20/2020 06:06	WG1545989

ONE LAB. NA Page 36 of 203

SAMPLE RESULTS - 06

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	69.7		1	09/19/2020 18:24	WG1545817

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	879		13.2	28.7	1	09/20/2020 14:21	WG1545923

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		1.03	4.75	25	09/19/2020 23:08	WG1545900
(S) a,a,a-Trifluorotoluene(FID)	95.8			77.0-120		09/19/2020 23:08	<u>WG1545900</u>

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

•									
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>		
Analyte	mg/kg		mg/kg	mg/kg		date / time			
Benzene	U		0.000887	0.00190	1	09/19/2020 13:33	WG1545892		
Toluene	U		0.00247	0.00949	1	09/19/2020 13:33	WG1545892		
Ethylbenzene	U		0.00140	0.00475	1	09/19/2020 13:33	WG1545892		
Total Xylenes	U		0.00167	0.0123	1	09/19/2020 13:33	WG1545892		
(S) Toluene-d8	109			75.0-131		09/19/2020 13:33	WG1545892		
(S) 4-Bromofluorobenzene	88.1			67.0-138		09/19/2020 13:33	WG1545892		
(S) 1,2-Dichloroethane-d4	93.4			70.0-130		09/19/2020 13:33	WG1545892		

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		2.31	5.74	1	09/20/2020 06:20	WG1545989
C28-C40 Oil Range	1.21	<u>J</u>	0.393	5.74	1	09/20/2020 06:20	WG1545989
(S) o-Terphenyl	80.2			18.0-148		09/20/2020 06:20	WG1545989

SAMPLE RESULTS - 07

ONE LAB. NA Page 37 of 203

Collected date/time: 09/15/20 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.5		1	09/19/2020 18:24	WG1545817

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	381		46.7	102	5	09/20/2020 14:39	WG1545923

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.603	2.78	27	09/19/2020 23:31	WG1545900
(S) a,a,a-Trifluorotoluene(FID)	95.3			77.0-120		09/19/2020 23:31	<u>WG1545900</u>

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)						
	result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000519	0.00111	1.08	09/19/2020 13:53	WG1545892
Toluene	U		0.00144	0.00556	1.08	09/19/2020 13:53	WG1545892
Ethylbenzene	U		0.000819	0.00278	1.08	09/19/2020 13:53	WG1545892
Total Xylenes	U		0.000977	0.00722	1.08	09/19/2020 13:53	WG1545892
(S) Toluene-d8	109			75.0-131		09/19/2020 13:53	WG1545892
(S) 4-Bromofluorobenzene	93.0			67.0-138		09/19/2020 13:53	WG1545892
(S) 1,2-Dichloroethane-d4	96.4			70.0-130		09/19/2020 13:53	WG1545892

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.01	<u>J</u>	1.63	4.06	1	09/20/2020 08:04	WG1545989
C28-C40 Oil Range	5.58		0.278	4.06	1	09/20/2020 08:04	WG1545989
(S) o-Terphenyl	82.6			18.0-148		09/20/2020 08:04	WG1545989

ConocoPhillips - Tetra Tech

Collected date/time: 09/15/20 00:00

ONE LAB. NA Page 38 of 203

SAMPLE RESULTS - 08

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.0		1	09/19/2020 18:24	<u>WG1545817</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	92.7		9.79	21.3	1	09/20/2020 14:58	WG1545923

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.614	2.83	25	09/19/2020 23:54	WG1545900
(S) a,a,a-Trifluorotoluene(FID)	95.5			77.0-120		09/19/2020 23:54	WG1545900

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	1 \	, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Senzene	U		0.000528	0.00113	1	09/19/2020 14:13	WG1545892
oluene	U		0.00147	0.00566	1	09/19/2020 14:13	WG1545892
hylbenzene	U		0.000834	0.00283	1	09/19/2020 14:13	WG1545892
tal Xylenes	U		0.000995	0.00735	1	09/19/2020 14:13	WG1545892
S) Toluene-d8	109			75.0-131		09/19/2020 14:13	WG1545892
S) 4-Bromofluorobenzene	87.1			67.0-138		09/19/2020 14:13	WG1545892
S) 1,2-Dichloroethane-d4	95.1			70.0-130		09/19/2020 14:13	WG1545892

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.71	4.25	1	09/20/2020 06:35	WG1545989
C28-C40 Oil Range	1.50	<u>J</u>	0.291	4.25	1	09/20/2020 06:35	WG1545989
(S) o-Terphenyl	75.5			18.0-148		09/20/2020 06:35	WG1545989

14 of 31

ONE LAB. NA Page 39 of 203

SAMPLE RESULTS - 09

Collected date/time: 09/15/20 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	59.8		1	09/19/2020 18:24	<u>WG1545817</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	436		15.4	33.5	1	09/20/2020 15:16	WG1545923

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		1.28	5.91	25	09/20/2020 00:17	WG1545900
(S) a,a,a-Trifluorotoluene(FID)	95.7			77.0-120		09/20/2020 00:17	WG1545900

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	1 \	, ,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.00110	0.00236	1	09/19/2020 14:33	WG1545892
Toluene	U		0.00307	0.0118	1	09/19/2020 14:33	WG1545892
Ethylbenzene	U		0.00174	0.00591	1	09/19/2020 14:33	WG1545892
Total Xylenes	U		0.00208	0.0154	1	09/19/2020 14:33	WG1545892
(S) Toluene-d8	111			<i>75.0-131</i>		09/19/2020 14:33	WG1545892
(S) 4-Bromofluorobenzene	92.5			67.0-138		09/19/2020 14:33	WG1545892
(S) 1,2-Dichloroethane-d4	92.2			70.0-130		09/19/2020 14:33	WG1545892

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		2.69	6.69	1	09/20/2020 06:50	WG1545989
C28-C40 Oil Range	3.61	<u>J</u>	0.458	6.69	1	09/20/2020 06:50	WG1545989
(S) o-Terphenyl	92.9			18.0-148		09/20/2020 06:50	WG1545989

ONE LAB. NA Page 40 of 203

SAMPLE RESULTS - 10

Collected date/time: 09/15/20 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	88.2		1	09/19/2020 18:24	WG1545817

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	322		10.4	22.7	1	09/20/2020 15:34	WG1545923

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.695	3.20	25.3	09/19/2020 17:22	WG1545904
(S) a,a,a-Trifluorotoluene(FID)	99.1			77.0-120		09/19/2020 17:22	WG1545904

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000597	0.00128	1.01	09/19/2020 14:53	WG1545892
Toluene	U		0.00166	0.00639	1.01	09/19/2020 14:53	WG1545892
Ethylbenzene	U		0.000942	0.00320	1.01	09/19/2020 14:53	WG1545892
Total Xylenes	U		0.00113	0.00830	1.01	09/19/2020 14:53	WG1545892
(S) Toluene-d8	112			75.0-131		09/19/2020 14:53	WG1545892
(S) 4-Bromofluorobenzene	92.2			67.0-138		09/19/2020 14:53	WG1545892
(S) 1,2-Dichloroethane-d4	91.9			70.0-130		09/19/2020 14:53	WG1545892

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.90	<u>J</u>	1.82	4.53	1	09/20/2020 07:05	WG1545989
C28-C40 Oil Range	8.09		0.311	4.53	1	09/20/2020 07:05	WG1545989
(S) o-Terphenyl	83.4			18.0-148		09/20/2020 07:05	WG1545989

Collected date/time: 09/15/20 00:00

ONE LAB. NA Page 41 of 203

SAMPLE RESULTS - 11

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	81.5		1	09/19/2020 18:56	WG1545818

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	237		11.3	24.5	1	09/20/2020 15:53	WG1545923

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.827	3.81	25	09/19/2020 17:45	WG1545904
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120		09/19/2020 17:45	<u>WG1545904</u>

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	'	, , ,	<u></u>				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000711	0.00152	1	09/19/2020 15:13	WG1545892
Toluene	U		0.00198	0.00762	1	09/19/2020 15:13	WG1545892
Ethylbenzene	U		0.00112	0.00381	1	09/19/2020 15:13	WG1545892
Total Xylenes	U		0.00134	0.00990	1	09/19/2020 15:13	WG1545892
(S) Toluene-d8	113			75.0-131		09/19/2020 15:13	WG1545892
(S) 4-Bromofluorobenzene	91.5			67.0-138		09/19/2020 15:13	WG1545892
(S) 1,2-Dichloroethane-d4	89.6			70.0-130		09/19/2020 15:13	WG1545892

Sc

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.45	<u>J</u>	1.97	4.91	1	09/20/2020 05:36	WG1545989
C28-C40 Oil Range	2.15	<u>J</u>	0.336	4.91	1	09/20/2020 05:36	WG1545989
(S) o-Terphenyl	77.7			18.0-148		09/20/2020 05:36	WG1545989

17 of 31

ONE LAB. NA Page 42 of 203

SAMPLE RESULTS - 12

Collected date/time: 09/15/20 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.9		1	09/19/2020 18:56	WG1545818

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	514		9.49	20.6	1	09/20/2020 16:11	WG1545923

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.595	2.74	25.8	09/19/2020 18:07	WG1545904
(S) a,a,a-Trifluorotoluene(FID)	99.6			77.0-120		09/19/2020 18:07	WG1545904

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000511	0.00109	1.03	09/19/2020 15:33	WG1545892
Toluene	U		0.00142	0.00547	1.03	09/19/2020 15:33	WG1545892
Ethylbenzene	U		0.000806	0.00274	1.03	09/19/2020 15:33	WG1545892
Total Xylenes	U		0.000963	0.00712	1.03	09/19/2020 15:33	WG1545892
(S) Toluene-d8	122			75.0-131		09/19/2020 15:33	WG1545892
(S) 4-Bromofluorobenzene	88.2			67.0-138		09/19/2020 15:33	WG1545892
(S) 1,2-Dichloroethane-d4	92.4			70.0-130		09/19/2020 15:33	WG1545892

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.13	1	09/20/2020 03:38	WG1545989
C28-C40 Oil Range	0.846	<u>J</u>	0.283	4.13	1	09/20/2020 03:38	WG1545989
(S) o-Terphenyl	85.8			18.0-148		09/20/2020 03:38	WG1545989

ONE LAB. NA Page 43 of 203

SAMPLE RESULTS - 13

WG1545818

Collected date/time: 09/15/20 00:00

Analyte

Total Solids

Total Solids by Method 2540 G-2011

 			_	-	_
L	1263	783			

Analysis	ysis <u>Batch</u>
ate / time	

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	472		9.79	21.3	1	09/20/2020 16:30	WG1545923

09/19/2020 18:56

Volatile Organic Compounds (GC) by Method 8015D/GRO

Result

%

93.9

Qualifier

Dilution

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.614	2.83	25	09/19/2020 18:30	WG1545904
(S) a,a,a-Trifluorotoluene(FID)	99.6			77.0-120		09/19/2020 18:30	WG1545904

СQс

GI

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•	,	, ,	•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000528	0.00113	1	09/19/2020 15:53	WG1545892
Toluene	U		0.00147	0.00566	1	09/19/2020 15:53	WG1545892
Ethylbenzene	U		0.000834	0.00283	1	09/19/2020 15:53	WG1545892
Total Xylenes	U		0.000995	0.00735	1	09/19/2020 15:53	WG1545892
(S) Toluene-d8	111			75.0-131		09/19/2020 15:53	WG1545892
(S) 4-Bromofluorobenzene	80.5			67.0-138		09/19/2020 15:53	WG1545892
(S) 1,2-Dichloroethane-d4	97.7			70.0-130		09/19/2020 15:53	WG1545892

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.71	4.26	1	09/20/2020 03:53	WG1545989
C28-C40 Oil Range	1.36	<u>J</u>	0.292	4.26	1	09/20/2020 03:53	WG1545989
(S) o-Terphenyl	74.5			18.0-148		09/20/2020 03:53	WG1545989

DATE/TIME: Released to Imaging: 1/29/2021 12:58:05 PM PROJECT: SDG: 212C-MD-02318 L1263783 09/21/20 16:32 ConocoPhillips - Tetra Tech

ONE LAB. NA Page 44 of 203

Total Solids by Method 2540 G-2011 <u>L1263783-01,02,03,04,05,06,07,08,09,10</u>

•

Method Blank (MB)

Total Solids

²Tc

³Ss

L1263783-01 Original Sample (OS) • Duplicate (DUP)

0.000

(OS) L1263783-01 09/19/20 18:24 • (DUP) R3572639-3 09/19/20 18:24

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	90.2	90.0	1	0.229		10

⁴Cn

Laboratory Control Sample (LCS)

(LCS) R3572639-2 09/19/20 18:24

(LC3) R3372039-2 09/19/2		LCS Result	LCS Rec.	Rec. Limits	LCS Quali
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

ONE LAB. NA Page 45 of 203

Total Solids by Method 2540 G-2011

L1263783-11,12,13

Method Blank (MB)

(MB) R3572643-1 0	9/19/20 18:56			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

Ss

L1263783-11 Original Sample (OS) • Duplicate (DUP)

(OS) L1263783-11 09/19/20 18:56 • (DUP) R3572643-3 09/19/20 18:56)S) L1263783-11 O)9/19/20 18:56 •	(DUP) R3572643-3	09/19/20 18:56
---	-------------------	------------------	------------------	----------------

(00) 11200700 11 00/10/20	Original Result	. ,			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%			%		%
Total Solids	81.5	81.5	.5 1	1	0.0540		10

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3572643-2 09/19/20 18:56

(LCS) R3572643-2 09/19/	20 18:56 Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	%	%	%	%
Total Solids	50.0	50.0	100	85.0-115

ONE LAB. NA Page 46 of 203

Wet Chemistry by Method 300.0

L1263783-01,02,03,04,05,06,07,08,09,10,11,12,13

Method Blank (MB)

(MB) R3572490-1 09/20)/20 09:28			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1263783-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1263783-02	09/20/20 11:35 • (DUP)	R3572490-3	09/20/20	11:53
	Original Result	DUP Result	Dilution	DUP RPD

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	67.0	56.3	1	17.4		20

L1263995-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1263995-04 09/20/20 18:02 • (DUP) R3572490-6 09/20/20 18:20

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	7710	7010	20	9.58		20

Sc

Laboratory Control Sample (LCS)

,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	210	105	90.0-110	

L1263783-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1263783-03 09/20/20 12:12 • (MS) R3572490-4 09/20/20 12:30 • (MSD) R3572490-5 09/20/20 12:49

(03) [1203/03-03 03/.	33) [1203703-03 03/20/20 12.12 * [M3] [0372430-4 03/20/20 12.30 * [M3D] [0372430-3 03/20/20 12.43													
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%		
Chloride	517	128	660	667	103	104	1	80.0-120			0.919	20		

L1263783-01,02,03,04,05,06,07,08,09

Volatile Organic Compounds (GC) by Method 8015D/GRO

Method Blank (MB)

(MB) R3572340-2 09/19/2	20 16:06			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	96.4			77.0-120

ONE LAB. NA Page 47 of 203

Laboratory Control Sample (LCS)

(LCS) R3572340-1 09/19/20 14:57 Spike Amount LCS Result LCS Rec. Rec. Limits LCS Qualifier Analyte mg/kg % % TPH (GC/FID) Low Fraction 5.50 5.35 97.3 72.0-127										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
TPH (GC/FID) Low Fraction	5.50	5.35	97.3	72.0-127						
(S) a,a,a-Trifluorotoluene(FID)			105	77.0-120						

L1263783-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1263783-09 09/20/20 00:17 • (MS) R3572340-3 09/20/20 00:40 • (MSD) R3572340-4 09/20/20 01:03

(03) 11203/03-03 03/20	, ,	Original Result (dry)		,	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
TPH (GC/FID) Low Fraction	317	U	255	258	80.6	81.3	25	10.0-151			0.922	28	
(S)					104	104		77.0-120					

ONE LAB. NA Page 48 of 203

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1263783-10,11,12,13

Method Blank (MB)

(MB) R3572387-2 09/19/2	20 16:25			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3572387-1 09/19/2	(LCS) R3572387-1 09/19/20 15:39													
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier									
Analyte	mg/kg	mg/kg	%	%										
TPH (GC/FID) Low Fraction	5.50	6.18	112	72.0-127										
(S) a,a,a-Trifluorotoluene(FID)			106	77.0-120										

L1262018-15 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) £1262018-15 09/20/2	20 00:41 • (MS)	R35/238/-3 0	9/20/20 01:03	3 • (MSD) R35/2	2387-4 09/20/	20 01:25						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	112	4.61	102	96.8	87.0	82.3	25	10.0-151			5.23	28
(S) a.a.a-Trifluorotoluene(FID)					101	101		77.0-120				

ONE LAB. NA Page 49 of 203

Volatile Organic Compounds (GC/MS) by Method 8260B

L1263783-01,02,03,04,05,06,07,08,09,10,11,12,13

Method Blank (MB)

(MB) R3572305-2 09/19/2	20 11:00				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	102			75.0-131	
(S) 4-Bromofluorobenzene	111			67.0-138	
(S) 1,2-Dichloroethane-d4	99.3			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3572305-1 09/19/2	20 10:00				•
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	l
Benzene	0.125	0.121	96.8	70.0-123	
Ethylbenzene	0.125	0.123	98.4	74.0-126	
Toluene	0.125	0.129	103	75.0-121	
Xylenes, Total	0.375	0.372	99.2	72.0-127	
(S) Toluene-d8			110	75.0-131	
(S) 4-Bromofluorobenzene			97.8	67.0-138	
(S) 1 2-Dichloroethane-d4			96.5	70 0-130	

L1262647-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1262647-03 09/19/2	OS) L1262647-03 09/19/20 16:54 • (MS) R3572305-3 09/19/20 18:34 • (MSD) R3572305-4 09/19/20 18:54													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%		
Benzene	0.0975	U	0.0601	0.0745	61.6	76.4	1	10.0-149			21.4	37		
Ethylbenzene	0.0975	U	0.0672	0.0776	68.9	79.6	1	10.0-160			14.4	38		
Toluene	0.0975	U	0.0870	0.0827	89.2	84.8	1	10.0-156			5.07	38		
Xylenes, Total	0.293	U	0.223	0.248	76.1	84.6	1	10.0-160			10.6	38		
(S) Toluene-d8					129	107		75.0-131						
(S) 4-Bromofluorobenzene					114	102		67.0-138						
(S) 1,2-Dichloroethane-d4					104	100		70.0-130						

Semi-Volatile Organic Compounds (GC) by Method 8015

L1263783-01,02,03,04,05,06,07,08,09,10,11,12,13

Method Blank (MB)

(MB) R3572389-1 09/20	0/20 02:39			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	74.6			18.0-148

ONE LAB. NA Page 50 of 203

Laboratory Control Sample (LCS)

(LCS) R3572389-2 09/2	0/20 02:54				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	31.2	62.4	50.0-150	
(S) o-Terphenyl			72.5	18.0-148	

L1263783-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1263783-02 09/20/20 07:19 • (MS) R3572389-3 09/20/20 07:34 • (MSD) R3572389-4 09/20/20 07:49

(03) 11203703 02 03/2	•	Original Result (dry)		. ,	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	51.0	3.18	30.8	32.7	54.2	57.3	1	50.0-150			5.90	20
(S) o-Terphenyl					53.8	61.4		18.0-148				

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The identification of the analyte is acceptable; the reported value is an estimate.

1 Cp

2_

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Analysis Request of Chain of Custody Record

ρ	777	***	m	
in	ü			
	16	g,	ĸ.	
	B	€.	۳	

901 West Wall Street, Suite 100 Midland, Texas 79701

						Fax	(432) 682-3	946		_											7		
Client Name:	Conoco Phillips	Site Manage	r:	Chri	stian	Llull								(0:			LYS							
Project Name:	MCA 274 Wellhead Release	Contact Info				ristiai 512) 3		@tetrate	ech.co	m				(CII	rcle	or	Spe	CIT	y M -	ethe	od	No.)		
Project Location: county, state)	Lea County, New Mexico	Project #:	7	212	C-ME)-023	18				1													
nvoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970)1				7.7				18 °		1										list)		
Receiving Laboratory:	Pace Analytical	Sampler Sig	nature:	- 2	Adria	n Gar	cia			e e		COM C		Se Hg	Se Hg							attached		
Comments: COPTET	FRA Acctnum						ŕ		3		8260B	35)	0.0	d Cr Pb	Cd Cr Pt		4	C/625			DS	(see		
		SAMP	LING	MA	TRIX	PR		RVATIV		(N/K)	BTEX	Ext to C3	0.00	As Ba	As Ba	atiles	8260B / 624	Vol. 8270C	80		ate TD	Chemistr	Balance	
LAB#	SAMPLE IDENTIFICATION	YEAR: 2020		-					AINE		218		- 1		als Ag	ni Vol	1000	emi. V	8082 / 6	(Asbestos)	Sulf.	/ater	C	8
(LAB USE)		DATE	TIME	WATER	SOIL	HCL	HNO3	NONE	# CONTAINERS	FILTERED	BTEX 803	TPH TX1005	PAH 8270C	Total Metals	CLP Metals A	CLP Semi	ACI GC/MS Vol.	GC/MS Semi.	CB's 80	PLM (Asb	Chloride 3	General Water Chemistry	Anion/Cation I	4
L126378301	H-1 (0-1)	9/15/2020			X			x	1	N	-)	(E O		ш 2		X		4 1	1
02	H-2 (0-1)	9/15/2020			X			X I	1	N	X)	(\Box	X	\forall	2.1	
03	H-3 (0-1)	9/15/2020	The second		X		1	K	1	N	X)	<								X		1	
04	H-4 (0-1)	9/15/2020			X			X	1	N	X)	(X			
09	V-1 (1-2)	9/15/2020	-16		X		1	<	1	N	Х)	(X			
06	V-1 (2-3)	9/15/2020	7		X			(1	N	X)	(П				П			X		4	
07	V-1 (3-4)	9/15/2020	_i -		X			(1	N	Х)	(5						X	П	= 16	
08	V-2 (1-2)	9/15/2020			X		3		1	N	X	>	(X			
09	V-2 (2-3)	9/15/2020			X		2		1	N	X	>	(X			
10	V-2 (3-4)	9/15/2020			X		3		1	N	X	>	<			1					X			
Relinquished by:	Date: Time: 9/16/20 1500	Received by:				Da	ite:	Time): 			LAE	B US		R	EMA	RKS: Stand	ard		<u>_</u>				
Relinquished by:	Date; Time:	Received by:				Da	ite:	Time):		San	nple T	empe	rature	9		RUSH:			`	/	3 hr. 7	72 hr.	
Relinquished by:	Date: Time:	Received by:	16/1	Tue	h		ite:	Time		79.4	50						Rush (Report		
	1912 0812 9847	ORIGINA	L COPY					CREE	ja.	1	(Cir	rcle) I	HANE	DEL	IVER	ED I	EDEX	UF	S T	rackin	g #: _			

Released to Imaging: 1/29/2021 12:58:05 PM

Page: 2 of 2

TE .	Tetra Tech, Inc.				901	Mic	dland el (4	d, Tex 32) 6	treet, xas 79 682-45 682-39	59	00							* *									
Client Name:	Conoco Phillips	Site Manage	er:	Ch	ristiar	n Llu								4		2		VAL									
Project Name:	MCA 274 Wellhead Release	Contact Info):		nail: cl					ch.cor	n			Ī	(Ci	ircl	e o	rS	pe 	cify	/ M	eth 	od	No	.) 		
Project Location: (county, state)	Lea County, New Mexico	Project #:		21	2C-MI	D-02	318																				
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79	701				ī				1		1		6										ist)			
Receiving Laboratory:	Pace Analytical	Sampler Sig	nature:		Adria	an Ga	arcia					1		- MRC	se Hg	Se Hg								ached			
Comments: COPTET	RA Acctnum		-			*						8260B	C35)	8015M (GRO - DRO - ORO - MHO)	Ag As Ba Cd Cr Pb Se Hg	Ag As Ba Cd Cr Pb			24	8270C/625				Chloride Sulfate TDS Seneral Water Chemistry (see attached list)			5.4
		SAMP	LING	M	ATRIX	X P		ERV.	ATIVE OD		(Y/N)	BTEX	xt to C	RO-D	As Ba	As Ba	tiloe	Salles	8260B / 624	01. 827	80			te T	ance		П
LAB#	SAMPLE IDENTIFICATION	YEAR: 2020		1		T				AINE	(Y)	8021B	TX1005 (Ext to	D W		als Ag	atiles	Seriii voigilies	ol. 826	Semi. Vol.	8082 / 608	(Asbestos)	300.0	Sulfate /ater Che	on Ba	н н	
(LAB USE)		DATE	TIME	WATER	SOIL	HCL	HNO3	ICE	NONE	# CONTAINERS	FILTERED	BTEX 803		TPH 8015	_	0	TCLP Volatil		GC/MS Vol.		NORM	PLM (Asb	Chloride 3	Chloride General W	Anion/Cation Balance	TPH 8015R	НОГР
L1263783-11	V-3 (1-2)	9/15/2020			X			Х	2	1	N	X		X									X				X
12	V-3 (2-3)	9/15/2020	\$ W.		Х			X		1	N	Х		X									X			1	
13	V-3 (3-4)	9/15/2020	, with		Х			Х		1	N	Х		X					Tayle.		2 1		X				Х
																						37.					
							-		+	-		H		+			-			-	-	- 24					\mathbb{H}
	Dolar 9/16/25 1500	Received by:					Date:		Time					BU	SE Y		REM	St	S: anda	ırd							
Relinquished by:	Date: Time:	Received by:					ate:		Time			San	nple 1	remp	eratu	re		Ru				24	hr.	48 hr.	72 h	nr.	
Relinquished by:	Date: Time:	Received by:	Mu	ill	1	00	ate:	1	Time	09	30													Repo	rt		7
And the second s	10-1-0445	ORIGINA						1	L	75	6	(Cir	cle)	HAN	D DE	LIVE	RED	FEI	DEX	UP	S T	racki	ng #:	di			
Released to Imaging	/922 0812 944 g: 1/29/2021 12:58:05 PM		2=24	4			R/	ND S	CRE	EN:	<0.5	mR	Apr	1		ru.							. 50				

Pace Analytical National Center for Testing & Innov Cooler Receipt Form		
Client: COPTETRA	L1263	3783
Cooler Received/Opened On: 9 / / / 20 Temperature:	2.4	1
Received By: Gisely Quiles		3-9-1-11-19
Signature: Wisile Philes		
Receipt Check List NP	Yes	No
COC Seal Present / Intact?		
COC Signed / Accurate?	/	
Bottles arrive intact?	/	* 1-25 - 40
Correct bottles used?	/	
Sufficient volume sent?	1	
If Applicable		
VOA Zero headspace?	April of the state of	1 1 1 1
Preservation Correct / Checked?		

ANALYTICAL REPORT

September 30, 2020

³Ss

⁴Cn

[°]Sr

[°]Qc

[']Gl

Å۱

Sc

ConocoPhillips - Tetra Tech

Sample Delivery Group: L1266927

Samples Received: 09/26/2020

Project Number: 212C-MD-02318

Description: MCA 274 Wellhead Release
Site: LEA COUNTY, NEW MEXICO

Report To: Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Chris McCord
Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace
Analytical Malaronia is performed per guidance provided in laboratory. Standard operating provides ENV-SOP-MTLL-0067 and ENV-SOP-MTLL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
H-5 (0-1) L1266927-01	5
H-6 (0-1) L1266927-02	6
H-7 (0-1) L1266927-03	7
Qc: Quality Control Summary	8
Total Solids by Method 2540 G-2011	8
GI: Glossary of Terms	9
Al: Accreditations & Locations	10
Sc: Sample Chain of Custody	11

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
H-5 (0-1) L1266927-01 Solid			Adrian Garcia	09/24/20 13:00	09/26/20 10	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1550558	1	09/28/20 13:02	09/28/20 13:10	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1550043	1	09/27/20 10:37	09/27/20 20:45	MCG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
H-6 (0-1) L1266927-02 Solid			Adrian Garcia	09/24/20 13:50	09/26/20 10	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1550558	1	09/28/20 13:02	09/28/20 13:10	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1550043	1	09/27/20 10:37	09/27/20 20:55	MCG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
H-7 (0-1) L1266927-03 Solid			Adrian Garcia	09/24/20 14:00	09/26/20 10	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1550558	1	09/28/20 13:02	09/28/20 13:10	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1550043	1	09/27/20 10:37	09/27/20 21:04	MCG	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

SAMPLE RESULTS - 01 L1266927

ONE LAB. NA Page 60 of 203

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

13.1

Qualifier

J

MDL (dry)

mg/kg

9.27

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	99.3		1	09/28/2020 13:10	WG1550558

Dilution

Analysis

date / time

09/27/2020 20:45

Batch

WG1550043

RDL (dry)

mg/kg

20.1

Ss

ONE LAB. NA Page 61 of 203 SAMPLE RESULTS - 02

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	99.6		1	09/28/2020 13:10	WG1550558

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	74.3		9.23	20.1	1	09/27/2020 20:55	WG1550043

SAMPLE RESULTS - 03

ONE LAB. NA Page 62 of 203

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	91.8		1	09/28/2020 13:10	WG1550558

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	171		10.0	21.8	1	09/27/2020 21:04	WG1550043

ONE LAB. NA Page 63 of 203

L1266927-01,02,03

Total Solids by Method 2540 G-2011

Total Solids

Method Blan	k (MB)						
(MB) R3575529-1	09/28/20 13:10						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	%		%	%			

Ss

L1266927-03 Original Sample (OS) • Duplicate (DUP)

0.000

(OS) L1266927-03	09/28/20 13:10 •	(DUP) R3575529-3	09/28/20 13:10

(00) 11200327 00 03/20/	Original Result				DUP RPD	DUP Qualifier	DUP RPD Limits
nalyte	%	%			%		%
otal Solids	91.8	91.9	1.9	1	0.110		10

Laboratory Control Sample (LCS)

(LCS) R3575529-2	09/28/20 13:10
------------------	----------------

(LCS) R3575529-2 09/28	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	200 444
Total Solids	50.0	50.0	100	85.0-115	

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resureported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The identification of the analyte is acceptable; the reported value is an estimate.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample interjut, Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina 1	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Received by OCD: 11/6/2020 1:39:16 PM
Analysis Request of Chain of Custody Record

Page 66 of 203

Page	:	1	of	1	

TE	Tetra Tech, Inc.				901	Midl	and I (43	32) 6	treet, 5 xas 79 82-45 882-39	701 59	00				L	.12	6	6	72	27							
Client Name:	Conoco Phillips	Site Manage	er:	Ch	ristian	Llull						Γ									REQ						
Project Name:	MCA 274 Wellhead Release	Contact Info	:		nail: ch				etrated	ch.com	1	1	1	1	(Cii	rcle	0	rS	pe	CITY	/ IVI	eth	100	l No).) 		ī
Project Location: (county, state)	Lea County, New Mexico	Project #:		212	2C-MI	0-023	18					11															
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701			á								11												(40)	lion		
Receiving Laboratory	r: Pace Analytical	Sampler Sig	ınature:		Adria	ın Ga	rcia					1	NBO C		Se Hg	Se Hg		17						popor	donne		
Comments: COPTE	ETRA Acctnum		- 3	N. S.								8260B	(9)		d Cr Pb	Cd Cr Pb			4	8270C/625	18.	e F		S) (ccc +		
24		SAMP	LING	M	ATRI)	X PF		ERV	ATIVE		î	BTEX	ext to C3		As Ba C	As Ba	tiles		30B / 62		80			ite TDS	lance		
LAB#	SAMPLE IDENTIFICATION	YEAR: 2020		EH		T			ш	CONTAINERS	FILTERED (Y/N)	8021B	FPH TX1005 (Ext to C35)	8270C	otal Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Metals Ag As Ba Cd Cr Pb Se Hg	Volatiles Semi Volatiles		GC/MS Vol. 8260B / 624	S Semi. Vol.	CB's 8082 / 608	PLM (Asbestos)	de 300.0	Chloride Sulfate TDS	on/Cation Balance	8015R	- 667
(LAB USE)		DATE	TIME	WATER	SOIL	HCL	HNO	ICE	NONE	00 #	FILTE	BTEX	TPH	PAH	Total	TCLP	101	PG.	GC/M	GC/MS	PCB's	PLM (Chloride	Chloride	Anion/	TPH 8	HOLD
10000	H-5 (0-1)	9/24/2020	1300		X			Х		1	N												Х		7	127	-0
VANA COM	H-6 (0-1)	9/24/2020	1350		X			Х	100	1	N			1			4						Х		150	-	02
Service and	H-7 (0-1)	9/24/2020	1400		Х			Х		1	N				Ц			Er			895		X	A STATE OF	-	1	03
Product F							1	Н							П	1	1	1	Ш	Ц	4	_					- 8
				1	Ш							Ц	1	\perp	Ц	1	\perp	1	Ц	Ц	_	1	Ц			Ц	\perp
			- 1	1	Ш	1 3	a.	1		_		Ш	1		Ц	1	\perp			Ц		1	Ц				_
-						_	L					Ш	1	1	Ц	1	1									Ц	
					Ш							Ш														-	
200				1								Ц	\perp		Ц	1	1			Ц	\perp		Ш		1100		
in the second	7																										
Relinquished by:	Date: Time: 9/25/20 B':0 Date: Time:	Received by	Li	(\mathcal{I}	90	2 Date	5.2	Time:	130	م	10		NL	Υ	1		_	anda		ne Da	y 24	hr.	8 hr	. 721	hr.	
Relinquished by:	7-2520 14:35 Date: Time:	Received by	1	T	0	7.2	Sate	2		4:	در	Sam	iple T	empe	eratur	е	_	_			es Aut	_	/				
		1	/			9	12	6/	20	100	6							Sp	ecial	Repo	ort Lin	nits or	TRR	P Rep	ort		
	C192	ORIGINA	AL COPY			M	PA	3.	8+	1=:	9	(Cir	cle)	HAN	D DE			FE		UP	PS	Track	ling #				

Pace Analytical National Center for Tes		vation	
Cooler Receipt Form	Helannin is deli		858/F ⁶⁷⁻⁵
Client: COPTETRA		L12469	27
Cooler Received/Opened On: 9 / 26 / 20 T	emperature:	0.900	
Received By: LUCAS GREEN			
Signature:			
[1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2		Vec	No
Receipt Check List	NP	Yes	No
COC Seal Present / Intact?			No. of Management of the Control of
COC Signed / Accurate?			
Bottles arrive intact?			
Correct bottles used?			
Sufficient volume sent?			
If Applicable			
VOA Zero headspace?			
Preservation Correct / Checked?			新型 。特别

Ss

Cn

Sr

[°]Qc

Gl

ΑI

Sc

ANALYTICAL REPORT

October 22, 2020

ConocoPhillips - Tetra Tech

Sample Delivery Group: L1275172

Samples Received: 10/20/2020

Project Number: 212C-MD-02318

Description: MCA 274 Wellhead Release

Site: LEA COUNTY, NEW MEXICO

Report To: Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
FS-1 (1') L1275172-01	6
FS-1 (1') L1275172-02	7
ESW-1 L1275172-03	8
ESW-1 L1275172-04	9
ESW-2 L1275172-05	10
ESW-2 L1275172-06	11
WSW-1 L1275172-07	12
WSW-1 L1275172-08	13
WSW-2 L1275172-09	14
WSW-2 L1275172-10	15
WSW-3 L1275172-11	16
WSW-3 L1275172-12	17
Qc: Quality Control Summary	18
Total Solids by Method 2540 G-2011	18
Wet Chemistry by Method 300.0	19
Volatile Organic Compounds (GC) by Method 8015D/GRO	20
Volatile Organic Compounds (GC/MS) by Method 8260B	21
Semi-Volatile Organic Compounds (GC) by Method 8015	22
GI: Glossary of Terms	23
Al: Accreditations & Locations	24

Sc: Sample Chain of Custody

25

SAMPLE SUMMARY

FS-1 (1') L1275172-01 Solid			Collected by Joe Tyler	Collected date/time 10/19/20 13:00	Received da 10/20/20 08		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time	·		
Total Solids by Method 2540 G-2011	WG1562125	1	10/20/20 12:08	10/20/20 12:15	MT	Mt. Juliet, TN	
Wet Chemistry by Method 300.0	WG1561847	1	10/20/20 14:13	10/20/20 16:06	LBR	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	te/time	
FS-1 (1') L1275172-02 Solid			Joe Tyler	10/19/20 13:00	10/20/20 08	:45	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Total Solids by Method 2540 G-2011	WG1562125	1	10/20/20 12:08	10/20/20 12:15	JAV	Mt. Juliet, TN	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1562426	1	10/20/20 15:33	10/21/20 05:29	ADM	Mt. Juliet, TN	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1562423	1	10/20/20 15:33	10/21/20 02:13	ACG	Mt. Juliet, TN	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1562190	1	10/20/20 16:42	10/21/20 04:52	DMG	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	te/time	
ESW-1 L1275172-03 Solid			Joe Tyler	10/19/20 13:10	10/20/20 08	:45	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Total Solids by Method 2540 G-2011	WG1562125	1	10/20/20 12:08	10/20/20 12:15	MT	Mt. Juliet, TN	
Wet Chemistry by Method 300.0	WG1561847	1	10/20/20 14:13	10/20/20 16:15	LBR	Mt. Juliet, TN	
			Collected by	Collected date/time	Received date/time		
ESW-1 L1275172-04 Solid			Joe Tyler	10/19/20 13:10	10/20/20 08	:45	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Total Solids by Method 2540 G-2011	WG1562125	1	10/20/20 12:08	10/20/20 12:15	JAV	Mt. Juliet, TN	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1562426	1	10/20/20 15:33	10/21/20 05:49	ADM	Mt. Juliet, TN	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1562423	1	10/20/20 15:33	10/21/20 02:33	ACG	Mt. Juliet, TN	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1562190	1	10/20/20 16:42	10/21/20 05:05	DMG	Mt. Juliet, TN	
			Collected by	Collected date/time			
ESW-2 L1275172-05 Solid			Joe Tyler	10/19/20 13:20	10/20/20 08	:45	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Total Solids by Method 2540 G-2011	WG1562125	1	10/20/20 12:08	10/20/20 12:15	MT	Mt. Juliet, TN	
Wet Chemistry by Method 300.0	WG1561847	1	10/20/20 14:13	10/20/20 16:25	LBR	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da		
ESW-2 L1275172-06 Solid			Joe Tyler	10/19/20 13:20	10/20/20 08	:45	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Total Solids by Method 2540 G-2011	WG1562125	1	10/20/20 12:08	10/20/20 12:15	JAV	Mt. Juliet, TN	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1562426	1	10/20/20 15:33	10/21/20 06:10	ADM	Mt. Juliet, TN	
Valatila Ovacaja Campaunda (CC/MC) bu Mathad 02C0D	WC1EC2422		10/20/20 15.22	10/21/20 02-54	A.C.C		

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1562423

WG1562190

10/20/20 15:33

10/20/20 16:42

10/21/20 02:54

10/21/20 05:18

ACG

DMG

Mt. Juliet, TN

Mt. Juliet, TN

SAMPLE SUMMARY

	9 7 22					
WSW-1 L1275172-07 Solid			Collected by Joe Tyler	Collected date/time 10/19/20 14:00	Received da 10/20/20 08	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1562125	1	10/20/20 12:08	10/20/20 12:15	MT	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1561847	1	10/20/20 14:13	10/20/20 16:34	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
WSW-1 L1275172-08 Solid			Joe Tyler	10/19/20 14:00	10/20/20 08	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1562125	1	10/20/20 12:08	10/20/20 12:15	JAV	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1562426	1	10/20/20 15:33	10/21/20 06:31	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1562423	1	10/20/20 15:33	10/21/20 03:14	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015		10/20/20 16:42	10/21/20 05:31	DMG	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	ta/tima
WSW-2 L1275172-09 Solid			Joe Tyler	10/19/20 14:10	10/20/20 08	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1562125	1	10/20/20 12:08	10/20/20 12:15	MT	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1561847	1	10/20/20 14:13	10/20/20 16:44	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
WSW-2 L1275172-10 Solid			Joe Tyler	10/19/20 14:10	10/20/20 08	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1562125	1	10/20/20 12:08	10/20/20 12:15	JAV	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1562426	1	10/20/20 15:33	10/21/20 06:51	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1562423	1	10/20/20 15:33	10/21/20 03:34	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1562190	1	10/20/20 16:42	10/21/20 10:55	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
WSW-3 L1275172-11 Solid			Joe Tyler	10/19/20 14:30	10/20/20 08	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1562125	1	10/20/20 12:08	10/20/20 12:15	MT	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1561847	1	10/20/20 14:13	10/20/20 16:53	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
WSW-3 L1275172-12 Solid			Joe Tyler	10/19/20 14:30	10/20/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solida by Mathad 2E40 C 2011	WC4EC242E	1			IAV/	M+ Indiat TN
Total Solids by Method 2540 G-2011	WG1562125	1	10/20/20 12:08	10/20/20 12:15	JAV	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1562426	1	10/20/20 15:33	10/21/20 07:12	ADM	Mt. Juliet, TN

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1562423

WG1562190

1

1

10/20/20 15:33

10/20/20 16:42

10/21/20 03:55

10/21/20 10:42

ACG

DMG

Mt. Juliet, TN

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ONE LAB. NA Page 73 of 203

Collected date/time: 10/19/20 13:00

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

315

Qualifier

MDL (dry)

mg/kg

9.31

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	98.9		1	10/20/2020 12:15	WG1562125

Dilution

Analysis

date / time

10/20/2020 16:06

Batch

WG1561847

RDL (dry)

mg/kg

20.2

Ss

⁴ Cn

ONE LAB. NA Page 74 of 203 SAMPLE RESULTS - 02

Collected date/time: 10/19/20 13:00

Total Solids by Method 2540 G-201	1
-----------------------------------	---

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.9		1	10/20/2020 12:15	WG1562125

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0393	ВЈ	0.0219	0.101	1	10/21/2020 05:29	WG1562426
(S) a,a,a-Trifluorotoluene(FID)	93.2			77.0-120		10/21/2020 05:29	WG1562426

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000478	0.00102	1	10/21/2020 02:13	WG1562423
Toluene	U		0.00133	0.00511	1	10/21/2020 02:13	WG1562423
Ethylbenzene	U		0.000754	0.00256	1	10/21/2020 02:13	WG1562423
Total Xylenes	U		0.000900	0.00665	1	10/21/2020 02:13	WG1562423
(S) Toluene-d8	106			75.0-131		10/21/2020 02:13	WG1562423
(S) 4-Bromofluorobenzene	98.4			67.0-138		10/21/2020 02:13	WG1562423
(S) 1,2-Dichloroethane-d4	79.9			70.0-130		10/21/2020 02:13	WG1562423

Gl

³Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.63	4.05	1	10/21/2020 04:52	WG1562190
C28-C40 Oil Range	U		0.277	4.05	1	10/21/2020 04:52	WG1562190
(S) o-Terphenyl	65.6			18.0-148		10/21/2020 04:52	WG1562190

ONE LAB. NA Page 75 of 203

SAMPLE RESULTS - 03

L1275172

Total Solids by Method 2540 G-2011

Collected date/time: 10/19/20 13:10

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.9		1	10/20/2020 12:15	WG1562125

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	195		9.90	21.5	1	10/20/2020 16:15	WG1561847

ONE LAB. NA Page 76 of 203

SAMPLE RESULTS - 04

L1275172

Total Solids by Method 2540 G-2011

Collected date/time: 10/19/20 13:10

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.9		1	10/20/2020 12:15	WG1562125

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0330	ВJ	0.0234	0.108	1	10/21/2020 05:49	WG1562426
(S) a,a,a-Trifluorotoluene(FID)	95.9			77.0-120		10/21/2020 05:49	<u>WG1562426</u>

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000538	0.00115	1	10/21/2020 02:33	WG1562423
Toluene	U		0.00150	0.00576	1	10/21/2020 02:33	WG1562423
Ethylbenzene	U		0.000850	0.00288	1	10/21/2020 02:33	WG1562423
Total Xylenes	U		0.00101	0.00749	1	10/21/2020 02:33	WG1562423
(S) Toluene-d8	108			75.0-131		10/21/2020 02:33	WG1562423
(S) 4-Bromofluorobenzene	95.3			67.0-138		10/21/2020 02:33	WG1562423
(S) 1,2-Dichloroethane-d4	85.2			70.0-130		10/21/2020 02:33	WG1562423

9 a

Gl

⁹Sc

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.73	4.30	1	10/21/2020 05:05	WG1562190
C28-C40 Oil Range	U		0.295	4.30	1	10/21/2020 05:05	WG1562190
(S) o-Terphenyl	65.7			18.0-148		10/21/2020 05:05	WG1562190

P. 9 Collected date/time: 10/19/20 13:20

ONE LAB. NA Page 77 of 203

SAMPLE RESULTS - 05

L1275172

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	99.1		1	10/20/2020 12:15	WG1562125

²Tc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	227		9.29	20.2	1	10/20/2020 16:25	WG1561847

ONE LAB. NA Page 78 of 203

SAMPLE RESULTS - 06

Collected date/time: 10/19/20 13:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	99.1		1	10/20/2020 12:15	WG1562125

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0322	BJ	0.0219	0.101	1	10/21/2020 06:10	WG1562426
(S) a,a,a-Trifluorotoluene(FID)	94.4			77.0-120		10/21/2020 06:10	<u>WG1562426</u>

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000476	0.00102	1	10/21/2020 02:54	WG1562423
Toluene	U		0.00132	0.00510	1	10/21/2020 02:54	WG1562423
Ethylbenzene	U		0.000751	0.00255	1	10/21/2020 02:54	WG1562423
Total Xylenes	U		0.000897	0.00662	1	10/21/2020 02:54	WG1562423
(S) Toluene-d8	104			75.0-131		10/21/2020 02:54	WG1562423
(S) 4-Bromofluorobenzene	99.4			67.0-138		10/21/2020 02:54	WG1562423
(S) 1,2-Dichloroethane-d4	85.6			70.0-130		10/21/2020 02:54	WG1562423

ΆΙ

Gl

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.63	4.04	1	10/21/2020 05:18	WG1562190
C28-C40 Oil Range	U		0.277	4.04	1	10/21/2020 05:18	WG1562190
(S) o-Terphenyl	65.1			18.0-148		10/21/2020 05:18	WG1562190

ONE LAB. NA Page 79 of 203

Collected date/time: 10/19/20 14:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	99.6		1	10/20/2020 12:15	WG1562125

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	479		9.23	20.1	1	10/20/2020 16:34	WG1561847

Cn

ONE LAB. NA Page 80 of 203

SAMPLE RESULTS - 08

L1275172

Collected date/time: 10/19/20 14:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	99.6		1	10/20/2020 12:15	WG1562125

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0297	ВJ	0.0218	0.100	1	10/21/2020 06:31	WG1562426
(S) a,a,a-Trifluorotoluene(FID)	94.7			77.0-120		10/21/2020 06:31	WG1562426

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000470	0.00101	1	10/21/2020 03:14	WG1562423
Toluene	U		0.00131	0.00504	1	10/21/2020 03:14	WG1562423
Ethylbenzene	U		0.000742	0.00252	1	10/21/2020 03:14	WG1562423
Total Xylenes	U		0.000886	0.00655	1	10/21/2020 03:14	WG1562423
(S) Toluene-d8	106			75.0-131		10/21/2020 03:14	WG1562423
(S) 4-Bromofluorobenzene	100			67.0-138		10/21/2020 03:14	WG1562423
(S) 1.2-Dichloroethane-d4	88.3			70.0-130		10/21/2020 03:14	WG1562423

*Al

Gl

⁹Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	10.4		1.62	4.01	1	10/21/2020 05:31	WG1562190
C28-C40 Oil Range	15.0		0.275	4.01	1	10/21/2020 05:31	WG1562190
(S) o-Terphenyl	72.3			18.0-148		10/21/2020 05:31	WG1562190

ONE LAB. NA Page 81 of 203

Collected date/time: 10/19/20 14:10

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

201

Qualifier

MDL (dry)

mg/kg

9.26

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	99.4		1	10/20/2020 12:15	WG1562125

Dilution

Analysis

date / time

10/20/2020 16:44

Batch

WG1561847

RDL (dry)

mg/kg

20.1

ONE LAB. NA Page 82 of 203

Collected date/time: 10/19/20 14:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	99.4		1	10/20/2020 12:15	WG1562125

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0289	ВЈ	0.0218	0.101	1	10/21/2020 06:51	WG1562426
(S) a,a,a-Trifluorotoluene(FID)	94.8			77.0-120		10/21/2020 06:51	WG1562426

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000473	0.00101	1	10/21/2020 03:34	WG1562423
Toluene	U		0.00132	0.00507	1	10/21/2020 03:34	WG1562423
Ethylbenzene	U		0.000747	0.00253	1	10/21/2020 03:34	WG1562423
Total Xylenes	U		0.000892	0.00659	1	10/21/2020 03:34	WG1562423
(S) Toluene-d8	106			<i>75.0-131</i>		10/21/2020 03:34	WG1562423
(S) 4-Bromofluorobenzene	98.6			67.0-138		10/21/2020 03:34	WG1562423
(S) 1,2-Dichloroethane-d4	86.0			70.0-130		10/21/2020 03:34	WG1562423

Gl

Sc

Cn

Semi-Volatile Org	Semi-Volatile Organic Compounds (GC) by Method 8015							
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
C10-C28 Diesel Range	2.19	<u>J</u>	1.62	4.03	1	10/21/2020 10:55	WG1562190	
C28-C40 Oil Range	7.26		0.276	4.03	1	10/21/2020 10:55	WG1562190	
(S) o-Terphenyl	71.1			18.0-148		10/21/2020 10:55	WG1562190	

15 of 26

ONE LAB. NA Page 83 of 203

Collected date/time: 10/19/20 14:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.4		1	10/20/2020 12:15	WG1562125

²TC

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	174		9.44	20.5	1	10/20/2020 16:53	WG1561847

ONE LAB. NA Page 84 of 203

SAMPLE RESULTS - 12

Collected date/time: 10/19/20 14:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.4		1	10/20/2020 12:15	WG1562125

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0300	<u>B J</u>	0.0223	0.103	1	10/21/2020 07:12	WG1562426
(S) a,a,a-Trifluorotoluene(FID)	95.0			77.0-120		10/21/2020 07:12	<u>WG1562426</u>

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000492	0.00105	1	10/21/2020 03:55	WG1562423
Toluene	U		0.00137	0.00526	1	10/21/2020 03:55	WG1562423
Ethylbenzene	U		0.000776	0.00263	1	10/21/2020 03:55	WG1562423
Total Xylenes	U		0.000926	0.00684	1	10/21/2020 03:55	WG1562423
(S) Toluene-d8	106			75.0-131		10/21/2020 03:55	WG1562423
(S) 4-Bromofluorobenzene	95.7			67.0-138		10/21/2020 03:55	WG1562423
(S) 1,2-Dichloroethane-d4	87.1			70.0-130		10/21/2020 03:55	WG1562423

ΆΙ

Gl

Sc

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.65	4.11	1	10/21/2020 10:42	WG1562190
C28-C40 Oil Range	4.58		0.281	4.11	1	10/21/2020 10:42	WG1562190
(S) o-Terphenyl	67.8			18.0-148		10/21/2020 10:42	WG1562190

17 of 26

Total Solids by Method 2540 G-2011

L1275172-01,02,03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

(MB) R3583615-1 10)/20/20 12:15			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

L1275172-11 Original Sample (OS) • Duplicate (DUP)

(OS) L12/51/2-11 10/20	0/20 12:15 • (DUP) R3583615-3 1	0/20/20 12	2:15					
	Original Resi	ult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			5
Analyte	%	%		%		%			L
Total Solids	97.4	96.9	1	0.542		10			6

Laboratory Control Sample (LCS)

(LCS) R3583615-2 1	0/20/20 12:15				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

ONE LAB. NA Page 85 of 203

ONE LAB. NA Page 86 of 203

Wet Chemistry by Method 300.0

L1275172-01,03,05,07,09,11

Method Blank (MB)

(MB) R3583592-1 10/20	/20 15:37			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

(OS) L1275172-11	10/20/20	16.53	(DI ID)	D3E83E83 3	10/20/20 17:03
(O3) L12/31/2-11	10/20/20	10.55	(DOF)	K3303332=3	10/20/20 17.03

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	174	210	1	18.7		20

(OS) L1273558-01 10/20/20 17:57 • (DLIP) R3583592-4 10/20/20 18:06

(00) 21270000 01 10/20/2	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	118	119	1	0.699		20

Laboratory Control Sample (LCS)

(LCS) R3583592-2 10/20/20 15:46

,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	191	95.4	90.0-110	

L1273558-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1273558-02 10/20/20 18:15 • (MS) P3583592-5 10/20/20 18:25 • (MSD) P3583592-6 10/20/20 18:34

(03) [12/3336-02	10/20/20 10.13 • (1013)	N3303332-3 I	0/20/20 10.2	J • (IVIJD) KJJO.	3332-0 10/20	3/20 10.34							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Chloride	500	77.6	567	478	97.9	80.0	1	80.0-120			17.1	20	

L1275172-02,04,06,08,10,12

Volatile Organic Compounds (GC) by Method 8015D/GRO

Method Blank (MB)

(MB) R3584371-2 10/21/2	20 04:36			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	0.0333	<u>J</u>	0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	99.0			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3584371-1 10/21/20	0 03:54				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	6.02	109	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			112	77.0-120	

ONE LAB. NA Page 87 of 203

ONE LAB. NA Page 88 of 203

Volatile Organic Compounds (GC/MS) by Method 8260B

L1275172-02,04,06,08,10,12

Method Blank (MB)

	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/kg		mg/kg	mg/kg		
Benzene	U		0.000467	0.00100		
Ethylbenzene	U		0.000737	0.00250		
Toluene	U		0.00130	0.00500		
Xylenes, Total	U		0.000880	0.00650		
(S) Toluene-d8	106			75.0-131		
(S) 4-Bromofluorobenzene	96.4			67.0-138		
(S) 1,2-Dichloroethane-d4	83.8			70.0-130		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3584290-1 10/21/2	20 00:12 • (LCSE	D) R3584290-2	2 10/21/20 00:3	32							Г
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	L
Benzene	0.125	0.141	0.138	113	110	70.0-123			2.15	20	
Ethylbenzene	0.125	0.132	0.123	106	98.4	74.0-126			7.06	20	
Toluene	0.125	0.135	0.135	108	108	75.0-121			0.000	20	Г
Xylenes, Total	0.375	0.381	0.370	102	98.7	72.0-127			2.93	20	
(S) Toluene-d8				108	111	75.0-131					L
(S) 4-Bromofluorobenzene				95.1	98.1	67.0-138					
(S) 1,2-Dichloroethane-d4				85.3	90.4	70.0-130					

L1273428-16 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1273428-16 10/21/20 08:21 • (MS) R3584290-4 10/21/20 08:41 • (MSD) R3584290-5 10/21/20 09:02												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.173	0.0471	0.142	0.149	55.0	59.0	1	10.0-149			4.78	37
Ethylbenzene	0.173	3.46	2.72	2.93	0.000	0.000	1	10.0-160	$\underline{\vee}$	$\underline{\vee}$	7.41	38
Toluene	0.173	4.43	3.79	3.93	0.000	0.000	1	10.0-156	EV	EV	3.61	38
Xylenes, Total	0.519	19.0	16.0	16.7	0.000	0.000	1	10.0-160	$\underline{\vee}$	$\underline{\vee}$	4.26	38
(S) Toluene-d8					106	106		75.0-131				
(S) 4-Bromofluorobenzene					93.1	94.4		67.0-138				
(S) 1,2-Dichloroethane-d4					79.5	79.7		70.0-130				

ONE LAB. NA Page 89 of 203

Semi-Volatile Organic Compounds (GC) by Method 8015

L1275172-02,04,06,08,10,12

Method Blank (MB)

(MB) R3583816-1 10/21/2	20 03:32			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	63.7			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3583816-2 10/21/20 03:45						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		
C10-C28 Diesel Range	50.0	30.0	60.0	50.0-150		
(S) o-Terphenyl			<i>7</i> 5.5	18.0-148		

L1273324-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS	11273324-01	10/21/20 11:09 •	(MS) R3583816-3	10/21/20 11:22 •	(MSD) R3583816-4	10/21/20 11:35
١.	\sim	, = 12 / 002 01	10/21/20 11.00	(1110	, 110000010 0	10/21/20 11.22	(11100	, 110000010 1	10/21/20 11.00

(O3) L12/3324-01 10/21/	03/112/3324-01 10/21/20 11.03 • (1/13) 13363610-3 10/21/20 11.22 • (1/13D) 13363610-4 10/21/20 11.33											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	49.8	1.69	27.4	22.9	51.6	42.6	1	50.0-150		<u>J6</u>	17.9	20
(S) o-Terphenyl					65.4	57.7		18.0-148				

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Ouglifier	$\overline{}$	_corintian
Qualifier	L	escription

В	The same analyte is found in the associated blank.
Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
V	The sample concentration is too high to evaluate accurate spike recoveries.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	
A2LA - ISO 17025 5	1461.02	
Canada	1461.01	
EPA-Crypto	TN00003	

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

TE

Tetra Tech Inc.

901 West Wall Street, Suite 100 Midland, Texas 79701 Tel (432) 682-4559

-	Tetra Teen, me.						(432)														u	77	51	70	P	
Client Name:	lient Name: Coroco Phillips Site Manager: Christia									ANALYSIS REQUEST (Circle or Specify Method N							No)		1						
	CA 274 Wellhead Release	Contact Info	:				ı.llull@ 38-166		ech,co	om		П	1	(ec	or a	pe						1	11	
Project Location: (county, state)	Lea County, New Mexico	Project #:	2120	- W	10-	023	18													-						
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79	9701				Ė							6										l list)			
Receiving Laboratory	: Pace Analytical	Sampler Sig	nature:		-	te	1/91	le -					O-MR	Se Hg	b Se Hg		1						attached		11	
Comments: COPTI	ETRA Acctnum					,					ROBCR	35)	DRO-ORO-MRO)	Cd Cr Pb	TCLP Metals Ag As Ba Cd Cr Pb Se Hg			24	0C/625			TDS	General Water Chemistry (see attached list)			
		SAMP	LING	M	ATRIX	PR	ESER! METH		/E SH	2	BTEX			As Ba	g As Ba		Volatiles	GC/MS Vol. 8260B / 624	/ol. 827	808			Chemis	alance	- 400	100
LAB#	SAMPLE IDENTIFICATION	YEAR: 2020		-					CONTAINFRS	ED V	8021B	TX1005 (15M (C	stals Ag	etals A	olatiles	Semi Vol	Vol. 82	Semi. \	3082 / 6	spestos	300.0	Water	ation B	5	
(LAB USE)		DATE	TIME	WATER	SOIL	HCL	HNO ₃	NONE	CO	EII TEBED (V/N)	RTEX	TPH TX	TPH 8015M (GRO-	Total Metals	TCLPM	TCLP Volatiles	TCLP S	GC/MS	GC/MS Semi. Vol. 8270C/625	PCB's 8	PLM (Asbestos)	Chloride 300.0	General	Anion/Cation Balance TPH 8015R	Q ION	-
-01/-01	FS-1(1')	10-19-20	1300		χ		X			1	1)		X	T		П				1	40	X			1	
-03/-04	ESW-1	1	1310		X		X		\perp	1	1)		X	1		Н	-	1			\sqcup	X				1
05/06	FSW-2		1320		X	-	X	\rightarrow	1	1) ()		X	1						1	\Box	X	-	18	1	-
-07/08	WSW-1		1400		X	_	χ	-		1	1		X	\perp		Н			Н	4	Н	X	+	1	11	_
-09/10	WSW-2		1410	\perp	X		X	\rightarrow		٨	1)		χ	+	-			+	Н	\perp	\sqcup	X	\perp	\vdash	14.	1
-11/-12	WSW-3	V	1430	L	X	1	X	11	+	1	4)		X	+	-	Н	-	+	Н	1	\perp	X	+	1	+	*
		3.5		\perp	Н	+	1	\sqcup	+	+	+		1	+	-	Н	4	6	Н	+	+	-			+	
				\perp		+		\sqcup	+	+	4	\perp		+	1	Н	1	+	Н	+	\perp	-	+		++	
	M			1		+	1	\sqcup	+	1	-	-	1	+		H		+	Н		+		1 3			
77		Developed to			1		ate:	Tim	10:		+			1		RE	MAR	KS.								
Relinquished by:	Tally 10-19-20 17:00	Received by	Va	1	18		a.e. 7,25		_	: w			AB I	JSE _Y		[Stand		_						
Relinguished by	Date: Time:	Received by	-		,	D	ate:	Tin	ne:		S	ample	Tem	perat	ure		X	RUSH	(24	hr.	/					
Relinguished by:	0.920 17 Date: Time:	Received by	TX		10)./	1. 2 ate:	C Tim	_	4	2					[Rush (Charg	es Au	thorize	d			sk.	
neiliquisned by:	Date. Time.	The state of the s		2			120)			:4:	5		7		-			Specia	al Rep	ort Lin	nits or	TRRP	Repor	t		
		ORIGINA	AL COPY		1,	000	4.1	-0	9		(Circle) HA	ND D	ELIV	ERE	D F	EDE)	K UI	PS	Tracki	ng#:			—	_
	C144				10	TIL	14	.0	1		-															

Pace Analytical National Center for Testing & Inno Cooler Receipt Form	vation	
	1	1275172
Client: COPTETER Temperature:	0.902	1613(15
Cooler Received/Opened On: /0/20 / 20 Temperature:		在 图像 45 的身
Received By: Lucas Green	-	
Signature:		
ND	Yes	No
Receipt Check List		T AND BUT
COC Seal Present / Intact?	1	
COC Signed / Accurate?	1	
Bottles arrive intact?		S 100 (100 (100 (100 (100 (100 (100 (100
Correct bottles used?	1	
Sufficient volume sent?	A SECTION AND A SEC	a see along
If Applicable		
VOA Zero headspace?		
Preservation Correct / Checked?	Value of the	

ANALYTICAL REPORT

October 27, 2020

Ss

Cn Sr

[°]Qc

Gl

ΑI

Sc

ConocoPhillips - Tetra Tech

Sample Delivery Group: L1276281

Samples Received: 10/22/2020

Project Number: 212C-MD-02318

Description: MCA 274 Wellhead Release Site: LEA COUNTY, NEW MEXICO

Report To: Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	7
Sr: Sample Results	8
NSW-1 L1276281-01	8
NSW-2 L1276281-02	9
NSW-3 L1276281-03	10
NSW-4 L1276281-04	11
NSW-5 L1276281-05	12
NSW-6 L1276281-06	13
NSW-7 L1276281-07	14
SSW-1 L1276281-08	15
SSW-2 L1276281-09	16
SSW-3 L1276281-10	17
SSW-4 L1276281-11	18
SSW-5 L1276281-12	19
SSW-6 L1276281-13	20
SSW-7 L1276281-14	21
ESW-3 L1276281-15	22
ESW-4 L1276281-16	23
ESW-5 L1276281-17	24
ESW-6 L1276281-18	25
ESW-7 L1276281-19	26
Qc: Quality Control Summary	27
Total Solids by Method 2540 G-2011	27
Wet Chemistry by Method 300.0	30
Volatile Organic Compounds (GC) by Method 8015D/GRO	31
Volatile Organic Compounds (GC/MS) by Method 8260B	33
Semi-Volatile Organic Compounds (GC) by Method 8015	35
GI: Glossary of Terms	36

Al: Accreditations & Locations

Sc: Sample Chain of Custody

37 38

	JAMII LL V		VIAIX I			
NSW-1 L1276281-01 Solid			Collected by Adrian Garcia	Collected date/time 10/20/20 10:00	Received da 10/22/20 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	·	
Total Solids by Method 2540 G-2011	WG1564493	1	10/24/20 04:19	10/24/20 04:27	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1564052	1	10/22/20 23:30	10/23/20 06:47	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1564510	1	10/22/20 18:49	10/23/20 21:44	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1564910	1	10/22/20 18:49	10/24/20 23:39	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1564571	1	10/24/20 07:21	10/24/20 19:21	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
NSW-2 L1276281-02 Solid			Adrian Garcia	10/20/20 10:20	10/22/20 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1564493	1	10/24/20 04:19	10/24/20 04:27	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1564052	1	10/22/20 23:30	10/23/20 07:06	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1564510	1.01	10/22/20 18:49	10/23/20 22:05	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1565717	1.01	10/22/20 18:49	10/26/20 15:48	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1564571	1	10/24/20 07:21	10/24/20 20:12	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
NSW-3 L1276281-03 Solid			Adrian Garcia	10/20/20 10:40	10/22/20 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1564493	1	10/24/20 04:19	10/24/20 04:27	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1564052	1	10/22/20 23:30	10/23/20 07:16	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1564510	1	10/22/20 18:49	10/23/20 22:26	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1564910	1	10/22/20 18:49	10/25/20 00:17	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1564571	1	10/24/20 07:21	10/24/20 20:25	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
NSW-4 L1276281-04 Solid			Adrian Garcia	10/20/20 11:00	10/22/20 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1564493	1	10/24/20 04:19	10/24/20 04:27	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1564052	1	10/24/20 04.19	10/23/20 07:25	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1564510	1	10/22/20 23:30	10/23/20 07:23	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1564910	1	10/22/20 18:49	10/25/20 00:36	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1564571	1	10/24/20 07:21	10/24/20 15:57	JN	Mt. Juliet, TN
Schii Volulie Organie Compounds (OC) by method 0013	W01301371	'	10/2 1/20 07.21	10/2 1/20 13.37	311	Wit. Juliet, TV
NSW E 14276201 OF Colid			Collected by Adrian Garcia	Collected date/time 10/20/20 11:20	Received da 10/22/20 09	
NSW-5 L1276281-05 Solid	D	Dile				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1564493	1	10/24/20 04:19	10/24/20 04:27	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1564052	1	10/22/20 23:30	10/23/20 07:35	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1564510	1	10/22/20 18:49	10/23/20 23:08	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1565717	1	10/22/20 18:49	10/26/20 16:06	JAH	Mt. Juliet, TN
0 11/1 11 0 1 0 1 0 1 1 10015						

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1564571

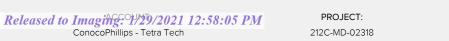
10/24/20 07:21

10/24/20 16:09

JN

Mt. Juliet, TN

			Collected by	Collected date/time	Received da	te/time
NSW-6 L1276281-06 Solid			Adrian Garcia	10/20/20 11:40	10/22/20 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1564493	1	10/24/20 04:19	10/24/20 04:27	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1564052	1	10/22/20 23:30	10/23/20 07:44	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1564510	1	10/22/20 18:49	10/23/20 23:29	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1564910	1	10/22/20 18:49	10/25/20 01:15	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1564571	1	10/24/20 07:21	10/24/20 16:22	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
NSW-7 L1276281-07 Solid			Adrian Garcia	10/20/20 12:00	10/22/20 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
T. 10 11 1 14 11 10510 0 001	W04504400		date/time	date/time	1/00	
Total Solids by Method 2540 G-2011	WG1564493	1	10/24/20 04:19	10/24/20 04:27	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1564052	1	10/22/20 23:30	10/23/20 07:54	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1564510	1	10/22/20 18:49	10/23/20 23:50	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1564910	1	10/22/20 18:49	10/25/20 01:34	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1564571	1	10/24/20 07:21	10/24/20 16:35	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SSW-1 L1276281-08 Solid			Adrian Garcia	10/20/20 12:20	10/22/20 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1564495	1	10/26/20 08:34	10/26/20 08:41	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1564052	1	10/22/20 23:30	10/23/20 08:23	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1564510	1	10/22/20 18:49	10/24/20 00:10	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1564910	1	10/22/20 18:49	10/25/20 01:53	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1564571	1	10/24/20 07:21	10/24/20 16:48	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SSW-2 L1276281-09 Solid			Adrian Garcia	10/20/20 12:40	10/22/20 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1564495	1	10/26/20 08:34	10/26/20 08:41	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1564052	1	10/22/20 23:30	10/23/20 08:32	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1564510	1	10/22/20 18:49	10/24/20 00:31	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1564910	1	10/22/20 18:49	10/25/20 02:12	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1564571	1	10/24/20 07:21	10/24/20 17:00	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SSW-3 L1276281-10 Solid			Adrian Garcia	10/20/20 13:00	10/22/20 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1564495	1	10/26/20 08:34	10/26/20 08:41	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1564052	1	10/22/20 23:30	10/23/20 09:01	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1564510	1.01	10/22/20 18:49	10/24/20 00:52	ACG	Mt. Juliet, TN
Valatila Occasia Cassa and de (CC/MC) by Matha d 02COD	WC1EC 4010		10/22/20 10:40	10/25/20 02:21	DWD	MA LUISTA TNI



Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 8015

1

10/22/20 18:49

10/24/20 07:21

WG1564910

WG1564571

10/25/20 02:31

10/24/20 17:13

DWR

JN

Mt. Juliet, TN

Mt. Juliet, TN

•	JAMII LL S		VI/AIX I			
SSW-4 L1276281-11 Solid			Collected by Adrian Garcia	Collected date/time 10/20/20 13:20	Received da 10/22/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1564495	1	10/26/20 08:34	10/26/20 08:41	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1564052	1	10/22/20 23:30	10/23/20 09:10	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1564548	1	10/22/20 18:49	10/24/20 05:51	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1564910	1	10/22/20 18:49	10/25/20 02:50	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1564571	1	10/24/20 07:21	10/24/20 17:26	JN	Mt. Juliet, TN
SSW-5 L1276281-12 Solid			Collected by Adrian Garcia	Collected date/time 10/20/20 13:40	Received da 10/22/20 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	Date	211000011	date/time	date/time	, many or	2000.011
Total Solids by Method 2540 G-2011	WG1564495	1	10/26/20 08:34	10/26/20 08:41	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1564052	1	10/22/20 23:30	10/23/20 09:20	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1564548	1	10/22/20 18:49	10/24/20 06:12	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1564910	1	10/22/20 18:49	10/25/20 03:09	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1564571	1	10/24/20 07:21	10/24/20 17:39	JN	Mt. Juliet, TN
SSW-6 L1276281-13 Solid			Collected by Adrian Garcia	Collected date/time 10/20/20 14:00	Received da 10/22/20 09	
	Datab	Diletien	Dunanation	A L i -	A b b	1 + :
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1564495	1	10/26/20 08:34	10/26/20 08:41	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1564052	1	10/22/20 23:30	10/23/20 09:29	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1564548	1	10/22/20 18:49	10/24/20 06:33	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1564910	1	10/22/20 18:49	10/25/20 03:29	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1564571	1	10/24/20 07:21	10/24/20 17:52	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
SSW-7 L1276281-14 Solid			Adrian Garcia	10/20/20 14:20	10/22/20 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1564495	1	10/26/20 08:34	10/26/20 08:41	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1564052	1	10/26/20 08:34	10/23/20 09:39	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1564548	1	10/22/20 23:30	10/24/20 06:54	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1564910	1	10/22/20 18:49	10/25/20 03:48	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1564571	1	10/24/20 07:21	10/24/20 18:04	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
ESW-3 L1276281-15 Solid			Adrian Garcia	10/20/20 14:40	10/22/20 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
T. 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1564495	1	10/26/20 08:34	10/26/20 08:41	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1564052	1	10/22/20 23:30	10/23/20 09:48	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1564548	1	10/22/20 18:49	10/24/20 07:15	DWR	Mt. Juliet, TN

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1564910

WG1564571

10/22/20 18:49

10/24/20 07:21

DWR

JN

Mt. Juliet, TN

Mt. Juliet, TN

10/25/20 04:07

10/24/20 18:17

				0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D	
			Collected by	Collected date/time		
ESW-4 L1276281-16 Solid			Adrian Garcia	10/20/20 15:00	10/22/20 09	.00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1564495	1	10/26/20 08:34	10/26/20 08:41	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1564052	1	10/22/20 23:30	10/23/20 10:17	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1564548	1	10/22/20 18:49	10/24/20 07:36	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1564910	1	10/22/20 18:49	10/25/20 04:26	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1564571	1	10/24/20 07:21	10/24/20 18:30	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
ESW-5 L1276281-17 Solid			Adrian Garcia	10/20/20 15:20	10/22/20 09	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1564495	1	10/26/20 08:34	10/26/20 08:41	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1564052	1	10/22/20 23:30	10/23/20 10:36	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1564548	1	10/22/20 18:49	10/24/20 07:57	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1564910	1	10/22/20 18:49	10/25/20 04:45	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1564571	1	10/24/20 07:21	10/24/20 18:43	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
ESW-6 L1276281-18 Solid			Adrian Garcia	10/20/20 15:40	10/22/20 09	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1564496	1	10/26/20 08:42	10/26/20 08:49	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1564052	1	10/22/20 23:30	10/23/20 10:45	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1564548	1	10/22/20 18:49	10/24/20 08:18	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1564910	1	10/22/20 18:49	10/25/20 05:04	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1564571	1	10/24/20 07:21	10/24/20 18:55	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
ESW-7 L1276281-19 Solid			Adrian Garcia	10/20/20 16:00	10/22/20 09	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
T + 10 1 1 M 1 1 1 1 1 1	W04504455		date/time	date/time	1/50	140 1 10 1 70
Total Solids by Method 2540 G-2011	WG1564496	1	10/26/20 08:42	10/26/20 08:49	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1564052	1	10/22/20 23:30	10/23/20 10:55	GB	Mt. Juliet, TN

WG1564548

WG1564910

WG1564571

1

1

10/22/20 18:49

10/22/20 18:49

10/24/20 07:21

10/24/20 08:39

10/25/20 05:23

10/24/20 19:08

DWR

DWR

JN

Mt. Juliet, TN

Mt. Juliet, TN

Mt. Juliet, TN

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC/MS) by Method 8260B

Chris McCord Project Manager

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

SAMPLE RESULTS - 01 ONE LAB. N. Page 101 of 203

Collected date/time: 10/20/20 10:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.8		1	10/24/2020 04:27	WG1564493

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.31	20.2	1	10/23/2020 06:47	WG1564052

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0220	0.101	1	10/23/2020 21:44	WG1564510
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		10/23/2020 21:44	WG1564510

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000478	0.00102	1	10/24/2020 23:39	WG1564910
Toluene	U		0.00133	0.00512	1	10/24/2020 23:39	WG1564910
Ethylbenzene	U		0.000754	0.00256	1	10/24/2020 23:39	WG1564910
Total Xylenes	U		0.000901	0.00665	1	10/24/2020 23:39	WG1564910
(S) Toluene-d8	109			75.0-131		10/24/2020 23:39	WG1564910
(S) 4-Bromofluorobenzene	78.8			67.0-138		10/24/2020 23:39	WG1564910
(S) 1,2-Dichloroethane-d4	98.5			70.0-130		10/24/2020 23:39	WG1564910

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.22		1.63	4.05	1	10/24/2020 19:21	WG1564571
C28-C40 Oil Range	15.3		0.277	4.05	1	10/24/2020 19:21	WG1564571
(S) o-Terphenyl	58.3			18.0-148		10/24/2020 19:21	WG1564571

ONE LAB. N. Page 102 of 203

SAMPLE RESULTS - 02

Total Solids by Method 2540 G-2011

Collected date/time: 10/20/20 10:20

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	99.3		1	10/24/2020 04:27	WG1564493

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	40.1		9.26	20.1	1	10/23/2020 07:06	WG1564052

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0221	0.102	1.01	10/23/2020 22:05	WG1564510
(S) a,a,a-Trifluorotoluene(FID)	107			77.0-120		10/23/2020 22:05	WG1564510

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00107	<u>B</u>	0.000479	0.00102	1.01	10/26/2020 15:48	WG1565717
Toluene	0.00435	<u>J</u>	0.00133	0.00512	1.01	10/26/2020 15:48	WG1565717
Ethylbenzene	U		0.000754	0.00257	1.01	10/26/2020 15:48	WG1565717
Total Xylenes	0.00256	<u>J</u>	0.000901	0.00665	1.01	10/26/2020 15:48	WG1565717
(S) Toluene-d8	97.6			75.0-131		10/26/2020 15:48	WG1565717
(S) 4-Bromofluorobenzene	104			67.0-138		10/26/2020 15:48	WG1565717
(S) 1,2-Dichloroethane-d4	113			70.0-130		10/26/2020 15:48	WG1565717

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	11.9		1.62	4.03	1	10/24/2020 20:12	WG1564571
C28-C40 Oil Range	38.7		0.276	4.03	1	10/24/2020 20:12	WG1564571
(S) o-Terphenyl	62.7			18.0-148		10/24/2020 20:12	WG1564571

ConocoPhillips - Tetra Tech

9 of 40

ONE LAB. N. Page 103 of 203

SAMPLE RESULTS - 03

Collected date/time: 10/20/20 10:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	99.0		1	10/24/2020 04:27	<u>WG1564493</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	13.3	<u>J</u>	9.29	20.2	1	10/23/2020 07:16	WG1564052

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0219	0.101	1	10/23/2020 22:26	WG1564510
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		10/23/2020 22:26	WG1564510

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

<u> </u>	, ,						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000476	0.00102	1	10/25/2020 00:17	WG1564910
Toluene	U		0.00133	0.00510	1	10/25/2020 00:17	WG1564910
Ethylbenzene	U		0.000752	0.00255	1	10/25/2020 00:17	WG1564910
Total Xylenes	U		0.000898	0.00663	1	10/25/2020 00:17	WG1564910
(S) Toluene-d8	146	<u>J1</u>		75.0-131		10/25/2020 00:17	WG1564910
(S) 4-Bromofluorobenzene	81.1			67.0-138		10/25/2020 00:17	WG1564910
(S) 1,2-Dichloroethane-d4	99.7			70.0-130		10/25/2020 00:17	WG1564910

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.32		1.63	4.04	1	10/24/2020 20:25	WG1564571
C28-C40 Oil Range	23.4		0.277	4.04	1	10/24/2020 20:25	WG1564571
(S) o-Terphenyl	74.4			18.0-148		10/24/2020 20:25	WG1564571

ONE LAB. N. Page 104 of 203

SAMPLE RESULTS - 04

Collected date/time: 10/20/20 11:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	99.6		1	10/24/2020 04:27	WG1564493

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.24	20.1	1	10/23/2020 07:25	WG1564052

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0321	J	0.0218	0.100	1	10/23/2020 22:47	WG1564510
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120		10/23/2020 22:47	WG1564510

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000471	0.00101	1	10/25/2020 00:36	WG1564910
oluene	U		0.00131	0.00504	1	10/25/2020 00:36	WG1564910
thylbenzene	U		0.000743	0.00252	1	10/25/2020 00:36	WG1564910
otal Xylenes	U		0.000887	0.00655	1	10/25/2020 00:36	WG1564910
(S) Toluene-d8	107			75.0-131		10/25/2020 00:36	WG1564910
(S) 4-Bromofluorobenzene	98.2			67.0-138		10/25/2020 00:36	WG1564910
S) 1,2-Dichloroethane-d4	98.5			70.0-130		10/25/2020 00:36	WG1564910

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.62	4.02	1	10/24/2020 15:57	WG1564571
C28-C40 Oil Range	2.39	<u>B J</u>	0.275	4.02	1	10/24/2020 15:57	WG1564571
(S) o-Terphenvl	76.3			18.0-148		10/24/2020 15:57	WG1564571

ONE LAB. N. Page 105 of 203

SAMPLE RESULTS - 05

Collected date/time: 10/20/20 11:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	99.5		1	10/24/2020 04:27	WG1564493

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.24	20.1	1	10/23/2020 07:35	WG1564052

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0218	0.100	1	10/23/2020 23:08	WG1564510
(S) a,a,a-Trifluorotoluene(FID)	107			77.0-120		10/23/2020 23:08	WG1564510

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

			-				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00114	<u>B</u>	0.000471	0.00101	1	10/26/2020 16:06	WG1565717
Toluene	0.00518		0.00131	0.00505	1	10/26/2020 16:06	WG1565717
Ethylbenzene	U		0.000744	0.00252	1	10/26/2020 16:06	WG1565717
Total Xylenes	0.00192	<u>J</u>	0.000888	0.00656	1	10/26/2020 16:06	WG1565717
(S) Toluene-d8	96.6			<i>75.0-131</i>		10/26/2020 16:06	WG1565717
(S) 4-Bromofluorobenzene	104			67.0-138		10/26/2020 16:06	WG1565717
(S) 1,2-Dichloroethane-d4	112			70.0-130		10/26/2020 16:06	WG1565717

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.62	4.02	1	10/24/2020 16:09	WG1564571
C28-C40 Oil Range	4.64	<u>B</u>	0.275	4.02	1	10/24/2020 16:09	WG1564571
(S) o-Terphenvl	66.3			18.0-148		10/24/2020 16:09	WG1564571

DATE/TIME: Released to Imaging: 1/29/2021 12:58:05 PM 212C-MD-02318 L1276281 10/27/20 19:12 ConocoPhillips - Tetra Tech

ONE LAB. N. Page 106 of 203

SAMPLE RESULTS - 06

Collected date/time: 10/20/20 11:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	99.1		1	10/24/2020 04:27	WG1564493

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	12.9	<u>J</u>	9.28	20.2	1	10/23/2020 07:44	WG1564052

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0219	0.101	1	10/23/2020 23:29	WG1564510
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120		10/23/2020 23:29	WG1564510

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000476	0.00102	1	10/25/2020 01:15	WG1564910
Toluene	U		0.00132	0.00509	1	10/25/2020 01:15	WG1564910
Ethylbenzene	U		0.000751	0.00255	1	10/25/2020 01:15	WG1564910
Total Xylenes	U		0.000896	0.00662	1	10/25/2020 01:15	WG1564910
(S) Toluene-d8	108			75.0-131		10/25/2020 01:15	WG1564910
(S) 4-Bromofluorobenzene	73.4			67.0-138		10/25/2020 01:15	WG1564910
(S) 1,2-Dichloroethane-d4	95.1			70.0-130		10/25/2020 01:15	WG1564910

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.62	4.04	1	10/24/2020 16:22	WG1564571
C28-C40 Oil Range	5.64		0.277	4.04	1	10/24/2020 16:22	WG1564571
(S) o-Terphenyl	68.0			18.0-148		10/24/2020 16:22	WG1564571

ConocoPhillips - Tetra Tech

ONE LAB. N. Page 107 of 203

SAMPLE RESULTS - 07

Collected date/time: 10/20/20 12:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	99.6		1	10/24/2020 04:27	WG1564493

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	15.1	J	9.24	20.1	1	10/23/2020 07:54	WG1564052

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0218	0.100	1	10/23/2020 23:50	WG1564510
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		10/23/2020 23:50	WG1564510

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

9	'	, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000471	0.00101	1	10/25/2020 01:34	WG1564910
oluene	U		0.00131	0.00504	1	10/25/2020 01:34	WG1564910
Ethylbenzene	U		0.000743	0.00252	1	10/25/2020 01:34	WG1564910
otal Xylenes	U		0.000887	0.00655	1	10/25/2020 01:34	WG1564910
(S) Toluene-d8	103			75.0-131		10/25/2020 01:34	WG1564910
(S) 4-Bromofluorobenzene	98.3			67.0-138		10/25/2020 01:34	WG1564910
(S) 1,2-Dichloroethane-d4	102			70.0-130		10/25/2020 01:34	WG1564910

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.96	<u>J</u>	1.62	4.02	1	10/24/2020 16:35	WG1564571
C28-C40 Oil Range	7.98		0.275	4.02	1	10/24/2020 16:35	WG1564571
(S) o-Terphenyl	66.8			18.0-148		10/24/2020 16:35	WG1564571

14 of 40

ONE LAB. N. Page 108 of 203

SAMPLE RESULTS - 08

Collected date/time: 10/20/20 12:20 Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.1		1	10/26/2020 08:41	<u>WG1564495</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	221		9.47	20.6	1	10/23/2020 08:23	WG1564052

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0690	<u>J</u>	0.0223	0.103	1	10/24/2020 00:10	WG1564510
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		10/24/2020 00:10	WG1564510

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000495	0.00106	1	10/25/2020 01:53	WG1564910
Toluene	U		0.00138	0.00530	1	10/25/2020 01:53	WG1564910
Ethylbenzene	U		0.000781	0.00265	1	10/25/2020 01:53	WG1564910
Total Xylenes	U		0.000932	0.00689	1	10/25/2020 01:53	WG1564910
(S) Toluene-d8	118			75.0-131		10/25/2020 01:53	WG1564910
(S) 4-Bromofluorobenzene	136			67.0-138		10/25/2020 01:53	WG1564910
(S) 1,2-Dichloroethane-d4	111			70.0-130		10/25/2020 01:53	WG1564910

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.12	1	10/24/2020 16:48	WG1564571
C28-C40 Oil Range	2.47	ВJ	0.282	4.12	1	10/24/2020 16:48	WG1564571
(S) o-Terphenyl	67.5			18.0-148		10/24/2020 16:48	WG1564571

15 of 40

ONE LAB. N. Page 109 of 203

SAMPLE RESULTS - 09

Collected date/time: 10/20/20 12:40

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.2		1	10/26/2020 08:41	WG1564495

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	430		9.56	20.8	1	10/23/2020 08:32	WG1564052

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	10/24/2020 00:31	WG1564510
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120		10/24/2020 00:31	WG1564510

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•		, ,	•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000503	0.00108	1	10/25/2020 02:12	WG1564910
Toluene	U		0.00140	0.00539	1	10/25/2020 02:12	WG1564910
Ethylbenzene	U		0.000794	0.00269	1	10/25/2020 02:12	WG1564910
Total Xylenes	U		0.000949	0.00701	1	10/25/2020 02:12	WG1564910
(S) Toluene-d8	133	<u>J1</u>		75.0-131		10/25/2020 02:12	WG1564910
(S) 4-Bromofluorobenzene	78.2			67.0-138		10/25/2020 02:12	WG1564910
(S) 1,2-Dichloroethane-d4	94.4			70.0-130		10/25/2020 02:12	WG1564910

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.67	4.16	1	10/24/2020 17:00	WG1564571
C28-C40 Oil Range	1.94	BJ	0.285	4.16	1	10/24/2020 17:00	WG1564571
(S) o-Terphenvl	66.0			18.0-148		10/24/2020 17:00	WG1564571

ONE LAB. N. Page 110 of 203

SAMPLE RESULTS - 10

Collected date/time: 10/20/20 13:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	99.6		1	10/26/2020 08:41	WG1564495

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	192		9.23	20.1	1	10/23/2020 09:01	WG1564052

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0392	J	0.0220	0.101	1.01	10/24/2020 00:52	WG1564510
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		10/24/2020 00:52	<u>WG1564510</u>

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000471	0.00101	1	10/25/2020 02:31	WG1564910
Toluene	U		0.00131	0.00504	1	10/25/2020 02:31	WG1564910
Ethylbenzene	U		0.000743	0.00252	1	10/25/2020 02:31	WG1564910
Total Xylenes	U		0.000887	0.00655	1	10/25/2020 02:31	WG1564910
(S) Toluene-d8	111			75.0-131		10/25/2020 02:31	WG1564910
(S) 4-Bromofluorobenzene	127			67.0-138		10/25/2020 02:31	WG1564910
(S) 1,2-Dichloroethane-d4	126			70.0-130		10/25/2020 02:31	WG1564910

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.62	4.02	1	10/24/2020 17:13	WG1564571
C28-C40 Oil Range	3.79	<u>B J</u>	0.275	4.02	1	10/24/2020 17:13	WG1564571
(S) o-Terphenyl	70.9			18.0-148		10/24/2020 17:13	WG1564571

SAMPLE RESULTS - 11

ONE LAB. N. Page 111 of 203

Collected date/time: 10/20/20 13:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	99.6		1	10/26/2020 08:41	WG1564495

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	193		9.23	20.1	1	10/23/2020 09:10	WG1564052

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0639	<u>J</u>	0.0218	0.100	1	10/24/2020 05:51	WG1564548
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120		10/24/2020 05:51	WG1564548

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000470	0.00101	1	10/25/2020 02:50	WG1564910
Toluene	U		0.00131	0.00504	1	10/25/2020 02:50	WG1564910
Ethylbenzene	U		0.000742	0.00252	1	10/25/2020 02:50	WG1564910
Total Xylenes	U		0.000887	0.00655	1	10/25/2020 02:50	WG1564910
(S) Toluene-d8	67.1	<u>J2</u>		75.0-131		10/25/2020 02:50	WG1564910
(S) 4-Bromofluorobenzene	98.4			67.0-138		10/25/2020 02:50	WG1564910
(S) 1,2-Dichloroethane-d4	118			70.0-130		10/25/2020 02:50	WG1564910

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.62	4.01	1	10/24/2020 17:26	WG1564571
C28-C40 Oil Range	2.97	ВЈ	0.275	4.01	1	10/24/2020 17:26	WG1564571
(S) o-Terphenyl	65.8			18.0-148		10/24/2020 17:26	WG1564571

ONE LAB. N. Page 112 of 203

Collected date/time: 10/20/20 13:40

SAMPLE RESULTS - 12

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	98.8		1	10/26/2020 08:41	WG1564495

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	73.9		9.31	20.2	1	10/23/2020 09:20	WG1564052

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0228	<u>J</u>	0.0220	0.101	1	10/24/2020 06:12	WG1564548
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120		10/24/2020 06:12	<u>WG1564548</u>

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

		•					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000479	0.00102	1	10/25/2020 03:09	WG1564910
Toluene	U		0.00133	0.00512	1	10/25/2020 03:09	WG1564910
Ethylbenzene	U		0.000755	0.00256	1	10/25/2020 03:09	WG1564910
Total Xylenes	U		0.000902	0.00666	1	10/25/2020 03:09	WG1564910
(S) Toluene-d8	85.8			75.0-131		10/25/2020 03:09	WG1564910
(S) 4-Bromofluorobenzene	99.4			67.0-138		10/25/2020 03:09	WG1564910
(S) 1,2-Dichloroethane-d4	100			70.0-130		10/25/2020 03:09	WG1564910

Sc

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.52	<u>J</u>	1.63	4.05	1	10/24/2020 17:39	WG1564571
C28-C40 Oil Range	12.6		0.277	4.05	1	10/24/2020 17:39	WG1564571
(S) o-Terphenyl	66.9			18.0-148		10/24/2020 17:39	WG1564571

19 of 40

ONE LAB. N. Page 113 of 203

SAMPLE RESULTS - 13

Collected date/time: 10/20/20 14:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	99.3		1	10/26/2020 08:41	WG1564495

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	54.3		9.26	20.1	1	10/23/2020 09:29	WG1564052

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0219	0.101	1	10/24/2020 06:33	WG1564548
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		10/24/2020 06:33	WG1564548

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	'	, , ,	<u>′</u>				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000474	0.00101	1	10/25/2020 03:29	WG1564910
Toluene	U		0.00132	0.00507	1	10/25/2020 03:29	WG1564910
Ethylbenzene	U		0.000747	0.00254	1	10/25/2020 03:29	WG1564910
Total Xylenes	U		0.000892	0.00659	1	10/25/2020 03:29	WG1564910
(S) Toluene-d8	171	<u>J1</u>		75.0-131		10/25/2020 03:29	WG1564910
(S) 4-Bromofluorobenzene	102			67.0-138		10/25/2020 03:29	WG1564910
(S) 1,2-Dichloroethane-d4	97.8			70.0-130		10/25/2020 03:29	WG1564910

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.80	<u>J</u>	1.62	4.03	1	10/24/2020 17:52	WG1564571
C28-C40 Oil Range	3.16	<u>B J</u>	0.276	4.03	1	10/24/2020 17:52	WG1564571
(S) o-Terphenyl	75.2			18.0-148		10/24/2020 17:52	WG1564571

ONE LAB. N. Page 114 of 203

SAMPLE RESULTS - 14

Collected date/time: 10/20/20 14:20 Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	99.6		1	10/26/2020 08:41	WG1564495

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	21.9		9.23	20.1	1	10/23/2020 09:39	WG1564052

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0218	0.100	1	10/24/2020 06:54	WG1564548
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		10/24/2020 06:54	WG1564548

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000470	0.00101	1	10/25/2020 03:48	WG1564910
Toluene	U		0.00131	0.00504	1	10/25/2020 03:48	WG1564910
Ethylbenzene	U		0.000742	0.00252	1	10/25/2020 03:48	WG1564910
Total Xylenes	U		0.000886	0.00655	1	10/25/2020 03:48	WG1564910
(S) Toluene-d8	102			75.0-131		10/25/2020 03:48	WG1564910
(S) 4-Bromofluorobenzene	103			67.0-138		10/25/2020 03:48	WG1564910
(S) 1,2-Dichloroethane-d4	122			70.0-130		10/25/2020 03:48	WG1564910

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.62	4.01	1	10/24/2020 18:04	WG1564571
C28-C40 Oil Range	3.67	<u>B J</u>	0.275	4.01	1	10/24/2020 18:04	WG1564571
(S) o-Terphenvl	68.2			18.0-148		10/24/2020 18:04	WG1564571

ONE LAB. N. Page 115 of 203

SAMPLE RESULTS - 15

Collected date/time: 10/20/20 14:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	99.3		1	10/26/2020 08:41	WG1564495

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	295		9.27	20.1	1	10/23/2020 09:48	WG1564052

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0219	0.101	1	10/24/2020 07:15	WG1564548
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120		10/24/2020 07:15	WG1564548

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

3		(/	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000474	0.00101	1	10/25/2020 04:07	WG1564910
Toluene	U		0.00132	0.00507	1	10/25/2020 04:07	WG1564910
Ethylbenzene	U		0.000748	0.00254	1	10/25/2020 04:07	WG1564910
Total Xylenes	U		0.000893	0.00659	1	10/25/2020 04:07	WG1564910
(S) Toluene-d8	95.8			75.0-131		10/25/2020 04:07	WG1564910
(S) 4-Bromofluorobenzene	139	<u>J1</u>		67.0-138		10/25/2020 04:07	WG1564910
(S) 1,2-Dichloroethane-d4	101			70.0-130		10/25/2020 04:07	WG1564910

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.74	<u>J</u>	1.62	4.03	1	10/24/2020 18:17	WG1564571
C28-C40 Oil Range	5.71		0.276	4.03	1	10/24/2020 18:17	WG1564571
(S) o-Terphenyl	77.0			18.0-148		10/24/2020 18:17	WG1564571

ONE LAB. N. Page 116 of 203

SAMPLE RESULTS - 16

Collected date/time: 10/20/20 15:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	99.0		1	10/26/2020 08:41	<u>WG1564495</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	90.7		9.29	20.2	1	10/23/2020 10:17	WG1564052

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0219	0.101	1	10/24/2020 07:36	WG1564548
(S) a,a,a-Trifluorotoluene(FID)	107			77.0-120		10/24/2020 07:36	WG1564548

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000476	0.00102	1	10/25/2020 04:26	WG1564910
Toluene	U		0.00133	0.00510	1	10/25/2020 04:26	WG1564910
Ethylbenzene	U		0.000752	0.00255	1	10/25/2020 04:26	WG1564910
Total Xylenes	U		0.000898	0.00663	1	10/25/2020 04:26	WG1564910
(S) Toluene-d8	108			75.0-131		10/25/2020 04:26	WG1564910
(S) 4-Bromofluorobenzene	92.4			67.0-138		10/25/2020 04:26	WG1564910
(S) 1,2-Dichloroethane-d4	108			70.0-130		10/25/2020 04:26	WG1564910

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.63	4.04	1	10/24/2020 18:30	WG1564571
C28-C40 Oil Range	3.23	BJ	0.277	4.04	1	10/24/2020 18:30	WG1564571
(S) o-Terphenyl	76.6			18.0-148		10/24/2020 18:30	WG1564571

ConocoPhillips - Tetra Tech

ONE LAB. N. Page 117 of 203

SAMPLE RESULTS - 17

Collected date/time: 10/20/20 15:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	85.3		1	10/26/2020 08:41	<u>WG1564495</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		10.8	23.5	1	10/23/2020 10:36	WG1564052

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0254	0.117	1	10/24/2020 07:57	WG1564548
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120		10/24/2020 07:57	WG1564548

СQс

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

<u> </u>	1 \		,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000628	0.00134	1	10/25/2020 04:45	WG1564910
Toluene	U		0.00175	0.00672	1	10/25/2020 04:45	WG1564910
Ethylbenzene	U		0.000991	0.00336	1	10/25/2020 04:45	WG1564910
Total Xylenes	U		0.00118	0.00874	1	10/25/2020 04:45	WG1564910
(S) Toluene-d8	107			<i>75.0-131</i>		10/25/2020 04:45	WG1564910
(S) 4-Bromofluorobenzene	97.8			67.0-138		10/25/2020 04:45	WG1564910
(S) 1,2-Dichloroethane-d4	99.9			70.0-130		10/25/2020 04:45	WG1564910

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	<u> </u>	,	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.22		1.89	4.69	1	10/24/2020 18:43	WG1564571
C28-C40 Oil Range	5.00	В	0.321	4.69	1	10/24/2020 18:43	WG1564571
(S) o-Terphenyl	56.2			18.0-148		10/24/2020 18:43	WG1564571

24 of 40

ONE LAB. N. Page 118 of 203

SAMPLE RESULTS - 18

Collected date/time: 10/20/20 15:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	99.2		1	10/26/2020 08:49	WG1564496

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	90.0		9.28	20.2	1	10/23/2020 10:45	WG1564052

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0252	<u>J</u>	0.0219	0.101	1	10/24/2020 08:18	WG1564548
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		10/24/2020 08:18	WG1564548

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

<u> </u>		, ,	<u> </u>				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000475	0.00102	1	10/25/2020 05:04	WG1564910
Toluene	U		0.00132	0.00508	1	10/25/2020 05:04	WG1564910
Ethylbenzene	U		0.000749	0.00254	1	10/25/2020 05:04	WG1564910
Total Xylenes	U		0.000895	0.00661	1	10/25/2020 05:04	WG1564910
(S) Toluene-d8	133	<u>J1</u>		<i>75.0-131</i>		10/25/2020 05:04	WG1564910
(S) 4-Bromofluorobenzene	96.1			67.0-138		10/25/2020 05:04	WG1564910
(S) 1,2-Dichloroethane-d4	111			70.0-130		10/25/2020 05:04	WG1564910

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.94	<u>J</u>	1.62	4.03	1	10/24/2020 18:55	WG1564571
C28-C40 Oil Range	17.7		0.276	4.03	1	10/24/2020 18:55	WG1564571
(S) o-Terphenyl	72.7			18.0-148		10/24/2020 18:55	WG1564571

25 of 40

SAMPLE RESULTS - 19

ONE LAB. N. Page 119 of 203

Collected date/time: 10/20/20 16:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	84.5		1	10/26/2020 08:49	<u>WG1564496</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	243		10.9	23.7	1	10/23/2020 10:55	WG1564052

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0257	0.118	1	10/24/2020 08:39	WG1564548
(S) a,a,a-Trifluorotoluene(FID)	107			77.0-120		10/24/2020 08:39	WG1564548

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

Benzene U 0.000638 0.00137 1 10/25/2020 05:23 WG1564910 Toluene U 0.00178 0.00683 1 10/25/2020 05:23 WG1564910 Ethylbenzene U 0.00101 0.00342 1 10/25/2020 05:23 WG1564910 Total Xylenes U J3 0.00120 0.00888 1 10/25/2020 05:23 WG1564910 (S) Toluene-d8 113 75.0-131 10/25/2020 05:23 WG1564910 (S) 4-Bromofluorobenzene 121 67.0-138 10/25/2020 05:23 WG1564910	3	- 1	(/ -	,				
Benzene U 0.000638 0.00137 1 10/25/2020 05:23 WG1564910 Toluene U 0.00178 0.00683 1 10/25/2020 05:23 WG1564910 Ethylbenzene U 0.00101 0.00342 1 10/25/2020 05:23 WG1564910 Total Xylenes U J3 0.00120 0.00888 1 10/25/2020 05:23 WG1564910 (S) Toluene-d8 113 75.0-131 10/25/2020 05:23 WG1564910 (S) 4-Bromofluorobenzene 121 67.0-138 10/25/2020 05:23 WG1564910		Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Toluene U 0.00178 0.00683 1 10/25/2020 05:23 WG1564910 Ethylbenzene U 0.00101 0.00342 1 10/25/2020 05:23 WG1564910 Total Xylenes U J3 0.00120 0.00888 1 10/25/2020 05:23 WG1564910 (S) Toluene-d8 113 75.0-131 10/25/2020 05:23 WG1564910 (S) 4-Bromofluorobenzene 121 67.0-138 10/25/2020 05:23 WG1564910	Analyte	mg/kg		mg/kg	mg/kg		date / time	
Ethylbenzene U 0.00101 0.00342 1 10/25/2020 05:23 WG1564910 Total Xylenes U J3 0.00120 0.00888 1 10/25/2020 05:23 WG1564910 (S) Toluene-d8 113 75.0-131 10/25/2020 05:23 WG1564910 (S) 4-Bromofluorobenzene 121 67.0-138 10/25/2020 05:23 WG1564910	Benzene	U		0.000638	0.00137	1	10/25/2020 05:23	WG1564910
Total Xylenes U J3 0.00120 0.00888 1 10/25/2020 05:23 WG1564910 (S) Toluene-d8 113 75.0-131 10/25/2020 05:23 WG1564910 (S) 4-Bromofluorobenzene 121 67.0-138 10/25/2020 05:23 WG1564910	Toluene	U		0.00178	0.00683	1	10/25/2020 05:23	WG1564910
(S) Toluene-d8 113 75.0-131 10/25/2020 05:23 WG1564910 (S) 4-Bromofluorobenzene 121 67.0-138 10/25/2020 05:23 WG1564910	Ethylbenzene	U		0.00101	0.00342	1	10/25/2020 05:23	WG1564910
(S) 4-Bromofluorobenzene 121 67.0-138 10/25/2020 05:23 WG1564910	Total Xylenes	U	<u>J3</u>	0.00120	0.00888	1	10/25/2020 05:23	WG1564910
	(S) Toluene-d8	113			<i>75.0-131</i>		10/25/2020 05:23	WG1564910
(\$) 1 2-Dichloroethane-d4 107 70 0-130 10/25/2020 05:23 WC1564910	(S) 4-Bromofluorobenzene	121			67.0-138		10/25/2020 05:23	WG1564910
(3) 1,2 Dictinorocandine a 1 107 70.0-130 10/23/2020 03.23 W01304310	(S) 1,2-Dichloroethane-d4	107			70.0-130		10/25/2020 05:23	WG1564910

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.90	4.73	1	10/24/2020 19:08	WG1564571
C28-C40 Oil Range	4.01	<u>B J</u>	0.324	4.73	1	10/24/2020 19:08	WG1564571
(S) o-Terphenyl	68.0			18.0-148		10/24/2020 19:08	WG1564571

ONE LAB. N. Page 120 of 203

Total Solids by Method 2540 G-2011

L1276281-01,02,03,04,05,06,07

Method Blank (MB)

(MI	B) R3585515-1 10	0/24/20 04:27			
		MB Result	MB Qualifier	MB MDL	MB RDL
Ana	alyte	%		%	%
Tot	tal Solids	0.00100			

Ss

[†]Cn

L1276281-01 Original Sample (OS) • Duplicate (DUP)

		Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Ar	alyte	%	%		%		%
To	tal Solids	98.8	98.8	1	0.0259		10

(LCS) R3585515-2 10/24/2	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

ONE LAB. N. Page 121 of 203

Total Solids by Method 2540 G-2011

L1276281-08,09,10,11,12,13,14,15,16,17

Method Blank (MB)

(MB) R3585687-1 10/2	6/20 08:41			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

L1276281-12 Original Sample (OS) • Duplicate (DUP)

(OS) L1276281-12 1	(OS) L1276281-12 10/26/20 08:41 • (DUP) R3585687-3 10/26/20 08:41							
	Original Res	ult DUP Result	Dilution	DUP RPD	DUP Qualifier	IP RPD nits		
Analyte	%	%		%				
Total Solids	98.8	98.7	1	0.0425				

(LCS) R3585687-2 10/26/20 08:41						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	%	%	%	%		
Total Solids	50.0	50.0	100	85.0-115		

ONE LAB. N. Page 122 of 203

Total Solids by Method 2540 G-2011

L1276281-18,19

Method	Blank ((MB)
--------	---------	------

(MB) R3585690-1 1	10/26/20 08:49			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

L1276470-04 Original Sample (OS) • Duplicate (DUP)

(OS) I 1276470-04	10/26/20 08:49	· (DUP) R3585690-3	10/26/20 08:49
(00) [12/01/001	10/20/20 00.10	(201) 1100000000	10/20/20 00.10

(00,000	Original Result	DUP Result			DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	89.6	90.9	1	1.36		10

(LCS) R3585690-2 10,	/26/20 08:49
----------------------	--------------

(LCS) R3585690-2 10/26/	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

ONE LAB. NA Page 123 of 203

Wet Chemistry by Method 300.0

L1276281-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19

Method Blank (MB)

(MB) R3584855-1 10/23/2	20 06:28			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1276281-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1276281-01	10/23/20 06:47	7 •	(DUP)	R3584	4855-3	10/23/20 06:57	

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	U	U	1	0.000		20

L1276281-16 Original Sample (OS) • Duplicate (DUP)

(OS) L1276281-16 10/23/20 10:17 • (DLIP) R3584855-6 10/23/20 10:26

(00) 11270201 10 10720720	Original Result (dry)				DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	90.7	90.7	1	0.0695		20

Laboratory Control Sample (LCS)

,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	216	108	90.0-110	

L1276281-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1276281-09 10/23/20 08:32 • (MS) P3584855-4 10/23/20 08:42 • (MSD) P3584855-5 10/23/20 08:51

(03) [12/026]-09 10/2	(O3) E12/0201-03 10/23/20 06.32 • (M3) N3304033-4 10/23/20 06.42 • (M3D) N3304033-3 10/23/20 06.31												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Chloride	520	430	982	972	106	104	1	80.0-120			1.06	20	

ONE LAB. N. Page 124 of 203

L1276281-01,02,03,04,05,06,07,08,09,10 Volatile Organic Compounds (GC) by Method 8015D/GRO

Method Blank (MB)

(MB) R3585306-3 10/23/	(MB) R3585306-3 10/23/20 14:59											
	MB Result	MB Qualifier	MB MDL	MB RDL								
Analyte	mg/kg		mg/kg	mg/kg								
TPH (GC/FID) Low Fraction	U		0.0217	0.100								
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120								

Ss

[†]Cn

(LCS) R3585306-2 10/23	3/20 14:17				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.16	93.8	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			103	77.0-120	

ONE LAB. N. Page 125 of 203

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1276281-11,12,13,14,15,16,17,18,19

Method Blank (MB)

(MB) R3586217-3 10/24/2	20 04:53			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3586217-1 10/24/2	(LCS) R3586217-1 10/24/20 03:50 • (LCSD) R3586217-2 10/24/20 04:11												
Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits													
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%			
TPH (GC/FID) Low Fraction	5.50	6.47	6.92	118	126	72.0-127			6.72	20			
(S) a,a,a-Trifluorotoluene(FID)				103	102	77.0-120							

L1274523-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1274523-01 10/24/20 10:45 • (MS) R3586217-4 10/24/20 12:30 • (MSD) R3586217-5 10/24/20 12:52

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
TPH (GC/FID) Low Fraction	84.8	U	112	99.4	132	117	25	10.0-151			11.8	28	
(S) a a a-Trifluorotoluene(FID)					110	108		77.0-120					

Volatile Organic Compounds (GC/MS) by Method 8260B

ONE LAB. N. Page 126 of 203

QUALITY CONTROL SUMMARY

L1276281-01,03,04,06,07,08,09,10,11,12,13,14,15,16,17,18,19

Method Blank (MB)

(S) 1,2-Dichloroethane-d4

(MB) R3585699-3 10/24/2	20 23:01			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	106			75.0-131
(S) 4-Bromofluorobenzene	95.6			67.0-138
(S) 1,2-Dichloroethane-d4	95.0			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3585699-1 10/24/	20 21:45 • (LCS	D) R3585699	-2 10/24/20 22	2:04							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.125	0.106	0.107	84.8	85.6	70.0-123			0.939	20	
Ethylbenzene	0.125	0.119	0.114	95.2	91.2	74.0-126			4.29	20	
Toluene	0.125	0.105	0.103	84.0	82.4	75.0-121			1.92	20	
Xylenes, Total	0.375	0.347	0.351	92.5	93.6	72.0-127			1.15	20	
(S) Toluene-d8				104	105	75.0-131					
(S) 4-Bromofluorobenzene				98.8	103	67.0-138					

70.0-130

L1276281-19 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L12/6281-19 10/25/20 05:23 • (MS) R3585699-4 10/25/20 05:42 • (MSD) R3585699-5 10/25/20 06:01												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	
_												

104

102

	(dry)	(dry)	MS Result (dry)	(dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.171	U	0.124	0.111	72.7	65.1	1	10.0-149			11.0	37
Ethylbenzene	0.171	U	0.143	0.122	84.0	71.7	1	10.0-160			15.8	38
Toluene	0.171	U	0.134	0.110	78.7	64.3	1	10.0-156			20.1	38
Xylenes, Total	0.512	U	0.474	0.323	92.5	62.9	1	10.0-160		<u>J3</u>	38.1	38
(S) Toluene-d8					120	97.8		75.0-131				
(S) 4-Bromofluorobenzene					116	76.7		67.0-138				
(S) 1,2-Dichloroethane-d4					98.6	101		70.0-130				

ONE LAB. N. Page 127 of 203

Volatile Organic Compounds (GC/MS) by Method 8260B

L1276281-02,05

Method Blank (MB)

(MB) R3585921-2 10/26/2	20 15:03				· ·	`
	MB Result	MB Qualifier	MB MDL	MB RDL		2
Analyte	mg/kg		mg/kg	mg/kg		T
Benzene	0.000500	<u>J</u>	0.000467	0.00100		\vdash
Ethylbenzene	U		0.000737	0.00250		3 5
Toluene	U		0.00130	0.00500		Ľ
Xylenes, Total	U		0.000880	0.00650		4
(S) Toluene-d8	97.8			75.0-131		
(S) 4-Bromofluorobenzene	104			67.0-138		
(S) 1,2-Dichloroethane-d4	112			70.0-130		⁵ S

(LCS) R3585921-1 10/26	/20 14:06				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.125	0.131	105	70.0-123	
Ethylbenzene	0.125	0.105	84.0	74.0-126	
Toluene	0.125	0.113	90.4	75.0-121	
Xylenes, Total	0.375	0.331	88.3	72.0-127	
(S) Toluene-d8			95.6	75.0-131	
(S) 4-Bromofluorobenzene			97.6	67.0-138	
(S) 1,2-Dichloroethane-d4			114	70.0-130	

ONE LAB. N. Page 128 of 203

Semi-Volatile Organic Compounds (GC) by Method 8015

L1276281-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19

Method Blank (MB)

(MB) R3585239-1 10/24	1/20 15:05			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	0.474	<u>J</u>	0.274	4.00
(S) o-Terphenyl	77.0			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3585239-2 10/2	24/20 15:18				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	37.1	74.2	50.0-150	
(S) o-Terphenyl			85.7	18.0-148	

L1273988-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 1273988-05 10/24/20 19:34 • (MS) R3585239-3 10/24/20 19:47 • (MSD) R3585239-4 10/24/20 19:59

(O5) L12/3988-05 10/24/20 19.34 • (N15) R3585239-3 10/24/20 19.47 • (N15D) R3585239-4 10/24/20 19.59												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	72.1	14.1	65.7	85.6	71.6	99.8	1	50.0-150		<u>J3</u>	26.3	20
(S) o-Terphenyl					52.1	58.4		18.0-148				

ConocoPhillips - Tetra Tech

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

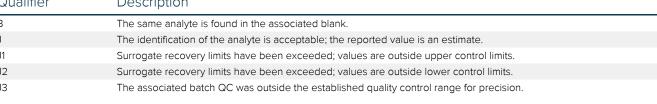
Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Ouglifier	Docariation
Qualifier	Description

В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.



Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA
· ·	

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA – ISO 17025 ⁵	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

F087

Page 131 of 203

Page: 1 of 2

Tetra Tech, Inc.

901 West Wall Street, Suite 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946

	retra reen, me.							682-39																		
Client Name:	Conoco Phillips	Site Manage	er:	Chris	stian	Llull					Г			٠٥:							UES					
Project Name:	MCA 274 Wellhead Release	Contact Info):			ristian.l 512) 33			ch.con	1			1	(CI	rcle	0	S	ped	cify	I M	ethe	od 	No.	.)		1
Project Location: (county, state)	Lea County, New Mexico	Project #:		2120	C-ME	0-02318																				
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas	79701									1												ist)			
Receiving Laboratory:	Pace Analytical	Sampler Sig	Sampler Signature: Adrian Garcia								- MBC		Se Hg	Se Hg			П					attached list)				
Comments: COPTE	TRA Acctnum										8260B	5) 30 - ORC		d Cr Pb	Cd Cr Pb			4	8270C/625				(see			
1276281		SAMP	LING	MA	TRIX		SERV	VATIVE	RS	î	BTEX	(Ext to C35)		As Ba C	As Ba	tiles		30B / 62		R			te TDS	Balance		
LAB#	SAMPLE IDENTIFICATION	YEAR: 2020 DATE	TIME	WATER	JIL.	HCL	2 111	NONE	# CONTAINERS	FILTERED (Y/N)	BTEX 8021B	TX1005	H 8270C	otal Metals Ag As Ba Cd Cr Pb S	P Metals Ag	I CLP Volatiles		3C/MS Vol. 8260B / 624		VORM	PLM (Asbestos)	30	Chloride Sulfate TDS General Water Chemistry	on/Cation Ba	FPH 8015R	НОГР
(ONLY)	NSW-1	10/20/20	1000		χ X	E E	X X	ž	#	N			-	Tot	TCL	5 5	RC	GC	OB G	2 2	-		5 8	Ani	T	유
07	NSW-2	10/20/20	1020	-	^ x	++	X		1	N	X	×	+	Н	+	+	\vdash	Н	+	+	++	X	+	H	+	+
03	NSW-3	10/20/20	1040	++	X	++	X		1	N	X	×	+	H	+	+	H	H	+	+	+	×	+	H	-	+
04	NSW-4	10/20/20	1100	++	X	+	X		1	N	X	×	+	H	+	+	\vdash	\forall	+	+	+	X	+	H	+	+
oK	NSW-5	10/20/20	1120	+	x	11	X		1	N	X	×	+	Н	+	+	H	H	+	+	+	X	+	H	+	+
عل	NSW-6	10/20/20	1140	-	x		X		1	N	Х	×	+	Н	+	+	Н	\forall	+	+	+	X	5	H	+	+
J	NSW-7	10/20/20	1200	1	x	1	X		1	N	Х	×			1	+	П	H	+	+	H	X		H		+
a	SSW-1	10/20/20	1220	1	x		X		1	N	Х	×				1	П				100	X		\Box		+
69	SSW-2	10/20/20	1240	1	X		X		1	N	Х	X								1		X		\Box		+
(0	SSW-3	10/20/20	1300		X		X		1	N	Х	X									П	X		П		T
Relinquished by:	Date: Time:	Received by:				Date:			Time			LAE	US	SE	R	EMA	ARKS			-51	p.p.	- 1				
Adrian Garcia	10/20/2020 1800	Joe Tyler		-	1	10/20)/202	20	1800			01	NLY	1		L	Sta	andaro	1							
Relinquished by:	Date: Time:	Received by	11			Date:			Time		San	nple Te	ole Temperature X RUSH: Same Day 24 hr. 48 hr. 72 hr.													
Joe Tyler	10/21/2020 1500	Wal 12	u	/	10). 21	2	5	15:	2					Rush Charges Authorized											
Relinquished by:	Date: Time:	Received by:	a h	u	(Date:		120	Time:			Special Report Limits or TRRP Report														
0.5-7-0:	3 42	ORIGINA	L COPY								(Cir	cle) H	HAND	DEL	IVEF	RED	FED	EX	UPS	T	racking	g #:				

Page 132 of 203
Page: 2 of 2

TŁ	Totas Took
	Tetra Tech

901 West Wall Street, Suite 100 Midland, Texas 79701

IE	Tetra Tecn, Inc.				T.				82-455 82-394																		11/1/2
Client Name:	Conoco Phillips	Site Manage	r:	Chr	ristian	Llul	1								٠٠.					SR				N			
Project Name:	MCA 274 Wellhead Release	Contact Info			ail: ch				etrated 7	ch.com	11.5	1	1		(Сп	rcie	0	rs	ped	CITY		etn 	oa	No	.)		1
Project Location: (county, state)	Lea County, New Mexico	Project #:		212	C-MD	-02	318																				
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79											list)															
Receiving Laboratory:	Pace Analytical	Sampler Sig	Sampler Signature: Adrian Garcia									3	OHO - OHO -	Se Hg	b Se Hg								(see attached				
Comments: COPTE	TRA Acctnum											8260B			Ag As Ba Cd Cr Pb Se Hg	Cd Cr P			24	8270C/625							
1276281		SAMP	LING	M	ATRIX	P		ERV	ATIVE OD		(N)	втех	Ext to C	GHO-D	g As Ba	g As Ba	Volatiles				808	(8)		Sulfate TDS Water Chemistry	alance	3	
LAB# (LAB USE ONLY	SAMPLE IDENTIFICATION	YEAR: 2020 DATE	TIME	WATER	SOIL	I CH	HNO3	IOE	NONE	# CONTAINERS	FILTERED (Y/N)	BTEX 8021B	TPH TX1005 (Ext to	PAH 8270C	Total Metals A	TCLP Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Volatiles		Vol.	GC/MS Semi.	PCB's 8082 / 608	PLM (Asbestos)	3	Chloride Sul General Water		TPH 8015R	НОГР
((SSW-4	10/20/20	1320		X			Х		1	N	Х		Х									Х				
12	SSW-5	10/20/20	1340		X			X		1	N	Х		X									Х				
(7)	SSW-6	10/20/20	1400		X			X		1	N	X		X									Х				
17	SSW-7	10/20/20	1420		X			X		1	N	X		X									X				
15	ESW-3	10/20/20	1440		X			X		1	N	X		X									X				
1-	ESW-4	10/20/20	1500		X			X		1	N	X		X									X				
IV	ESW-5	10/20/20	1520		X			X		1	N	X		X									Х			Ц	
18	ESW-6	10/20/20	1540		X			X		1	N	X		X									Х	1		Ц	
19	ESW-7	10/20/20	1600	+	X	+	+	X		1	N	X	-	X	H		-	+	H	H	+		X	-	-	H	+
Relinquished by:	Date: Time:	Received by		-		D	ate:			Time				ВU		F	REM	ARK Sta	S: andar	rd							
Adrian Garcia	10/20/2020 1800	Joe Tyler		1	1	1	0/20)/202	20	1800)		C	NL	Υ		_	_				_	-				
Relinquished by: Joe Tyler	Date: Time: 10/21/2020 1500	Redeived by	Th	1	1 (2		ate: 2/.	2		Time		San	nple 1	Temp	eratu	Prature X RUSH: Same Day 24 hr 48 hr. 72 hr.											
Relinquished by:	Date: Time:	Received by	Twe	u	10	D	ate:			Time			Rush Charges Authorized Special Report Limits or TRRP Report														
05-7-0	216	ORIGINA	AL COPY									(Cir	rcle)	HAN	D DE	LIVE	RED	FE	DEX	UP	S	Fracki	ng #:	_			

Released to Imaging: 1/29/2021 12:58:05 PM

Pace Analytical National Center for Testing & Inno Cooler Receipt Form	vation	
	100100	
Client: Coptetra	127 6281	
Cooler Received/Opened On: 10 / 22/ 20 Temperature:	.5	
Received By: Olivia Turner		
Signature: Olivier Tured	OF CHEMPSON	
NP NP	Yes	No
Paraint Chack List	1.00	
COC Seal Present / Intact?		
COC Seal Present / Intact? COC Signed / Accurate?		
Receipt Check List COC Seal Present / Intact? COC Signed / Accurate? Bottles arrive intact?		
Receipt Check List COC Seal Present / Intact? COC Signed / Accurate? Bottles arrive intact? Correct bottles used?	-	
Receipt Check List COC Seal Present / Intact? COC Signed / Accurate? Bottles arrive intact?		
Receipt Check List COC Seal Present / Intact? COC Signed / Accurate? Bottles arrive intact? Correct bottles used?		
COC Seal Present / Intact? COC Signed / Accurate? Bottles arrive intact? Correct bottles used? Sufficient volume sent?		

ANALYTICAL REPORT

October 29, 2020

¹Cp

³Ss

^{*}Cn

°Sr

⁷Gl

⁸Al

⁹Sc

ConocoPhillips - Tetra Tech

Sample Delivery Group: L1276977

Samples Received: 10/23/2020

Project Number: 212C-MD-02318

Description: MCA 274 Wellhead Release
Site: LEA COUNTY, NEW MEXICO

Report To: Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Enica Mc Neese

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
FS - 2 L1276977-01	7
FS - 3 L1276977-02	8
FS - 4 L1276977-03	9
FS - 5 L1276977-04	10
FS - 6 L1276977-05	11
FS - 7 L1276977-06	12
FS - 8 L1276977-07	13
FS - 9 L1276977-08	14
FS - 10 L1276977-09	15
FS - 11 L1276977-10	16
FS - 12 L1276977-11	17
FS - 13 L1276977-12	18
FS - 14 L1276977-13	19
Qc: Quality Control Summary	20
Total Solids by Method 2540 G-2011	20
Wet Chemistry by Method 300.0	22
Volatile Organic Compounds (GC) by Method 8015D/GRO	23
Volatile Organic Compounds (GC/MS) by Method 8260B	24
Semi-Volatile Organic Compounds (GC) by Method 8015	25
GI: Glossary of Terms	26
Al: Accreditations & Locations	27

Sc: Sample Chain of Custody

28

SAMPLE SUMMARY

	SAIVII LL V		/I//I/ I			
FS - 2 L1276977-01 Solid			Collected by Adrian Garcia	Collected date/time 10/21/20 08:30	Received da 10/23/20 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1566013	1	10/27/20 23:50	10/28/20 00:03	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1565795	1	10/26/20 20:30	10/27/20 04:05	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1566564	1	10/27/20 16:28	10/28/20 00:29	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1566565	1	10/27/20 16:28	10/27/20 21:09	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1565216	1	10/26/20 16:29	10/27/20 07:34	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
FS - 3 L1276977-02 Solid			Adrian Garcia	10/21/20 09:00	10/23/20 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Tatal Calida by Mark and 25 40 C 2044	WC4ECC042		date/time	date/time	I/DC	MAL INDIAN TAIL
Total Solids by Method 2540 G-2011	WG1566013	1	10/27/20 23:50	10/28/20 00:03	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1565795	1	10/26/20 20:30 10/27/20 16:28	10/27/20 04:22	ELN	Mt. Juliet, TN Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1566564	1		10/28/20 00:54	ADM	•
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1566565	1	10/27/20 16:28	10/27/20 21:28	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1565216	1	10/26/20 16:29	10/27/20 10:02	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
FS - 4 L1276977-03 Solid			Adrian Garcia	10/21/20 09:30	10/23/20 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1566013	1	10/27/20 23:50	10/28/20 00:03	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1565795	1	10/26/20 20:30	10/27/20 04:39	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1566564	1	10/27/20 16:28	10/28/20 01:14	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1566565	1	10/27/20 16:28	10/27/20 21:47	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1565216	1	10/26/20 16:29	10/27/20 10:16	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
FS - 5 L1276977-04 Solid			Adrian Garcia	10/21/20 10:00	10/23/20 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1566013	1	10/27/20 23:50	10/28/20 00:03	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1565795	1	10/26/20 20:30	10/27/20 05:30	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1566564	1	10/27/20 16:28	10/28/20 01:35	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1566565	1	10/27/20 16:28	10/27/20 22:06	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1565216	1	10/26/20 16:29	10/27/20 10:31	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
FS - 6 L1276977-05 Solid			Adrian Garcia	10/21/20 10:30	10/23/20 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1566013	1	10/27/20 23:50	10/28/20 00:03	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1565795	1	10/26/20 20:30	10/27/20 05:47	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1566564	1	10/27/20 16:28	10/28/20 01:56	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1566565	1	10/27/20 16:28	10/27/20 22:25	ADM	Mt. Juliet, TN
Carri Valatila Organia Carra ann de (CC) las Matha d 0015	WC4ECE24C		10/20/20 10:20	10/27/20 10:40	IDC	Mr. I. D. J. Thi

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1565216

1

10/26/20 16:29

10/27/20 10:46

JDG

Mt. Juliet, TN

SAMPLE SUMMARY

	SAMI LL					
FS - 7 L1276977-06 Solid			Collected by Adrian Garcia	Collected date/time 10/21/20 11:00	Received da 10/23/20 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	•	
Total Solids by Method 2540 G-2011	WG1566013	1	10/27/20 23:50	10/28/20 00:03	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1565795	1	10/26/20 20:30	10/27/20 06:04	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1566564	1	10/27/20 16:28	10/28/20 02:17	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1566565	1	10/27/20 16:28	10/27/20 22:43	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1565216	1	10/26/20 16:29	10/27/20 14:24	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
FS - 8 L1276977-07 Solid			Adrian Garcia	10/21/20 11:30	10/23/20 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1566014	1	10/27/20 23:26	10/27/20 23:45	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1565795	1	10/26/20 20:30	10/27/20 06:21	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1566564	1	10/27/20 16:28	10/28/20 03:26	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1566565	1	10/27/20 16:28	10/27/20 23:02	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1565216	1	10/26/20 16:29	10/27/20 11:01	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
FS - 9 L1276977-08 Solid			Adrian Garcia	10/21/20 12:00	10/23/20 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1566014	1	10/27/20 23:26	10/27/20 23:45	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1565795	1	10/26/20 20:30	10/27/20 06:37	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1566564	1	10/27/20 16:28	10/28/20 04:24	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1566565	1	10/27/20 16:28	10/27/20 23:21	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1565216	1	10/26/20 16:29	10/27/20 12:56	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
FS - 10 L1276977-09 Solid			Adrian Garcia	10/21/20 12:30	10/23/20 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1566014	1	10/27/20 23:26	10/27/20 23:45	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1565795	1	10/26/20 20:30	10/27/20 06:54	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1566564	1	10/27/20 16:28	10/28/20 04:44	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1566565	1	10/27/20 16:28	10/27/20 23:40	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1565216	1	10/26/20 16:29	10/27/20 13:10	JDG	Mt. Juliet, TN
			Collected by	Collected date/time		
FS - 11 L1276977-10 Solid			Adrian Garcia	10/21/20 13:00	10/23/20 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1566014	1	10/27/20 23:26	10/27/20 23:45	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1565795	1	10/26/20 20:30	10/27/20 07:11	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1566564	1	10/27/20 16:28	10/28/20 05:05	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1566565	1	10/27/20 16:28	10/27/20 23:58	ADM	Mt. Juliet, TN
0 11/1 11 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1						

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1565216

10/26/20 16:29

10/27/20 13:25

JDG

Mt. Juliet, TN

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 8015

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	
FS - 12 L1276977-11 Solid			Adrian Garcia	10/21/20 13:30	10/23/20 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1566014	1	10/27/20 23:26	10/27/20 23:45	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1565795	1	10/26/20 20:30	10/27/20 07:28	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1566564	1	10/27/20 16:28	10/28/20 05:26	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1566565	1	10/27/20 16:28	10/28/20 00:17	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1565216	1	10/26/20 16:29	10/27/20 13:39	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
FS - 13 L1276977-12 Solid			Adrian Garcia	10/21/20 14:00	10/23/20 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1566014	1	10/27/20 23:26	10/27/20 23:45	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1565795	1	10/26/20 20:30	10/27/20 07:45	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1566564	1	10/27/20 16:28	10/28/20 06:11	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1566565	1	10/27/20 16:28	10/28/20 00:36	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1565216	1	10/26/20 16:29	10/27/20 13:54	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
FS - 14 L1276977-13 Solid			Adrian Garcia	10/21/20 14:30	10/23/20 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1566014	1	10/27/20 23:26	10/27/20 23:45	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1565795	1	10/26/20 20:30	10/27/20 09:10	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1566564	1	10/27/20 16:28	10/28/20 06:32	ADM	Mt. Juliet, TN

WG1566565

WG1565216

1

1

10/27/20 16:28

10/26/20 16:29

10/28/20 00:55

10/27/20 14:09

ADM

JDG

Mt. Juliet, TN

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Erica McNeese Project Manager

ONE LAB. N. Page 140 of 203

SAMPLE RESULTS - 01

Collected date/time: 10/21/20 08:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	83.9		1	10/28/2020 00:03	WG1566013

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	190		11.0	23.8	1	10/27/2020 04:05	WG1565795

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0333	ВЈ	0.0259	0.119	1	10/28/2020 00:29	WG1566564
(S) a,a,a-Trifluorotoluene(FID)	92.7			77.0-120		10/28/2020 00:29	WG1566564

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

<u> </u>	, ,		<u> </u>				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000823	<u>J</u>	0.000647	0.00139	1	10/27/2020 21:09	WG1566565
Toluene	U		0.00180	0.00693	1	10/27/2020 21:09	WG1566565
Ethylbenzene	U		0.00102	0.00346	1	10/27/2020 21:09	WG1566565
Total Xylenes	0.00284	<u>J</u>	0.00122	0.00901	1	10/27/2020 21:09	WG1566565
(S) Toluene-d8	99.5			75.0-131		10/27/2020 21:09	WG1566565
(S) 4-Bromofluorobenzene	106			67.0-138		10/27/2020 21:09	WG1566565
(S) 1,2-Dichloroethane-d4	114			70.0-130		10/27/2020 21:09	WG1566565

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U	<u>J6</u>	1.92	4.77	1	10/27/2020 07:34	WG1565216
C28-C40 Oil Range	0.945	<u>J</u>	0.327	4.77	1	10/27/2020 07:34	WG1565216
(S) o-Terphenyl	68.0			18.0-148		10/27/2020 07:34	WG1565216

ONE LAB. N. Page 141 of 203

SAMPLE RESULTS - 02

Collected date/time: 10/21/20 09:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.8		1	10/28/2020 00:03	WG1566013

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	229		9.50	20.7	1	10/27/2020 04:22	WG1565795

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0290	ВЈ	0.0224	0.103	1	10/28/2020 00:54	WG1566564
(S) a,a,a-Trifluorotoluene(FID)	92.2			77.0-120		10/28/2020 00:54	WG1566564

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

· ·		·					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000498	0.00107	1	10/27/2020 21:28	WG1566565
Toluene	U		0.00139	0.00533	1	10/27/2020 21:28	WG1566565
Ethylbenzene	U		0.000785	0.00266	1	10/27/2020 21:28	WG1566565
Total Xylenes	U		0.000938	0.00693	1	10/27/2020 21:28	WG1566565
(S) Toluene-d8	99.4			<i>75.0-131</i>		10/27/2020 21:28	WG1566565
(S) 4-Bromofluorobenzene	100			67.0-138		10/27/2020 21:28	WG1566565
(S) 1,2-Dichloroethane-d4	115			70.0-130		10/27/2020 21:28	WG1566565

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.13	1	10/27/2020 10:02	WG1565216
C28-C40 Oil Range	1.28	<u>J</u>	0.283	4.13	1	10/27/2020 10:02	WG1565216
(S) o-Terphenyl	76.7			18.0-148		10/27/2020 10:02	WG1565216

ONE LAB. N. Page 142 of 203

SAMPLE RESULTS - 03

Collected date/time: 10/21/20 09:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	84.7		1	10/28/2020 00:03	<u>WG1566013</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	196		10.9	23.6	1	10/27/2020 04:39	WG1565795

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0256	0.118	1	10/28/2020 01:14	WG1566564
(S) a,a,a-Trifluorotoluene(FID)	92.8			77.0-120		10/28/2020 01:14	WG1566564

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	'	, , ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000636	0.00136	1	10/27/2020 21:47	WG1566565
Toluene	U		0.00177	0.00681	1	10/27/2020 21:47	WG1566565
Ethylbenzene	U		0.00100	0.00341	1	10/27/2020 21:47	WG1566565
Total Xylenes	0.00263	<u>J</u>	0.00120	0.00886	1	10/27/2020 21:47	WG1566565
(S) Toluene-d8	99.2			75.0-131		10/27/2020 21:47	WG1566565
(S) 4-Bromofluorobenzene	103			67.0-138		10/27/2020 21:47	WG1566565
(S) 1,2-Dichloroethane-d4	111			70.0-130		10/27/2020 21:47	WG1566565

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.90	4.72	1	10/27/2020 10:16	WG1565216
C28-C40 Oil Range	0.568	<u>J</u>	0.324	4.72	1	10/27/2020 10:16	WG1565216
(S) o-Terphenyl	70.2			18.0-148		10/27/2020 10:16	WG1565216

SULTS - 04 ONE LAB. N Page 143 of 203

SAMPLE RESULTS - 04

Collected date/time: 10/21/20 10:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.2		1	10/28/2020 00:03	WG1566013

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	30.6		9.98	21.7	1	10/27/2020 05:30	WG1565795

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0254	ВЈ	0.0235	0.108	1	10/28/2020 01:35	WG1566564
(S) a,a,a-Trifluorotoluene(FID)	92.3			77.0-120		10/28/2020 01:35	WG1566564

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•							
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000546	0.00117	1	10/27/2020 22:06	WG1566565
Toluene	U		0.00152	0.00585	1	10/27/2020 22:06	WG1566565
Ethylbenzene	U		0.000862	0.00292	1	10/27/2020 22:06	WG1566565
Total Xylenes	0.00140	J	0.00103	0.00760	1	10/27/2020 22:06	WG1566565
(S) Toluene-d8	101			75.0-131		10/27/2020 22:06	WG1566565
(S) 4-Bromofluorobenzene	97.4			67.0-138		10/27/2020 22:06	WG1566565
(S) 1,2-Dichloroethane-d4	111			70.0-130		10/27/2020 22:06	WG1566565

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.75	4.34	1	10/27/2020 10:31	WG1565216
C28-C40 Oil Range	1.27	<u>J</u>	0.297	4.34	1	10/27/2020 10:31	WG1565216
(S) o-Terphenyl	58.9			18.0-148		10/27/2020 10:31	WG1565216

ONE LAB. N. Page 144 of 203

SAMPLE RESULTS - 05

Total Solids by Method 2540 G-2011

Collected date/time: 10/21/20 10:30

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	81.9		1	10/28/2020 00:03	WG1566013

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		11.2	24.4	1	10/27/2020 05:47	WG1565795

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0273	ВЈ	0.0265	0.122	1	10/28/2020 01:56	WG1566564
(S) a,a,a-Trifluorotoluene(FID)	92.0			77.0-120		10/28/2020 01:56	WG1566564

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000673	0.00144	1	10/27/2020 22:25	WG1566565
Toluene	U		0.00187	0.00721	1	10/27/2020 22:25	WG1566565
Ethylbenzene	U		0.00106	0.00360	1	10/27/2020 22:25	WG1566565
Total Xylenes	0.00223	<u>J</u>	0.00127	0.00937	1	10/27/2020 22:25	WG1566565
(S) Toluene-d8	100			<i>75.0-131</i>		10/27/2020 22:25	WG1566565
(S) 4-Bromofluorobenzene	104			67.0-138		10/27/2020 22:25	WG1566565
(S) 1,2-Dichloroethane-d4	114			70.0-130		10/27/2020 22:25	WG1566565

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.96	4.88	1	10/27/2020 10:46	WG1565216
C28-C40 Oil Range	0.690	<u>J</u>	0.334	4.88	1	10/27/2020 10:46	WG1565216
(S) o-Terphenyl	60.5			18 0-148		10/27/2020 10:46	WG1565216

11 of 30

ONE LAB. N. Page 145 of 203

SAMPLE RESULTS - 06

Collected date/time: 10/21/20 11:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.0		1	10/28/2020 00:03	<u>WG1566013</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	23.1		9.58	20.8	1	10/27/2020 06:04	WG1565795

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0230	ВЈ	0.0226	0.104	1	10/28/2020 02:17	WG1566564
(S) a,a,a-Trifluorotoluene(FID)	92.1			77.0-120		10/28/2020 02:17	WG1566564

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•		,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000506	0.00108	1	10/27/2020 22:43	WG1566565
Toluene	U		0.00141	0.00542	1	10/27/2020 22:43	WG1566565
Ethylbenzene	U		0.000798	0.00271	1	10/27/2020 22:43	WG1566565
Total Xylenes	0.00156	<u>J</u>	0.000953	0.00704	1	10/27/2020 22:43	WG1566565
(S) Toluene-d8	96.9			<i>75.0-131</i>		10/27/2020 22:43	WG1566565
(S) 4-Bromofluorobenzene	102			67.0-138		10/27/2020 22:43	WG1566565
(S) 1,2-Dichloroethane-d4	114			70.0-130		10/27/2020 22:43	WG1566565

Semi-Volatile Organic Compounds (GC) by Method 8015

	9	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.17	1	10/27/2020 14:24	WG1565216
C28-C40 Oil Range	2.92	<u>J</u>	0.285	4.17	1	10/27/2020 14:24	WG1565216
(S) o-Terphenyl	67.3			18.0-148		10/27/2020 14:24	WG1565216

СQс

12 of 30

ONE LAB. N. Page 146 of 203

SAMPLE RESULTS - 07

Collected date/time: 10/21/20 11:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.6		1	10/27/2020 23:45	WG1566014

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	12.8	<u>J</u>	9.83	21.4	1	10/27/2020 06:21	WG1565795

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0296	ВЈ	0.0232	0.107	1	10/28/2020 03:26	WG1566564
(S) a,a,a-Trifluorotoluene(FID)	92.7			77.0-120		10/28/2020 03:26	WG1566564

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000531	0.00114	1	10/27/2020 23:02	WG1566565
Toluene	U		0.00148	0.00569	1	10/27/2020 23:02	WG1566565
Ethylbenzene	U		0.000838	0.00284	1	10/27/2020 23:02	WG1566565
Total Xylenes	0.00142	<u>J</u>	0.00100	0.00739	1	10/27/2020 23:02	WG1566565
(S) Toluene-d8	97.0			75.0-131		10/27/2020 23:02	WG1566565
(S) 4-Bromofluorobenzene	101			67.0-138		10/27/2020 23:02	WG1566565
(S) 1,2-Dichloroethane-d4	115			70.0-130		10/27/2020 23:02	WG1566565

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.72	4.27	1	10/27/2020 11:01	WG1565216
C28-C40 Oil Range	0.878	<u>J</u>	0.293	4.27	1	10/27/2020 11:01	WG1565216
(S) o-Terphenyl	65.9			18.0-148		10/27/2020 11:01	WG1565216

ONE LAB. N. Page 147 of 203

SAMPLE RESULTS - 08

Collected date/time: 10/21/20 12:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.0		1	10/27/2020 23:45	WG1566014

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.79	21.3	1	10/27/2020 06:37	WG1565795

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0352	ВЈ	0.0231	0.106	1	10/28/2020 04:24	WG1566564
(S) a,a,a-Trifluorotoluene(FID)	92.6			77.0-120		10/28/2020 04:24	WG1566564

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000527	0.00113	1	10/27/2020 23:21	WG1566565
Toluene	U		0.00147	0.00564	1	10/27/2020 23:21	WG1566565
Ethylbenzene	U		0.000832	0.00282	1	10/27/2020 23:21	WG1566565
Total Xylenes	0.00120	<u>J</u>	0.000993	0.00733	1	10/27/2020 23:21	WG1566565
(S) Toluene-d8	100			75.0-131		10/27/2020 23:21	WG1566565
(S) 4-Bromofluorobenzene	103			67.0-138		10/27/2020 23:21	WG1566565
(S) 1,2-Dichloroethane-d4	113			70.0-130		10/27/2020 23:21	WG1566565

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.81	<u>J</u>	1.71	4.26	1	10/27/2020 12:56	WG1565216
C28-C40 Oil Range	1.06	<u>J</u>	0.292	4.26	1	10/27/2020 12:56	WG1565216
(S) o-Terphenvl	66.3			18.0-148		10/27/2020 12:56	WG1565216

ONE LAB. N. Page 148 of 203

SAMPLE RESULTS - 09

Total Solids by Method 2540 G-2011

Collected date/time: 10/21/20 12:30

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	83.4		1	10/27/2020 23:45	WG1566014

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	178		11.0	24.0	1	10/27/2020 06:54	WG1565795

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0346	ВЈ	0.0260	0.120	1	10/28/2020 04:44	WG1566564
(S) a,a,a-Trifluorotoluene(FID)	92.2			77.0-120		10/28/2020 04:44	WG1566564

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

· ·		·					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000653	0.00140	1	10/27/2020 23:40	WG1566565
Toluene	U		0.00182	0.00700	1	10/27/2020 23:40	WG1566565
Ethylbenzene	U		0.00103	0.00350	1	10/27/2020 23:40	WG1566565
Total Xylenes	0.00152	<u>J</u>	0.00123	0.00909	1	10/27/2020 23:40	WG1566565
(S) Toluene-d8	97.6			75.0-131		10/27/2020 23:40	WG1566565
(S) 4-Bromofluorobenzene	102			67.0-138		10/27/2020 23:40	WG1566565
(S) 1,2-Dichloroethane-d4	113			70.0-130		10/27/2020 23:40	WG1566565

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.93	4.79	1	10/27/2020 13:10	WG1565216
C28-C40 Oil Range	0.941	<u>J</u>	0.328	4.79	1	10/27/2020 13:10	WG1565216
(S) o-Terphenyl	56.2			18.0-148		10/27/2020 13:10	WG1565216

ONE LAB. N. Page 149 of 203

SAMPLE RESULTS - 10

Collected date/time: 10/21/20 13:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.5		1	10/27/2020 23:45	<u>WG1566014</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.84	21.4	1	10/27/2020 07:11	WG1565795

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0267	ВЈ	0.0232	0.107	1	10/28/2020 05:05	WG1566564
(S) a,a,a-Trifluorotoluene(FID)	92.5			77.0-120		10/28/2020 05:05	WG1566564

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000532	0.00114	1	10/27/2020 23:58	WG1566565
Toluene	U		0.00148	0.00570	1	10/27/2020 23:58	WG1566565
Ethylbenzene	U		0.000840	0.00285	1	10/27/2020 23:58	WG1566565
Total Xylenes	0.00180	<u>J</u>	0.00100	0.00740	1	10/27/2020 23:58	WG1566565
(S) Toluene-d8	101			75.0-131		10/27/2020 23:58	WG1566565
(S) 4-Bromofluorobenzene	103			67.0-138		10/27/2020 23:58	WG1566565
(S) 1,2-Dichloroethane-d4	114			70.0-130		10/27/2020 23:58	WG1566565

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.94	<u>J</u>	1.72	4.28	1	10/27/2020 13:25	WG1565216
C28-C40 Oil Range	2.62	<u>J</u>	0.293	4.28	1	10/27/2020 13:25	WG1565216
(S) o-Terphenyl	70.2			18.0-148		10/27/2020 13:25	WG1565216

ONE LAB. N. Page 150 of 203

SAMPLE RESULTS - 11

Total Solids by Method 2540 G-2011

Collected date/time: 10/21/20 13:30

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	82.5		1	10/27/2020 23:45	WG1566014

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	142		11.1	24.2	1	10/27/2020 07:28	WG1565795

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0310	BJ	0.0263	0.121	1	10/28/2020 05:26	WG1566564
(S) a,a,a-Trifluorotoluene(FID)	92.4			77.0-120		10/28/2020 05:26	WG1566564

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	1 \		<u>'</u>				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000665	0.00142	1	10/28/2020 00:17	WG1566565
Toluene	U		0.00185	0.00712	1	10/28/2020 00:17	WG1566565
Ethylbenzene	U		0.00105	0.00356	1	10/28/2020 00:17	WG1566565
Total Xylenes	0.00320	<u>J</u>	0.00125	0.00925	1	10/28/2020 00:17	WG1566565
(S) Toluene-d8	98.8			<i>75.0-131</i>		10/28/2020 00:17	WG1566565
(S) 4-Bromofluorobenzene	103			67.0-138		10/28/2020 00:17	WG1566565
(S) 1,2-Dichloroethane-d4	113			70.0-130		10/28/2020 00:17	WG1566565

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.95	4.85	1	10/27/2020 13:39	WG1565216
C28-C40 Oil Range	0.796	<u>J</u>	0.332	4.85	1	10/27/2020 13:39	WG1565216
(S) o-Terphenyl	60.8			18.0-148		10/27/2020 13:39	WG1565216

ONE LAB. N. Page 151 of 203

SAMPLE RESULTS - 12

Total Solids by Method 2540 G-2011

Collected date/time: 10/21/20 14:00

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	89.7		1	10/27/2020 23:45	WG1566014

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		10.3	22.3	1	10/27/2020 07:45	WG1565795

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0273	ВЈ	0.0242	0.112	1	10/28/2020 06:11	WG1566564
(S) a,a,a-Trifluorotoluene(FID)	91.4			77.0-120		10/28/2020 06:11	WG1566564

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

· ·		·					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000575	0.00123	1	10/28/2020 00:36	WG1566565
Toluene	U		0.00160	0.00616	1	10/28/2020 00:36	WG1566565
Ethylbenzene	U		0.000907	0.00308	1	10/28/2020 00:36	WG1566565
Total Xylenes	0.00154	<u>J</u>	0.00108	0.00800	1	10/28/2020 00:36	WG1566565
(S) Toluene-d8	101			75.0-131		10/28/2020 00:36	WG1566565
(S) 4-Bromofluorobenzene	101			67.0-138		10/28/2020 00:36	WG1566565
(S) 1,2-Dichloroethane-d4	116			70.0-130		10/28/2020 00:36	WG1566565

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.80	4.46	1	10/27/2020 13:54	WG1565216
C28-C40 Oil Range	3.44	<u>J</u>	0.306	4.46	1	10/27/2020 13:54	WG1565216
(S) o-Terphenyl	57.5			18.0-148		10/27/2020 13:54	WG1565216

ONE LAB. N. Page 152 of 203

SAMPLE RESULTS - 13

Collected date/time: 10/21/20 14:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	99.5		1	10/27/2020 23:45	<u>WG1566014</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	84.8		9.25	20.1	1	10/27/2020 09:10	WG1565795

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0280	ВЈ	0.0218	0.101	1	10/28/2020 06:32	WG1566564
(S) a,a,a-Trifluorotoluene(FID)	93.2			77.0-120		10/28/2020 06:32	WG1566564

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000472	0.00101	1	10/28/2020 00:55	WG1566565
Toluene	U		0.00131	0.00505	1	10/28/2020 00:55	WG1566565
Ethylbenzene	U		0.000745	0.00253	1	10/28/2020 00:55	WG1566565
Total Xylenes	0.00168	<u>J</u>	0.000889	0.00657	1	10/28/2020 00:55	WG1566565
(S) Toluene-d8	100			75.0-131		10/28/2020 00:55	WG1566565
(S) 4-Bromofluorobenzene	103			67.0-138		10/28/2020 00:55	WG1566565
(S) 1,2-Dichloroethane-d4	114			70.0-130		10/28/2020 00:55	WG1566565

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.62	4.02	1	10/27/2020 14:09	WG1565216
C28-C40 Oil Range	2.51	<u>J</u>	0.275	4.02	1	10/27/2020 14:09	WG1565216
(S) o-Terphenyl	76.9			18.0-148		10/27/2020 14:09	WG1565216

ONE LAB. NA Page 153 of 203

Cn

Total Solids by Method 2540 G-2011

L1276977-01,02,03,04,05,06

Method Blank (MB)

(MB) R3586511-1 10	/28/20 00:03			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

L1276977-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1276977-02 10/28/2	20 00:03 • (DUI	P) R3586511-3	10/28/20	00:03					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			
Analyte	%	%		%		%			
Total Solids	96.8	96.8	1	0.0833		10			

Laboratory Control Sample (LCS)

(LCS) R3586511-2 10/28	/20 00:03				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	99.9	85.0-115	

.

ONE LAB. N. Page 154 of 203

L1276977-07,08,09,10,11,12,13 Total Solids by Method 2540 G-2011

Method Blank (MB)

(MB) R3586507-1 10/27/20	23:45			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

Ss

L1276977-13 Original Sample (OS) • Duplicate (DUP)

(OS) L1276977-13	10/27/20 23:45 •	(DUP) R3586507-3	10/27/20 23:45

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	99.5	99.5	1	0.0120		10

Laboratory Control Sample (LCS)

(LCS) R3586507-2 10/27/20 23:45

(LCS) R3586507-2 10/27/2	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

GI

ONE LAB. N. Page 155 of 203

Wet Chemistry by Method 300.0

L1276977-01,02,03,04,05,06,07,08,09,10,11,12,13

Method Blank (MB)

(MB) R35860	056-1 10/27/20 00:17			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

3 Ss

L1276696-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1276696-01 10/27/20	0 02:41 • (DUP)	R3586056-3	10/27/20	02:57		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	U	U	1	0.000		20

L1276977-13 Original Sample (OS) • Duplicate (DUP)

(OS) L1276977-13 10/27/20 09:10 • (DUP) R3586056-6 10/27/20 09:27

(03) [12/09/7-13 10/2//20	09.10 • (DOF)	K3360030-0	10/2//20	09.27		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	84.8	84.7	1	0.0579		20

Laboratory Control Sample (LCS)

(LCS) R3586056-2 10/27/20 00:34

, ,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	205	102	90.0-110	

L1276977-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1276977-12 10/27/20 07:45 • (MS) R3586056-4 10/27/20 08:02 • (MSD) R3586056-5 10/27/20 08:53

(03) [12/03/7-12 10/2/720	33) E1270377-12 T0/27/20 07.43 * (MIS) NS300030-4 T0/27/20 08.02 * (MISD) NS300030-3 T0/27/20 08.33											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	558	U	571	573	102	103	1	80.0-120			0.427	20

ONE LAB. N. Page 156 of 203

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1276977-01,02,03,04,05,06,07,08,09,10,11,12,13

Method Blank (MB)

(MB) R3587156-2 10/27/2	(MB) R3587156-2 10/27/20 23:44										
	MB Result	MB Qualifier	MB MDL	MB RDL							
Analyte	mg/kg		mg/kg	mg/kg							
TPH (GC/FID) Low Fraction	0.0293	<u>J</u>	0.0217	0.100							
(S) a,a,a-Trifluorotoluene(FID)	89.6			77.0-120							

Laboratory Control Sample (LCS)

(LCS) R3587156-1 10/27/2	(LCS) R3587156-1 10/27/20 23:03										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	mg/kg	mg/kg	%	%							
TPH (GC/FID) Low Fraction	5.50	5.76	105	72.0-127							
(S) a,a,a-Trifluorotoluene(FID)			105	77.0-120							

L1276084-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1276084-02 10/28/20 07:54 • (MS) R3587156-3	10/28/20 09:32 • (MSD) R3587156-4 10/28/20 09·52
(OS) LIZ/OOOT-OZ 10/20/20 07.57 (1413/11330/130-3	10/20/20 03.32 • (19130	1113307130-4 10/20/20 03.32

(OS) L12/6084-02 10/28/	/20 07:54 • (MS)	R358/156-3 1	0/28/20 09:3	2 • (MSD) R358	/156-4 10/28	/20 09:52							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
TPH (GC/FID) Low Fraction	550	56.4	414	383	65.0	59.4	100	10.0-151			7.78	28	
(S) a,a,a-Trifluorotoluene(FID)					107	106		77.0-120					

ONE LAB. N. Page 157 of 203

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1276977-01,02,03,04,05,06,07,08,09,10,11,12,13

Method Blank (MB)

(MB) R3587189-3 10/27/2	0 19:44			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	99.6			75.0-131
(S) 4-Bromofluorobenzene	101			67.0-138
(S) 1,2-Dichloroethane-d4	113			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.125	0.137	0.136	110	109	70.0-123			0.733	20	
Ethylbenzene	0.125	0.121	0.120	96.8	96.0	74.0-126			0.830	20	
Toluene	0.125	0.121	0.119	96.8	95.2	75.0-121			1.67	20	
Xylenes, Total	0.375	0.352	0.359	93.9	95.7	72.0-127			1.97	20	
(S) Toluene-d8				96.9	99.4	75.0-131					
(S) 4-Bromofluorobenzene				96.8	100	67.0-138					
(S) 1,2-Dichloroethane-d4				113	117	70.0-130					

L1277041-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1277041-05 10/28/2	OS) L1277041-05 10/28/20 02:11 • (MS) R3587189-4 10/28/20 03:26 • (MSD) R3587189-5 10/28/20 03:45											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	1.33	0.557	2.26	2.29	128	130	9.44	10.0-149			1.49	37
Ethylbenzene	1.33	51.4	53.2	52.0	136	50.8	9.44	10.0-160	<u>E</u>	<u>E</u>	2.15	38
Toluene	1.33	68.3	66.2	62.7	0.000	0.000	9.44	10.0-156	EV	EV	5.43	38
Xylenes, Total	4.00	338	323	312	0.000	0.000	9.44	10.0-160	$\underline{\vee}$	$\underline{\vee}$	3.56	38
(S) Toluene-d8					88.8	86.9		75.0-131				
(S) 4-Bromofluorobenzene					97.9	95.7		67.0-138				
(S) 1,2-Dichloroethane-d4					118	121		70.0-130				

ONE LAB. N. Page 158 of 203

Semi-Volatile Organic Compounds (GC) by Method 8015

L1276977-01,02,03,04,05,06,07,08,09,10,11,12,13

Method Blank (MB)

(MB) R3585987-1 10/27	7/20 07:05			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	65.9			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3585987-2 10/27	7/20 07:20				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	33.3	66.6	50.0-150	
(S) o-Terphenyl			78.8	18.0-148	

L1276977-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1276977-01 10/27/20 07:34 • (MS) R3585987-3 10/27/20 07:49 • (MSD) R3585987-4 10/27/20 08:04

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	58.7	U	27.3	25.6	46.5	43.5	1	50.0-150	<u>J6</u>	<u>J6</u>	6.31	20
(S) o-Terphenyl					54.6	51.4		18.0-148				

ConocoPhillips - Tetra Tech

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qual	lifier	Description

В	The same analyte is found in the associated blank.
Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
V	The sample concentration is too high to evaluate accurate spike recoveries.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	
A2LA - ISO 17025 5	1461.02	
Canada	1461.01	
EPA-Crypto	TN00003	

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Page: 1 of 2

Analysis Request of Chain of Custody Record

Tt			901 West Wall Street, Suite 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946												l	12	76	97	17	(1	21	13				
Client Name:	Conoco Phillips	Site Manage	er:	Chri	Christian Llull												LIZI 6977 D113 ANALYSIS REQUEST										
Project Name:	MCA 274 Wellhead Release	Contact Info):			hristia (512)				ch.com		1,	Ī	1	(Cir	rcle	or	Sp	ec 	ify:	Me	etho	l bc	No.) 	11	
Project Location: county, state)	Lea County, New Mexico	Project #:		212	C-MI	D-023	318											\square	-	2	-	Н		-		-	
nvoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas	79701				4	Ţ.				- 10	11												St)			
Receiving Laboratory	2.0	Sampler Sig	ınature:		Adria	an Ga	rcia		-	13			MBO	(2)	е На	Se Hg								sched lis			
Comments: COPT	ETRA Acctnum	A. J.		8	37							3260B	5)		Ba Cd Cr Pb Se Hg	d Cr Pb	No.			8270C/625			U	/ (see attached list)	i GT		Sec.
		SAMP	LING	MA	TRE	х		ERV.	ATIVE		2	BTEX 8	axt to C3		As Ba C	As Ba	atiles				3		ate TDS	E	lance		
LAB#	SAMPLE IDENTIFICATION	YEAR: 2020 DATE	TIME	WATER	ı		53	2	빌	CONTAINERS	FILTERED (Y/N)	BTEX 8021B	TPH TX1005 (Ext to C35)	8270C	otal Metals Ag As	TCLP Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Semi Volatiles		3C/MS Vol. 82	GC/MS Semi, Vol. PCB's 8082 / 608	W.	PLM (Asbestos)	Chloride 300.0	General Water Chemistry	Anion/Cation Balan TPH 8015R		0
ONLY)			-		SOIL	로	HNO3		NONE	#		-	-	- 1	Tota	고 다	길	30	GC/I	GC/I	NORM		-	Gen	Anior	\perp	HOLD
	FS - 2 FS - 3	10/21/2020	830	-	X	+	H	X		1	N	X)	-				Н				-	X		E I	\mathbb{H}	
	ES 1	10/21/2020	900		X	+	H	X	+	1	N	X)	-	Н	+	+	Н	2	+	F		X				5
	FS - 5	10/21/2020	1000	-	X	-		X	+	1	N	X	-	+	H	-	+		-	+	+	-	X	17			
	FS - 6	10/21/2020	1030	++	x	1	H	X	+	1	N	x	1	-	Н	+	+	Н	-	+	-	1	X			+	
	FS - 7	10/21/2020	1100	+ +	X	+	H	X	+	1	N.	X	7	+	Н	+	+	Н	+	+	F	+	X	7,7		+	The state of the s
	FS - 8	10/21/2020	1130	1	X	2 1/5	H	х	+	1	N	X	7	+	Н	+	-		1	+	+		X	7.0	+	+	- The Party of the
	FS - 9	10/21/2020	1200	++	х	7		х		1	N	x	\ x		Н		1	H	+	-	10		x	-		Ħ	
	FS - 10	10/21/2020	1230		Х			X	4	1	N	х	×		H		a,	Н	1	10			X			Ħ	
	ES - 11	10/21/2020	1300		X	A		X	1	- 1	N	х	×		П	1							x				i
elinquished by:	Date: Time: 1630	XOUT 1								LAE	B US		R	REMARKS: Standard						-							
elinquished by	Received by:	ix.		10	Da 2-2	ate:	2	ime:	17	2	Sam	ple Te	empe	rature							24 b		8 hr.	72 hr.	el	-	
elinquished by:	Date: Time:	Received by:	4				ite:		ime:	250	כן	7										ts or T		Repor		1	A
3.7±0=3.7		ORIGINA	LOODY	16/23 050											_		_	_	UPS Tracking #:							7	

Page 162 of 203

Page: 1 of 2

TE	Tetra Tech, Inc.				901	Midl Te	and I (4	all Str 1, Texa 32) 68 32) 68	as 79	59	00				100		4.		4			นะ	18	וח		
Client Name:	Conoco Phillips	Site Manag	er:	Chr	ristian	Llull	-					Τ	100							RE	QUE	ST			0_3	
Project Name:	MCA 274 Wellhead Release	Contact Info	o:		ail: ch				trate	ch.com	1	1	i	(Cir	cle	or	Sp	eci	fy I	/let	hod	l No	o.) 	1-1	1
Project Location: (county, state)	Lea County, New Mexico	Project #:		212	C-MD	0-023	18			F.								4		-					- 17	
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970	01	· ·	4.5						7	je.														Đ.	165
Receiving Laborator		Sampler Sig	gnature:	de	Adria	n Gar	cia						ORO - MRO)			Se Hg							shad liet	ched list		
Comments: COP	TETRA Acctrum					4						8260B	10.00	3 2 3 1	Cr Pb	Cd Cr Pb S			2/625				ette anal	(See alla	2.5	4
		SAME	PLING	MA	ATRIX	PR		ERVA			(W/W)	ă	GRO - DRO	_	As Ba (AS Ba	tiles		. Vol. 8270C.				te TDS	ance		
LAB USE ONLY	SAMPLE IDENTIFICATION	YEAR: 2020	TIME	WATER	SOIL .	HCL	HNO3	ICE	CINE	CONTAINERS	FILTERED (Y.		H 1X1005 (EXTO PH 8015M (GRO-	PAH 8270C	49	CLP Metals Ag	CLP Semi Volatiles	MS Vol	MS Semi		NORM (Asbestos)	ide 30	Chloride Sulfate	ation Ba	80	НОГР
	FS - 12	10/21/2020	1330	_	X	T	I	⊇ 2 X	2	#1	N	m F	X	P/	유	1	12	D C	GC G	P	NOR PLM	ਨ X	S S	Ani	TPH	오
	FS - 13	10/21/2020	1400	1	х	\Box		х		- 1	N	X	X		+			e de la la			+	X	+			-
	FS-14	10/21/2020	1430		х			X		1	N	Х	Х	2							1/2	X				-
															-										An Jor	
							2-7				· 74															
Relinguished by:	ARL Date Time	D.C. Aug	- 19			þ.																				
Relinquished by:	Date: Time: Date: Time: Date: Time:	Received by: Received by: Received by:	In x,	1	100	Date Date	2	Tin Z Tin J Tim	1 7	6:	١	L		ILY		RE	×	Stand RUSH Rush (: Sa	me Da	thorize			72 h	Ay nr.	
3.730=3.7 CK	PAD SCREEN, O.S.	ORIGINA	LCOPY		A.					96		(Circle	e) HA	AND [DELIV	/ERE	D F	EDEX	ÜF	S	racki	ng #;		1		

Pace Analytical National Center for T	esting & Innov	ation	
Cooler Receipt For	m		
Client:		l	1276177
Cooler Received/Opened On: 10 127,1 20	Temperature:	37	
Received By: JOEY BRENT		The second	
Signature:			
Receipt Check List	NP	Yes	No
COC Seal Present / Intact?			
COC Signed / Accurate?			
Bottles arrive intact?			
Correct bottles used?			
Sufficient volume sent?			
If Applicable			
VOA Zero headspace?			
Preservation Correct / Checked?			

APPENDIX D Soil Boring Logs

eceive	ved by OCD: 11/6/2020 1:39:16 PM																		Page 165 of
21	212C-MD-02318 TETRA TECH roject Name: MCA 274 Wellhead Release												L	OG OF B	ORING V	'-1			Page 1 of 1
Proj	ect N	ame	: MC/	4 274 V	Vellh	ead	Rele	ase											•
Bore	hole	Loca	ation:	GPS: 32	.8093	324, -	103.7	76710)7			Surface Elevation	ion:	4010 ft					
Bore	hole	Nun	nber:	V-1						E	Boreho Diame	ole ter (in.):		Date Started:	9/15/2020)	Date Fi	inished	: 9/15/2020
			رق (آ	(m ₁	۲۲ (%)	(%) LN:)EX			While Drilling Remarks:			EL OBSER\ Upon Completi			Ā D	RY_ft
DEPTH (ft)	501 - 340 -								☐ PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG		ATE	RIAL DESC	CRIPTION			DEPTH (ft)	REMARKS
		M	501	-							31 1/y	Previous	sly E	xcavated Sc	oil			1	V-1 (0'-1')
-	340 - 480 - 499 -											-SM- SILT` hydrocarbo Slightly i	on od	or, with no s	Loose, Dry, staining	with no)	_	V-1 (1'-2') V-1 (2'-3')
-	499 -											Grading	to R	eddish-Brov	vn			_	V-1 (3'-4')
											E-FEFE	·1	Botte	om of boreh	ole at 4.0 fee	et.		4	
Sam Type	pler es:		Split Spoon Shelby Bulk Sample Grab Sample	v K	cetate /ane scalifor	nia	r C)pera jypes:	Mud Rota	ary tinuou ht Aug sh	ser	Air Rotary		ytical sample	es are shown timated valu		"Remar	ks" co	lumn. Surface

Driller: McNabb

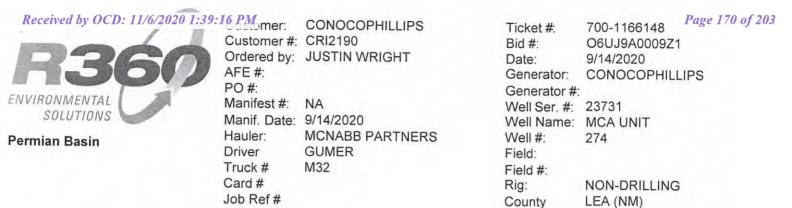
İ	212C-MD-02318 TETRA TECH Project Name: MCA 274 Wellhead Release								L	OG OF BOF	RING V-2		Page 166 of Page 1 of 1				
Proje	ect N	ame	· MC	Δ 274 V	Vellh	ead	Rele	286									1 01 1
			ation:	GPS: 32					97			Surface Elevat	tion·	4009 ft			
Bore				V-2		- ,			-	Ę		ole ter (in.):			9/15/2020	Date Finished	9/15/2020
					:RY (%)	ENT (%)	f)		DEX		<u>Jame</u>	While Drilling		VATER LEVEL	OBSERVATIO on Completion of Di	NS	RY_ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	М	ATE	RIAL DESCRI	PTION	DEPTH (ft)	REMARKS
		X	-	-							\(\frac{1}{2}\frac{1}{	Previou	ısly E	xcavated Soil		1	V-2 (0'-1')
-			300 - 410 - 570 -									-SM- SILT hydrocarb	TY S/ on o	AND; Brown, loo dor, with no stai	ose, Dry, with no ning		V-2 (1'-2') V-2 (2'-3')
-												Gradino	g to F	Reddish brown,	moist	<u> </u>	V-2 (3'-4')
											<u>E-E-F-</u>	:	Bot	tom of borehole	at 4.0 feet.	4	
Sam Type	pler s:	60	Split Spool Shelb Bulk Samp Grab Samp	oy 🗍 V			r C)pera ypes	Muc Rota	ary ntinuou ht Aug sh	Jus Justine I	Hand Auger Air Rotary Direct Push Core Barrel			are shown in the ated value.	"Remarks" co	lumn. Surface

Driller: McNabb

ceive	ceived by OCD: 11/6/2020 1:39:16 PM												Page 167 of
21:	212C-MD-02318 TETRATECH Project Name: MCA 274 Wellhead Release							СН				LOG OF BORING V-3	Page 1 of 1
Proj	ect N	ame	: MC	A 274 V	Vellh	ead	Rele	ase					
Bore	hole	Loc	ation:	GPS: 32	.809	304, -	103.7	76708	39			Surface Elevation: 4009 ft	
Bore	hole	Nur	nber:	V-3						В	oreho	ole ter (in.): 8 Date Started: 9/15/2020 Date Finished:	9/15/2020
			D (m)	(ma	२५ (%)	:NT (%))EX			WATER LEVEL OBSERVATIONS While Drilling	₹Y_ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT	☐ PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
		M	-	-							<u> </u>	Previously Excavated Soil	V-3 (0'-1')
-		M	413	-									/-3 (1'-2')
-		M	409	-								I hydrocarbon odor, with no staining	/-3 (2'-3')
-		M	350	-									V-3 (3'-4')
		ĽΊ										Bottom of borehole at 4.0 feet.	
									41				
Sam Type	pler s:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Split Spoon Shelby Bulk Sampl Grab Sampl	e \mathbf{K}^{\prime}			r C	Opera Types	Muc Rota	ary itinuou ht Aug sh	s er	Hand Auger Air Rotary Air Rotary Direct Push Core Barrel Notes: Analytical samples are shown in the "Remarks" coluelevation is an estimated value.	ımn. Surface

Driller: McNabb

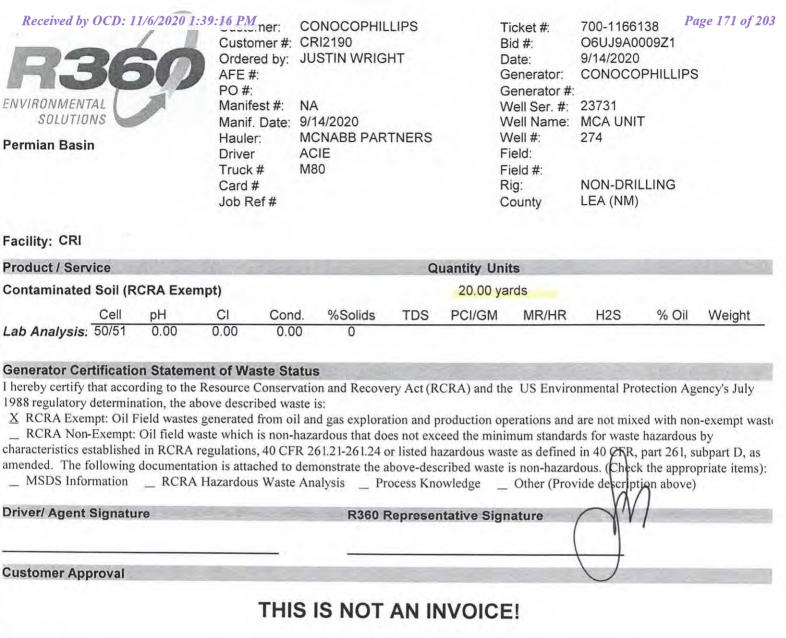
APPENDIX E Waste Manifests

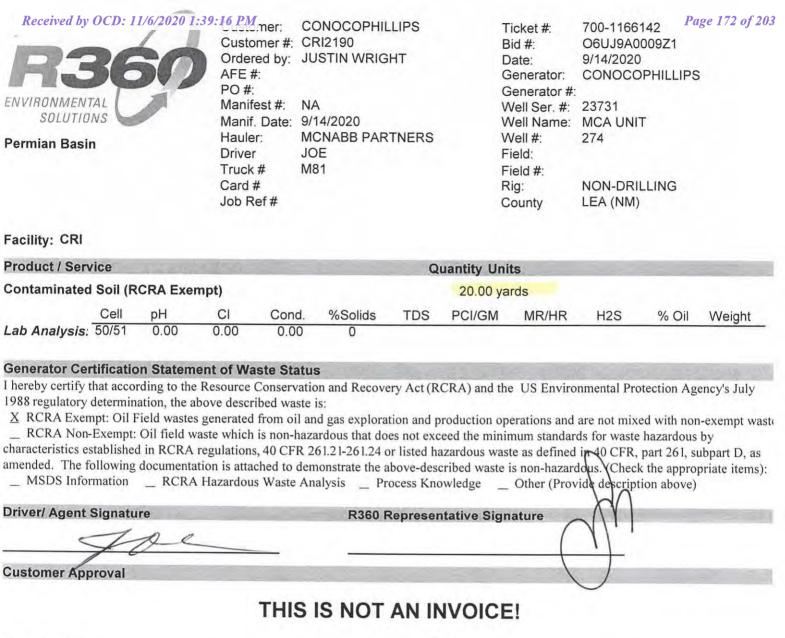

Received by OCD: 11/6/2020 1:: RESULTIONS Permian Basin		Custo Ordere AFE # PO #: Manife Manif. Haule Driver Truck Card #	Customer #: CRI2190 Ordered by: JUSTIN WRIGHT AFE #:				Ticket #: Bid #: Date: Generator: Generator # Well Ser. #: Well Name: Well #; Field: Field #: Rig: County	23731	PHILLIPS	age 169 of 20.	
Facility: CRI											
Product / Serv	vice				5.551	Q	uantity U	nits			3 3
Contaminated	Soil (R	CRA Exer	npt)				18.00	yards			
	Cell	рН	CI	Cond	. %Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00			7 (4 10 10 10 10 10				
_ RCRA Non- characteristics e amended. The f	that accor determina mpt: Oil F -Exempt: established following rmation	ding to the attion, the all ield wastes Oil field w I in RCRA documenta	Resource of bove described aste which regulations tion is attack.	Conserva ibed was from oil is non-h i, 40 CFF ched to d	ation and Recovite is: and gas explorazardous that do 2 261.21-261.24 demonstrate the Analysis P	ation and poes not excordisted he above-des	production ceed the mi azardous w cribed was	operations and nimum standa aste as defined te is non-hazan Other (Pro	d are not mixe rds for waste d in 40 CFR, rdous. (Check	ed with no hazardous part 261, s t the appro	n-exempt wast s by subpart D, as opriate items):
Customer An	proval					-					

THIS IS NOT AN INVOICE!

Date:

t6UJ9A01FZ34 9/14/2020 12:00:34PM


Approved By:

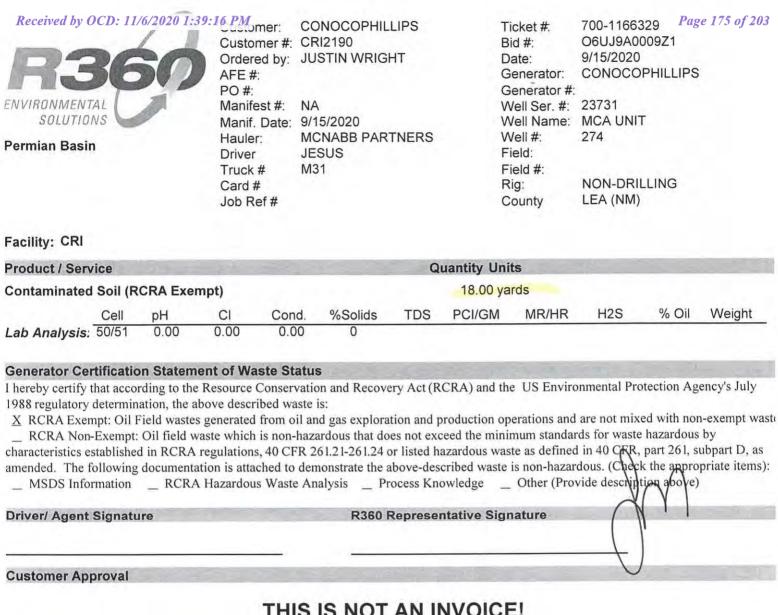

Facility: CRI

Product / Sen	rice			- 113		Q	uantity Uni	ts			
Contaminated	Soil (R	CRA Exe	mpt)				18.00 ya	rds			
	Cell	рН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0						
Generator Cer	rtificatio	n Statem	ent of Wa	ste Status							
1988 regulatory X RCRA Exen RCRA Non- characteristics esamended. The form	npt: Oil F Exempt: stablished ollowing mation	Field waste: Oil field w I in RCRA documenta RCRA	s generated aste which regulation ation is atta	I from oil and is non-haze s, 40 CFR 2 sched to den	d gas explora ardous that do 61.21-261.24 c nonstrate the a	es not exc or listed habove-desc	eed the minimazardous was cribed waste	num standard te as defined is non-hazard	ls for waste in 40 CFR, ous. (Checl	hazardous part 261, so the approp	by ubpart D, as
Driver/ Agent	Signatu	re			R360 F	Represer	ntative Sign	ature	1		
Customer App	roval			1 2 100		V					
				THIS	IS NOT	AN IN	VOICE	!			

Approved By:

Approved By: _____ Date: ____

Approved By: _____ Date: ____


Facility: CRI

Product / Serv	/ICE					Q	uantity Uni	ts .			
Contaminated	Soil (R	CRA Exe	mpt)				14.00 ya	rds			
	Cell	рН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0						
Generator Ce											
X RCRA Exer RCRA Non characteristics e amended. The f MSDS Info	-Exempt: stablished	Oil field v d in RCRA documents	vaste which regulation ation is atta	is non-haz s, 40 CFR 2 sched to der	ardous that do 61.21-261.24 on nonstrate the a	oes not exc or listed h above-des	ceed the mining azardous was cribed waste	mum standard te as defined is non-hazard	ds for waste in 40 CFR, lous. (Chec	hazardous part 261, s k the appro	by ubpart D, as priate items):
Driver/ Agent	Signatu	ire			R360 I	Represe	ntative Sigr	nature	Lui	0	129
Customer Ap	proval					-					
				THIS	IS NOT	ANI	NVOICE	Ξ!			
Approved By:						D	ate:				

t6UJ9A01FZRO 9/15/2020 3:11:53PM

Received by OCD: 11/6/2020 1:39 Received by OCD: 11/6/2020 1:39 ENVIRONMENTAL SOLUTIONS Permian Basin	Customer: Customer # Ordered by: AFE #: PO #: Manifest #: Manif. Date Hauler: Driver Truck # Card # Job Ref #	JUSTIN WRIGH	HT.		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	O6UJ9A00 9/15/2020 CONOCO	e 174 of 203	
Facility: CRI								
Product / Service	47-14		Q	uantity U	nits		Sec. 1	Self Self
Contaminated Soil (RCRA Exem	npt)			18.00	yards			
Cell pH	CI Co	nd. %Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis: 50/51 0.00	0.00 0.	00 0						
Generator Certification Stateme I hereby certify that according to the 1988 regulatory determination, the ab X RCRA Exempt: Oil Field wastes RCRA Non-Exempt: Oil field was characteristics established in RCRA amended. The following documentat MSDS Information RCRA Driver/ Agent Signature	Resource Conse love described we generated from laste which is not regulations, 40 Ction is attached to	rvation and Recove vaste is: oil and gas explorate the hazardous that doe of demonstrate the aute Analysis Property of the	tion and ples not executed histed histed historical bove-des	oroduction ceed the mi azardous w scribed was	operations and nimum standar aste as defined te is non-hazar Other (Pro	l are not mix rds for waste d in 40 CFR, rdous. (Check	ed with not hazardous part 261, s k the appro	n-exempt waste s by subpart D, as opriate items):
				rus	P~	10		
Customer Approval				1 - 1				
	TH	IIS IS NOT	AN II	NVOIC	E!			
Approved By:			D)ate:				

t6UJ9A01FZIB 9/15/2020 8:38:17AM Released to Imaging: 1/29/2021 12:58:05 PM

THIS IS NOT AN INVOICE!

Approved By: Date:

t6UJ9A01FZLZ Released to Imaging: 1/29/2021 12:58:05 PM

R360 ENVIRONMENTAL SOLUTIONS Permian Basin			Ordere AFE # PO #: Manife Manif. Hauler Driver Truck : Card #	Customer #: CRI2190 Ordered by: JUSTIN WRI AFE #: PO #: Manifest #: NA Manif. Date: 9/15/2020 Hauler: MCNABB PA				Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County		09Z1 PHILLIPS	ge 1/0 0 j 20:
Facility: CRI											
Product / Serv	vice					Q	uantity U	nits			
Contaminated	Soil (R	CRA Exen	npt)				18.00	yards			
	Cell	рН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0						
Generator Ce	rtificatio	n Stateme	ent of Wa	ste Statu	s					1016	35.00
I hereby certify 1988 regulatory X RCRA Exer RCRA Non characteristics e amended. The f	determing mpt: Oil F -Exempt: established following	ation, the al field wastes Oil field w I in RCRA documenta	generated aste which regulations tion is attac	from oil ar is non-haz 4, 40 CFR 2 ched to der	is: and gas explora ardous that do 261.21-261.24 monstrate the	ntion and poes not exc or listed habove-des	production of the mines of the	operations and nimum standa raste as defined te is non-hazar	I are not mixe rds for waste d in 40 CFR, p rdous. (Sheck	ed with nor hazardous part 261, s the appro	n-exempt was by ubpart D, as opriate items):
Driver/ Agent	Signatu	re		71-3-3	R360	Represe	ntative Si	gnature	MA		
Customer Ap	proval	F15-7									

THIS IS NOT AN INVOICE!

Date:

t6UJ9A01FZRA Released to Imaging: 1/29/2021 12:58:05 PM 9/15/2020 2:57:03PM

Approved By:

R360 ENVIRONMENTAL SOLUTIONS Permian Basin	Customer: Customer # Ordered by AFE #: PO #: Manifest #: Manif. Date Hauler: Driver Truck # Card # Job Ref #	#: CRI219 r: JUSTIN NA e: 9/15/20	I WRIGHT 20 3B PARTI	Г	E C C N N	Ficket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County		177 of 203	
Facility: CRI									
Product / Service			15-14	Q	uantity Ur	nits		1-17-179	11-1
Contaminated Soil (RCRA Exemp	pt)				18.00 y	rards			
Cell pH	CI Co	ond. %	Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis: 50/51 0.00	0.00	0.00	0						
	nt of Waste : Resource Consove described generated from ste which is no egulations, 40	Status servation an waste is: n oil and ga- on-hazardou CFR 261.21 to demonst	d Recover s explorati us that doe 1-261.24 or crate the ab	on and p s not exc listed has bove-des cess Kno	oroduction of ceed the min azardous we cribed wast owledge	operations and nimum standa aste as define e is non-haza Other (Pro	d are not mix rds for waste d in 40 CFR, rdous. (Chec	ed with no e hazardous , part 261, s k the appro	n-exempt waste by ubpart D, as priate items):
Cenerator Certification Statemer I hereby certify that according to the R 1988 regulatory determination, the about X RCRA Exempt: Oil Field wastes garden RCRA Non-Exempt: Oil field wastes garden RCRA researched. The following documentation	nt of Waste : Resource Consove described generated from ste which is no egulations, 40	Status servation an waste is: n oil and ga- on-hazardou CFR 261.21 to demonst	d Recover s explorati us that doe 1-261.24 or crate the ab	on and post of the state of the	oroduction of ceed the min azardous was cribed wast	operations and nimum standa aste as define e is non-haza Other (Pro	d are not mix rds for waste d in 40 CFR, rdous. (Chec	ed with no e hazardous , part 261, s k the appro	n-exempt waste by ubpart D, as priate items):
Cenerator Certification Statemer I hereby certify that according to the R 1988 regulatory determination, the about X RCRA Exempt: Oil Field wastes gare RCRA Non-Exempt: Oil field wastes gare characteristics established in RCRA reamended. The following documentation MSDS Information RCRA R	nt of Waste : Resource Consove described generated from ste which is no egulations, 40	Status servation an waste is: n oil and ga- on-hazardou CFR 261.21 to demonst	d Recover s explorati us that doe 1-261.24 or crate the ab	on and post of the state of the	oroduction of ceed the min azardous we cribed wast owledge	operations and nimum standa aste as define e is non-haza Other (Pro	d are not mix rds for waste d in 40 CFR, rdous. (Chec	ed with no e hazardous , part 261, s k the appro	n-exempt waste by ubpart D, as priate items):
Generator Certification Statemer I hereby certify that according to the R 1988 regulatory determination, the abo X RCRA Exempt: Oil Field wastes g RCRA Non-Exempt: Oil field was characteristics established in RCRA re amended. The following documentati MSDS Information RCRA I Driver/ Agent Signature	nt of Waste Sesource Consove described generated from ste which is no egulations, 40 ton is attached Hazardous Waste Was	Status servation an waste is: n oil and ga- on-hazardou CFR 261.21 to demonst	d Recover s explorati is that doe l-261.24 or trate the ab s Pro	on and ps not exceed his overdes known and provenes known and provenes known are presented in the control of th	production of ceed the min azardous w cribed wast owledge ntative Sig	operations and nimum standa aste as define e is non-haza Other (Prognature	d are not mix rds for waste d in 40 CFR, rdous. (Chec	ed with no e hazardous , part 261, s k the appro	n-exempt waste by ubpart D, as priate items):

t6UJ9A01FZLW Released to Imaging: 1/29/2021 12:58:05 PM

Permian Basin

CONOCOPHILLIPS

Customer #: CRI2190

Ordered by: JUSTIN WRIGHT

AFE #:

PO #

Manifest #: NA Manif. Date: 9/15/2020

Hauler:

MCNABB PARTNERS

Driver **GUMER** Truck # M32

Card# Job Ref# Ticket #:

Date:

Page 178 of 203 700-1166286

Bid #:

O6UJ9A0009Z1

9/15/2020

CONOCOPHILLIPS

Generator: Generator #:

Well Ser. #: 23731 Well Name: MCA UNIT

Well #: 274

Field:

Field #: Rig:

NON-DRILLING

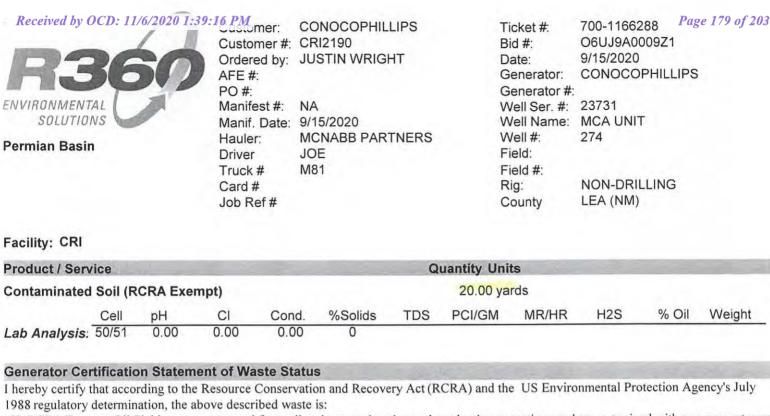
County LEA (NM)

Facility: CRI

Product / Serv	/ice					Q	uantity Uni	ts	A		
Contaminated	Soil (R	CRA Exe	mpt)				18.00 ya	rds			
	Cell	рН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0						

Generator Certification Statement of Waste Status

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:


X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous (Check the appropriate items): _ MSDS Information _ RCRA Hazardous Waste Analysis _ Process Knowledge _ Other (Provide description above)

Driver/ Agent Signature		R360 Rep	resentativ	e Signature	-	MI
Customer Approval	_				1	1

THIS IS NOT AN INVOICE!

7.0 1 1 1 2 1 2 1 1 2 1 1	B 442
Approved By:	Date:
1 40 DA 3 1 5 TA 7 4 N 4	

-7. O/Om

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as

	cumentation is attached to demonstrate			
_ MSDS Information _	RCRA Hazardous Waste Analysis	_ Process Knowledge	_ Other (Provide d	escription above)
Driver/ Agent Signature	R	360 Representative Sig	inature W	
- Ittell Agont Orginature				l .

Customer Approval

THIS IS NOT AN INVOICE!

Approved By:	Date:
Approved by.	Date.

t6UJ9A01FZIC Released to Imaging: 1/29/2021 12:58:05 PM

Received by OCD: 11/6/2020 1:39 RESULTIONS Permian Basin		Custor Ordere AFE # PO #: Manife Manif. Hauler Driver Truck Card #	mer #: 0 ed by: est #: Date: : : #	CONOCOPHILLIPS CRI2190 JUSTIN WRIGHT NA 10/20/2020 MCNABB PARTNERS JESUS M31		E	Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig:		D09Z1 0 PHILLIPS	LIPS			
Facility: CRI			Job R	ef#			(County	LEA (NM)				
Product / Serv	daa					0	uantitu I lm	H _a					
						Q	uantity Un			-			
Contaminated Soil (RCRA Exempt)			npt)	18.0					00 yards				
	Cell	рН	CI	Cond	. %Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight		
Lab Analysis:	50/51	0.00	0.00	0.00	0								
Generator Cer													
I hereby certify t						ery Act (R	CRA) and the	ne US Enviro	onmental Pro	tection Ag	ency's July		
1988 regulatory						tion and r	raduation a	parations and	are not miv	ed with no	n-evemnt was		
A RCRA Exen	npt: Oil F Evennt:	Oil field w	generated	is non-h	and gas explora azardous that do	es not eve	roduction o	imum standai	ds for waste	hazardous	by		
characteristics e	stablishe	in RCRA	regulations	40 CFR	261 21-261 24	or listed h	azardous wa	ste as defined	l in 40 CFR.	part 261, s	ubpart D, as		
amended. The f	ollowing	documenta	tion is atta	ched to d	emonstrate the a	bove-des	cribed waste	is non-hazar	dous (Check	the appro	priate items):		
_ MSDS Info	rmation	_ RCRA	Hazardou	s Waste	Analysis _ Pr	ocess Kn	owledge _	Other (Pro	vide descript	ion above)			

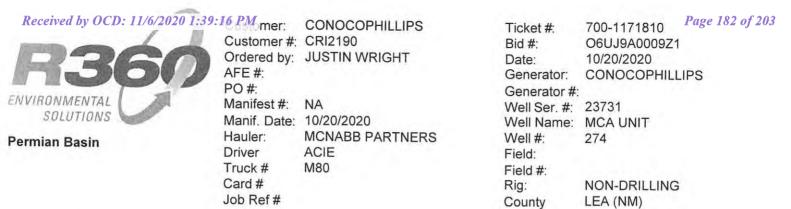
Driver/ Agent Signature

Approved By:

Customer Approval

R360 Representative Signature

Date:


THIS IS NOT AN INVOICE!

t6UJ9A01GCC5 10/20/2020 1:08:46PM Released to Imaging: 1/29/2021 12:58:05 PM

Facility: CRI											
Product / Serv	rice	4				Q	luantity Uni	its		715	
Contaminated	Soil (R	CRA Exe	mpt)				18.00 ya	ards			
	Cell pH Cl Cond. 50/51 0.00 0.00 0.00 rtification Statement of Waste State that according to the Resource Conservate determination, the above described waste inpt: Oil Field wastes generated from oil at Exempt: Oil field waste which is non-hastablished in RCRA regulations, 40 CFR collowing documentation is attached to determation _ RCRA Hazardous Waste A			Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0						
Generator Cer	rtificatio	n Staten	ent of Wa	aste Statu	S					P 7.74	With Paris
X RCRA Exer RCRA Non- characteristics e amended. The f	npt: Oil I Exempt: stablished following rmation	Field waste Oil field v d in RCRA document RCRA	s generated vaste which regulation ation is atta	I from oil and is non-hazes, 40 CFR 2 arched to der	nd gas explora ardous that do 61.21-261.24 on nonstrate the analysis Property	es not exectly the second seco	ceed the mini azardous was scribed waste	mum standard ite as defined is non-hazard Other (Prov	ds for waste in 40 CFR, ous. (Chec	e hazardous , part 261, s k the appro	by ubpart D, as priate items):

Approved By:	Data:
Approved by.	Date:

Facility: CRI

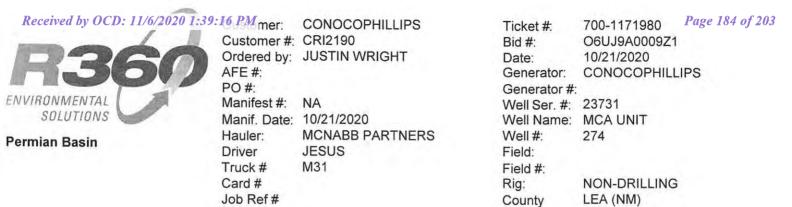
Product / Service

Product / Serv	cell pH Cl Cond. %Solids TDS PCI/GM MR/HR H2S % Oil Weight ab Analysis: 50/51 0.00 0.00 0.00 0 enerator Certification Statement of Waste Status hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 88 regulatory determination, the above described waste is: K RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt when RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by an aracteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as needed. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items)													
Contaminated	Soil (R	CRA Exe	mpt)		20.00 yards									
	Cell	рН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S %	% Oil	Weight			
Lab Analysis:	50/51	0.00	0.00	0.00	0									
Generator Cer	rtificatio	on Statem	ent of Wa	aste Statu	S				The same					
_ RCRA Non- characteristics e	-Exempt: stablished ollowing	Oil field v d in RCRA document	vaste which regulation ation is atta	is non-haz s, 40 CFR 2 sched to den	ardous that do 61.21-261.24 on nonstrate the a	oes not exe or listed h above-des	ceed the minist azardous was cribed waste	mum standard te as defined is non-hazard	Is for waste in 40 CFR, ous. (Chec	hazardous part 261, sik the appro	by ubpart D, as priate items):			
Driver/ Agent	Signatu	ire			R360 I	Represe	ntative Sign	ature						
Customer App	oroval							V						
				THIS	IS NOT	AN II	NVOICE	!						
Approved By:						Б								

Card# Job Ref#

Facility: CRI

Product / Serv	rice		-			Q	uantity Uni	ts							
Contaminated	Soil (R	CRA Exe	mpt)		18.00 yards										
	Cell	рН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight				
Lab Analysis:	50/51	0.00	0.00	0.00	0										
Generator Cer	rtificatio	n Statem	ent of Wa	aste Statu	S	9 80 00 0		T.							
X RCRA Exer _ RCRA Non- characteristics e- amended. The f _ MSDS Info	npt: Oil I Exempt: stablishe following	Field waste Oil field v d in RCRA documents	s generated vaste which regulation ation is atta	I from oil and is non-hazed s, 40 CFR 2 ached to der	nd gas explora ardous that do 61.21-261.24 on nonstrate the a	oes not exc or listed habove-des	ceed the mini azardous was cribed waste	mum standare te as defined is non-hazare	ds for waste in 40 CFR, lous. (Chec	e hazardous , part 261, s k the appro	by ubpart D, as priate items):				
Driver/ Agent				A 19 19			ntative Sign		141	0 01					
Customer Ap	proval						S 18 15				e del co				
				THIS	IS NOT	AN I	NVOICE	≣!							

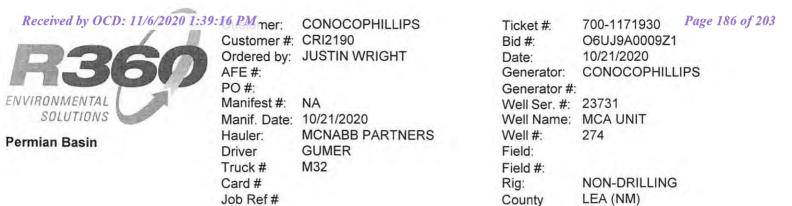

Date:

Rig:

County

LEA (NM)

t6UJ9A01GCM1 10/21/2020 8:32:33AM

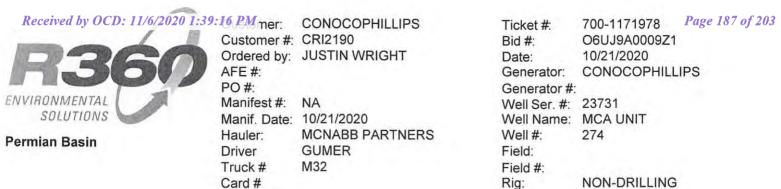

Facility: CRI

Product / Serv	/ice				10 E	Q	uantity Uni	ts			
Contaminated	Soil (R	CRA Exe	mpt)				18.00 ya	rds			
	Cell	рН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0						
Generator Cer	rtificatio	on Statem	ent of Wa	aste Statu	S						100 miles
X RCRA Exer _ RCRA Non- characteristics etamended. The f _ MSDS Infor-	Exempt: stablisher ollowing	Oil field v d in RCRA document	vaste which regulation ation is atta	is non-haz s, 40 CFR 2 ached to der	ardous that do 261.21-261.24 on 261.21-261.24 on a strate the a	oes not exe or listed h above-des	ceed the mini azardous was cribed waste	mum standard te as defined is non-hazard	ds for waste in 40 CFR, qus. (Chec	hazardous part 261, s k the appro	by ubpart D, as priate items):
Driver/ Agent	Signatu	ire			R360 I	Represe	ntative Sigr	ature			
Customer App	oroval			, " <u>) , i s</u>	V-1-LT					or of	15-15-15
				THIS	IS NOT	AN II	NVOICE	Ξ1			

Date:

Received by OCD: 11/6/2020 1:35 ROUTIONS Permian Basin			Ousion	mer: CC mer #: CF ed by: JU : est #: NA Date: 10 : MC JE # M3	STIN WRIG A /21/2020 CNABB PAR SUS	нт		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County		DO9Z1 O PHILLIPS	ge 185 of 203
Facility: CRI											
Product / Serv	/ice					Q	uantity U	nits		- 3	
Contaminated	Soil (R	CRA Exe	mpt)				18.00	/ards			
	Cell	рН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0						
Generator Cer	rtificatio	on Statem	ent of Wa	ste Statu	S			51/2/2/20			-
I hereby certify 1988 regulatory X RCRA Exer RCRA Non- characteristics e amended. The f MSDS Info	determing the determination of	nation, the a Field waste : Oil field w d in RCRA documenta	bove descr s generated vaste which regulations ation is atta	ibed waste from oil ar is non-haz s, 40 CFR 2 ched to der	is: and gas explora ardous that do 261.21-261.24 monstrate the	ation and poes not exo or listed habove-des	production of ceed the minazardous was cribed was	operations and nimum standa aste as define te is non-haza	d are not mixed ards for waste a in 40 CFR, adous. (Check	ed with no hazardous part 261, s k the appro	n-exempt wasto s by subpart D, as opriate items):
Driver/ Agent	Signati	ure			R360	Represe	ntative Si	gnature		2.5	- 100
Customer Ap	proval										- n ,=

10/21/2020 4:00:53PM t6UJ9A01GCWO . Released to Imaging: 1/29/2021 12:58:05 PM



Facility: CRI

Product / Serv	/ice					Q	uantity Uni	ts			
Contaminated	Soil (R	CRA Exe	mpt)				18.00 ya	irds			
	Cell	рН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0						
Generator Cer	rtificatio	n Statem	ent of Wa	aste Statu	S					1000	- 2010
X RCRA Exer RCRA Non- characteristics e amended. The f MSDS Info	npt: Oil I -Exempt: stablishe following	Field waste Oil field w d in RCRA documenta	s generated vaste which regulation ation is atta	I from oil ar is non-haza is, 40 CFR 2 ached to den	nd gas explora ardous that do 61.21-261.24 on anonstrate the a	es not exc or listed habove-des	ceed the mini azardous was cribed waste	mum standard te as defined is non-hazard	ds for waste in 40 CFR, ous. (Chec	hazardous part 261, s k the appro	by ubpart D, as priate items):
Driver/ Agent	Signatu	ire			R360 I	Represe	ntative Sigr	nature \\	- N		-11/3
Customer App	proval						£ 11/15	V			T. A.
				THIS	IS NOT	AN II	NVOICE	Ξ!			

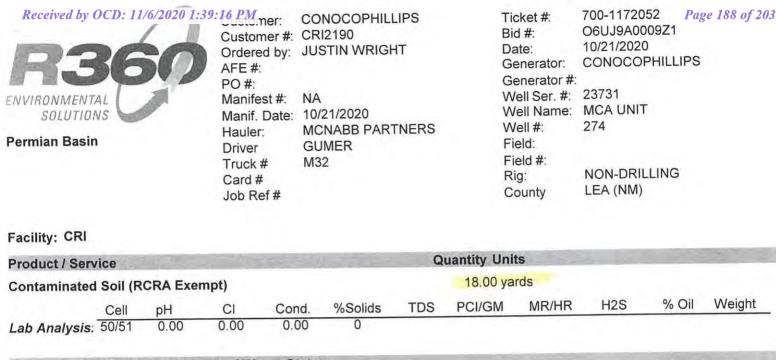
Date:

t6UJ9A01GCLX

County

LEA (NM)

Job Ref#


Facility: CRI

Approved By:

Product / Serv	/ice	July 100				Q	uantity Uni	ts					
Contaminated	Soil (R	CRA Exe	mpt)		18.00 yards								
	Cell	рН	CI	Cond.									
Lab Analysis:	50/51	0.00	0.00	0.00	0								
Generator Cer	rtificatio	on Statem	ent of Wa	ste Statu	Star William			nestun.					
X RCRA Exer RCRA Non- characteristics e amended. The f MSDS Info	npt: Oil I -Exempt: stablishe ollowing	Field waste Oil field w d in RCRA documenta	s generated vaste which regulation ation is atta	from oil and is non-hazed s, 40 CFR 2 to den	nd gas explora ardous that do 61.21-261.24 on nonstrate the a	es not exc or listed h above-des	ceed the mini azardous was cribed waste	mum standard te as defined is non-hazard	ls for waste in 40 CFR, ous. (Chec	hazardous part 261, s k the appro	by ubpart D, as priate items):		
Driver/ Agent	Signatu	ire	= -		R360 I	Represe	ntative Sigr	nature	WI				
Customer Ap	proval	-							T				
				THIS	IS NOT	AN II	NVOICE	Ε!					

Date:

t6UJ9A01GCQZ 10/21/2020 12:02:42PM

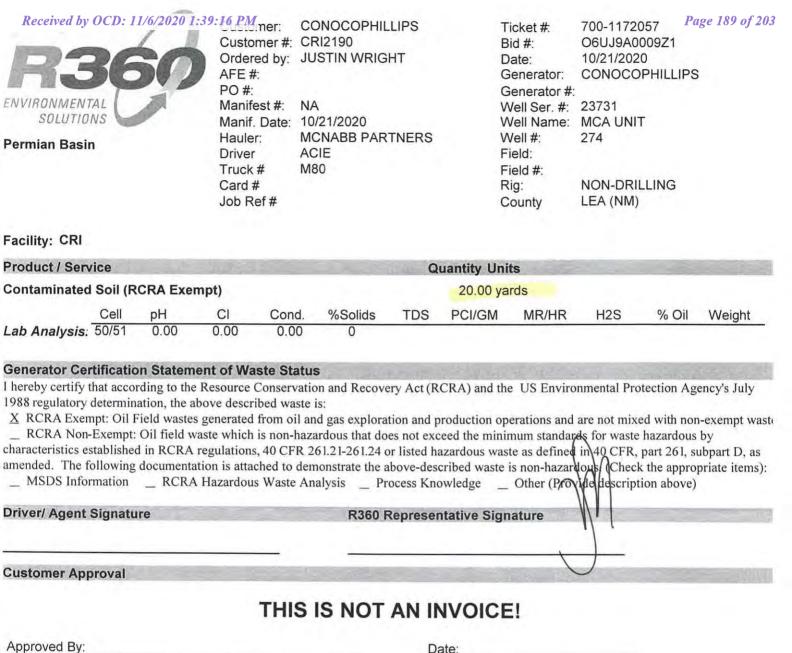
Generator Certification Statement of Waste Status

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as

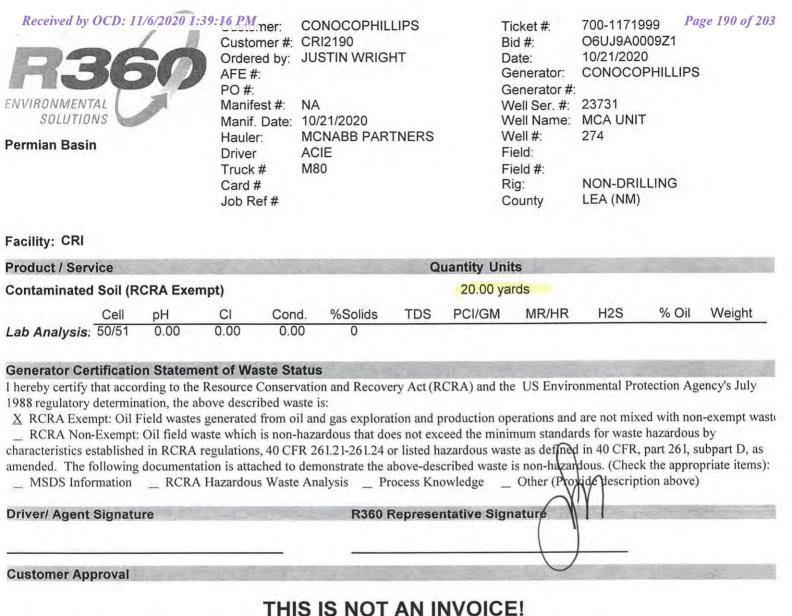
amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

_ MSDS Information _ RCRA Hazardous Waste Analysis _ Process Knowledge _ Other (Provide description above)


Driver/ Agent Signature	R360 Representative Signature

Customer Approval

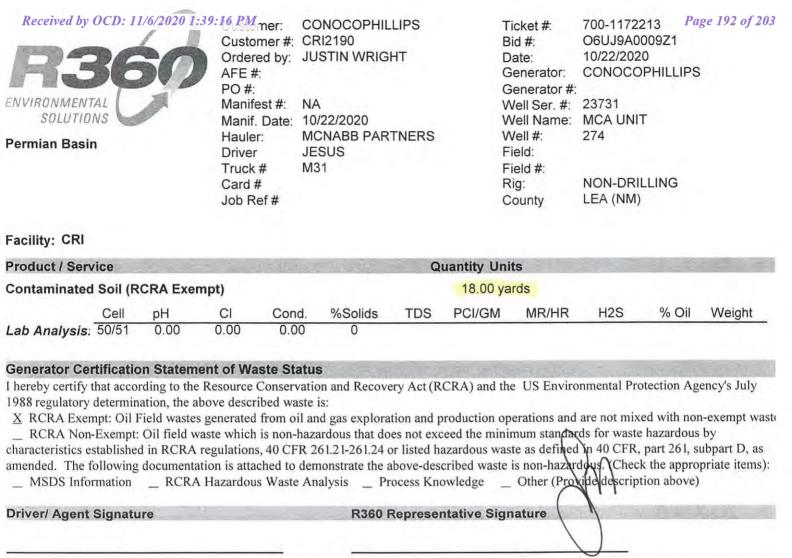
THIS IS NOT AN INVOICE!


Approved By:	Date:
- (KB) - (122 - 2)	

t6UJ9A01GCWN 10/21/2020 3:59:08PM

Date:

t6UJ9A01GCWT

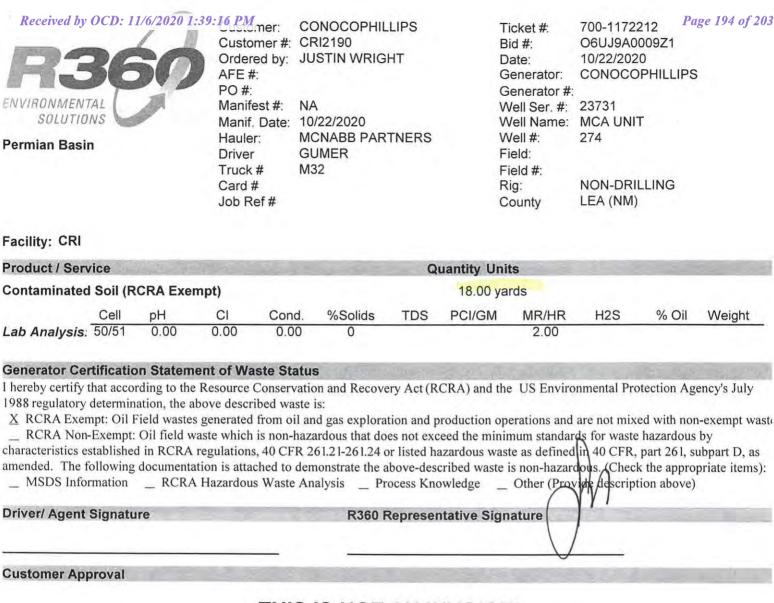

Date:

t6UJ9A01GCSR 10/21/2020 1:06:30PM

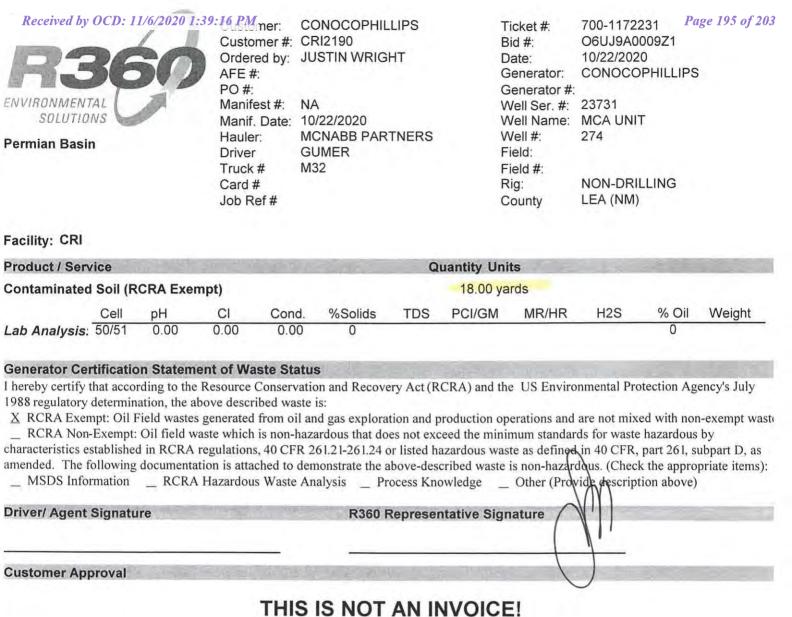
ENVIRONMENT SOLUTION Permian Basin	BE TAL NS	50	Custor Ordere AFE #: PO #: Manife Manif. Hauler Driver Truck: Card # Job Re	ner #: CR ed by: JU est #: NA Date: 10 JE # M3	/22/2020 CNABB PAR SUS	нт		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	23731	009Z1) PHILLIPS	PS	
Facility: CRI												
Product / Serv	vice					Q	uantity U	nits				
Contaminated	Soil (R	CRA Exen	npt)				18.00	yards				
	Cell	рН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight	
Lab Analysis:	50/51	0.00	0.00	0.00	0							
Generator Cer	rtificatio	n Stateme	ent of Wa	ste Statu	S	A	activity.	and the second			"- G	
I hereby certify 1988 regulatory X RCRA Exer RCRA Non- characteristics e amended. The f MSDS Info	determin mpt: Oil F -Exempt: established	ation, the all field wastes Oil field wastes d in RCRA documenta	generated aste which regulations tion is attac	from oil ar from oil ar is non-haz s, 40 CFR 2 ched to der	is: and gas explora ardous that do 61.21-261.24 anonstrate the	ation and poes not exe or listed habove-des	production ceed the mi azardous w cribed was	operations and nimum standa raste as define te is non haza	d are not mixe ords for waste d in 40 CFR, rdous. (Check	hazardous part 261, s	n-exempt was s by subpart D, as opriate items):	
Driver/ Agent	Signatu	ire		92000	R360	Represe	ntative Si	gnature				
Customer Ap	proval		estalli	10-2	AND SERVICE	= 1°-14					17. 16.	

Approved By: _____ Date: ____

t6UJ9A01GD8F 10/22/2020 11:01:46AM


Date:

t6UJ9A01GDCT 10/22/2020 3:04:26PM


Customer Approval

Approved By: ______ Date: _____

t6UJ9A01GD8E 10/22/2020 11:00:05AM

Approved By:	Date:
()	Dutc.

Date:

t6UJ9A01GDE6

Received by Control Receiv	BE NS	76/2020 1:.	Custon Ordere AFE #: PO #: Manife Manif. Hauler Driver Truck: Card # Job Re	st #: NA Date: 10/ AC # M8	STIN WRIGH 22/2020 CNABB PAR	нт	B G G V V V F F	icket #: id #: enerator: enerator #: Vell Ser. #: Vell Name: Vell #: ield: ield #: Rig: County	23731	009Z1 O PHILLIPS	ge 196 of 203
Facility: CRI											
Product / Serv	/ice					Q	uantity Un	its	*		
Contaminated	Soil (R	CRA Exer	npt)				20.00 ya	ards			
	Cell	рН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:		0.00	0.00	0.00	0						
Generator Ce I hereby certify 1988 regulatory X RCRA Exer RCRA Non characteristics e amended. The MSDS Info Driver/ Agent	that accordent determing the control of the control	rding to the ation, the a Field wastes Oil field w d in RCRA documenta RCRA	Resource of bove described aste which regulations attached the control of the con	Conservation ibed waste from oil are is non-hazed, 40 CFR 2 ched to der	on and Recovisis: and gas explora ardous that do 61.21-261.24 monstrate the alysis P	ntion and poes not ex or listed habove-des rocess Kn	production of ceed the min nazardous was scribed waste	perations and imum standa ste as define is non-haza Other (Pro	d are not mix ards for waste ed in 40 CFR, ardous. (Chec	ed with no hazardou part 261, k the appro	on-exempt waste s by subpart D, as opriate items):
Customer Ap	proval								STORY STATE	Gr (20) =	

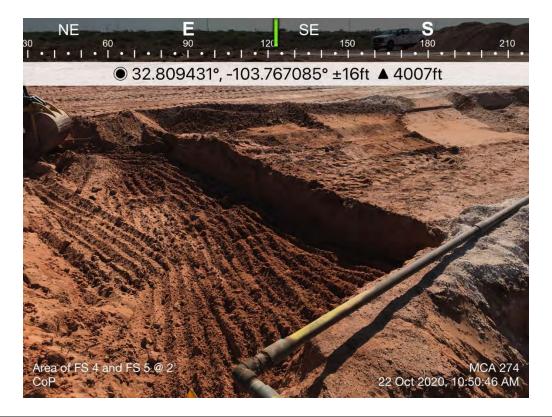
Approved By: Date:

10/22/2020 11:15:45AM t6UJ9A01GD8J

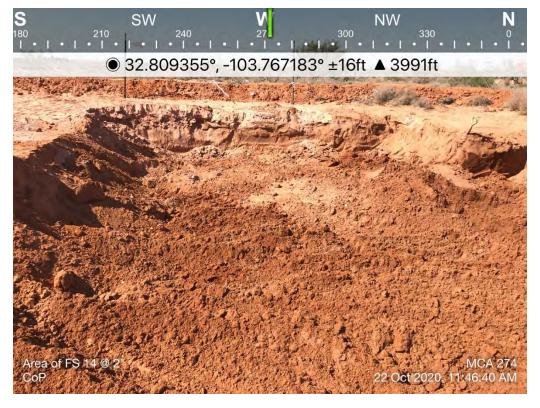
APPENDIX F Photographic Documentation

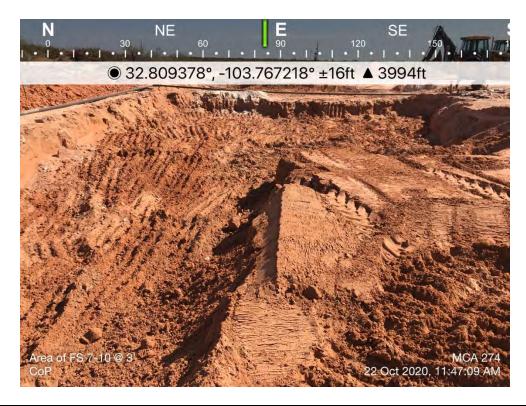
PROJECT NO.	DESCRIPTION	View west of release area. Site Coordinates: 32.809254°, -103.767082°	1
	SITE NAME	MCA 274 Wellhead Release	9/10/2020

TETRA TECH, INC. PROJECT NO. 212C-MD-02318	DESCRIPTION	View east of release area.	2
	SITE NAME	MCA 274 Wellhead Release	9/14/2020


TETRA TECH, INC. PROJECT NO.		View west of southern portion of release area.	3
212C-MD-02318	SITE NAME	MCA 274 Wellhead Release	9/14/2020

TETRA TECH, INC.	,		4
212C-MD-02318 SITE NAME	MCA 274 Wellhead Release	9/14/2020	


TETRA TECH, INC. DESC	DESCRIPTION	View west of excavation at southern portion of release area (at V-3)	5
212C-MD-02318	SITE NAME	MCA 274 Wellhead Release	9/19/2020


TETRA TECH, INC.	DESCRIPTION	View east of excavation at eastern portion of release area (at FS-4 and FS-5)	6
212C-MD-02318	SITE NAME	MCA 274 Wellhead Release	10/22/2020

TETRA TECH, INC. PROJECT NO.	- , -	View southeast of excavation at western portion of release area (at FS-6 through FS-9)	7
212C-MD-02318	SITE NAME	MCA 274 Wellhead Release	10/22/2020

TETRA TECH, INC.	DESCRIPTION	View west of excavation at western portion of release area (at FS-14)	8
	SITE NAME	MCA 274 Wellhead Release	10/22/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View east of excavation at western portion of release area (at FS-7 through FS-10)	9
212C-MD-02318	SITE NAME	MCA 274 Wellhead Release	10/22/2020

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III
1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 11100

CONDITIONS OF APPROVAL

Operator:	OGRID:	Action Number:	Action Type:
CONOCOPHILLIPS COMPANY P.O.Box 2197	217817	11100	C-141
Office SP2-12-W156 Houston, TX77252			

OCD Reviewer	Condition
ceads	None