

October 6, 2021

District Supervisor
Oil Conservation Division, District 1
1625 North French Drive
Hobbs, New Mexico 88240

Re: Closure Report ConocoPhillips

Warren Unit 134 Flowline Release Unit Letter L, Section 27, Township 20 South, and Range 38 East Lea County, New Mexico

Incident ID# NAPP2107046560

Sir or Madam:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips (COP) to assess a release that occurred from a flowline of the Warren Unit 134 well (API #30-025-33487) at a point approximately 1,500 feet (ft) southeast of the well. The release footprint is located in Public Land Survey System (PLSS) Unit Letter L, Section 27, Township 20 South and Range 38 East, Lea County, New Mexico (Site). The approximate release point occurred at coordinates 32.542155°, -103.144711°, as shown on Figures 1 and 2.

BACKGROUND

According to the State of New Mexico C-141 Initial Report (Appendix A), the release was discovered on March 2, 2021. The release occurred as the result of a flowline leak and encompasses an estimated area of 600 square ft. Approximately 6 barrels (bbls) of produced water and 0.5 bbls of oil were reported released, of which 0 bbls of fluid were recovered. The New Mexico Oil Conservation District (NMOCD) received the C-141 report form for the release on March 11, 2021. The NMOCD Incident ID for this release is NAPP2107046560.

SITE CHARACTERIZATION

A site characterization was performed and no watercourses, sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, playa lakes, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the distances specified in 19.15.29 New Mexico Administrative Code (NMAC). The Site is in an area of low karst potential.

According to the New Mexico Office of the State Engineers (NMOSE) reporting system, there are no water wells within ½ mile (800 meters) of the Site. The search radius was expanded and based on available data from one (1) water well located within 2,500 meters (approximately 1.55 miles) of the Site, the average depth to groundwater is 65 ft below ground surface (bgs).

As the available water level information was from a well farther than $\frac{1}{2}$ mile away from the site and the data was more than 25 years old, COP elected to drill a boring to depth for groundwater verification. On May 12, 2021, a licensed well drilling subcontractor was onsite to a drill a groundwater determination borehole to 55 ft bgs and within a $\frac{1}{2}$ mile radius of the release location. The borehole was temporarily set, screened and

Tetra Tech

901 West Wall St., Suite 100, Midland, TX 79701

Tel: 432.682.4559 Fax: 432.682.3946 www.tetratech.com

ConocoPhillips

sealed using 2-inch PVC casing; 35 feet of solid riser and 20 feet of .010" slotted screen. The borehole was left for 72 hours and checked for the presence of groundwater. No water was detected, and the borehole was dry. The screen and riser were removed, and the borehole was plugged with 3/8" bentonite chips on May 18, 2021. The borehole coordinates are 32.120658°, -103.563616° and the location is indicated on Figure 3. The site characterization data, boring log, and temporary well diagram are included in Appendix B.

REGULATORY FRAMEWORK

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data and the depth to water determination boring were used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil.

Based on the site characterization and in accordance with Table I of 19.15.29.12 NMAC, the RRALs for the Site are as follows:

Constituent	Site Specific RRALs
Chloride	10,000 mg/kg
TPH	2,500 mg/kg
BTEX	50 mg/kg

Additionally, in accordance with the NMOCD guidance *Procedures for Implementation of the Spill Rule* (19.15.29 NMAC) (September 6, 2019), the following reclamation requirements for surface soils (0-4 ft bgs) outside of active oil and gas operations are as follows:

Constituent	Reclamation Requirements
Chloride	600 mg/kg
TPH	100 mg/kg
BTEX	50 mg/kg

SITE ASSESSMENT

The release footprint is located in an off-pad area. In order to achieve horizontal and vertical delineation of the release extent, Tetra Tech personnel conducted soil sampling on March 18, 2021, on behalf of ConocoPhillips. A total of six borings (AH-1 through AH-6) were installed with a hand auger. Boring locations AH-1 through AH-4 were installed around the perimeter of the release extent to achieve horizontal delineation. Boring locations AH-5 and AH-6 were installed within the release footprint to achieve vertical delineation.

A total of nineteen (19) soil samples were collected from the six (6) locations within and surrounding the release extent. These soil samples were sent to Cardinal Laboratories in Hobbs, New Mexico to be analyzed for chloride via EPA Method SM45000Cl-B, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. Boring locations are shown in Figure 3.

ConocoPhillips

SUMMARY OF SAMPLING RESULTS

Results from the March 2021 soil sampling event are summarized in Table 1. The analytical results associated with the AH-5 and AH-6 boring locations exceeded the Site chloride reclamation requirement of 600 mg/kg in the upper four feet. Analytical results associated with the AH-5 boring location below four feet did not exceed the proposed RRAL for chloride of 10,000 mg/kg. There were no other analytical results which exceeded the chloride reclamation requirement during the assessment.

The analytical results associated with the AH-5 and AH-6 boring locations exceeded the reclamation concentration for TPH (100 mg/kg) down to 2 ft bgs and 4 ft bgs, respectively. The analytical results associated with AH-6 boring locations exceeded the reclamation requirement for BTEX (50 mg/kg) down to 4 ft bgs. The remainder of the samples analyzed were below the BTEX and/or TPH Site RRALs of 50 mg/kg and 100 mg/kg, respectively. Horizontal and vertical delineation was achieved during this assessment.

REMEDIATION WORK PLAN AND CONFIRMATION SAMPLING PLAN

The Release Characterization Work Plan (Work Plan) was prepared by Tetra Tech on behalf of ConocoPhillips and submitted to NMOCD on May 27, 2021 with fee application payment PO Number 9W2TN-210527-C-1410. The Work Plan described the results of the release assessment and provided characterization of the impact at the site. The Work Plan was approved via email by Chad Hensley on Friday, August 6, 2021. Mr. Hensley also executed page 4 of the C-141 form included with the Work Plan.

REMEDIATION ACTIVITIES AND CONFIRMATION SAMPLING

From September 7, 2021 through September 17, 2021, Tetra Tech personnel were onsite to supervise the remediation activities proposed in the approved Work Plan, including excavation, disposal, and confirmation sampling. Impacted soils were excavated until a representative sample from the walls and bottom of the excavation had a field screening value inferred as lower than the RRALs for the Site. Once field screening was completed, confirmation floor and sidewall samples were collected for laboratory analysis to verify that the impacted materials were properly removed. Each confirmation sample laboratory analytical result was directly compared to the proposed RRALs to demonstrate compliance.

Per the approved Confirmation Sampling Plan, confirmation samples were collected such that discrete sample (sidewall and floor) were representative of no more than 200 square feet of excavated area. A total of five (5) floor sample locations and eight (8) sidewall sample locations were collected during the remedial activities. Confirmation sidewall sample locations were categorized with the cardinal direction (N, E, S, W) followed by SW-#. Confirmation floor sample locations were labeled "FS"-#. Selected areas required additional excavation to collect a representative sample that was below the respective RRALs for that location. As the analytical results associated with these sample locations exceeded the respective RRAL, additional excavation was conducted at those locations until field screening results indicated closure criteria were attained.

Iterative confirmation samples were located to encompass the original sample locations that triggered removal (nomenclature defined in Table 2) post-additional excavation. If the sidewall area was expanded due to unacceptable confirmation sample results, the parentheses indicate the expansion iteration. For floor samples, the parentheses indicate the excavation floor depth from which the sample was collected.

Collected confirmation samples were placed into laboratory-provided sample containers, transferred under chain-of-custody, and analyzed within appropriate holding times by Eurofins-Xenco in Midland, Texas. The soil samples were analyzed for TPH (DRO and ORO) by EPA Method 8015, TPH Low Fraction (GRO) by EPA Method 8015D, BTEX by EPA Method 8260B, and chlorides by EPA Method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C.

Per the NMOCD-approved Work Plan, the observed impacted area was excavated to four (4) feet below existing grade. Excavated areas, depths and confirmation sample locations are shown in Figure 4.

ConocoPhillips

After expansion of the excavation and iterative confirmation sampling at sidewall sample locations SSW-1 and WSW-3, all final confirmation soil samples (floor and sidewall) were below the respective RRALs for chloride, BTEX, and TPH. The results of the September 2021 confirmation sampling events are summarized in Table 2.

All the excavated material was transported offsite for proper disposal. Approximately 179 cubic yards of material were transported to the R360 facility in Hobbs, New Mexico. Photographs from the excavated areas prior to backfill are provided in Appendix D. Once confirmation sampling activities were completed and associated analytical results were below the RRALs, the excavated areas were backfilled with clean material to surface grade. The reclaimed areas contain soil backfill consisting of suitable material to establish vegetation at the site. Copies of the waste manifests are included in Appendix E.

As prescribed in the Work Plan, the backfilled areas were seeded in September 2021 to aid in revegetation. Based on the soils at the site and the approved Work Plan, the New Mexico State Land Office (NMSLO) Sandy Loam (SL) Sites Seed Mixture was used for seeding and planted in the amount specified in the pounds pure live seed (PLS) per acre.

Site Inspections will be performed to assess the revegetation progress and evaluate the site for the presence of primary or secondary noxious weeds. If noxious weeds are identified, the NMSLO will be contacted to determine an effective method of eradication. If the site does not show revegetation after one growing season, the area will be reseeded as appropriate.

CONCLUSION

ConocoPhillips respectfully requests closure of this release based on the confirmation sampling results and remediation activities performed. The final C-141 forms are enclosed in Appendix A. If you have any questions concerning the remediation activities for the Site, please call me at (512) 338-2861.

Sincerely,

Tetra Tech, Inc.

Christian M. Llull, P.G. Program Manager

СС

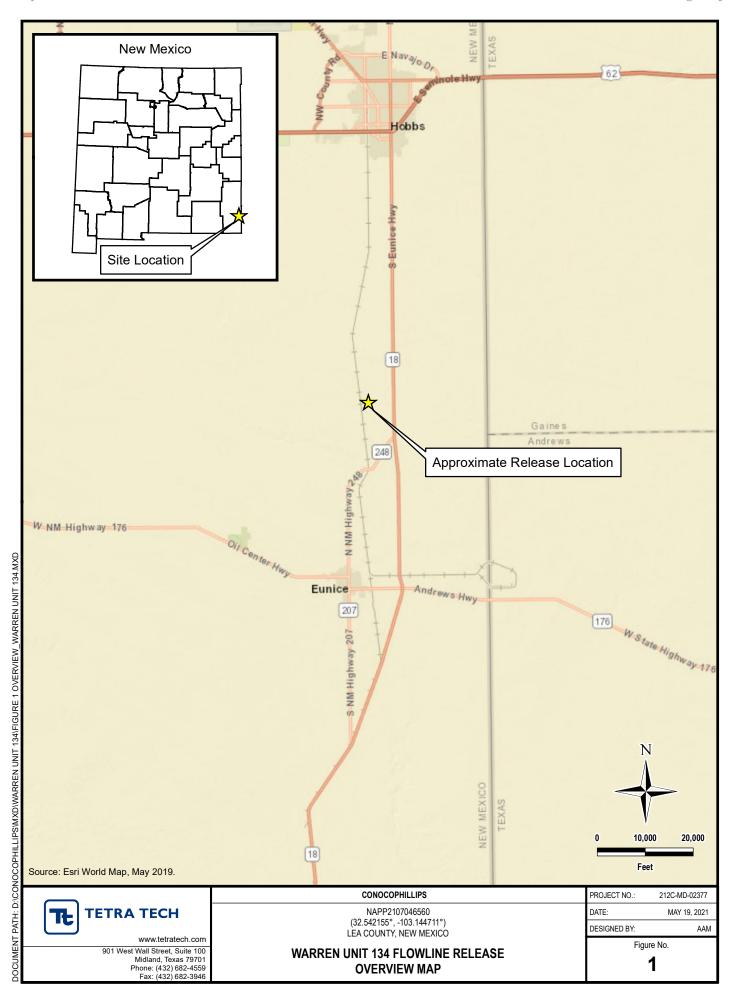
Ms. Kelsy Waggaman, GPBU – ConocoPhillips Mr. Luke Alejandro, GPBU – ConocoPhillips

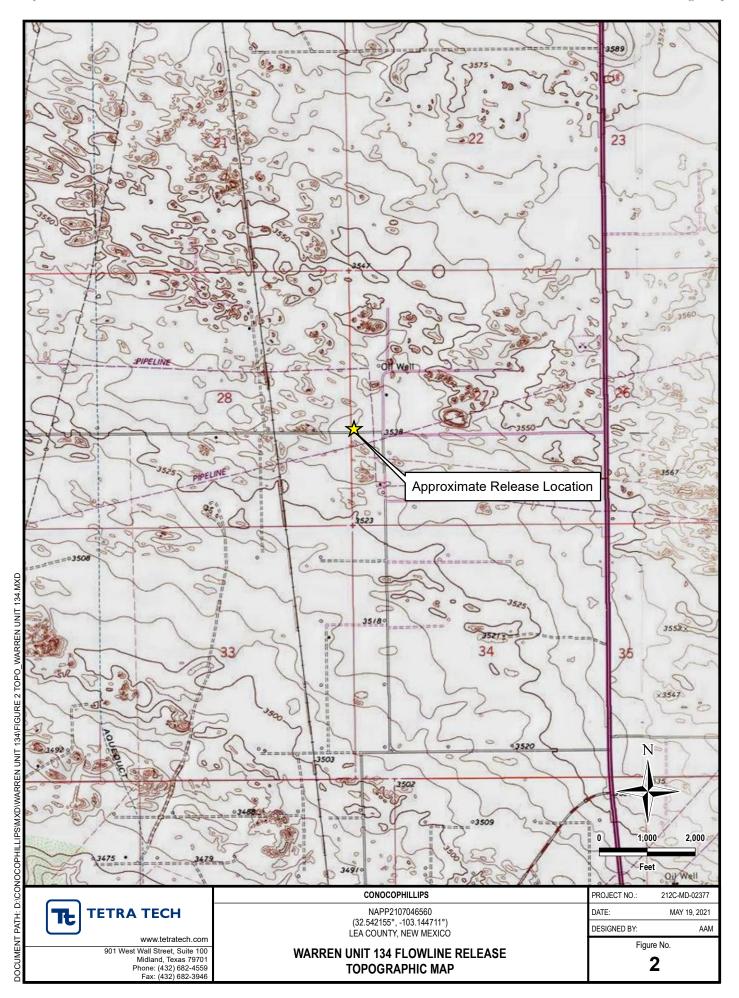
ConocoPhillips

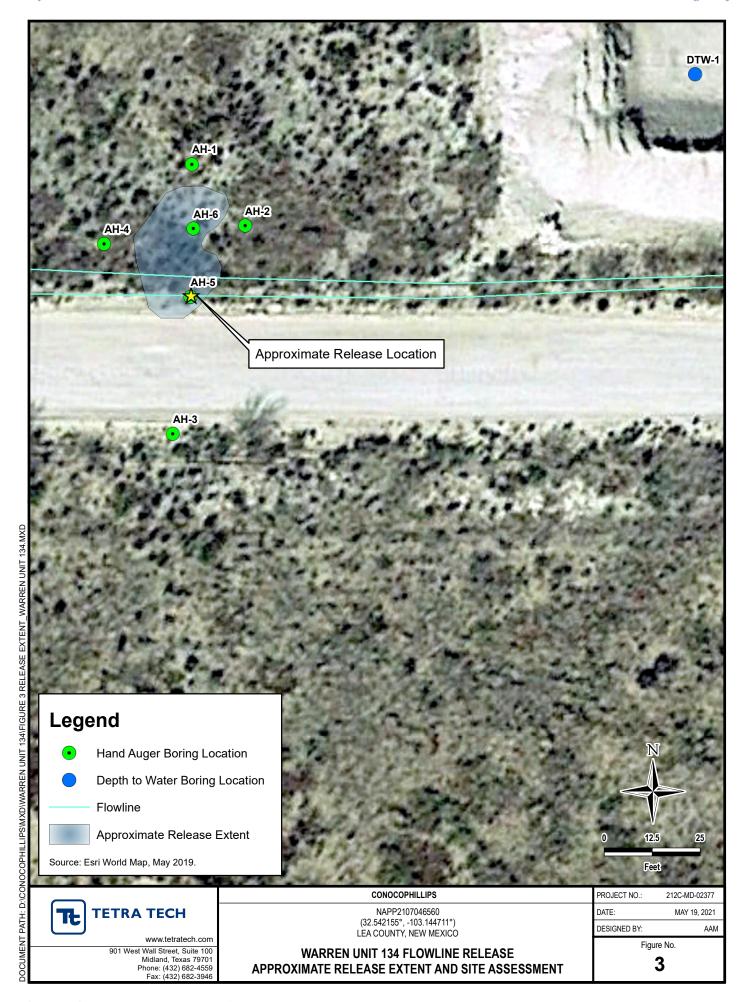
LIST OF ATTACHMENTS

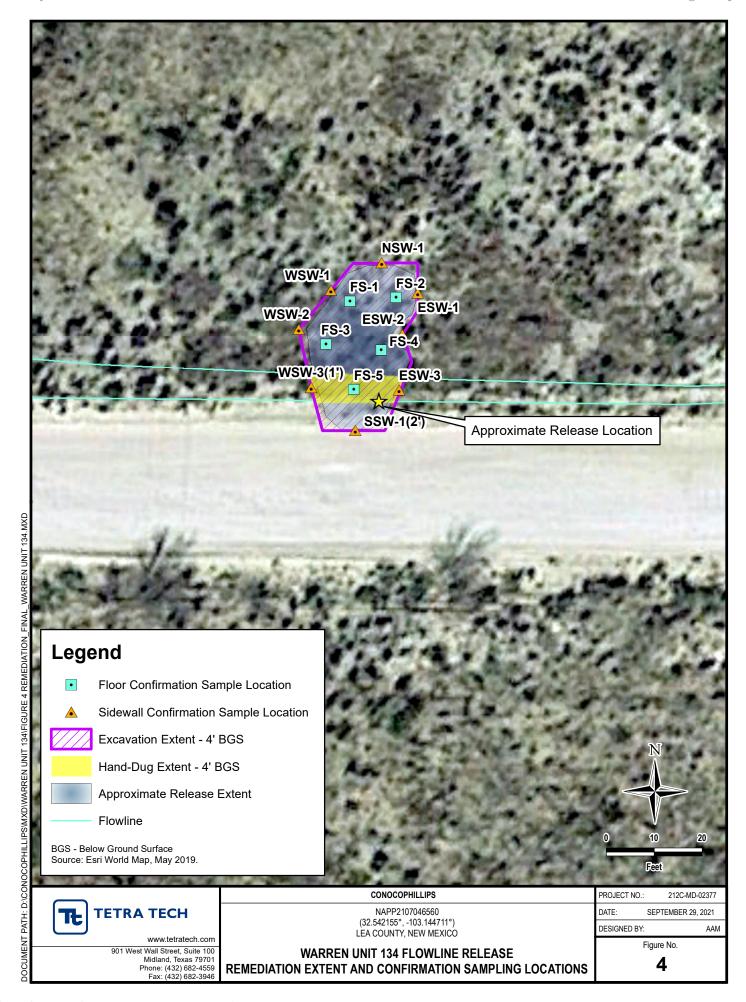
Figures:

- Figure 1 Overview Map
- Figure 2 Site Location/Topographic Map
- Figure 3 Approximate Release Extent and Site Assessment
- Figure 4 Remediation Extent and Confirmation Sampling Locations


Tables:


- Table 1 Summary of Analytical Results Initial Soil Assessment
- Table 2 Summary of Analytical Results Confirmation Sampling


Appendices:


- Appendix A C-141 Forms
- Appendix B Site Characterization Data
- Appendix C Laboratory Analytical Data
- Appendix D Photographic Documentation
- Appendix E Waste Manifests

FIGURES

TABLES

Received by OCD: 10/6/2021 10:56:38 PM

TABLE 1 SUMMARY OF ANALYTICAL RESULTS INITIAL SOIL ASSESSMENT CONOCOPHILLIPS

WARREN UNIT 134 FLOWLINE RELEASE NAPP2107046560

LEA COUNTY, NM

							BTEX ²					TPH ³									
Sample ID	Sample Date	Sampled Depth	Chloride ¹		Benzene		T .1	Toluene			Tatal Value		Total DTEV		GRO⁴		DRO		ORO		Total TPH
	Sample Date	Бери					Totuene		Ethylbenzene		Total Xylenes		Total BTEX		C ₆ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₃₆		TOTAL IPH
		ft. bgs	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
AH-1	3/18/2021	(0'-1')	16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		< 10.0
AH-2	3/18/2021	(0'-1')	32.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		< 10.0
AH-3	3/18/2021	(0'-1')	< 16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		< 10.0
AH-4	3/18/2021	(0'-1')	< 16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		< 10.0
	3/18/2021	(0'-1')	3,160		< 0.050		0.068		0.751		3.82		4.64		357		20,300		4,330		24,987
	3/18/2021	(1'-2')	1,230		< 0.050		0.050		0.102		0.242		0.394		< 10.0		146		28.8		175
	3/18/2021	(2'-3')	1,320		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		< 10.0
	3/18/2021	(3'-4')	1,880		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		< 10.0
AH-5	3/18/2021	(4'-5')	2,440		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		14.4		< 10.0		14.4
An-3	3/18/2021	(5'-6')	1,870		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		174		26.9		201
	3/18/2021	(6'-7')	1,100		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		35.7		< 10.0		< 10.0
	3/18/2021	(7'-8')	400		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		57.8		< 10.0		< 10.0
	3/18/2021	(8'-9')	544		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		113		17.3		130
	3/18/2021	(9'-10')	256		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		134		20.8		155
	3/18/2021	(0'-1')	2,200		2.27		47.3		62.9		96.0		208		2,610		7,990		1,260		11,860
	3/18/2021	(1'-2')	672		0.570		15.9		25.6		41.1		83.2		1,410		5,360		837		7,607
AH-6	3/18/2021	(2'-3')	672		0.365		12.0		22.6		38.1		73.0		1,190		5,350		845		7,385
	3/18/2021	(3'-4')	752		0.415		15.1		31.4		53.5		100		1,480		6,820		1,150		9,450
	3/18/2021	(4'-5')	48.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		84.2		12.1		96.3

 $Bold\ and\ italicized\ values\ indicate\ exceedance\ of\ Reclamation\ Requirements\ and/or\ proposed\ RRALs.$ NOTES:

ft. Feet

ppm

Below ground surface bgs

Parts per million

Milligrams per kilogram mg/kg

NS Not sampled

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics

DRO Diesel range organics

ORO Oil range organics

Method SM4500Cl-B 1

EPA Method 8021M EPA Method 8015M

EPA Method 8015D/GRO

QUALIFIERS:

Received by OCD: 10/6/2021 10:56:38 PM

TABLE 2 SUMMARY OF ANALYTICAL RESULTS CONFIRMATION SAMPLING CONOCOPHILLIPS WARREN UNIT 134 FLOWLINE RELEASE

NAPP2107046560 LEA COUNTY, NM

	C		Field Sci	eening							BTEX ²									TP	·H³					
Sample ID	Sample Depth	Sample Date	Resu	Results Chloride ¹		Results		e ¹	Benzene		Toluene		Ethylbenzene		Total Xylenes		Total BTEX		GRO		DRO		ORO		Total 1	TDLI
Sample 1D	Jopan.	Sample Date	Chloride	PID			Delizeli	-	Toluell	-	Etilyibenzene		Total Aylenes		TOTAL BIEX		C ₆ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₃₆		TOTALIFI			
	ft. bgs		рр	m	mg/kg	Q	mg/kg	ď	mg/kg	Q	mg/kg	ď	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q		
FS-1	4	9/8/2021	58.8	-	20.3		0.00279		< 0.00202		< 0.00202		< 0.00403		< 0.00403		< 50.0		< 50.0		< 50.0		< 50.0			
FS-2	4	9/8/2021	28.1	-	11.6		< 0.00200		< 0.00200		< 0.00200		< 0.00399		< 0.00399		< 50.0		< 50.0		< 50.0		< 50.0	Ī		
FS-3	4	9/8/2021	321	-	189		< 0.00198		< 0.00198		< 0.00198		< 0.00397		< 0.00397		< 49.8		202		< 49.8		202	T		
FS-4	4	9/8/2021	43.8	-	21.0		< 0.00201		< 0.00201		< 0.00201		< 0.00402		< 0.00402		< 49.7		< 49.7		< 49.7		< 49.7	T		
FS-5	4	9/8/2021	190	-	90.7		< 0.00201		< 0.00201		< 0.00201		< 0.00402		< 0.00402		< 49.8		< 49.8		< 49.8		< 49.8			
NSW-1	-	9/7/2021	41.7	-	22.1		< 0.00200		< 0.00200		< 0.00200		< 0.00401		< 0.00401		< 49.8		< 49.8		< 49.8		< 49.8	工		
ESW-1	-	9/7/2021	25.5	-	23.1		< 0.00201		< 0.00201		< 0.00201		< 0.00402		< 0.00402		< 49.9		< 49.9		< 49.9		< 49.9	T		
ESW-2	-	9/7/2021	61.9	-	35.0		< 0.00201		< 0.00201		< 0.00201		< 0.00402		< 0.00402		< 49.8		< 49.8		< 49.8		< 49.8	Ī		
ESW-3	-	9/7/2021	106	-	70.8		< 0.00199		< 0.00199		< 0.00199		< 0.00398		< 0.00398		< 49.9		< 49.9		< 49.9		< 49.9			
SSW-1	-	9/7/2021	111	-	56.0		< 0.00200		< 0.00200		< 0.00200		< 0.00399		< 0.00399		< 49.9		169		< 49.9		169			
SSW-1(1')	-	9/14/2021	26.2	-	10.7		< 0.00200		< 0.00200		< 0.00200		< 0.00400		< 0.00400		< 49.8		339		< 49.8		339			
SSW-1(2')	-	9/17/2021	65.1	-	57.3		< 0.00200		< 0.00200		< 0.00200		< 0.00399		< 0.00399		< 50.0		< 50.0		< 50.0		< 50.0			
WSW-1	-	9/7/2021	37.3	-	20.8		< 0.00200		< 0.00200		< 0.00200		< 0.00400		< 0.00400		< 49.8		< 49.8		< 49.8		< 49.8	T		
WSW-2	-	9/7/2021	71.9	-	32.5		< 0.00200		0.002		0.002		< 0.00401		< 0.00401		< 50.0		< 50.0		< 50.0		< 50.0			
WSW-3	-	9/7/2021	303		211		< 0.00201		< 0.00201		< 0.00201		< 0.00402		< 0.00402		< 50.0		155		< 50.0		155			
WSW-3(1')	-	9/14/2021	22.5	-	14.3		< 0.00201		< 0.00201		< 0.00201		< 0.00402		< 0.00402		< 50.0		84.5		< 50.0		84.5			

NOTES:

ft. Feet

bgs Below ground surface
ppm Parts per million
mg/kg Milligrams per kilogram
TPH Total Petroleum Hydrocarbons
GRO Gasoline range organics

DRO Diesel range organics
ORO Oil range organics

Bold and italicized values indicate exceedance of Reclamation Requirements and/or proposed RRALs.

Gold highlight represents soil horizons that were removed during deepening of excavation floors.

Green highlight represents soil intervals that were removed during horizontal expansion of excavation sidewalls.

QUALIFIERS:

^{*} These iterative samples are located to encompass the original sample location that triggered removal, with further excavation in each area indicated in ().

APPENDIX A C-141 Forms

Received by OCD: 10/6/2021 10:56:38 PM

1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District HI 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

Latitude: 32.542158

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Page 15 of 139
Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Incident ID	NAPP2107046560	
District RP		
Facility ID		
Application ID		

Release Notification

Responsible Party

Responsible Party ConocoPhillips Company	OGRID 217817				
Contact Name Kelsy Waggaman	Contact Telephone 505-577-9071				
Contact email kelsy.waggaman@conocophillips.com	Incident # (assigned by OCD) NAPP2107046560				
Contact mailing address 29 Vacuum Complex Lane, Lovington,	NM 88260				

Location of Release Source

Longitude: -103.144728

(NAD 83 in decimal degrees to 5 decimal places)	
Site Name Warren Unit 134 Flowline off-location	Site Type: Flowline - off location
Date Release Discovered 3/2/2021	API# (if applicable): N/A

Unit Letter	Section	Township	Range	County
L	27	20S	38E	Lea

Surface Owner: State X Federal Tribal Private (Name:

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

[X Crude Oil	Volume Released (bbls) 0.5 Barrels	Volume Recovered (bbls) 0
[X Produced Water	Volume Released (bbls) 6 BBls	Volume Recovered (bbls) 0
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	X! Yes \(\subseteq No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
☐ Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release - Equip	oment Failure, Flowline Leak	

Received by OCD: 10/6/2021 10:56:38 PM
Form C-171

Page 2

Oil Conservation Division

	<i>f 139</i>

Incident ID	NAPP2107046560
District RP	
Facility ID	
Application ID	

Was this a major	If YES, for what reason(s) does the respo	nsible party consider this a major release?
release as defined by 19.15.29.7(A) NMAC?		
, ,		
☐ Yes 🏋 No		
If VES was immediate no	otice given to the OCD? By whom? To w	nom? When and by what means (phone, email, etc)?
II 1125, was infinediate no	Since given to the OCD: By whom: To wh	ioni: when and by what means (phone, eman, etc):
	Initial R	esponse
The responsible p	party must undertake the following actions immediate	ly unless they could create a safety hazard that would result in injury
The source of the rele	ease has been stopped.	
	s been secured to protect human health and	the environment.
	_	likes, absorbent pads, or other containment devices.
~ .	ecoverable materials have been removed an	
	d above have <u>not</u> been undertaken, explain	
if an one actions accertace	a doo ve have <u>nev</u> seen undertaken, enplan	, .
has begun, please attach	a narrative of actions to date. If remedial	emediation immediately after discovery of a release. If remediation efforts have been successfully completed or if the release occurred blease attach all information needed for closure evaluation.
regulations all operators are public health or the environr failed to adequately investige	required to report and/or file certain release not ment. The acceptance of a C-141 report by the C ate and remediate contamination that pose a thro	best of my knowledge and understand that pursuant to OCD rules and fications and perform corrective actions for releases which may endanger OCD does not relieve the operator of liability should their operations have at to groundwater, surface water, human health or the environment. In responsibility for compliance with any other federal, state, or local laws
		Title: Environmental Coordinator
Signature: Kelyli) ay	Date: _3/11/21
email: kelsy.waggamar	n@conocophillips.com	Telephone: 505-577-9071
_ ; ;		
OCD Only		
Received by: Cristina E	ads	Date: 03/11/2021
Received by: Olistila L	ads	Date, Oor 11/2021

Page 17 of 139

Incident ID	NAPP2107046560
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no taler than 20 days after the release discovery date.					
What is the shallowest depth to groundwater beneath the area affected by the release?	>55' (ft bgs)				
Did this release impact groundwater or surface water?	☐ Yes 🗸 No				
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes 🗸 No				
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes 🗸 No				
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes 🗸 No				
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes 🗸 No				
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ✓ No				
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes 🗸 No				
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ✓ No				
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ✓ No				
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ✓ No				
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ✓ No				
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ✓ No				
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.					
Characterization Report Checklist: Each of the following items must be included in the report.					
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well	ls.				

Characterization Report Checklist: Each of the following items must be included in the report.	
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.	
Field data	
Data table of soil contaminant concentration data	
Depth to water determination	
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release	
✓ Boring or excavation logs	
Photographs including date and GIS information	
✓ Topographic/Aerial maps	
✓ Laboratory data including chain of custody	

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 10/6/2021 10:56:38 PM State of New Mexico
Page 4 Oil Conservation Division

	Page 18 of 1.	39
Incident ID	NAPP2107046560	
District RP		
Facility ID		
Application ID		

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.					
Printed Name: Kelsy Waggaman	Title: Environmental Coordinator				
Signature: Kely Way	Date: 5/26/21				
email: Kelsy.Waggaman@conocophillips.com	Telephone: 505-577-9071				
OCD Only					
Received by: Ramona Marcus	Date:5/28/2021				

	Page 19%f1.	39
Incident ID	NAPP2107046560	
District RP		
Facility ID		
Application ID		

Remediation Plan

Remediation Plan Checklist: Each of the following items must be	included in the plan.
Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12 Proposed schedule for remediation (note if remediation plan time)	
D. C	
<u>Deferral Requests Only</u> : Each of the following items must be conf	irmea as part of any request for aeferral of remediation.
Contamination must be in areas immediately under or around prodeconstruction.	duction equipment where remediation could cause a major facility
Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human health,	the environment, or groundwater.
I hereby certify that the information given above is true and complete rules and regulations all operators are required to report and/or file ce which may endanger public health or the environment. The acceptan liability should their operations have failed to adequately investigate surface water, human health or the environment. In addition, OCD are responsibility for compliance with any other federal, state, or local lateral certain the compliance with any other federal, state, or local lateral certain the compliance with any other federal, state, or local lateral certain ce	retain release notifications and perform corrective actions for releases ce of a C-141 report by the OCD does not relieve the operator of and remediate contamination that pose a threat to groundwater, ecceptance of a C-141 report does not relieve the operator of
Printed Name: Kelsy Waggaman	Title: Environmental Coordinator
Signature: Kely Way	Date: 5/26/21
email: kelsy.waggaman@conocophillips.com	Telephone: 505-577-9071
OCD Only	
Received by: Chad Hensley	Date: 08/06/2021
Approved Approved with Attached Conditions of A	pproval Denied Deferral Approved
Signature: Ramona Marcus Chad Hend	Date: 5/28/2021 08/06/2021

Received by OCD: 10/6/2021 10:56:38 PM Form C-141 State of New Mexico Page 6 Oil Conservation Division

	Page 20 of 139
Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following in	tems must be included in the closure report.					
☐ A scaled site and sampling diagram as described in 19.15.29.1	1 NMAC					
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)						
☐ Laboratory analyses of final sampling (Note: appropriate ODC	C District office must be notified 2 days prior to final sampling)					
☐ Description of remediation activities						
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and rer human health or the environment. In addition, OCD acceptance of compliance with any other federal, state, or local laws and/or regular restore, reclaim, and re-vegetate the impacted surface area to the coaccordance with 19.15.29.13 NMAC including notification to the O	nations. The responsible party acknowledges they must substantially anditions that existed prior to the release or their final land use in OCD when reclamation and re-vegetation are complete.					
Printed Name:						
Signature: Kuly Dayyum	Date:					
email:	Telephone:					
OCD Only						
Received by:	Date:					
remediate contamination that poses a threat to groundwater, surface party of compliance with any other federal, state, or local laws and/o	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations.					
Closure Approved by:	Date:					
Printed Name:	Title:					

APPENDIX B Site Characterization Data

New Mexico Office of the State Engineer Water Column/Average Depth to Water

No records found.

UTMNAD83 Radius Search (in meters):

Easting (X): 674216 **Northing (Y):** 3602054.96 **Radius:** 800

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

New Mexico Office of the State Engineer Water Column/Average Depth to Water

No records found.

UTMNAD83 Radius Search (in meters):

Easting (X): 674216 **Northing (Y):** 3602054.96 **Radius:** 1600

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.) (R=POD has been replaced, O=orphaned, C=the file is

closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

(In feet)

	·									<u>-</u>			
	POD												
	Sub-		QQ	Q							Depth	Depth	Water
POD Number	Code basin	County	64 16	3 4	Sec	Tws	Rng	Х	Y	Distance	Well	Water	Column
L 09918	L	LE	4	2	21	20S	38E	673954	3604063* 🌑	2025	135		
L 13546 POD1	L	LE	4 4	3	34	20S	38E	675011	3600037 🌍	2168	88		
L 07980	L	LE	4	3	26	20S	38E	676412	3601687* 🌕	2226	130	65	65

Average Depth to Water: 65 feet

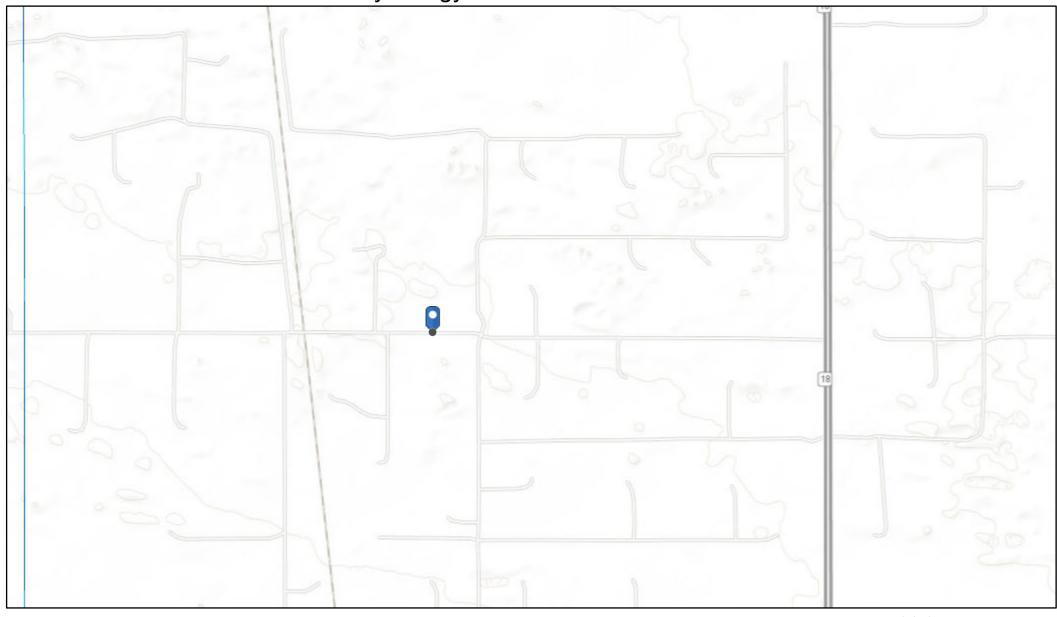
Minimum Depth: **65 feet**

Maximum Depth: 65 feet

Record Count: 3

UTMNAD83 Radius Search (in meters):

Easting (X): 674216 Northing (Y): 3602054.96 Radius: 2500


*UTM location was derived from PLSS - see Help

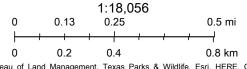
5/18/21 11:30 AM

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

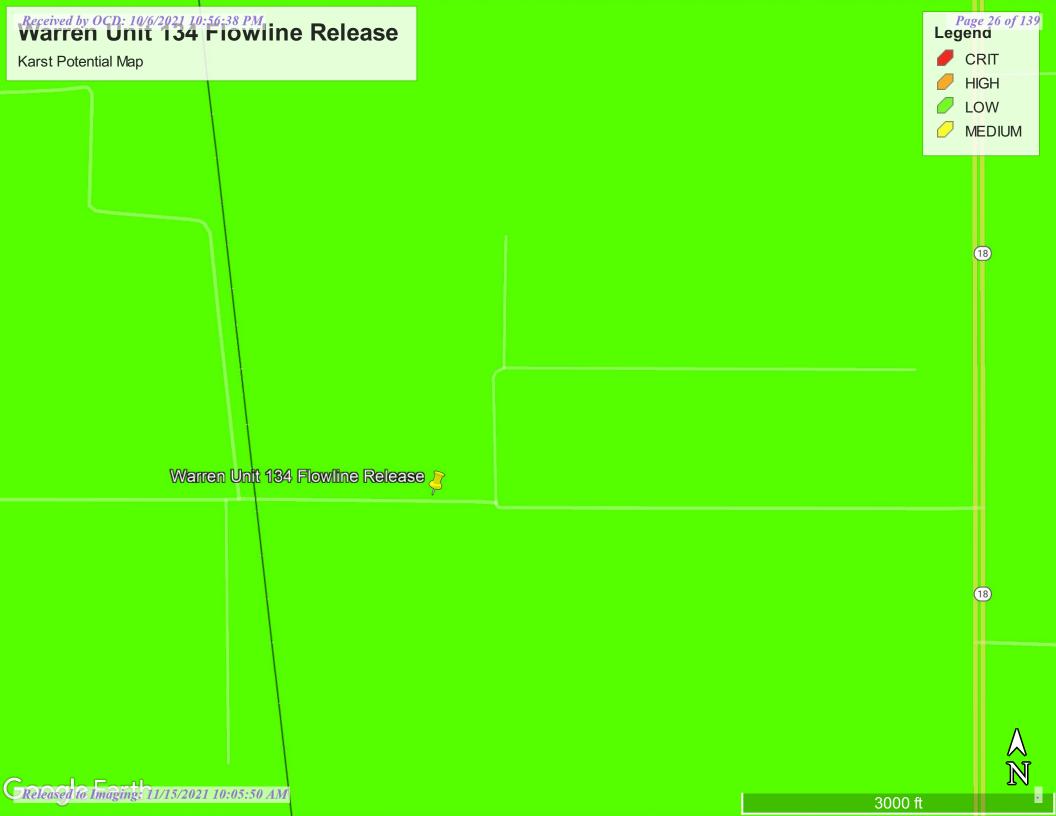
Page 1 of 1

OCD Hydrology - Warren Unit 134 Release

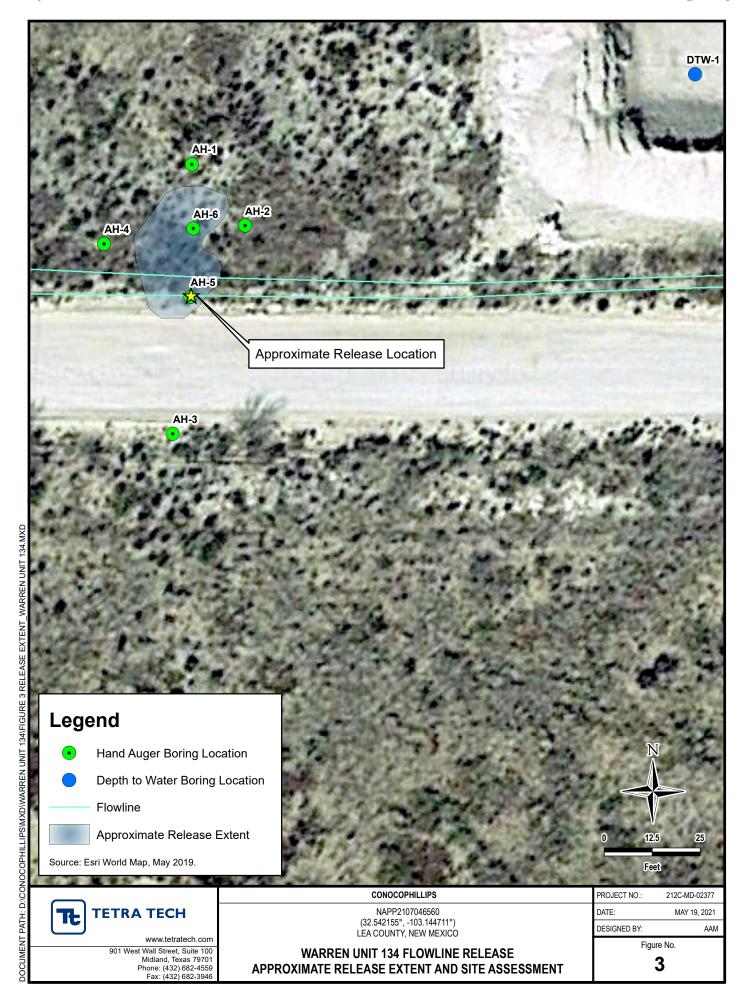
5/24/2021, 10:46:39 AM



OSE Water-bodies



PLJV Probable Playas



Bureau of Land Management, Texas Parks & Wildlife, Esri, HERE, Garmin,

212C-MD-02377	TETRA T	TECH	LOG OF BORING DTW-1	Page 1 of 2
Project Name: V	arren Unit 134			
Borehole Location:	GPS: 32.542309°, -103	3.144283°	Surface Elevation: 3548'	
Borehole Number:	DTW-1	Bore Diam	hole hoter (in.): 8" Date Started: 5/12/2021 Date Finished	: 5/12/2021
(mad) NO	ON (ppm) RY (%) ENT (%)	E E	WATER LEVEL OBSERVATIONS While Drilling □ Dry 24 Hours After Completion of Drilling Remarks:	<u>▼</u> Dry
DEPTH (ft) OPERATION TYPES SAMPLE CHLORIDE CONCENTRATION (DDM)	<u> </u>	DRY DENSITY (pcf) LIQUID LIMIT DENSITION INDEX MINUS NO. 200 (%)	MATERIAL DESCRIPTION (#) H-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	WELL DIAGRAM
			-SP- SAND: Light brown, dry, loose, non-cemented, with no staining, with no odor.	
5 - - - 10 - - - 15			-SC- CLAYEY SAND: Light brown to reddish brown, dry, loose, non-cemented, with no staining, with no odor.	
20 \\ -\\\ -\\\\ -\\\\ -\\\\\ -\\\\\ -\\\\\ -\\\\\\			-SP- SAND: Tan, dry, loose, non-cemented, with no staining, with no odor.	
30			30	
Sampler Spii Spii She	Vane Shear Iple California Test Pit	Operation Types: Hollow Stem Auger Flight Auger Mud Rotary Drilling Equipment: A	Auger Air Rotary Direct Push Drive Casing Notes: Surface elevations are estimated from Google Ea	arth data.

212C-MD-02377 TETRA TECH				LOG OF BORING DTW-1	Page 2 of 2			
Project Name: Warren Unit 134								
Borehole Location: GPS: 32.542309°, -103.144283° Surface Elevation: 3548'								
Borehole Number	DTW-1		nole eter (in.): 8" Date Started: 5/12/2021 Date Finished	: 5/12/2021				
ES	TION (ppm)	rent (%)	EX	WATER LEVEL OBSERVATIONS While Drilling □ Dry 24 Hours After Completion of Drilling Remarks:	<u>▼</u> Dry			
OPERATION TYPES SAMPLE CONCENTED TON (CONCENTED AT TON (CONCENTED AT CONCENTED AT CONCENTED AT TON (CONCENTED AT TON (4		MINUS NO. 200 (%)	MATERIAL DESCRIPTION (i) HL	WELL DIAGRAM			
35 	ik PID Ø		P	-SM- SILTY SAND: Reddish-brown, dry, loose, non-cemented, with no staining, with no odor.	— 0.010° Slotted Screen			
			, , , , , , , , , , , , , , , , , , , ,	Bottom of borehole at 55.0 feet.				
_	elby Vane Si k mple Californ	hear iia	Hollow Stem Auger Continuous Flight Auger Mud Rotary	Auger Auger Air Rotary Direct Push Drive Casing Notes: Surface elevations are estimated from Google Ea	ırth data.			
Logger: Adrian Gar	ia	Drilling	Equipment: Ai	r Rotary Driller: Scarborough Drilling				

APPENDIX C Laboratory Analytical Data

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-5858-1

Laboratory Sample Delivery Group: Lea County NM

Client Project/Site: Warren Unit 134

Revision: 1

For:

Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701

Attn: Joe Tyler

JURAMER

Authorized for release by: 9/13/2021 8:01:19 AM

Jessica Kramer, Project Manager (432)704-5440

jessica.kramer@eurofinset.com

.....LINKS

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 11/15/2021 10:05:50 AM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

3

4

5

7

8

1 በ

13

Client: Tetra Tech, Inc.

Project/Site: Warren Unit 134

Laboratory Job ID: 880-5858-1

SDG: Lea County NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	18
Lab Chronicle	21
Certification Summary	23
Method Summary	24
Sample Summary	25
Chain of Custody	26
Receipt Checklists	27

2

3

4

6

8

10

40

13

14

Definitions/Glossary

Client: Tetra Tech, Inc.

Job ID: 880-5858-1

Project/Site: Warren Unit 134

SDG: Lea County NM

2

Qualifiers

GC VOA Qualifier

F1 MS and/or MSD recovery exceeds control limits.

F2 MS/MSD RPD exceeds control limits

Qualifier Description

S1- Surrogate recovery exceeds control limits, low biased.
S1+ Surrogate recovery exceeds control limits, high biased.
U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number

MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Xenco, Midland

3

4

5

O

0

9

a a

12

13

М

Case Narrative

Client: Tetra Tech, Inc.

Project/Site: Warren Unit 134

Job ID: 880-5858-1 SDG: Lea County NM

9

Job ID: 880-5858-1

Laboratory: Eurofins Xenco, Midland

Narrative

Job Narrative 880-5858-1

REVISION

The report being provided is a revision of the original report sent on 9/10/2021. The report (revision 1) is being revised due to Project information incorrect on original report.

Report revision history

Receipt

The samples were received on 9/8/2021 12:44 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.5°C

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: NSW-1 (880-5858-1), ESW-1 (880-5858-2), ESW-2 (880-5858-3), ESW-3 (880-5858-4), WSW-1 (880-5858-6) and (880-5857-A-1-F). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-7654 and analytical batch 880-7637 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Xenco, Midland

9/13/2021 (Rev. 1)

Job ID: 880-5858-1 SDG: Lea County NM

Client: Tetra Tech, Inc. Project/Site: Warren Unit 134

Lab Sample ID: 880-5858-1

Date Collected: 09/07/21 00:00 Date Received: 09/08/21 12:44

Client Sample ID: NSW-1

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/08/21 13:51	09/09/21 02:28	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/08/21 13:51	09/09/21 02:28	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/08/21 13:51	09/09/21 02:28	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		09/08/21 13:51	09/09/21 02:28	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/08/21 13:51	09/09/21 02:28	1
Xylenes, Total	< 0.00401	U	0.00401		mg/Kg		09/08/21 13:51	09/09/21 02:28	1
Total BTEX	<0.00401	U	0.00401		mg/Kg		09/08/21 13:51	09/09/21 02:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	141	S1+	70 - 130				09/08/21 13:51	09/09/21 02:28	1
1,4-Difluorobenzene (Surr)	69	S1-	70 - 130				09/08/21 13:51	09/09/21 02:28	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Gasoline Range Organics <49.8 U 49.8 mg/Kg 09/08/21 14:58 09/08/21 23:23 (GRO)-C6-C10 <49.8 U 09/08/21 23:23 Diesel Range Organics (Over 49.8 mg/Kg 09/08/21 14:58 C10-C28) Oll Range Organics (Over C28-C36) <49.8 U 49.8 mg/Kg 09/08/21 14:58 09/08/21 23:23 Total TPH <49.8 U 49.8 09/08/21 14:58 09/08/21 23:23 mg/Kg %Recovery Qualifier Dil Fac Surrogate Limits Prepared Analyzed 70 - 130 09/08/21 14:58 09/08/21 23:23 1-Chlorooctane 100

Method: 300.0 - Anions, Ion Ch	nromatography - Solubl	е					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chlorida	22.1	5.00	ma/Ka			09/09/21 04:34	1

70 - 130

112

Client Sample ID: ESW-1 Lab Sample ID: 880-5858-2 Date Collected: 09/07/21 00:00 Matrix: Solid Date Received: 09/08/21 12:44

Method: 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Benzene <0.00201 U 0.00201 09/08/21 13:51 09/09/21 02:48 mg/Kg Toluene <0.00201 U 0.00201 mg/Kg 09/08/21 13:51 09/09/21 02:48 Ethylbenzene <0.00201 U 0.00201 mg/Kg 09/08/21 13:51 09/09/21 02:48 m-Xylene & p-Xylene 0.00402 09/08/21 13:51 09/09/21 02:48 <0.00402 U mg/Kg o-Xylene <0.00201 U 0.00201 mg/Kg 09/08/21 13:51 09/09/21 02:48 Xylenes, Total <0.00402 U 0.00402 mg/Kg 09/08/21 13:51 09/09/21 02:48 Total BTEX <0.00402 U 0.00402 mg/Kg 09/08/21 13:51 09/09/21 02:48

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	132	S1+	70 - 130	09/08/21 13:51	09/09/21 02:48	1
1,4-Difluorobenzene (Surr)	95		70 - 130	09/08/21 13:51	09/09/21 02:48	1

Method: 8015B NM - Diesel	Range Organi	cs (DRO) (G	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		09/08/21 14:58	09/08/21 23:44	1
(GRO)-C6-C10									

Eurofins Xenco, Midland

09/08/21 14:58 09/08/21 23:23

o-Terphenyl

Job ID: 880-5858-1 SDG: Lea County NM

Client: Tetra Tech, Inc. Project/Site: Warren Unit 134

Lab Sample ID: 880-5858-2

Matrix: Solid

Client Sample ID: ESW-1 Date Collected: 09/07/21 00:00

Date Received: 09/08/21 12:44

Mothod: 901ED NM Discal Bangs Organics (DBO) (C	\sim	(Continued)
Method: 8015B NM - Diesel Range Organics (DRO) (G	U)	(Continued)

Michiga, ou lon Min - Diesel IX	ange Organ	ics (Dixo)	(OO) (Oonline	ucuj					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		09/08/21 14:58	09/08/21 23:44	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		09/08/21 14:58	09/08/21 23:44	1
Total TPH	<49.9	U	49.9		mg/Kg		09/08/21 14:58	09/08/21 23:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	104		70 - 130				09/08/21 14:58	09/08/21 23:44	1
o-Terphenyl	109		70 - 130				09/08/21 14:58	09/08/21 23:44	1

Method: 300.0 - Anions, Ion Cl	hromatogra	phy - Solu	ble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	23.1		4.98		mg/Kg			09/09/21 04:51	1

Client Sample ID: ESW-2

Lab Sample ID: 880-5858-3

Date Collected: 09/07/21 00:00

Matrix: Solid

Date Received: 09/08/21 12:44

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		09/08/21 13:51	09/09/21 03:08	1
Toluene	<0.00201	U	0.00201		mg/Kg		09/08/21 13:51	09/09/21 03:08	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		09/08/21 13:51	09/09/21 03:08	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		09/08/21 13:51	09/09/21 03:08	1
o-Xylene	< 0.00201	U	0.00201		mg/Kg		09/08/21 13:51	09/09/21 03:08	1
Xylenes, Total	< 0.00402	U	0.00402		mg/Kg		09/08/21 13:51	09/09/21 03:08	1
Total BTEX	<0.00402	U	0.00402		mg/Kg		09/08/21 13:51	09/09/21 03:08	1

Surrogate	%Recovery Qualifier	Limits	Prepared Ana	alyzed Dil Fac
4-Bromofluorobenzene (Surr)	137 S1+	70 - 130	09/08/21 13:51 09/09/	21 03:08 1
1,4-Difluorobenzene (Surr)	99	70 - 130	09/08/21 13:51 09/09/	21 03:08 1

Method: 8015B NM - Diesei R	ange Organ	ics (DRU)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		09/08/21 14:58	09/09/21 00:05	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		09/08/21 14:58	09/09/21 00:05	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		09/08/21 14:58	09/09/21 00:05	1
Total TPH	<49.8	U	49.8		mg/Kg		09/08/21 14:58	09/09/21 00:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	95		70 - 130				09/08/21 14:58	09/09/21 00:05	1
o-Terphenyl	100		70 - 130				09/08/21 14:58	09/09/21 00:05	1

Method: 300.0 - Anions, Ion Cl	nromatography - Solul	ble					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	35.0	4.95	mg/Kg			09/09/21 04:56	1

Eurofins Xenco, Midland

Client Sample ID: ESW-3

Job ID: 880-5858-1 SDG: Lea County NM

Client: Tetra Tech, Inc. Project/Site: Warren Unit 134

Lab Sample ID: 880-5858-4

Date Collected: 09/07/21 00:00 Matrix: Solid Date Received: 09/08/21 12:44

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		09/08/21 13:51	09/09/21 03:29	1
Toluene	<0.00199	U	0.00199		mg/Kg		09/08/21 13:51	09/09/21 03:29	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		09/08/21 13:51	09/09/21 03:29	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		09/08/21 13:51	09/09/21 03:29	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		09/08/21 13:51	09/09/21 03:29	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		09/08/21 13:51	09/09/21 03:29	1
Total BTEX	<0.00398	U	0.00398		mg/Kg		09/08/21 13:51	09/09/21 03:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	131	S1+	70 - 130				09/08/21 13:51	09/09/21 03:29	1
1,4-Difluorobenzene (Surr)	93		70 - 130				09/08/21 13:51	09/09/21 03:29	1

Method: 8015B NM - Diesel R	ange Organ	ics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		09/08/21 14:58	09/09/21 00:26	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		09/08/21 14:58	09/09/21 00:26	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		09/08/21 14:58	09/09/21 00:26	1
Total TPH	<49.9	U	49.9		mg/Kg		09/08/21 14:58	09/09/21 00:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	97		70 - 130				09/08/21 14:58	09/09/21 00:26	1
o-Terphenyl	107		70 - 130				09/08/21 14:58	09/09/21 00:26	1

Method: 300.0 - Anions, Ion C	hromatography - Solubl	le					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	70.8	4.96	mg/Kg			09/09/21 05:02	1

Lab Sample ID: 880-5858-5 **Client Sample ID: SSW-1** Date Collected: 09/07/21 00:00 **Matrix: Solid** Date Received: 09/08/21 12:44

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/08/21 13:51	09/09/21 03:49	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/08/21 13:51	09/09/21 03:49	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/08/21 13:51	09/09/21 03:49	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		09/08/21 13:51	09/09/21 03:49	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/08/21 13:51	09/09/21 03:49	1
Xylenes, Total	< 0.00399	U	0.00399		mg/Kg		09/08/21 13:51	09/09/21 03:49	1
Total BTEX	<0.00399	U	0.00399		mg/Kg		09/08/21 13:51	09/09/21 03:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	130		70 - 130				09/08/21 13:51	09/09/21 03:49	1
1,4-Difluorobenzene (Surr)	99		70 - 130				09/08/21 13:51	09/09/21 03:49	1
Method: 8015B NM - Diesel	Range Organ	ics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

<49.9 U 49.9 mg/Kg 09/08/21 14:58 09/09/21 03:32 Gasoline Range Organics (GRO)-C6-C10

Client: Tetra Tech, Inc. Project/Site: Warren Unit 134

Date Received: 09/08/21 12:44

Job ID: 880-5858-1 SDG: Lea County NM

Client Sample ID: SSW-1 Lab Sample ID: 880-5858-5 Date Collected: 09/07/21 00:00

Matrix: Solid

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over C10-C28)	169		49.9		mg/Kg		09/08/21 14:58	09/09/21 03:32	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		09/08/21 14:58	09/09/21 03:32	1
Total TPH	169		49.9		mg/Kg		09/08/21 14:58	09/09/21 03:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	102		70 - 130				09/08/21 14:58	09/09/21 03:32	1
o-Terphenyl	110		70 - 130				09/08/21 14:58	09/09/21 03:32	1

Method: 300.0 - Anions, Ion Ch	romatography - Sol	uble					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	56.0	5.00	mg/Kg			09/09/21 05:07	1

Lab Sample ID: 880-5858-6 **Client Sample ID: WSW-1 Matrix: Solid**

Date Collected: 09/07/21 00:00 Date Received: 09/08/21 12:44

Method: 8021B - Volatile	Organic Compou	ınds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/08/21 13:51	09/09/21 04:10	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/08/21 13:51	09/09/21 04:10	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/08/21 13:51	09/09/21 04:10	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		09/08/21 13:51	09/09/21 04:10	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/08/21 13:51	09/09/21 04:10	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		09/08/21 13:51	09/09/21 04:10	1
Total BTEX	<0.00400	U	0.00400		mg/Kg		09/08/21 13:51	09/09/21 04:10	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	138 S1+	70 - 130	09/08/21 13:51 09/09/21 04:10	1
1,4-Difluorobenzene (Surr)	95	70 - 130	09/08/21 13:51 09/09/21 04:10	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Method. Of 13D MM - Diesel K	alige Olgali	ica (DICO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		09/08/21 14:58	09/09/21 00:46	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		09/08/21 14:58	09/09/21 00:46	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		09/08/21 14:58	09/09/21 00:46	1
Total TPH	<49.8	U	49.8		mg/Kg		09/08/21 14:58	09/09/21 00:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	98		70 - 130				09/08/21 14:58	09/09/21 00:46	1
o-Terphenyl	103		70 - 130				09/08/21 14:58	09/09/21 00:46	1

Method: 300.0 - Anions, Ion C	hromatography	- Soluble						
Analyte	Result Qual	ifier RL	MDL (Unit	D	Prepared	Analyzed	Dil Fac
Chloride	20.8	5.04	r	mg/Kg			09/09/21 05:13	1

Client Sample ID: WSW-2

Job ID: 880-5858-1 SDG: Lea County NM

Client: Tetra Tech, Inc. Project/Site: Warren Unit 134

Lab Sample ID: 880-5858-7

Matrix: Solid

Date Collected: 09/07/21 00:00 Date Received: 09/08/21 12:44

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/08/21 13:51	09/10/21 13:47	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/08/21 13:51	09/10/21 13:47	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/08/21 13:51	09/10/21 13:47	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		09/08/21 13:51	09/10/21 13:47	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/08/21 13:51	09/10/21 13:47	1
Xylenes, Total	< 0.00401	U	0.00401		mg/Kg		09/08/21 13:51	09/10/21 13:47	1
Total BTEX	<0.00401	U	0.00401		mg/Kg		09/08/21 13:51	09/10/21 13:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130				09/08/21 13:51	09/10/21 13:47	1
1,4-Difluorobenzene (Surr)	99		70 - 130				09/08/21 13:51	09/10/21 13:47	1

Method: 8015B NM - Diesel R	ange Organ	ics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		09/08/21 14:58	09/09/21 01:07	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		09/08/21 14:58	09/09/21 01:07	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		09/08/21 14:58	09/09/21 01:07	1
Total TPH	<50.0	U	50.0		mg/Kg		09/08/21 14:58	09/09/21 01:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	93		70 - 130				09/08/21 14:58	09/09/21 01:07	1
o-Terphenyl	96		70 - 130				09/08/21 14:58	09/09/21 01:07	1

Method: 300.0 - Anions, Ion C	hromatography - Solub	le					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	32.5	4.98	mg/Kg			09/09/21 05:19	1

Lab Sample ID: 880-5858-8 **Client Sample ID: WSW-3** Date Collected: 09/07/21 00:00 **Matrix: Solid** Date Received: 09/08/21 12:44

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		09/08/21 13:51	09/10/21 14:07	1
Toluene	<0.00201	U	0.00201		mg/Kg		09/08/21 13:51	09/10/21 14:07	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		09/08/21 13:51	09/10/21 14:07	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		09/08/21 13:51	09/10/21 14:07	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		09/08/21 13:51	09/10/21 14:07	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		09/08/21 13:51	09/10/21 14:07	1
Total BTEX	<0.00402	U	0.00402		mg/Kg		09/08/21 13:51	09/10/21 14:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130				09/08/21 13:51	09/10/21 14:07	1
1,4-Difluorobenzene (Surr)	103		70 - 130				09/08/21 13:51	09/10/21 14:07	1

Eurofins Xenco, Midland

Released to Imaging: 11/15/2021 10:05:50 AM

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 880-5858-1 Project/Site: Warren Unit 134 SDG: Lea County NM

Client Sample ID: WSW-3

Lab Sample ID: 880-5858-8 Date Collected: 09/07/21 00:00

Matrix: Solid Date Received: 09/08/21 12:44

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over C10-C28)	155		50.0		mg/Kg		09/08/21 14:58	09/09/21 03:53	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		09/08/21 14:58	09/09/21 03:53	1
Total TPH	155		50.0		mg/Kg		09/08/21 14:58	09/09/21 03:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	100		70 - 130				09/08/21 14:58	09/09/21 03:53	1
o-Terphenyl	109		70 - 130				09/08/21 14:58	09/09/21 03:53	1

Method: 300.0 - Anions, Ion Cl	hromatograp	hy - Solub	le						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	211		5.05		mg/Kg			09/09/21 05:35	1

Surrogate Summary

Client: Tetra Tech, Inc. Job ID: 880-5858-1 Project/Site: Warren Unit 134 SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		5554		Surrogate Recovery (Acceptance Lim
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-5857-A-1-D MS	Matrix Spike	129	104	
380-5857-A-1-E MSD	Matrix Spike Duplicate	125	106	
380-5858-1	NSW-1	141 S1+	69 S1-	
380-5858-2	ESW-1	132 S1+	95	
380-5858-3	ESW-2	137 S1+	99	
380-5858-4	ESW-3	131 S1+	93	
380-5858-5	SSW-1	130	99	
380-5858-6	WSW-1	138 S1+	95	
880-5858-7	WSW-2	105	99	
380-5858-8	WSW-3	100	103	
380-5918-A-1-A MS	Matrix Spike	213 S1+	149 S1+	
380-5918-A-1-B MSD	Matrix Spike Duplicate	119	87	
.CS 880-7654/1-A	Lab Control Sample	119	95	
.CS 880-7706/1-A	Lab Control Sample	138 S1+	109	
CSD 880-7654/2-A	Lab Control Sample Dup	116	104	
.CSD 880-7706/2-A	Lab Control Sample Dup	98	93	
MB 880-7636/5-A	Method Blank	105	98	
MB 880-7654/5-A	Method Blank	102	96	
ИВ 880-7696/5-A	Method Blank	128	100	
MB 880-7706/5-A	Method Blank	164 S1+	107	

BFB = 4-Bromofluorobenzene (Surr) DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

			Percent Su	rrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-5857-A-1-H MS	Matrix Spike	92	94	
880-5857-A-1-I MSD	Matrix Spike Duplicate	94	96	
880-5858-1	NSW-1	100	112	
880-5858-2	ESW-1	104	109	
880-5858-3	ESW-2	95	100	
880-5858-4	ESW-3	97	107	
880-5858-5	SSW-1	102	110	
880-5858-6	WSW-1	98	103	
880-5858-7	WSW-2	93	96	
880-5858-8	WSW-3	100	109	
LCS 880-7663/2-A	Lab Control Sample	102	111	
LCSD 880-7663/3-A	Lab Control Sample Dup	96	104	
MB 880-7663/1-A	Method Blank	94	110	

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Job ID: 880-5858-1

SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-7636/5-A

Matrix: Solid

Analysis Batch: 7637

Client: Tetra Tech, Inc.

Project/Site: Warren Unit 134

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 7636

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/08/21 09:25	09/08/21 12:29	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/08/21 09:25	09/08/21 12:29	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/08/21 09:25	09/08/21 12:29	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		09/08/21 09:25	09/08/21 12:29	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/08/21 09:25	09/08/21 12:29	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		09/08/21 09:25	09/08/21 12:29	1
Total BTEX	<0.00400	U	0.00400		mg/Kg		09/08/21 09:25	09/08/21 12:29	1

MB MB

MD MD

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil I
4-Bromofluorobenzene (Surr)	105	70 - 130	09/08/21 09:25	09/08/21 12:29	
1,4-Difluorobenzene (Surr)	98	70 - 130	09/08/21 09:25	09/08/21 12:29	

Lab Sample ID: MB 880-7654/5-A

Matrix: Solid

Analysis Batch: 7637

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 7654

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/08/21 13:51	09/09/21 00:44	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/08/21 13:51	09/09/21 00:44	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/08/21 13:51	09/09/21 00:44	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		09/08/21 13:51	09/09/21 00:44	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/08/21 13:51	09/09/21 00:44	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		09/08/21 13:51	09/09/21 00:44	1
Total BTEX	<0.00400	U	0.00400		mg/Kg		09/08/21 13:51	09/09/21 00:44	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102	70 - 130	09/08/21 13:51	09/09/21 00:44	1
1.4-Difluorobenzene (Surr)	96	70 - 130	09/08/21 13:51	09/09/21 00:44	1

Lab Sample ID: LCS 880-7654/1-A

Matrix: Solid

Analysis Batch: 7637

Client Sample ID: Lab Control Sample **Prep Type: Total/NA**

Prep Batch: 7654

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09356		mg/Kg		94	70 - 130	
Toluene	0.100	0.08792		mg/Kg		88	70 - 130	
Ethylbenzene	0.100	0.08806		mg/Kg		88	70 - 130	
m-Xylene & p-Xylene	0.200	0.1859		mg/Kg		93	70 - 130	
o-Xylene	0.100	0.09439		mg/Kg		94	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	119		70 - 130
1,4-Difluorobenzene (Surr)	95		70 - 130

Eurofins Xenco, Midland

Fac

Client: Tetra Tech, Inc. Job ID: 880-5858-1 Project/Site: Warren Unit 134 SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-7654/2-A

Matrix: Solid

Analysis Batch: 7637

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 7654

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.08448		mg/Kg		84	70 - 130	10	35
Toluene	0.100	0.07939		mg/Kg		79	70 - 130	10	35
Ethylbenzene	0.100	0.07994		mg/Kg		80	70 - 130	10	35
m-Xylene & p-Xylene	0.200	0.1690		mg/Kg		85	70 - 130	10	35
o-Xylene	0.100	0.08583		mg/Kg		86	70 - 130	10	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	116		70 - 130
1.4-Difluorobenzene (Surr)	104		70 - 130

Lab Sample ID: 880-5857-A-1-D MS

Matrix: Solid

Analysis Batch: 7637

Client Sample ID: Matrix Spike

Prep Type: Total/NA Prep Batch: 7654

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U	0.0998	0.09201		mg/Kg		92	70 - 130	
Toluene	<0.00201	U	0.0998	0.08237		mg/Kg		83	70 - 130	
Ethylbenzene	<0.00201	U	0.0998	0.08463		mg/Kg		85	70 - 130	
m-Xylene & p-Xylene	<0.00402	U	0.200	0.1778		mg/Kg		89	70 - 130	
o-Xylene	<0.00201	U F1 F2	0.0998	0.08970		mg/Kg		90	70 - 130	

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	129		70 - 130
1.4-Difluorobenzene (Surr)	104		70 - 130

Lab Sample ID: 880-5857-A-1-E MSD

Matrix: Solid

Analysis Batch: 7637

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA Prep Batch: 7654

Sample Sample Spike MSD MSD %Rec. **RPD** Added Result Qualifier Result Qualifier Unit Limits RPD Limit Analyte D %Rec Benzene <0.00201 U 0.101 0.09092 mg/Kg 90 70 - 130 35 Toluene <0.00201 U 0.101 0.08350 mg/Kg 83 70 - 130 35 Ethylbenzene <0.00201 U 0.101 0.08311 mg/Kg 82 70 - 130 35 m-Xylene & p-Xylene <0.00402 U 0.202 0.1718 mg/Kg 85 70 - 130 3 35 o-Xylene <0.00201 UF1F2 0.101 0.03857 F1 F2 mg/Kg 38 70 - 130 35

MSD MSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	125	70 - 130
1,4-Difluorobenzene (Surr)	106	70 - 130

Lab Sample ID: MB 880-7696/5-A

Matrix: Solid

Analysis Batch: 7711

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 7696

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		09/09/21 11:55	09/09/21 19:26	1
Toluene	<0.00201	U	0.00201		mg/Kg		09/09/21 11:55	09/09/21 19:26	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		09/09/21 11:55	09/09/21 19:26	1

Eurofins Xenco, Midland

Page 13 of 27

Client: Tetra Tech, Inc. Job ID: 880-5858-1 Project/Site: Warren Unit 134 SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 880-7696/5-A

Matrix: Solid

Analysis Batch: 7711

Client Sample ID: Method Blank	(
Prep Type: Total/NA	

Prep Batch: 7696

MB	MB						•	
Analyte Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m-Xylene & p-Xylene <0.00402	U	0.00402		mg/Kg		09/09/21 11:55	09/09/21 19:26	1
o-Xylene <0.00201	U	0.00201		mg/Kg		09/09/21 11:55	09/09/21 19:26	1
Xylenes, Total <0.00402	U	0.00402		mg/Kg		09/09/21 11:55	09/09/21 19:26	1
Total BTEX <0.00402	U	0.00402		mg/Kg		09/09/21 11:55	09/09/21 19:26	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	128		70 - 130	09/09/21 11:55	09/09/21 19:26	1
1,4-Difluorobenzene (Surr)	100		70 - 130	09/09/21 11:55	09/09/21 19:26	1

Lab Sample ID: MB 880-7706/5-A

Matrix: Solid

Analysis Batch: 7711

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 7706

MB I	MB						•	
Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00198 U	U	0.00198		mg/Kg		09/09/21 13:47	09/10/21 07:00	1
<0.00198 l	U	0.00198		mg/Kg		09/09/21 13:47	09/10/21 07:00	1
<0.00198 l	U	0.00198		mg/Kg		09/09/21 13:47	09/10/21 07:00	1
<0.00396 l	U	0.00396		mg/Kg		09/09/21 13:47	09/10/21 07:00	1
<0.00198 l	U	0.00198		mg/Kg		09/09/21 13:47	09/10/21 07:00	1
<0.00396 l	U	0.00396		mg/Kg		09/09/21 13:47	09/10/21 07:00	1
<0.00396 l	U	0.00396		mg/Kg		09/09/21 13:47	09/10/21 07:00	1
	Result <0.00198 <0.00198 <0.00198 <0.00396 <0.00198 <0.00396	MB Result Qualifier <0.00198 U <0.00198 U <0.00396 U <0.00396 U <0.00396 U <0.00396 U <0.00396 U	Result Qualifier RL	Result Qualifier RL MDL <0.00198 U 0.00198 <0.00198 U 0.00198 <0.00198 U 0.00198 <0.00396 U 0.00396 <0.00198 U 0.00396 <0.00396 U 0.00396	Result Qualifier RL MDL Unit <0.00198	Result Qualifier RL MDL Unit D <0.00198	Result Qualifier RL MDL Unit D Prepared <0.00198	Result Qualifier RL MDL Unit D Prepared Analyzed <0.00198

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	164	S1+	70 - 130	09/09/21 13:47	09/10/21 07:00	1
1,4-Difluorobenzene (Surr)	107		70 - 130	09/09/21 13:47	09/10/21 07:00	1

Lab Sample ID: LCS 880-7706/1-A

Matrix: Solid

Analysis Batch: 7711

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 7706

	Spike	LCS L	.cs			%Rec.	
Analyte	Added	Result C	Qualifier Unit	D	%Rec	Limits	
Benzene	0.100	0.07809	mg/l		78	70 - 130	
Toluene	0.100	0.1023	mg/l	(g	102	70 - 130	
Ethylbenzene	0.100	0.09775	mg/l	(g	98	70 - 130	
m-Xylene & p-Xylene	0.200	0.2004	mg/l	(g	100	70 - 130	
o-Xylene	0.100	0.1084	mg/l	(g	108	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	138	S1+	70 - 130
1,4-Difluorobenzene (Surr)	109		70 - 130

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 880-7706/2-A **Matrix: Solid**

Prep Type: Total/NA **Analysis Batch: 7711** Prep Batch: 7706

	Sp	ike LCSL	LCSD			%Rec.		RPD
Analyte	Ad	ded Resul	Qualifier	Unit I	O %Rec	Limits	RPD	Limit
Benzene		100 0.08162		mg/Kg	82	70 - 130	4	35
Toluene	0.	100 0.09562	2	mg/Kg	96	70 - 130	7	35

Client: Tetra Tech, Inc. Job ID: 880-5858-1 Project/Site: Warren Unit 134 SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-7706/2-A

Matrix: Solid

Analysis Batch: 7711

Client Sample	ID: Lab	Control	Sample	Dup

Prep Type: Total/NA Prep Batch: 7706

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethylbenzene	0.100	0.1004		mg/Kg		100	70 - 130	3	35
m-Xylene & p-Xylene	0.200	0.1874		mg/Kg		94	70 - 130	7	35
o-Xylene	0.100	0.09278		mg/Kg		93	70 - 130	15	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	98		70 - 130
1,4-Difluorobenzene (Surr)	93		70 - 130

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 7706

Lab Sample ID: 880-5918-A-1-A MS **Matrix: Solid**

Lab Sample ID: 880-5918-A-1-B MSD

Analysis Batch: 7711

	Qualifier	Added	Docult	O		_		
<0.00000			Result	Qualifier	Unit	D	%Rec	Limits
<0.00200	U F1	0.0998	0.03919	F1	mg/Kg		39	70 - 130
<0.00200	U F2 F1	0.0998	0.07828		mg/Kg		78	70 - 130
<0.00200	U F2 F1	0.0998	0.09466		mg/Kg		95	70 - 130
<0.00401	U F2 F1	0.200	0.1257	F1	mg/Kg		63	70 - 130
<0.00200	U F2 F1	0.0998	0.06365	F1	mg/Kg		63	70 - 130
	<0.00200 <0.00401	<0.00200 U F2 F1 <0.00200 U F2 F1 <0.00401 U F2 F1 <0.00200 U F2 F1	<0.00200 U F2 F1 0.0998 <0.00401 U F2 F1 0.200	<0.00200 U F2 F1 0.0998 0.09466 <0.00401 U F2 F1 0.200 0.1257	<0.00200 U F2 F1 0.0998 0.09466 <0.00401 U F2 F1 0.200 0.1257 F1	<0.00200 U F2 F1 0.0998 0.09466 mg/Kg <0.00401 U F2 F1 0.200 0.1257 F1 mg/Kg	<0.00200 U F2 F1 0.0998 0.09466 mg/Kg <0.00401 U F2 F1 0.200 0.1257 F1 mg/Kg	<0.00200 U F2 F1

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	213	S1+	70 - 130
1,4-Difluorobenzene (Surr)	149	S1+	70 - 130

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA Prep Batch: 7706

Analysis Batch: 7711

Matrix: Solid

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U F1	0.0996	0.03636	F1	mg/Kg		37	70 - 130	7	35
Toluene	<0.00200	U F2 F1	0.0996	0.04681	F2 F1	mg/Kg		47	70 - 130	50	35
Ethylbenzene	<0.00200	U F2 F1	0.0996	0.05308	F2 F1	mg/Kg		53	70 - 130	56	35
m-Xylene & p-Xylene	<0.00401	U F2 F1	0.199	0.07218	F2 F1	mg/Kg		36	70 - 130	54	35
o-Xylene	<0.00200	U F2 F1	0.0996	0.04038	F2 F1	mg/Kg		40	70 - 130	45	35

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	119		70 - 130
1,4-Difluorobenzene (Surr)	87		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-7663/1-A

Matrix: Solid

Analysis Batch: 7628

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 7663

MB MB

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		09/08/21 14:58	09/08/21 20:13	1
(GRO)-C6-C10	-50.0		50.0			00/00/04 44 50	00/00/04 00 40	4
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		09/08/21 14:58	09/08/21 20:13	1

Client: Tetra Tech, Inc. Job ID: 880-5858-1 SDG: Lea County NM Project/Site: Warren Unit 134

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-7663/1-A

Analysis Batch: 7628

Matrix: Solid

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 7663

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

MB MB Result Qualifier RL Unit **Prepared** Analyzed Dil Fac Oll Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 09/08/21 14:58 09/08/21 20:13 **Total TPH** <50.0 50.0 mg/Kg 09/08/21 14:58 09/08/21 20:13

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 94 70 - 130 09/08/21 14:58 09/08/21 20:13 o-Terphenyl 110 70 - 130 09/08/21 14:58 09/08/21 20:13

Lab Sample ID: LCS 880-7663/2-A **Matrix: Solid**

Analysis Batch: 7628

Prep Batch: 7663 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Gasoline Range Organics 1000 883.3 mg/Kg 88 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over 1000 970.5 mg/Kg 97 70 - 130 C10-C28)

LCS LCS Surrogate %Recovery Qualifier Limits 1-Chlorooctane 102 70 - 130 o-Terphenyl 111 70 - 130

Lab Sample ID: LCSD 880-7663/3-A

Matrix: Solid

Analysis Batch: 7628						Prep Batch: 76					
	Spike	LCSD	LCSD				%Rec.		RPD		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit		
Gasoline Range Organics	1000	794.2		mg/Kg		79	70 - 130	11	20		
(GRO)-C6-C10											
Diesel Range Organics (Over	1000	911.3		mg/Kg		91	70 - 130	6	20		
C10-C28)											

LCSD LCSD Qualifier Limits Surrogate %Recovery 1-Chlorooctane 96 70 - 130 70 - 130 o-Terphenyl 104

Lab Sample ID: 880-5857-A-1-H MS

Matrix: Solid

Analysis Batch: 7628

Client S	Sample ID: Matrix Spike
	Prep Type: Total/NA

Prep Batch: 7663

Sample Sample Spike MS MS %Rec. Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits Gasoline Range Organics <50.0 U 995 772.6 mg/Kg 78 70 - 130 (GRO)-C6-C10 <50.0 U 995 861.4 70 - 130 Diesel Range Organics (Over mg/Kg 87 C10-C28)

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	92		70 - 130
o-Terphenyl	94		70 - 130

Lab Sample ID: 880-5857-A-1-I MSD

Job ID: 880-5858-1

SDG: Lea County NM

Client: Tetra Tech, Inc. Project/Site: Warren Unit 134

Matrix: Solid

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA Prep Batch: 7663

Analysis Batch: 7628 Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit Analyte <50.0 U Gasoline Range Organics 998 810.7 mg/Kg 81 70 - 130 5 20 (GRO)-C6-C10 998 Diesel Range Organics (Over <50.0 U 902.4 mg/Kg 90 70 - 130 5 20

C10-C28)

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	94		70 - 130
o-Terphenyl	96		70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-7653/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 7673

MB MB

MDL Unit Analyte Result Qualifier RL Dil Fac Prepared Analyzed 5.00 Chloride <5.00 U mg/Kg 09/09/21 03:43

Lab Sample ID: LCS 880-7653/2-A **Client Sample ID: Lab Control Sample Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 7673

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloride	 250	259.9		mg/Kg		104	90 - 110

Lab Sample ID: LCSD 880-7653/3-A **Client Sample ID: Lab Control Sample Dup Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 7673

	Spike	LCSD LCSD				%Rec.		RPD	
Analyte	Added	Result Qualifi	er Unit	D	%Rec	Limits	RPD	Limit	
Chloride	250	260.6	mg/Kg		104	90 - 110	0	20	

Lab Sample ID: 880-5858-7 MS

Matrix: Solid

Analysis Batch: 7673

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	32.5		249	285 1		ma/Ka		101	90 - 110	

Lab Sample ID: 880-5858-7 MSD Client Sample ID: WSW-2

Matrix: Solid

Analysis Batch: 7673

Allalysis Batoli. 1010												
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	32.5		249	287.0		ma/Ka		102	90 - 110		20	

Eurofins Xenco, Midland

Client Sample ID: WSW-2

Prep Type: Soluble

Prep Type: Soluble

Job ID: 880-5858-1 Client: Tetra Tech, Inc. Project/Site: Warren Unit 134 SDG: Lea County NM

GC VOA

Pre	р Ва	itch:	7636

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-7636/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 7637

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-5858-1	NSW-1	Total/NA	Solid	8021B	7654
880-5858-2	ESW-1	Total/NA	Solid	8021B	7654
880-5858-3	ESW-2	Total/NA	Solid	8021B	7654
880-5858-4	ESW-3	Total/NA	Solid	8021B	7654
880-5858-5	SSW-1	Total/NA	Solid	8021B	7654
880-5858-6	WSW-1	Total/NA	Solid	8021B	7654
MB 880-7636/5-A	Method Blank	Total/NA	Solid	8021B	7636
MB 880-7654/5-A	Method Blank	Total/NA	Solid	8021B	7654
LCS 880-7654/1-A	Lab Control Sample	Total/NA	Solid	8021B	7654
LCSD 880-7654/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	7654
880-5857-A-1-D MS	Matrix Spike	Total/NA	Solid	8021B	7654
880-5857-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	7654

Prep Batch: 7654

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-5858-1	NSW-1	Total/NA	Solid	5035	
880-5858-2	ESW-1	Total/NA	Solid	5035	
880-5858-3	ESW-2	Total/NA	Solid	5035	
880-5858-4	ESW-3	Total/NA	Solid	5035	
880-5858-5	SSW-1	Total/NA	Solid	5035	
880-5858-6	WSW-1	Total/NA	Solid	5035	
880-5858-7	WSW-2	Total/NA	Solid	5035	
880-5858-8	WSW-3	Total/NA	Solid	5035	
MB 880-7654/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-7654/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-7654/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-5857-A-1-D MS	Matrix Spike	Total/NA	Solid	5035	
880-5857-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Prep Batch: 7696

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-7696/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 7706

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-7706/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-7706/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-7706/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-5918-A-1-A MS	Matrix Spike	Total/NA	Solid	5035	
880-5918-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 7711

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-5858-7	WSW-2	Total/NA	Solid	8021B	7654
880-5858-8	WSW-3	Total/NA	Solid	8021B	7654
MB 880-7696/5-A	Method Blank	Total/NA	Solid	8021B	7696
MB 880-7706/5-A	Method Blank	Total/NA	Solid	8021B	7706

Client: Tetra Tech, Inc.

Job ID: 880-5858-1

Project/Site: Warren Unit 134

SDG: Lea County NM

GC VOA (Continued)

Analysis Batch: 7711 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 880-7706/1-A	Lab Control Sample	Total/NA	Solid	8021B	7706
LCSD 880-7706/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	7706
880-5918-A-1-A MS	Matrix Spike	Total/NA	Solid	8021B	7706
880-5918-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	7706

GC Semi VOA

Analysis Batch: 7628

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-5858-1	NSW-1	Total/NA	Solid	8015B NM	7663
880-5858-2	ESW-1	Total/NA	Solid	8015B NM	7663
880-5858-3	ESW-2	Total/NA	Solid	8015B NM	7663
880-5858-4	ESW-3	Total/NA	Solid	8015B NM	7663
880-5858-5	SSW-1	Total/NA	Solid	8015B NM	7663
880-5858-6	WSW-1	Total/NA	Solid	8015B NM	7663
880-5858-7	WSW-2	Total/NA	Solid	8015B NM	7663
880-5858-8	WSW-3	Total/NA	Solid	8015B NM	7663
MB 880-7663/1-A	Method Blank	Total/NA	Solid	8015B NM	7663
LCS 880-7663/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	7663
LCSD 880-7663/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	7663
880-5857-A-1-H MS	Matrix Spike	Total/NA	Solid	8015B NM	7663
880-5857-A-1-I MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	7663

Prep Batch: 7663

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-5858-1	NSW-1	Total/NA	Solid	8015NM Prep	
880-5858-2	ESW-1	Total/NA	Solid	8015NM Prep	
880-5858-3	ESW-2	Total/NA	Solid	8015NM Prep	
880-5858-4	ESW-3	Total/NA	Solid	8015NM Prep	
880-5858-5	SSW-1	Total/NA	Solid	8015NM Prep	
880-5858-6	WSW-1	Total/NA	Solid	8015NM Prep	
880-5858-7	WSW-2	Total/NA	Solid	8015NM Prep	
880-5858-8	WSW-3	Total/NA	Solid	8015NM Prep	
MB 880-7663/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-7663/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-7663/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-5857-A-1-H MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-5857-A-1-I MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

HPLC/IC

Leach Batch: 7653

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-5858-1	NSW-1	Soluble	Solid	DI Leach	
880-5858-2	ESW-1	Soluble	Solid	DI Leach	
880-5858-3	ESW-2	Soluble	Solid	DI Leach	
880-5858-4	ESW-3	Soluble	Solid	DI Leach	
880-5858-5	SSW-1	Soluble	Solid	DI Leach	
880-5858-6	WSW-1	Soluble	Solid	DI Leach	
880-5858-7	WSW-2	Soluble	Solid	DI Leach	
880-5858-8	WSW-3	Soluble	Solid	DI Leach	
MB 880-7653/1-A	Method Blank	Soluble	Solid	DI Leach	

Eurofins Xenco, Midland

3

4

6

8

10

12

13

Client: Tetra Tech, Inc.

Job ID: 880-5858-1

Project/Site: Warren Unit 134

SDG: Lea County NM

HPLC/IC (Continued)

Leach Batch: 7653 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 880-7653/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-7653/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-5858-7 MS	WSW-2	Soluble	Solid	DI Leach	
880-5858-7 MSD	WSW-2	Soluble	Solid	DI Leach	

Analysis Batch: 7673

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-5858-1	NSW-1	Soluble	Solid	300.0	7653
880-5858-2	ESW-1	Soluble	Solid	300.0	7653
880-5858-3	ESW-2	Soluble	Solid	300.0	7653
880-5858-4	ESW-3	Soluble	Solid	300.0	7653
880-5858-5	SSW-1	Soluble	Solid	300.0	7653
880-5858-6	WSW-1	Soluble	Solid	300.0	7653
880-5858-7	WSW-2	Soluble	Solid	300.0	7653
880-5858-8	WSW-3	Soluble	Solid	300.0	7653
MB 880-7653/1-A	Method Blank	Soluble	Solid	300.0	7653
LCS 880-7653/2-A	Lab Control Sample	Soluble	Solid	300.0	7653
LCSD 880-7653/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	7653
880-5858-7 MS	WSW-2	Soluble	Solid	300.0	7653
880-5858-7 MSD	WSW-2	Soluble	Solid	300.0	7653

Eurofins Xenco, Midland

-

3

А

5

9

10

12

13

Client: Tetra Tech, Inc. Job ID: 880-5858-1 Project/Site: Warren Unit 134 SDG: Lea County NM

Lab Sample ID: 880-5858-1

Matrix: Solid

Date Collected: 09/07/21 00:00 Date Received: 09/08/21 12:44

Client Sample ID: NSW-1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	7654	09/08/21 13:51	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7637	09/09/21 02:28	MR	XEN MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	7663	09/08/21 14:58	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7628	09/08/21 23:23	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	7653	09/08/21 13:49	SC	XEN MID
Soluble	Analysis	300.0		1			7673	09/09/21 04:34	SC	XEN MID

Client Sample ID: ESW-1 Lab Sample ID: 880-5858-2 Date Collected: 09/07/21 00:00 **Matrix: Solid**

Date Received: 09/08/21 12:44

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	7654	09/08/21 13:51	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7637	09/09/21 02:48	MR	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	7663	09/08/21 14:58	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7628	09/08/21 23:44	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	7653	09/08/21 13:49	SC	XEN MID
Soluble	Analysis	300.0		1			7673	09/09/21 04:51	SC	XEN MID

Client Sample ID: ESW-2 Lab Sample ID: 880-5858-3 Date Collected: 09/07/21 00:00 **Matrix: Solid**

Date Received: 09/08/21 12:44

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	7654	09/08/21 13:51	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7637	09/09/21 03:08	MR	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	7663	09/08/21 14:58	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7628	09/09/21 00:05	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	7653	09/08/21 13:49	SC	XEN MID
Soluble	Analysis	300.0		1			7673	09/09/21 04:56	SC	XEN MID

Client Sample ID: ESW-3 Lab Sample ID: 880-5858-4 Date Collected: 09/07/21 00:00 Matrix: Solid

Date Received: 09/08/21 12:44

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	7654	09/08/21 13:51	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7637	09/09/21 03:29	MR	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	7663	09/08/21 14:58	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7628	09/09/21 00:26	AJ	XEN MID
Soluble	Leach	DI Leach			5.04 g	50 mL	7653	09/08/21 13:49	SC	XEN MID
Soluble	Analysis	300.0		1			7673	09/09/21 05:02	SC	XEN MID

Client: Tetra Tech, Inc. Job ID: 880-5858-1 Project/Site: Warren Unit 134 SDG: Lea County NM

Client Sample ID: SSW-1 Date Collected: 09/07/21 00:00 Lab Sample ID: 880-5858-5

Matrix: Solid

Date Received: 09/08/21 12:44

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	7654	09/08/21 13:51	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7637	09/09/21 03:49	MR	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	7663	09/08/21 14:58	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7628	09/09/21 03:32	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	7653	09/08/21 13:49	SC	XEN MID
Soluble	Analysis	300.0		1			7673	09/09/21 05:07	SC	XEN MID

Lab Sample ID: 880-5858-6 **Client Sample ID: WSW-1** Date Collected: 09/07/21 00:00 **Matrix: Solid**

Date Received: 09/08/21 12:44

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	7654	09/08/21 13:51	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7637	09/09/21 04:10	MR	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	7663	09/08/21 14:58	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7628	09/09/21 00:46	AJ	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	7653	09/08/21 13:49	SC	XEN MID
Soluble	Analysis	300.0		1			7673	09/09/21 05:13	SC	XEN MID

Lab Sample ID: 880-5858-7 **Client Sample ID: WSW-2** Date Collected: 09/07/21 00:00 **Matrix: Solid**

Date Received: 09/08/21 12:44

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	7654	09/08/21 13:51	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7711	09/10/21 13:47	MR	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	7663	09/08/21 14:58	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7628	09/09/21 01:07	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	7653	09/08/21 13:49	SC	XEN MID
Soluble	Analysis	300.0		1			7673	09/09/21 05:19	SC	XEN MID

Client Sample ID: WSW-3 Lab Sample ID: 880-5858-8 Date Collected: 09/07/21 00:00

Date Received: 09/08/21 12:44

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	7654	09/08/21 13:51	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7711	09/10/21 14:07	MR	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	7663	09/08/21 14:58	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7628	09/09/21 03:53	AJ	XEN MID
Soluble	Leach	DI Leach			4.95 g	50 mL	7653	09/08/21 13:49	SC	XEN MID
Soluble	Analysis	300.0		1			7673	09/09/21 05:35	SC	XEN MID

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Xenco, Midland

Matrix: Solid

Released to Imaging: 11/15/2021 10:05:50 AM

Accreditation/Certification Summary

Client: Tetra Tech, Inc.

Job ID: 880-5858-1

Project/Site: Warren Unit 134

SDG: Lea County NM

Laboratory: Eurofins Xenco, Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority Texas		ogram	Identification Number	Expiration Date 06-30-22		
		LAP	T104704400-21-22			
The following analyte:	s are included in this reno	rt but the laboratory is r	not certified by the governing authority.	This list may include analytes for wh		
the agency does not	•	it, but the laboratory is i	not certified by the governing authority.	This list may include analytes for wi		
,	•	Matrix	Analyte	This list may include analytes for wi		
the agency does not o	offer certification.	•	, , ,	This list may include analytes for wi		

3

4

9

10

12

Method Summary

Client: Tetra Tech, Inc.

Project/Site: Warren Unit 134

Job ID: 880-5858-1

SDG: Lea County NM

Method	Method Description	Protocol	Laboratory
3021B	Volatile Organic Compounds (GC)	SW846	XEN MID
3015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
035	Closed System Purge and Trap	SW846	XEN MID
015NM Prep	Microextraction	SW846	XEN MID
I Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

WSW-1

WSW-2

WSW-3

Sample Summary

Solid

Solid

Solid

Client: Tetra Tech, Inc.

880-5858-6

880-5858-7

880-5858-8

Project/Site: Warren Unit 134

Job ID: 880-5858-1 SDG: Lea County NM

Lab Sample ID Client Sample ID Matrix Collected Received Solid 880-5858-1 NSW-1 09/07/21 00:00 09/08/21 12:44 880-5858-2 ESW-1 Solid 09/07/21 00:00 09/08/21 12:44 880-5858-3 ESW-2 Solid 09/07/21 00:00 09/08/21 12:44 Solid 880-5858-4 ESW-3 09/07/21 00:00 09/08/21 12:44 880-5858-5 SSW-1 Solid 09/07/21 00:00 09/08/21 12:44

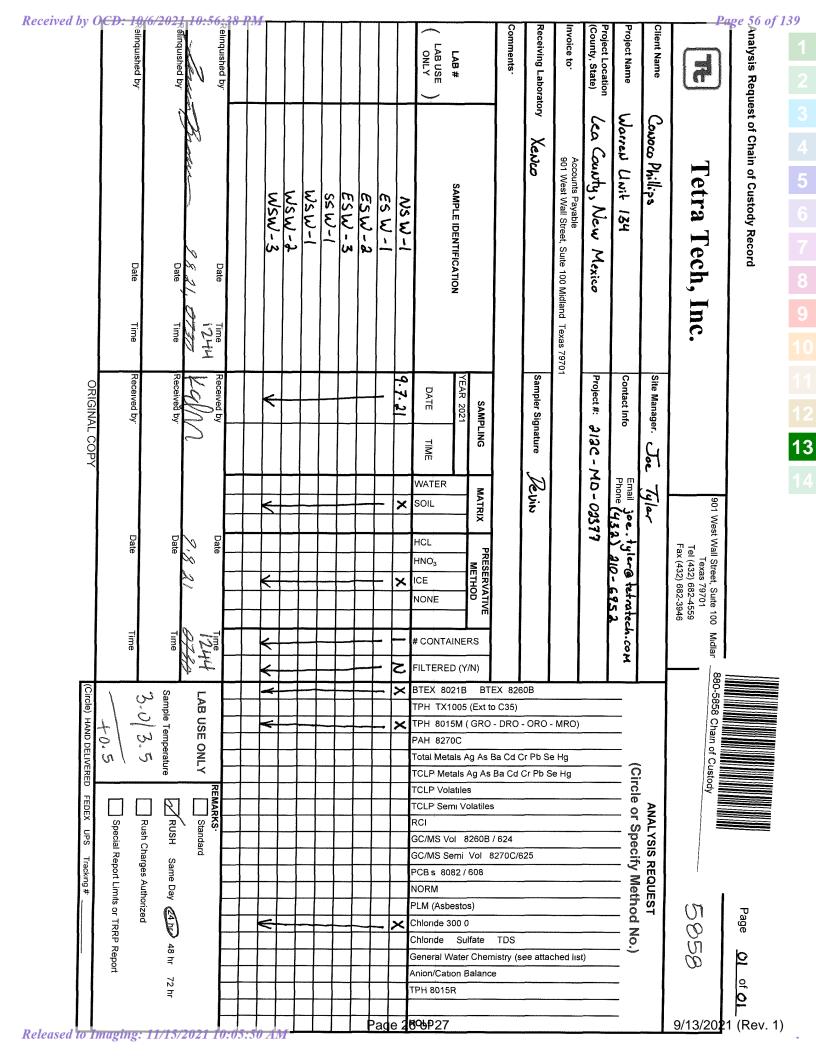
09/07/21 00:00 09/08/21 12:44

09/07/21 00:00 09/08/21 12:44

09/07/21 00:00 09/08/21 12:44

3

4


6

9

10

12

13

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 880-5858-1

SDG Number: Lea County NM

List Source: Eurofins Xenco, Midland

List Number: 1

Login Number: 5858

Creator: Phillips, Kerianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	No time on COC or sample containers
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Eurofins Xenco, Midland

Released to Imaging: 11/15/2021 10:05:50 AM

9

3

J

4

0

11

12

1/

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-5919-1

Laboratory Sample Delivery Group: Lea County NM Client Project/Site: Warren Unit 134 Flowline Release

Remediation

For:

Tetra Tech, Inc. 8911 N. Capital of Texas Hwy Bldg. 2, Ste 2310 Austin, Texas 78759

Attn: Christian Llull

RAMER

Authorized for release by: 9/10/2021 2:10:41 PM

Jessica Kramer, Project Manager (432)704-5440

jessica.kramer@eurofinset.com

·····LINKS ·······

Review your project results through

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 11/15/2021 10:05:50 AM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Tetra Tech, Inc. Project/Site: Warren Unit 134 Flowline Release Remediation Laboratory Job ID: 880-5919-1 SDG: Lea County NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	13
Lab Chronicle	15
Certification Summary	17
Method Summary	18
Sample Summary	19
Chain of Custody	20
Receipt Checklists	21

3

4

6

8

10

12

13

Definitions/Glossary

Job ID: 880-5919-1 Client: Tetra Tech, Inc. Project/Site: Warren Unit 134 Flowline Release Remediation SDG: Lea County NM

Qualifiers

GC VOA Qualifier

Qualifier Description F1 MS and/or MSD recovery exceeds control limits. F2 MS/MSD RPD exceeds control limits

S1+ Surrogate recovery exceeds control limits, high biased. U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description** Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description** F1 MS and/or MSD recovery exceeds control limits. U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit Contains No Free Liquid **CNF** Duplicate Error Ratio (normalized absolute difference) DER Dil Fac Dilution Factor Detection Limit (DoD/DOE) DL, RA, RE, IN

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

NC ND

DLC

EDL

LOD

LOQ MCL

MDA

MDC

MDL ML

MPN

MOI

Not Detected at the reporting limit (or MDL or EDL if shown)

Decision Level Concentration (Radiochemistry)

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Minimum Detectable Activity (Radiochemistry)

Estimated Detection Limit (Dioxin)

Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Method Quantitation Limit

NEG Negative / Absent POS Positive / Present Practical Quantitation Limit **PQL**

PRES Presumptive **Quality Control** QC

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Case Narrative

Client: Tetra Tech, Inc.

Project/Site: Warren Unit 134 Flowline Release Remediation

Job ID: 880-5919-1

SDG: Lea County NM

Job ID: 880-5919-1

Laboratory: Eurofins Xenco, Midland

Narrative

Job Narrative 880-5919-1

Receipt

The samples were received on 9/9/2021 12:45 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 6.0°C

GC VOA

Method 8021B: The matrix spike duplicate (MSD) recoveries for preparation batch 880-7706 and analytical batch 880-7711 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300 ORGFM 28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-7707 and analytical batch 880-7720 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Tetra Tech, Inc. Project/Site: Warren Unit 134 Flowline Release Remediation Job ID: 880-5919-1

SDG: Lea County NM

Client Sample ID: FS-1

Date Collected: 09/08/21 14:50 Date Received: 09/09/21 12:45

Lab Sample ID: 880-5919-1

Matrix: Solid

Method: 8021B - Volatile Organic	Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00279		0.00202		mg/Kg		09/09/21 13:47	09/10/21 08:29	1
Toluene	<0.00202	U	0.00202		mg/Kg		09/09/21 13:47	09/10/21 08:29	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		09/09/21 13:47	09/10/21 08:29	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		09/09/21 13:47	09/10/21 08:29	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		09/09/21 13:47	09/10/21 08:29	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		09/09/21 13:47	09/10/21 08:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130				09/09/21 13:47	09/10/21 08:29	1
1,4-Difluorobenzene (Surr)	101		70 - 130				09/09/21 13:47	09/10/21 08:29	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		09/09/21 13:32	09/10/21 04:14	1
(GRO)-C6-C10									
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		09/09/21 13:32	09/10/21 04:14	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		09/09/21 13:32	09/10/21 04:14	1

_									
Method: 300.0 - Anions, Ion Chron	natography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	20.3		5.00		mg/Kg			09/10/21 08:20	1

Limits

70 - 130

70 - 130

%Recovery Qualifier

112

116

<50.0 U

<50.0 U

mg/Kg

mg/Kg

Client Sample ID: FS-2

Surrogate

o-Terphenyl

1-Chlorooctane

(GRO)-C6-C10

Diesel Range Organics (Over

OII Range Organics (Over C28-C36)

Date Collected: 09/08/21 14:55 Date Received: 09/09/21 12:45 Lab Sample ID: 880-5919-2

Analyzed

09/10/21 04:14

09/10/21 04:14

Prepared

09/09/21 13:32

09/09/21 13:32

09/09/21 13:32

09/09/21 13:32

Matrix: Solid

Method: 8021B - Volatile Orga	nic Compounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/09/21 13:47	09/10/21 08:50	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/09/21 13:47	09/10/21 08:50	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/09/21 13:47	09/10/21 08:50	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		09/09/21 13:47	09/10/21 08:50	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/09/21 13:47	09/10/21 08:50	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		09/09/21 13:47	09/10/21 08:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	116		70 - 130				09/09/21 13:47	09/10/21 08:50	1
1,4-Difluorobenzene (Surr)	99		70 - 130				09/09/21 13:47	09/10/21 08:50	1
- Method: 8015B NM - Diesel Ra	nge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		09/09/21 13:32	09/10/21 04:35	1

Eurofins Xenco, Midland

09/10/21 04:35

09/10/21 04:35

50.0

50.0

Dil Fac

Client: Tetra Tech, Inc.

Date Received: 09/09/21 12:45

Project/Site: Warren Unit 134 Flowline Release Remediation

Job ID: 880-5919-1 SDG: Lea County NM

Lab Sample ID: 880-5919-2

Client Sample ID: FS-2 Date Collected: 09/08/21 14:55

Matrix: Solid

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 96 70 - 130 09/09/21 13:32 09/10/21 04:35 o-Terphenyl 106 70 - 130 09/09/21 13:32 09/10/21 04:35

Method: 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chloride 11.6 4.97 mg/Kg 09/10/21 08:26

Client Sample ID: FS-3 Lab Sample ID: 880-5919-3

Date Collected: 09/08/21 13:45 **Matrix: Solid**

Date Received: 09/09/21 12:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198		0.00198		mg/Kg		09/09/21 13:47	09/10/21 09:10	1
Toluene	<0.00198	U	0.00198		mg/Kg		09/09/21 13:47	09/10/21 09:10	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		09/09/21 13:47	09/10/21 09:10	1
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		09/09/21 13:47	09/10/21 09:10	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		09/09/21 13:47	09/10/21 09:10	1
Xylenes, Total	<0.00397	U	0.00397		mg/Kg		09/09/21 13:47	09/10/21 09:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	113		70 - 130				09/09/21 13:47	09/10/21 09:10	1
1,4-Difluorobenzene (Surr)	98		70 - 130				09/09/21 13:47	09/10/21 09:10	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		09/09/21 13:32	09/10/21 04:55	1
Diesel Range Organics (Over C10-C28)	202		49.8		mg/Kg		09/09/21 13:32	09/10/21 04:55	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		09/09/21 13:32	09/10/21 04:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	100		70 - 130				09/09/21 13:32	09/10/21 04:55	
o-Terphenyl	111		70 - 130				09/09/21 13:32	09/10/21 04:55	1

Method: 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Chloride 189 4.96 09/10/21 08:43 mg/Kg

Client Sample ID: FS-4 Lab Sample ID: 880-5919-4 Date Collected: 09/08/21 13:55 **Matrix: Solid**

Date Received: 09/09/21 12:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		09/09/21 13:47	09/10/21 09:31	1
Toluene	<0.00201	U	0.00201		mg/Kg		09/09/21 13:47	09/10/21 09:31	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		09/09/21 13:47	09/10/21 09:31	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		09/09/21 13:47	09/10/21 09:31	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		09/09/21 13:47	09/10/21 09:31	1
Xylenes, Total	< 0.00402	U	0.00402		mg/Kg		09/09/21 13:47	09/10/21 09:31	1

Client Sample Results

Client: Tetra Tech, Inc. Project/Site: Warren Unit 134 Flowline Release Remediation Job ID: 880-5919-1

SDG: Lea County NM

Client Sample ID: FS-4

Date Received: 09/09/21 12:45

Lab Sample ID: 880-5919-4 Date Collected: 09/08/21 13:55

Matrix: Solid

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 124 70 - 130 09/09/21 13:47 09/10/21 09:31 1,4-Difluorobenzene (Surr) 104 70 - 130 09/09/21 13:47 09/10/21 09:31

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL I	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7	i	mg/Kg		09/09/21 13:32	09/10/21 05:16	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.7	U	49.7	ı	mg/Kg		09/09/21 13:32	09/10/21 05:16	1
C10-C28)									
OII Range Organics (Over C28-C36)	<49.7	U	49.7	1	mg/Kg		09/09/21 13:32	09/10/21 05:16	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	101		70 - 130	09/09/21 13:32	09/10/21 05:16	1
o-Terphenyl	108		70 - 130	09/09/21 13:32	09/10/21 05:16	1

Method: 300.0 - Anions, Ion Chromatography - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	21.0		5.00		mg/Kg			09/10/21 08:48	1

Client Sample ID: FS-5 Lab Sample ID: 880-5919-5

Date Collected: 09/08/21 14:10

Matrix: Solid

Date Received: 09/09/21 12:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		09/09/21 13:47	09/10/21 09:51	1
Toluene	<0.00201	U	0.00201		mg/Kg		09/09/21 13:47	09/10/21 09:51	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		09/09/21 13:47	09/10/21 09:51	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		09/09/21 13:47	09/10/21 09:51	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		09/09/21 13:47	09/10/21 09:51	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		09/09/21 13:47	09/10/21 09:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				09/09/21 13:47	09/10/21 09:51	1
1,4-Difluorobenzene (Surr)	102		70 - 130				09/09/21 13:47	09/10/21 09:51	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		09/09/21 13:32	09/10/21 05:37	
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		09/09/21 13:32	09/10/21 05:37	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		09/09/21 13:32	09/10/21 05:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	106		70 - 130				09/09/21 13:32	09/10/21 05:37	1
o-Terphenyl	110		70 - 130				09/09/21 13:32	09/10/21 05:37	1

RL

5.04

MDL Unit

mg/Kg

Result Qualifier

90.7

09/10/21 08:54

Analyzed

Prepared

Dil Fac

Analyte

Chloride

Surrogate Summary

Client: Tetra Tech, Inc.

Job ID: 880-5919-1

Project/Site: Warren Unit 134 Flowline Release Remediation

SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Rec
		BFB1	DFBZ1	
ab Sample ID	Client Sample ID	(70-130)	(70-130)	
80-5918-A-1-A MS	Matrix Spike	213 S1+	149 S1+	
80-5918-A-1-B MSD	Matrix Spike Duplicate	119	87	
80-5919-1	FS-1	108	101	
80-5919-2	FS-2	116	99	
80-5919-3	FS-3	113	98	
80-5919-4	FS-4	124	104	
80-5919-5	FS-5	117	102	
.CS 880-7706/1-A	Lab Control Sample	138 S1+	109	
.CSD 880-7706/2-A	Lab Control Sample Dup	98	93	
/IB 880-7696/5-A	Method Blank	128	100	
/IB 880-7706/5-A	Method Blank	164 S1+	107	
Surrogate Legend	nzene (Surr)			

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
ab Sample ID	Client Sample ID	(70-130)	(70-130)	
80-5902-A-22-F MS	Matrix Spike	110	104	
80-5902-A-22-G MSD	Matrix Spike Duplicate	111	105	
80-5919-1	FS-1	112	116	
80-5919-2	FS-2	96	106	
80-5919-3	FS-3	100	111	
80-5919-4	FS-4	101	108	
80-5919-5	FS-5	106	110	
CS 880-7705/2-A	Lab Control Sample	98	100	
CSD 880-7705/3-A	Lab Control Sample Dup	96	104	
1B 880-7705/1-A	Method Blank	110	127	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Xenco, Midland

2

5

8

11

40

Client: Tetra Tech, Inc. Job ID: 880-5919-1 Project/Site: Warren Unit 134 Flowline Release Remediation SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-7696/5-A

Lab Sample ID: MB 880-7706/5-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 7711

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 7696

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		09/09/21 11:55	09/09/21 19:26	
Toluene	<0.00201	U	0.00201		mg/Kg		09/09/21 11:55	09/09/21 19:26	
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		09/09/21 11:55	09/09/21 19:26	
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		09/09/21 11:55	09/09/21 19:26	
o-Xylene	<0.00201	U	0.00201		mg/Kg		09/09/21 11:55	09/09/21 19:26	
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		09/09/21 11:55	09/09/21 19:26	

мв мв

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed
4-Bromofluorobenzene (Surr)	128		70 - 130	-	09/09/21 11:55	09/09/21 19:26
1,4-Difluorobenzene (Surr)	100		70 - 130		09/09/21 11:55	09/09/21 19:26

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 7706

Analysis Batch: 7711 мв мв

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		09/09/21 13:47	09/10/21 07:00	1
Toluene	<0.00198	U	0.00198		mg/Kg		09/09/21 13:47	09/10/21 07:00	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		09/09/21 13:47	09/10/21 07:00	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		09/09/21 13:47	09/10/21 07:00	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		09/09/21 13:47	09/10/21 07:00	1
Xylenes, Total	< 0.00396	U	0.00396		mg/Kg		09/09/21 13:47	09/10/21 07:00	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	164	S1+	70 - 130	09/09/21 13:47	09/10/21 07:00	1
1,4-Difluorobenzene (Surr)	107		70 - 130	09/09/21 13:47	09/10/21 07:00	1

Lab Sample ID: LCS 880-7706/1-A

Matrix: Solid

Analysis Batch: 7711

Prep Type: Total/NA

Prep Batch: 7706

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.07809		mg/Kg		78	70 - 130	
Toluene	0.100	0.1023		mg/Kg		102	70 - 130	
Ethylbenzene	0.100	0.09775		mg/Kg		98	70 - 130	
m-Xylene & p-Xylene	0.200	0.2004		mg/Kg		100	70 - 130	
o-Xylene	0.100	0.1084		mg/Kg		108	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	138	S1+	70 - 130
1.4-Difluorobenzene (Surr)	109		70 - 130

Lab Sample ID: LCSD 880-7706/2-A

Released to Imaging: 11/15/2021 10:05:50 AM

Matrix: Solid

Analysis Batch: 7711

Client Sample ID: Lab Control Sample Dup	
Prep Type: Total/NA	
Prep Batch: 7706	

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.08162		mg/Kg		82	70 - 130	4	35

Eurofins Xenco, Midland

Page 9 of 21

1

Dil Fac

Client: Tetra Tech, Inc. Project/Site: Warren Unit 134 Flowline Release Remediation

Job ID: 880-5919-1 SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-7706/2-A

Matrix: Solid Analysis Batch: 7711 Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 7706

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	0.100	0.09562		mg/Kg		96	70 - 130	7	35
Ethylbenzene	0.100	0.1004		mg/Kg		100	70 - 130	3	35
m-Xylene & p-Xylene	0.200	0.1874		mg/Kg		94	70 - 130	7	35
o-Xylene	0.100	0.09278		mg/Kg		93	70 - 130	15	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	98		70 - 130
1,4-Difluorobenzene (Surr)	93		70 - 130

Lab Sample ID: 880-5918-A-1-A MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 7711

Prep Type: Total/NA

Prep Batch: 7706

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	<0.00200	U F1	0.0998	0.03919	F1	mg/Kg		39	70 - 130
Toluene	<0.00200	U F2 F1	0.0998	0.07828		mg/Kg		78	70 - 130
Ethylbenzene	<0.00200	U F2 F1	0.0998	0.09466		mg/Kg		95	70 - 130
m-Xylene & p-Xylene	<0.00401	U F2 F1	0.200	0.1257	F1	mg/Kg		63	70 - 130
o-Xylene	<0.00200	U F2 F1	0.0998	0.06365	F1	mg/Kg		63	70 - 130

MS MS

Surrogate	%Recovery	Qualifier	Limits		
4-Bromofluorobenzene (Surr)	213	S1+	70 - 130		
1,4-Difluorobenzene (Surr)	149	S1+	70 - 130		

Lab Sample ID: 880-5918-A-1-B MSD

Matrix: Solid

Analysis Batch: 7711

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 7706

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U F1	0.0996	0.03636	F1	mg/Kg		37	70 - 130	7	35
Toluene	<0.00200	U F2 F1	0.0996	0.04681	F2 F1	mg/Kg		47	70 - 130	50	35
Ethylbenzene	<0.00200	U F2 F1	0.0996	0.05308	F2 F1	mg/Kg		53	70 - 130	56	35
m-Xylene & p-Xylene	<0.00401	U F2 F1	0.199	0.07218	F2 F1	mg/Kg		36	70 - 130	54	35
o-Xylene	<0.00200	U F2 F1	0.0996	0.04038	F2 F1	mg/Kg		40	70 - 130	45	35

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	119		70 - 130
1,4-Difluorobenzene (Surr)	87		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-7705/1-A

Matrix: Solid

Analysis Batch: 7689

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 7705

мв мв Result Qualifier MDL Unit Prepared <50.0 U 50.0 mg/Kg 09/09/21 13:31 09/09/21 21:14 Gasoline Range Organics

(GRO)-C6-C10

Job ID: 880-5919-1 Client: Tetra Tech, Inc. Project/Site: Warren Unit 134 Flowline Release Remediation SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

MR MR

Lab Sample ID: MB 880-7705/1-A

Matrix: Solid

Analysis Batch: 7689

Client Samp	ole ID:	Meth	od Blank
	Prep	Type:	Total/NA

Prep Batch: 7705

ı		INID	IVID							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		09/09/21 13:31	09/09/21 21:14	1
	Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		09/09/21 13:31	09/09/21 21:14	1
		MB	МВ							
	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	1-Chlorooctane	110		70 - 130				09/09/21 13:31	09/09/21 21:14	1
I	o-Terphenyl	127		70 - 130				09/09/21 13:31	09/09/21 21:14	1

Lab Sample ID: LCS 880-7705/2-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 7689** Prep Batch: 7705

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Gasoline Range Organics 1000 872.0 87 70 - 130 mg/Kg (GRO)-C6-C10 1000 1018 Diesel Range Organics (Over mg/Kg 102 70 - 130C10-C28)

LCS LCS Qualifier Limits Surrogate %Recovery 1-Chlorooctane 70 - 130 98 o-Terphenyl 100 70 - 130

Lab Sample ID: LCSD 880-7705/3-A

Matrix: Solid

Analysis Batch: 7689

Client Sample ID: Lab	Control Sample Dup)
	Duny Times Tetal/NIA	

Prep Type: Total/NA

Prep Batch: 7705

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	1000	767.5		mg/Kg		77	70 - 130	13	20	
(GRO)-C6-C10										
Diesel Range Organics (Over	1000	908.7		mg/Kg		91	70 - 130	11	20	
C10-C28)										

LCSD LCSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 96 70 - 130 o-Terphenyl 104 70 - 130

Lab Sample ID: 880-5902-A-22-F MS

Matrix: Solid

Analysis Batch: 7689

Client	Sample	ID:	Matrix	Spike

Prep Type: Total/NA Prep Batch: 7705

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits <49.7 U 997 944.7 92 70 - 130 Gasoline Range Organics mg/Kg (GRO)-C6-C10 997 Diesel Range Organics (Over <49.7 U 1149 mg/Kg 114 70 - 130

C10-C28)

	IVIS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	110		70 - 130
o-Terphenyl	104		70 - 130

Lab Sample ID: 880-5902-A-22-G MSD

Client: Tetra Tech, Inc.

Matrix: Solid

Job ID: 880-5919-1

mg/Kg

Project/Site: Warren Unit 134 Flowline Release Remediation

SDG: Lea County NM

3

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

<49.7 U

Client Sample ID: Matrix Spike Duplicate

117

Prep Type: Total/NA Prep Batch: 7705

70 - 130

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Matrix Spike Duplicate

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Client Sample ID: Matrix Spike

Analysis Batch: 7689 Sample Sample MSD MSD RPD Spike Result Qualifier Added Result Qualifier %Rec Limits RPD Limit Unit D Gasoline Range Organics <49.7 U 999 1046 mg/Kg 102 70 - 130 10 20

1186

C10-C28)

Surrogate

(GRO)-C6-C10

Diesel Range Organics (Over

Analyte

MSD MSD Qualifier Limits %Recovery 70 - 130 111

1-Chlorooctane o-Terphenyl 105 70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-7707/1-A Client Sample ID: Method Blank **Prep Type: Soluble**

999

Matrix: Solid

Analysis Batch: 7720

MB MB

Result Qualifier MDL Analyte RL Unit D Prepared Analyzed Dil Fac Chloride <5.00 5.00 09/10/21 07:35 U mg/Kg

Lab Sample ID: LCS 880-7707/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble**

Analysis Batch: 7720

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Chloride 250 90 - 110 257.3 mg/Kg 103

Lab Sample ID: LCSD 880-7707/3-A

Matrix: Solid

Analysis Batch: 7720

LCSD LCSD RPD Spike %Rec. Analyte Added Result Qualifier Unit %Rec RPD Limits Limit Chloride 250 258.0 103 90 - 110 mg/Kg 0

Lab Sample ID: 880-5918-A-1-E MS

Matrix: Solid

Analysis Batch: 7720

Sample Sample Spike MS MS %Rec. Qualifier Added Qualifier Analyte Result Result Unit %Rec Limits Chloride F1 249 F1 87 90 - 110 793 1009 mg/Kg

Lab Sample ID: 880-5918-A-1-F MSD

Matrix: Solid

Analysis Batch: 7720

Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Added Result Qualifier %Rec Limits RPD Limit Analyte Unit D 793 F1 Chloride 249 1010 F1 87 90 - 110 20 mg/Kg 0

Eurofins Xenco, Midland

Client: Tetra Tech, Inc.

Project/Site: Warren Unit 134 Flowline Release Remediation

Job ID: 880-5919-1 SDG: Lea County NM

GC VOA

Prep Batch: 7696

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-7696/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 7706

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-5919-1	FS-1	Total/NA	Solid	5035	
880-5919-2	FS-2	Total/NA	Solid	5035	
880-5919-3	FS-3	Total/NA	Solid	5035	
880-5919-4	FS-4	Total/NA	Solid	5035	
880-5919-5	FS-5	Total/NA	Solid	5035	
MB 880-7706/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-7706/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-7706/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-5918-A-1-A MS	Matrix Spike	Total/NA	Solid	5035	
880-5918-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 7711

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-5919-1	FS-1	Total/NA	Solid	8021B	7706
880-5919-2	FS-2	Total/NA	Solid	8021B	7706
880-5919-3	FS-3	Total/NA	Solid	8021B	7706
880-5919-4	FS-4	Total/NA	Solid	8021B	7706
880-5919-5	FS-5	Total/NA	Solid	8021B	7706
MB 880-7696/5-A	Method Blank	Total/NA	Solid	8021B	7696
MB 880-7706/5-A	Method Blank	Total/NA	Solid	8021B	7706
LCS 880-7706/1-A	Lab Control Sample	Total/NA	Solid	8021B	7706
LCSD 880-7706/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	7706
880-5918-A-1-A MS	Matrix Spike	Total/NA	Solid	8021B	7706
880-5918-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	7706

GC Semi VOA

Analysis Batch: 7689

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-5919-1	FS-1	Total/NA	Solid	8015B NM	7705
880-5919-2	FS-2	Total/NA	Solid	8015B NM	7705
880-5919-3	FS-3	Total/NA	Solid	8015B NM	7705
880-5919-4	FS-4	Total/NA	Solid	8015B NM	7705
880-5919-5	FS-5	Total/NA	Solid	8015B NM	7705
MB 880-7705/1-A	Method Blank	Total/NA	Solid	8015B NM	7705
LCS 880-7705/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	7705
LCSD 880-7705/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	7705
880-5902-A-22-F MS	Matrix Spike	Total/NA	Solid	8015B NM	7705
880-5902-A-22-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	7705

Prep Batch: 7705

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-5919-1	FS-1	Total/NA	Solid	8015NM Prep	
880-5919-2	FS-2	Total/NA	Solid	8015NM Prep	
880-5919-3	FS-3	Total/NA	Solid	8015NM Prep	
880-5919-4	FS-4	Total/NA	Solid	8015NM Prep	
880-5919-5	FS-5	Total/NA	Solid	8015NM Prep	

Eurofins Xenco, Midland

Page 13 of 21

Client: Tetra Tech, Inc. Project/Site: Warren Unit 134 Flowline Release Remediation Job ID: 880-5919-1 SDG: Lea County NM

GC Semi VOA (Continued)

Prep Batch: 7705 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-7705/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-7705/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-7705/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-5902-A-22-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-5902-A-22-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

HPLC/IC

Leach Batch: 7707

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-5919-1	FS-1	Soluble	Solid	DI Leach	
880-5919-2	FS-2	Soluble	Solid	DI Leach	
880-5919-3	FS-3	Soluble	Solid	DI Leach	
880-5919-4	FS-4	Soluble	Solid	DI Leach	
880-5919-5	FS-5	Soluble	Solid	DI Leach	
MB 880-7707/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-7707/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-7707/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-5918-A-1-E MS	Matrix Spike	Soluble	Solid	DI Leach	
880-5918-A-1-F MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 7720

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-5919-1	FS-1	Soluble	Solid	300.0	7707
880-5919-2	FS-2	Soluble	Solid	300.0	7707
880-5919-3	FS-3	Soluble	Solid	300.0	7707
880-5919-4	FS-4	Soluble	Solid	300.0	7707
880-5919-5	FS-5	Soluble	Solid	300.0	7707
MB 880-7707/1-A	Method Blank	Soluble	Solid	300.0	7707
LCS 880-7707/2-A	Lab Control Sample	Soluble	Solid	300.0	7707
LCSD 880-7707/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	7707
880-5918-A-1-E MS	Matrix Spike	Soluble	Solid	300.0	7707
880-5918-A-1-F MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	7707

Eurofins Xenco, Midland

3

4

6

8

40

11

13

Client: Tetra Tech, Inc.

Project/Site: Warren Unit 134 Flowline Release Remediation

Job ID: 880-5919-1 SDG: Lea County NM

Client Sample ID: FS-1

Lab Sample ID: 880-5919-1

Date Collected: 09/08/21 14:50 Date Received: 09/09/21 12:45

	Matrix: Solid
Duamanad	

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	7706	09/09/21 13:47	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7711	09/10/21 08:29	MR	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	7705	09/09/21 13:32	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7689	09/10/21 04:14	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	7707	09/09/21 14:23	СН	XEN MID
Soluble	Analysis	300.0		1			7720	09/10/21 08:20	CH	XEN MID

Client Sample ID: FS-2

Date Collected: 09/08/21 14:55 Date Received: 09/09/21 12:45 Lab Sample ID: 880-5919-2

Matrix: Solid

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	7706	09/09/21 13:47	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7711	09/10/21 08:50	MR	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	7705	09/09/21 13:32	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7689	09/10/21 04:35	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	7707	09/09/21 14:23	CH	XEN MID
Soluble	Analysis	300.0		1			7720	09/10/21 08:26	CH	XEN MID

Client Sample ID: FS-3

Date Collected: 09/08/21 13:45 Date Received: 09/09/21 12:45 Lab Sample ID: 880-5919-3

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	7706	09/09/21 13:47	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7711	09/10/21 09:10	MR	XEN MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	7705	09/09/21 13:32	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7689	09/10/21 04:55	AJ	XEN MID
Soluble	Leach	DI Leach			5.04 g	50 mL	7707	09/09/21 14:23	СН	XEN MID
Soluble	Analysis	300.0		1			7720	09/10/21 08:43	CH	XEN MID

Client Sample ID: FS-4

Date Collected: 09/08/21 13:55

Date Received: 09/09/21 12:45

Lab Sample	ID:	880-5919-4
		Matrice Callel

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	7706	09/09/21 13:47	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7711	09/10/21 09:31	MR	XEN MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	7705	09/09/21 13:32	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7689	09/10/21 05:16	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	7707	09/09/21 14:23	СН	XEN MID
Soluble	Analysis	300.0		1			7720	09/10/21 08:48	CH	XEN MID

Lab Chronicle

Client: Tetra Tech, Inc. Job ID: 880-5919-1 Project/Site: Warren Unit 134 Flowline Release Remediation SDG: Lea County NM

Client Sample ID: FS-5

Lab Sample ID: 880-5919-5 Date Collected: 09/08/21 14:10

Matrix: Solid

Date Received: 09/09/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	7706	09/09/21 13:47	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7711	09/10/21 09:51	MR	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	7705	09/09/21 13:32	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7689	09/10/21 05:37	AJ	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	7707	09/09/21 14:23	CH	XEN MID
Soluble	Analysis	300.0		1			7720	09/10/21 08:54	CH	XEN MID

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Job ID: 880-5919-1 Client: Tetra Tech, Inc. Project/Site: Warren Unit 134 Flowline Release Remediation SDG: Lea County NM

Laboratory: Eurofins Xenco, Midland

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Texas	NELAP	T104704400-20-21	06-30-22

Eurofins Xenco, Midland

9/10/2021

Method Summary

Client: Tetra Tech, Inc.

Project/Site: Warren Unit 134 Flowline Release Remediation

Job ID: 880-5919-1

SDG: Lea County NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DLLeach	Deignized Water Leaching Procedure	ΔSTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Tetra Tech, Inc.

Project/Site: Warren Unit 134 Flowline Release Remediation

Job ID: 880-5919-1

SDG: Lea County NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-5919-1	FS-1	Solid	09/08/21 14:50	09/09/21 12:45
880-5919-2	FS-2	Solid	09/08/21 14:55	09/09/21 12:45
880-5919-3	FS-3	Solid	09/08/21 13:45	09/09/21 12:45
880-5919-4	FS-4	Solid	09/08/21 13:55	09/09/21 12:45
880-5919-5	FS-5	Solid	09/08/21 14:10	09/09/21 12:45

121314

9/10/2021

Page 20 of 21

Released to Imaging: 11/15/2021 10:05:50 AM

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 880-5919-1

SDG Number: Lea County NM

Login Number: 5919 List Source: Eurofins Xenco, Midland

List Number: 1

Creator: Phillips, Kerianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

4

5

4

6

<u>و</u>

9

11

12

ANALYTICAL REPORT

Eurofins Xenco, Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-6099-1

Laboratory Sample Delivery Group: Lea County, NM

Client Project/Site: Warren Unit 134

For:

Tetra Tech, Inc. 8911 N. Capital of Texas Hwy Bldg. 2, Ste 2310 Austin, Texas 78759

Attn: Christian Llull

RAMER

Authorized for release by: 9/16/2021 8:03:36 AM

Jessica Kramer, Project Manager (432)704-5440

jessica.kramer@eurofinset.com

·····LINKS ·······

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 11/15/2021 10:05:50 AM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Tetra Tech, Inc.

Project/Site: Warren Unit 134

Laboratory Job ID: 880-6099-1

SDG: Lea County, NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	11
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receipt Checklists	18

2

3

4

7

0

10

12

13

Definitions/Glossary

Client: Tetra Tech, Inc.

Job ID: 880-6099-1

Project/Site: Warren Unit 134

SDG: Lea County, NM

Qualifiers

GC VOA

Qualifier Description

S1+ Surrogate recovery exceeds control limits, high biased.
U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Job ID: 880-6099-1 Client: Tetra Tech, Inc. Project/Site: Warren Unit 134 SDG: Lea County, NM

Job ID: 880-6099-1

Laboratory: Eurofins Xenco, Midland

Narrative

Job Narrative 880-6099-1

Receipt

The samples were received on 9/14/2021 3:17 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.5°C

GC VOA

Method 8021B: Surrogate recovery for the following sample was outside control limits: WSW-3 (1') (880-6099-2). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 880-6099-1 Project/Site: Warren Unit 134 SDG: Lea County, NM

Client Sample ID: SSW-1 (1')

Lab Sample ID: 880-6099-1 Date Collected: 09/14/21 09:40

Matrix: Solid Date Received: 09/14/21 15:17

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/14/21 17:00	09/15/21 04:44	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/14/21 17:00	09/15/21 04:44	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/14/21 17:00	09/15/21 04:44	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		09/14/21 17:00	09/15/21 04:44	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/14/21 17:00	09/15/21 04:44	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		09/14/21 17:00	09/15/21 04:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	125		70 - 130				09/14/21 17:00	09/15/21 04:44	1
1,4-Difluorobenzene (Surr)	76		70 - 130				09/14/21 17:00	09/15/21 04:44	1
		- 0. (00)	70 - 130				09/14/21 17:00	09/15/21 04:44	1
Method: 8015B NM - Diesel Ran	ge Organics (DI			MDI	I I with				1
Method: 8015B NM - Diesel Rang Analyte	ge Organics (DI	Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	ge Organics (DI	Qualifier		MDL	Unit mg/Kg	<u>D</u>			Dil Fac
Method: 8015B NM - Diesel Rang Analyte	ge Organics (DI	Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	1 Dil Fac 1
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	ge Organics (DI Result <49.8	Qualifier	RL	MDL	mg/Kg	<u>D</u>	Prepared 09/14/21 16:18	Analyzed 09/16/21 04:23	1 Dil Fac 1
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (DI Result <49.8	Qualifier U	RL	MDL	mg/Kg	<u> </u>	Prepared 09/14/21 16:18	Analyzed 09/16/21 04:23	1 Dil Fac 1
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (DI Result <49.8	Qualifier U	RL 49.8	MDL	mg/Kg	<u>D</u>	Prepared 09/14/21 16:18 09/14/21 16:18	Analyzed 09/16/21 04:23	Dil Fac 1 1 Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (DI Result <49.8 339 <49.8	Qualifier U	RL 49.8 49.8 49.8	MDL	mg/Kg	<u>D</u>	Prepared 09/14/21 16:18 09/14/21 16:18	Analyzed 09/16/21 04:23 09/16/21 04:23 09/16/21 04:23	1 1

Method: 300.0 - Anions, Ion Chromatography - Soluble										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	10.7		5.00		mg/Kg			09/14/21 20:55	1

Client Sample ID: WSW-3 (1')

Date Collected: 09/14/21 10:30

Date Received: 09/14/21 15:17

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		09/14/21 17:00	09/15/21 05:05	1
Toluene	<0.00201	U	0.00201		mg/Kg		09/14/21 17:00	09/15/21 05:05	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		09/14/21 17:00	09/15/21 05:05	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		09/14/21 17:00	09/15/21 05:05	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		09/14/21 17:00	09/15/21 05:05	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		09/14/21 17:00	09/15/21 05:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	136	S1+	70 - 130				09/14/21 17:00	09/15/21 05:05	1
1,4-Difluorobenzene (Surr)	77		70 ₋ 130				09/14/21 17:00	09/15/21 05:05	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)										
Analyte	Result	Qualifier	RL	MDL Un	nit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg	g/Kg		09/14/21 16:18	09/16/21 04:44	1	
Diesel Range Organics (Over C10-C28)	84.5		50.0	mç	g/Kg		09/14/21 16:18	09/16/21 04:44	1	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mç	g/Kg		09/14/21 16:18	09/16/21 04:44	1	

Eurofins Xenco, Midland

Lab Sample ID: 880-6099-2

Matrix: Solid

Chloride

Client Sample Results

Client: Tetra Tech, Inc.

Project/Site: Warren Unit 134

Job ID: 880-6099-1

SDG: Lea County, NM

Client Sample ID: WSW-3 (1')

Lab Sample ID: 880-6099-2

Date Collected: 09/14/21 10:30 Matrix: Solid
Date Received: 09/14/21 15:17

Surrogate 1-Chlorooctane o-Terphenyl	%Recovery 106 126	Qualifier	70 - 130 70 - 130				Prepared 09/14/21 16:18 09/14/21 16:18	Analyzed 09/16/21 04:44 09/16/21 04:44	Dil Fac 1
Method: 300.0 - Anions, Ion Chrom Analyte	natography - S Result (RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

5.00

mg/Kg

14.3

۾

09/14/21 21:01

4.0

11

13

Surrogate Summary

Client: Tetra Tech, Inc. Job ID: 880-6099-1 Project/Site: Warren Unit 134 SDG: Lea County, NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Re
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-6057-A-1-A MS	Matrix Spike	119	87	
880-6057-A-1-B MSD	Matrix Spike Duplicate	113	87	
880-6099-1	SSW-1 (1')	125	76	
880-6099-2	WSW-3 (1')	136 S1+	77	
LCS 880-7874/1-A	Lab Control Sample	109	88	
LCSD 880-7874/2-A	Lab Control Sample Dup	107	89	
MB 880-7758/5-A	Method Blank	113	77	
MB 880-7874/5-A	Method Blank	108	77	
Surrogate Legend				
BFB = 4-Bromofluorober	nzene (Surr)			
DFBZ = 1,4-Difluorobenz	zene (Surr)			

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

Γ				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-6099-1	SSW-1 (1')	108	126	
880-6099-2	WSW-3 (1')	106	126	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

QC Sample Results

Job ID: 880-6099-1 Client: Tetra Tech, Inc. Project/Site: Warren Unit 134 SDG: Lea County, NM

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-7758/5-A

Matrix: Solid

Analysis Batch: 7857

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 7758

	MB	мв							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/14/21 09:00	09/14/21 12:20	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/14/21 09:00	09/14/21 12:20	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/14/21 09:00	09/14/21 12:20	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		09/14/21 09:00	09/14/21 12:20	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/14/21 09:00	09/14/21 12:20	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		09/14/21 09:00	09/14/21 12:20	1

MB MB

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	113	70 - 130
1,4-Difluorobenzene (Surr)	77	70 - 130

Dil Fac Prepared Analyzed 09/14/21 09:00 09/14/21 12:20 09/14/21 09:00 09/14/21 12:20

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 7874

Matrix: Solid **Analysis Batch: 7857**

Lab Sample ID: MB 880-7874/5-A

мв мв

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200 \	J	0.00200		mg/Kg		09/14/21 12:00	09/14/21 23:14	1
Toluene	<0.00200 l	J	0.00200		mg/Kg		09/14/21 12:00	09/14/21 23:14	1
Ethylbenzene	<0.00200 l	J	0.00200		mg/Kg		09/14/21 12:00	09/14/21 23:14	1
m-Xylene & p-Xylene	<0.00400 l	J	0.00400		mg/Kg		09/14/21 12:00	09/14/21 23:14	1
o-Xylene	<0.00200 l	J	0.00200		mg/Kg		09/14/21 12:00	09/14/21 23:14	1
Xylenes, Total	<0.00400 l	J	0.00400		mg/Kg		09/14/21 12:00	09/14/21 23:14	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130	09/14/21 12:00	09/14/21 23:14	1
1,4-Difluorobenzene (Surr)	77		70 - 130	09/14/21 12:00	09/14/21 23:14	1

Lab Sample ID: LCS 880-7874/1-A

Matrix: Solid

Analysis Batch: 7857

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 7874

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09076		mg/Kg		91	70 - 130	
Toluene	0.100	0.08237		mg/Kg		82	70 - 130	
Ethylbenzene	0.100	0.08102		mg/Kg		81	70 - 130	
m-Xylene & p-Xylene	0.200	0.1707		mg/Kg		85	70 - 130	
o-Xylene	0.100	0.08631		mg/Kg		86	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	109	70 _ 130
1.4-Difluorobenzene (Surr)	88	70 - 130

Lab Sample ID: LCSD 880-7874/2-A

Matrix: Solid

Analysis Batch: 7857

Client Sample ID: Lab	Control Sample Dup
	Dunn Times Tetal/NIA

Prep Type: Total/NA

Prep Batch: 7874 RPD

Spike LCSD LCSD %Rec. Result Qualifier Analyte Added Unit %Rec Limits RPD Limit Benzene 0.100 0.1012 mg/Kg 101 70 - 130 11

1,4-Difluorobenzene (Surr)

QC Sample Results

Client: Tetra Tech, Inc.

Job ID: 880-6099-1

Project/Site: Warren Unit 134

SDG: Lea County, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

89

Lab Sample ID: LCSD 880-7	874/2-A					Clie	nt Sam	iple ID:	Lab Contro	ıl Sampl	e Dup
Matrix: Solid									Prep 1	Type: To	tal/NA
Analysis Batch: 7857									Pre	p Batch	: 7874
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene			0.100	0.09352		mg/Kg		94	70 - 130	13	35
Ethylbenzene			0.100	0.09545		mg/Kg		95	70 - 130	16	35
m-Xylene & p-Xylene			0.200	0.1928		mg/Kg		96	70 - 130	12	35
o-Xylene			0.100	0.09783		mg/Kg		98	70 - 130	13	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	107		70 - 130								

Lab Sample ID: 880-6057-A-1-A MS

Client Sample ID: Matrix Spike

Matrix: Solid

Prep Type: Total/NA

70 - 130

Analysis Batch: 7857 Prep Batch: 7874

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U	0.0998	0.08191		mg/Kg	_	82	70 - 130	
Toluene	<0.00200	U	0.0998	0.07653		mg/Kg		77	70 - 130	
Ethylbenzene	<0.00200	U	0.0998	0.07815		mg/Kg		78	70 - 130	
m-Xylene & p-Xylene	<0.00400	U	0.200	0.1600		mg/Kg		80	70 - 130	
o-Xylene	<0.00200	U	0.0998	0.08061		mg/Kg		81	70 - 130	

 Surrogate
 %Recovery
 Qualifier
 Limits

 4-Bromofluorobenzene (Surr)
 119
 70 - 130

 1,4-Difluorobenzene (Surr)
 87
 70 - 130

Lab Sample ID: 880-6057-A-1-B MSD

Client Sample ID: Matrix Spike Duplicate

Matrix: Solid
Analysis Batch: 7857
Prep Type: Total/NA
Prep Batch: 7874

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U	0.0996	0.07848		mg/Kg		79	70 - 130	4	35
Toluene	<0.00200	U	0.0996	0.07395		mg/Kg		74	70 - 130	3	35
Ethylbenzene	<0.00200	U	0.0996	0.07503		mg/Kg		75	70 - 130	4	35
m-Xylene & p-Xylene	<0.00400	U	0.199	0.1542		mg/Kg		77	70 - 130	4	35
o-Xylene	<0.00200	U	0.0996	0.07891		mg/Kg		79	70 - 130	2	35

	WISD	MISD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	113		70 - 130
1,4-Difluorobenzene (Surr)	87		70 - 130

MSD MSD

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-7862/1-A

Matrix: Solid

Client Sample ID: Method Blank
Prep Type: Soluble

Analysis Batch: 7887

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00	_	mg/Kg			09/14/21 15:54	1

Eurofins Xenco, Midland

5

3

Ė

8

11

QC Sample Results

Job ID: 880-6099-1 Client: Tetra Tech, Inc. Project/Site: Warren Unit 134 SDG: Lea County, NM

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 880-7862/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Analysis Batch: 7887**

Prep Type: Soluble

Lab Sample ID: LCSD 880-7862/3-A

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Chloride 250 255.7 mg/Kg 102 90 - 110

> Client Sample ID: Lab Control Sample Dup **Prep Type: Soluble**

Matrix: Solid Analysis Batch: 7887

Spike LCSD LCSD %Rec. RPD Added Limit Analyte Result Qualifier Unit D %Rec Limits RPD Chloride 250 255.9 mg/Kg 102 90 - 110 0

Lab Sample ID: 880-6052-A-1-F MS Client Sample ID: Matrix Spike

Matrix: Solid Prep Type: Soluble

Analysis Batch: 7887

MS MS %Rec. Spike Sample Sample Analyte Result Qualifier Added Result Qualifier Unit Limits Chloride 176 250 418.8 90 - 110 mg/Kg

Lab Sample ID: 880-6052-A-1-G MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 7887

Sample Sample MSD MSD RPD Spike %Rec. Analyte Result Qualifier Added Qualifier Unit %Rec RPD Limit Result Limits 419.0 Chloride 176 250 97 90 - 110 20 mg/Kg

QC Association Summary

Client: Tetra Tech, Inc. Job ID: 880-6099-1 Project/Site: Warren Unit 134 SDG: Lea County, NM

GC VOA

Prep Batch: 7758

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-7758/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 7857

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-6099-1	SSW-1 (1')	Total/NA	Solid	8021B	7874
880-6099-2	WSW-3 (1')	Total/NA	Solid	8021B	7874
MB 880-7758/5-A	Method Blank	Total/NA	Solid	8021B	7758
MB 880-7874/5-A	Method Blank	Total/NA	Solid	8021B	7874
LCS 880-7874/1-A	Lab Control Sample	Total/NA	Solid	8021B	7874
LCSD 880-7874/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	7874
880-6057-A-1-A MS	Matrix Spike	Total/NA	Solid	8021B	7874
880-6057-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	7874

Prep Batch: 7874

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-6099-1	SSW-1 (1')	Total/NA	Solid	5035	
880-6099-2	WSW-3 (1')	Total/NA	Solid	5035	
MB 880-7874/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-7874/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-7874/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-6057-A-1-A MS	Matrix Spike	Total/NA	Solid	5035	
880-6057-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

GC Semi VOA

Prep Batch: 7890

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-6099-1	SSW-1 (1')	Total/NA	Solid	8015NM Prep	
880-6099-2	WSW-3 (1')	Total/NA	Solid	8015NM Prep	

Analysis Batch: 7908

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-6099-1	SSW-1 (1')	Total/NA	Solid	8015B NM	7890
880-6099-2	WSW-3 (1')	Total/NA	Solid	8015B NM	7890

HPLC/IC

Leach Batch: 7862

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-6099-1 SSW-1 (1')		Soluble	Solid	DI Leach	
880-6099-2	WSW-3 (1')	Soluble	Solid	DI Leach	
MB 880-7862/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-7862/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-7862/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-6052-A-1-F MS	Matrix Spike	Soluble	Solid	DI Leach	
880-6052-A-1-G MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 7887

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-6099-1	SSW-1 (1')	Soluble	Solid	300.0	7862
880-6099-2	WSW-3 (1')	Soluble	Solid	300.0	7862
MB 880-7862/1-A	Method Blank	Soluble	Solid	300.0	7862

QC Association Summary

Client: Tetra Tech, Inc. Job ID: 880-6099-1 Project/Site: Warren Unit 134 SDG: Lea County, NM

HPLC/IC (Continued)

Analysis Batch: 7887 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 880-7862/2-A	Lab Control Sample	Soluble	Solid	300.0	7862
LCSD 880-7862/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	7862
880-6052-A-1-F MS	Matrix Spike	Soluble	Solid	300.0	7862
880-6052-A-1-G MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	7862

Lab Chronicle

Client: Tetra Tech, Inc. Job ID: 880-6099-1 Project/Site: Warren Unit 134 SDG: Lea County, NM

Client Sample ID: SSW-1 (1')

Date Received: 09/14/21 15:17

Lab Sample ID: 880-6099-1 Date Collected: 09/14/21 09:40

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	7874	09/14/21 17:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7857	09/15/21 04:44	KL	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	7890	09/14/21 16:18	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7908	09/16/21 04:23	AM	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	7862	09/14/21 15:50	СН	XEN MID
Soluble	Analysis	300.0		1			7887	09/14/21 20:55	CH	XEN MID

Client Sample ID: WSW-3 (1')

Lab Sample ID: 880-6099-2

Date Collected: 09/14/21 10:30 **Matrix: Solid** Date Received: 09/14/21 15:17

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	7874	09/14/21 17:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7857	09/15/21 05:05	KL	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	7890	09/14/21 16:18	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7908	09/16/21 04:44	AM	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	7862	09/14/21 15:50	СН	XEN MID
Soluble	Analysis	300.0		1			7887	09/14/21 21:01	CH	XEN MID

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Tetra Tech, Inc. Job ID: 880-6099-1 Project/Site: Warren Unit 134 SDG: Lea County, NM

Laboratory: Eurofins Xenco, Midland

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Texas	NELAP	T104704400-21-22	06-30-22

Method Description

Volatile Organic Compounds (GC)

Diesel Range Organics (DRO) (GC)

Anions, Ion Chromatography

Method Summary

Client: Tetra Tech, Inc. Project/Site: Warren Unit 134 Job ID: 880-6099-1

SDG: Lea County, NM

Protocol	Laboratory
SW846	XEN MID
SW846	XEN MID
MCAWW	XEN MID
SW846	XEN MID

XEN MID XEN MID

SW846

ASTM

5035 Closed System Purge and Trap 8015NM Prep Microextraction DI Leach Deionized Water Leaching Procedure

Protocol References:

Method

8021B

300.0

8015B NM

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Tetra Tech, Inc. Project/Site: Warren Unit 134 Job ID: 880-6099-1

SDG: Lea County, NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-6099-1	SSW-1 (1')	Solid	09/14/21 09:40	09/14/21 15:17
880-6099-2	WSW-3 (1')	Solid	09/14/21 10:30	09/14/21 15:17

Relinquished by

Date

Time

Received by

Time

2.0/2,5

Rush Charges Authorized

Special Report Limits or TRRP Repor

ORIGINAL COPY

(Circle) HAND DELIVERED

FEDEX UPS

НОLD 17 Of 18

Released to Imaging: 11/15/2021 10:05:50 AM

Login Sample Receipt Checklist

True

N/A

True

N/A

Client: Tetra Tech, Inc.

Job Number: 880-6099-1 SDG Number: Lea County, NM

List Source: Eurofins Xenco, Midland

Login Number: 6099 List Number: 1

Creator: Teel, Brianna

Sample bottles are completely filled.

There is sufficient vol. for all requested analyses, incl. any requested

Containers requiring zero headspace have no headspace or bubble is

Sample Preservation Verified.

MS/MSDs

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-6252-1

Laboratory Sample Delivery Group: Lea County, NM Client Project/Site: Warren Unit 134 Flowline Release

For:

Tetra Tech, Inc. 8911 N. Capital of Texas Hwy Bldg. 2, Ste 2310 Austin, Texas 78759

Attn: Christian Llull

JURAMER

Authorized for release by: 9/20/2021 3:31:48 PM

Jessica Kramer, Project Manager (432)704-5440

jessica.kramer@eurofinset.com

LINKS

Review your project results through
Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 11/15/2021 10:05:50 AM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

3

_

9

0

9

11

13

Client: Tetra Tech, Inc. Project/Site: Warren Unit 134 Flowline Release Laboratory Job ID: 880-6252-1 SDG: Lea County, NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	6
QC Sample Results	7
QC Association Summary	12
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

2

3

4

6

8

46

11

10

Definitions/Glossary

Client: Tetra Tech, Inc.

Job ID: 880-6252-1

Project/Site: Warren Unit 134 Flowline Release

SDG: Lea County, NM

2

Qualifiers

GC VOA

 Qualifier
 Qualifier Description

 F1
 MS and/or MSD recovery exceeds control limits.

F2 MS/MSD RPD exceeds control limits

U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

U Indicates the analyte was analyzed for but not detected.

HPLC/IC

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Tetra Tech, Inc.

Project/Site: Warren Unit 134 Flowline Release

Job ID: 880-6252-1

SDG: Lea County, NM

Job ID: 880-6252-1

Laboratory: Eurofins Xenco, Midland

Narrative

Job Narrative 880-6252-1

Receipt

The sample was received on 9/17/2021 4:46 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.5°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Tetra Tech, Inc.

Project/Site: Warren Unit 134 Flowline Release

Lab Sample ID: 880-6252-1

Matrix: Solid

Job ID: 880-6252-1

SDG: Lea County, NM

Client Sample ID: SSW-1 (2-FT)	
Data Callacted: 00/47/24 40:40	

Date Received: 09/17/21 16:46

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/17/21 16:49	09/18/21 07:38	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/17/21 16:49	09/18/21 07:38	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/17/21 16:49	09/18/21 07:38	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		09/17/21 16:49	09/18/21 07:38	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/17/21 16:49	09/18/21 07:38	1
Xylenes, Total	< 0.00399	U	0.00399		mg/Kg		09/17/21 16:49	09/18/21 07:38	1
Total BTEX	<0.00399	U	0.00399		mg/Kg		09/17/21 16:49	09/18/21 07:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	119	-	70 - 130				09/17/21 16:49	09/18/21 07:38	1
1,4-Difluorobenzene (Surr)	91		70 - 130				09/17/21 16:49	09/18/21 07:38	1
: Method: 8015B NM - Diesel Rang	ge Organics (DI	RO) (GC)							
Mothod: 9015P NM Diocol Pane	no Organico (DI	BOV (GC)							
Analyte	Result	Qualifier	RL	MDL		<u>D</u>	Prepared 09/17/21 17:00	Analyzed 09/18/21 06:48	Dil Fac
Analyte Gasoline Range Organics	, ,	Qualifier	RL	MDL	Unit mg/Kg	<u>D</u>	Prepared 09/17/21 17:00	Analyzed 09/18/21 06:48	
Analyte Gasoline Range Organics (GRO)-C6-C10	Result	Qualifier U		MDL		<u>D</u>			
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over		Qualifier U	50.0	MDL	mg/Kg	<u> </u>	09/17/21 17:00	09/18/21 06:48	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)		Qualifier U	50.0	MDL	mg/Kg	<u>D</u>	09/17/21 17:00	09/18/21 06:48	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0 <50.0	Qualifier U U	50.0	MDL	mg/Kg	<u>D</u>	09/17/21 17:00 09/17/21 17:00	09/18/21 06:48 09/18/21 06:48	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH	Result <50.0 <50.0 <50.0	Qualifier U U U U	50.0 50.0 50.0	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	09/17/21 17:00 09/17/21 17:00 09/17/21 17:00	09/18/21 06:48 09/18/21 06:48 09/18/21 06:48	1
	Result	Qualifier U U U U	50.0 50.0 50.0 50.0	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	09/17/21 17:00 09/17/21 17:00 09/17/21 17:00 09/17/21 17:00	09/18/21 06:48 09/18/21 06:48 09/18/21 06:48 09/18/21 06:48	1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH	Result	Qualifier U U U U	50.0 50.0 50.0 50.0 <i>Limits</i>	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	09/17/21 17:00 09/17/21 17:00 09/17/21 17:00 09/17/21 17:00 Prepared	09/18/21 06:48 09/18/21 06:48 09/18/21 06:48 09/18/21 06:48 Analyzed	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U U U Qualifier	50.0 50.0 50.0 50.0 Limits 70 - 130	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	09/17/21 17:00 09/17/21 17:00 09/17/21 17:00 09/17/21 17:00 Prepared 09/17/21 17:00	09/18/21 06:48 09/18/21 06:48 09/18/21 06:48 09/18/21 06:48 Analyzed 09/18/21 06:48	1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH Surrogate 1-Chlorooctane	Result	Qualifier U U U Qualifier	50.0 50.0 50.0 50.0 Limits 70 - 130	MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	09/17/21 17:00 09/17/21 17:00 09/17/21 17:00 09/17/21 17:00 Prepared 09/17/21 17:00	09/18/21 06:48 09/18/21 06:48 09/18/21 06:48 09/18/21 06:48 Analyzed 09/18/21 06:48	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Surrogate Summary

Client: Tetra Tech, Inc. Job ID: 880-6252-1 Project/Site: Warren Unit 134 Flowline Release SDG: Lea County, NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Re
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-6252-1	SSW-1 (2-FT)	119	91	
890-1261-A-2-A MS	Matrix Spike	129	87	
890-1261-A-2-B MSD	Matrix Spike Duplicate	101	81	
LCS 880-8041/1-A	Lab Control Sample	106	94	
LCSD 880-8041/2-A	Lab Control Sample Dup	101	91	
MB 880-8021/5-A	Method Blank	114	101	
MB 880-8041/5-A	Method Blank	128	101	

OTPH = o-Terphenyl

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Prep Type: Total/NA **Matrix: Solid**

				Percent Surrogate R
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-6238-A-1-C MS	Matrix Spike	100	101	
880-6238-A-1-D MSD	Matrix Spike Duplicate	100	100	
880-6252-1	SSW-1 (2-FT)	88	92	
LCS 880-8049/2-A	Lab Control Sample	111	114	
LCSD 880-8049/3-A	Lab Control Sample Dup	111	113	
MB 880-8049/1-A	Method Blank	102	113	
Surrogate Legend				
1CO = 1-Chlorooctane				

Client: Tetra Tech, Inc.

Project/Site: Warren Unit 134 Flowline Release

Job ID: 880-6252-1

SDG: Lea County, NM

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-8021/5-A

Matrix: Solid

Analysis Batch: 8018

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 8021

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/17/21 09:44	09/17/21 13:00	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/17/21 09:44	09/17/21 13:00	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/17/21 09:44	09/17/21 13:00	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		09/17/21 09:44	09/17/21 13:00	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/17/21 09:44	09/17/21 13:00	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		09/17/21 09:44	09/17/21 13:00	1
Total BTEX	<0.00400	U	0.00400		mg/Kg		09/17/21 09:44	09/17/21 13:00	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	114	70 - 130	09/17/21 09:44	09/17/21 13:00	1
1,4-Difluorobenzene (Surr)	101	70 - 130	09/17/21 09:44	09/17/21 13:00	1

Lab Sample ID: MB 880-8041/5-A

Matrix: Solid

Analysis Batch: 8018

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 8041

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/17/21 11:43	09/18/21 00:35	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/17/21 11:43	09/18/21 00:35	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/17/21 11:43	09/18/21 00:35	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		09/17/21 11:43	09/18/21 00:35	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/17/21 11:43	09/18/21 00:35	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		09/17/21 11:43	09/18/21 00:35	1
Total BTEX	<0.00400	U	0.00400		mg/Kg		09/17/21 11:43	09/18/21 00:35	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	128		70 - 130	09/17/21 11:43	09/18/21 00:35	1
1.4-Difluorobenzene (Surr)	101		70 - 130	09/17/21 11:43	09/18/21 00:35	1

Lab Sample ID: LCS 880-8041/1-A

Matrix: Solid

Analysis Batch: 8018

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 8041

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.07662		mg/Kg		77	70 - 130	
Toluene	0.100	0.09388		mg/Kg		94	70 - 130	
Ethylbenzene	0.100	0.09752		mg/Kg		98	70 - 130	
m-Xylene & p-Xylene	0.200	0.1859		mg/Kg		93	70 - 130	
o-Xylene	0.100	0.09275		mg/Kg		93	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	106		70 - 130
1,4-Difluorobenzene (Surr)	94		70 - 130

Client: Tetra Tech, Inc.

Project/Site: Warren Unit 134 Flowline Release

Job ID: 880-6252-1

SDG: Lea County, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-8041/2-A

Matrix: Solid

Analysis Batch: 8018

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 8041

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.07816		mg/Kg		78	70 - 130	2	35
Toluene	0.100	0.09453		mg/Kg		95	70 - 130	1	35
Ethylbenzene	0.100	0.09867		mg/Kg		99	70 - 130	1	35
m-Xylene & p-Xylene	0.200	0.1838		mg/Kg		92	70 - 130	1	35
o-Xylene	0.100	0.09240		mg/Kg		92	70 - 130	0	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	101		70 - 130
1.4-Difluorobenzene (Surr)	91		70 - 130

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 8041

Lab Sample ID: 890-1261-A-2-A MS **Matrix: Solid**

Lab Sample ID: 890-1261-A-2-B MSD

Matrix: Solid

Analysis Batch: 8018

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00198	U F1 F2	0.0998	0.01052	F1	mg/Kg		11	70 - 130	
Toluene	<0.00198	U F1 F2	0.0998	0.03687	F1	mg/Kg		37	70 - 130	
Ethylbenzene	<0.00198	U F1 F2	0.0998	0.04346	F1	mg/Kg		44	70 - 130	
m-Xylene & p-Xylene	<0.00397	U F1 F2	0.200	0.07924	F1	mg/Kg		39	70 - 130	
o-Xylene	<0.00198	U F1 F2	0.0998	0.04927	F1	mg/Kg		49	70 - 130	

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	129		70 - 130
1.4-Difluorobenzene (Surr)	87		70 - 130

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Analysis Batch: 8018									Pre	p Batch:	: 8041
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00198	U F1 F2	0.101	0.07054	F2	mg/Kg		70	70 - 130	148	35
Toluene	<0.00198	U F1 F2	0.101	0.08170	F2	mg/Kg		81	70 - 130	76	35
Ethylbenzene	<0.00198	U F1 F2	0.101	0.08675	F2	mg/Kg		86	70 - 130	66	35
m-Xylene & p-Xylene	<0.00397	U F1 F2	0.202	0.1604	F2	mg/Kg		79	70 - 130	68	35
o-Xylene	<0.00198	U F1 F2	0.101	0.07731	F2	mg/Kg		76	70 - 130	44	35

MSD MSD

Surrogate	%Recovery Qualific	er Limits
4-Bromofluorobenzene (Surr)	101	70 - 130
1,4-Difluorobenzene (Surr)	81	70 - 130

Client: Tetra Tech, Inc.

Project/Site: Warren Unit 134 Flowline Release

Job ID: 880-6252-1

SDG: Lea County, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-8049/1-A

Matrix: Solid

Analysis Batch: 8026

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 8049

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		09/17/21 16:14	09/17/21 21:59	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		09/17/21 16:14	09/17/21 21:59	1
C10-C28)									
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		09/17/21 16:14	09/17/21 21:59	1
Total TPH	<50.0	U	50.0		mg/Kg		09/17/21 16:14	09/17/21 21:59	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	102		70 - 130	09/17/21 16:14	09/17/21 21:59	1
o-Terphenyl	113		70 - 130	09/17/21 16:14	09/17/21 21:59	1

Lab Sample ID: LCS 880-8049/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 8026 Prep Batch: 8049 Spike LCS LCS %Rec. Added Result Qualifier Analyte Unit %Rec Limits Gasoline Range Organics 1000 801.7 80 70 - 130 mg/Kg

873.0

mg/Kg

1000

(GRO)-C6-C10 Diesel Range Organics (Over

C10-C28)

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	111		70 - 130
o-Terphenyl	114		70 - 130

Lab Sample ID: LCSD 880-8049/3-A

Matrix: Solid

Analysis Batch: 8026

Client Sam	nla ID: I a	h Contro	Sample	Dun
Chent Sam	pie iD. La		Janipie	Dup

70 - 130

87

Prep Type: Total/NA

Prep Batch: 8049

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	 1000	888.3		mg/Kg		89	70 - 130	10	20	
(GRO)-C6-C10										
Diesel Range Organics (Over	1000	924.0		mg/Kg		92	70 - 130	6	20	

C10-C28)

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	111		70 - 130
o-Terphenyl	113		70 - 130

Lab Sample ID: 880-6238-A-1-C MS

Matrix: Solid

Analysis Batch: 8026

Cliont	Sample	ID: Matrix	Cnika

Prep Type: Total/NA

Prep Batch: 8049

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	997	836.0		mg/Kg		84	70 - 130	
Diesel Range Organics (Over C10-C28)	<49.8	U	997	897.2		mg/Kg		90	70 - 130	

Eurofins Xenco, Midland

Page 9 of 19

Job ID: 880-6252-1

Client: Tetra Tech, Inc. Project/Site: Warren Unit 134 Flowline Release SDG: Lea County, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

MS MS

мв мв

Lab Sample ID: 880-6238-A-1-C MS Client Sample ID: Matrix Spike

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 8026** Prep Batch: 8049

	WS	WS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	100		70 - 130
o-Terphenyl	101		70 - 130

Lab Sample ID: 880-6238-A-1-D MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 8026** Prep Batch: 8049

Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit <49.8 U 999 870.1 87 70 - 13020 Gasoline Range Organics mg/Kg 4 (GRO)-C6-C10 Diesel Range Organics (Over 999 902.4 90 <49.8 U mg/Kg 70 - 13020 C10-C28)

MSD MSD %Recovery Surrogate Qualifier Limits 70 - 130 1-Chlorooctane 100 100 70 - 130 o-Terphenyl

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-7885/1-A Client Sample ID: Method Blank **Matrix: Solid**

Prep Type: Soluble Analysis Batch: 7986

Analyte Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed 5.00 Chloride <5.00 U mg/Kg 09/18/21 03:50

Lab Sample ID: LCS 880-7885/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 7986

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit D %Rec Limits Chloride 250 245.5 mg/Kg 98 90 - 110

Lab Sample ID: LCSD 880-7885/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid**

Analysis Batch: 7986

Spike LCSD LCSD %Rec. RPD Added Analyte Result Qualifier Unit D %Rec Limits RPD Limit Chloride 250 246.6 99 90 - 110 20 mg/Kg

Lab Sample ID: 880-6058-A-64-C MS Client Sample ID: Matrix Spike

Matrix: Solid Prep Type: Soluble Analysis Batch: 7986

Spike MS MS %Rec. Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 250 Chloride 123 374.6 mg/Kg 101 90 - 110

Eurofins Xenco, Midland

Prep Type: Soluble

QC Sample Results

Client: Tetra Tech, Inc.

Job ID: 880-6252-1

Project/Site: Warren Unit 134 Flowline Release

SDG: Lea County, NM

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 880-6058-A-64-D MSD

Client Sample ID: Matrix Spike Duplicate
Matrix: Solid

Prep Type: Soluble

Analysis Batch: 7986

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	123		250	375.7		mg/Kg		101	90 - 110	0	20

3

4

2

9

11

13

QC Association Summary

Client: Tetra Tech, Inc.

Project/Site: Warren Unit 134 Flowline Release

Job ID: 880-6252-1 SDG: Lea County, NM

GC VOA

Analysis Batch: 8018

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-6252-1	SSW-1 (2-FT)	Total/NA	Solid	8021B	8041
MB 880-8021/5-A	Method Blank	Total/NA	Solid	8021B	8021
MB 880-8041/5-A	Method Blank	Total/NA	Solid	8021B	8041
LCS 880-8041/1-A	Lab Control Sample	Total/NA	Solid	8021B	8041
LCSD 880-8041/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	8041
890-1261-A-2-A MS	Matrix Spike	Total/NA	Solid	8021B	8041
890-1261-A-2-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	8041

Prep Batch: 8021

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-8021/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 8041

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-6252-1	SSW-1 (2-FT)	Total/NA	Solid	5035	
MB 880-8041/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-8041/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-8041/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-1261-A-2-A MS	Matrix Spike	Total/NA	Solid	5035	
890-1261-A-2-B MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

GC Semi VOA

Analysis Batch: 8026

Lab Sample ID 880-6252-1	Client Sample ID SSW-1 (2-FT)	Prep Type Total/NA	Matrix Solid	Method 8015B NM	Prep Batch 8049
MB 880-8049/1-A	Method Blank	Total/NA	Solid	8015B NM	8049
LCS 880-8049/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	8049
LCSD 880-8049/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	8049
880-6238-A-1-C MS	Matrix Spike	Total/NA	Solid	8015B NM	8049
880-6238-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	8049

Prep Batch: 8049

Lab Sample ID 880-6252-1	Client Sample ID SSW-1 (2-FT)	Prep Type Total/NA	Matrix Solid	Method 8015NM Prep	Prep Batch
MB 880-8049/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-8049/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-8049/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-6238-A-1-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-6238-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

HPLC/IC

Leach Batch: 7885

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-6252-1	SSW-1 (2-FT)	Soluble	Solid	DI Leach	
MB 880-7885/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-7885/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-7885/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-6058-A-64-C MS	Matrix Spike	Soluble	Solid	DI Leach	
880-6058-A-64-D MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Eurofins Xenco, Midland

2

3

5

6

8

9

11

13

QC Association Summary

Client: Tetra Tech, Inc.

Job ID: 880-6252-1

Project/Site: Warren Unit 134 Flowline Release

SDG: Lea County, NM

HPLC/IC

Analysis Batch: 7986

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-6252-1	SSW-1 (2-FT)	Soluble	Solid	300.0	7885
MB 880-7885/1-A	Method Blank	Soluble	Solid	300.0	7885
LCS 880-7885/2-A	Lab Control Sample	Soluble	Solid	300.0	7885
LCSD 880-7885/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	7885
880-6058-A-64-C MS	Matrix Spike	Soluble	Solid	300.0	7885
880-6058-A-64-D MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	7885

-

9

11

13

14

Lab Chronicle

Client: Tetra Tech, Inc. Job ID: 880-6252-1 Project/Site: Warren Unit 134 Flowline Release SDG: Lea County, NM

Client Sample ID: SSW-1 (2-FT) Lab Sample ID: 880-6252-1

Date Collected: 09/17/21 10:10 Matrix: Solid Date Received: 09/17/21 16:46

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	8041	09/17/21 16:49	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	8018	09/18/21 07:38	KL	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	8049	09/17/21 17:00	DM	XEN MID
Total/NA	Analysis	8015B NM		1			8026	09/18/21 06:48	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	7885	09/17/21 17:00	CH	XEN MID
Soluble	Analysis	300.0		1			7986	09/18/21 06:10	CH	XEN MID

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Tetra Tech, Inc.

Job ID: 880-6252-1

Project/Site: Warren Unit 134 Flowline Release

SDG: Lea County, NM

Laboratory: Eurofins Xenco, Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority Texas		rogram	Identification Number	Expiration Date
		ELAP	T104704400-21-22	06-30-22
The following analytes	are included in this report. h	ut the laboratory is not certifi	ied by the governing authority. This list ma	av include analytes fo
	•	at the laboratory is not certifi	ica by the governing dutionty. This list the	ay include analytes to
the agency does not off Analysis Method	•	Matrix	Analyte	ay include analytes lo
the agency does not of	fer certification.	•	, , ,	

4

5

7

9

10

12

4 /

Method Summary

Client: Tetra Tech, Inc.

Project/Site: Warren Unit 134 Flowline Release

Job ID: 880-6252-1

SDG: Lea County, NM

Laboratory	
XEN MID	
VENIMID	

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)		XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Xenco, Midland

Sample Summary

Client: Tetra Tech, Inc.

Project/Site: Warren Unit 134 Flowline Release

Job ID: 880-6252-1

SDG: Lea County, NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-6252-1	SSW-1 (2-FT)	Solid	09/17/21 10:10	09/17/21 16:46

Relinquished by

Date

Time

Received by

Date

Time

(Circle) HAND DELIVERED

FEDEX UPS

Sample Temperature

X RUSH 24 hr

Rush Charges Authorized

Special Report Limits or TRRP Report

CAB USE

REMARKS:

STANDARD

ORIGINAL COPY

Refinquished by

Date

Time

Relinquished by

Date

Time

Project Name

Client Name

ConocoPhillips Company

Site Manager

Warren Unit 134 Flowline Release

(county, state) oroject Location

Lea County, NM

Project #

212C-MD-02377 (Task 08)

nvoice to

Tetra

Tech - Accounts Payable, 901 W Wall St , Ste. 100, Midland, TX

Eurofins Scientific

Sampler Signature

Devin Brown

Comments

LAB USE LAB#

SAMPLE IDENTIFICATION

SSW-1 (2-FT)

9/17/2021

1010

×

DATE

TIME

WATER

SOIL

HCL

HNO₃ ICE

None

CONTAINERS

FILTERED (Y/N)

Chloride 300 Method

TPH 8015M (GRO - DRO - ORO)

BTEX 8021B

SAMPLING

MATRIX

PRESERVATIVE METHOD

Receiving Laboratory

Analysis Request of Chain of Custody Record

Tetra Tech, Inc.

900 W Wall St Ste 100 Midland, Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946

Joe Tyler (joe tyler@tetratech com) Christian Llull (christian Ilull@tetratech com)

(Circle or Specify Method **ANALYSIS REQUEST**

880-6252 Chain of Custody

으

Released to Imaging: 11/15/2021 10:05:50 AM

Hold

Page 18 of 19

9/20/2021

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 880-6252-1

SDG Number: Lea County, NM

List Source: Eurofins Xenco, Midland

Login Number: 6252 List Number: 1 Creator: Teel, Brianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Eurofins Xenco, Midland

Released to Imaging: 11/15/2021 10:05:50 AM

3

4

6

<u>გ</u>

3

11

13

14

APPENDIX D Photographic Documentation

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View west of the release point and excavated area around flowlines.	1
212C-MD-02377	SITE NAME	ConocoPhillips Warren Unit 134 Flowline Release	9/7/2021

TETRA TECH, INC.	DESCRIPTION	View west of the release point and excavated area around flowlines.	2
PROJECT NO. 212C-MD-02377	SITE NAME	ConocoPhillips Warren Unit 134 Flowline Release	9/7/2021

TETRA TECH, INC.	DESCRIPTION	View of the depth measurements taken within the excavated area.	3
PROJECT NO. 212C-MD-02377	SITE NAME	ConocoPhillips Warren Unit 134 Flowline Release	9/8/2021

TETRA TECH, INC.	DESCRIPTION	View of the depth measurements taken within the excavated area.	4
PROJECT NO. 212C-MD-02377	SITE NAME	ConocoPhillips Warren Unit 134 Flowline Release	9/8/2021

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View southwest of the excavated area and lease road.	5
212C-MD-02377	SITE NAME	ConocoPhillips Warren Unit 134 Flowline Release	9/8/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02377	DESCRIPTION	View near the southern edge of the excavated area and adjacent lease road.	6
	SITE NAME	ConocoPhillips Warren Unit 134 Flowline Release	9/8/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02377	DESCRIPTION	View of the southern edge of the excavated area and step outs.	7
	SITE NAME	ConocoPhillips Warren Unit 134 Flowline Release	9/17/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02377	DESCRIPTION	View of the southern edge of the excavated area and step outs.	8
	SITE NAME	ConocoPhillips Warren Unit 134 Flowline Release	9/17/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02377	DESCRIPTION	View of the excavation area being backfilled.	9
	SITE NAME	ConocoPhillips Warren Unit 134 Flowline Release	9/17/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02377	DESCRIPTION	View of the excavation area being backfilled.	10
	SITE NAME	ConocoPhillips Warren Unit 134 Flowline Release	9/17/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02377	DESCRIPTION	View of the excavation area backfilled.	11
	SITE NAME	ConocoPhillips Warren Unit 134 Flowline Release	9/17/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02377	DESCRIPTION	View of the excavation area backfilled.	12
	SITE NAME	ConocoPhillips Warren Unit 134 Flowline Release	9/17/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02377	DESCRIPTION	View of the reseeding process.	13
	SITE NAME	ConocoPhillips Warren Unit 134 Flowline Release	9/17/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02377	DESCRIPTION	View after reseeding process.	14
	SITE NAME	ConocoPhillips Warren Unit 134 Flowline Release	9/17/2021

APPENDIX E Waste Manifests

Received by OCD: 10/6/2021 10:3	Customer #:	DEVIN BROWN 1	Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	O6UJ9A000HH0 9/8/2021 CONOCOPHILLIF	Page 125 of 139
Facility: CRI					
Product / Service		Qua	ntity Units	性性的数据的	
Contaminated Soil (RCRA Exemp	ot)		14.00 yards		
Generator Certification Statemer I hereby certify that according to the R 1988 regulatory determination, the abo X RCRA Exempt: Oil Field wastes g RCRA Non-Exempt: Oil field was characteristics established in RCRA re amended. The following documentation MSDS Information RCRA I	esource Conserve described we described we described when enerated from the which is non-egulations, 40 Complications, 4	vation and Recovery Act (RCF aste is: oil and gas exploration and pro-hazardous that does not excee FR 261.21-261.24 or listed hazardous that above-description and pro-hazardous that above-description are the above-description.	duction operations and d the minimum standa ardous waste as define bed waste is non-haza	d are not mixed with a lards for waste hazardod in 40 CFR, part 26 lardous. (Check the appropriate the control of the control	non-exempt waste ous by l, subpart D, as propriate items):
Driver/ Agent Signature	R360 Representa	R360 Representative Signature			
Customer Approval	TH	IS IS NOT AN IN	VOICE!		
Approved By:		Dat	e:		

t6UJ9A01K54W Released to Imaging: 11/15/2021 10:05:50 AM

Received by OCD: 10/6/2021 10 RECEIVED AND THE SOLUTIONS Permian Basin	Customer #:	DEVIN BROWN 2	Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	700-1235521 Page 126 of 139 06UJ9A000HH0 9/8/2021 CONOCOPHILLIPS 33487 WARREN UNIT 134 NON-DRILLING LEA (NM)
Facility: CRI				
Product / Service		Qua	antity Units	
Contaminated Soil (RCRA Exen	npt)		14.00 yards	
Generator Certification Stateme	ent of Waste St	atus		1 D. A. di A. A. A. di Libir
RCRA Non-Exempt: Oil field wa	generated from caste which is non- regulations, 40 Cl	aste is: bil and gas exploration and pro- hazardous that does not exceed FR 261.21-261.24 or listed haz by demonstrate the above-descr	oduction operations and ed the minimum standa ardous waste as define ibed waste is non-haza	d are not mixed with non-exempt wast ords for waste hazardous by d in 40 CFR, part 261, subpart D, as rdous. (Check the appropriate items):
Driver/ Agent Signature		R360 Represent	ative Signature	
Customer Approval	ТН	IS IS NOT AN IN	VOICE!	
Approved By:		Da	te:	

t6UJ9A01K578 Released to Imaging: 11/15/2021 10:05:50 AM

Received by OCD: 10/6/2021 10:56:38 PM er: 700-1235568 Page 127 of 139 Ticket #: CONOCOPHILLIPS O6UJ9A000HH0 Customer #: CRI2190 Bid #: 9/8/2021 Ordered by: DEVIN BROWN Date: CONOCOPHILLIPS Generator: AFE #: Generator #: PO # 33487 Well Ser. #: Manifest #: 3 NVIRONMENTAL WARREN UNIT Well Name: SOLUTIONS Manif. Date: 9/8/2021 Well #: 134 MCNABB PARTNERS Hauler: Permian Basin Field: **JESUS** Driver Field #: M33 Truck# NON-DRILLING Rig: Card # LEA (NM) County Job Ref# Facility: CRI **Quantity Units** Product / Service 14.00 yards Contaminated Soil (RCRA Exempt) **Generator Certification Statement of Waste Status** I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is: X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): __ MSDS Information __ RCRA Hazardous Waste Analysis __ Process Knowledge __ Other (Provide description above) R360 Representative Signature **Driver/ Agent Signature Customer Approval** THIS IS NOT AN INVOICE!

Approved By: Date:

t6UJ9A01K5BE 9/8/2021 2:18:46PM Released to Imaging: 11/15/2021 10:05:50 AM

Received by OCD: 10/6/2021 10 Received by OCD: 10/6/2021 10	Customer #:	KELSY WAGGAMAN 4	Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	700-1235726	
Facility: CRI					
Product / Service	Quan	tity Units			
Contaminated Soil (RCRA Exer		9.00 yards			
 RCRA Non-Exempt: Oil field w characteristics established in RCRA amended. The following documenta MSDS Information RCRA 	Resource Conser bove described was generated from caste which is non regulations, 40 Cl	vation and Recovery Act (RCR) aste is: bil and gas exploration and produced that does not exceed FR 261.21-261.24 or listed hazar demonstrate the above-describe Analysis Process Knowledge	uction operations and the minimum standar dous waste as define ed waste is non-hazar edge Other (Pro	are not mixed with non-exempt was do for waste hazardous by d in 40 CFR, part 261, subpart D, as dous. (Check the appropriate items):	
Driver/ Agent Signature		R360 Representative Signature			
Eldie my					
Customer Approval					
	TH	IS IS NOT AN INV	OICE!		
		D-1			

Date: _____ Approved By:

t6UJ9A01K5NG Released to Imaging: 11/15/2021 10:05:50 AM 9/9/2021 8:58:36AM

Received by OCD: 10/6/2021 10:56:38 PM ner: 700-1235754 Page 129 of 139 Ticket #: CONOCOPHILLIPS O6UJ9A000HH0 Bid #: Customer #: CRI2190 9/9/2021 Ordered by: KELSY WAGGAMAN Date: CONOCOPHILLIPS Generator: AFE #: Generator #: PO #: Well Ser. #: 33487 5 Manifest #: WARREN UNIT Well Name: Manif. Date: 9/9/2021 SOLUTIONS 134 Well #: MCNABB PARTNERS Hauler: Permian Basin Field: **FDDIE** Driver Field #: M₀2 Truck # NON-DRILLING Rig: Card # LEA (NM) County Job Ref# Facility: CRI **Quantity Units** Product / Service 9.00 yards Contaminated Soil (RCRA Exempt) Generator Certification Statement of Waste Status I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is: X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous, (Check the appropriate items): __ MSDS Information __ RCRA Hazardous Waste Analysis __ Process Knowledge __ Other (Provide description above) R360 Representative Signature Driver/ Agent Signature **Customer Approval**

Approved By: Date: _____

Received by OCD: 10/6/2021 10 RESULTIONS Permian Basin	Customer: Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver Truck # Card # Job Ref #	KELSY WAGGAMAN	Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	700-1235789 Page 130 of 139 06UJ9A000HH0 9/9/2021 CONOCOPHILLIPS 33487 WARREN UNIT 134 NON-DRILLING LEA (NM)			
Facility: CRI							
Product / Service		Quan	tity Units				
Contaminated Soil (RCRA Exer	npt)	9.00 yards					
Generator Certification Stateme I hereby certify that according to the 1988 regulatory determination, the al X RCRA Exempt: Oil Field wastes RCRA Non-Exempt: Oil field w characteristics established in RCRA amended. The following documenta MSDS Information RCRA Driver/ Agent Signature	Resource Consert bove described was generated from caste which is non- regulations, 40 Cl tion is attached to	vation and Recovery Act (RCRA aste is: oil and gas exploration and produ- hazardous that does not exceed FR 261.21-261.24 or listed hazard demonstrate the above-describe	nction operations and the minimum standar dous waste as define ed waste is non-hazar dge Other (Pro	l are not mixed with non-exempt was rds for waste hazardous by In 40 CFR, part 261, subpart D, as rdous. (Check the appropriate items):			
Customer Approval							
	TH	IS IS NOT AN INV	OICE!				
Andrewood Dev		Date:					

	Doto	
Approved By:	Date:	
ippiored by.		

t6UJ9A01K5SZ Released to Imaging: 11/15/2021 10:05:50 AM

Received by OCD: 10/6/2021 10:50 PRIBON MENTAL SOLUTIONS Permian Basin	Customer #: COrdered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver	DEVIN BROWI	N		Ticket #. Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	06UJ9A00 9/10/2021 CONOCO 33487 WARREN 134	CONOCOPHILLIPS 33487 WARREN UNIT 134 NON-DRILLING	
Facility: CRI								
Product / Service			Qı	uantity U	nits			
Contaminated Soil (RCRA Exemp	ot)			14.00	/ards			
Cell pH	CI Cond	. %Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis: 28 0.00	0.00 0.00	0			0.00			
Generator Certification Statemen I hereby certify that according to the Re 1988 regulatory determination, the abo X RCRA Exempt: Oil Field wastes ge RCRA Non-Exempt: Oil field waste characteristics established in RCRA re amended. The following documentation MSDS Information RCRA H	esource Conserva we described was enerated from oil te which is non-h gulations, 40 CFF	ation and Recover te is: and gas explorate azardous that do to the control of the	es not excord listed has above-descords Known	production seed the mi azardous w cribed was owledge	operations and nimum standar aste as defined te is non-hazar Other (Pro	are not mix ds for waste in 40 CFR, dous. (Chec	ed with not hazardous part 261, s k the appro	n-exempt waste by ubpart D, as priate items):
Driver/ Agent Signature		R360	Represe	ntative Si	gnature		HATELIAN DE	
1				<u> </u>				
Customer Approval			1	105				
	THIS	S IS NOT	AN II	NVOIC	E!			

Received by OCD: 10/ RESIDENTIFICATIONS Permian Basin	6/2021 10:5	Custon Ordere AFE #: PO #: Manife	st #: 8 Date: 9 : J	EVIN BROW	N		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	700-12359 O6UJ9A00 9/10/2021 CONOCOL 33487 WARREN 134 NON-DRIL LEA (NM)	OOHHO PHILLIPS UNIT	ge 132 of 139
Facility: CRI										
Product / Service					Q	uantity U	nits			
Contaminated Soil (RC	RA Exem	pt)				14.00	yards			
Cell	рН	CI	Cond.	%Solids	TDS	PCI/GN		H2S	% Oil	Weight
Lab Analysis: 28	0.00	0.00	0.00	0			0.00	0.00	0	
Generator Certification I hereby certify that according to the segulatory determined to the segulatory	ding to the Fation, the about the distribution of the distribution	Resource (ove descri generated ste which egulations	Conserva ibed wast from oil is non-ha s, 40 CFR	tion and Recovere is: and gas explorate and gas explorate azardous that do 261.21-261.24 emonstrate the Analysis P	ntion and poes not exe or listed habove-des rocess Kn	oroduction ceed the mazardous vacribed was owledge	operations and inimum standa vaste as define ste is non-haza Other (Pro	d are not mix rds for waste d in 40 CFR, rdous. (Chec	ed with not hazardous part 261, s k the appro	n-exempt waste by ubpart D, as opriate items):
Driver/ Agent Signatu	re			R360	Represe	ntative S	gnature			
						/				
Customer Approval			THIS	S IS NOT	AN I	NVOI	CE!			
Approved By:)ate:			-	

Received by OCD: 10/6/2021 10:5 RESERVIRONMENTAL SOLUTIONS Permian Basin			Custome	#: 9 ate: 9/1 M8	0/2021 CNABB PAR SSE	N		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	700-12359 06UJ9A00 9/10/2021 CONOCO 33487 WARREN 134 NON-DRII LEA (NM)	OOHHO PHILLIPS UNIT LLING	ge 133 of 13
Facility: CRI											
Product / Servi	ice		ENCTAIN NAME OF			Q	uantity U				111111111111111111111111111111111111111
Contaminated	Soil (R	CRA Exem	pt)				16.00	yards			
	Cell	рН	CI	Cond.	%Solids	TDS	PCI/GN		H2S	% Oil	Weight
Lab Analysis:	28	0.00	0.00	0.00	0			0.00			
Generator Cert I hereby certify the 1988 regulatory of X RCRA Exemended. The form MSDS Information of the term of	hat accordeterminate Oil F Exempt: Stablished oil	ding to the I dation, the ab field wastes Oil field wa d in RCRA r documentat RCRA	Resource Co ove describe generated fr ste which is egulations, 4	onservation ed waste om oil ar non-haz 40 CFR 2 ed to der	on and Recovisian digas explora ardous that do to the constrate the halysis P	ntion and poes not ex- or listed habove-des rocess Kn	production ceed the mi azardous w scribed was owledge	operations and inimum standa vaste as define te is non-hazar Other (Pro	I are not mix rds for waste d in 40 CFR, rdous. (Chec	ted with none hazardous, part 261, suk the appropriate the suppropriate th	n-exempt wa by ubpart D, as priate items
Driver/ Agent S	Signatu	re			R360	Represe	ntative Si	gnature			
				_	-		-/				
Customer App	roval						/				
			-	ГНІЅ	IS NOT	ANI	NVOI	CE!			
Approved By:						C)ate:				

t6UJ9A01K6AO 9/10/2021 12:04:24PM Released to Imaging: 11/15/2021 10:05:50 AM

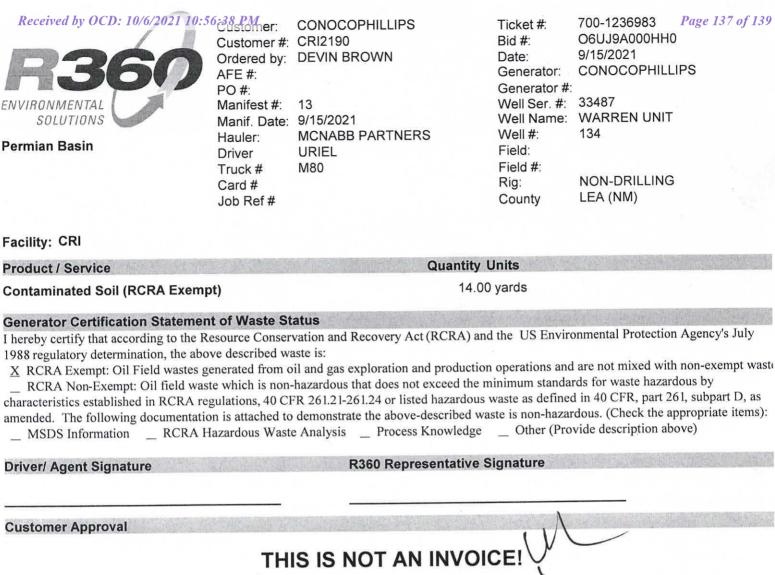
Received by OCD: 10/6/2021 10:56:38 PM Customer: 700-1236724 Page 134 of 139 CONOCOPHILLIPS Ticket #: O6UJ9A000HH0 Customer #: CRI2190 Bid #: 9/14/2021 Ordered by: DEVIN BROWN Date: CONOCOPHILLIPS Generator: AFE #: Generator #: PO #: 33487 Well Ser. #: Manifest #: 10 FNVIRONMENTAL WARREN UNIT Well Name: Manif. Date: 9/14/2021 SOLUTIONS Well#: 134 MCNABB PARTNERS Hauler: Permian Basin Field: **JESSE** Driver Field #: M32 Truck # NON-DRILLING Rig: Card# LEA (NM) County Job Ref# Facility: CRI **Quantity Units** Product / Service 14.00 yards Contaminated Soil (RCRA Exempt) Generator Certification Statement of Waste Status I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is: X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): __ MSDS Information __ RCRA Hazardous Waste Analysis __ Process Knowledge __ Other (Provide description above) **R360 Representative Signature Driver/ Agent Signature Customer Approval** THIS IS NOT AN INVOICE!

Date:

t6UJ9A01K7TX Released to Imaging: 11/15/2021 10:05:50 AM

Approved By:

Received by OCD: 10/6/2021 10:56:38 PM customer. 700-1236787 Page 135 of 139 CONOCOPHILLIPS Ticket #: O6UJ9A000HH0 Customer #: CRI2190 Bid #: 9/14/2021 Ordered by: DEVIN BROWN Date: CONOCOPHILLIPS Generator: AFE #: Generator #: PO #: 33487 Well Ser. #: Manifest #: 11 FNVIRONMENTAL WARREN UNIT Well Name: Manif. Date: 9/14/2021 SOLUTIONS 134 Well #: MCNABB PARTNERS Hauler: Permian Basin Field: **JESSE** Driver Field #: M32 Truck # NON-DRILLING Rig: Card# LEA (NM) County Job Ref# Facility: CRI **Quantity Units** Product / Service 14.00 yards Contaminated Soil (RCRA Exempt) Generator Certification Statement of Waste Status I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is: X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): _ MSDS Information _ RCRA Hazardous Waste Analysis _ Process Knowledge _ Other (Provide description above) R360 Representative Signature **Driver/ Agent Signature Customer Approval** THIS IS NOT AN INVOICE!


Date:

t6UJ9A01K7ZS Released to Imaging: 11/15/2021 10:05:50 AM

Approved By:

Received by OCD: 10/6/2021 10:56:38 PM Customer: Page 136 of 139 700-1236848 Ticket #: CONOCOPHILLIPS O6UJ9A000HH0 Bid # Customer #: CRI2190 9/14/2021 Ordered by: DEVIN BROWN Date: CONOCOPHILLIPS Generator: AFF #: Generator #: PO #: Well Ser. #: 33487 12 ENVIRONMENTAL Manifest #: Well Name: WARREN UNIT Manif. Date: 9/14/2021 SOLUTIONS Well #: 134 MCNABB PARTNERS Hauler: Permian Basin Field: Driver **JESSE** Field #: M32 Truck # NON-DRILLING Rig: Card # LEA (NM) County Job Ref# Facility: CRI **Quantity Units** Product / Service 14.00 yards Contaminated Soil (RCRA Exempt) **Generator Certification Statement of Waste Status** I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is: X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): __ MSDS Information __ RCRA Hazardous Waste Analysis __ Process Knowledge __ Other (Provide description above) R360 Representative Signature **Driver/ Agent Signature Customer Approval** THIS IS NOT AN INVOICE! Date: Approved By:

t6UJ9A01K85E Released to Imaging: 11/15/2021 10:05:50 AM

Approved By:

Date:

9/15/2021 7:02:27AM t6UJ9A01K8CE Released to Imaging: 11/15/2021 10:05:50 AM

Received by OCD: 10/6/2021 10:56:38 PM. Page 138 of 139 700-1237501 CONOCOPHILLIPS Ticket #: Customer #: CRI2190 Bid #: O6UJ9A000HH0 Ordered by: DEVIN BROWN 9/17/2021 Date: CONOCOPHILLIPS Generator: AFE #: Generator #: PO #: 33487 Manifest #: 14 Well Ser. #: NVIRONMENTAL WARREN UNIT SOLUTIONS Manif. Date: 9/17/2021 Well Name: Well #: 134 MCNABB PARTNERS Hauler: Permian Basin Field: **JOHN** Driver Field #: M31 Truck # **NON-DRILLING** Rig: Card# LEA (NM) County Job Ref# Facility: CRI **Quantity Units** Product / Service 10.00 yards Contaminated Soil (RCRA Exempt) **Generator Certification Statement of Waste Status** I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is: X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): _ MSDS Information _ RCRA Hazardous Waste Analysis _ Process Knowledge _ Other (Provide description above) **R360 Representative Signature** Driver/ Agent Signature **Customer Approval** THIS IS NOT AN INVOICE!

Approved By: Date:

t6UJ9A01K9R2 Released to Imaging: 11/15/2021 10:05:50 AM

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 54567

CONDITIONS

Operator:	OGRID:
CONOCOPHILLIPS COMPANY	217817
600 W. Illinois Avenue	Action Number:
Midland, TX 79701	54567
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
chensley	None	11/15/2021