District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

Contact Name Jeffery Tew

Responsible Party Armstrong Energy Corporation

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Incident ID	nAPP2226554118
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

OGRID 1092

Contact Telephone 575-623-2999

Contact email jtew@aecnm.com			Incident # (assigned by OCD) nAPP2226554118					
Contact mail 1973	Contact mailing address P.O. Box 1973 Roswell, NM 88202- 1973							
			Location	n of F	Release So	ource		
Latituda 22.7	0227500				Longitudo	-103.46002500		
Latitude 33.7	9337300		(NAD 83 in c	decimal d	egrees to 5 decin			
Site Name To	ouch of Gre	y State #001			Site Type	Production Facil	ity	
Date Release	Discovered	2/1/2022			API# (if app	olicable) 30-041-2	0960	
	T	T =	1 _					
Unit Letter L	Section 15	Township 06S	Range	Doo	Cour	nty		
L	13	065	34E	Koo	seven			
Surface Owner	r: X State	Federal T	ribal Private	(Name:)	
	_			Ì				
			Nature an	id Vo	lume of I	Kelease		
				ch calcula	ations or specific		volumes provided below)	
Crude Oil Volume Released (bbls)					Volume Recov	vered (bbls)		
☑ Produced Water Volume Released (bbls) unkown			1		Volume Recov	vered (bbls) none		
		Is the concentral produced water	tion of dissolved >10,000 mg/l?	chlorid	le in the	Yes No)	
Condensa	ite	Volume Release				Volume Recovered (bbls)		
Natural G	as	Volume Release	ed (Mcf)			Volume Recov	vered (Mcf)	
Other (de	scribe)	Volume/Weight	Released (provi	de units	s)	Volume/Weigh	ht Recovered (provide units)	
		ial soil discoloration of releases is unk				e inspection. Surf	ficial soil analytical results exceeded the	
Closure Crite	ria. Volume	of refeases is till	mown and no na	ilds wer	e recovered.			

Received by OCD: 9/22/2022 3:20:10 PM Form C-141 State of New Mexico Page 2 Oil Conservation Division

73	2	£ 122
rage	20	T 123
1.00		

Incident ID	nAPP2226554118
District RP	
Facility ID	
Application ID	

Was this a major release as defined by	If YES, for what reason(s) does the respon	sible party consider this a major release?
19.15.29.7(A) NMAC?		
☐ Yes ⊠ No		
If YES, was immediate not	tice given to the OCD? By whom? To who	om? When and by what means (phone, email, etc)?
,	g,	(F,,).
	Initial Re	esponse
The responsible pa	urty must undertake the following actions immediately	y unless they could create a safety hazard that would result in injury
∑ The source of the relea	ise has been stopped.	
☐ The impacted area has	been secured to protect human health and t	the environment.
Released materials hav	ve been contained via the use of berms or de	ikes, absorbent pads, or other containment devices.
All free liquids and rec	coverable materials have been removed and	l managed appropriately.
If all the actions described	above have <u>not</u> been undertaken, explain w	vhy:
has begun, please attach a	narrative of actions to date. If remedial e	emediation immediately after discovery of a release. If remediation efforts have been successfully completed or if the release occurred lease attach all information needed for closure evaluation.
		pest of my knowledge and understand that pursuant to OCD rules and
		fications and perform corrective actions for releases which may endanger ICD does not relieve the operator of liability should their operations have
		at to groundwater, surface water, human health or the environment. In responsibility for compliance with any other federal, state, or local laws
and/or regulations.		
Printed Name: <u>Jeffe</u>	ery Tew_	Title: Operations Engineer
Signature: Jeffer	ry Tew om	Date: 9/22/2022
email: jtew@aecnm.co	7 <u>om</u>	Telephone: <u>575-420-7600</u>
OCD Only		
Received by:		Date:

	Page 3 of 1	<i>23</i>
Incident ID	nAPP2226554118	
District RP		
Facility ID		
Application ID		

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>100</u> (ft bgs)
Did this release impact groundwater or surface water?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ⊠ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ⊠ No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ⊠ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ⊠ No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ⊠ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ⊠ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ⊠ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ⊠ No
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ⊠ No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vercontamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	rtical extents of soil
Characterization Report Checklist: Each of the following items must be included in the report.	
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well Field data	ls.
Data table of soil contaminant concentration data	
Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release	
Boring or excavation logs	
 ✓ Photographs including date and GIS information ✓ Topographic/Aerial maps 	

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

☐ Laboratory data including chain of custody

Received by OCD: 9/22/2022 3:20:10 PM Form C-141 State of New Mexico Page 4 Oil Conservation Division

	Page 4 of 1	23
Incident ID	nAPP2226554118	
District RP		
Facility ID		
Application ID		

I hereby certify that the information given above is true and complete to the regulations all operators are required to report and/or file certain release not public health or the environment. The acceptance of a C-141 report by the failed to adequately investigate and remediate contamination that pose a threaddition, OCD acceptance of a C-141 report does not relieve the operator of and/or regulations.	ifications and perform corrective actions for releases which may endanger DCD does not relieve the operator of liability should their operations have eat to groundwater, surface water, human health or the environment. In
Printed Name: <u>Jeffery Tew</u>	Title: Operations Engineer
Signature:	Date: <u>9/22/2022_</u> Telephone: <u>575-420-7600_</u>
OCD O I	
OCD Only Received by: Jocelyn Harimon	Date:09/22/2022

Page 5 of 123

Incident ID nAPP2226554118
District RP
Facility ID
Application ID

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following is	tems must be included in the closure report.
	1 NMAC
□ Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office
☐ Laboratory analyses of final sampling (Note: appropriate ODC	C District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and rerhuman health or the environment. In addition, OCD acceptance of compliance with any other federal, state, or local laws and/or regular restore, reclaim, and re-vegetate the impacted surface area to the coraccordance with 19.15.29.13 NMAC including notification to the O	ntions. The responsible party acknowledges they must substantially inditions that existed prior to the release or their final land use in DCD when reclamation and re-vegetation are complete. Title: Operations Engineer
OCD Only	
Received by:Jocelyn Harimon	Date:
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations.
Closure Approved by:	Date:09/27/2022
Printed Name:Jennifer Nobui	Title: Environmental Specialist A

July 29, 2022

District I - Hobbs New Mexico Oil Conservation Division 1625 North French Drive Hobbs, New Mexico 88240

Re: Closure Request

Touch of Grey State #001

Compliance Number cEZB223154630

Roosevelt County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum), on behalf of Armstrong Energy Corporation (AEC), has prepared this Closure Request to document site assessment, excavation, and soil sampling activities performed at the Touch of Grey State #001 (Site), located in Unit L, Section 15, Township 6 South, Range 34 East, in Roosevelt County, New Mexico (**Figure 1 in Appendix A**). The purpose of the site assessment and soil sampling activities was to assess for the presence or absence of impacts to soil resulting from observations made by an inspector with the New Mexico Oil Conservation Division (NMOCD). Based on field observations and screening activities, excavation activities, and laboratory analytical results, AEC is submitting this Closure Request for Compliance Number cEZB223154630.

SITE DESCRIPTION AND RELEASE SUMMARY

The Site is located in Roosevelt County, New Mexico (33.793335° N, 103.460325° W) and is associated with oil and gas exploration and production operations on New Mexico State Land. **Figure 2 in Appendix A** depicts the Site.

AEC contracted with Ensolum to assess discolored soil present east of the Site in the vicinity of the tank battery and surrounding area to the south-southeast on June 10, 2022. Based on visual discoloration of soil in and around the southern portion of the earthen secondary containment berm, an NMOCD inspector requested assessment of the soil for the presence or absence of impacts to soil. Soil analytical results from the initial soil sampling event on June 10, 2022 indicated there was a release of fluids to the surface and additional assessment and remediation appeared warranted. An unknown volume of fluids appears to have been released to the surface without any being recovered. The timing of the release is unknown at this time.

SITE CHARACTERIZATION AND CLOSURE CRITERIA

The Site was characterized according to Table 1, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC). Results from the characterization desktop review are presented on page 3 of the Form C-141, Site Assessment/Characterization. Potential site receptors are identified on **Figure 1 in Appendix A**.

Ensolum, LLC | Environmental, Engineering & Hydrogeologic Consultants 705 W. Wadley, Suite 210 | Midland, TX 78209 | ensolum.com Texas PG Firm No. 50588 | Texas PE Firm No. F-21843

Depth to groundwater at the Site is greater than 100 feet below ground surface (bgs) based on a data collected from United States Geologicial Survey (USGS) well number 334610103252701, which was last measured on January 19, 2022. The total depth of the well is 165 feet bgs and depth to water of 120.04 fet bgs. The well is located approximately 2.3 miles southeast of the Site and therefore does not meet the NMOCD requirement for reasonably estimating the depth to water beneath the Site. The Well Record and Log is included in **Appendix B**.

The closest continuously flowing or significant watercourse to the Site is greater than 300 feet away. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is not underlain by unstable geology (low potential karst designation area).

Based on the results of the Site Characterization, the following NMOCD Table 1 Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH) 100 mg/kg
- Chloride: 600 mg/kg

SITE ASSESSMENT ACTIVITIES

On June 10, 2022, site assessment activities were conducted to evaluate the suspected release based on information visual observations provided by NMOCD. Ensolum personnel collected three surficial soil samples (SS01 through SS03) within the discolored caliched area in and around the southern portion of the tank battery to assess for the presence or absence of impacts to soil associated with discoloration of the caliche observed by NMOCD. Discrete soil samples were collected from each location at approximately 0.5 feet bgs and field screened for volatile aromatic hydrocarbons utilizing a calibrated photoionization detector (PID) and chloride using Hach® chloride QuanTab® test strips, respectively. The soil sample locations are depicted on **Figure 2 in Appendix A**. Photographic documentation was conducted during the Site visit. A photographic log is included in **Appendix C**.

The soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported at or below 4 degrees Celsius (°C) under strict chain-of-custody (COC) procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-gasoline range organics (GRO), TPH-diesel range organics (DRO), and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

Laboratory analytical results for the surficial soil samples SS01 and SS02, located inside the secondary containment of the tank battery, indicated chloride concentrations exceeded the Site Closure Criteria. In addition, the TPH concentration in soil from SS01 exceeded the Closure Criteria. Benzene, BTEX, and TPH concentrations in soil sample SS03, located outside of the secondary containment to the southeast, were compliant with the Closure Criteria. Laboratory analytical results depicted on **Figure 2 in Appendix A** and are summarized in **Table 1 in Appendix D**. The complete laboratory analytical report is included as **Appendix E**.

Based on the surficial soil sample results, additional delineation activities appeared warranted to define the vertical and lateral extents of contamination of chloride and TPH. On June 24, 2022, Ensolum was

onsite to complete delineation activities via hand auger. A total of six boreholes (BH01 through BH06) were advanced in and around the discolored area south of the tanks; Boreholes BH01 and BH02 were advanced inside the disolored area for vertical extent of contamination and boreholes BH03 through BH06 were advance in all cardinal directions to laterally delineate the extent of contamination.

Field screening results and observations from the boreholes were documented on lithologic/soil sampling logs, which which are included as **Appendix F**. The boreholes were backfilled with soil removed following sampling activities. The borehole and soil sample locations are depicted on **Figure 2** in **Appendix A**. Soil from the boreholes were field screened for volatile aromatic hydrocarbons and chloride. Soil samples from the hightest field screening depth and the terminus of each borehole were collected and jarred for laboratory analysis of BTEX, TPH, and chloride.

Laboratory analytical results for the delineation soil samples from borehole BH01 and BH02 indicated chloride concentrations exceeded the Site Closure Criteria to a depth of approximately 3 feet bgs. Benzene, BTEX, and TPH concentrations in soil samples from boreholes BH01 and BH02 were compliant with the Closure Criteria. Soil from lateral boreholes BH03 through BH06 indicated concentrations of BTEX, TPH, and chloride were compliant with the Closure Criteria. Laboratory analytical results depicted on **Figure 2 in Appendix A** and are summarized in **Table 1 in Appendix D**. The complete laboratory analytical report is included as **Appendix E**.

EXCAVATION ACTIVITIES

Based on soil analytical results from delineation activities, remediation of chloride and TPH-impacted soil appeared warranted. As such, Ensolum oversaw the excavation and proper disposal of impacted soil on July 8, 2022. Excavation activities were directed by previously failed soil sample locations and field screening for volatile aromatic hydrocarbons and chloride. Upon identifying field screening results indicating impacted soils were adequately remediated, Ensolum proceeded to collect confirmation soil samples from the floor and sidewalls of the excavation. The total areal extent of the excavation was approximately 645 square feet in size and with an average depth of approximately 4 feet bgs, totaling approximately 96 cubic yards of impacted material removed from the Site. The impacted soil was properly disposed of at a New Mexico-permitted land farm, specifically to the Gandy Marley, Inc. Commercial Landfill (NM-01-0019) located in Roswell, New Mexico.

Ensolum collected 5-point composite soil samples every 200 square feet from the sidewalls and floor of the excavations. The 5-point composite samples were collected by placing five equivalent aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. Composite soil samples FS01 through FS09 were collected from the floor of the excavations at approximately 4 feet bgs. Composite soil samples SW01 through SW03 were collected from the sidewalls at the ground surface to approximately 4 feet bgs. The excavation soil samples were collected, handled, and analyzed as described above. The excavation extents and excavation soil sample locations are presented on **Figure 3 in Appendix A**. Photographic documentation of the excavation is presented in **Appendix C**.

Analytical results from all confirmation soil samples collected on July 11, 2022 indicated benzene, BTEX, TPH, and chloride were in compliance with the Closure Criteria. **Table 1 in Appendix D** summarizes confirmation soil analytical results. The complete laboratory analytical report is included as **Appendix E**.

CLOSURE REQUEST

In total, 96 cubic yards of chloride and TPH-impacted soil were excavated and properly disposed of at a New Mexico permitted landfill. The excavation has been fenced off and non-waste containing caliche

has been stockpiled next to the excavation in preparation of backfilling once NMOCD give approval to do so.

Based on initial delineation and follow-up excavation activities, and results of the confirmation soil samples, it appears this remediation action has been protective of human health, the environment, and groundwater. As such, AEC respectfully requests closure for Compliance Number cEZB223154630.

If you have any questions or comments, please contact Mr. Daniel Moir at (303) 887-2946 or dmoir@ensolum.com.

Sincerely, **Ensolum**, **LLC**

Daniel R. Moir, P.G.

Senior Managing Geologist

cc: Jeff Tew, Armstrong Energy Corporation

Appendices:

Appendix A Figures

Figure 1 Site Receptor Map

Figure 2 Delineation Soil Sample Locations

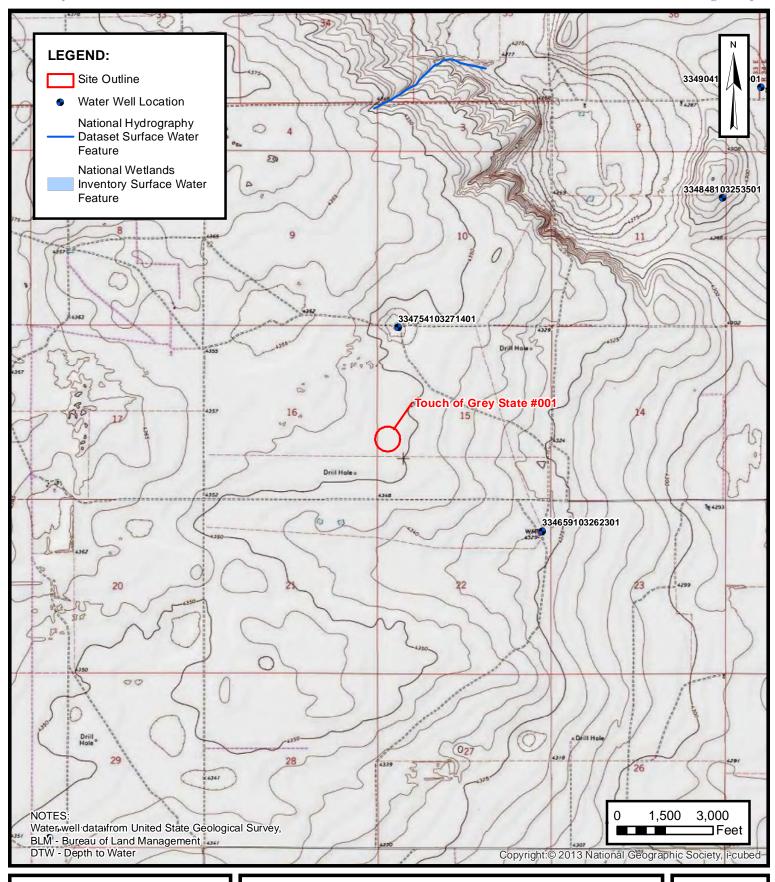
Figure 3 Excavation Confirmation Soil Sample Locations

Appendix B Well Record and Log

Appendix C Photographic Log

Appendix D Table

Table 1 Soil Sample Analytical Results


Appendix E Laboratory Analytical Reports & Chain-of-Custody Documentation

Appendix F Lithologic Soil Sampling Logs

APPENDIX A

Figures

SITE RECEPTOR MAP

ARMSTRONG ENERGY CORPORATION TOUCH OF GREY STATE #001

NAPP##### Unit L, Sec 15, T6S, R34E Roosevelt County, New Mexico **FIGURE**

DELINEATION SOIL SAMPLE LOCATIONS

ARMSTRONG ENERGY CORPORATION TOUCH OF GREY STATE #001

NAPP##### Unit L, Sec 15, T6S, R34E Roosevelt County, New Mexico FIGURE

EXCAVATION SOIL SAMPLE LOCATIONS

ARMSTRONG ENERGY CORPORATION TOUCH OF GREY STATE #001

NAPP##### Unit L, Sec 15, T6S, R34E Roosevelt County, New Mexico FIGURE

APPENDIX B

Well Record and Log

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:		Geographic Area:		
Groundwater	~	United States	~	GO

Click to hideNews Bulletins

- Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

Groundwater levels for the Nation

Important: Next Generation Monitoring Location Page

Search Results -- 1 sites found

Agency code = usgs site_no list =

• 334610103252701

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 334610103252701 06S.34E.26.22222

Roosevelt County, New Mexico Latitude 33°46'26.3", Longitude 103°25'38.8" NAD83 Land-surface elevation 4,299 feet above NAVD88 The depth of the well is 165 feet below land surface. This well is completed in the High Plains aquifer (N100HGHPLN) national aquifer.

This well is completed in the Ogallala Formation (1210GLL) local aquifer.

Output formats

Tab-separated data Graph of data

Table of data

Date	Time	Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source meas
1975-03-25		D	62610		4160.48	NGVD29	1		Z	
1975-03-25		D	62611		4162.31	NAVD88	1		Z	
1975-03-25		D	72019	136.69			1		Z	
1980-01-16		D	62610		4161.39	NGVD29	1		Z	
1980-01-16		D	62611		4163.22	NAVD88	1		Z	
1980-01-16		D	72019	135.78			1		Z	
1985-02-06		D	62610		4162.01	NGVD29	1		Z	
1985-02-06		D	62611		4163.84	NAVD88	1		Z	
1985-02-06		D	72019	135.16			1		Z	
1989-12-20		D	62610		4162.54	NGVD29	1		Z	
1989-12-20		D	62611		4164.37	NAVD88	1		Z	
1989-12-20		D	72019	134.63			1		Z	
1995-01-19		D	62610		4163.68	NGVD29	1		S	
1995-01-19		D	62611		4165.51	NAVD88	1		S	
1995-01-19		D	72019	133.49			1		S	
2016-01-27	17:40 UTC	m	62610		4166.65	NGVD29	1		s uso	3S

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measu
2016-01-27	17:40 UTC	m	62611		4168.48	NAVD88	1	S	USGS	
2016-01-27	17:40 UTC	m	72019	130.52			1	S	USGS	
2021-02-04	18:56 UTC	m	62610		4167.75	NGVD29	1	V	USGS	
2021-02-04	18:56 UTC	m	62611		4169.58	NAVD88	1	V	USGS	
2021-02-04	18:56 UTC	m	72019	129.42			1	V	USGS	
2022-01-19	18:59 UTC	m	62610		4177.13	NGVD29	1	V	USGS	
2022-01-19	18:59 UTC	m	62611		4178.96	NAVD88	1	V	USGS	
2022-01-19	18:59 UTC	m	72019	120.04			1	V	USGS	

Exp	lanation
-AP	anacion

Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Water-level date-time accuracy	m	Date is accurate to the Minute
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Method of measurement	S	Steel-tape measurement.
Method of measurement	V	Calibrated electric-tape measurement.
Method of measurement	Z	Other.
Measuring agency		Not determined
Measuring agency	USGS	U.S. Geological Survey
Source of measurement		Not determined
Source of measurement	S	Measured by personnel of reporting agency.
Water-level approval status	А	Approved for publication Processing and review completed.

Questions about sites/data?
Feedback on this web site
Automated retrievals
Help
Data Tips
Explanation of terms
Subscribe for system changes
News

Accessibility FOIA Privacy Policies and Notices U.S. Department of the Interior | U.S. Geological Survey

Title: Groundwater for USA: Water Levels URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2022-07-21 11:03:23 EDT 0.28 0.24 nadww02

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

HICCO	Water	Dogo	
USUS	vvaller.	RESU	ULCES

Data Category:		Geographic Area:		
Groundwater	~	United States	~	GO

Click to hideNews Bulletins

- Explore the NEW <u>USGS National Water Dashboard</u> interactive map to access realtime water <u>data</u> from over 13,500 stations nationwide.
- Full News 🔕

Groundwater levels for the Nation

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

site no list =

• 334610103252701

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 334610103252701 06S.34E.26.22222

Available data for this site Groundwater: Field measurements GO

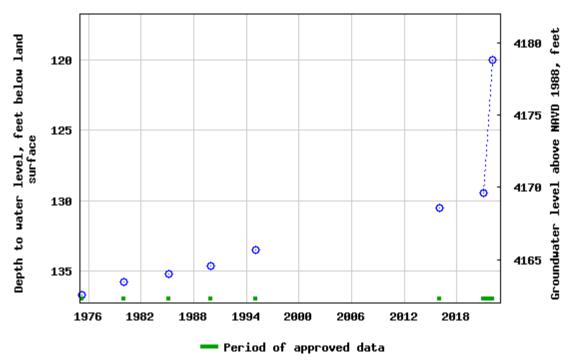
Roosevelt County, New Mexico

Hydrologic Unit Code 12050001

Latitude 33°46'26.3", Longitude 103°25'38.8" NAD83

Land-surface elevation 4,299 feet above NAVD88

The depth of the well is 165 feet below land surface.


This well is completed in the High Plains aquifer (N100HGHPLN) national aquifer.

This well is completed in the Ogallala Formation (1210GLL) local aquifer.

Output formats

Table of data	
Tab-separated data	
Graph of data	
Reselect period	

USGS 334610103252701 06S.34E.26.22222

Breaks in the plot represent a gap of at least one year between field measurements. <u>Download a presentation-quality graph</u>

Questions about sites/data?
Feedback on this web site
Automated retrievals
Help
Data Tips
Explanation of terms
Subscribe for system changes
News

Accessibility

FOIA

Privacy

Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey

Title: Groundwater for USA: Water Levels

URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u>

Page Last Modified: 2022-07-21 11:02:54 EDT

0.58 0.49 nadww02

APPENDIX C

Photographic Log

ENSOLUM

Photographic Log

Armstrong Energy Corporation Touch of Grey State #001 Compliance Number cEZB223154630 Ensolum Job Number: 09C2041002

Photograph 1
Date: 6/10/2022 - southeast side of the tank battery, view northwest

Photograph 2
Date: 6/10/2022 - Discoloration observed inside secondary containment, view northwest

Photograph 3
Date: 6/10/2022 - tank battery, view southwest.

Photograph 4
Date: 7/8/2022 - excavation extent, view northeast.

APPENDIX D

Table

Received by OCD: 9/22/2022 3:20:10 PM Page 22 of 123

ENSOLUM

TABLE 1 SOIL SAMPLE ANALYTICAL RESULTS **Armstrong Energy Corporation - Touch of Grey State #001** Roosevelt County, New Mexico

Ensolum Project No. 09C2041002

Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH MRO (mg/kg)	Total TPH (GRO+DRO+MRO) (mg/kg)	Chloride (mg/kg)
NMOCD Closure Release	Criteria for Soi (Groundwater <	•	10	NE	NE	NE	50	NE	NE	NE	100	600
					Delineation S	Soil Sample Analy	ytical Results					
SS01	6/10/2022	0.5	<0.00201	0.00423	0.00571	0.0663	0.0762	<49.9	194	60.1	254	11,800
SS02	6/10/2022	0.5	<0.00202	0.00223	0.00483	0.0591	0.0662	<50.0	<50.0	<50.0	<50.0	5,620
SS03	6/10/2022	0.5	<0.00202	0.0236	0.0131	0.183	0.219	<49.9	<49.9	<49.9	<49.9	34.3
BH01	6/24/2022	0.5	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	<49.9	<49.9	<49.9	<49.9	3,470
BH01A	6/24/2022	3	<0.00199	< 0.00199	<0.00199	<0.00398	<0.00398	<50.0	<50.0	<50.0	<50.0	226
BH02	6/24/2022	3	<0.00199	< 0.00199	<0.00199	<0.00398	<0.00398	<49.9	<49.9	<49.9	<49.9	1,010
BH02A	6/24/2022	4	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	<49.8	<49.8	<49.8	<49.8	166
BH03	6/24/2022	0.5	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	<50.0	<50.0	<50.0	<50.0	161
BH03A	6/24/2022	4	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	<49.9	<49.9	<49.9	<49.9	271
BH04	6/24/2022	0.5	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	<50.0	<50.0	<50.0	<50.0	142
BH04A	6/24/2022	4	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	<49.8	<49.8	<49.8	<49.8	308
BH05	6/24/2022	2	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	<50.0	<50.0	<50.0	<50.0	579
BH05A	6/24/2022	4	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	<50.0	<50.0	<50.0	<50.0	312
BH06	6/24/2022	0.5	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	<49.9	<49.9	<49.9	<49.9	6.35
BH06A	6/24/2022	4	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	<49.9	<49.9	<49.9	<49.9	184
				E	xcavation Confirm	nation Soil Sampl	e Analytical Resul	ts				
FS01	7/11/2022	4	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	<50.0	<50.0	<50.0	<50.0	418
FS02	7/11/2022	4	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	<49.9	<49.9	<49.9	<49.9	99.5
FS03	7/11/2022	4	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	<50.0	<50.0	<50.0	<50.0	159
FS04	7/11/2022	4	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	<50.0	<50.0	<50.0	<50.0	95.5
FS05	7/11/2022	4	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	<49.8	<49.8	<49.8	<49.8	50.8
FS06	7/11/2022	4	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	<49.9	<49.9	<49.9	<49.9	19.0
FS07	7/11/2022	4	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	<49.9	<49.9	<49.9	<49.9	24.8
FS08	7/11/2022	4	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	<50.0	<50.0	<50.0	<50.0	114
FS09	7/11/2022	4	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	<50.0	<50.0	<50.0	<50.0	13.1
SW01	7/11/2022	0-4	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	<49.8	<49.8	<49.8	<49.8	<4.99
SW02	7/11/2022	0-4	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	<50.0	<50.0	<50.0	<50.0	28.0
SW03	7/11/2022	0-4	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	<49.9	<49.9	<49.9	<49.9	12.3

Notes:

bgs: below ground surface

J: The target analyte was positively identified below the quantitation limit and above the detection limit.

mg/kg: milligrams per kilogram

NA: Not Applicable

NE: Not Established

NS: Not Sampled NMOCD: New Mexico Oil Conservation Division

PID: Photoionization Detector

ppm: parts per million

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

GRO: Gasoline Range Organics

DRO: Diesel Range Organics

MRO: Motor Oil/Lube Oil Range Organics

TPH: Total Petroleum Hydrocarbon

<49.9: indicates result less than the stated laboratory reporting limit (RL)

Concentrations in **bold** and shaded exceed the New Mexico Oil Conservation Division Table 1 Closure Criteria for Soils Impacted by a Release

Gray text indicates sample locations were excavated and are no longer present

APPENDIX E

Laboratory Analytical Reports & Chain-of-Custody Documentation

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-2408-1

Laboratory Sample Delivery Group: 09C2041002 Client Project/Site: Touch of Grey State COM 1

For:

Ensolum 705 W. Wadley Suite 210 Midland, Texas 79701

Attn: Daniel Moir

JURAMER

Authorized for release by: 6/14/2022 1:48:04 PM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

LINKS

Review your project results through

Have a Question?

www.eurofinsus.com/Env

Visit us at:

Released to Imaging: 9/27/2022 10:39:07 AM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

3

5

6

R

9

11

13

Client: Ensolum
Project/Site: Touch of Grey State COM 1
Laboratory Job ID: 890-2408-1
SDG: 09C2041002

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	14
Lab Chronicle	16
Certification Summary	17
Method Summary	18
Sample Summary	19
Chain of Custody	20
Racaint Chacklists	21

2

3

4

6

8

10

12

13

Definitions/Glossary

Job ID: 890-2408-1 Client: Ensolum Project/Site: Touch of Grey State COM 1 SDG: 09C2041002

Qualifiers

GC VOA

Qualifier **Qualifier Description** MS and/or MSD recovery exceeds control limits.

U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description** *+ LCS and/or LCSD is outside acceptance limits, high biased. S1+ Surrogate recovery exceeds control limits, high biased.

Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

F1 MS and/or MSD recovery exceeds control limits.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit Contains No Free Liquid **CNF**

Duplicate Error Ratio (normalized absolute difference) DER

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) LOQ

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL ML Minimum Level (Dioxin) MPN Most Probable Number

Method Quantitation Limit NC Not Calculated

MOI

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL

PRES Presumptive **Quality Control** QC

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Eurofins Carlsbad

Case Narrative

Client: Ensolum

Project/Site: Touch of Grey State COM 1

Job ID: 890-2408-1 SDG: 09C2041002

2041002

Job ID: 890-2408-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-2408-1

Receipt

The samples were received on 6/13/2022 9:28 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.8°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The laboratory control sample (LCS) associated with preparation batch 880-27449 and analytical batch 880-27351 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (LCS 880-27449/2-A), (LCSD 880-27449/3-A) and (890-2404-A-57-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

5

6

Q

11

13

| | 4

Client Sample Results

Client: Ensolum Job ID: 890-2408-1
Project/Site: Touch of Grey State COM 1 SDG: 09C2041002

Client Sample ID: SS01 Lab Sample ID: 890-2408-1

Date Collected: 06/10/22 17:30 Matrix: Solid
Date Received: 06/13/22 09:28

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U	0.00201	mg/Kg		06/13/22 13:48	06/13/22 18:33	
Toluene	0.00423	F1	0.00201	mg/Kg		06/13/22 13:48	06/13/22 18:33	
Ethylbenzene	0.00571	F1	0.00201	mg/Kg		06/13/22 13:48	06/13/22 18:33	
m-Xylene & p-Xylene	0.0540	F1	0.00402	mg/Kg		06/13/22 13:48	06/13/22 18:33	
o-Xylene	0.0123		0.00201	mg/Kg		06/13/22 13:48	06/13/22 18:33	
Xylenes, Total	0.0663	F1	0.00402	mg/Kg		06/13/22 13:48	06/13/22 18:33	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)			70 - 130			06/13/22 13:48	06/13/22 18:33	
1,4-Difluorobenzene (Surr)	95		70 - 130			06/13/22 13:48	06/13/22 18:33	
Method: Total BTEX - Total BT	EX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	0.0762		0.00402	mg/Kg			06/14/22 09:13	
Method: 8015 NM - Diesel Ran	ge Organics (DR)	O) (GC)						
Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	254		49.9	mg/Kg			06/14/22 09:33	
Method: 8015B NM - Diesel Ra	nge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		06/13/22 16:14	06/14/22 00:51	
Diesel Range Organics (Over C10-C28)	194	*+	49.9	mg/Kg		06/13/22 16:14	06/14/22 00:51	
Oll Range Organics (Over C28-C36)	60.1		49.9	mg/Kg		06/13/22 16:14	06/14/22 00:51	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	98		70 - 130			06/13/22 16:14	06/14/22 00:51	
o-Terphenyl	115		70 - 130			06/13/22 16:14	06/14/22 00:51	
Method: 300.0 - Anions, Ion Ch	romatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
	11800		99.6	mg/Kg			06/14/22 12:57	2

Client Sample ID: SS02

Date Collected: 06/10/22 17:35

Lab Sample ID: 890-2408-2

Matrix: Solid

Date Collected: 06/10/22 17:35 Date Received: 06/13/22 09:28

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		06/13/22 13:48	06/13/22 18:54	1
Toluene	0.00223		0.00202	mg/Kg		06/13/22 13:48	06/13/22 18:54	1
Ethylbenzene	0.00483		0.00202	mg/Kg		06/13/22 13:48	06/13/22 18:54	1
m-Xylene & p-Xylene	0.0466		0.00404	mg/Kg		06/13/22 13:48	06/13/22 18:54	1
o-Xylene	0.0125		0.00202	mg/Kg		06/13/22 13:48	06/13/22 18:54	1
Xylenes, Total	0.0591		0.00404	mg/Kg		06/13/22 13:48	06/13/22 18:54	1

Eurofins Carlsbad

2

2

_

8

10

12

Client: Ensolum Job ID: 890-2408-1 Project/Site: Touch of Grey State COM 1 SDG: 09C2041002

Client Sample ID: SS02 Lab Sample ID: 890-2408-2

Date Collected: 06/10/22 17:35 Matrix: Solid Date Received: 06/13/22 09:28

Sample Depth: 0.5

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	121		70 - 130			06/13/22 13:48	06/13/22 18:54	
1,4-Difluorobenzene (Surr)	92		70 - 130			06/13/22 13:48	06/13/22 18:54	
· Method: Total BTEX - Total BTEX	(Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	0.0662		0.00404	mg/Kg			06/14/22 09:13	
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0	mg/Kg			06/14/22 09:33	
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		06/13/22 16:14	06/14/22 01:11	
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U *+	50.0	mg/Kg		06/13/22 16:14	06/14/22 01:11	
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		06/13/22 16:14	06/14/22 01:11	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	97		70 - 130			06/13/22 16:14	06/14/22 01:11	
o-Terphenyl	114		70 - 130			06/13/22 16:14	06/14/22 01:11	
Method: 300.0 - Anions, Ion Chr	omatography -	Soluble						
	D14	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte	Result	Qualifier	RL.	Oilit		riepaieu	Allalyzeu	Dilla

Client Sample ID: SS03 Lab Sample ID: 890-2408-3 **Matrix: Solid**

Date Collected: 06/10/22 17:40 Date Received: 06/13/22 09:28

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		06/13/22 13:48	06/13/22 19:14	1
Toluene	0.0236		0.00202	mg/Kg		06/13/22 13:48	06/13/22 19:14	1
Ethylbenzene	0.0131		0.00202	mg/Kg		06/13/22 13:48	06/13/22 19:14	1
m-Xylene & p-Xylene	0.151		0.00403	mg/Kg		06/13/22 13:48	06/13/22 19:14	1
o-Xylene	0.0316		0.00202	mg/Kg		06/13/22 13:48	06/13/22 19:14	1
Xylenes, Total	0.183		0.00403	mg/Kg		06/13/22 13:48	06/13/22 19:14	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130			06/13/22 13:48	06/13/22 19:14	1
1,4-Difluorobenzene (Surr)	88		70 - 130			06/13/22 13:48	06/13/22 19:14	1
Method: Total BTEX - Total B1	EX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.219		0.00403	mg/Kg			06/14/22 09:13	1
Method: 8015 NM - Diesel Rar	ige Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Carlsbad

Matrix: Solid

Client Sample Results

Client: Ensolum Job ID: 890-2408-1
Project/Site: Touch of Grey State COM 1 SDG: 09C2041002

Client Sample ID: SS03 Lab Sample ID: 890-2408-3

Date Collected: 06/10/22 17:40
Date Received: 06/13/22 09:28

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		06/13/22 16:14	06/14/22 01:32	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U *+	49.9	mg/Kg		06/13/22 16:14	06/14/22 01:32	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		06/13/22 16:14	06/14/22 01:32	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	99		70 - 130			06/13/22 16:14	06/14/22 01:32	1
o-Terphenyl	112		70 - 130			06/13/22 16:14	06/14/22 01:32	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

6

8

11

Surrogate Summary

Client: Ensolum Job ID: 890-2408-1
Project/Site: Touch of Grey State COM 1 SDG: 09C2041002

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-2408-1	SS01	111	95	
890-2408-1 MS	SS01	115	99	
890-2408-1 MSD	SS01	113	95	
890-2408-2	SS02	121	92	
890-2408-3	SS03	108	88	
LCS 880-27445/1-A	Lab Control Sample	104	99	
LCSD 880-27445/2-A	Lab Control Sample Dup	103	100	
MB 880-27445/5-A	Method Blank	101	90	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

_			
		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-2404-A-57-B MS	Matrix Spike	108	113
890-2404-A-57-C MSD	Matrix Spike Duplicate	97	105
890-2408-1	SS01	98	115
890-2408-2	SS02	97	114
890-2408-3	SS03	99	112
LCS 880-27449/2-A	Lab Control Sample	125	137 S1+
LCSD 880-27449/3-A	Lab Control Sample Dup	123	132 S1+
MB 880-27449/1-A	Method Blank	104	125

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Carlsbad

Client: Ensolum Job ID: 890-2408-1 SDG: 09C2041002 Project/Site: Touch of Grey State COM 1

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-27445/5-A

Matrix: Solid Analysis Batch: 27442 Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 27445

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		06/13/22 13:48	06/13/22 18:12	1
Toluene	<0.00200	U	0.00200	mg/Kg		06/13/22 13:48	06/13/22 18:12	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		06/13/22 13:48	06/13/22 18:12	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		06/13/22 13:48	06/13/22 18:12	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		06/13/22 13:48	06/13/22 18:12	1
Xylenes, Total	< 0.00400	U	0.00400	mg/Kg		06/13/22 13:48	06/13/22 18:12	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130	06/13/22 13:48	06/13/22 18:12	1
1,4-Difluorobenzene (Surr)	90		70 - 130	06/13/22 13:48	06/13/22 18:12	1

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 880-27445/1-A

Matrix: Solid

Analysis Batch: 27442

Prep Type: Total/NA

Prep Batch: 27445

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09888		mg/Kg		99	70 - 130	
Toluene	0.100	0.09736		mg/Kg		97	70 - 130	
Ethylbenzene	0.100	0.1022		mg/Kg		102	70 - 130	
m-Xylene & p-Xylene	0.200	0.2087		mg/Kg		104	70 - 130	
o-Xylene	0.100	0.1050		mg/Kg		105	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	104	70 - 130
1,4-Difluorobenzene (Surr)	99	70 - 130

Lab Sample ID: LCSD 880-27445/2-A

Matrix: Solid

Analysis Batch: 27442

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 27445

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.08909		mg/Kg		89	70 - 130	10	35
Toluene	0.100	0.08588		mg/Kg		86	70 - 130	13	35
Ethylbenzene	0.100	0.09250		mg/Kg		93	70 - 130	10	35
m-Xylene & p-Xylene	0.200	0.1885		mg/Kg		94	70 - 130	10	35
o-Xylene	0.100	0.09464		mg/Kg		95	70 - 130	10	35

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	103	70 - 130
1,4-Difluorobenzene (Surr)	100	70 - 130

Lab Sample ID: 890-2408-1 MS

Matrix: Solid

Analysis Batch: 27442

Client Sample ID: SS01 Prep Type: Total/NA

Prep Batch: 27445

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U	0.100	0.09215		mg/Kg	_	92	70 - 130	
Toluene	0.00423	F1	0.100	0.09015		mg/Kg		86	70 - 130	

Eurofins Carlsbad

Client: Ensolum

Project/Site: Touch of Grey State COM 1

Job ID: 890-2408-1

SDG: 09C2041002

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-2408-1 MS

Lab Sample ID: 890-2408-1 MSD

Matrix: Solid

Matrix: Solid

Analysis Batch: 27442

Client Sample ID: SS01 Prep Type: Total/NA

Prep Batch: 27445

Sample	Sample	Бріке	IVIS	IVIS				%Rec	
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
0.00571	F1	0.100	0.09119		mg/Kg		85	70 - 130	
0.0540	F1	0.200	0.2202		mg/Kg		83	70 - 130	
0.0123		0.100	0.1007		mg/Kg		88	70 - 130	
	0.00571 0.0540	Result Qualifier 0.00571 F1 0.0540 F1	Result Qualifier Added 0.00571 F1 0.100 0.0540 F1 0.200	Result Qualifier Added Result 0.00571 F1 0.100 0.09119 0.0540 F1 0.200 0.2202	Result 0.00571 Qualifier Added 0.100 Result 0.09119 Qualifier 0.0540 F1 0.200 0.2202	Result 0.00571 Qualifier F1 Added 0.100 Result 0.09119 Qualifier mg/Kg Unit mg/Kg 0.0540 F1 0.200 0.2202 mg/Kg	Result 0.00571 Qualifier F1 Added 0.100 Result 0.09119 Qualifier mg/Kg Unit mg/Kg D 0.0540 F1 0.200 0.2202 mg/Kg	Result 0.00571 Qualifier Added 0.009119 Result 0.009119 Unit 0.000 0.0000 D %Rec 0.0000 0.0540 F1 0.200 0.2202 mg/Kg 83	Result Qualifier Added One of the property of the prop

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	115		70 - 130
1,4-Difluorobenzene (Surr)	99		70 - 130

Client Sample ID: SS01

Prep Type: Total/NA

Prep Batch: 27445

Analysis Batch: 27442 Sample Sample Spike MSD MSD Result Qualifier Added Result Qualifier %Rec RPD Limit Analyte Unit Limits 0.0996 Benzene <0.00201 U 0.07166 mg/Kg 72 70 - 130 25 35 Toluene 0.0996 0.07254 F1 0.00423 F1 mg/Kg 69 70 - 130 22 35 Ethylbenzene 0.00571 F1 0.0996 0.07476 F1 69 70 - 130 20 35 mg/Kg 0.199 0.1825 F1 70 - 130 m-Xylene & p-Xylene 0.0540 F1 mg/Kg 64 19 35 0.0996 0.08388 72 70 - 130 o-Xylene 0.0123 mg/Kg 18

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	113		70 - 130
1,4-Difluorobenzene (Surr)	95		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-27449/1-A

Matrix: Solid

Analysis Batch: 27351

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 27449

	IND	IVID						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		06/13/22 16:14	06/13/22 22:06	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		06/13/22 16:14	06/13/22 22:06	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		06/13/22 16:14	06/13/22 22:06	1

MB MB

MR MR

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	104		70 - 130	06/13/22 16	14 06/13/22 22:06	1
o-Terphenyl	125		70 - 130	06/13/22 16	14 06/13/22 22:06	1

Lab Sample ID: LCS 880-27449/2-A

Matrix: Solid

Analysis Batch: 27351

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 27449

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics	1000	1174	-	mg/Kg		117	70 - 130
(GRO)-C6-C10							
Diesel Range Organics (Over	1000	1455	*+	mg/Kg		145	70 - 130
C10_C28)							

Eurofins Carlsbad

C10-C28)

Job ID: 890-2408-1

mg/Kg

SDG: 09C2041002

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-27449/2-A

Lab Sample ID: LCSD 880-27449/3-A

Lab Sample ID: 890-2404-A-57-B MS

Lab Sample ID: 890-2404-A-57-C MSD

Project/Site: Touch of Grey State COM 1

Matrix: Solid

Matrix: Solid

Client: Ensolum

Analysis Batch: 27351

Diesel Range Organics (Over

Analysis Batch: 27351

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 27449

LCS LCS

Surrogate %Recovery Qualifier Limits 1-Chlorooctane 125 70 - 130 o-Terphenyl 137 S1+ 70 - 130

Client Sample ID: Lab Control Sample Dup

70 - 130

143

Prep Type: Total/NA

Analysis Batch: 27351 Prep Batch: 27449 Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit 1000 1160 116 70 - 13020 Gasoline Range Organics mg/Kg (GRO)-C6-C10

1434 *+

1000

C10-C28)

LCSD LCSD

Surrogate %Recovery Qualifier Limits 70 - 130 1-Chlorooctane 123 132 S1+ 70 - 130 o-Terphenyl

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 27449

Sample Sample MS MS Spike Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits D Gasoline Range Organics <49.9 U 998 1066 mg/Kg 107 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over <49.9 U*+ 998 1010 mg/Kg 101 70 - 130

C10-C28)

Matrix: Solid

MS MS

%Recovery Qualifier Surrogate Limits 70 - 130 1-Chlorooctane 108 70 - 130 o-Terphenyl 113

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA Prep Batch: 27449

RPD %Rec

Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit U 999 905.7 91 Gasoline Range Organics <49.9 mg/Kg 70 - 130 16 20 (GRO)-C6-C10 Diesel Range Organics (Over <49.9 U*+ 999 941.1 mg/Kg 94 70 - 130 7 20

Spike

MSD MSD

C10-C28)

Matrix: Solid

Analysis Batch: 27351

MSD MSD

Sample Sample

Qualifier Surrogate %Recovery Limits 1-Chlorooctane 97 70 - 130 105 70 - 130 o-Terphenyl

Eurofins Carlsbad

Client Sample ID: Method Blank

0/ Doo

Prep Type: Soluble

Job ID: 890-2408-1

Client: Ensolum SDG: 09C2041002 Project/Site: Touch of Grey State COM 1

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-27302/1-A

Matrix: Solid

Analysis Batch: 27457

	МВ	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00	mg/Kg			06/14/22 01:35	1

Lab Sample ID: LCS 880-27302/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble**

Analysis Batch: 27457

	Spike	LUS	LUS				/orec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	250	252.9		mg/Kg		101	90 - 110	

Chiles

Lab Sample ID: LCSD 880-27302/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 27457

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	260.6		mg/Kg		104	90 - 110	3	20

Client Sample ID: Matrix Spike Lab Sample ID: 880-15727-A-11-B MS **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 27457

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	2330	F1	1240	3749	F1	mg/Kg	_	114	90 - 110	

Lab Sample ID: 880-15727-A-11-C MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 27457

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	2330	F1	1240	3661		ma/Ka		107	90 - 110	2	20	

Lab Sample ID: MB 880-27446/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 27482

MR MR

		1410						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00	mg/Kg			06/14/22 08:38	1

Lab Sample ID: LCS 880-27446/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble**

Analysis Batch: 27482

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	250	233.7		mg/Kg		93	90 - 110	

Lab Sample ID: LCSD 880-27446/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 27482

,	Sp	ke LCS	D LCSD				%Rec		RPD
Analyte	Add	ed Resu	lt Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride		50 236	6	mg/Kg		95	90 - 110	1	20

Eurofins Carlsbad

QC Sample Results

Client: Ensolum Job ID: 890-2408-1 Project/Site: Touch of Grey State COM 1

SDG: 09C2041002

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 890-2407-A-11-C MS Client Sample ID: Matrix Spike **Matrix: Solid**

Prep Type: Soluble

Analysis Batch: 27482

Sample Sample Spike MS MS %Rec Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits Chloride 208 249 448.4 mg/Kg 96 90 - 110

Client Sample ID: Matrix Spike Duplicate

Prep Type: Soluble

Analysis Batch: 27482

Matrix: Solid

Lab Sample ID: 890-2407-A-11-D MSD

Sample Sample Spike MSD MSD %Rec RPD Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec Chloride 208 249 447.1 mg/Kg 96 90 - 110 0 20

Client: Ensolum Job ID: 890-2408-1
Project/Site: Touch of Grey State COM 1 SDG: 09C2041002

GC VOA

Analysis Batch: 27442

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2408-1	SS01	Total/NA	Solid	8021B	27445
890-2408-2	SS02	Total/NA	Solid	8021B	27445
890-2408-3	SS03	Total/NA	Solid	8021B	27445
MB 880-27445/5-A	Method Blank	Total/NA	Solid	8021B	27445
LCS 880-27445/1-A	Lab Control Sample	Total/NA	Solid	8021B	27445
LCSD 880-27445/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	27445
890-2408-1 MS	SS01	Total/NA	Solid	8021B	27445
890-2408-1 MSD	SS01	Total/NA	Solid	8021B	27445

Prep Batch: 27445

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2408-1	SS01	Total/NA	Solid	5035	<u> </u>
890-2408-2	SS02	Total/NA	Solid	5035	
890-2408-3	SS03	Total/NA	Solid	5035	
MB 880-27445/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-27445/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-27445/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-2408-1 MS	SS01	Total/NA	Solid	5035	
890-2408-1 MSD	SS01	Total/NA	Solid	5035	

Analysis Batch: 27472

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2408-1	SS01	Total/NA	Solid	Total BTEX	
890-2408-2	SS02	Total/NA	Solid	Total BTEX	
890-2408-3	SS03	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 27351

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2408-1	SS01	Total/NA	Solid	8015B NM	27449
890-2408-2	SS02	Total/NA	Solid	8015B NM	27449
890-2408-3	SS03	Total/NA	Solid	8015B NM	27449
MB 880-27449/1-A	Method Blank	Total/NA	Solid	8015B NM	27449
LCS 880-27449/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	27449
LCSD 880-27449/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	27449
890-2404-A-57-B MS	Matrix Spike	Total/NA	Solid	8015B NM	27449
890-2404-A-57-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	27449

Prep Batch: 27449

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2408-1	SS01	Total/NA	Solid	8015NM Prep	· · · · · · · · · · · · · · · · · · ·
890-2408-2	SS02	Total/NA	Solid	8015NM Prep	
890-2408-3	SS03	Total/NA	Solid	8015NM Prep	
MB 880-27449/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-27449/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-27449/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-2404-A-57-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-2404-A-57-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Eurofins Carlsbad

2

3

4

6

8

9

11

13

14

Client: Ensolum

Project/Site: Touch of Grey State COM 1

Job ID: 890-2408-1 SDG: 09C2041002

GC Semi VOA

Analysis Batch: 27480

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2408-1	SS01	Total/NA	Solid	8015 NM	
890-2408-2	SS02	Total/NA	Solid	8015 NM	
890-2408-3	SS03	Total/NA	Solid	8015 NM	
_					

HPLC/IC

Leach Batch: 27302

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2408-3	SS03	Soluble	Solid	DI Leach	
MB 880-27302/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-27302/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-27302/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-15727-A-11-B MS	Matrix Spike	Soluble	Solid	DI Leach	
880-15727-A-11-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Leach Batch: 27446

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2408-1	SS01	Soluble	Solid	DI Leach	_
890-2408-2	SS02	Soluble	Solid	DI Leach	
MB 880-27446/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-27446/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-27446/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-2407-A-11-C MS	Matrix Spike	Soluble	Solid	DI Leach	
890-2407-A-11-D MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 27457

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2408-3	SS03	Soluble	Solid	300.0	27302
MB 880-27302/1-A	Method Blank	Soluble	Solid	300.0	27302
LCS 880-27302/2-A	Lab Control Sample	Soluble	Solid	300.0	27302
LCSD 880-27302/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	27302
880-15727-A-11-B MS	Matrix Spike	Soluble	Solid	300.0	27302
880-15727-A-11-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	27302

Analysis Batch: 27482

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2408-1	SS01	Soluble	Solid	300.0	27446
890-2408-2	SS02	Soluble	Solid	300.0	27446
MB 880-27446/1-A	Method Blank	Soluble	Solid	300.0	27446
LCS 880-27446/2-A	Lab Control Sample	Soluble	Solid	300.0	27446
LCSD 880-27446/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	27446
890-2407-A-11-C MS	Matrix Spike	Soluble	Solid	300.0	27446
890-2407-A-11-D MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	27446

Project/Site: Touch of Grey State COM 1

Client: Ensolum

Job ID: 890-2408-1

SDG: 09C2041002

Client Sample ID: SS01

Lab Sample ID: 890-2408-1

Matrix: Solid

Date Collected: 06/10/22 17:30 Date Received: 06/13/22 09:28

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	27445	06/13/22 13:48	MR	XEN MID
Total/NA	Analysis	8021B		1	5 g	5 mL	27442	06/13/22 18:33	AJ	XEN MID
Total/NA	Analysis	Total BTEX		1			27472	06/14/22 09:13	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27480	06/14/22 09:33	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	27449	06/13/22 16:14	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27351	06/14/22 00:51	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	27446	06/13/22 14:08	CH	XEN MID
Soluble	Analysis	300.0		20			27482	06/14/22 12:57	CH	XEN MID

Client Sample ID: SS02 Lab Sample ID: 890-2408-2

Date Collected: 06/10/22 17:35 **Matrix: Solid**

Date Received: 06/13/22 09:28

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	27445	06/13/22 13:48	MR	XEN MID
Total/NA	Analysis	8021B		1	5 g	5 mL	27442	06/13/22 18:54	AJ	XEN MID
Total/NA	Analysis	Total BTEX		1			27472	06/14/22 09:13	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27480	06/14/22 09:33	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	27449	06/13/22 16:14	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27351	06/14/22 01:11	AJ	XEN MID
Soluble	Leach	DI Leach			4.97 g	50 mL	27446	06/13/22 14:08	CH	XEN MID
Soluble	Analysis	300.0		10			27482	06/14/22 13:05	CH	XEN MID

Client Sample ID: SS03 Lab Sample ID: 890-2408-3

Date Collected: 06/10/22 17:40 Date Received: 06/13/22 09:28

Dil Final Batch Batch Initial Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 5035 4.96 g 5 mL 27445 06/13/22 13:48 MR XEN MID Total/NA Analysis 8021B 5 g 5 mL 27442 06/13/22 19:14 AJ XEN MID Total/NA Analysis Total BTEX 27472 06/14/22 09:13 A.I XEN MID 1 Total/NA Analysis 8015 NM 27480 06/14/22 09:33 ΑJ XEN MID Total/NA XEN MID Prep 8015NM Prep 10.02 g 10 mL 27449 06/13/22 16:14 DM Total/NA Analysis 8015B NM 27351 06/14/22 01:32 XEN MID ΑJ Soluble Leach DI Leach 50 mL 27302 06/13/22 10:31 SC XEN MID 5 g Soluble Analysis 300.0 27457 06/14/22 06:02 CH XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Matrix: Solid

Accreditation/Certification Summary

Client: Ensolum Job ID: 890-2408-1 Project/Site: Touch of Grey State COM 1

SDG: 09C2041002

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date	
Texas	NE	ELAP	T104704400-21-22	06-30-22	
The following analytes	are included in this report, bu	ıt the laboratory is not certifi	ied by the governing authority. This list ma	av include analvtes f	
the agency does not of	fer certification.			,	
the agency does not of Analysis Method	fer certification . Prep Method	Matrix	Analyte	,	
0 ,		Matrix Solid	Analyte Total TPH		

Method Summary

Client: Ensolum

Project/Site: Touch of Grey State COM 1

Job ID: 890-2408-1

SDG: 09C2041002

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

3

4

6

9

10

12

15

Ш

Sample Summary

Client: Ensolum

Project/Site: Touch of Grey State COM 1

Job ID: 890-2408-1

SDG: 09C2041002

.041002	

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-2408-1	SS01	Solid	06/10/22 17:30	06/13/22 09:28	0.5
890-2408-2	SS02	Solid	06/10/22 17:35	06/13/22 09:28	0.5
890-2408-3	SS03	Solid	06/10/22 17:40	06/13/22 09:28	0.5

Circle Method(s) and Metal(s)

Total 200.7 / 6010

service. Eurofins Xenco will be liable only for t

Relinquished by: (Signature) fins Xenco. A minimum charge of \$85.00 ce: Signature of this document and relinqu

13 14

eurofins Xenco **Environment Testing**

Phone:

City, State ZIP:

ddress:

Address: Company Name:

> State of Project: Program:

UST/PST PRP Brownfields

RRC

Superfund [

Work Order Comments

www.xenco.com

Page

Bill to: (if different)

Company Name: Project Manager:

Project Name:

Project Number:

SAMPLE RECEIPT

Sample Custody Seals: Cooler Custody Seals: samples Received Intact:

fotal Containers:

Sample Identification

Sampler's Name:

roject Location:

Chain of Custody

Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300

ANALYSIS REQUEST ANALYSIS REQUEST ANALYSIS REQUEST B90-2408 Chain of Cus 890-2408 Chain of Cus	Reporting: Level III Level III ST/UST TRRP Level IV Deliverables: EDD ADaPT Other: ANALYSIS REQUEST ANALY	Je 100 1322 2925	unil be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client it such losses are due to circumstances beyond the control uncharge of \$55.00 will be applied to each project and a charge of \$5 for each sample submitted to Euroffins Xenco, but not analyzed. These terms will be enforced unless previously negotiated in the control of the cont	10 200.8 / 6020: 8RCRA 13PPM Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo 1 and Metal(s) to be analyzed TCLP / SPLP 6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U cument and relinquishment of samples constitutes a valid purchase order from client company to Europins Stence, its affiliates and subcontractors. It assigns standard terms and conditions with the control of samples and the light services proposed by the control of samples and the light services proposed by the control of samples and the light services proposed by the control of samples and the light services proposed by the control of samples and the light services are cont		1740 V V V V V	5 6110/22 1730 0.5 6 1	tification Matrix Sampled Sampled Depth Comp Cont	Temperature Reading: 6.0	Thermometer ID: WWW OO I Parame)(2)(TAT starts the day received by	22 Code	real state con:	3038872946 Email: drynoir @ensown.C	Carllyac INM 88220 City, State ZIP:
	eccivity Se J H H H H H H H H H H H H H H H H H H		h losses are due to circumstances beyond the control. These terms will be enforced unless previously not Relinquished by: (Signature)	a Cr Co Cu Fe Pb Mg Mn Mo Co Cu Pb Mn Mo Ni Se Ag TI contractors. It assigns standard terms and conditions to the contractors.					890-2408 Chain of Cus					ANALYSIS REQUEST	CAN L	Reporti

Work Order No:

Login Sample Receipt Checklist

Client: Ensolum Job Number: 890-2408-1 SDG Number: 09C2041002

List Source: Eurofins Carlsbad

Login Number: 2408 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Login Sample Receipt Checklist

Job Number: 890-2408-1 SDG Number: 09C2041002

List Source: Eurofins Midland

List Creation: 06/14/22 09:07 AM

Creator: Kramer, Jessica

Login Number: 2408

Client: Ensolum

List Number: 2

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Released to Imaging: 9/27/2022 10:39:07 AM

<6mm (1/4").

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-2467-1

Laboratory Sample Delivery Group: 09C2041001 Client Project/Site: TOUCH OF GREY STATE COM #1

For:

Ensolum 705 W. Wadley Suite 210 Midland, Texas 79701

Attn: Daniel Moir

JURAMER

Authorized for release by: 6/29/2022 10:28:14 AM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

.....Links

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env
Released to Imaging: 9/27/2022 10:39:07 AM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

3

6

8

9

11

13

14

Client: Ensolum Project/Site: TOUCH OF GREY STATE COM #1 Laboratory Job ID: 890-2467-1 SDG: 09C2041001

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	15
QC Sample Results	16
QC Association Summary	20
Lab Chronicle	23
Certification Summary	27
Method Summary	28
Sample Summary	29
Chain of Custody	30
Receipt Checklists	32

2

3

4

6

8

10

40

13

14

Definitions/Glossary

Job ID: 890-2467-1 Client: Ensolum Project/Site: TOUCH OF GREY STATE COM #1 SDG: 09C2041001

Qualifiers

GC VOA Qualifier

Qualifier Description MS and/or MSD recovery exceeds control limits.

U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description** *1 LCS/LCSD RPD exceeds control limits. F1 MS and/or MSD recovery exceeds control limits. S1+ Surrogate recovery exceeds control limits, high biased.

Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report. ¤ Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit Contains No Free Liquid **CNF** Duplicate Error Ratio (normalized absolute difference) DER Dil Fac Dilution Factor

Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) LOQ

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL ML Minimum Level (Dioxin) MPN Most Probable Number MOI Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present **Practical Quantitation Limit PQL**

PRES Presumptive

Quality Control QC

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Case Narrative

Client: Ensolum

Project/Site: TOUCH OF GREY STATE COM #1 SDG: 09C2041001

ODO. 000

Job ID: 890-2467-1

Job ID: 890-2467-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-2467-1

Receipt

The samples were received on 6/27/2022 9:09 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.0°C

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate / sample duplicate (MS/MSD/DUP) precision for preparation batch 880-28488 and analytical batch 880-28474 was outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (LCS 880-28506/2-A). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: BH01A (890-2467-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: BH02A (890-2467-4), BH03 (890-2467-5) and BH03A (890-2467-6). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: BH05A (890-2467-10). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-28506 and analytical batch 880-28522 recovered outside control limits for the following analytes: Gasoline Range Organics (GRO)-C6-C10.

Method 8015MOD_NM: The matrix spike (MS) recoveries for preparation batch 880-28506 and analytical batch 880-28522 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

J

6

7

10

12

13

12

Matrix: Solid

Lab Sample ID: 890-2467-1

Client Sample Results

Client: Ensolum Job ID: 890-2467-1 Project/Site: TOUCH OF GREY STATE COM #1 SDG: 09C2041001

Client Sample ID: BH01

Date Collected: 06/24/22 09:20 Date Received: 06/27/22 09:09

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/27/22 21:57	1
Toluene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/27/22 21:57	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/27/22 21:57	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		06/27/22 15:29	06/27/22 21:57	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/27/22 21:57	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		06/27/22 15:29	06/27/22 21:57	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130			06/27/22 15:29	06/27/22 21:57	1
1,4-Difluorobenzene (Surr)	102		70 - 130			06/27/22 15:29	06/27/22 21:57	1
Method: Total BTEX - Total BTE	(Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00399	U	0.00399	mg/Kg			06/28/22 09:49	1
Method: 8015 NM - Diesel Range Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			06/29/22 11:12	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U *1 F1	49.9	mg/Kg		06/28/22 08:51	06/28/22 14:22	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		06/28/22 08:51	06/28/22 14:22	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		06/28/22 08:51	06/28/22 14:22	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	117		70 - 130			06/28/22 08:51	06/28/22 14:22	1
	103		70 - 130			06/28/22 08:51	06/28/22 14:22	1
o-Terphenyl								
	omatography -	Soluble						
o-Terphenyl Method: 300.0 - Anions, Ion Chro Analyte	• • •	Soluble Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH01A

Date Collected: 06/24/22 10:10 Date Received: 06/27/22 09:09

Sample Depth: 3

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		06/27/22 15:29	06/27/22 22:17	1
Toluene	<0.00199	U	0.00199	mg/Kg		06/27/22 15:29	06/27/22 22:17	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		06/27/22 15:29	06/27/22 22:17	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		06/27/22 15:29	06/27/22 22:17	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		06/27/22 15:29	06/27/22 22:17	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		06/27/22 15:29	06/27/22 22:17	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130			06/27/22 15:29	06/27/22 22:17	

Eurofins Carlsbad

Lab Sample ID: 890-2467-2

Matrix: Solid

Job ID: 890-2467-1

Client: Ensolum Project/Site: TOUCH OF GREY STATE COM #1 SDG: 09C2041001

Client Sample ID: BH01A Lab Sample ID: 890-2467-2

Date Collected: 06/24/22 10:10 Matrix: Solid Date Received: 06/27/22 09:09

Sample Depth: 3

Method: 8021B - Volatile Orga	nic Compounds (GC) (Conti	nued)					
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	100		70 - 130			06/27/22 15:29	06/27/22 22:17	1
- Method: Total BTEX - Total BT	EX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			06/28/22 09:49	1
- Method: 8015 NM - Diesel Ran	ige Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			06/29/22 11:12	1
- Method: 8015B NM - Diesel Ra	ange Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U *1	50.0	mg/Kg		06/28/22 08:51	06/28/22 15:26	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		06/28/22 08:51	06/28/22 15:26	1
C10-C28)								

	Oil Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg	06/28/22 08:51	06/28/22 15:26	1
	Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
	1-Chlorooctane	136	S1+	70 - 130		06/28/22 08:51	06/28/22 15:26	1
Ĺ	o-Terphenyl	122		70 - 130		06/28/22 08:51	06/28/22 15:26	1

Method: 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RLUnit D Prepared Analyzed Dil Fac Chloride 226 4.97 mg/Kg 06/28/22 17:44

Client Sample ID: BH02 Lab Sample ID: 890-2467-3 Date Collected: 06/24/22 10:30 **Matrix: Solid**

Date Received: 06/27/22 09:09

Sample Depth: 3

Total TPH

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		06/27/22 15:29	06/28/22 00:08	1
Toluene	< 0.00199	U	0.00199	mg/Kg		06/27/22 15:29	06/28/22 00:08	1
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		06/27/22 15:29	06/28/22 00:08	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		06/27/22 15:29	06/28/22 00:08	1
o-Xylene	< 0.00199	U	0.00199	mg/Kg		06/27/22 15:29	06/28/22 00:08	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		06/27/22 15:29	06/28/22 00:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	116		70 - 130			06/27/22 15:29	06/28/22 00:08	1
1,4-Difluorobenzene (Surr)	100		70 - 130			06/27/22 15:29	06/28/22 00:08	1
Method: Total BTEX - Total B	ΓEX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			06/28/22 09:49	1
Method: Iotal BTEX - Iotal B Analyte Total BTEX Method: 8015 NM - Diesel Rar	<0.00398	U			<u>D</u>	Prepared		

Eurofins Carlsbad

06/29/22 11:12

49.9

mg/Kg

<49.9 U

Matrix: Solid

Lab Sample ID: 890-2467-3

Client Sample Results

Client: Ensolum Job ID: 890-2467-1 Project/Site: TOUCH OF GREY STATE COM #1 SDG: 09C2041001

Client Sample ID: BH02

Date Collected: 06/24/22 10:30 Date Received: 06/27/22 09:09

Sample Depth: 3

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U *1	49.9	mg/Kg		06/28/22 08:51	06/28/22 15:48	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		06/28/22 08:51	06/28/22 15:48	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		06/28/22 08:51	06/28/22 15:48	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	121		70 - 130			06/28/22 08:51	06/28/22 15:48	1
o-Terphenyl	109		70 - 130			06/28/22 08:51	06/28/22 15:48	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	1010	-	5.00	mg/Kg			06/28/22 17:54	

Lab Sample ID: 890-2467-4 Client Sample ID: BH02A Date Collected: 06/24/22 11:00 Matrix: Solid

Date Received: 06/27/22 09:09

Sample Depth: 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/28/22 00:28	1
Toluene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/28/22 00:28	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/28/22 00:28	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		06/27/22 15:29	06/28/22 00:28	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/28/22 00:28	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		06/27/22 15:29	06/28/22 00:28	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130			06/27/22 15:29	06/28/22 00:28	1
1,4-Difluorobenzene (Surr)	94		70 - 130			06/27/22 15:29	06/28/22 00:28	1
Method: Total BTEX - Total BTE)	(Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg			06/28/22 09:49	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8	mg/Kg			06/29/22 11:12	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U *1	49.8	mg/Kg		06/28/22 08:51	06/28/22 16:10	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8	mg/Kg		06/28/22 08:51	06/28/22 16:10	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		06/28/22 08:51	06/28/22 16:10	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	138	S1+	70 - 130			06/28/22 08:51	06/28/22 16:10	1

Eurofins Carlsbad

6/29/2022

Client Sample Results

Client: Ensolum
Project/Site: TOUCH OF GREY STATE COM #1

Job ID: 890-2467-1 SDG: 09C2041001

Client Sample ID: BH02A

Lab Sample ID: 890-2467-4

Matrix: Solid

Date Collected: 06/24/22 11:00 Date Received: 06/27/22 09:09

Sample Depth: 4

Method: 300.0 - Anions, Ion Chrom	atography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	166		4.95	mg/Kg	g		06/28/22 18:03	1

Client Sample ID: BH03

Lab Sample ID: 890-2467-5

Date Collected: 06/24/22 11:20

Matrix: Solid

Date Collected: 06/24/22 11:20 Date Received: 06/27/22 09:09

Method: Total BTEX - Total BTEX Calculation

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/28/22 00:48	1
Toluene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/28/22 00:48	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/28/22 00:48	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		06/27/22 15:29	06/28/22 00:48	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/28/22 00:48	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		06/27/22 15:29	06/28/22 00:48	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130			06/27/22 15:29	06/28/22 00:48	1
1,4-Difluorobenzene (Surr)	97		70 - 130			06/27/22 15:29	06/28/22 00:48	1

Method: 8015B NM - Diesel Range C	Organics (D	RO) (GC)						
Total TPH	<50.0	U	50.0	mg/Kg			06/29/22 11:12	1
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 8015 NM - Diesel Range Or	ganics (DR	O) (GC)						
Total BTEX	<0.00399	U	0.00399	mg/Kg			06/28/22 09:49	'
			กกกรฉฉ	ma/ka			116/28/22 110·40	

Unit

Prepared

Analyzed

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U *1	50.0	mg/Kg		06/28/22 08:51	06/28/22 16:32	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		06/28/22 08:51	06/28/22 16:32	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		06/28/22 08:51	06/28/22 16:32	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	136	S1+	70 - 130			06/28/22 08:51	06/28/22 16:32	1
o-Terphenyl	121		70 - 130			06/28/22 08:51	06/28/22 16:32	1

Method: 300.0 - Anions, Ion Chrom	natography - S	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	161		5.00	mg/Kg			06/28/22 18:30	1

Eurofins Carlsbad

3

4

6

7

9

11

13

Matrix: Solid

Lab Sample ID: 890-2467-6

Job ID: 890-2467-1

Client: Ensolum Project/Site: TOUCH OF GREY STATE COM #1 SDG: 09C2041001

Client Sample ID: BH03A

Date Collected: 06/24/22 11:30 Date Received: 06/27/22 09:09

Sample Depth: 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/28/22 01:09	1
Toluene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/28/22 01:09	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/28/22 01:09	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		06/27/22 15:29	06/28/22 01:09	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/28/22 01:09	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		06/27/22 15:29	06/28/22 01:09	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130			06/27/22 15:29	06/28/22 01:09	1
1,4-Difluorobenzene (Surr)	97		70 - 130			06/27/22 15:29	06/28/22 01:09	1
Method: Total BTEX - Total BTE	X Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg			06/28/22 09:49	1
Method: 8015 NM - Diesel Range	Organics (DB)	0) (CC)						
Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			06/29/22 11:12	1
Method: 8015B NM - Diesel Ran								
	ge Organics (D	RO) (GC)						
Analyte	• •	RO) (GC) Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Gasoline Range Organics	• •	Qualifier	RL 49.9	Unit mg/Kg	<u>D</u>	Prepared 06/28/22 08:51	Analyzed 06/28/22 16:54	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U *1			<u>D</u>			1
Analyte Gasoline Range Organics (GRO)-C6-C10	Result <49.9	Qualifier U *1	49.9	mg/Kg	<u>D</u>	06/28/22 08:51	06/28/22 16:54	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9 <49.9	Qualifier U *1 U	49.9	mg/Kg	<u>D</u>	06/28/22 08:51 06/28/22 08:51	06/28/22 16:54 06/28/22 16:54	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9 <49.9 <49.9 <49.9 %Recovery	Qualifier U *1 U	49.9 49.9 49.9	mg/Kg	<u>D</u>	06/28/22 08:51 06/28/22 08:51 06/28/22 08:51	06/28/22 16:54 06/28/22 16:54 06/28/22 16:54	1 1 1 Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <49.9 <49.9 <49.9 <49.9 %Recovery	Qualifier U *1 U Qualifier	49.9 49.9 49.9 <i>Limits</i>	mg/Kg	<u>D</u>	06/28/22 08:51 06/28/22 08:51 06/28/22 08:51 Prepared	06/28/22 16:54 06/28/22 16:54 06/28/22 16:54 Analyzed	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.9 <49.9 <49.9 <49.9 <49.9 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2	Qualifier U*1 U Qualifier S1+	49.9 49.9 49.9 Limits 70 - 130	mg/Kg	<u>D</u>	06/28/22 08:51 06/28/22 08:51 06/28/22 08:51 Prepared 06/28/22 08:51	06/28/22 16:54 06/28/22 16:54 06/28/22 16:54 Analyzed 06/28/22 16:54	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U*1 U Qualifier S1+	49.9 49.9 49.9 Limits 70 - 130	mg/Kg	<u>D</u>	06/28/22 08:51 06/28/22 08:51 06/28/22 08:51 Prepared 06/28/22 08:51	06/28/22 16:54 06/28/22 16:54 06/28/22 16:54 Analyzed 06/28/22 16:54	1 1 1 1 Dil Fac

Client Sample ID: BH014

Date Collected: 06/24/22 11:45 Date Received: 06/27/22 09:09

Sample Depth: 0.5

4-Bromofluorobenzene (Surr)

Method: 8021B - Volatile Org	anic Compounds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		06/27/22 15:29	06/28/22 01:29	1
Toluene	<0.00201	U	0.00201	mg/Kg		06/27/22 15:29	06/28/22 01:29	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		06/27/22 15:29	06/28/22 01:29	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		06/27/22 15:29	06/28/22 01:29	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		06/27/22 15:29	06/28/22 01:29	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		06/27/22 15:29	06/28/22 01:29	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

70 - 130

101

Eurofins Carlsbad

06/28/22 01:29

Lab Sample ID: 890-2467-7

06/27/22 15:29

Matrix: Solid

Client: Ensolum Job ID: 890-2467-1 Project/Site: TOUCH OF GREY STATE COM #1 SDG: 09C2041001

Client Sample ID: BH014 Lab Sample ID: 890-2467-7

Date Collected: 06/24/22 11:45 Matrix: Solid Date Received: 06/27/22 09:09

Sample Depth: 0.5

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	97		70 - 130			06/27/22 15:29	06/28/22 01:29	1
Method: Total BTEX - Total BTEX	(Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			06/28/22 09:49	1
- Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			06/29/22 11:12	1
Method: 8015B NM - Diesel Rand	ge Organics (D	RO) (GC)						
		RO) (GC) Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Gasoline Range Organics		Qualifier	RL 50.0	Unitmg/Kg	<u>D</u>	Prepared 06/28/22 08:51	Analyzed 06/28/22 17:16	Dil Fac
Analyte Gasoline Range Organics	Result	Qualifier U *1			<u>D</u>			Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result < 50.0	Qualifier U *1	50.0	mg/Kg	<u> </u>	06/28/22 08:51	06/28/22 17:16	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0 <50.0	Qualifier U *1 U	50.0	mg/Kg	<u> </u>	06/28/22 08:51 06/28/22 08:51	06/28/22 17:16 06/28/22 17:16	Dil Fac
C10-C28)	Result <50.0 <50.0 <50.0	Qualifier U *1 U	50.0 50.0 50.0	mg/Kg	<u> </u>	06/28/22 08:51 06/28/22 08:51 06/28/22 08:51	06/28/22 17:16 06/28/22 17:16 06/28/22 17:16	1

Method: 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RLUnit D Prepared Analyzed Dil Fac Chloride 142 24.9 mg/Kg 06/28/22 19:35

<49.8 U

Client Sample ID: BH04A Date Collected: 06/24/22 11:55 Date Received: 06/27/22 09:09

Sample Depth: 4

Total TPH

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/28/22 01:50	1
Toluene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/28/22 01:50	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/28/22 01:50	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		06/27/22 15:29	06/28/22 01:50	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/28/22 01:50	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		06/27/22 15:29	06/28/22 01:50	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130			06/27/22 15:29	06/28/22 01:50	1
1,4-Difluorobenzene (Surr)	96		70 - 130			06/27/22 15:29	06/28/22 01:50	1
- Method: Total BTEX - Total B1	TEX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg			06/28/22 09:49	1
Total BTEX - - Method: 8015 NM - Diesel Rar			0.00401	mg/Kg			06/28/22 09:49	
Analyte	Desult	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F

Eurofins Carlsbad

06/29/22 11:12

Lab Sample ID: 890-2467-8

Matrix: Solid

49.8

mg/Kg

Job ID: 890-2467-1

Client: Ensolum Project/Site: TOUCH OF GREY STATE COM #1 SDG: 09C2041001

Client Sample ID: BH04A Lab Sample ID: 890-2467-8

Date Collected: 06/24/22 11:55 Matrix: Solid Date Received: 06/27/22 09:09

Sample Depth: 4

Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U *1	49.8	mg/Kg		06/28/22 08:51	06/28/22 17:37	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg		06/28/22 08:51	06/28/22 17:37	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		06/28/22 08:51	06/28/22 17:37	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	114		70 - 130			06/28/22 08:51	06/28/22 17:37	1
o-Terphenyl	103		70 - 130			06/28/22 08:51	06/28/22 17:37	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	308	•	4.99	mg/Kg			06/28/22 19:44	

Lab Sample ID: 890-2467-9 **Client Sample ID: BH05** Matrix: Solid

Date Collected: 06/24/22 12:25

Date Received: 06/27/22 09:09

Sample Depth: 2

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/28/22 02:10	1
Toluene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/28/22 02:10	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/28/22 02:10	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		06/27/22 15:29	06/28/22 02:10	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/28/22 02:10	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		06/27/22 15:29	06/28/22 02:10	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130			06/27/22 15:29	06/28/22 02:10	1
1,4-Difluorobenzene (Surr)	97		70 - 130			06/27/22 15:29	06/28/22 02:10	1
Method: Total BTEX - Total BTEX	Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			06/28/22 09:49	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			06/29/22 11:12	1
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U *1	50.0	mg/Kg		06/28/22 08:51	06/28/22 17:59	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		06/28/22 08:51	06/28/22 17:59	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		06/28/22 08:51	06/28/22 17:59	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	117		70 - 130			06/28/22 08:51	06/28/22 17:59	1
o-Terphenyl	105		70 - 130			06/28/22 08:51	06/28/22 17:59	1

Job ID: 890-2467-1

Client: Ensolum Project/Site: TOUCH OF GREY STATE COM #1 SDG: 09C2041001

Client Sample ID: BH05 Lab Sample ID: 890-2467-9

Date Collected: 06/24/22 12:25 Matrix: Solid Date Received: 06/27/22 09:09

Sample Depth: 2

Method: 300.0 - Anions, Ion Chrom	atography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	579		5.00	mg/Kg			06/28/22 19:53	1

Client Sample ID: BH05A Lab Sample ID: 890-2467-10 **Matrix: Solid**

Date Collected: 06/24/22 12:30 Date Received: 06/27/22 09:09

Sample Depth: 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199	mg/Kg		06/27/22 15:29	06/28/22 02:30	
Toluene	< 0.00199	U	0.00199	mg/Kg		06/27/22 15:29	06/28/22 02:30	
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		06/27/22 15:29	06/28/22 02:30	
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		06/27/22 15:29	06/28/22 02:30	
o-Xylene	< 0.00199	U	0.00199	mg/Kg		06/27/22 15:29	06/28/22 02:30	
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		06/27/22 15:29	06/28/22 02:30	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	102		70 - 130			06/27/22 15:29	06/28/22 02:30	
1,4-Difluorobenzene (Surr)	95		70 - 130			06/27/22 15:29	06/28/22 02:30	:
Method: Total BTEX - Total BTEX	Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			06/28/22 09:49	
Method: 8015 NM - Diesel Range Analyte	Result	Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0	mg/Kg			06/29/22 11:12	
Method: 8015B NM - Diesel Rand	ge Organics (D	RO) (GC)						
_	•	RO) (GC) Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Gasoline Range Organics	•	Qualifier	RL	Unit mg/Kg	<u>D</u>	Prepared 06/28/22 08:51	Analyzed 06/28/22 18:20	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U *1			<u>D</u>			Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result < 50.0	Qualifier U *1	50.0	mg/Kg	<u>D</u>	06/28/22 08:51	06/28/22 18:20	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0 <50.0	Qualifier U *1 U	50.0	mg/Kg	<u>D</u>	06/28/22 08:51 06/28/22 08:51	06/28/22 18:20 06/28/22 18:20	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0 <50.0 <50.0	Qualifier U*1 U Qualifier	50.0 50.0 50.0	mg/Kg	<u>D</u>	06/28/22 08:51 06/28/22 08:51 06/28/22 08:51	06/28/22 18:20 06/28/22 18:20 06/28/22 18:20	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result	Qualifier U*1 U Qualifier	50.0 50.0 50.0 <i>Limits</i>	mg/Kg	<u> </u>	06/28/22 08:51 06/28/22 08:51 06/28/22 08:51 Prepared	06/28/22 18:20 06/28/22 18:20 06/28/22 18:20 Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U*1 U Qualifier S1+	50.0 50.0 50.0 Limits 70 - 130	mg/Kg	<u>D</u>	06/28/22 08:51 06/28/22 08:51 06/28/22 08:51 Prepared 06/28/22 08:51	06/28/22 18:20 06/28/22 18:20 06/28/22 18:20 Analyzed 06/28/22 18:20	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, Ion Chro	Result	Qualifier U*1 U Qualifier S1+	50.0 50.0 50.0 Limits 70 - 130	mg/Kg	<u>D</u>	06/28/22 08:51 06/28/22 08:51 06/28/22 08:51 Prepared 06/28/22 08:51	06/28/22 18:20 06/28/22 18:20 06/28/22 18:20 Analyzed 06/28/22 18:20	Dil Fac

Client: Ensolum

Job ID: 890-2467-1 Project/Site: TOUCH OF GREY STATE COM #1 SDG: 09C2041001

Client Sample ID: BH06 Lab Sample ID: 890-2467-11

Date Collected: 06/24/22 12:45 Matrix: Solid Date Received: 06/27/22 09:09

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		06/27/22 15:29	06/28/22 02:51	1
Toluene	< 0.00199	U	0.00199	mg/Kg		06/27/22 15:29	06/28/22 02:51	1
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		06/27/22 15:29	06/28/22 02:51	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		06/27/22 15:29	06/28/22 02:51	1
o-Xylene	< 0.00199	U	0.00199	mg/Kg		06/27/22 15:29	06/28/22 02:51	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		06/27/22 15:29	06/28/22 02:51	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130			06/27/22 15:29	06/28/22 02:51	1
1,4-Difluorobenzene (Surr)	97		70 - 130			06/27/22 15:29	06/28/22 02:51	1
- Method: Total BTEX - Total BTE)	X Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			06/28/22 09:49	1
Method: 8015 NM - Diesel Range	o Organica (DB)	O) (GC)						
Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	B.: E
							Allalyzeu	DII Fac
Total TPH	<49.9	U	49.9	mg/Kg	<u>-</u>		06/29/22 11:12	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang			49.9	mg/Kg				
• -	ge Organics (D		49.9 RL	mg/Kg		Prepared		
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	ge Organics (D	RO) (GC) Qualifier					06/29/22 11:12	1
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (Di	Qualifier U*1	RL	Unit		Prepared	06/29/22 11:12 Analyzed	1 Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	ge Organics (D Result <49.9	RO) (GC) Qualifier U*1	RL 49.9	<mark>Unit</mark> mg/Kg		Prepared 06/28/22 08:51	06/29/22 11:12 Analyzed 06/28/22 19:02	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (DI Result <49.9	Qualifier U*1 U	RL 49.9	Unit mg/Kg mg/Kg		Prepared 06/28/22 08:51 06/28/22 08:51	06/29/22 11:12 Analyzed 06/28/22 19:02 06/28/22 19:02	1 Dil Fac 1 1
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (D) Result <49.9 <49.9	Qualifier U*1 U	RL 49.9 49.9 49.9	Unit mg/Kg mg/Kg		Prepared 06/28/22 08:51 06/28/22 08:51	06/29/22 11:12 Analyzed 06/28/22 19:02 06/28/22 19:02	Dil Fac 1 1 Dil Fac Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	ge Organics (D) Result <49.9 <49.9 <recovery< td=""><td>Qualifier U*1 U</td><td>RL 49.9 49.9 49.9 <i>Limits</i></td><td>Unit mg/Kg mg/Kg</td><td></td><td>Prepared 06/28/22 08:51 06/28/22 08:51 06/28/22 08:51 Prepared</td><td>Analyzed 06/28/22 19:02 06/28/22 19:02 06/28/22 19:02 Analyzed</td><td>Dil Fac</td></recovery<>	Qualifier U*1 U	RL 49.9 49.9 49.9 <i>Limits</i>	Unit mg/Kg mg/Kg		Prepared 06/28/22 08:51 06/28/22 08:51 06/28/22 08:51 Prepared	Analyzed 06/28/22 19:02 06/28/22 19:02 06/28/22 19:02 Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	ge Organics (D) Result <49.9 <49.9 <49.9 **Recovery** 113 100	Qualifier U*1 U Qualifier	RL 49.9 49.9 49.9 Limits 70 - 130	Unit mg/Kg mg/Kg		Prepared 06/28/22 08:51 06/28/22 08:51 06/28/22 08:51 Prepared 06/28/22 08:51	06/29/22 11:12 Analyzed 06/28/22 19:02 06/28/22 19:02 06/28/22 19:02 Analyzed 06/28/22 19:02	1 Dil Fac 1
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	ge Organics (D) Result <49.9 <49.9 <49.9 // Recovery 113 100 omatography -	Qualifier U*1 U Qualifier	RL 49.9 49.9 49.9 Limits 70 - 130	Unit mg/Kg mg/Kg		Prepared 06/28/22 08:51 06/28/22 08:51 06/28/22 08:51 Prepared 06/28/22 08:51	06/29/22 11:12 Analyzed 06/28/22 19:02 06/28/22 19:02 06/28/22 19:02 Analyzed 06/28/22 19:02	1 Dil Fac 1 1 1 1 Dil Fac 1

Client Sample ID: BH06A Lab Sample ID: 890-2467-12

Date Collected: 06/24/22 12:55 Date Received: 06/27/22 09:09

Sample Depth: 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/28/22 03:11	1
Toluene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/28/22 03:11	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/28/22 03:11	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		06/27/22 15:29	06/28/22 03:11	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/28/22 03:11	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		06/27/22 15:29	06/28/22 03:11	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130			06/27/22 15:29	06/28/22 03:11	1

Eurofins Carlsbad

Matrix: Solid

Client Sample Results

Client: Ensolum Job ID: 890-2467-1
Project/Site: TOUCH OF GREY STATE COM #1 SDG: 09C2041001

Client Sample ID: BH06A Lab Sample ID: 890-2467-12

Date Collected: 06/24/22 12:55

Date Received: 06/27/22 09:09

Matrix: Solid

Sample Depth: 4

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1,4-Difluorobenzene (Surr)	101		70 - 130			06/27/22 15:29	06/28/22 03:11	
Method: Total BTEX - Total BTE	X Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00401	U	0.00401	mg/Kg			06/28/22 09:49	_
Method: 8015 NM - Diesel Range	e Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9	mg/Kg			06/29/22 11:12	
Analyte Gasoline Range Organics (GRO)-C6-C10	Result <49.9	Qualifier U *1	RL 49.9	Unit mg/Kg	D	Prepared 06/28/22 08:51	Analyzed 06/28/22 19:24	Dil Fa
Gasoline Range Organics	<49.9	U *1	49.9	mg/Kg				
(3.13) 33 3.3								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		06/28/22 08:51	06/28/22 19:24	
Diesel Range Organics (Over C10-C28)	<49.9 <49.9		49.9 49.9	mg/Kg		06/28/22 08:51 06/28/22 08:51	06/28/22 19:24 06/28/22 19:24	
Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)		U						Dil Fa
Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<49.9	U	49.9			06/28/22 08:51	06/28/22 19:24	Dil Fa
Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<49.9 %Recovery	U	49.9			06/28/22 08:51 Prepared	06/28/22 19:24 Analyzed	Dil Fa
Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, Ion Chr	<49.9	U Qualifier	49.9 Limits 70 - 130			06/28/22 08:51 Prepared 06/28/22 08:51	06/28/22 19:24 Analyzed 06/28/22 19:24	_ Dil Fa
Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<49.9 **Recovery 112 101 omatography -	U Qualifier	49.9 Limits 70 - 130		D	06/28/22 08:51 Prepared 06/28/22 08:51	06/28/22 19:24 Analyzed 06/28/22 19:24	Dil Fa

Surrogate Summary

Client: Ensolum
Project/Site: TOUCH OF GREY STATE COM #1
SDG: 09C2041001

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acc
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-16266-A-39-E MS	Matrix Spike	103	96	
880-16266-A-39-F MSD	Matrix Spike Duplicate	97	104	
890-2467-1	BH01	103	102	
890-2467-2	BH01A	100	100	
890-2467-3	BH02	116	100	
890-2467-4	BH02A	97	94	
890-2467-5	BH03	97	97	
890-2467-6	BH03A	99	97	
890-2467-7	BH014	101	97	
890-2467-8	BH04A	102	96	
890-2467-9	BH05	98	97	
890-2467-10	BH05A	102	95	
890-2467-11	BH06	98	97	
890-2467-12	BH06A	100	101	
LCS 880-28488/1-A	Lab Control Sample	95	100	
LCSD 880-28488/2-A	Lab Control Sample Dup	95	95	
MB 880-28488/5-A	Method Blank	98	98	
Surrogate Legend BFB = 4-Bromofluorobenzo				

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

DFBZ = 1,4-Difluorobenzene (Surr)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-2467-1	BH01	117	103	
890-2467-1 MS	BH01	124	99	
890-2467-1 MSD	BH01	109	85	
890-2467-2	BH01A	136 S1+	122	
890-2467-3	BH02	121	109	
890-2467-4	BH02A	138 S1+	123	
890-2467-5	BH03	136 S1+	121	
890-2467-6	BH03A	137 S1+	122	
890-2467-7	BH014	126	113	
890-2467-8	BH04A	114	103	
890-2467-9	BH05	117	105	
890-2467-10	BH05A	134 S1+	120	
890-2467-11	BH06	113	100	
890-2467-12	BH06A	112	101	
LCS 880-28506/2-A	Lab Control Sample	141 S1+	121	
LCSD 880-28506/3-A	Lab Control Sample Dup	117	101	
MB 880-28506/1-A	Method Blank	107	98	

Eurofins Carlsbad

OTPH = o-Terphenyl

Client: Ensolum Job ID: 890-2467-1 Project/Site: TOUCH OF GREY STATE COM #1 SDG: 09C2041001

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-28488/5-A

Matrix: Solid Analysis Batch: 28474 Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 28488

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/27/22 18:44	1
Toluene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/27/22 18:44	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/27/22 18:44	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		06/27/22 15:29	06/27/22 18:44	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		06/27/22 15:29	06/27/22 18:44	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		06/27/22 15:29	06/27/22 18:44	1

MB MB

MD MD

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98	70 - 130	06/27/22 15:29	06/27/22 18:44	1
1,4-Difluorobenzene (Surr)	98	70 ₋ 130	06/27/22 15:29	06/27/22 18:44	1

Lab Sample ID: LCS 880-28488/1-A

Matrix: Solid

Analysis Batch: 28474

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 28488

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.08418		mg/Kg		84	70 - 130	
Toluene	0.100	0.08947		mg/Kg		89	70 - 130	
Ethylbenzene	0.100	0.07789		mg/Kg		78	70 - 130	
m-Xylene & p-Xylene	0.200	0.1580		mg/Kg		79	70 - 130	
o-Xylene	0.100	0.09059		mg/Kg		91	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	95		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: LCSD 880-28488/2-A

Matrix: Solid

Analysis Batch: 28474

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 28488

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09569		mg/Kg		96	70 - 130	13	35
Toluene	0.100	0.1061		mg/Kg		106	70 - 130	17	35
Ethylbenzene	0.100	0.09264		mg/Kg		93	70 - 130	17	35
m-Xylene & p-Xylene	0.200	0.1879		mg/Kg		94	70 - 130	17	35
o-Xylene	0.100	0.1071		mg/Kg		107	70 - 130	17	35

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	95	70 - 130
1.4-Difluorobenzene (Surr)	95	70 - 130

Lab Sample ID: 880-16266-A-39-E MS

Matrix: Solid

Analysis Batch: 28474

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 28488

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U F1	0.100	0.07148		mg/Kg		71	70 - 130	
Toluene	<0.00200	U F1	0.100	0.07846		mg/Kg		78	70 - 130	

Eurofins Carlsbad

Page 16 of 33

Prep Batch: 28488

Prep Type: Total/NA

Client: Ensolum Job ID: 890-2467-1 SDG: 09C2041001 Project/Site: TOUCH OF GREY STATE COM #1

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-16266-A-39-E MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Solid Analysis Batch: 28474

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00200	U F1	0.100	0.05284	F1	mg/Kg		51	70 - 130	
m-Xylene & p-Xylene	<0.00401	U F1	0.200	0.1071	F1	mg/Kg		52	70 - 130	
o-Xylene	<0.00200	U F1	0.100	0.05856	F1	mg/Kg		58	70 - 130	

MS MS Surrogate %Recovery Qualifier Limits 70 - 130 4-Bromofluorobenzene (Surr) 103 1,4-Difluorobenzene (Surr) 70 - 130 96

Client Sample ID: Matrix Spike Duplicate Lab Sample ID: 880-16266-A-39-F MSD

Matrix: Solid

Analysis Batch: 28474									Prep	Batch:	28488
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U F1	0.0998	0.06075	F1	mg/Kg		61	70 - 130	16	35
Toluene	<0.00200	U F1	0.0998	0.06260	F1	mg/Kg		63	70 - 130	22	35
Ethylbenzene	<0.00200	U F1	0.0998	0.05293	F1	mg/Kg		52	70 - 130	0	35
m-Xylene & p-Xylene	<0.00401	U F1	0.200	0.09676	F1	mg/Kg		47	70 - 130	10	35
o-Xylene	<0.00200	U F1	0.0998	0.05253	F1	mg/Kg		52	70 - 130	11	35

MSD MSD Surrogate Qualifier Limits %Recovery 97 70 - 130 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 104 70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-28506/1-A

Matrix: Solid

Analysis Batch: 28522

•	МВ	MB					•	
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		06/28/22 08:51	06/28/22 13:19	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		06/28/22 08:51	06/28/22 13:19	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		06/28/22 08:51	06/28/22 13:19	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	107		70 - 130	06/28/22 08	51 06/28/22 13:19	1
o-Terphenyl	98		70 - 130	06/28/22 08.	51 06/28/22 13:19	1

Lab Sample ID: LCS 880-28506/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 28522							Prep B	atch: 28506
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	1169		mg/Kg		117	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	1179		mg/Kg		118	70 - 130	
C10-C28)								

Eurofins Carlsbad

Page 17 of 33

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 28506

Prep Type: Total/NA

Job ID: 890-2467-1 Client: Ensolum Project/Site: TOUCH OF GREY STATE COM #1

SDG: 09C2041001

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-28506/2-A **Matrix: Solid**

Analysis Batch: 28522

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 28506

Surrogate %Recovery Qualifier

Limits 1-Chlorooctane 141 S1+ 70 - 130 o-Terphenyl 121 70 - 130

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 880-28506/3-A **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 28522** Prep Batch: 28506

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit 1000 950.3 *1 95 70 - 13021 20 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 982.3 98 mg/Kg 70 - 13018 20 C10-C28)

LCSD LCSD

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	117		70 - 130
o-Terphenyl	101		70 - 130

Lab Sample ID: 890-2467-1 MS Client Sample ID: BH01 **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 28522 Prep Batch: 28506

Sample Sample Spike MS MS Analyte Result Qualifier hahhA Result Qualifier Unit D %Rec Limits Gasoline Range Organics <49.9 U *1 F1 996 1346 F1 mg/Kg 135 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over <49.9 U 996 1044 mg/Kg 103 70 - 130

C10-C28)

MS MS %Recovery Qualifier Limits Surrogate 70 - 130 1-Chlorooctane 124 o-Terphenyl 99 70 - 130

Lab Sample ID: 890-2467-1 MSD Client Sample ID: BH01

Matrix: Solid Prep Type: Total/NA

Analysis Batch: 28522 Prep Batch: 28506 MSD MSD %Rec RPD

Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Gasoline Range Organics U *1 F1 996 <49.9 1171 mg/Kg 118 70 - 130 14 20 (GRO)-C6-C10 Diesel Range Organics (Over <49.9 U 996 952.5 mg/Kg 94 70 - 130 20 C10-C28)

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	109		70 - 130
o-Terphenyl	85		70 - 130

Client: Ensolum Job ID: 890-2467-1 Project/Site: TOUCH OF GREY STATE COM #1

SDG: 09C2041001

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-28455/1-A Client Sample ID: Method Blank **Matrix: Solid**

Prep Type: Soluble

Analysis Batch: 28581

мв мв Dil Fac Analyte Result Qualifier RL Unit D Prepared Analyzed Chloride <5.00 U 5.00 mg/Kg 06/28/22 15:26

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 880-28455/2-A **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 28581 Spike LCS LCS %Rec

Added %Rec Analyte Result Qualifier Unit D Limits Chloride 250 262.2 mg/Kg 105 90 - 110

Lab Sample ID: LCSD 880-28455/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid Prep Type: Soluble

Analysis Batch: 28581

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Chloride 250 267.3 107 mg/Kg 90 - 110

Lab Sample ID: 890-2467-4 MS Client Sample ID: BH02A

Matrix: Solid Prep Type: Soluble

Analysis Batch: 28581 MS MS Sample Sample Spike %Rec

Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 166 248 417.1 102 90 - 110 mg/Kg

Lab Sample ID: 890-2467-4 MSD Client Sample ID: BH02A

Matrix: Solid Prep Type: Soluble Analysis Batch: 28581

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD

Limit Chloride 248 166 416.2 mg/Kg 101 90 - 110 20

Client: Ensolum
Project/Site: TOUCH OF GREY STATE COM #1

SDG: 09C2041001

GC VOA

Analysis Batch: 28474

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2467-1	BH01	Total/NA	Solid	8021B	28488
890-2467-2	BH01A	Total/NA	Solid	8021B	28488
890-2467-3	BH02	Total/NA	Solid	8021B	28488
890-2467-4	BH02A	Total/NA	Solid	8021B	28488
890-2467-5	BH03	Total/NA	Solid	8021B	28488
890-2467-6	BH03A	Total/NA	Solid	8021B	28488
890-2467-7	BH014	Total/NA	Solid	8021B	28488
890-2467-8	BH04A	Total/NA	Solid	8021B	28488
890-2467-9	BH05	Total/NA	Solid	8021B	28488
890-2467-10	BH05A	Total/NA	Solid	8021B	28488
890-2467-11	BH06	Total/NA	Solid	8021B	28488
890-2467-12	BH06A	Total/NA	Solid	8021B	28488
MB 880-28488/5-A	Method Blank	Total/NA	Solid	8021B	28488
LCS 880-28488/1-A	Lab Control Sample	Total/NA	Solid	8021B	28488
LCSD 880-28488/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	28488
880-16266-A-39-E MS	Matrix Spike	Total/NA	Solid	8021B	28488
880-16266-A-39-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	28488

Prep Batch: 28488

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2467-1	BH01	Total/NA	Solid	5035	
890-2467-2	BH01A	Total/NA	Solid	5035	
890-2467-3	BH02	Total/NA	Solid	5035	
890-2467-4	BH02A	Total/NA	Solid	5035	
890-2467-5	BH03	Total/NA	Solid	5035	
890-2467-6	BH03A	Total/NA	Solid	5035	
890-2467-7	BH014	Total/NA	Solid	5035	
890-2467-8	BH04A	Total/NA	Solid	5035	
890-2467-9	BH05	Total/NA	Solid	5035	
890-2467-10	BH05A	Total/NA	Solid	5035	
890-2467-11	BH06	Total/NA	Solid	5035	
890-2467-12	BH06A	Total/NA	Solid	5035	
MB 880-28488/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-28488/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-28488/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-16266-A-39-E MS	Matrix Spike	Total/NA	Solid	5035	
880-16266-A-39-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 28509

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2467-1	BH01	Total/NA	Solid	Total BTEX	
890-2467-2	BH01A	Total/NA	Solid	Total BTEX	
890-2467-3	BH02	Total/NA	Solid	Total BTEX	
890-2467-4	BH02A	Total/NA	Solid	Total BTEX	
890-2467-5	BH03	Total/NA	Solid	Total BTEX	
890-2467-6	BH03A	Total/NA	Solid	Total BTEX	
890-2467-7	BH014	Total/NA	Solid	Total BTEX	
890-2467-8	BH04A	Total/NA	Solid	Total BTEX	
890-2467-9	BH05	Total/NA	Solid	Total BTEX	
890-2467-10	BH05A	Total/NA	Solid	Total BTEX	
890-2467-11	BH06	Total/NA	Solid	Total BTEX	

Eurofins Carlsbad

2

3

4

6

ŏ

10

11

Client: Ensolum
Project/Site: TOUCH OF GREY STATE COM #1

Job ID: 890-2467-1 SDG: 09C2041001

GC VOA (Continued)

Analysis Batch: 28509 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2467-12	BH06A	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 28506

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
890-2467-1	BH01	Total/NA	Solid	8015NM Prep	
890-2467-2	BH01A	Total/NA	Solid	8015NM Prep	
890-2467-3	BH02	Total/NA	Solid	8015NM Prep	
890-2467-4	BH02A	Total/NA	Solid	8015NM Prep	
890-2467-5	BH03	Total/NA	Solid	8015NM Prep	
890-2467-6	BH03A	Total/NA	Solid	8015NM Prep	
890-2467-7	BH014	Total/NA	Solid	8015NM Prep	
890-2467-8	BH04A	Total/NA	Solid	8015NM Prep	
890-2467-9	BH05	Total/NA	Solid	8015NM Prep	
890-2467-10	BH05A	Total/NA	Solid	8015NM Prep	
890-2467-11	BH06	Total/NA	Solid	8015NM Prep	
890-2467-12	BH06A	Total/NA	Solid	8015NM Prep	
MB 880-28506/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-28506/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-28506/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-2467-1 MS	BH01	Total/NA	Solid	8015NM Prep	
890-2467-1 MSD	BH01	Total/NA	Solid	8015NM Prep	

Analysis Batch: 28522

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2467-1	BH01	Total/NA	Solid	8015B NM	28506
890-2467-2	BH01A	Total/NA	Solid	8015B NM	28506
890-2467-3	BH02	Total/NA	Solid	8015B NM	28506
890-2467-4	BH02A	Total/NA	Solid	8015B NM	28506
890-2467-5	BH03	Total/NA	Solid	8015B NM	28506
890-2467-6	BH03A	Total/NA	Solid	8015B NM	28506
890-2467-7	BH014	Total/NA	Solid	8015B NM	28506
890-2467-8	BH04A	Total/NA	Solid	8015B NM	28506
890-2467-9	BH05	Total/NA	Solid	8015B NM	28506
890-2467-10	BH05A	Total/NA	Solid	8015B NM	28506
890-2467-11	BH06	Total/NA	Solid	8015B NM	28506
890-2467-12	BH06A	Total/NA	Solid	8015B NM	28506
MB 880-28506/1-A	Method Blank	Total/NA	Solid	8015B NM	28506
LCS 880-28506/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	28506
LCSD 880-28506/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	28506
890-2467-1 MS	BH01	Total/NA	Solid	8015B NM	28506
890-2467-1 MSD	BH01	Total/NA	Solid	8015B NM	28506

Analysis Batch: 28634

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2467-1	BH01	Total/NA	Solid	8015 NM	
890-2467-2	BH01A	Total/NA	Solid	8015 NM	
890-2467-3	BH02	Total/NA	Solid	8015 NM	
890-2467-4	BH02A	Total/NA	Solid	8015 NM	
890-2467-5	BH03	Total/NA	Solid	8015 NM	

Eurofins Carlsbad

3

4

6

8

1 N

12

13

Client: Ensolum Job ID: 890-2467-1 Project/Site: TOUCH OF GREY STATE COM #1 SDG: 09C2041001

GC Semi VOA (Continued)

Analysis Batch: 28634 (Continued)

93A 914	Total/NA	Solid	8015 NM	
14	T (1/51A			
	Total/NA	Solid	8015 NM	
04A	Total/NA	Solid	8015 NM	
05	Total/NA	Solid	8015 NM	
05A	Total/NA	Solid	8015 NM	
06	Total/NA	Solid	8015 NM	
16.4	Total/NA	Solid	8015 NM	
)(6 Total/NA	Total/NA Solid	6 Total/NA Solid 8015 NM

HPLC/IC

Leach Batch: 28455

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2467-1	BH01	Soluble	Solid	DI Leach	
890-2467-2	BH01A	Soluble	Solid	DI Leach	
890-2467-3	BH02	Soluble	Solid	DI Leach	
890-2467-4	BH02A	Soluble	Solid	DI Leach	
890-2467-5	BH03	Soluble	Solid	DI Leach	
890-2467-6	BH03A	Soluble	Solid	DI Leach	
890-2467-7	BH014	Soluble	Solid	DI Leach	
890-2467-8	BH04A	Soluble	Solid	DI Leach	
890-2467-9	BH05	Soluble	Solid	DI Leach	
890-2467-10	BH05A	Soluble	Solid	DI Leach	
890-2467-11	BH06	Soluble	Solid	DI Leach	
890-2467-12	BH06A	Soluble	Solid	DI Leach	
MB 880-28455/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-28455/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-28455/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-2467-4 MS	BH02A	Soluble	Solid	DI Leach	
890-2467-4 MSD	BH02A	Soluble	Solid	DI Leach	

Analysis Batch: 28581

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2467-1	BH01	Soluble	Solid	300.0	28455
890-2467-2	BH01A	Soluble	Solid	300.0	28455
890-2467-3	BH02	Soluble	Solid	300.0	28455
890-2467-4	BH02A	Soluble	Solid	300.0	28455
890-2467-5	BH03	Soluble	Solid	300.0	28455
890-2467-6	ВН03А	Soluble	Solid	300.0	28455
890-2467-7	BH014	Soluble	Solid	300.0	28455
890-2467-8	BH04A	Soluble	Solid	300.0	28455
890-2467-9	BH05	Soluble	Solid	300.0	28455
890-2467-10	BH05A	Soluble	Solid	300.0	28455
890-2467-11	BH06	Soluble	Solid	300.0	28455
890-2467-12	BH06A	Soluble	Solid	300.0	28455
MB 880-28455/1-A	Method Blank	Soluble	Solid	300.0	28455
LCS 880-28455/2-A	Lab Control Sample	Soluble	Solid	300.0	28455
LCSD 880-28455/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	28455
890-2467-4 MS	BH02A	Soluble	Solid	300.0	28455
890-2467-4 MSD	BH02A	Soluble	Solid	300.0	28455

Date Collected: 06/24/22 09:20 Date Received: 06/27/22 09:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	28488	06/27/22 15:29	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	28474	06/27/22 21:57	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			28509	06/28/22 09:49	SM	XEN MID
Total/NA	Analysis	8015 NM		1			28634	06/29/22 11:12	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	28506	06/28/22 08:51	DM	XEN MID
Total/NA	Analysis	8015B NM		1			28522	06/28/22 14:22	SM	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	28455	06/27/22 11:21	SC	XEN MID
Soluble	Analysis	300.0		5			28581	06/28/22 17:35	SC	XEN MID

Client Sample ID: BH01A Lab Sample ID: 890-2467-2 Date Collected: 06/24/22 10:10

Matrix: Solid

Matrix: Solid

Date Received: 06/27/22 09:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	28488	06/27/22 15:29	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	28474	06/27/22 22:17	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			28509	06/28/22 09:49	SM	XEN MID
Total/NA	Analysis	8015 NM		1			28634	06/29/22 11:12	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	28506	06/28/22 08:51	DM	XEN MID
Total/NA	Analysis	8015B NM		1			28522	06/28/22 15:26	SM	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	28455	06/27/22 11:21	SC	XEN MID
Soluble	Analysis	300.0		1			28581	06/28/22 17:44	SC	XEN MID

Client Sample ID: BH02 Lab Sample ID: 890-2467-3

Date Collected: 06/24/22 10:30 Date Received: 06/27/22 09:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	28488	06/27/22 15:29	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	28474	06/28/22 00:08	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			28509	06/28/22 09:49	SM	XEN MID
Total/NA	Analysis	8015 NM		1			28634	06/29/22 11:12	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	28506	06/28/22 08:51	DM	XEN MID
Total/NA	Analysis	8015B NM		1			28522	06/28/22 15:48	SM	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	28455	06/27/22 11:21	SC	XEN MID
Soluble	Analysis	300.0		1			28581	06/28/22 17:54	SC	XEN MID

Client Sample ID: BH02A Lab Sample ID: 890-2467-4

Date Collected: 06/24/22 11:00 Date Received: 06/27/22 09:09

Г										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	28488	06/27/22 15:29	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	28474	06/28/22 00:28	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			28509	06/28/22 09:49	SM	XEN MID

Eurofins Carlsbad

Page 23 of 33

Matrix: Solid

Job ID: 890-2467-1 SDG: 09C2041001

Client: Ensolum Project/Site: TOUCH OF GREY STATE COM #1

Lab Sample ID: 890-2467-4

Matrix: Solid

Client Sample ID: BH02A Date Collected: 06/24/22 11:00 Date Received: 06/27/22 09:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			28634	06/29/22 11:12	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	28506	06/28/22 08:51	DM	XEN MID
Total/NA	Analysis	8015B NM		1			28522	06/28/22 16:10	SM	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	28455	06/27/22 11:21	SC	XEN MID
Soluble	Analysis	300.0		1			28581	06/28/22 18:03	SC	XEN MID

Client Sample ID: BH03 Lab Sample ID: 890-2467-5

Date Collected: 06/24/22 11:20 **Matrix: Solid**

Date Received: 06/27/22 09:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	28488	06/27/22 15:29	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	28474	06/28/22 00:48	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			28509	06/28/22 09:49	SM	XEN MID
Total/NA	Analysis	8015 NM		1			28634	06/29/22 11:12	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	28506	06/28/22 08:51	DM	XEN MID
Total/NA	Analysis	8015B NM		1			28522	06/28/22 16:32	SM	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	28455	06/27/22 11:21	SC	XEN MID
Soluble	Analysis	300.0		1			28581	06/28/22 18:30	SC	XEN MID

Client Sample ID: BH03A Lab Sample ID: 890-2467-6

Date Collected: 06/24/22 11:30 **Matrix: Solid** Date Received: 06/27/22 09:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	28488	06/27/22 15:29	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	28474	06/28/22 01:09	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			28509	06/28/22 09:49	SM	XEN MID
Total/NA	Analysis	8015 NM		1			28634	06/29/22 11:12	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	28506	06/28/22 08:51	DM	XEN MID
Total/NA	Analysis	8015B NM		1			28522	06/28/22 16:54	SM	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	28455	06/27/22 11:21	SC	XEN MID
Soluble	Analysis	300.0		1			28581	06/28/22 18:40	SC	XEN MID

Lab Sample ID: 890-2467-7 Client Sample ID: BH014

Date Collected: 06/24/22 11:45 Date Received: 06/27/22 09:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	28488	06/27/22 15:29	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	28474	06/28/22 01:29	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			28509	06/28/22 09:49	SM	XEN MID
Total/NA	Analysis	8015 NM		1			28634	06/29/22 11:12	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	28506	06/28/22 08:51	DM	XEN MID
Total/NA	Analysis	8015B NM		1			28522	06/28/22 17:16	SM	XEN MID

Eurofins Carlsbad

Matrix: Solid

Released to Imaging: 9/27/2022 10:39:07 AM

Job ID: 890-2467-1

Client: Ensolum Project/Site: TOUCH OF GREY STATE COM #1

SDG: 09C2041001

Client Sample ID: BH014 Date Collected: 06/24/22 11:45 Lab Sample ID: 890-2467-7

Date Received: 06/27/22 09:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.02 g	50 mL	28455	06/27/22 11:21	SC	XEN MID
Soluble	Analysis	300.0		5			28581	06/28/22 19:35	SC	XEN MID

Lab Sample ID: 890-2467-8

Client Sample ID: BH04A Date Collected: 06/24/22 11:55 **Matrix: Solid**

Date Received: 06/27/22 09:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	28488	06/27/22 15:29	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	28474	06/28/22 01:50	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			28509	06/28/22 09:49	SM	XEN MID
Total/NA	Analysis	8015 NM		1			28634	06/29/22 11:12	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	28506	06/28/22 08:51	DM	XEN MID
Total/NA	Analysis	8015B NM		1			28522	06/28/22 17:37	SM	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	28455	06/27/22 11:21	SC	XEN MID
Soluble	Analysis	300.0		1			28581	06/28/22 19:44	SC	XEN MID

Client Sample ID: BH05 Lab Sample ID: 890-2467-9

Date Collected: 06/24/22 12:25 **Matrix: Solid** Date Received: 06/27/22 09:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	28488	06/27/22 15:29	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	28474	06/28/22 02:10	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			28509	06/28/22 09:49	SM	XEN MID
Total/NA	Analysis	8015 NM		1			28634	06/29/22 11:12	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	28506	06/28/22 08:51	DM	XEN MID
Total/NA	Analysis	8015B NM		1			28522	06/28/22 17:59	SM	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	28455	06/27/22 11:21	SC	XEN MID
Soluble	Analysis	300.0		1			28581	06/28/22 19:53	SC	XEN MID

Client Sample ID: BH05A Lab Sample ID: 890-2467-10

Date Collected: 06/24/22 12:30 **Matrix: Solid** Date Received: 06/27/22 09:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	28488	06/27/22 15:29	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	28474	06/28/22 02:30	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			28509	06/28/22 09:49	SM	XEN MID
Total/NA	Analysis	8015 NM		1			28634	06/29/22 11:12	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	28506	06/28/22 08:51	DM	XEN MID
Total/NA	Analysis	8015B NM		1			28522	06/28/22 18:20	SM	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	28455	06/27/22 11:21	SC	XEN MID
Soluble	Analysis	300.0		1			28581	06/28/22 20:03	SC	XEN MID

Client Sample ID: BH06

Date Collected: 06/24/22 12:45

Date Received: 06/27/22 09:09

Job ID: 890-2467-1 SDG: 09C2041001

Client: Ensolum Project/Site: TOUCH OF GREY STATE COM #1

Lab Sample ID: 890-2467-11

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	28488	06/27/22 15:29	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	28474	06/28/22 02:51	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			28509	06/28/22 09:49	SM	XEN MID
Total/NA	Analysis	8015 NM		1			28634	06/29/22 11:12	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	28506	06/28/22 08:51	DM	XEN MID
Total/NA	Analysis	8015B NM		1			28522	06/28/22 19:02	SM	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	28455	06/27/22 11:21	SC	XEN MID
Soluble	Analysis	300.0		1			28581	06/28/22 20:12	SC	XEN MID

Client Sample ID: BH06A Lab Sample ID: 890-2467-12

Date Collected: 06/24/22 12:55 Matrix: Solid

Date Received: 06/27/22 09:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	28488	06/27/22 15:29	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	28474	06/28/22 03:11	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			28509	06/28/22 09:49	SM	XEN MID
Total/NA	Analysis	8015 NM		1			28634	06/29/22 11:12	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	28506	06/28/22 08:51	DM	XEN MID
Total/NA	Analysis	8015B NM		1			28522	06/28/22 19:24	SM	XEN MID
Soluble	Leach	DI Leach			4.95 g	50 mL	28455	06/27/22 11:21	SC	XEN MID
Soluble	Analysis	300.0		1			28581	06/28/22 20:21	SC	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Ensolum Job ID: 890-2467-1
Project/Site: TOUCH OF GREY STATE COM #1 SDG: 09C2041001

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
Texas	NI	ELAP	T104704400-21-22	06-30-22
The following analytes the agency does not of	. ,	ut the laboratory is not certifi	ed by the governing authority. This list ma	ay include analytes for wh
Analysis Method	Prep Method	Matrix	Analyte	
Analysis Method 8015 NM	Prep Method	Matrix Solid	Analyte Total TPH	

5

4

6

0

10

12

1 /

Method Summary

Client: Ensolum Project/Site: TOUCH OF GREY STATE COM #1 Job ID: 890-2467-1

S

SDG:	090	C20)41	001	l

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Ensolum

Project/Site: TOUCH OF GREY STATE COM #1

Job ID: 890-2467-1 SDG: 09C2041001

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-2467-1	BH01	Solid	06/24/22 09:20	06/27/22 09:09	0.5
890-2467-2	BH01A	Solid	06/24/22 10:10	06/27/22 09:09	3
890-2467-3	BH02	Solid	06/24/22 10:30	06/27/22 09:09	3
890-2467-4	BH02A	Solid	06/24/22 11:00	06/27/22 09:09	4
890-2467-5	BH03	Solid	06/24/22 11:20	06/27/22 09:09	0.5
890-2467-6	BH03A	Solid	06/24/22 11:30	06/27/22 09:09	4
890-2467-7	BH014	Solid	06/24/22 11:45	06/27/22 09:09	0.5
890-2467-8	BH04A	Solid	06/24/22 11:55	06/27/22 09:09	4
890-2467-9	BH05	Solid	06/24/22 12:25	06/27/22 09:09	2
890-2467-10	BH05A	Solid	06/24/22 12:30	06/27/22 09:09	4
890-2467-11	BH06	Solid	06/24/22 12:45	06/27/22 09:09	0.5
890-2467-12	BH06A	Solid	06/24/22 12:55	06/27/22 09:09	4

5

6

7

46

11

12

4/

eurofins

Xenco

Environment Testing

City, State ZIP: Address:

City, State ZIP: Address: Company Name: Bill to: (if different)

Project Manager: ompany Name:

Design Ensolum

Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Chain of Custody

Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199

ENSOLUM

A (M Strong Energy

State of Project: Program:

UST/PST PRP Brownfields

RRC _

Superfund

www.xenco.com

Page

ᅌ

3

Work Order Comments

Reporting: Level III \square Level III \square PST/UST \square TRRP \square Level IV \square

_
Vor
줐
DG
k Order No:
6
1

artie)		-					
		,0169 ee.le, "	le	S S	(N)	hul	ang-
	Relinquished by: (Signature) Received by: (Signature)	Date/Time Rel		Received by (Signature)	A Received	(Signature)	Relipquished by Signature
	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from chent company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously regotiated.	of this Xenco, its affiliates and subconts is a filiates and subconts is a filiate incurred by the client if such loss turofins Xenco, but not analyzed. The	rom client company to Euro bility for any losses or exper each sample submitted to I	a valid purchase order f ot assume any responsil t and a charge of \$5 for	samples constitutes f samples and shall no plied to each project	ment and relinquishment of be liable only for the cost of charge of \$85.00 will be ap	ice: Signature of this docu ervice. Eurofins Xenco wil urofins Xenco. A minimur
45.1 / /4/0 / /4/1	TCLP / SPLP 6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U Hg: 1631 / 245.1	sb As Ba Be Cd Cr Co	P 6010 : 8RCRA	TCLP / SPL	analyzed	Circle Method(s) and Metal(s) to be analyzed	rcle Method(s) a
TI Sn I	Vi K Se	As Ba Be B Cd Ca Cr	Texas 11 Al Sb	8RCRA 13PPM Texas 11		200.8 / 6020:	Total 200.7 / 6010
		V V	4.	1250	4	4	BILDSA
			2	-	\		BHOS
			4	1155			BHOYA
			5	1145 0.			BHBY
			4	1130			BHU3A
			2.5	1120 C			8403
			4	1100			BH024
			4	1030			BH02
			W	1010			BHOIL
		×××	0.5	0420	(Gayler		BHOI
Sample Comments		B1 Ti	Depth Grab/ # of Cont	Time I Sampled	Matrix Date Sampled		Sample Identification
NaOH+Ascorbic Acid: SAPC	Coo and Chair of Castony	E OH	0,0	Corrected Temperature:	Corrected		Total Containers:
Zn Acetate+NaOH: Zn	SOC 2467 Chair of Custody	x id	S. C.	Temperature Reading:		Yes No N/A	Sample Custody Seals:
Na ₂ S ₂ O ₃ : NaSO ₃		e \$	U	Factor:	Correction Factor:	Yes No N/A	Cooler Custody Seals:
NaHSO 4: NABIS			000 ran		Thermometer ID:	ct: Yes No	Samples Received Intact:
H ₃ PO ₄ : HP			No	Wet Ice:	í Yes No	Temp Blank:	SAMPLE RECEIPT
H ₂ SO ₄ : H ₂ NaOH: Na				the lab, if received by 4:30pm			PO #:
HCL: HC HNO 3: HN			y received by	TAT starts the day received by	er	Kyse Pakes	Sampler's Name:
Cool: Cool MeOH: Me			2-day	Due Date:	23,4600	33,7433 -103,4600	Project Location:
None: NO DI Water: H ₂ O			Pres. Code	Routine	'coo'	092204/100	er:
Preservative Codes	ANALYSIS REQUEST		ound	Turn Around	Sinto Con de	Touch of Gion Sinto Con M	Project Name:

Circle Method(s) and

Phone:

Address:

Company Name: Project Manager:

City, State ZIP:

SAMPLE RECEIPT Samples Received Intact: Cooler Custody Seals:

Total Containers: Sample Custody Seals: Sampler's Name:

Project Location:

Project Number: Project Name:

121314

Chain of Custody

nature) Date/Time				77		
7,70		42		(
		0-27, 22, 10-09	(b)	(%) (%)	me	Krush
13.1/77/07/77/	ture) Received by: (Signature)	Date/Time Relinquished by: (Signature)	19	Received by: (Signature)	(Signature)	Relinguished by: (Signature)
15.174707747	ess previously negotiated.	service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsionly for any koses or expenses incurred by the cheff it acts to be continuous and posses or expenses incurred by the cheff it acts to be continuous and the con	for each sample submitted to Eu	to each project and a charge of \$5	ii be liable only for the cost of sampli m charge of \$85.00 will be applied to	(enco. A minimu
43.1774707747	rms and conditions	otice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions	er from client company to Eurofi	es constitutes a valid purchase ord	ment and relinquishment of sampk	ature of this doci
a Sr Tl Sn U V Zn vas 1 / 7470 / 7471	g Mn Mo Ni K Se Ag SiO ₂ Na Sr Tl Sn U V Z Se Ag Tl U Hg: 1631/245.1/7470/7471	A 13PPM Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se TCLP/SPLP 6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U	M Texas 11 Al Sb PLP 6010 : 8RCRA SI	8RCRA 13PPM lyzed TCLP/SPLP	Total 200.7 / 6010 200.8 / 6020: ircle Method(s) and Metal(s) to be analyzed	Total 200.7 / 6010 rcle Method(s) ar
		(M)				
			7	210100167		317 OBA
		<u>></u>	0'		~	211
		8 8 8	0.5	Grant 1245	^	BHOL
Sample Comments		T	Depth Grab/ # of Cont	Date Time Sampled Sampled	fication Matrix	Sample Identification
NaOH+Ascorbic Acid: SAPC		Tappi		Corrected Temperature:		otal Containers:
Zn Acetate+NaOH: Zn		ij		Temperature Reading.	Yes No N/A	ample Custody Seals:
Na ₂ S ₂ O ₃ : NaSO ₃		es	Pi	correction Factor	Yes No N/A	ooler Custody Seals:
NaHSO 4: NABIS			ıram	Thermometer D:	Yes No	amples Received Intact:
H ₃ PO ₄ : HP			Yes No	Yes No Wetice:	Temp Blank:	AMPLE RECEIPT
~			the lab, if received by 4:30pm		100 June	0 #:
			day received by)		ampler's Name:
Cool: Cool MeOH: Me			2260	Due Date:		ration.
None: NO DI Water: H ₂ O			Pres. Code	Routine		er:
Preservative Codes	UEST	ANALYSIS REQUEST	Turn Around	Grey Supplant Tum	Touch of Grey	roject Name:
ADaPT Other:	Deliverables: EDD			Email:		
PST/UST TRRP Level IV	Reporting: Level Level PST/UST TRRP		City, State ZIP:			ity, State ZIP:
	State of Project:	4	Address:			
Brownfields RRC Superfund	Program: UST/PST PRP Brownfields	Almstrong & wergy	Company Name:			ompany Name:
Work Order Comments	Work Ord	ENSOLUM	Bill to: (if different)		Dan Moil	roject Manager:
.com Page 2 of 2	www.xenco.com	Hobbs, NM (5/5) 392-7550, Carisbad, NM (5/5) 988-3199	Hobbs, NM (5)			
		EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296	EL Paso, TX (91		Xenco	
No:	Work Order No:	Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334	Midland, TX (432	Environment lesting		
		Houston, (A (201) 240-4200, Danas, (A (214) 202-0300	Houston, IA	The second second	_	

Login Sample Receipt Checklist

Client: Ensolum Job Number: 890-2467-1 SDG Number: 09C2041001

Login Number: 2467 List Source: Eurofins Carlsbad

List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Login Sample Receipt Checklist

Client: Ensolum Job Number: 890-2467-1 SDG Number: 09C2041001

List Source: Eurofins Midland

Login Number: 2467 List Number: 2 List Creation: 06/27/22 05:47 PM

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-2551-1

Laboratory Sample Delivery Group: 33.7933.103.4600 Client Project/Site: TOUCH OF GREY STATE COM #1

For:

Ensolum 705 W. Wadley Suite 210 Midland, Texas 79701

Attn: Daniel Moir

RAMER

7/15/2022 9:33:19 AM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

Authorized for release by:

EOL

Have a Question?

····· Links ······

Review your project results through

Visit us at:

www.eurofinsus.com/Env Released to Imaging: 9/27/2022 10:39:07 AM This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Ensolum Project/Site: TOUCH OF GREY STATE COM #1 Laboratory Job ID: 890-2551-1 SDG: 33.7933.103.4600

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	15
QC Sample Results	17
QC Association Summary	23
Lab Chronicle	27
Certification Summary	31
Method Summary	32
Sample Summary	33
Chain of Custody	34
Receint Checklists	36

0	

Definitions/Glossary

Client: Ensolum Job ID: 890-2551-1 Project/Site: TOUCH OF GREY STATE COM #1 SDG: 33.7933.103.4600

Qualifiers

GC VOA

Qualifier	Qualifier Description
*_	LCS and/or LCSD is outside acceptance limits, low biased.
U	Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
S1-	Surrogate recovery exceeds control limits, low biased.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.
HPLC/IC	

Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCI	EDA recommended "Maximum Contaminant Level"

MCL	EFA recommended Maximum Contaminant Level
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)

MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated

ND	Not Detected at the reporting limit (or MDL or EDL if shown)
IND	Not betected at the reporting lithit (or MDL or LDL if showin)

NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit

PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)

		 	 (· · · · · · ·		
D.	_	 	 _				

RL	Reporting Limit of Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points

KFD	Relative Percent Dillerence, a measure of the relative
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Ensolum

Job ID: 890-2551-1 Project/Site: TOUCH OF GREY STATE COM #1 SDG: 33.7933.103.4600

Job ID: 890-2551-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-2551-1

Receipt

The samples were received on 7/12/2022 4:47 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.8°C

GC VOA

Method 8021B: The laboratory control sample (LCS) associated with preparation batch 880-29709 and analytical batch 880-29747 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

Method 8021B: The laboratory control sample (LCS) associated with preparation batch 880-29709 and analytical batch 880-29747 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (890-2547-A-41-C MS) and (890-2547-A-41-D MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-29673 and analytical batch 880-29694 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8015MOD NM: The native sample, matrix spike, and matrix spike duplicate (MS/MSD) associated with preparation batch 880-29771 and analytical batch 880-29692 were performed at the same dilution. Due to the additional level of analyte present in the spiked samples, the concentration of Gasoline Range Organics (GRO)-C6-C10 and Diesel Range Organics (Over C10-C28) in the MS/MSD was above the instrument calibration range. The data have been reported and qualified.

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: (880-16938-A-1-E MS) and (880-16938-A-1-F MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300 ORGFM 28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-29751 and analytical batch 880-29768 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Lab Sample ID: 890-2551-1

Client Sample Results

Client: Ensolum Job ID: 890-2551-1
Project/Site: TOUCH OF GREY STATE COM #1 SDG: 33.7933.103.4600

Client Sample ID: FS01

Date Collected: 07/11/22 09:40 Date Received: 07/12/22 16:47

Sample Depth: 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		07/14/22 09:40	07/14/22 21:45	1
Toluene	<0.00200	U	0.00200	mg/Kg		07/14/22 09:40	07/14/22 21:45	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		07/14/22 09:40	07/14/22 21:45	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		07/14/22 09:40	07/14/22 21:45	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		07/14/22 09:40	07/14/22 21:45	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		07/14/22 09:40	07/14/22 21:45	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		70 - 130			07/14/22 09:40	07/14/22 21:45	1
1,4-Difluorobenzene (Surr)	100		70 - 130			07/14/22 09:40	07/14/22 21:45	1
Method: Total BTEX - Total BTE	X Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg			07/15/22 10:01	1
Method: 8015 NM - Diesel Range Analyte	•	O) (GC) Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	11						
•	<50.0	U	50.0	mg/Kg			07/15/22 09:28	1
Method: 8015B NM - Diesel Ran			50.0	mg/Kg			07/15/22 09:28	1
- -	ge Organics (D		50.0 RL	mg/Kg Unit	D	Prepared	07/15/22 09:28 Analyzed	
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC) Qualifier			<u>D</u>	Prepared 07/14/22 14:00		Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (D Result	RO) (GC) Qualifier	RL	Unit	<u>D</u>	<u>·</u>	Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	ge Organics (D Result <50.0	RO) (GC) Qualifier U	RL 50.0	<mark>Unit</mark> mg/Kg	<u>D</u>	07/14/22 14:00	Analyzed 07/14/22 17:43	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (D Result <50.0	RO) (GC) Qualifier U U	RL 50.0	<mark>Unit</mark> mg/Kg mg/Kg	<u>D</u>	07/14/22 14:00 07/14/22 14:00	Analyzed 07/14/22 17:43 07/14/22 17:43	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (D Result <50.0 <50.0	RO) (GC) Qualifier U U	RL 50.0 50.0 50.0	<mark>Unit</mark> mg/Kg mg/Kg	<u>D</u>	07/14/22 14:00 07/14/22 14:00 07/14/22 14:00	Analyzed 07/14/22 17:43 07/14/22 17:43 07/14/22 17:43	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	ge Organics (D Result <50.0 <50.0 <50.0	RO) (GC) Qualifier U U	RL 50.0 50.0 50.0 <i>Limits</i>	<mark>Unit</mark> mg/Kg mg/Kg	<u>D</u>	07/14/22 14:00 07/14/22 14:00 07/14/22 14:00 Prepared	Analyzed 07/14/22 17:43 07/14/22 17:43 07/14/22 17:43 Analyzed	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	ge Organics (D Result <50.0 <50.0 <50.0 <880 97	RO) (GC) Qualifier U U Qualifier	RL 50.0 50.0 50.0 Limits 70 - 130	<mark>Unit</mark> mg/Kg mg/Kg	<u>D</u>	07/14/22 14:00 07/14/22 14:00 07/14/22 14:00 Prepared 07/14/22 14:00	Analyzed 07/14/22 17:43 07/14/22 17:43 07/14/22 17:43 Analyzed 07/14/22 17:43	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	ge Organics (D Result <50.0 <50.0 <50.0 **Recovery **88 97 omatography -	RO) (GC) Qualifier U U Qualifier	RL 50.0 50.0 50.0 Limits 70 - 130	<mark>Unit</mark> mg/Kg mg/Kg	<u>D</u>	07/14/22 14:00 07/14/22 14:00 07/14/22 14:00 Prepared 07/14/22 14:00	Analyzed 07/14/22 17:43 07/14/22 17:43 07/14/22 17:43 Analyzed 07/14/22 17:43	Dil Face 1 1 1 Dil Face

Client Sample ID: FS02

Date Collected: 07/11/22 09:45

Date Received: 07/12/22 16:47

Sample Depth: 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		07/14/22 09:40	07/14/22 22:05	1
Toluene	<0.00198	U	0.00198	mg/Kg		07/14/22 09:40	07/14/22 22:05	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		07/14/22 09:40	07/14/22 22:05	1
m-Xylene & p-Xylene	<0.00396	U	0.00396	mg/Kg		07/14/22 09:40	07/14/22 22:05	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		07/14/22 09:40	07/14/22 22:05	1
Xylenes, Total	<0.00396	U	0.00396	mg/Kg		07/14/22 09:40	07/14/22 22:05	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130			07/14/22 09:40	07/14/22 22:05	1

Eurofins Carlsbad

Lab Sample ID: 890-2551-2

2

3

4

6

8

10

12

13

Matrix: Solid

Client: Ensolum

Project/Site: TOUCH OF GREY STATE COM #1

Job ID: 890-2551-1 SDG: 33.7933.103.4600

Lab Sample ID: 890-2551-2

Client Sample ID: FS02

Date Collected: 07/11/22 09:45

Date Received: 07/12/22 16:47

Sample Depth: 4

Method: 8021B	- Volatile Organic	Compounds	(GC)	(Continued)
MICHIOU. UUZ ID	- voiatile Organic	Compounds		(Continueu)

Surrogate	%Recovery (Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	103		70 - 130	07/14/22 09:40	07/14/22 22:05	1

N 0 - 41 1 -	T - 4 - 1	DTEV	T-4-1	DTEV	0-11-41
wetnoa:	iotai	RIFY -	- Iotai	RIFY	Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396	mg/Kg			07/15/22 10:01	1

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			07/15/22 09:28	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		07/14/22 14:00	07/14/22 18:05	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		07/14/22 14:00	07/14/22 18:05	1
OII Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		07/14/22 14:00	07/14/22 18:05	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	DII Fac
1-Chlorooctane	87		70 - 130	(07/14/22 14:00	07/14/22 18:05	1
o-Terphenyl	97		70 - 130	(07/14/22 14:00	07/14/22 18:05	1

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	99.5	5.00	mg/Kg		_	07/15/22 03:29	1

Client Sample ID: FS03 Lab Sample ID: 890-2551-3 **Matrix: Solid**

Date Collected: 07/11/22 09:50 Date Received: 07/12/22 16:47

Sample Depth: 4

Method: 8021B - Volatile Organic Compounds (GC)

mounda. our ib volutile orga	ino compoundo ((33)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		07/14/22 09:40	07/14/22 22:26	1
Toluene	<0.00200	U	0.00200	mg/Kg		07/14/22 09:40	07/14/22 22:26	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		07/14/22 09:40	07/14/22 22:26	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		07/14/22 09:40	07/14/22 22:26	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		07/14/22 09:40	07/14/22 22:26	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		07/14/22 09:40	07/14/22 22:26	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130			07/14/22 09:40	07/14/22 22:26	1
1,4-Difluorobenzene (Surr)	99		70 - 130			07/14/22 09:40	07/14/22 22:26	1

Method: Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTFX	<0.00401	U	0.00401	ma/Ka			07/15/22 10:01	1

Method: 8015 NM - Diesel Range Organics (DRO) (GC	Method: 8015 NM -	- Diesel Range	Organics (DRO)	(GC
---	-------------------	----------------	------------	------	-----

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			07/15/22 09:28	1

Lab Sample ID: 890-2551-3

Client Sample Results

Client: Ensolum Job ID: 890-2551-1 Project/Site: TOUCH OF GREY STATE COM #1 SDG: 33.7933.103.4600

Client Sample ID: FS03

Date Collected: 07/11/22 09:50 Date Received: 07/12/22 16:47

Sample Depth: 4

Method: 8015B NM - Diesel Rang	, ,	, , ,			_			B.: E
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		07/14/22 14:00	07/14/22 18:26	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		07/14/22 14:00	07/14/22 18:26	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		07/14/22 14:00	07/14/22 18:26	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	91		70 - 130			07/14/22 14:00	07/14/22 18:26	1
o-Terphenyl	94		70 - 130			07/14/22 14:00	07/14/22 18:26	1
- Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	159		5.00	mg/Kg			07/15/22 03:38	1

Lab Sample ID: 890-2551-4 **Client Sample ID: FS04** Date Collected: 07/11/22 09:55 **Matrix: Solid**

Date Received: 07/12/22 16:47

Sample Depth: 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		07/14/22 09:40	07/14/22 22:46	1
Toluene	<0.00201	U	0.00201	mg/Kg		07/14/22 09:40	07/14/22 22:46	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		07/14/22 09:40	07/14/22 22:46	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		07/14/22 09:40	07/14/22 22:46	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		07/14/22 09:40	07/14/22 22:46	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		07/14/22 09:40	07/14/22 22:46	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130			07/14/22 09:40	07/14/22 22:46	1
1,4-Difluorobenzene (Surr)	100		70 - 130			07/14/22 09:40	07/14/22 22:46	1
Method: Total BTEX - Total BTEX	Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			07/15/22 10:01	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			07/15/22 09:28	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		07/14/22 14:00	07/14/22 18:47	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		07/14/22 14:00	07/14/22 18:47	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		07/14/22 14:00	07/14/22 18:47	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	91		70 - 130			07/14/22 14:00	07/14/22 18:47	1
o-Terphenyl	99		70 - 130			07/14/22 14:00	07/14/22 18:47	1

Client Sample Results

Project/Site: TOUCH OF GREY STATE COM #1

Client: Ensolum Job ID: 890-2551-1 SDG: 33.7933.103.4600

Client Sample ID: FS04 Lab Sample ID: 890-2551-4

Date Collected: 07/11/22 09:55 Date Received: 07/12/22 16:47

Sample Depth: 4

I	Method: 300.0 - Anions, Ion Chrom	atography -	Soluble						
Δ	nalyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
C	Chloride	95.5		4.95	mg/Kg			07/15/22 03:47	1

Client Sample ID: FS05 Lab Sample ID: 890-2551-5 Matrix: Solid

Date Collected: 07/11/22 10:00 Date Received: 07/12/22 16:47

Sample Depth: 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		07/14/22 09:40	07/14/22 23:07	1
Toluene	<0.00200	U	0.00200	mg/Kg		07/14/22 09:40	07/14/22 23:07	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		07/14/22 09:40	07/14/22 23:07	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		07/14/22 09:40	07/14/22 23:07	
o-Xylene	<0.00200	U	0.00200	mg/Kg		07/14/22 09:40	07/14/22 23:07	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		07/14/22 09:40	07/14/22 23:07	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130			07/14/22 09:40	07/14/22 23:07	1
1,4-Difluorobenzene (Surr)	98		70 - 130			07/14/22 09:40	07/14/22 23:07	1
Method: Total BTEX - Total BTEX	(Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			07/15/22 10:01	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8	mg/Kg			07/15/22 09:28	1
Method: 8015B NM - Diesel Rang	je Organics (Di	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8	mg/Kg		07/14/22 14:00	07/14/22 19:08	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8	mg/Kg		07/14/22 14:00	07/14/22 19:08	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		07/14/22 14:00	07/14/22 19:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	102		70 - 130			07/14/22 14:00	07/14/22 19:08	1
o-Terphenyl	113		70 - 130			07/14/22 14:00	07/14/22 19:08	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Allalyte	- Itosuit	Qualifici				Tropulou	741419204	

Lab Sample ID: 890-2551-6

Client Sample Results

Client: Ensolum Job ID: 890-2551-1 Project/Site: TOUCH OF GREY STATE COM #1 SDG: 33.7933.103.4600

Client Sample ID: FS06

Date Collected: 07/11/22 10:05 Date Received: 07/12/22 16:47

Sample Depth: 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U *-	0.00201	mg/Kg		07/14/22 09:32	07/15/22 02:44	1
Toluene	<0.00201	U	0.00201	mg/Kg		07/14/22 09:32	07/15/22 02:44	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		07/14/22 09:32	07/15/22 02:44	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		07/14/22 09:32	07/15/22 02:44	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		07/14/22 09:32	07/15/22 02:44	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		07/14/22 09:32	07/15/22 02:44	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130			07/14/22 09:32	07/15/22 02:44	1
1,4-Difluorobenzene (Surr)	100		70 - 130			07/14/22 09:32	07/15/22 02:44	1
Method: Total BTEX - Total BTE	(Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			07/15/22 10:01	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			07/15/22 09:28	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		07/14/22 16:33	07/15/22 01:31	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		07/14/22 16:33	07/15/22 01:31	1
OII Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		07/14/22 16:33	07/15/22 01:31	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	115		70 - 130			07/14/22 16:33	07/15/22 01:31	1
o-Terphenyl	128		70 - 130			07/14/22 16:33	07/15/22 01:31	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
					_			
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: FS07

Date Collected: 07/11/22 10:10

Date Received: 07/12/22 16:47

Sample Depth: 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U *-	0.00202	mg/Kg		07/14/22 09:32	07/15/22 03:05	1
Toluene	<0.00202	U	0.00202	mg/Kg		07/14/22 09:32	07/15/22 03:05	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		07/14/22 09:32	07/15/22 03:05	1
m-Xylene & p-Xylene	<0.00404	U	0.00404	mg/Kg		07/14/22 09:32	07/15/22 03:05	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		07/14/22 09:32	07/15/22 03:05	1
Xylenes, Total	<0.00404	U	0.00404	mg/Kg		07/14/22 09:32	07/15/22 03:05	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130			07/14/22 09:32	07/15/22 03:05	1

Eurofins Carlsbad

Lab Sample ID: 890-2551-7

Matrix: Solid

Client Sample Results

Client: Ensolum Project/Site: TOUCH OF GREY STATE COM #1

SDG: 33.7933.103.4600

Lab Sample ID: 890-2551-7

Job ID: 890-2551-1

Matrix: Solid

Client Sample ID: FS07

Date Collected: 07/11/22 10:10 Date Received: 07/12/22 16:47

Sample Depth: 4

Method: 8021B - \	Jolatile Organic	Compounds	(GC) (Continued)	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1.4-Difluorobenzene (Surr)	84	70 - 130	07/14/22 09:32	07/15/22 03:05	1

Method: Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404	mg/Kg			07/15/22 10:01	1

BASALS SIL OCAP NIBA	Diseasi Demana Onnenias	

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9 U	49.9	ma/Ka		 	07/15/22 09:28	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		07/14/22 16:33	07/15/22 01:53	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		07/14/22 16:33	07/15/22 01:53	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		07/14/22 16:33	07/15/22 01:53	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Surroyate	Mecovery Qualifier	Lililia	riepaieu	Allalyzeu	DII Fac
1-Chlorooctane	98	70 - 130	07/14/22 16:33	07/15/22 01:53	1
o-Terphenyl	111	70 - 130	07/14/22 16:33	07/15/22 01:53	1
_					

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifie		Unit	D	Prepared	Analyzed	Dil Fac
Chloride	24.8 F1	5.00	mg/Kg			07/15/22 04:15	1

Lab Sample ID: 890-2551-8 **Client Sample ID: FS08 Matrix: Solid**

Date Collected: 07/11/22 10:15 Date Received: 07/12/22 16:47

Sample Depth: 4

Method: 8021B - Volatile Organic Compounds (GC)

mounda. our ib volutile orga	ino compoundo ((33)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U *-	0.00199	mg/Kg		07/14/22 09:32	07/15/22 03:25	1
Toluene	< 0.00199	U	0.00199	mg/Kg		07/14/22 09:32	07/15/22 03:25	1
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		07/14/22 09:32	07/15/22 03:25	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		07/14/22 09:32	07/15/22 03:25	1
o-Xylene	< 0.00199	U	0.00199	mg/Kg		07/14/22 09:32	07/15/22 03:25	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		07/14/22 09:32	07/15/22 03:25	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130			07/14/22 09:32	07/15/22 03:25	1
1,4-Difluorobenzene (Surr)	96		70 - 130			07/14/22 09:32	07/15/22 03:25	1

Mothod:	Total RTF	Y - Total R	TFX Calculatio	n

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	DII Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			07/15/22 10:01	1

Analyte	•	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH		 <50.0	U	50.0	mg/Kg		-	07/15/22 09:28	1

Client Sample Results

Client: Ensolum Job ID: 890-2551-1 Project/Site: TOUCH OF GREY STATE COM #1 SDG: 33.7933.103.4600

Client Sample ID: FS08 Lab Sample ID: 890-2551-8 Date Collected: 07/11/22 10:15 Date Received: 07/12/22 16:47

Sample Depth: 4

Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		07/14/22 16:33	07/15/22 02:14	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		07/14/22 16:33	07/15/22 02:14	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		07/14/22 16:33	07/15/22 02:14	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	94		70 - 130			07/14/22 16:33	07/15/22 02:14	1
o-Terphenyl	107		70 - 130			07/14/22 16:33	07/15/22 02:14	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	114		4.98	mg/Kg			07/15/22 04:42	1

Lab Sample ID: 890-2551-9 **Client Sample ID: FS09** Matrix: Solid

Date Collected: 07/11/22 10:20 Date Received: 07/12/22 16:47

Sample Depth: 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U *-	0.00200	mg/Kg		07/14/22 09:32	07/15/22 03:46	1
Toluene	<0.00200	U	0.00200	mg/Kg		07/14/22 09:32	07/15/22 03:46	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		07/14/22 09:32	07/15/22 03:46	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		07/14/22 09:32	07/15/22 03:46	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		07/14/22 09:32	07/15/22 03:46	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		07/14/22 09:32	07/15/22 03:46	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130			07/14/22 09:32	07/15/22 03:46	1
1,4-Difluorobenzene (Surr)	99		70 - 130			07/14/22 09:32	07/15/22 03:46	1
Method: Total BTEX - Total BTEX	Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			07/15/22 10:01	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			07/15/22 09:28	1
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		07/14/22 16:33	07/15/22 02:35	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		07/14/22 16:33	07/15/22 02:35	1
OII Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		07/14/22 16:33	07/15/22 02:35	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	118		70 - 130			07/14/22 16:33	07/15/22 02:35	1
o-Terphenyl	130		70 - 130			07/14/22 16:33	07/15/22 02:35	1

Client Sample Results

Client: Ensolum Job ID: 890-2551-1 Project/Site: TOUCH OF GREY STATE COM #1 SDG: 33.7933.103.4600

Client Sample ID: FS09 Lab Sample ID: 890-2551-9

Date Collected: 07/11/22 10:20 Date Received: 07/12/22 16:47

Sample Depth: 4

I	Method: 300.0 - Anions, Ion Chromatography - Soluble										
Δ	nalyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac		
C	Chloride	13.1		5.00	mg/Kg			07/15/22 04:52	1		

Client Sample ID: SW01 Lab Sample ID: 890-2551-10 **Matrix: Solid**

Date Collected: 07/11/22 15:00 Date Received: 07/12/22 16:47

Sample Depth: 0 - 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U *-	0.00198	mg/Kg		07/14/22 09:32	07/15/22 04:06	
Toluene	<0.00198	U	0.00198	mg/Kg		07/14/22 09:32	07/15/22 04:06	
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		07/14/22 09:32	07/15/22 04:06	
m-Xylene & p-Xylene	<0.00397	U	0.00397	mg/Kg		07/14/22 09:32	07/15/22 04:06	
o-Xylene	<0.00198	U	0.00198	mg/Kg		07/14/22 09:32	07/15/22 04:06	
Xylenes, Total	<0.00397	U	0.00397	mg/Kg		07/14/22 09:32	07/15/22 04:06	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	96		70 - 130			07/14/22 09:32	07/15/22 04:06	
1,4-Difluorobenzene (Surr)	99		70 - 130			07/14/22 09:32	07/15/22 04:06	
Method: Total BTEX - Total BTEX	(Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00397	U	0.00397	mg/Kg			07/15/22 10:01	,
Method: 8015 NM - Diesel Range Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	- ************************************		49.8	mg/Kg			07/15/22 09:28	
Method: 8015B NM - Diesel Rang	ne Organics (D	RO) (GC)						
Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8	mg/Kg		07/14/22 16:33	07/15/22 02:57	
5 5				mg/rtg			01710/22 02:01	•
(GRO)-C6-C10 Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg		07/14/22 16:33	07/15/22 02:57	
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<49.8 <49.8		49.8 49.8			07/14/22 16:33 07/14/22 16:33		,
(GRO)-C6-C10 Diesel Range Organics (Over		U		mg/Kg			07/15/22 02:57	
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		07/14/22 16:33	07/15/22 02:57 07/15/22 02:57	
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<49.8 %Recovery	U	49.8 <i>Limits</i>	mg/Kg		07/14/22 16:33 Prepared	07/15/22 02:57 07/15/22 02:57 Analyzed	
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate	<49.8 **Recovery 107 115	U Qualifier	49.8 Limits 70 - 130	mg/Kg		07/14/22 16:33 Prepared 07/14/22 16:33	07/15/22 02:57 07/15/22 02:57 Analyzed 07/15/22 02:57	Dil Fa
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<49.8 **Recovery 107 115 Domatography -	U Qualifier	49.8 Limits 70 - 130	mg/Kg	D	07/14/22 16:33 Prepared 07/14/22 16:33	07/15/22 02:57 07/15/22 02:57 Analyzed 07/15/22 02:57	

Client: Ensolum

Job ID: 890-2551-1 SDG: 33.7933.103.4600

Project/Site: TOUCH OF GREY STATE COM #1

Lab Sample ID: 890-2551-11

Date Collected: 07/11/22 15:05 Date Received: 07/12/22 16:47

Client Sample ID: SW02

Matrix: Solid

Sample Depth: 0 - 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U *-	0.00201	mg/Kg		07/14/22 09:32	07/15/22 04:26	1
Toluene	<0.00201	U	0.00201	mg/Kg		07/14/22 09:32	07/15/22 04:26	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		07/14/22 09:32	07/15/22 04:26	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		07/14/22 09:32	07/15/22 04:26	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		07/14/22 09:32	07/15/22 04:26	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		07/14/22 09:32	07/15/22 04:26	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	118		70 - 130			07/14/22 09:32	07/15/22 04:26	1
1,4-Difluorobenzene (Surr)	97		70 - 130			07/14/22 09:32	07/15/22 04:26	1
Method: Total BTEX - Total BTEX	(Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
: Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			07/15/22 09:28	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		07/14/22 16:33	07/15/22 03:18	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		07/14/22 16:33	07/15/22 03:18	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		07/14/22 16:33	07/15/22 03:18	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	88		70 - 130			07/14/22 16:33	07/15/22 03:18	1
o-Terphenyl	102		70 - 130			07/14/22 16:33	07/15/22 03:18	1
Method: 300.0 - Anions, Ion Chro	• • •							
		O II 61	DI.	Unit	D	Duamanad	A so a la ses al	Dil Faa
Analyte	Result	Qualifier	4.95	mg/Kg		Prepared	Analyzed 07/15/22 05:28	Dil Fac

Client Sample ID: SW03 Lab Sample ID: 890-2551-12 Date Collected: 07/11/22 15:10

Date Received: 07/12/22 16:47

Sample Depth: 0 - 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U *-	0.00200	mg/Kg		07/14/22 09:32	07/15/22 04:47	1
Toluene	<0.00200	U	0.00200	mg/Kg		07/14/22 09:32	07/15/22 04:47	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		07/14/22 09:32	07/15/22 04:47	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		07/14/22 09:32	07/15/22 04:47	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		07/14/22 09:32	07/15/22 04:47	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		07/14/22 09:32	07/15/22 04:47	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			07/14/22 09:32	07/15/22 04:47	1

Eurofins Carlsbad

Matrix: Solid

Lab Sample ID: 890-2551-12

07/15/22 05:38

Client Sample Results

Client: Ensolum Job ID: 890-2551-1

Project/Site: TOUCH OF GREY STATE COM #1 SDG: 33.7933.103.4600

Client Sample ID: SW03 Date Collected: 07/11/22 15:10

Date Received: 07/12/22 16:47

Sample Depth: 0 - 4

Chloride

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	100		70 - 130			07/14/22 09:32	07/15/22 04:47	1
Method: Total BTEX - Total BTEX	Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg			07/15/22 10:01	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			07/15/22 09:28	1
Analyte	Result	Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang	je Organics (Di	RO) (GC)						
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		07/14/22 16:33	07/15/22 03:39	1
(GRO)-C6-C10 Diesel Range Organics (Over	<49.9	П	49.9	mg/Kg		07/14/22 16:33	07/15/22 03:39	1
C10-C28)	440.0	O	40.0	mg/itg		07714722 10:00	01/10/22 00:00	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		07/14/22 16:33	07/15/22 03:39	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	91		70 - 130			07/14/22 16:33	07/15/22 03:39	1
o-Terphenyl	102		70 - 130			07/14/22 16:33	07/15/22 03:39	1
- Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
		Qualifier	RL	Unit		Prepared	Analyzed	Dil Fac

4.95

mg/Kg

12.3

Surrogate Summary

Client: Ensolum Job ID: 890-2551-1
Project/Site: TOUCH OF GREY STATE COM #1 SDG: 33.7933.103.4600

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-2551-1	FS01	112	100	
890-2551-2	FS02	108	103	
890-2551-3	FS03	103	99	
890-2551-4	FS04	106	100	
890-2551-5	FS05	102	98	
890-2551-6	FS06	106	100	
890-2551-6 MS	FS06	102	96	
890-2551-6 MSD	FS06	108	91	
890-2551-7	FS07	97	84	
890-2551-8	FS08	107	96	
890-2551-9	FS09	104	99	
890-2551-10	SW01	96	99	
890-2551-11	SW02	118	97	
890-2551-12	SW03	110	100	
LCS 880-29709/1-A	Lab Control Sample	106	94	
LCS 880-29718/1-A	Lab Control Sample	104	97	
LCSD 880-29709/2-A	Lab Control Sample Dup	107	97	
LCSD 880-29718/2-A	Lab Control Sample Dup	99	101	
MB 880-29709/5-A	Method Blank	98	98	
MB 880-29718/5-A	Method Blank	96	98	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-16938-A-1-E MS	Matrix Spike	185 S1+	457 S1+
880-16938-A-1-F MSD	Matrix Spike Duplicate	173 S1+	439 S1+
890-2547-A-41-C MS	Matrix Spike	71	68 S1-
890-2547-A-41-D MSD	Matrix Spike Duplicate	71	67 S1-
890-2551-1	FS01	88	97
890-2551-2	FS02	87	97
890-2551-3	FS03	91	94
890-2551-4	FS04	91	99
890-2551-5	FS05	102	113
890-2551-6	FS06	115	128
890-2551-7	FS07	98	111
890-2551-8	FS08	94	107
890-2551-9	FS09	118	130
890-2551-10	SW01	107	115
890-2551-11	SW02	88	102
890-2551-12	SW03	91	102
LCS 880-29673/2-A	Lab Control Sample	109	114
LCS 880-29771/2-A	Lab Control Sample	98	115
LCSD 880-29673/3-A	Lab Control Sample Dup	113	124

OTPH = o-Terphenyl

Surrogate Summary

Client: Ensolum Job ID: 890-2551-1 Project/Site: TOUCH OF GREY STATE COM #1 SDG: 33.7933.103.4600

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate
		1001	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
LCSD 880-29771/3-A	Lab Control Sample Dup	89	104	
MB 880-29673/1-A	Method Blank	81	91	
MB 880-29771/1-A	Method Blank	100	119	
Surrogate Legend				
1CO = 1-Chlorooctane				

QC Sample Results

Client: Ensolum Job ID: 890-2551-1 Project/Site: TOUCH OF GREY STATE COM #1 SDG: 33.7933.103.4600

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-29709/5-A

Lab Sample ID: LCS 880-29709/1-A

Matrix: Solid Analysis Batch: 29747 Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 29709

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		07/14/22 09:32	07/15/22 02:15	1
Toluene	<0.00200	U	0.00200	mg/Kg		07/14/22 09:32	07/15/22 02:15	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		07/14/22 09:32	07/15/22 02:15	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		07/14/22 09:32	07/15/22 02:15	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		07/14/22 09:32	07/15/22 02:15	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		07/14/22 09:32	07/15/22 02:15	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130	07/14/22 09:32	07/15/22 02:15	1
1.4-Difluorobenzene (Surr)	98		70 - 130	07/14/22 09:32	07/15/22 02:15	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 29709

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.06857	*_	mg/Kg		69	70 - 130	
Toluene	0.100	0.07143		mg/Kg		71	70 - 130	
Ethylbenzene	0.100	0.07419		mg/Kg		74	70 - 130	
m-Xylene & p-Xylene	0.200	0.1581		mg/Kg		79	70 - 130	
o-Xylene	0.100	0.08525		mg/Kg		85	70 - 130	

LCS LCS

Surrogate	%Recovery C	Qualifier	Limits
4-Bromofluorobenzene (Surr)	106		70 - 130
1,4-Difluorobenzene (Surr)	94		70 - 130

Lab Sample ID: LCSD 880-29709/2-A **Client Sample ID: Lab Control Sample Dup** Matrix: Solid

Matrix: Solid

Analysis Batch: 29747

Analysis Batch: 29747

Prep Type: Total/NA Prep Batch: 29709

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.08850		mg/Kg		89	70 - 130	25	35
Toluene	0.100	0.08365		mg/Kg		84	70 - 130	16	35
Ethylbenzene	0.100	0.08243		mg/Kg		82	70 - 130	11	35
m-Xylene & p-Xylene	0.200	0.1724		mg/Kg		86	70 - 130	9	35
o-Xylene	0.100	0.09250		mg/Kg		93	70 - 130	8	35

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	107	70 - 130
1,4-Difluorobenzene (Surr)	97	70 - 130

Lab Sample ID: 890-2551-6 MS

Matrix: Solid

Analysis Batch: 29747

Client Sample ID: FS06 Prep Type: Total/NA

Prep Batch: 29709

, and the second	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U *-	0.101	0.08720		mg/Kg		86	70 - 130	
Toluene	<0.00201	U	0.101	0.08714		mg/Kg		86	70 - 130	

QC Sample Results

Client: Ensolum Job ID: 890-2551-1 Project/Site: TOUCH OF GREY STATE COM #1 SDG: 33.7933.103.4600

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-2551-6 MS

Matrix: Solid

Analysis Batch: 29747

Client Sample ID: FS06 Prep Type: Total/NA

Prep Batch: 29709

	Sample	Sample	эріке	IVIO	IVIO				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00201	U	0.101	0.08720		mg/Kg		86	70 - 130	
m-Xylene & p-Xylene	<0.00402	U	0.202	0.1842		mg/Kg		91	70 - 130	
o-Xylene	<0.00201	U	0.101	0.09973		mg/Kg		99	70 - 130	

MS MS

Surrogate	%Recovery Q	ualifier	Limits
4-Bromofluorobenzene (Surr)	102		70 - 130
1,4-Difluorobenzene (Surr)	96		70 - 130

Lab Sample ID: 890-2551-6 MSD

Matrix: Solid

Analysis Batch: 29747

Client Sample ID: FS06 Prep Type: Total/NA

Prep Batch: 29709

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00201	U *-	0.100	0.07395		mg/Kg		74	70 - 130	16	35
Toluene	<0.00201	U	0.100	0.07730		mg/Kg		77	70 - 130	12	35
Ethylbenzene	<0.00201	U	0.100	0.07699		mg/Kg		77	70 - 130	12	35
m-Xylene & p-Xylene	<0.00402	U	0.200	0.1636		mg/Kg		82	70 - 130	12	35
o-Xylene	<0.00201	U	0.100	0.09100		mg/Kg		91	70 - 130	9	35

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	108		70 - 130
1,4-Difluorobenzene (Surr)	91		70 - 130

Lab Sample ID: MB 880-29718/5-A

Matrix: Solid

Analysis Batch: 29747

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 29718

MR	MR

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		07/14/22 09:40	07/14/22 14:39	1
Toluene	<0.00200	U	0.00200	mg/Kg		07/14/22 09:40	07/14/22 14:39	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		07/14/22 09:40	07/14/22 14:39	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		07/14/22 09:40	07/14/22 14:39	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		07/14/22 09:40	07/14/22 14:39	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		07/14/22 09:40	07/14/22 14:39	1

MB MB

Surrogate	%Recovery Qual	lifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96	70 - 130	07/14/22 09:40	07/14/22 14:39	1
1,4-Difluorobenzene (Surr)	98	70 - 130	07/14/22 09:40	07/14/22 14:39	1

Lab Sample ID: LCS 880-29718/1-A

Matrix: Solid

Analysis Batch: 29747

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 29718

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09627		mg/Kg		96	70 - 130	
Toluene	0.100	0.09427		mg/Kg		94	70 - 130	
Ethylbenzene	0.100	0.09312		mg/Kg		93	70 - 130	
m-Xylene & p-Xylene	0.200	0.1936		mg/Kg		97	70 - 130	

QC Sample Results

Client: Ensolum Job ID: 890-2551-1
Project/Site: TOUCH OF GREY STATE COM #1 SDG: 33.7933.103.4600

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-29718/1-A

Matrix: Solid

Analysis Batch: 29747

Spike LCS LCS

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 29718

Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits D 0.100 0.1030 103 70 - 130 o-Xylene mg/Kg

 Surrogate
 %Recovery
 Qualifier
 Limits

 4-Bromofluorobenzene (Surr)
 104
 70 - 130

 1,4-Difluorobenzene (Surr)
 97
 70 - 130

Lab Sample ID: LCSD 880-29718/2-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid Prep Type: Total/NA
Analysis Batch: 29747 Prep Batch: 29718

LCSD LCSD RPD Spike Analyte Added Result Qualifier Unit %Rec Limits RPD Limit D Benzene 0.100 0.09699 mg/Kg 97 70 - 130 35 Toluene 0.100 0.08826 mg/Kg 88 70 - 130 35 Ethylbenzene 0.100 0.08683 mg/Kg 87 70 - 130 35 m-Xylene & p-Xylene 0.200 0.1827 mg/Kg 91 70 - 130 35 0.100 0.09774 98 70 - 130 35 o-Xylene mg/Kg

 Surrogate
 %Recovery
 Qualifier
 Limits

 4-Bromofluorobenzene (Surr)
 99
 70 - 130

 1,4-Difluorobenzene (Surr)
 101
 70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

MB MB

91

Lab Sample ID: MB 880-29673/1-A

Client Sample ID: Method Blank

Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 29694

o-Terphenyl

Result Qualifier RL Unit Dil Fac Analyte D Prepared Analyzed 50.0 Gasoline Range Organics <50.0 U mg/Kg 07/13/22 15:09 07/14/22 09:52 (GRO)-C6-C10 50.0 Diesel Range Organics (Over <50.0 U mg/Kg 07/13/22 15:09 07/14/22 09:52 C10-C28)

Oll Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 07/13/22 15:09 07/14/22 09:52 MB MB Qualifier Dil Fac Surrogate %Recovery I imits Prepared Analyzed 1-Chlorooctane 81 70 - 130 07/13/22 15:09 07/14/22 09:52

Lab Sample ID: LCS 880-29673/2-A

Client Sample ID: Lab Control Sample

Matrix: Solid

Prep Type: Total/NA

Matrix: Solid Prep Type: Total/NA
Analysis Batch: 29694 Prep Batch: 29673

70 - 130

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Gasoline Range Organics 1000 883.9 mg/Kg 88 70 130 (GRO)-C6-C10 1000 900.1 90 70 - 130 Diesel Range Organics (Over mg/Kg C10-C28)

Eurofins Carlsbad

Prep Batch: 29673

07/14/22 09:52

07/13/22 15:09

1

3

4

6

8

10

12

1 /

Client: Ensolum

Job ID: 890-2551-1

SDG: 33.7933.103.4600

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-29673/2-A

Project/Site: TOUCH OF GREY STATE COM #1

Matrix: Solid

Analysis Batch: 29694

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 29673

LCS LCS

Surrogate	%Recovery Quali	tier Limits
1-Chlorooctane	109	70 - 130
o-Terphenyl	114	70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 29673

Lab Sample ID: LCSD 880-29673/3-A **Matrix: Solid** Analysis Batch: 29694

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit 1000 885.0 88 70 - 1300 20 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 953.8 mg/Kg 95 70 - 1306 20 C10-C28)

LCSD LCSD

Lab Sample ID: 890-2547-A-41-C MS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	113		70 - 130
o-Terphenyl	124		70 - 130

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Analysis Batch: 29694 Prep Batch: 29673 Sample Sample Spike MS MS

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Gasoline Range Organics <50.0 U 1000 766.7 mg/Kg 75 70 - 130 (GRO)-C6-C10 <50.0 U F1 Diesel Range Organics (Over 1000 635.5 F1 mg/Kg 61 70 - 130

C10-C28)

Matrix: Solid

MS MS %Recovery Qualifier Limits Surrogate 70 - 130 1-Chlorooctane 71 o-Terphenyl 68 S1-70 - 130

Lab Sample ID: 890-2547-A-41-D MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid Prep Type: Total/NA

Analysis Batch: 29694 Prep Batch: 29673 Camania Camania Calle

	Sample	Sample	эріке	เผอก	เพอบ				%Rec		KPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	<50.0	U	999	766.4		mg/Kg		75	70 - 130	0	20	
(GRO)-C6-C10												
Diesel Range Organics (Over	<50.0	U F1	999	636.2	F1	mg/Kg		61	70 - 130	0	20	
C10-C28)												

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	71		70 - 130
o-Terphenyl	67	S1-	70 - 130

Client: Ensolum Project/Site: TOUCH OF GREY STATE COM #1

Job ID: 890-2551-1 SDG: 33.7933.103.4600

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-29771/1-A

Analysis Batch: 29692

Matrix: Solid

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 29771

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		07/14/22 16:33	07/14/22 19:51	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		07/14/22 16:33	07/14/22 19:51	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		07/14/22 16:33	07/14/22 19:51	1
	МВ	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	100		70 - 130			07/14/22 16:33	07/14/22 19:51	1
o-Terphenyl	119		70 - 130			07/14/22 16:33	07/14/22 19:51	1

Lab Sample ID: LCS 880-29771/2-A

Matrix: Solid

Analysis Batch: 29692

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 29771

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	1000	1036		mg/Kg		104	70 - 130	
Diesel Range Organics (Over C10-C28)	1000	906.0		mg/Kg		91	70 - 130	

LCS LCS %Recovery Qualifier Limits Surrogate 1-Chlorooctane 98 70 - 130 o-Terphenyl 115 70 - 130

Lab Sample ID: LCSD 880-29771/3-A

Matrix: Solid

Analysis Batch: 29692

Client Sample ID: Lab C	Control Sample Dup
-------------------------	--------------------

Prep Type: Total/NA Prep Batch: 29771

LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier %Rec RPD Limit Unit Limits Gasoline Range Organics 1000 936.7 mg/Kg 94 70 - 130 10 20 (GRO)-C6-C10 Diesel Range Organics (Over 1000 858.2 mg/Kg 86 70 - 130 5 20 C10-C28)

LCSD LCSD %Recovery Qualifier Limits Surrogate 70 - 130 1-Chlorooctane 89 104 70 - 130 o-Terphenyl

Lab Sample ID: 880-16938-A-1-E MS

Matrix: Solid

Analysis Batch: 29692

Client Sample ID: Matrix Spike
Prep Type: Total/NA

Prep Batch: 29771

MS MS Surrogate %Recovery Qualifier Limits 1-Chlorooctane 185 S1+ 70 - 130 o-Terphenyl 457 S1+ 70 - 130

Lab Sample ID: 880-16938-A-1-F MSD

Job ID: 890-2551-1 Client: Ensolum Project/Site: TOUCH OF GREY STATE COM #1 SDG: 33.7933.103.4600

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Lab Control Sample Dup

Prep Type: Soluble

Client Sample ID: FS07

Client Sample ID: FS07

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Total/NA

Prep Batch: 29771

Sample Sample Spike MSD MSD RPD Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Gasoline Range Organics 1990 F1 999 2431 F1 mg/Kg 44 70 - 130 NC 20

(GRO)-C6-C10

Matrix: Solid

Analysis Batch: 29692

MSD MSD %Recovery Qualifier Surrogate Limits S1+ 70 - 130 1-Chlorooctane 173 70 - 130 o-Terphenyl 439 S1+

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-29751/1-A Client Sample ID: Method Blank

Matrix: Solid Prep Type: Soluble

Analysis Batch: 29768

мв мв

Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac 5.00 Chloride <5.00 mg/Kg 07/15/22 01:38

Lab Sample ID: LCS 880-29751/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 29768

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Chloride 250 103 90 - 110 257.0 mg/Kg

Lab Sample ID: LCSD 880-29751/3-A

Matrix: Solid

Analysis Batch: 29768

LCSD LCSD Spike %Rec **RPD** Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit 250 Chloride 259.4 104 90 - 110 mg/Kg

Lab Sample ID: 890-2551-7 MS

Matrix: Solid

Analysis Batch: 29768

Sample Sample Spike MS MS %Rec Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits 24.8 F1 Chloride 250 299.1 mg/Kg 110 90 - 110

Lab Sample ID: 890-2551-7 MSD

Matrix: Solid

Analysis Batch: 29768

Sample Sample Spike MSD MSD %Rec RPD Result Qualifier Added RPD Analyte Result Qualifier %Rec Limits Limit Unit D Chloride 24.8 F1 250 304.6 F1 mg/Kg 112 90 - 110 20

Client: Ensolum

Project/Site: TOUCH OF GREY STATE COM #1

SDG: 33.7933.103.4600

GC VOA

Prep Batch: 29709

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2551-6	FS06	Total/NA	Solid	5035	
890-2551-7	FS07	Total/NA	Solid	5035	
890-2551-8	FS08	Total/NA	Solid	5035	
890-2551-9	FS09	Total/NA	Solid	5035	
890-2551-10	SW01	Total/NA	Solid	5035	
890-2551-11	SW02	Total/NA	Solid	5035	
890-2551-12	SW03	Total/NA	Solid	5035	
MB 880-29709/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-29709/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-29709/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-2551-6 MS	FS06	Total/NA	Solid	5035	
890-2551-6 MSD	FS06	Total/NA	Solid	5035	

Prep Batch: 29718

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2551-1	FS01	Total/NA	Solid	5035	
890-2551-2	FS02	Total/NA	Solid	5035	
890-2551-3	FS03	Total/NA	Solid	5035	
890-2551-4	FS04	Total/NA	Solid	5035	
890-2551-5	FS05	Total/NA	Solid	5035	
MB 880-29718/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-29718/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-29718/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Analysis Batch: 29747

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2551-1	FS01	Total/NA	Solid	8021B	29718
890-2551-2	FS02	Total/NA	Solid	8021B	29718
890-2551-3	FS03	Total/NA	Solid	8021B	29718
890-2551-4	FS04	Total/NA	Solid	8021B	29718
890-2551-5	FS05	Total/NA	Solid	8021B	29718
890-2551-6	FS06	Total/NA	Solid	8021B	29709
890-2551-7	FS07	Total/NA	Solid	8021B	29709
890-2551-8	FS08	Total/NA	Solid	8021B	29709
890-2551-9	FS09	Total/NA	Solid	8021B	29709
890-2551-10	SW01	Total/NA	Solid	8021B	29709
890-2551-11	SW02	Total/NA	Solid	8021B	29709
890-2551-12	SW03	Total/NA	Solid	8021B	29709
MB 880-29709/5-A	Method Blank	Total/NA	Solid	8021B	29709
MB 880-29718/5-A	Method Blank	Total/NA	Solid	8021B	29718
LCS 880-29709/1-A	Lab Control Sample	Total/NA	Solid	8021B	29709
LCS 880-29718/1-A	Lab Control Sample	Total/NA	Solid	8021B	29718
LCSD 880-29709/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	29709
LCSD 880-29718/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	29718
890-2551-6 MS	FS06	Total/NA	Solid	8021B	29709
890-2551-6 MSD	FS06	Total/NA	Solid	8021B	29709

Analysis Batch: 29827

Released to Imaging: 9/27/2022 10:39:07 AM

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2551-1	FS01	Total/NA	Solid	Total BTEX	
890-2551-2	FS02	Total/NA	Solid	Total BTEX	

Eurofins Carlsbad

2

Λ

6

8

9

10

12

13

4

Client: Ensolum Project/Site: TOUCH OF GREY STATE COM #1 Job ID: 890-2551-1

SDG: 33.7933.103.4600

GC VOA (Continued)

Analysis Batch: 29827 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2551-3	FS03	Total/NA	Solid	Total BTEX	
890-2551-4	FS04	Total/NA	Solid	Total BTEX	
890-2551-5	FS05	Total/NA	Solid	Total BTEX	
890-2551-6	FS06	Total/NA	Solid	Total BTEX	
890-2551-7	FS07	Total/NA	Solid	Total BTEX	
890-2551-8	FS08	Total/NA	Solid	Total BTEX	
890-2551-9	FS09	Total/NA	Solid	Total BTEX	
890-2551-10	SW01	Total/NA	Solid	Total BTEX	
890-2551-11	SW02	Total/NA	Solid	Total BTEX	
890-2551-12	SW03	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 29673

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2551-1	FS01	Total/NA	Solid	8015NM Prep	
890-2551-2	FS02	Total/NA	Solid	8015NM Prep	
890-2551-3	FS03	Total/NA	Solid	8015NM Prep	
890-2551-4	FS04	Total/NA	Solid	8015NM Prep	
890-2551-5	FS05	Total/NA	Solid	8015NM Prep	
MB 880-29673/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-29673/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-29673/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-2547-A-41-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-2547-A-41-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 29692

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2551-6	FS06	Total/NA	Solid	8015B NM	29771
890-2551-7	FS07	Total/NA	Solid	8015B NM	29771
890-2551-8	FS08	Total/NA	Solid	8015B NM	29771
890-2551-9	FS09	Total/NA	Solid	8015B NM	29771
890-2551-10	SW01	Total/NA	Solid	8015B NM	29771
890-2551-11	SW02	Total/NA	Solid	8015B NM	29771
890-2551-12	SW03	Total/NA	Solid	8015B NM	29771
MB 880-29771/1-A	Method Blank	Total/NA	Solid	8015B NM	29771
LCS 880-29771/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	29771
LCSD 880-29771/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	29771
880-16938-A-1-E MS	Matrix Spike	Total/NA	Solid	8015B NM	29771
880-16938-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	29771

Analysis Batch: 29694

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2551-1	FS01	Total/NA	Solid	8015B NM	29673
890-2551-2	FS02	Total/NA	Solid	8015B NM	29673
890-2551-3	FS03	Total/NA	Solid	8015B NM	29673
890-2551-4	FS04	Total/NA	Solid	8015B NM	29673
890-2551-5	FS05	Total/NA	Solid	8015B NM	29673
MB 880-29673/1-A	Method Blank	Total/NA	Solid	8015B NM	29673
LCS 880-29673/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	29673
LCSD 880-29673/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	29673

Client: Ensolum

Job ID: 890-2551-1 Project/Site: TOUCH OF GREY STATE COM #1 SDG: 33.7933.103.4600

GC Semi VOA (Continued)

Analysis Batch: 29694 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2547-A-41-C MS	Matrix Spike	Total/NA	Solid	8015B NM	29673
890-2547-A-41-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	29673

Prep Batch: 29771

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2551-6	FS06	Total/NA	Solid	8015NM Prep	
890-2551-7	FS07	Total/NA	Solid	8015NM Prep	
890-2551-8	FS08	Total/NA	Solid	8015NM Prep	
890-2551-9	FS09	Total/NA	Solid	8015NM Prep	
890-2551-10	SW01	Total/NA	Solid	8015NM Prep	
890-2551-11	SW02	Total/NA	Solid	8015NM Prep	
890-2551-12	SW03	Total/NA	Solid	8015NM Prep	
MB 880-29771/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-29771/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-29771/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-16938-A-1-E MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-16938-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 29820

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2551-1	FS01	Total/NA	Solid	8015 NM	
890-2551-2	FS02	Total/NA	Solid	8015 NM	
890-2551-3	FS03	Total/NA	Solid	8015 NM	
890-2551-4	FS04	Total/NA	Solid	8015 NM	
890-2551-5	FS05	Total/NA	Solid	8015 NM	
890-2551-6	FS06	Total/NA	Solid	8015 NM	
890-2551-7	FS07	Total/NA	Solid	8015 NM	
890-2551-8	FS08	Total/NA	Solid	8015 NM	
890-2551-9	FS09	Total/NA	Solid	8015 NM	
890-2551-10	SW01	Total/NA	Solid	8015 NM	
890-2551-11	SW02	Total/NA	Solid	8015 NM	
890-2551-12	SW03	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 29751

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2551-1	FS01	Soluble	Solid	DI Leach	
890-2551-2	FS02	Soluble	Solid	DI Leach	
390-2551-3	FS03	Soluble	Solid	DI Leach	
890-2551-4	FS04	Soluble	Solid	DI Leach	
890-2551-5	FS05	Soluble	Solid	DI Leach	
890-2551-6	FS06	Soluble	Solid	DI Leach	
890-2551-7	FS07	Soluble	Solid	DI Leach	
890-2551-8	FS08	Soluble	Solid	DI Leach	
890-2551-9	FS09	Soluble	Solid	DI Leach	
890-2551-10	SW01	Soluble	Solid	DI Leach	
890-2551-11	SW02	Soluble	Solid	DI Leach	
890-2551-12	SW03	Soluble	Solid	DI Leach	
MB 880-29751/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-29751/2-A	Lab Control Sample	Soluble	Solid	DI Leach	

Client: Ensolum Project/Site: TOUCH OF GREY STATE COM #1 Job ID: 890-2551-1

SDG: 33.7933.103.4600

HPLC/IC (Continued)

Leach Batch: 29751 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-29751/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-2551-7 MS	FS07	Soluble	Solid	DI Leach	
890-2551-7 MSD	FS07	Soluble	Solid	DI Leach	

Analysis Batch: 29768

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2551-1	FS01	Soluble	Solid	300.0	29751
890-2551-2	FS02	Soluble	Solid	300.0	29751
890-2551-3	FS03	Soluble	Solid	300.0	29751
890-2551-4	FS04	Soluble	Solid	300.0	29751
890-2551-5	FS05	Soluble	Solid	300.0	29751
890-2551-6	FS06	Soluble	Solid	300.0	29751
890-2551-7	FS07	Soluble	Solid	300.0	29751
890-2551-8	FS08	Soluble	Solid	300.0	29751
890-2551-9	FS09	Soluble	Solid	300.0	29751
890-2551-10	SW01	Soluble	Solid	300.0	29751
890-2551-11	SW02	Soluble	Solid	300.0	29751
890-2551-12	SW03	Soluble	Solid	300.0	29751
MB 880-29751/1-A	Method Blank	Soluble	Solid	300.0	29751
LCS 880-29751/2-A	Lab Control Sample	Soluble	Solid	300.0	29751
LCSD 880-29751/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	29751
890-2551-7 MS	FS07	Soluble	Solid	300.0	29751
890-2551-7 MSD	FS07	Soluble	Solid	300.0	29751

Client: Ensolum

Client Sample ID: FS01

Date Collected: 07/11/22 09:40

Date Received: 07/12/22 16:47

Project/Site: TOUCH OF GREY STATE COM #1

SDG: 33.7933.103.4600

Lab Sample ID: 890-2551-1

Matrix: Solid

Job ID: 890-2551-1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	29718	07/14/22 09:40	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29747	07/14/22 21:45	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29827	07/15/22 10:01	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29820	07/15/22 09:28	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29673	07/14/22 14:00	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29694	07/14/22 17:43	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	29751	07/14/22 12:23	SMC	XEN MID
Soluble	Analysis	300.0		1			29768	07/15/22 03:01	CH	XEN MID

Client Sample ID: FS02 Lab Sample ID: 890-2551-2

Date Collected: 07/11/22 09:45 Matrix: Solid

Date Received: 07/12/22 16:47

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	29718	07/14/22 09:40	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29747	07/14/22 22:05	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29827	07/15/22 10:01	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29820	07/15/22 09:28	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	29673	07/14/22 14:00	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29694	07/14/22 18:05	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	29751	07/14/22 12:23	SMC	XEN MID
Soluble	Analysis	300.0		1			29768	07/15/22 03:29	CH	XEN MID

Client Sample ID: FS03 Lab Sample ID: 890-2551-3

Date Collected: 07/11/22 09:50 Date Received: 07/12/22 16:47

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	29718	07/14/22 09:40	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29747	07/14/22 22:26	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29827	07/15/22 10:01	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29820	07/15/22 09:28	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	29673	07/14/22 14:00	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29694	07/14/22 18:26	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	29751	07/14/22 12:23	SMC	XEN MID
Soluble	Analysis	300.0		1			29768	07/15/22 03:38	CH	XEN MID

Client Sample ID: FS04 Lab Sample ID: 890-2551-4

Date Collected: 07/11/22 09:55 Date Received: 07/12/22 16:47

Г										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	29718	07/14/22 09:40	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29747	07/14/22 22:46	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29827	07/15/22 10:01	SM	XEN MID

Eurofins Carlsbad

Matrix: Solid

Page 27 of 37

Matrix: Solid

Client: Ensolum

Date Received: 07/12/22 16:47

Project/Site: TOUCH OF GREY STATE COM #1 SDG: 33.7933.103.4600

Client Sample ID: FS04 Date Collected: 07/11/22 09:55

Lab Sample ID: 890-2551-4 Matrix: Solid

Job ID: 890-2551-1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			29820	07/15/22 09:28	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29673	07/14/22 14:00	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29694	07/14/22 18:47	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	29751	07/14/22 12:23	SMC	XEN MID
Soluble	Analysis	300.0		1			29768	07/15/22 03:47	CH	XEN MID

Client Sample ID: FS05 Lab Sample ID: 890-2551-5

Date Collected: 07/11/22 10:00 **Matrix: Solid**

Date Received: 07/12/22 16:47

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	29718	07/14/22 09:40	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29747	07/14/22 23:07	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29827	07/15/22 10:01	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29820	07/15/22 09:28	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	29673	07/14/22 14:00	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29694	07/14/22 19:08	AJ	XEN MID
Soluble	Leach	DI Leach			4.95 g	50 mL	29751	07/14/22 12:23	SMC	XEN MID
Soluble	Analysis	300.0		1			29768	07/15/22 03:56	CH	XEN MID

Client Sample ID: FS06 Lab Sample ID: 890-2551-6

Date Collected: 07/11/22 10:05 **Matrix: Solid** Date Received: 07/12/22 16:47

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	29709	07/14/22 09:32	EL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29747	07/15/22 02:44	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29827	07/15/22 10:01	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29820	07/15/22 09:28	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	29771	07/14/22 16:33	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29692	07/15/22 01:31	SM	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	29751	07/14/22 12:23	SMC	XEN MID
Soluble	Analysis	300.0		1			29768	07/15/22 04:06	CH	XEN MID

Client Sample ID: FS07 Lab Sample ID: 890-2551-7

Date Collected: 07/11/22 10:10 **Matrix: Solid** Date Received: 07/12/22 16:47

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	29709	07/14/22 09:32	EL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29747	07/15/22 03:05	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29827	07/15/22 10:01	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29820	07/15/22 09:28	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	29771	07/14/22 16:33	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29692	07/15/22 01:53	SM	XEN MID

Job ID: 890-2551-1 SDG: 33.7933.103.4600

Client: Ensolum Project/Site: TOUCH OF GREY STATE COM #1

Lab Sample ID: 890-2551-7

Client Sample ID: FS07 Date Collected: 07/11/22 10:10

Matrix: Solid

Date Received: 07/12/22 16:47

matrix oona	

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5 g	50 mL	29751	07/14/22 12:23	SMC	XEN MID
Soluble	Analysis	300.0		1			29768	07/15/22 04:15	CH	XEN MID

Client Sample ID: FS08 Lab Sample ID: 890-2551-8

Date Collected: 07/11/22 10:15 **Matrix: Solid**

Date Received: 07/12/22 16:47

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	29709	07/14/22 09:32	EL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29747	07/15/22 03:25	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29827	07/15/22 10:01	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29820	07/15/22 09:28	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29771	07/14/22 16:33	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29692	07/15/22 02:14	SM	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	29751	07/14/22 12:23	SMC	XEN MID
Soluble	Analysis	300.0		1			29768	07/15/22 04:42	CH	XEN MID

Client Sample ID: FS09 Lab Sample ID: 890-2551-9

Date Collected: 07/11/22 10:20 Date Received: 07/12/22 16:47

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	29709	07/14/22 09:32	EL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29747	07/15/22 03:46	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29827	07/15/22 10:01	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29820	07/15/22 09:28	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	29771	07/14/22 16:33	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29692	07/15/22 02:35	SM	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	29751	07/14/22 12:23	SMC	XEN MID
Soluble	Analysis	300.0		1			29768	07/15/22 04:52	CH	XEN MID

Client Sample ID: SW01 Lab Sample ID: 890-2551-10

Date Collected: 07/11/22 15:00 Date Received: 07/12/22 16:47

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	29709	07/14/22 09:32	EL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29747	07/15/22 04:06	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29827	07/15/22 10:01	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29820	07/15/22 09:28	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	29771	07/14/22 16:33	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29692	07/15/22 02:57	SM	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	29751	07/14/22 12:23	SMC	XEN MID
Soluble	Analysis	300.0		1			29768	07/15/22 05:19	CH	XEN MID

Eurofins Carlsbad

Matrix: Solid

Matrix: Solid

Project/Site: TOUCH OF GREY STATE COM #1

Client Sample ID: SW02

Client: Ensolum

Date Collected: 07/11/22 15:05 Date Received: 07/12/22 16:47

Lab Sample ID: 890-2551-11

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	29709	07/14/22 09:32	EL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29747	07/15/22 04:26	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29827	07/15/22 10:01	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29820	07/15/22 09:28	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	29771	07/14/22 16:33	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29692	07/15/22 03:18	SM	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	29751	07/14/22 12:23	SMC	XEN MID
Soluble	Analysis	300.0		1			29768	07/15/22 05:28	CH	XEN MID

Lab Sample ID: 890-2551-12

Matrix: Solid

Date Collected: 07/11/22 15:10 Date Received: 07/12/22 16:47

Client Sample ID: SW03

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	29709	07/14/22 09:32	EL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29747	07/15/22 04:47	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29827	07/15/22 10:01	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29820	07/15/22 09:28	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	29771	07/14/22 16:33	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29692	07/15/22 03:39	SM	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	29751	07/14/22 12:23	SMC	XEN MID
Soluble	Analysis	300.0		1			29768	07/15/22 05:38	CH	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Page 30 of 37 Released to Imaging: 9/27/2022 10:39:07 AM

Accreditation/Certification Summary

Client: Ensolum Job ID: 890-2551-1
Project/Site: TOUCH OF GREY STATE COM #1 SDG: 33.7933.103.4600

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
Texas	NE	ELAP	T104704400-22-24	06-30-23
The following analytes	are included in this report by	it the leberatory is not cortifi	ed by the governing authority. This list ma	arrimalizada amaliztaa farr
the agency does not of	• •	it the laboratory is not certifi	ed by the governing authority. This list his	ay include arialytes for
0 ,	• •	Matrix	Analyte	ay include analytes for
the agency does not of	fer certification.	•	, , ,	ay include analytes for

Λ

5

7

9

11

13

Method Summary

Client: Ensolum

Project/Site: TOUCH OF GREY STATE COM #1

Job ID: 890-2551-1

SDG: 33.7933.103.4600

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Collected

07/11/22 09:40

07/11/22 09:45

07/11/22 09:50

07/11/22 09:55

07/11/22 10:00

07/11/22 10:05

07/11/22 10:10

07/11/22 10:15

07/11/22 10:20

07/11/22 15:00

07/11/22 15:05

07/11/22 15:10

07/12/22 16:47

07/12/22 16:47

07/12/22 16:47

0 - 4

0 - 4

0 - 4

Matrix

Solid

Client: Ensolum

Lab Sample ID

890-2551-1

890-2551-2

890-2551-3

890-2551-4

890-2551-5

890-2551-6

890-2551-7

890-2551-8

890-2551-9

890-2551-10

890-2551-11

890-2551-12

Project/Site: TOUCH OF GREY STATE COM #1

Client Sample ID

FS01

FS02

FS03

FS04

FS05

FS06

FS07

FS08

FS09

SW01

SW02

SW03

Job ID: 890-2551-1 SDG: 33.7933.103.4600

Received	Depth
07/12/22 16:47	4
07/12/22 16:47	4
07/12/22 16:47	4
07/12/22 16:47	4
07/12/22 16:47	4
07/12/22 16:47	4
07/12/22 16:47	4
07/12/22 16:47	4
07/12/22 16:47	4

3

6

Q

9

10

11

49

www.xenco.com

Work Order No:

Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334

Environment Testing

seurofins ...

Xenco

Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300

Chain of Custody

Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199

EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296

Date/Time

Received by: (Signature)

Relinquished by: (Signature)

647

12.23 Date/Time

Received by: (Signature)

Relinguished by: (Signature)

Project Manager:	N. Mo.Y			Bill to: (if different)	t)	8	" Moi"	Work Order Comments	Comments	
Company Name:	Ensolum			Company Name:		N	Ehsolum	Program: UST/PST PRP Br	Brownfields ☐ RRC ☐ Sup	Superfund
Address:				Address:				State of Project:	1	
City, State ZIP:				City, State ZIP:				Reporting: Level Level	PST/UST TRRP Level IV	
Phone:	303-487-2946	2946	Email:	P	noir a	\wedge	ensolum.com	Deliverables: EDD AD2	ADaPT Other:	
Project Name:	Touch of Green Line Conto	Life Cont	-	Turn Around			ANALYSIS REQUEST	QUEST	Preservative Codes	
er:			Routine	Rush	Code	-			None: NO DI Wat	DI Water: H ₂ O
Project Location:	33, 7933, 16	-103. 4600	Due Date:	Iden top					lo	Me
Sampler's Name:	Kyse Parke	100	TAT starts the	TAT starts the day received by						Y 4
PO#:			are idus, il reci	under Grand	SJ				1250 4: T2	2
SAMPLE RECEIPT	Temp Blank:	Yes (No	Wet Ice:	Yes No	ətər				H : PO : HP	
Samples Received Intact:	ct: (Yes) No	Thermometer ID:	r _D :	TWW. OX	IIPIE				NaHSO 4: NABIS	
Cooler Custody Seals:	Yes No M/A	Correction Factor:	actor:	6.8-	2d		53		Na ₂ S ₂ O ₃ : NaSO ₃	
Sample Custody Seals:	Yes No W/A	Temperature Reading:	Reading:	0.0		7	890-2551 Chain of Custody	of Custody	Zn Acetate+NaOH: Zn	
Total Containers:		Corrected Temperature:	mperature:	5.8		3	ומכו		NaOH+Ascorbic Acid: SAPC	J
Sample Identification	ication Matrix	. Sampled	Time Sampled	Depth Grab/	# of Cont	187	g		Sample Comments	S
F501	V	7/1/27	0440	,h		X X	Q			
F502	~	1,	3445				<			
F503			0450							
FSOY			0955							
F505			(000)							
F506			10,25							
FS 07			1010							
F308			5/01							
F509			1020	>						
Swol	^	>	1500	120		>	A			
Total 200.7 / 6010	200.8 / 6020:	88	CRA 13PP	8RCRA 13PPM Texas 11	Al Sb A	s Ba Be	B Cd Ca Cr Co Cu Fe Pb	Mo Ni K Se	ir Tl Sn U V Zn	
Circle Method(s) a	Circle Method(s) and Metal(s) to be analyzed	alyzed	TCLP/S	PLP 6010 : 8RC	RA Sb	As Ba	TCLP/SPLP6010: 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag	Ni Se Ag TI U Hg: 1631 / 245.1 / 7470	1 / 7470 / 7471	
Notice: Signature of this docui	ment and relinquishment of sam the liable only for the cost of sam	ples constitutes a v	alid purchase ord	er from client compan	y to Eurofins or expenses	Xenco, its al	hotice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions from the control is a supple and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control	terms and conditions ss beyond the control		
of Eurofins Xenco. A minimum	n charge of \$85.00 will be applie	d to each project a	id a charge of \$5	for each sample subm	Itted to Euro	ins Xenco, L	of Eurofins Xenco, A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated	unless previously negotiated.		

Work Order No:

Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334

> **Environment Testing** Xenco

eurofins ...

Chain of Custody

EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296

2

2

3

4

6

7 8

10

11 12

13

Project Manager:	Mal		Bill to: (if different)	Och /	Moil	Work Order Comments	Comments
N	h Solur		Company Name:	Ehrolun	2	Program: UST/PST	Brownfields ☐ RRC ☐ Superfund [
			Address:			State of Project:	
City, State ZIP:			City, State ZIP:			Reporting: Level II 🔲 Level III 🗍	PST/UST TRRP Level IV
Phone:		Email:				Deliverables: EDD AD	ADaPT ☐ Other:
Project Name: Thuck of G.	nav Tuntant	Turn	Around		ANALYSIS REQUEST	ST	Preservative Codes
er:		Routine	Rush Code	is.			None: NO DI Water: H ₂ O
Project Location:	Q	Due Date:	the that				Cool: Cool MeOH: Me
Sampler's Name:		e	TAT starts the day received by				HCL: HC HNO 3: HN
PO #:		the lab, if rece	the lab, if received by 4:30pm				H ₂ SO ₄ : H ₂ NaOH: Na
SAMPLE RECEIPT Temp Blank:	Yes No	Wet Ice:	Yes No				H₃PO ₄: HP
tact: Yes	No Thermometer ID-	(wez				NaHSO 4: NABIS
Cooler Custody Seals: Yes No N/A	N/A Correction Factor:	ığı:	-a	50			Na ₂ S ₂ O ₃ : NaSO ₃
Sample Custody Seals: Yes No	N/A Pemperature	Readkog:		7			Zn Acetate+NaOH: Zn
Total Containers:	Corrected Temperature:	peratture:		10) 170 3)			NaOH+Ascorbic Acid: SAPC
Sample Identification	Matrix Sampled	Time	Depth Grab/ # of				Sample Comments
5402	12	1505	1	RRR			
SWOS	1/4/12	510	1.60	2			
			1				
			00				
			- :				7 - 3 F 3
Total 200.7 / 6010 200.8 / 6020:		RA 13PP TCIP/SF	8RCRA 13PPM Texas 11 ALS TCLP / SPLP 6010 : 8RCRA		b As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Min Mo NI K Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U	N Ne	Ag SiO ₂ Na Sr II Sn O V Zh Hg: 1631 / 245.1 / 7470 / 7471
Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service a constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service a Eurofins Xenco will be lable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the confirmation of services of samples and shall not assume any responsibility for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	ent of samples constitutes a valid cost of samples and shall not ass	d purchase orde	r from client company to E sibility for any losses or ext or each sample submitted i	urofins Xenco, its affiliates and kenses incurred by the client it o Eurofins Xenco, but not ana	subcontractors. It assigns standard term such losses are due to circumstances bey tyzed. These terms will be enforced unless		
Relinavished by: (Signature)	Received by: (Signature)	(Signature		Date/Time	Relinquished by: (Signature)	re) Received by: (Signature)	re) Date/Time
" Variety	8	7		1.12.23	2		
3)	_			4		
S					9		CHARLE GOLDAN PRODUCE AND ALL ALL ALL ALL ALL ALL ALL ALL ALL AL

Login Sample Receipt Checklist

Client: Ensolum Job Number: 890-2551-1

SDG Number: 33.7933.103.4600

Login Number: 2551 List Source: Eurofins Carlsbad

List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

1

3

4

6

8

10

12

10

Login Sample Receipt Checklist

Client: Ensolum Job Number: 890-2551-1

SDG Number: 33.7933.103.4600

Login Number: 2551 **List Source: Eurofins Midland** List Number: 2

List Creation: 07/14/22 10:49 AM

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Released to Imaging: 9/27/2022 10:39:07 AM

<6mm (1/4").

APPENDIX F

Lithologic Soil Sampling Logs

								Sample Name: B Hol	Date: 6/24/22
		E	N	C	OL	11	MA		ey State Cont
				9	O	. 0	IAI	Incident Number:	
Acquirocolo								Job Number: 090 2641	601
		LITHOL	OGI	C / SOIL S	AMPLING	LOG		Logged By: KGSE PYTKET	
Coord	inates: _	33.79	33	,-103	4600			Hole Diameter:	Total Depth: 3
Comm	ents: Fie	ld screen	ing co	inducted w	ith HACH Ch	loride Test S		PID for chloride and vapor, respection for chloride and vapor, respection for the chloride and vapor, respectively.	vely. Chloride test
Moisture	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Desc	criptions
N	3,40	0,0		BHOI	1	0.5		culture/fine red	Sand
M	1,204	0.6		100	-	-1'		fine sed synd	
M	1 1				-	2'		344	
M	168	0.0				- 3′		well graded sund	
					-				
					1				
					+				
- Aller								The state of the s	

							arch V		
	2000							Sample Name: BH02	Date: 6/24/22
		E	N	C	OL		M	Site Name: Touch of Gre	v State Con HI
			1	9		- 0	IAI	Incident Number:	
-		100						Job Number: 09 1 704	
					SAMPLING			Logged By: Kase Parker	Method: HA
	dinates:	33	.7	933	(03,46)	80		Hole Diameter:	Total Depth: 4
		eld screen	ing co	onducted w	ith HACH Ch	loride Test S		PID for chloride and vapor, respecti	vely. Chloride test
perfo	rmed wit	:h 1:4 dilu	tion f	actor of soi	l to distilled	water. No c		factors included.	
e .	e 1		0.0	Ω.	Sample		USCS/Rock Symbol		
stu	orid m	pod (m	nin	ple	Depth	Depth	/Rc nbc	Lithologic Des	criptions
Moisture	S S S	Vapor (ppm)	Staining	Sample ID	(ft bgs)	(ft bgs)	SCS		
-				S	(- 200))		
					1	L		10	
1	NI	0.0		BHOZ	1	-0.5		Cylithe/fine red	SAND
1		4 2 3 1		DAOD	-				
1	168					- /		Lulithe/fine red Line red synd	
1, (168	0,0				- 1			
1	INF	,			-	- 2		SAA	
14	1,009	0.0				- 2			
1								111	
1	1340	(0.0				-3'		544	
19	1,-11	0,0							
	1,349				1			. 1 1 1	
M	168	0.0				- 4'		5. Hy callche	
					+				
1					-				
				200	İ				
					-				
						_			
					-				
					1				
					+				
					1				
					+				
					+				
					1				
			1		+				
				Line and					

	linates:	LITHOL 3	OGI	7933	SAMPLING	1600	M	Sample Name: BHO3 Date: 6/24/22 Site Name: Touch of Grey State Com #/ Incident Number: Job Number: OG (254 / OD (Logged By: Kase Parker Method: IAA Hole Diameter: Total Depth:
Comn	nents: Fie	ld screen h 1:4 dilu	ing co	onducted was	vith HACH Ch il to distilled	loride Test : water. No c	Strips and orrection	PID for chloride and vapor, respectively. Chloride test factors included.
Moisture	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Descriptions
M	168	0.0		BHO3	Ш - -	0.5		calibe/fine red sent
M	16.5	0.0			-	- 1		Am red Sont
14	ND	6.0			-	2		fine red sund
М	Sing	0.0			1	3		544
14	308	0,0				4		Sitty caliche

								Sample Name: BHOY Date: 6/24/22
			AI	C	OL		M	Site Name: Touch of Grey Style Com #1
			IA	9	OL	. 0	IAI	Incident Number:
Betration	TO STORY							Job Number: 092 9104 lord
		LITHOL	OGIO	C / SOIL S	AMPLING	LOG		Logged By: Kqse Dicker Method: HA
Coord					103.46			Hole Diameter: Total Depth:
		ld screeni	ing co	nducted w	ith HACH Ch	loride Test S	trips and	PID for chloride and vapor, respectively. Chloride test
perfor	med with	1:4 dilut	ion fa	actor of soi	to distilled	water. No co	orrection f	actors included.
7							¥	
ure nt	de (1	Vapor (ppm)	ng	Sample ID	Sample	Depth	USCS/Rock Symbol	
Moisture Content	lori	арс	Staining	Jple	Depth		SCS/Roc Symbol	Lithologic Descriptions
S S	S S	> 3	Sta	San	(ft bgs)	(ft bgs)	JSC Sy	
	100000			0,				
					-			
M	111	0.0		Du		-0.5		culiche/fine sed sund
	ND	0.0		BH04		- ' '		
Top 5								
		90				- 1		
	W	6 6						fine red sund
1	NO	0.0				-1		+WIE .
		LOVE.						
	100				-	- 3-		
1	KA							
17	KP 708	0.0				./		Silty calibhe
	308				-	- 4		2 mg
						_		
			Bran I					
					-			
			7					

Paris								Sample Name: BHOS Date: C/24/22	
IF	FENSOLUM							Site Name: Touch of Grey State Confl	
			IN	9	O L	- 0	IAI	Incident Number:	
Name of Street, or other party of the Street, or other party or ot				N				Job Number: 092 204 look	
LITHOLOGIC / SOIL SAMPLING LOG							Logged By: Kyse Psiker Method: HA		
							Hole Diameter: Total Depth:		
Comments: Field screening conducted with HACH Chloride Test Strips and PID for chloride and vapor, respectively. Chloride test performed with 1:4 dilution factor of soil to distilled water. No correction factors included.									
nt nt	de (BL	QI :	Sample	Depth	ock		
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Depth	(ft bgs)	USCS/Rock Symbol	Lithologic Descriptions	
žΰ	5	-	St	Sai	(ft bgs)	, , ,	s Sn		
				0	1	I		191-100-001 5001	
n	235	6.0		BHOS	-	-0.5		cylithe/fine sed sond	
						-			
14	448	0.0				- 2		fune red send	
					-				
	22					- 3'			
M	448	0.0			-	-4'		silty eglishe	
		0.0]	- 9			
					-	-			
					-				
					-				
					-				
					+				
					7				
					-				
					1				
					-				

LITHOLOGIC / SOIL SAMPLING LOG								Sample Name: BHOS Date: 6/21/22 Site Name: Touch of Grey State Con #/ Incident Number: Job Number: GL 204/WOX Logged By: Vase Packer Method: HA Hole Diameter: Total Depth: GPD for chloride and vapor, respectively. Chloride test factors included.
Moisture Gontent					Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Descriptions
N	ND	0,0		BHOS	1	-0.5'		Calithe/fine red sand
14	ND	0,0			A section of the section of	- 1'		fine red sund
M	201	0,6			to the term	3		sily culthe

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 145673

CONDITIONS

Operator:	OGRID:
ARMSTRONG ENERGY CORP	1092
P.O. Box 1973	Action Number:
Roswell, NM 88202	145673
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
jnobui	Closure Report Approved.	9/27/2022