District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Page 1 of 52

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	OGRID
Contact Name	Contact Telephone
Contact email	Incident # (assigned by OCD)
Contact mailing address	

Location of Release Source

Latitude

(NAD 83 in decimal degrees to 5 decimal places)

Site Name	Site Type
Date Release Discovered	API# (if applicable)

Unit Letter	Section	Township	Range	County

Surface Owner: State Federal Tribal Private (Name:

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		

Incident ID	
District RP	
Facility ID	
Application ID	

Page 2 of 52

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
Yes No	
If YES, was immediate no	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:	Title:
Signature: Kelfbz	Date:
email:	Telephone:
OCD Only	
Received by: Ramona Marcus	Date: <u>9/13/2021</u>

Page 3 of 52

34.9bbl loss calculation is based off of volume of 2 3/8"tubing @ .00387bbls/ft plus volume of 4 1/2" casing at .0101bbls/ft = .01397bbls/ft X 2499' = 34.9bbls capacity.

00387 + .0101= .01397

.01397 * 2499 = 34.9bbls

2499 is the depth

Received by OCD: 9/13/2021 9:35:58 AM Form C-141 State of New Mexico

Oil Conservation Division

	Page 4 of 52
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?			
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No		
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No		
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No		
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No		
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No		
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No		
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No		
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No		
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No		
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No		
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No		
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No		

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within 1/2-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

•

Received by OCD: 9/13/2021 9:35:58 AM			Page 5 of 52	
ronn C-141	State of New Wexico		Incident ID	
Page 4	Oil Conservation Division		District RP	
			Facility ID	
			Application ID	
I hereby certify that the info regulations all operators are public health or the environ failed to adequately investig addition, OCD acceptance o and/or regulations. Printed Name:	rmation given above is true and complete to the required to report and/or file certain release not ment. The acceptance of a C-141 report by the ate and remediate contamination that pose a thr f a C-141 report does not relieve the operator of	e best of my knowledge a tifications and perform co OCD does not relieve the reat to groundwater, surfa f responsibility for compl 	nd understand that purs prrective actions for rele e operator of liability sh ce water, human health liance with any other fe	uant to OCD rules and eases which may endanger ould their operations have or the environment. In deral, state, or local laws
OCD Only				
Received by: <u>Ramona M</u>	Iarcus	Date: <u>9/13/2</u>	021	

Received by OCD: 9/13/2021 9:35:58 AM Form C-141 State of New Mexico

Oil Conservation Division

<u>Remediation Plan Checklist</u>: Each of the following items must be included in the plan.

Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) 										
Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation.										
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.										
Extents of contamination must be fully delineated.	Extents of contamination must be fully delineated.									
Contamination does not cause an imminent risk to human health, the environment, or groundwater.										
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.										
Printed Name:	Title:									
Signature: Keryhtayyum	Date:									
email:	Telephone:									
OCD Only										
Received by:Ramona Marcus	Date:									
Approved Approved with Attached Conditions of A	Approval Denied Deferral Approved									
Signature:	Date:									

Oil Conservation Division

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u>: Each of the following i	tems must be included in the closure report.								
A scaled site and sampling diagram as described in 19.15.29.11 NMAC									
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office								
Laboratory analyses of final sampling (Note: appropriate OD	C District office must be notified 2 days prior to final sampling)								
Description of remediation activities									
I hereby certify that the information given above is true and complet and regulations all operators are required to report and/or file certai may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and ren human health or the environment. In addition, OCD acceptance of compliance with any other federal, state, or local laws and/or regula restore, reclaim, and re-vegetate the impacted surface area to the co accordance with 19.15.29.13 NMAC including notification to the C	te to the best of my knowledge and understand that pursuant to OCD rules n release notifications and perform corrective actions for releases which C a C-141 report by the OCD does not relieve the operator of liability mediate contamination that pose a threat to groundwater, surface water, a C-141 report does not relieve the operator of responsibility for ations. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in OCD when reclamation and re-vegetation are complete.								
Printed Name:	Title:								
Signature: Kelly Dayyum	Date:								
email:	Telephone:								
OCD Only									
Received by: <u>Ramona Marcus</u>	Date: <u>9/13/2021</u>								
Closure approval by the OCD does not relieve the responsible party remediate contamination that poses a threat to groundwater, surface party of compliance with any other federal, state, or local laws and/	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations.								
Closure Approved by:	Date:								
Printed Name:									

Page 6

NAPP2116770257

September 13, 2021

District Supervisor Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Release Characterization and Closure Request ConocoPhillips VGEU 10-03 Tubing Release Unit Letter H, Section 28, Township 17 South, Range 35 East Lea County, New Mexico Incident ID: nAPP2116770257

Sir or Madam:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips (COP) to assess a release that occurred from the tubing at the Vacuum Glorieta East Unit (VGEU) 10-03 well (API # 30-025-20833). The release footprint is located in Public Land Survey System (PLSS) Unit Letter H, Section 28, Township 17 South, Range 35 East, in Lea County, New Mexico (Site). The approximate release point occurred at coordinates 32.806762°, -103.455150°, as shown on Figures 1 and 2.

BACKGROUND

According to the State of New Mexico C-141 Initial Report (Appendix A), the release was discovered on June 15, 2021. As documented on the C-141 form, an unplanned release from the well tubing resulted in the loss of 35 bbls of 10# brine water due to a well control incident. 34 bbls was released and recovered. 1 bbl brine water misted on pad. The mist was contained to the pad location. 0.34 MCF natural gas vented during the incident.

The approximate release footprint is shown in Figure 3. The C-141 report form for the release was submitted to the New Mexico Oil Conservation District (NMOCD) on June 17, 2021. The NMOCD assigned this release Incident ID nAPP2116770257.

SITE CHARACTERIZATION

A site characterization was performed and no watercourses, sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, playa lakes, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the distances specified in 19.15.0029 New Mexico Administrative Code (NMAC). A playa lake was observed to the west, however the feature is located approximately 220' west of the release footprint. The Site is in an area of low karst potential.

According to the New Mexico Office of the State Engineers (NMOSE) reporting system, there is one water well within a $\frac{1}{2}$ mile (800-meter) radius of the Site. This well has reported depth to groundwater at 65 feet below ground surface (bgs). The site characterization data is included in Appendix B.

ConocoPhillips

Release Characterization and Closure Request September 13, 2021

REGULATORY FRAMEWORK

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil.

Based on the site characterization and in accordance with Table I of 19.15.29.12 NMAC and the release location (on-pad), the remediation RRALs for the Site are as follows:

Constituent	RRAL
Chloride	10,000 mg/kg
ТРН	2,500 mg/kg
BTEX	50 mg/kg
Benzene	10 mg/kg

INITIAL RESPONSE AND REMEDIAL ACTIVITIES

The approximate release extent is shown in Figure 3. In accordance with 19.15.29.8.B.(4) NMAC that states "the responsible party may commence remediation immediately after discovery of a release", COP elected to begin remediation of the impacted area in August 2021.

Due to the well control incident which caused the release, the pumping unit was removed from location. The release footprint in the immediate vicinity of the well tubing (as shown in Figure 3) was then excavated to approximately 18 feet bgs to access the well tubing, as well as remove the impacted soils in the vicinity. For safety of the onsite workers, the excavation was benched down to the floor at 18' bgs. Approximately 150 cubic yards of impacted material were transported to the R360 facility in Hobbs, New Mexico.

At the request of ConocoPhillips, Tetra Tech personnel conducted soil sampling following initial response and remedial activities. A total of five (5) locations were sampled on August 24, 2021. Four (4) sample locations (CS-1 through CS-4) were used along the perimeter of the excavated area to gauge the effectiveness of the remedial activities. One sample (FS-1) was collected from the floor of the excavation. Soil samples collected were field screened for salinity parts per million (ppm) using an ExStik II EC 400 meter.

A total of five (5) samples were collected from the five (5) locations and submitted to Eurofins Xenco Laboratory in Midland, TX to be analyzed for chlorides via EPA Method 300.0, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. A copy of the laboratory analytical report and chain-of-custody documentation are included in Appendix C. Photographic documentation of the excavated area is included in Appendix D.

SUMMARY OF SAMPLING RESULTS

Results from the August 2021 soil sampling event are summarized in Table 1. The analytical results associated with the perimeter locations were below the Site reclamation and reclamation RRAL for chloride (600 mg/kg). The analytical results associated with perimeter locations CS-1, CS-2, and CS-4 were below the Site remediation RRALs for TPH. There were no analytical results which exceeded the Site RRALs for BTEX in the perimeter locations. The analytical results associated with the floor sample collected were below the Site remediation RRALs for chloride, TPH and BTEX. After review of the analytical results from the sampling event, both horizontal and vertical delineation was achieved during the August 2021 sampling activities.

Based on the groundwater determination as described in the Site Characterization (greater than 50 feet below ground surface), and as this fluid release contains on-pad surface soil chloride concentrations of less than 10,000 mg/kg, the analytical results collected from the floor sample stand as a vertical definition. The

Release Characterization and Closure Request September 13, 2021

ConocoPhillips

analytical results within the perimeter sample locations determine the lateral extent of this release and are 600 mg/kg chloride or less. Based on the site assessment results, the impacted surface area of the release on the production lease pad meets the remediation standards of Table I of 19.15.29.12 NMAC. Final reclamation of any impact within the lease pad area shall take place in accordance with 19.15.29.13 (D) NMAC once the Site is no longer being used for oil and gas operations. Therefore, reclamation of the soils located within the confines of the VGEU 10-03 well pad will be delayed until the abandonment of the VGEU 10-03 well. The well is scheduled to be plugged in the next 3-6 months.

For the health and safety of onsite workers, after confirmation sampling, the open excavation was backfilled with clean material to surface grade. The total remediated area encompassed a surface area of approximately 650 square feet. Each confirmation sample laboratory analytical result was directly compared to the proposed RRALs to demonstrate compliance. All final confirmation soil samples (floor and sidewall) were below the respective remediation RRALs for BTEX, TPH and chlorides.

The analytical results demonstrated that the initial response in the vicinity of the tubing was effective and sufficient for remediation. Results below the applicable remediation RRALs were received. Although analytical results associated with the CS-1, CS-2, and CS-4 sample locations slightly exceeded the reclamation RRAL for TPH used to complete restoration, the impacted surface area occurring on the developed pad at the site was remediated to meet the standards of Table I of 19.15.29.12 NMAC.

CONCLUSION

ConocoPhillips has completed remediation at the release site. In accordance with 19.15.29.12(D)(1)(b) NMAC, ConocoPhillips conducted confirmation sampling of the remediated area for verification of remedial activities where each sidewall and floor sample was representative of approximately 200 square feet. There are no Table I exceedances at the on-pad release site. This final closure report has been submitted within 90 days of discovery of the release. This final closure request details the release characterization and remediation activities and the results of the confirmation sampling. As noted, on-site reclamation and restoration will occur once the well is plugged and operations have ceased at this active well pad.

If you have any questions concerning the remediation work, or confirmation sampling for the Site, please do not hesitate to contact me by email at <u>christian.llull@tetratech.com</u> or call me at (512) 338-2861.

Sincerely, Tetra Tech, Inc.

Christian M. Llull, P.G. Project Manager

cc: Ms. Kelsy Waggaman, GPBU – ConocoPhillips Mr. Luke Alejandro, GPBU – ConocoPhillips Release Characterization and Closure Request September 13, 2021

ConocoPhillips

LIST OF ATTACHMENTS

Figures:

Figure 1 – Overview Map

Figure 2 – Site Location/Topographic Map

Figure 3 – Approximate Release Extent

Figure 4 – Remediation Extent

Tables:

Table 1 – Summary of Analytical Results – Remedial Activities

Appendices:

Appendix A – C-141 Forms

Appendix B – Site Characterization Data

Appendix C - Laboratory Analytical Data

Appendix D – Photographic Documentation

•

NAPP2116770257

FIGURES

Released to Imaging: 10/6/2021 3:29:56 PM

Released to Imaging: 10/6/2021 3:29:56 PM

Released to Imaging: 10/6/2021 3:29:56 PM

NAPP2116770257

TABLES

TABLE 1 SUMMARY OF ANALYTICAL RESULTS REMEDIAL ACTIVITIES - NAPP2116770257 CONOCOPHILLIPS VGEU 10-03 TUBING RELEASE LEA COUNTY, NM

			Field Se	creening				BTEX ²									TPH ³											
Comple ID	Comple Date	Sample Depth	Re	sults	Chloride ¹		Ponzono	D		Toluono		m n-Yvlene o-)		o Yulono	o-Yulana Total Yulanas		Total PTEV		GRO		DRO		ORO		Total TPH			
Sample ID	Sample Date		Chloride	PID	Ţ		Benzene		Toluelle		Ethylbenzen	e	п,р-хутепе		0-Aylette		Total Aylenes	•	TOTAL DIEX	Ī	C ₆ - C ₁₀		> C ₁₀ - C ₂₈		> C ₂₈ - C ₃₆		(GRO+DRO+OR	0)
		ft. bgs	p	pm	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q
CS-1 (W)	8/24/2021	-	375	-	303		< 0.00200		< 0.00200		< 0.00200		< 0.00399		< 0.00200		< 0.00399		< 0.00399		< 49.9		107		< 49.9		107	
CS-2 (S)	8/24/2021	-	450	-	279		< 0.00199		< 0.00199		< 0.00199		< 0.00398		< 0.00199		< 0.00398		< 0.00398		< 50.0		197		65.8		263	
CS-3 (E)	8/24/2021	-	475	-	498		< 0.00202		< 0.00202		< 0.00202		< 0.00403		< 0.00202		< 0.00403		< 0.00403		< 49.8		< 49.8		< 49.8		< 49.8	
CS-4 (N)	8/24/2021	-	275	-	262		< 0.00201		< 0.00201		< 0.00201		< 0.00402		< 0.00201		< 0.00402		< 0.00402		< 50.0		142		< 50.0		142	1
FS-1 (18')	8/24/2021	18'	300	-	225		< 0.00200		< 0.00200		< 0.00200		< 0.00399		< 0.00200		< 0.00399		< 0.00399		< 50.0		110		< 50.0		110	

NOTES:

ft. Feet

bgs Below ground surface

ppm Parts per million mg/kg Milligrams per kilogram

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics

DRO Diesel range organics

ORO Oil range organics

1 EPA Method 300.0

2 EPA Method 8021B

3 EPA Method 8015B NM

Bold and italicized values indicate exceedance of proposed Remediation RRALs.

Gold highlight represents soil horizons that were removed during deepening of excavation floors.

Green highlight represents soil intervals that were removed during horizontal expansion of excavation sidewalls.

These iterative samples are located to encompass the original sample location that triggered removal, with further excavation in each area indicated in ().

QUALIFIERS:

Page 18 of 52

.

.

APPENDIX A C-141 Forms

APPENDIX B Site Characterization Data

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is closed)	,	(quai (quai	rters	s are	e 1=N e sma	IW 2 alles	2=NE 3 st to larç	=SW 4= gest)	=SE) (NA) AD83 UTM in me	eters)	(In feet)	
POD Number	POD Sub- Code basin C	ount	Q v 64	Q 16	Q 4 S	ec T	ws	Rng		x	Y	Distance	Depth Well	Depth Water	Water Column
L 03992	L	LE	3	2	2	28 1	7S	35E	6444	26	3631327* 🌍	452	125	65	60
											Avera	ge Depth to	Water:	65	feet
								Minimum Depth:						65 1	feet
												Maximum	Depth:	65 1	feet

Record Count: 1

UTMNAD83 Radius Search (in meters):

Easting (X): 644641.523

Northing (Y): 3630929.429

Radius: 800

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

New Mexico NFHL Data

August 5, 2021

Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

nmflood.org is made possible through a collaboration with NMDHSEM, EDAC, and FEMA This is a non-regulatory product for informational use only. Please consult your local floodplain administrator for further information.

APPENDIX C Laboratory Analytical Data

Received by OCD: 9/13/2021 9:35:58 AM

NAPP2116770257

Page 25 of 52

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-5431-1

Laboratory Sample Delivery Group: Lea County, New Mexico Client Project/Site: COP VGEU 10-03 Revision: 1

For:

Tetra Tech, Inc. 8911 N. Capital of Texas Hwy Bldg. 2, Ste 2310 Austin, Texas 78759

Attn: Christian Llull

RAMER

Authorized for release by: 9/8/2021 8:22:53 AM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Visit us at: www.eurofinsus.com/Env

..... LINKS

Review your project results through

Total Access

Have a Question?

Ask-

Released to Imaging: 10/6/2021 3:29:56 PM

Laboratory Job ID: 880-5431-1 SDG: Lea County, New Mexico

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	15
Lab Chronicle	17
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
Receipt Checklists	23

2

.

Definitions/Glossary

Client: Tetra Tech, Inc. Project/Site: COP VGEU 10-03 Job ID: 880-5431-1 SDG: Lea County, New Mexico

Qualifiers

Quaimers		
GC VOA		
Qualifier	Qualifier Description	
	Indicates the analyte was analyzed for but not detected	
		E
GC Semi VO	A Ouslifier Description	
	Qualifier Description	
FI	Indicates the analyte was analyzed for but not detected	
0		
HPLC/IC		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	3
Glossary		C
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Job ID: 880-5431-1

SDG: Lea County, New Mexico

Job ID: 880-5431-1

Laboratory: Eurofins Xenco, Midland

Narrative

Job Narrative 880-5431-1

Comments

No additional comments.

Receipt

The samples were received on 8/25/2021 11:27 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.5° C.

GC VOA

Method 8021B: Surrogate recovery for the following sample was outside control limits: (CCV 880-7067/20). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method 8015B NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-7064 and analytical batch 880-7038 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

0.00200

0.00399

Client: Tetra Tech, Inc. Project/Site: COP VGEU 10-03

Client Sample ID: CS-1 (W) **Date Collected Date Received**

Ethylbenzene

m-Xylene & p-Xylene

Date Collected: 08/24/2	21 11:00			Matrix	: Solid				
Date Received: 08/25/2	21 11:29								
Method: 8021B - Vola	tile Organic Compo	unds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/25/21 11:37	08/25/21 18:18	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/25/21 11:37	08/25/21 18:18	1

mg/Kg

mg/Kg

o-Xylene	<0.00200	U	0.00200	mg/Kg
Xylenes, Total	<0.00399	U	0.00399	mg/Kg
Total BTEX	<0.00399	U	0.00399	mg/Kg
Surrogate	%Recovery	Qualifier	Limits	
4-Bromofluorobenzene (Surr)	127		70 - 130	
1,4-Difluorobenzene (Surr)	99		70 - 130	

<0.00200 U

<0.00399 U

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		08/25/21 11:38	08/26/21 04:28	1
(GRO)-C6-C10									
Diesel Range Organics (Over	107		49.9		mg/Kg		08/25/21 11:38	08/26/21 04:28	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/25/21 11:38	08/26/21 04:28	1
Total TPH	107		49.9		mg/Kg		08/25/21 11:38	08/26/21 04:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	92		70 - 130				08/25/21 11:38	08/26/21 04:28	1
o-Terphenyl	104		70 - 130				08/25/21 11:38	08/26/21 04:28	1

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result C	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	303	5.00		mg/Kg			08/25/21 20:51	1
					· · · ·			

Client Sample ID: CS-2 (S) Date Collected: 08/24/21 11:10

Lab Sample ID: 880-5431-2 Matrix: Solid

Date Received: 08/25/21 11:29

Method: 8021B - Volatile O	rganic Compo	unds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		08/25/21 11:37	08/25/21 18:44	1
Toluene	<0.00199	U	0.00199		mg/Kg		08/25/21 11:37	08/25/21 18:44	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		08/25/21 11:37	08/25/21 18:44	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		08/25/21 11:37	08/25/21 18:44	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		08/25/21 11:37	08/25/21 18:44	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		08/25/21 11:37	08/25/21 18:44	1
Total BTEX	<0.00398	U	0.00398		mg/Kg		08/25/21 11:37	08/25/21 18:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				08/25/21 11:37	08/25/21 18:44	1
1,4-Difluorobenzene (Surr)	112		70 - 130				08/25/21 11:37	08/25/21 18:44	1
_ Method: 8015B NM - Diese	I Range Organ	ics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		08/25/21 11:38	08/26/21 04:49	1

(GRO)-C6-C10

Eurofins Xenco, Midland

1

1

1

1

1

1

Dil Fac

Job ID: 880-5431-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-5431-1

08/25/21 11:37 08/25/21 18:18

08/25/21 11:37 08/25/21 18:18

08/25/21 11:37 08/25/21 18:18

08/25/21 11:37 08/25/21 18:18

08/25/21 11:37 08/25/21 18:18

08/25/21 11:37 08/25/21 18:18

08/25/21 11:37 08/25/21 18:18

Analyzed

Prepared

Page 30 of 52

		Ollent							E 404 4
Client: Tetra Tech, Inc. Project/Site: COP VGEU 10-03							SDG: Lea	Job ID: 880- County, New	5431-1 Mexico
lient Sample ID: CS-2 (S) 0						Lab Samp	le ID: 880-5 Matrix	431-2
ate Received: 08/25/21 11:29	Ĵ								
Method: 8015B NM - Diesel I	Range Organ	ics (DRO) ((GC) (Contin	ued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over C10-C28)	197		50.0		mg/Kg		08/25/21 11:38	08/26/21 04:49	1
Oll Range Organics (Over C28-C36)	65.8		50.0		mg/Kg		08/25/21 11:38	08/26/21 04:49	1
Total TPH	263		50.0		mg/Kg		08/25/21 11:38	08/26/21 04:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	107		70 - 130				08/25/21 11:38	08/26/21 04:49	1
o-Terphenyl	117		70 - 130				08/25/21 11:38	08/26/21 04:49	1
Method: 300.0 - Anions, Ion	Chromatogra	phy - Solu	ble		11	_	Ducusaria	Awahawad	
Analyte	Result	Quaimer	RL				Prepared		
Chioride	2/9		5.00		mg/ĸg			08/25/21 20.56	
ate Collected: 08/24/21 11:20	0							Matrix	: Solid
ate Received: 08/25/21 11:29	Э								
ate Received: 08/25/21 11:29 Method: 8021B - Volatile Org Analyte	9 <mark>yanic Compo</mark> Result	unds (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ate Received: 08/25/21 11:29 Method: 8021B - Volatile Org Analyte Benzene	9 ganic Compo 	unds (GC) Qualifier		MDL	Unit mg/Kg	<u>D</u>	Prepared 08/25/21 11:37	Analyzed 08/25/21 19:10	Dil Fac
ate Received: 08/25/21 11:29 Method: 8021B - Volatile Org Analyte Benzene Toluene	9 ganic Compo Result <0.00202 <0.00202	unds (GC) Qualifier U U	RL 0.00202 0.00202	MDL	Unit mg/Kg mg/Kg	D	Prepared 08/25/21 11:37 08/25/21 11:37	Analyzed 08/25/21 19:10 08/25/21 19:10	Dil Fac
ate Received: 08/25/21 11:29 Method: 8021B - Volatile Org Analyte Benzene Toluene Ethylbenzene	9 ganic Comport Result <0.00202 <0.00202 <0.00202	unds (GC) Qualifier U U U	RL 0.00202 0.00202 0.00202	MDL	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37	Analyzed 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10	Dil Fac 1 1 1
ate Received: 08/25/21 11:29 Method: 8021B - Volatile Org Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	9 ganic Compo Result <0.00202 <0.00202 <0.00202 <0.00202 <0.00403	unds (GC) Qualifier U U U U	RL 0.00202 0.00202 0.00202 0.00202 0.00403	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37	Analyzed 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10	Dil Fac 1 1 1 1
ate Received: 08/25/21 11:29 Method: 8021B - Volatile Org Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	9 ganic Compo Result <0.00202 <0.00202 <0.00202 <0.00403 <0.00202	unds (GC) Qualifier U U U U U	RL 0.00202 0.00202 0.00202 0.00403 0.00202	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	Prepared 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37	Analyzed 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10	Dil Fac 1 1 1 1 1
ate Received: 08/25/21 11:29 Method: 8021B - Volatile Org Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total	9 ganic Compo Result <0.00202 <0.00202 <0.00202 <0.00403 <0.00202 <0.00403	unds (GC) Qualifier U U U U U U U	RL 0.00202 0.00202 0.00202 0.00403 0.00202 0.00403	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37	Analyzed 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10	Dil Fac 1 1 1 1 1 1 1
ate Received: 08/25/21 11:29 Method: 8021B - Volatile Org Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Total BTEX	9 	unds (GC) Qualifier U U U U U U U U U U U	RL 0.00202 0.00202 0.00202 0.00202 0.00403 0.00202 0.00403 0.00403 0.00403	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	D	Prepared 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37	Analyzed 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10	Dil Fac 1 1 1 1 1 1 1 1
ate Received: 08/25/21 11:29 Method: 8021B - Volatile Org Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Total BTEX Surrogate	9 ganic Compo Result <0.00202 <0.00202 <0.00202 <0.00403 <0.00202 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403	unds (GC) Qualifier U U U U U U U U U U Qualifier	RL 0.00202 0.00202 0.00202 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37	Analyzed 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 Analyzed	Dil Fac 1 1 1 1 1 1 1 2 Dil Fac
ate Received: 08/25/21 11:25 Method: 8021B - Volatile Org Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Total BTEX Surrogate 4-Bromofluorobenzene (Surr)	9 ganic Compo Result <0.00202 <0.00202 <0.00202 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0	unds (GC) Qualifier U U U U U U U U U U U Qualifier	RL 0.00202 0.00202 0.00202 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 Prepared 08/25/21 11:37	Analyzed 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 Analyzed 08/25/21 19:10	Dil Fac 1 1 1 1 1 1 1 1 Dil Fac 1
ate Received: 08/25/21 11:29 Method: 8021B - Volatile Org Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Total BTEX Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	9 ganic Compo Result <0.00202 <0.00202 <0.00202 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 108 114	unds (GC) Qualifier U U U U U U U U U U	RL 0.00202 0.00202 0.00202 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	Prepared 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 Prepared 08/25/21 11:37 08/25/21 11:37	Analyzed 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10	Dil Fac 1 1 1 1 1 1 1 1 Dil Fac 1 1
ate Received: 08/25/21 11:25 Method: 8021B - Volatile Org Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Total BTEX Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 8015B NM - Diesel I Analyte	9 ganic Compo Result <0.00202 <0.00202 <0.00202 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <114 Range Organ Result	unds (GC) Qualifier U U U U U U Qualifier	RL 0.00202 0.00202 0.00202 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 (GC) RL	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37	Analyzed 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10	Dil Fac 1 1 1 1 1 1 1 Dil Fac 1 1 Dil Fac
ate Received: 08/25/21 11:25 Method: 8021B - Volatile Org Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Total BTEX Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 8015B NM - Diesel I Analyte Gasoline Range Organics (GRO)-C6-C10	9 ganic Compo Result <0.00202 <0.00202 <0.00202 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0	unds (GC) Qualifier U U U U U U Qualifier U	RL 0.00202 0.00202 0.00202 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 (GC) RL 49.8	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37	Analyzed 08/25/21 19:10 08/25/21 19:10	Dil Fac 1 1 1 1 1 1 1 Dil Fac 1 1 Dil Fac 1 1
ate Received: 08/25/21 11:25 Method: 8021B - Volatile Org Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Total BTEX Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 8015B NM - Diesel I Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	9 ganic Compo Result <0.00202 <0.00202 <0.00202 <0.00403 <	unds (GC) Qualifier U U U U U U Qualifier U U	RL 0.00202 0.00202 0.00202 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 (GC) RL 49.8 49.8	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38	Analyzed 08/25/21 19:10 08/25/21 05:10	Dil Fac 1 1 1 1 1 1 1 Dil Fac 1 1 Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1
ate Received: 08/25/21 11:25 Method: 8021B - Volatile Org Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Total BTEX Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 8015B NM - Diesel I Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36)	9 ganic Compo Result <0.00202 <0.00202 <0.00202 <0.00403 <	unds (GC) Qualifier U U U U U U U Qualifier U U U	RL 0.00202 0.00202 0.00202 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 (GC) RL 49.8 49.8 49.8	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38	Analyzed 08/25/21 19:10 08/25/21 05:10 08/26/21 05:10 08/26/21 05:10	Dil Fac 1 1 1 1 1 1 1 Dil Fac 1 1 Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1
ate Received: 08/25/21 11:25 Method: 8021B - Volatile Org Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene & p-Xylene o-Xylene Xylenes, Total Total BTEX Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 8015B NM - Diesel I Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH	9 ganic Compo Result <0.00202 <0.00202 <0.00202 <0.00403 <0.00202 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0	unds (GC) Qualifier U U U U U U U U U U U U U U U U U U U	RL 0.00202 0.00202 0.00202 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 (GC) RL 49.8 49.8 49.8 49.8 49.8 49.8 49.8	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38	Analyzed 08/25/21 19:10 08/25/21 05:10 08/26/21 05:10 08/26/21 05:10	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Dil Fac 1 1 1 1 1 1 1 1 1
ate Received: 08/25/21 11:25 Method: 8021B - Volatile Org Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Total BTEX Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 8015B NM - Diesel I Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH Surrogate	9 ganic Compo Result <0.00202 <0.00202 <0.00202 <0.00403 <	unds (GC) Qualifier U U U U U U U Qualifier U U U U U U U U U U U U U U U U U U U	RL 0.00202 0.00202 0.00403 0.00	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38	Analyzed 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/26/21 05:10 08/26/21 05:10 08/26/21 05:10 08/26/21 05:10	Dil Fac 1
ate Received: 08/25/21 11:25 Method: 8021B - Volatile Org Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Total BTEX Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 8015B NM - Diesel I Analyte Gasoline Range Organics (Over (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH Surrogate 1-Chlorooctane	9 ganic Compo Result <0.00202 <0.00202 <0.00202 <0.00403 <	unds (GC) Qualifier U U U U U U U Qualifier U U U U U U U U U U U U U U U U U U U	RL 0.00202 0.00202 0.00202 0.00403 0.00	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38	Analyzed 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/26/21 05:10 08/26/21 05:10 08/26/21 05:10	Dil Fac 1
Pate Received: 08/25/21 11:25 Method: 8021B - Volatile Org Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Total BTEX Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 8015B NM - Diesel I Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH Surrogate 1-Chlorooctane o-Terphenyl	9 ganic Compo Result <0.00202 <0.00202 <0.00202 <0.00403 <	unds (GC) Qualifier U U U U U U Qualifier U U U U U U U U U U U U U U U U U U	RL 0.00202 0.00202 0.00202 0.00403 0.00	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38	Analyzed 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/26/21 05:10 08/26/21 05:10 08/26/21 05:10 08/26/21 05:10 08/26/21 05:10 08/26/21 05:10	Dil Fac 1
Pate Received: 08/25/21 11:25 Method: 8021B - Volatile Org Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Total BTEX Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 8015B NM - Diesel I Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C28-C36) OII Range Organics (Over C28-C36) Total TPH Surrogate 1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, Ion	9 ganic Compo Result <0.00202 <0.00202 <0.00202 <0.00202 <0.00403 <	unds (GC) Qualifier U U U U U U U U Qualifier U U U U Qualifier U U U U U U Qualifier	RL 0.00202 0.00202 0.00202 0.00403 0.00	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38	Analyzed 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/26/21 05:10 08/26/21 05:10 08/26/21 05:10 08/26/21 05:10 08/26/21 05:10	Dil Fac 1
Date Received: 08/25/21 11:25 Method: 8021B - Volatile Org Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Total BTEX Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 8015B NM - Diesel I Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C28-C36) OII Range Organics (Over C28-C36) Total TPH Surrogate 1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, Ion Analyte	9 ganic Compo Result <0.00202 <0.00202 <0.00202 <0.00202 <0.00403 <	unds (GC) Qualifier U U U U U U U Qualifier U U U U Qualifier U U U U U U U Qualifier	RL 0.00202 0.00202 0.00403 0.00	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:37 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38 08/25/21 11:38	Analyzed 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/25/21 19:10 08/26/21 05:10 08/26/21 05:10 08/26/21 05:10 08/26/21 05:10 08/26/21 05:10 08/26/21 05:10 08/26/21 05:10	Dil Fac 1

Client: Tetra Tech, Inc. Project/Site: COP VGEU 10-03

Client Sample ID: CS-4 (N) Date Collected: 08/24/21 11:30 Date Received: 08/25/21 11:29

1,4-Difluorobenzene (Surr)

Method: 8021B - Volatile O	rganic Compo	unds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00201	U	0.00201		mg/Kg		08/25/21 11:37	08/25/21 19:35	1
Toluene	<0.00201	U	0.00201		mg/Kg		08/25/21 11:37	08/25/21 19:35	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		08/25/21 11:37	08/25/21 19:35	1
m-Xylene & p-Xylene	< 0.00402	U	0.00402		mg/Kg		08/25/21 11:37	08/25/21 19:35	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		08/25/21 11:37	08/25/21 19:35	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		08/25/21 11:37	08/25/21 19:35	1
Total BTEX	<0.00402	U	0.00402		mg/Kg		08/25/21 11:37	08/25/21 19:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130				08/25/21 11:37	08/25/21 19:35	1

Method: 8015B NM - Diese	l Range	Organics	(DRO)	(GC)
--------------------------	---------	----------	-------	------

114

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		08/25/21 11:38	08/26/21 05:31	1
(GRO)-C6-C10									
Diesel Range Organics (Over	142		50.0		mg/Kg		08/25/21 11:38	08/26/21 05:31	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/25/21 11:38	08/26/21 05:31	1
Total TPH	142		50.0		mg/Kg		08/25/21 11:38	08/26/21 05:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	97		70 - 130				08/25/21 11:38	08/26/21 05:31	1
o-Terphenyl	109		70 - 130				08/25/21 11:38	08/26/21 05:31	1

70 - 130

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	262		4.95		mg/Kg			08/25/21 21:07	1
Client Sample ID: FS-1 (18')							Lab Samp	ole ID: 880-5	431-5

Client Sample ID: FS-1 (18') Date Collected: 08/24/21 11:50 Date Received: 08/25/21 11:29

Method: 8021B - Volatile O	rganic Compo	unds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/25/21 11:37	08/25/21 20:01	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/25/21 11:37	08/25/21 20:01	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/25/21 11:37	08/25/21 20:01	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		08/25/21 11:37	08/25/21 20:01	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/25/21 11:37	08/25/21 20:01	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		08/25/21 11:37	08/25/21 20:01	1
Total BTEX	<0.00399	U	0.00399		mg/Kg		08/25/21 11:37	08/25/21 20:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 130				08/25/21 11:37	08/25/21 20:01	1
1,4-Difluorobenzene (Surr)	99		70 - 130				08/25/21 11:37	08/25/21 20:01	1
Method: 8015B NM - Diese	I Range Organ	ics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		08/25/21 11:38	08/26/21 05:52	1

Eurofins Xenco, Midland

5

1

Job ID: 880-5431-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-5431-4

08/25/21 11:37 08/25/21 19:35

Matrix: Solid

Matrix: Solid

Client: Tetra Tech, Inc. Project/Site: COP VGEU 10-03

Client Sample ID: FS-1 (18') Date Collected: 08/24/21 11:50 Date Received: 08/25/21 11:29

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)										
Analyte	Result	Qualifier	RL	MDL	Unit	D				
Diesel Range Organics (Over C10-C28)	110		50.0		mg/Kg					
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg					

Total TPH	110		50.0		mg/Kg		08/25/21 11:38	08/26/21 05:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	107		70 - 130				08/25/21 11:38	08/26/21 05:52	1
o-Terphenyl	122		70 - 130				08/25/21 11:38	08/26/21 05:52	1
- Method: 300.0 - Anior	ns, Ion Chromatogra	phy - Solu	ıble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	225		4.95		mg/Kg			08/26/21 00:01	1

		08/25/21 11	1:38 1:38	08/26/21	05
Unit	D	Prepare	d	Analy	zeo
mg/Kg				08/26/21	00

Prepared

08/25/21 11:38 08/26/21 05:52

08/25/21 11:38 08/26/21 05:52

Dil Fac

1

1

5

Matrix: Solid

Job ID: 880-5431-1 SDG: Lea County, New Mexico

Analyzed

Lab Sample ID: 880-5431-5

Surrogate Summary

Client: Tetra Tech, Inc. Project/Site: COP VGEU 10-03

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

Job ID: 880-5431-1	
SDG: Lea County, New Mexico	

Prep Type: Total/NA

Prep Type: Total/NA

Page 33 of 52

			ent Surrogate Recovery (Acceptance Limits)		
		BFB1	DFBZ1		÷.
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
880-5431-1	CS-1 (W)	127	99		ŝ
880-5431-1 MS	CS-1 (W)	108	121		
880-5431-1 MSD	CS-1 (W)	95	117		÷
880-5431-2	CS-2 (S)	105	112		
880-5431-3	CS-3 (E)	108	114		
880-5431-4	CS-4 (N)	109	114		
880-5431-5	FS-1 (18')	93	99		
LCS 880-7063/1-A	Lab Control Sample	96	105		
LCSD 880-7063/2-A	Lab Control Sample Dup	103	118		
MB 880-7063/5-A	Method Blank	73	93		

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

			Pe
		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-5426-A-1-E MS	Matrix Spike	108	105
880-5426-A-1-F MSD	Matrix Spike Duplicate	110	110
880-5431-1	CS-1 (W)	92	104
880-5431-2	CS-2 (S)	107	117
880-5431-3	CS-3 (E)	101	115
880-5431-4	CS-4 (N)	97	109
880-5431-5	FS-1 (18')	107	122
LCS 880-7064/2-A	Lab Control Sample	91	94
LCSD 880-7064/3-A	Lab Control Sample Dup	90	89
MB 880-7064/1-A	Method Blank	111	128

Surrogate Legend

1CO = 1-Chlorooctane OTPH = o-Terphenyl

Client: Tetra Tech, Inc. Project/Site: COP VGEU 10-03

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-7063/5-A
Matrix: Solid
Analysis Batch: 7067

-	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/25/21 11:37	08/25/21 17:53	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/25/21 11:37	08/25/21 17:53	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/25/21 11:37	08/25/21 17:53	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		08/25/21 11:37	08/25/21 17:53	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/25/21 11:37	08/25/21 17:53	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		08/25/21 11:37	08/25/21 17:53	1
Total BTEX	<0.00400	U	0.00400		mg/Kg		08/25/21 11:37	08/25/21 17:53	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	73		70 - 130				08/25/21 11:37	08/25/21 17:53	1
1,4-Difluorobenzene (Surr)	93		70 - 130				08/25/21 11:37	08/25/21 17:53	1

Lab Sample ID: LCS 880-7063/1-A Matrix: Solid Analysis Batch: 7067

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09905		mg/Kg		99	70 - 130	
Toluene	0.100	0.1058		mg/Kg		106	70 - 130	
Ethylbenzene	0.100	0.1040		mg/Kg		104	70 - 130	
m-Xylene & p-Xylene	0.200	0.2102		mg/Kg		105	70 - 130	
o-Xylene	0.100	0.1007		mg/Kg		101	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	96		70 - 130
1,4-Difluorobenzene (Surr)	105		70 - 130

Lab Sample ID: LCSD 880-7063/2-A Matrix: Solid Analysis Batch: 7067

Analysis Batch: 7067							Prep	Batch:	7063
-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1081		mg/Kg		108	70 - 130	9	35
Toluene	0.100	0.1101		mg/Kg		110	70 - 130	4	35
Ethylbenzene	0.100	0.1104		mg/Kg		110	70 - 130	6	35
m-Xylene & p-Xylene	0.200	0.2238		mg/Kg		112	70 - 130	6	35
o-Xylene	0.100	0.1073		mg/Kg		107	70 - 130	6	35
LCS	D LCSD								

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	103		70 - 130
1,4-Difluorobenzene (Surr)	118		70 - 130

Lab Sample ID: 880-5431-1 MS Client Sample ID: CS-1 (W) **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 7067 Prep Batch: 7063 Sample Sample Spike MS MS %Rec. **Result Qualifier** Added Limits Analyte Result Qualifier Unit D %Rec Benzene <0.00200 U 0.0998 0.09826 mg/Kg 98 70 - 130

Eurofins Xenco, Midland

5

7

Job ID: 880-5431-1 SDG: Lea County, New Mexico

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 7063

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 7063

Released to Imaging: 10/6/2021 3:29:56 PM

Client: Tetra Tech, Inc. Project/Site: COP VGEU 10-03 Job ID: 880-5431-1 SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Matrix: Solid Analysis Batch: 7067	UI J								Chefit	Prep Type: Preb Ba	Tota tch:	al/NA 7063
	Sample	Sam	ple	Spike	MS	MS				%Rec.		
Analyte	Result	Qua	lifier	Added	Result	Qualifie	r Unit	D	%Rec	Limits		
Toluene	<0.00200	U		0.0998	0.08710		ma/Ka		87	70 - 130		
Fthylbenzene	<0.00200	Ŭ		0.0998	0.08927		ma/Ka		89	70 - 130		
m-Xvlene & p-Xvlene	<0 00399	Ū.		0 200	0 1765		ma/Ka		88	70 - 130		
o-Xylene	< 0.00200	U		0.0998	0.08594		mg/Kg		86	70 - 130		
2							0 0					
Surrogoto	MS % Decovery	MS	lifior	Limito								
A Bromofluorobenzene (Surr)	⁷⁰ Recovery	Qua	imer	Z0 120								
4-Diomonuorobenzene (Surr)	100			70 - 130								
	121			10-130								
Lab Sample ID: 880-5431-1	MSD								Client	Sample ID:	CS-	1 (W)
Matrix: Solid										Prep Type:	Tot	al/NA
Analysis Batch: 7067										Prep Ba	tch:	7063
	Sample	Sam	nple	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qua	lifier	Added	Result	Qualifie	r Unit	D	%Rec	Limits F	PD	Limit
Benzene	<0.00200	U		0.101	0.09096		mg/Kg		90	70 - 130	8	35
Toluene	<0.00200	U		0.101	0.07895		mg/Kg		78	70 - 130	10	35
Ethylbenzene	<0.00200	U		0.101	0.08142		mg/Kg		81	70 - 130	9	35
m-Xylene & p-Xylene	<0.00399	U		0.202	0.1611		mg/Kg		80	70 - 130	9	35
o-Xylene	<0.00200	U		0.101	0.07537		mg/Kg		75	70 - 130	13	35
	MSD	MSL										
Surrogate	%Recovery	Qua	lifier	Limits								
4-Bromofluorobenzene (Surr)	95			70 - 130								
1,4-Difluorobenzene (Surr)	117			70 - 130								
Method: 8015B NM - Die	esel Rang	je (Jrganic	s (DRU)	(GC)							
Lab Sample ID: MB 880-706	64/1-A							Cli	ent Sam	ole ID: Meth	od F	3lank
Matrix: Solid										Prep Type:	Tot	al/NA
Analysis Batch: 7038										Prep Ba	tch:	7064
-		MB	MB									
Analyte	Re	sult	Qualifier	F	RL	MDL Un	it	DF	Prepared	Analyzed	ſ	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<	50.0	U	50	0.0	mg	/Kg	08/2	25/21 11:38	08/25/21 21:	0	1
Diesel Range Organics (Over C10-C28)	<:	50.0	U	50	0.0	mg	/Kg	08/2	25/21 11:38	08/25/21 21:	0	1
Oll Range Organics (Over C28-C36)	<	50.0	U	50	.0	mg	/Kg	08/	25/21 11:38	08/25/21 21:	0	1
Total TPH	<	50.0	U	50	0.0	mg	/Kg	08/	25/21 11:38	08/25/21 21:	0	1
		MR	MB									
Surrogate	%Reco	verv	Qualifier	Limits				F	Prepared	Analyzed	1	Dil Fac
1-Chlorooctane		111		70 - 13	0			08/	25/21 11:38	08/25/21 21	10	1
o-Terphenyl		128		70 - 13	0			08/	25/21 11:38	08/25/21 21:	10	1
					-						-	
Lab Sample ID: LCS 880-70	64/2-A						Clie	ent Sa	mple ID:	Lab Contro	l Sa	mple
Matrix: Solid										Prep Type:	Tot	al/NA
Analysis Batch: 7038										Pren Ba	tch:	7064

Eurofins Xenco, Midland

5

Client: Tetra Tech, Inc. Project/Site: COP VGEU 10-03

Job ID: 880-5431-1 SDG: Lea County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-	.7064/2-A					, Clier	nt Sar	nple ID	: Lab Cor	ntrol Sa	ample
Matrix: Solid									Prep Tv	pe: Tot	al/NA
Analysis Batch: 7038									Prep	Batch:	7064
-			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Diesel Range Organics (Over			1000	875.2		mg/Kg		88	70 - 130		
C10-C28)											
	LCS	LCS									
Surrogate	%Recoverv	Qualifier	Limits								
1-Chlorooctane	- <u></u>		70 - 130								
o-Terphenvl	94		70 - 130								
Lab Sample ID: LCSD 88	0-7064/3-A				C	lient Sa	mple	ID: Lab	Control	Sample	e Dup
Matrix: Solid									Prep Ty	pe: Tot	al/NA
Analysis Batch: 7038									Prep	Batch:	7064
-			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics			1000	1062		mg/Kg		106	70 - 130	2	20
(GRO)-C6-C10											
Diesel Range Organics (Over			1000	845.1		mg/Kg		85	70 - 130	3	20
010-028)											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	90		70 - 130								
o-Terphenyl	89		70 - 130								
							~		male ID. I		Omilea
Lab Sample ID: 880-5426	-A-1-E 1VI5						U	ient Sa	mpie ID: I		Spike
Analysia Databy 7029									Prep Ty	Det IOL	
Analysis Batch: 7036	Sampla	Sampla	Spiko	МС	ме				%Poc	Datch:	7064
Analyta	Bocult	Ouglifier	Addad	Pocult	Qualifier	Unit	п	% Pac	/intec.		
Gasoline Range Organics			995	1261	Quaimer	ma/Ka		124	70 130		
(GRO)-C6-C10	-00.0	5	000	1201				127	10-100		
Diesel Range Organics (Over	<50.0	U	995	1112		mg/Kg		112	70 - 130		
C10-C28)											
	MS	MS									
Surrogate	%Recoverv	Qualifier	l imits								
1-Chlorooctane			70 - 130								
o-Terphenyl	105		70 - 130								
Lab Sample ID: 880-5426	-A-1-F MSD					Client S	Samp	le ID: N	latrix Spil	ke Dup	licate
Matrix: Solid									Prep Ty	pe: Tot	al/NA
Analysis Batch: 7038									Prep	Batch:	7064
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<50.0	U F1	998	1493	F1	mg/Kg		147	70 - 130	17	20
(GRO)-C6-C10										_	
Diesel Range Organics (Over	<50.0	U	998	1174		mg/Kg		118	70 - 130	5	20
UTU-U28)											
	MSD	MSD									

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	110		70 - 130
o-Terphenyl	110		70 - 130

Page 37 of 52

Client: Tetra Tech, Inc. Project/Site: COP VGEU 10-03 Job ID: 880-5431-1 SDG: Lea County, New Mexico

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-69	991/1-A								Clie	ent San	nple ID: M	ethod	Blank
Analysis Batch: 7072											Flep	ype. o	oluble
Analysis Batch. 7072	ME												
Analyto	Posul	t Qualifiar		DI		мпі	Unit			ronarod	Analy	zod	Dil Eac
	Kesul			5.00			ma/k	<u>a</u>	<u> </u>	Tepareu	$-\frac{Allaly}{08/25/21}$	18.10	
Chionde	5.00	5 0		5.00			mg/rx	9			00/20/21	10.15	1
Lab Sample ID: LCS 880-6 Matrix: Solid	991/2-A							Clie	ent Sa	mple ID	: Lab Cor Prep T	ntrol S vpe: S	ample oluble
Analysis Batch: 7072													
			Spike		LCS	LCS					%Rec.		
Analyte			Added		Result	Qual	ifier	Unit	D	%Rec	Limits		
Chloride			250		269.2			mg/Kg		108	90 - 110		
Lab Sample ID: LCSD 880	-6991/3-A						c	Client Sa	ample	ID: Lat	o Control	Samp	le Dup
Matrix: Solid											Prep Ty	ype: S	oluble
Analysis Batch: 7072													
			Spike		LCSD	LCSI	D				%Rec.		RPD
Analyte			Added		Result	Qual	ifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			250		269.5			mg/Kg		108	90 - 110	0	20
Lab Sample ID: 880-5367-/ Matrix: Solid	A-11-B MS								С	lient Sa	mple ID: I Prep Ty	Matrix ype: S	Spike oluble
Analysis Batch: 7072	0		0								0/ D		
	Sample Sa	mple	Spike		MS	MS			_	a/ -	%Rec.		
Analyte		lalifier	Added		Result	Qual	ifier	Unit	D	%Rec			
Lab Sample ID: 880-5367- Matrix: Solid Analysis Batch: 7072	A-11-C MSD							Client	Samp	ole ID: N	Matrix Spil Prep T	ke Duj ype: S	olicate oluble
	Sample Sa	mple	Spike		MSD	MSD					%Rec.		RPD
Analyte	Result Qu	ualifier	Added		Result	Qual	ifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	23.7		253		282.2			mg/Kg		102	90 - 110	0	20
Lab Sample ID: MB 880-70 Matrix: Solid Analysis Batch: 7075)02/1-A								Clie	ent San	nple ID: M Prep Tיַ	ethod ype: S	Blank oluble
	ME	B MB											
Analyte	Resul	t Qualifier		RL		MDL	Unit		<u>D</u> P	repared	Analyz	zed	Dil Fac
Chloride	<5.00	D U		5.00			mg/K	g			08/25/21	21:36	1
Lab Sample ID: LCS 880-7 Matrix: Solid	'002/2-A							Clie	ent Sa	mple ID	: Lab Cor Prep Ty	ntrol S ype: S	ample oluble
Analysis Datch: 7075			Snike		1.06	100					%Pac		
Analyte					Result	Oual	ifior	Unit	п	%Rec	/intec.		
Chloride			250		268.2	Quai		ma/Ka		107	90 - 110		
Lab Sample ID: LCSD 880 Matrix: Solid	-7002/3-A						C	Client Sa	ample	ID: Lat	o Control Prep Ty	Samp ype: S	le Dup oluble
Analysis Batch: 7075			_										
			Spike		LCSD	LCSI	D				%Rec.		RPD
Analyte			Added		Result	Qual	ifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			250		268.6			mg/Kg		107	90 - 110	0	20

Client: Tetra Tech, Inc. Project/Site: COP VGEU 10-03 Job ID: 880-5431-1 SDG: Lea County, New Mexico

Page 38 of 52

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 880-5371-A Matrix: Solid	-1-B MS						CI	ient Sa	mple ID: I Prep Ty	Matrix ype: So	Spike bluble
Analysis Batch. 7075	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	22.3		252	282.7		mg/Kg		103	90 - 110		
Lab Sample ID: 880-5371-A Matrix: Solid Analysis Batch: 7075	-1-C MSD					Client S	Samp	le ID: N	latrix Spil Prep Ty	ke Dup ype: So	licate bluble
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	22.3		252	282.7		mg/Kg		103	90 - 110	0	20

QC Association Summary

Client: Tetra Tech, Inc. Project/Site: COP VGEU 10-03

Job ID: 880-5431-1 SDG: Lea County, New Mexico

GC VOA

Prep Batch: 7063

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-5431-1	CS-1 (W)	Total/NA	Solid	5035	
880-5431-2	CS-2 (S)	Total/NA	Solid	5035	
880-5431-3	CS-3 (E)	Total/NA	Solid	5035	
880-5431-4	CS-4 (N)	Total/NA	Solid	5035	
880-5431-5	FS-1 (18')	Total/NA	Solid	5035	
MB 880-7063/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-7063/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-7063/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-5431-1 MS	CS-1 (W)	Total/NA	Solid	5035	
880-5431-1 MSD	CS-1 (W)	Total/NA	Solid	5035	

Analysis Batch: 7067

	Las control campio		e e na	0000		
LCSD 880-7063/2-A	Lab Control Sample Dup	Total/NA	Solid	5035		8
880-5431-1 MS	CS-1 (W)	Total/NA	Solid	5035		
880-5431-1 MSD	CS-1 (W)	Total/NA	Solid	5035		9
Analysis Batch: 706	7					10
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
880-5431-1	CS-1 (W)	Total/NA	Solid	8021B	7063	
880-5431-2	CS-2 (S)	Total/NA	Solid	8021B	7063	
880-5431-3	CS-3 (E)	Total/NA	Solid	8021B	7063	
880-5431-4	CS-4 (N)	Total/NA	Solid	8021B	7063	
880-5431-5	FS-1 (18')	Total/NA	Solid	8021B	7063	40
MB 880-7063/5-A	Method Blank	Total/NA	Solid	8021B	7063	13
LCS 880-7063/1-A	Lab Control Sample	Total/NA	Solid	8021B	7063	
LCSD 880-7063/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	7063	
880-5431-1 MS	CS-1 (W)	Total/NA	Solid	8021B	7063	
880-5431-1 MSD	CS-1 (W)	Total/NA	Solid	8021B	7063	

GC Semi VOA

Analysis Batch: 7038

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-5431-1	CS-1 (W)	Total/NA	Solid	8015B NM	7064
880-5431-2	CS-2 (S)	Total/NA	Solid	8015B NM	7064
880-5431-3	CS-3 (E)	Total/NA	Solid	8015B NM	7064
880-5431-4	CS-4 (N)	Total/NA	Solid	8015B NM	7064
880-5431-5	FS-1 (18')	Total/NA	Solid	8015B NM	7064
MB 880-7064/1-A	Method Blank	Total/NA	Solid	8015B NM	7064
LCS 880-7064/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	7064
LCSD 880-7064/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	7064
880-5426-A-1-E MS	Matrix Spike	Total/NA	Solid	8015B NM	7064
880-5426-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	7064

Prep Batch: 7064

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-5431-1	CS-1 (W)	Total/NA	Solid	8015NM Prep	
880-5431-2	CS-2 (S)	Total/NA	Solid	8015NM Prep	
880-5431-3	CS-3 (E)	Total/NA	Solid	8015NM Prep	
880-5431-4	CS-4 (N)	Total/NA	Solid	8015NM Prep	
880-5431-5	FS-1 (18')	Total/NA	Solid	8015NM Prep	
MB 880-7064/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-7064/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-7064/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-5426-A-1-E MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-5426-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Eurofins Xenco, Midland

4 5 6

QC Association Summary

Client: Tetra Tech, Inc. Project/Site: COP VGEU 10-03

Job ID: 880-5431-1 SDG: Lea County, New Mexico

each Batch: 6991					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
880-5431-1	CS-1 (W)	Soluble	Solid	DI Leach	
880-5431-2	CS-2 (S)	Soluble	Solid	DI Leach	
880-5431-3	CS-3 (E)	Soluble	Solid	DI Leach	
880-5431-4	CS-4 (N)	Soluble	Solid	DI Leach	
MB 880-6991/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-6991/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-6991/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-5367-A-11-B MS	Matrix Spike	Soluble	Solid	DI Leach	
880-5367-A-11-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
each Batch: 7002					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-5431-5	FS-1 (18')	Soluble	Solid	DI Leach	
MB 880-7002/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-7002/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-7002/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-5371-A-1-B MS	Matrix Spike	Soluble	Solid	DI Leach	
880-5371-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
analysis Batch: 7072					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-5431-1	CS-1 (W)	Soluble	Solid	300.0	6991
880-5431-2	CS-2 (S)	Soluble	Solid	300.0	6991
880-5431-3	CS-3 (E)	Soluble	Solid	300.0	6991
880-5431-4	CS-4 (N)	Soluble	Solid	300.0	6991
MB 880-6991/1-A	Method Blank	Soluble	Solid	300.0	6991
LCS 880-6991/2-A	Lab Control Sample	Soluble	Solid	300.0	6991
LCSD 880-6991/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	6991
880-5367-A-11-B MS	Matrix Spike	Soluble	Solid	300.0	6991
880-5367-A-11-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	6991
nalysis Batch: 7075					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-5431-5	FS-1 (18')	Soluble	Solid	300.0	7002
MB 880-7002/1-A	Method Blank	Soluble	Solid	300.0	7002
LCS 880-7002/2-A	Lab Control Sample	Soluble	Solid	300.0	7002
LCSD 880-7002/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	7002

Eurofins Xenco, Midland

Released to Imaging: 10/6/2021 3:29:56 PM

Matrix Spike

Matrix Spike Duplicate

880-5371-A-1-B MS

880-5371-A-1-C MSD

Soluble

Soluble

Solid

Solid

300.0

300.0

7002

7002

Job ID: 880-5431-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-5431-1 Matrix: Solid

Lab Sample ID: 880-5431-2

Matrix: Solid

Date Collected: 08/24/21 11:00 Date Received: 08/25/21 11:29

Project/Site: COP VGEU 10-03

Client Sample ID: CS-1 (W)

Client: Tetra Tech, Inc.

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	7063	08/25/21 11:37	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7067	08/25/21 18:18	KL	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	7064	08/25/21 11:38	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7038	08/26/21 04:28	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	6991	08/25/21 14:00	СН	XEN MID
Soluble	Analysis	300.0		1			7072	08/25/21 20:51	СН	XEN MID

Client Sample ID: CS-2 (S) Date Collected: 08/24/21 11:10 Date Received: 08/25/21 11:29

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	7063	08/25/21 11:37	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7067	08/25/21 18:44	KL	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	7064	08/25/21 11:38	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7038	08/26/21 04:49	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	6991	08/25/21 14:00	СН	XEN MID
Soluble	Analysis	300.0		1			7072	08/25/21 20:56	СН	XEN MID

Client Sample ID: CS-3 (E) Date Collected: 08/24/21 11:20 Date Received: 08/25/21 11:29

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	7063	08/25/21 11:37	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7067	08/25/21 19:10	KL	XEN MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	7064	08/25/21 11:38	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7038	08/26/21 05:10	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	6991	08/25/21 14:00	СН	XEN MID
Soluble	Analysis	300.0		1			7072	08/25/21 21:02	CH	XEN MID

Client Sample ID: CS-4 (N) Date Collected: 08/24/21 11:30 Date Received: 08/25/21 11:29

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	7063	08/25/21 11:37	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7067	08/25/21 19:35	KL	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	7064	08/25/21 11:38	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7038	08/26/21 05:31	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	6991	08/25/21 14:00	СН	XEN MID
Soluble	Analysis	300.0		1			7072	08/25/21 21:07	СН	XEN MID

Eurofins Xenco, Midland

2 3 4

Lab Sample ID: 880-5431-3 Matrix: Solid

Lab Sample ID: 880-5431-4 Matrix: Solid

Lab Chronicle

Client: Tetra Tech, Inc. Project/Site: COP VGEU 10-03

Client Sample ID: FS-1 (18') Date Collected: 08/24/21 11:50 Date Received: 08/25/21 11:29

	Job ID	: 880-5431-1	
SDG: Lea C	county,	New Mexico	

Lab Sample ID: 880-5431-5

Matrix: Solid

5 6

9

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	7063	08/25/21 11:37	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7067	08/25/21 20:01	KL	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	7064	08/25/21 11:38	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7038	08/26/21 05:52	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	7002	08/25/21 13:00	СН	XEN MID
Soluble	Analysis	300.0		1			7075	08/26/21 00:01	СН	XEN MID

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Xenco, Midland

Page 42 of 52

Released to Imaging: 10/6/2021 3:29:56 PM

Accreditation/Certification Summary

Client: Tetra Tech, Inc. Project/Site: COP VGEU 10-03 Job ID: 880-5431-1 SDG: Lea County, New Mexico

Laboratory: Eurofins Xenco, Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	P	rogram	Identification Number	Expiration Date
Texas	N	ELAP	T104704400-20-21	06-30-22
The following analyte	s are included in this rep	ort, but the laboratory is ı	not certified by the governing authority.	This list may include analytes for whi
the agency does not o	offer certification.			
the agency does not o Analysis Method	offer certification. Prep Method	Matrix	Analyte	
the agency does not o Analysis Method 8015B NM	offer certification. Prep Method 8015NM Prep	Matrix Solid	Analyte Total TPH	

10

Client: Tetra Tech, Inc. Project/Site: COP VGEU 10-03 Job ID: 880-5431-1 SDG: Lea County, New Mexico

Page 44 of 52

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Tetra Tech, Inc. Project/Site: COP VGEU 10-03 Job ID: 880-5431-1 SDG: Lea County, New Mexico

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
880-5431-1	CS-1 (W)	Solid	08/24/21 11:00	08/25/21 11:29	
880-5431-2	CS-2 (S)	Solid	08/24/21 11:10	08/25/21 11:29	
880-5431-3	CS-3 (E)	Solid	08/24/21 11:20	08/25/21 11:29	
880-5431-4	CS-4 (N)	Solid	08/24/21 11:30	08/25/21 11:29	
880-5431-5	FS-1 (18')	Solid	08/24/21 11:50	08/25/21 11:29	

Relinquished by Helin Comments: (county, state) Project Location: Project Name: **Client Name:** Analysis Request of Chain of Custody Record relinguished by Receiving Laboratory: Invoice to: LAB USE LAB # - ANA Please also email results to joe tyler@tetratech com Eurofins-Xenco Accounts Payable 901 West Wall Street COP VGEU 10-03 Conoco Philips Lea County, New Mexico Ø E Tetra Tech, Inc. SAMPLE IDENTIFICATION CS - 3 (E) CS - 2 (S) FS - 1 (18) CS - 1 (W) CS - 4 (N) ∞ Suite 100 Midland Texas 79701 Date 25/2 Date Time Time 1me N L Received by Site Manager: Contact Info: Received 8/24/2021 Sampler Signature: YEAR 2020 Jec. 8/24/2021 8/24/2021 8/24/2021 8/24/2021 DATE SAMPLING à 1150 1130 1120 1100 TIME 1110 Project #: 212C-MD-02377.13 WATER Email christian llull@tetratech com Phone (512) 338-1667 Christian Llull MATRIX SOIL \times \times \times \times \times Adrian Garcia 901 West Wall Street Suite Midland, Texas 79701 Tel (432) 682-4559 Date HCL Date PRESERVATIVE Fax (432) 682-3946 200 Date HNO₃ METHOD ICE \times × \times × × Time Time Time NONE てんに # CONTAINERS -_ -----100 FILTERED (Y/N) z z Z z Z 14.0/4.51 BTEX 8021B BTEX 8260B × \times × Sample Temperature × \times LAB USE TPH TX1005 (Ext to C35) TPH 8015M (GRO DRO ORO - MRO) × \times × \times \times 880-5431 PAH 8270C (Circle or Specify Method No.) Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg Chain of Custody TCLP Volatiles REMARKS: ANALYSIS REQUEST Special Report Limits or TRRP Report X RUSH Same Day (24) TCLP Semi Volatiles Rush Charges Authorized Standard RCI GC/MS Vol 8260B / 624 GC/MS Semi Vol 8270C/625 PCB's 8082 / 608 NORM PLM (Asbestos) \times × \times × × Chloride 300 0 48 hr Sulfate Chloride TDS

ORIGINAL COPY

(Circle) HAND DELIVERED

FEDEX

UPS

I racking #

72 hr

General Water Chemistry (see attached list)

Anion/Cation Balance

TPH 8015R

HOLD

약 1

5

13 14

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Login Number: 5431 List Number: 1 Creator: Teel, Brianna

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Job Number: 880-5431-1 SDG Number: Lea County, New Mexico

APPENDIX D Photographic Documentation

TETRA TECH, INC.	DESCRIPTION	View northwest of the release area, tubing and access ramp.	5
212C-MD-02377	SITE NAME	VGEU 10-03 Tubing Release	8/24/2021

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
CONOCOPHILLIPS COMPANY	217817
600 W. Illinois Avenue	Action Number:
Midland, TX 79701	47957
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
chensley	None	10/6/2021

CONDITIONS

Page 52 of 52

Action 47957