

February 17, 2021

Accepted - 09/27/2022

Page 1 of 20 NV

Mr. Cory Smith New Mexico Oil Conservation Division 1000 Rio Brazos Road Aztec, NM 87410

RE: 4th Quarter-2020 - Solar SVE System Update Hilcorp Energy Company Bell Federal GC B #1 San Juan County, New Mexico API # 30-045-09772 Incident # NCS1729355513

Dear Mr. Smith:

Hilcorp Energy Company (Hilcorp) presents the following quarterly summary report discussing the solar soil vapor extraction (SVE) system performance at the Bell Federal GC B #1 natural gas production well (Site). The solar SVE system was installed on January 16, 2018, to remediate subsurface soil impacts following an act of vandalism, resulting in the release of approximately 58 barrels (bbl) of natural gas condensate. SVE installation, soil sampling, and delineation activities are summarized in earlier reports submitted to the New Mexico Oil Conservation Division (NMOCD) for each quarter of operation.

The solar SVE system consists of a 1/3 horsepower blower capable of producing 22 cubic feet per minute (cfm) at 29 inches of water column vacuum. The blower is powered by four 12-volt deep cycle batteries that are charged throughout the day via three solar panels with a nominal maximum power output of 915 watts. The blower runs off a timer that is scheduled to maximize runtime that coincides with the seasonally available solar recharge, typically 10 hours in the winter and 12 hours in the summer for Farmington, New Mexico. Between startup, January 16, 2018, and the last site visit on December 8, 2020, there have been 1,057 days of operation, with an estimated 12,563 total hours of available nominal daylight in which the solar SVE system should be in operation. Of the available runtime of 12,563 hours since installation, the system has an actual runtime of 11,613 hours, for an overall runtime efficiency of 92.4 percent (%). Below is a table of SVE runtime in comparison with nominal available daylight hours, per month, according to the National Oceanic and Atmospheric Administration's National Weather Service.

	January							
	16, 2018	September	November	December				
Time Period	to	17, 2020	1, 2020 to	1, 2020 to				
	September	to October	November	December				
	16, 2020	31, 2020	30, 2020	8, 2020				
Days	974	45	30	8				
Avg. Nominal Daylight Hrs	12	11	10	10				
Available Runtime Hrs	11688	495	300	80				
Т	otal Available	e Daylight Rur	ntime Hours	12563				
Actual Runtime Hours								
	92.4%							

PO Box 61229, Houston, TX 77208-1229 1111 Travis Street, Houston, TX 77002 Phone: 713/209-2400 Fax 713/209-2478 hilcorp.com

An initial air sample was collected on January 24, 2018, from the solar SVE system discharge exhaust stack. Subsequent air samples have been collected quarterly (Table 1) with the last sample collected on December 8, 2020. No air sample was collected during the second quarter of 2018, due to a change in operator from XTO Energy to Hilcorp, and no air sample was collected during the fourth quarter 2018 due to additional delineation in January 2019.

Samples were collected in Tedlar[®] bags and submitted to Pace Analytical Laboratory of Mount Juliet, TN for analysis of benzene, toluene, ethylbenzene, and total xylenes (BTEX) by United States Environmental Protection Agency (EPA) Method 8021, and total volatile petroleum hydrocarbons (TVPH) via EPA Method 8015. In addition, a full list of volatile organic compounds (VOCs) by EPA method 8260, including oxygen and carbon dioxide were analyzed. Laboratory analytical results are summarized in Table 1, with complete laboratory reports included as Attachment 1. Overall benzene concentrations have decreased since the solar SVE system installation from 280 micrograms per liter (μ g/L) to 114 μ g/L.

Since the solar SVE system installation, a total of approximately 56.9 gallons of liquid phase separated hydrocarbons (PSH) have been recovered from the SVE wells and liquid-vapor separator tank. Based on the air sample data collected to date, the estimated mass air emissions were calculated using air sample analytical results and exhaust flowrates (Table 2). The impacted mass source removal via the solar SVE system to date is an estimated 14,738 pounds of TVPH. Including the PSH and vapor phase hydrocarbons, an estimated total of 2,434 gallons or 58 bbl of PSH and air equivalent condensate has been recovered to date. A discrepancy was discovered in the formula that calculated "Delta Flow (cf)" which caused those numbers and "Total Flow (cf)" numbers to be incorrect. The issue has been fixed and the spreadsheet updated with the correct amounts.

During the upcoming 1st quarter 2021 of operations, Site visits will resume on a bi-weekly basis by Hilcorp and LTE personnel to ensure 90% runtime efficiency continues and that any maintenance issues are addressed. An air sample will be collected in the 1st quarter and analyzed for BTEX by EPA Method 8021 and TVPH by EPA Method 8015. An updated quarterly report with sample results, runtime, and mass source removal will be submitted.

If you have any questions or comments regarding this work plan, do not hesitate to contact me at (505) 324-5128 or at jdeal@hilcorp.com.

Sincerely,

Gennifer Deal

Jennifer Deal Environmental Specialist Hilcorp Energy Company – L48 West jdeal@hilcorp.com 505-324-5128 – Office 505-801-6517 – Cell

Attachments:

Table 1 – Air Sampling Analytical Results Table 2 – Soil Vapor Extraction System Recovery & Emissions Summary Attachment 1 – Analytical Laboratory Reports

TABLE 1 AIR SAMPLE ANALYTICAL RESULTS

BELL FEDERAL GAS COM B 1 SAN JUAN COUNTY, NEW MEXICO HILCORP ENERGY COMPANY

Sample ID	Sample Date	Vapor	Benzene	Toluene	Ethyl-Benzene	Total Xylenes
Sample ib	Sample Date	(PPM)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Bell Fed GC B#1 SVE	1/24/2018	1,435	280	200	5.0	38
Stack Exhaust 01	8/17/2018	1,873	160	380	21	320
SVE Effluent	3/22/2019	1,607	490	920	24	480
Influent 6/18	6/18/2019	1,026	72	270	27	290
Bell Fed 9/25	9/25/2019	1,762	220	480	21	440
Influent 12/16	12/16/2019	1,902	130	840	21	220
Bell Fed 3/10/20	3/10/2020	1,171	120	380	19	330
Influent 6/25	6/25/2020	978	180	430	25	480
SVE Air Sample	9/16/2020	1,766	186	433	18	497
SVE Q4 Air Sample	12/8/2020	1,741	114	292	10.6	323.8
Percent Change		21%	-59%	46%	112%	752%

Notes:

µg/L - micrograms per liter

NA - not analyzed

ppm - parts per million

TVPH - total volatile petroleum hydrocarbons

Italics denote that the laboratory method detection limit was used for calculations for a non-detected result

TABLE 2

SOIL VAPOR EXTRACTION SYSTEM RECOVERY & EMISSIONS SUMMARY

BELL FEDERAL GAS COM B 1 SAN JUAN COUNTY, NEW MEXICO HILCORP ENERGY COMPANY

Sample Information and Lab Analysis

	Total Flow	Delta Flow	PID	Benzene	Toluene	Ehtyl-benzene	Total Xylenes	TVPH
Date	(cf)	(cf)	(ppm)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
1/24/2018	164,400	164,400	1,435	280	200	5.0	38	30,000
8/17/2018	2,010,120	1,845,720	1,873	160	380	21	320	18,000
3/22/2019	3,978,120	1,968,000	1,607	490	920	24	480	NA
6/18/2019	4,938,120	960,000	1,026	72	270	27	290	NA
9/25/2019	6,004,920	1,066,800	1,762	220	480	21	440	35,000
12/16/2019	6,956,280	951,360	1,902	130	840	21	220	22,000
3/10/2020	8,151,480	1,195,200	1,171	120	380	19	330	31,000
6/25/2020	9,446,280	1,294,800	978	180	430	25	480	45,000
9/16/2020	10,434,480	988,200	1,766	186	433	18	497	32,100
12/8/2020	11,229,024	794,544	1,741	114	292	10.6	323.8	16,000
		Average	1,502	204	481	20	344	30,443

Vapor Extraction Calculations Flow Rate Benzene Toluene Ethyl-benzene **Total Xylenes** TVPH (cfm) (lb/hr) (lb/hr) (lb/hr) (lb/hr) (lb/hr) Date 0.0419 0.0007 0.0057 1/24/2018 40 0.0299 4.4921 8/17/2018 12 0.0072 0.0171 0.0009 0.0144 0.8086 3/22/2019 16 0.0293 0.0551 0.0014 0.0287 NA 6/18/2019 16 0.0016 0.0174 NA 0.0043 0.0162 9/25/2019 14 0.0115 0.0252 0.0011 0.0231 1.8343 12/16/2019 16 0.0078 0.0503 0.0013 0.0132 1.3177 3/10/2020 20 0.009 0.0284 0.0014 0.0247 2.3209 6/25/2020 20 0.0135 0.0019 0.0359 3.369 0.0322 9/16/2020 18 0.0292 0.0012 0.0335 2.1643 0.0125 12/8/2020 19 0.0083 0.0213 0.0008 0.0236 1.1664 Average 19 0.0145 0.0305 0.0012 0.0220 2.1842

Pounds Extracted Ove	r Total Operating Time
----------------------	------------------------

	Total							
	Operational				Ethyl-benzene	Total Xylenes		
Date	Hours	Delta Hours	Benzene (lbs)	Toluene (lbs)	(lbs)	(lbs)	TVPH (lbs)	TVPH (tons)
1/24/2018	68.5	68.5	2.9	2.1	0.1	0.4	308	0.2
8/17/2018	2,632	2,563.5	18.4	43.8	2.4	36.9	2,073	1.0
3/22/2019	4,682	2,050.0	60.2	112.9	2.9	58.9	NA	NA
6/18/2019	5,682	1,000.0	4.3	16.2	1.6	17.4	NA	NA
9/25/2019	6,952	1,270	14.6	31.9	1.4	29.3	2,330	1.2
12/16/2019	7,943	991	7.7	49.9	1.2	13.1	1,306	0.7
3/10/2020	8,939	996	8.9	28.3	1.4	24.6	2,312	1.2
6/25/2020	10,018	1,079	14.5	34.7	2.0	38.8	3,635	1.8
9/16/2020	10,933	915	11.5	26.7	1.1	30.7	1,980	1.0
12/8/2020	11,613	680	5.7	14.5	0.5	16.1	793.6	0.4
Avg. Mass Extracted Per Period		14.9	36.1	1.5	26.6	1842.2	0.9	
	Total Mass Extract	ted to Date	148.6	361.0	14.6	266.1	14737.9	7.5

NOTES

cf - cubic feet cfm - cubic feet per minute

lbs - pounds

lls /ha a suads a sa ha

lb/hr - pounds per hour µg/L - micrograms per hour

NA - not analyzed

PID - photoionization detector

ppm - parts per million

TVPH - total volatile petroleum hydrocarbons

Italics denote the laboratory method detection limit was used for calculations for a non-detected result

ANALYTICAL REPORT

L1294285

December 16, 2020

HilCorp-Farmington, NM

Sample Delivery Group: Samples Received: Project Number:

Description:

Site:

Report To:

12/09/2020 Bell Federal Gas Com B 1 BELL FEDERAL GAS COM B 1 Jennifer Deal 382 Road 3100

Aztec, NM 87410

Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

Entire Report Reviewed By:

inio 2

Olivia Studebaker Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: HilCorp-Farmington, NM PROJECT:

SDG: L1294285

TABLE OF CONTENTS

¥	

Ss

Cn

Sr

Qc

GL

ΆI

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
SVE Q4 AIR SAMPLE L1294285-01	5
Qc: Quality Control Summary	7
Volatile Organic Compounds (MS) by Method TO-15	7
Organic Compounds (GC) by Method D1946	12
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

SDG: L1294285

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

	Col		Collected by	Collected date/time	Received date/time	
SVE Q4 AIR SAMPLE L1294285-01 Air	K Hoekstra 12/08/20 10:05		12/09/20 10:00			
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (MS) by Method TO-15	WG1589694	2000	12/11/20 00:44	12/11/20 00:44	MBF	Mt. Juliet, TN
Volatile Organic Compounds (MS) by Method TO-15	WG1592182	10000	12/15/20 17:20	12/15/20 17:20	CAW	Mt. Juliet, TN
Organic Compounds (GC) by Method D1946	WG1589564	1	12/10/20 12:03	12/10/20 12:03	DAH	Mt. Ju l iet, TN

*

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Olivia Studebaker Project Manager

Τс Ss Cn Sr Qc GI AI Sc

SAMPLE RESULTS - 01

¥

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch	
Analyte			ppbv	ug/m3	ppbv	ug/m3				
Acetone	67-64-1	58.10	2500	5940	ND	ND		2000	WG1589694	
Allyl chloride	107-05-1	76.53	400	1250	ND	ND		2000	WG1589694	
Benzene	71-43-2	78.10	400	1280	35600	114000		2000	WG1589694	
Benzyl Chloride	100-44-7	127	400	2080	ND	ND		2000	WG1589694	
Bromodichloromethane	75-27-4	164	400	2680	ND	ND		2000	WG1589694	
Bromoform	75-25-2	253	1200	12400	ND	ND		2000	WG1589694	
Bromomethane	74-83-9	94.90	400	1550	ND	ND		2000	WG1589694	
1,3-Butadiene	106-99-0	54.10	4000	8850	ND	ND		2000	WG1589694	
Carbon disulfide	75-15-0	76.10	400	1240	ND	ND		2000	WG1589694	
Carbon tetrachloride	56-23-5	154	400	2520	ND	ND		2000	WG1589694	
Chlorobenzene	108-90-7	113	400	1850	ND	ND		2000	WG1589694	
Chloroethane	75-00-3	64 50	400	1060	ND	ND		2000	WG1589694	
Chloroform	67-66-3	110	400	1950	ND	ND		2000	WG1589694	
Chloromothano	7/ 97 3	50.50	400	826	ND	ND		2000	WC1589694	
	05 40 9	126	400	2060	ND	ND		2000	W01589094	
	90-49-0	04.20	400	2000	007000	2000000		2000	WG1569094	
	110-62-7	04.20	2000	0690	897000	2030000		10000	WG1592162	
1.2 Diherene alle	124-48-1	208	400	3400	ND			2000	WG1589694	
i,2-Dibromoethane	106-93-4	188	400	3080	ND	ND		2000	WG1589694	
1,2-Dichlorobenzene	95-50-1	147	400	2400	ND	ND		2000	WG1589694	
1,3-Dichlorobenzene	541-73-1	147	400	2400	ND	ND		2000	WG1589694	
1,4-Dichlorobenzene	106-46-7	147	400	2400	ND	ND		2000	WG1589694	
1,2-Dichloroethane	107-06-2	99	400	1620	ND	ND		2000	WG1589694	
1,1-Dichloroethane	75-34-3	98	400	1600	ND	ND		2000	WG1589694	
l,1-Dichloroethene	75-35-4	96.90	400	1590	ND	ND		2000	WG1589694	
cis-1,2-Dichloroethene	156-59-2	96.90	400	1590	ND	ND		2000	WG1589694	
rans-1,2-Dichloroethene	156-60-5	96.90	400	1590	ND	ND		2000	WG1589694	
1,2-Dichloropropane	78-87-5	113	400	1850	ND	ND		2000	WG1589694	
cis-1,3-Dichloropropene	10061-01-5	111	400	1820	ND	ND		2000	WG1589694	
rans-1,3-Dichloropropene	10061-02-6	111	400	1820	ND	ND		2000	WG1589694	
1,4-Dioxane	123-91-1	88.10	400	1440	ND	ND		2000	WG1589694	
Ethanol	64-17-5	46.10	1260	2380	2330	4390		2000	WG1589694	
Ethylbenzene	100-41-4	106	400	1730	2450	10600		2000	WG1589694	
4-Ethvltoluene	622-96-8	120	400	1960	4790	23500		2000	WG1589694	
Trichlorofluoromethane	75-69-4	137 40	400	2250	ND	ND		2000	WG1589694	
Dichlorodifluoromethane	75-71-8	120.92	400	1980	ND	ND		2000	WG1589694	
	76-13-1	187 40	400	3070	ND	ND		2000	WG1589694	
1.2-Dichlorotetrafluoroothano	76-14-2	171	400	2800	ND	ND		2000	WG1589694	
	1/12 82 5	10.0	400	1640	160000	654000		2000	WC1589694	
levesblere 12 butediane	C-20-241	261	400	1040		004000		2000	WC1509094	
nexaciijoro-1,3-Dutadiene	0/-00-J	201	1200	0000	NU 424000	1400000		2000	WG1569694	
	110-54-3	80.20	0300	22200	424000	1490000		10000	WG1592182	
sopropylbenzene	98-82-8	120.20	400	1970	539	2650		2000	WG1589694	
Methylene Chloride	/5-09-2	84.90	400	1390	ND	ND		2000	WG1589694	
Methyl Butyl Ketone	591-78-6	100	2500	10200	ND	ND		2000	WG1589694	
2-Butanone (MEK)	78-93-3	72.10	2500	7370	ND	ND		2000	WG1589694	
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	2500	10200	ND	ND		2000	WG1589694	
Methyl methacrylate	80-62-6	100.12	400	1640	ND	ND		2000	WG1589694	
MTBE	1634-04-4	88.10	400	1440	ND	ND		2000	WG1589694	
Naphthalene	91-20-3	128	1260	6600	ND	ND		2000	WG1589694	
2-Propanol	67-63-0	60.10	2500	6150	10400	25600		2000	WG1589694	
Propene	115-07-1	42.10	800	1380	ND	ND		2000	WG1589694	
Styrene	100-42-5	104	400	1700	ND	ND		2000	WG1589694	
1,1,2,2-Tetrachloroethane	79-34-5	168	400	2750	ND	ND		2000	WG1589694	
Tetrachloroethylene	127-18-4	166	400	2720	ND	ND		2000	WG1589694	
Tetrahydrofuran	109-99-9	72 10	400	1180	ND	ND		2000	WG1589694	
readingaronaran	108-88 3	92.10	1000	3770	77400	292000		2000	WG1589694	
Toluene		17 111	10000	J//U	11400	ZJZUUU		2000	VV01J0J0J4	
Toluene	120 02 1	101	1260	0350	ND	ND		2000	WC1580604	

HilCorp-Farmington, NM

PROJECT:

SDG: L1294285

12/16/20 15:46

PAGE: 5 of 15

SAMPLE RESULTS - 01 L1294285

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch	
Analyte			ppbv	ug/m3	ppbv	ug/m3				
1,1,1-Trichloroethane	71-55-6	133	400	2180	ND	ND		2000	WG1589694	
1,1,2-Trichloroethane	79-00-5	133	400	2180	ND	ND		2000	WG1589694	
Trichloroethylene	79-01-6	131	400	2140	ND	ND		2000	WG1589694	
1,2,4-Trimethylbenzene	95-63-6	120	400	1960	3550	17400		2000	WG1589694	
1,3,5-Trimethylbenzene	108-67-8	120	400	1960	4280	21000		2000	WG1589694	
2,2,4-Trimethylpentane	540-84-1	114.22	400	1870	ND	ND		2000	WG1589694	
Vinyl chloride	75-01-4	62.50	400	1020	ND	ND		2000	WG1589694	
Vinyl Bromide	593-60-2	106.95	400	1750	ND	ND		2000	WG1589694	
Vinyl acetate	108-05-4	86.10	400	1410	ND	ND		2000	WG1589694	
m&p-Xylene	1330-20-7	106	800	3470	60800	264000		2000	WG1589694	
o-Xylene	95-47-6	106	400	1730	13800	59800		2000	WG1589694	
TPH (GC/MS) Low Fraction	8006-61-9	101	400000	1650000	3870000	16000000		2000	WG1589694	
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		103				WG1589694	
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		97.8				WG1592182	

Organic Compounds (GC) by Method D1946

Organic Compounds (GC) by Method D1946									
	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch		
Analyte			%	%					⁹ SC
Oxygen	7782-44-7	32	5.00	17.3		1	WG1589564		
Carbon Monoxide	630-08-0	28	2.00	ND		1	WG1589564		
Carbon Dioxide	124-38-9	44.01	0.500	4.45		1	WG1589564		
Methane	74-82-8	16	0.400	ND		1	WG1589564		

Method Blank (MB)

(MB) R3602177-3 12/10/20 10:00

	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	ppbv		ppbv	ppbv			
Acetone	U		0.584	1.25			
Allyl Chloride	U		0.114	0.200			
Benzene	U		0.0715	0.200			
Benzyl Chloride	1.04		0.0598	0.200			
Bromodichloromethane	U		0.0702	0.200			
Bromoform	U		0.0732	0.600			
Bromomethane	U		0.0982	0.200			
1,3-Butadiene	U		0.104	2.00			
Carbon disulfide	U		0.102	0.200			
Carbon tetrachloride	U		0.0732	0.200			
Chlorobenzene	U		0.0832	0.200			
Chloroethane	U		0.0996	0.200			
Chloroform	U		0.0717	0.200			
Chloromethane	U		0.103	0.200			
2-Chlorotoluene	U		0.0828	0.200			
Dibromochloromethane	U		0.0727	0.200			
1,2-Dibromoethane	U		0.0721	0.200			
1,2-Dichlorobenzene	U		0.128	0.200			
1,3-Dichlorobenzene	U		0.182	0.200			
1,4-Dichlorobenzene	U		0.0557	0.200			
1,2-Dichloroethane	U		0.0700	0.200			
1,1-Dichloroethane	U		0.0723	0.200			
1,1-Dichloroethene	U		0.0762	0.200			
cis-1,2-Dichloroethene	U		0.0784	0.200			
trans-1,2-Dichloroethene	U		0.0673	0.200			
1,2-Dichloropropane	U		0.0760	0.200			
cis-1,3-Dichloropropene	U		0.0689	0.200			
trans-1,3-Dichloropropene	U		0.0728	0.200			
1,4-Dioxane	U		0.0833	0.200			
Ethylbenzene	U		0.0835	0.200			
4-Ethyltoluene	U		0.0783	0.200			
Trichlorofluoromethane	U		0.0819	0.200			
Dichlorodifluoromethane	U		0.137	0.200			
1,1,2-Trichlorotrifluoroethane	U		0.0793	0.200			
1,2-Dichlorotetrafluoroethane	U		0.0890	0.200			
Heptane	U		0.104	0.200			
Hexachloro-1,3-butadiene	U		0.105	0.630			
Isopropylbenzene	U		0.0777	0.200			
Methylene Chloride	U		0.0979	0.200			
Methyl Butyl Ketone	U		0.133	1.25			
AC	COUNT				PRO IECT.	SDG [.]	DATE/TIME

HilCorp-Farmington, NM

PROJECT.

SDG: L1294285

Method Blank (MB)

(MB) R3602177-3 12/10/2	20 10:00
-------------------------	----------

	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ppbv		ppbv	ppbv	
2-Butanone (MEK)	U		0.0814	1.25	
4-Methyl-2-pentanone (MIBK)	U		0.0765	1.25	
Methyl Methacrylate	U		0.0876	0.200	
MTBE	U		0.0647	0.200	
Naphthalene	U		0.350	0.630	
2-Propanol	U		0.264	1.25	
Propene	U		0.0932	0.400	
Styrene	U		0.0788	0.200	
1,1,2,2-Tetrachloroethane	U		0.0743	0.200	
Tetrachloroethylene	U		0.0814	0.200	
Tetrahydrofuran	U		0.0734	0.200	
Toluene	U		0.0870	0.500	
1,2,4-Trichlorobenzene	U		0.148	0.630	
1,1,1-Trichloroethane	U		0.0736	0.200	
1,1,2-Trichloroethane	U		0.0775	0.200	
Trichloroethylene	U		0.0680	0.200	
1,2,4-Trimethylbenzene	U		0.0764	0.200	
1,3,5-Trimethylbenzene	U		0.0779	0.200	
2,2,4-Trimethylpentane	U		0.133	0.200	
Vinyl chloride	U		0.0949	0.200	
Vinyl Bromide	U		0.0852	0.200	
Vinyl acetate	U		0.116	0.200	
m&p-Xylene	U		0.135	0.400	
o-Xylene	U		0.0828	0.200	
Ethanol	U		0.265	0.630	
TPH (GC/MS) Low Fraction	U		39.7	200	
(S) 1,4-Bromofluorobenzene	96.7			60.0-140	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3602177-1 12/10/20 08:39 • (LCSD) R3602177-2 12/10/20 09:20												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%		
Ethanol	3.75	2.89	2.80	77.1	74.7	55.0-148			3.16	25		
Propene	3.75	3.74	3.66	99.7	97.6	64.0-144			2.16	25		
Dichlorodifluoromethane	3.75	3.70	3.95	98.7	105	64.0-139			6.54	25		
1,2-Dichlorotetrafluoroethane	3.75	3.67	3.71	97.9	98.9	70.0-130			1.08	25		
Chloromethane	3.75	3.56	3.54	94.9	94.4	70.0-130			0.563	25		
Vinyl chloride	3.75	3.75	3.63	100	96.8	70.0-130			3.25	25		

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:
HilCorp-Farmington, NM		L1294285	12/16/20 15:46

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3602177-1 12/10/20 08:39 • (LCSD) R3602177-2 12/10/20 09:20											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
1,3-Butadiene	3.75	3.87	3.57	103	95.2	70.0-130			8.06	25	
Bromomethane	3.75	3.63	3.59	96.8	95.7	70.0-130			1.11	25	
Chloroethane	3.75	3.42	3.59	91.2	95.7	70.0-130			4.85	25	
Trichlorofluoromethane	3.75	3.87	3.80	103	101	70.0-130			1.83	25	
1,1,2-Trichlorotrifluoroethane	3.75	3.65	3.61	97.3	96.3	70.0-130			1.10	25	
1,1-Dichloroethene	3.75	3.82	3.81	102	102	70.0-130			0.262	25	
1,1-Dichloroethane	3.75	3.64	3.56	97.1	94.9	70.0-130			2.22	25	
Acetone	3.75	3.24	3.17	86.4	84.5	70.0-130			2.18	25	
2-Propanol	3.75	3.27	3.19	87.2	85.1	70.0-139			2.48	25	
Carbon disulfide	3.75	3.65	3.59	97.3	95.7	70.0-130			1.66	25	
Methylene Chloride	3.75	3.47	3.40	92.5	90.7	70.0-130			2.04	25	
MTBE	3.75	4.01	3.92	107	105	70.0-130			2.27	25	
trans-1,2-Dichloroethene	3.75	3.75	3.71	100	98.9	70.0-130			1.07	25	
Vinyl acetate	3.75	3.28	3.13	87.5	83.5	70.0-130			4.68	25	
Methyl Ethyl Ketone	3.75	3.57	3.66	95.2	97.6	70.0-130			2.49	25	
cis-1,2-Dichloroethene	3.75	3.74	3.69	99.7	98.4	70.0-130			1.35	25	
Chloroform	3.75	3.69	3.65	98.4	97.3	70.0-130			1.09	25	
1,1,1-Trichloroethane	3.75	3.80	3.69	101	98.4	70.0-130			2.94	25	
Carbon tetrachloride	3.75	3.77	3.64	101	97.1	70.0-130			3.51	25	
Benzene	3.75	3.75	3.59	100	95.7	70.0-130			4.36	25	
1,2-Dichloroethane	3.75	3.86	3.76	103	100	70.0-130			2.62	25	
Heptane	3.75	3.76	3.80	100	101	70.0-130			1.06	25	
Trichloroethylene	3.75	3.85	3.84	103	102	70.0-130			0.260	25	
1,2-Dichloropropane	3.75	3.65	3.65	97.3	97.3	70.0-130			0.000	25	
1,4-Dioxane	3.75	3.24	3.51	86.4	93.6	70.0-140			8.00	25	
Bromodichloromethane	3.75	3.67	3.68	97.9	98.1	70.0-130			0.272	25	
cis-1,3-Dichloropropene	3.75	3.73	3.68	99.5	98.1	70.0-130			1.35	25	
4-Methyl-2-pentanone (MIBK)	3.75	3.71	3.77	98.9	101	70.0-139			1.60	25	
Toluene	3.75	3.94	3.89	105	104	70.0-130			1.28	25	
trans-1,3-Dichloropropene	3.75	3.69	3.65	98.4	97.3	70.0-130			1.09	25	
1,1,2-Trichloroethane	3.75	3.64	3.53	97.1	94.1	70.0-130			3.07	25	
Tetrachloroethylene	3.75	3.93	3.89	105	104	70.0-130			1.02	25	
Methyl Butyl Ketone	3.75	3.67	3.62	97.9	96.5	70.0-149			1.37	25	
Dibromoch l oromethane	3.75	3.78	3.70	101	98.7	70.0-130			2.14	25	
1,2-Dibromoethane	3.75	3.87	3.87	103	103	70.0-130			0.000	25	
Chlorobenzene	3.75	3.70	3.69	98.7	98.4	70.0-130			0.271	25	
Ethylbenzene	3.75	3.73	3.69	99.5	98.4	70.0-130			1.08	25	
m&p-Xylene	7.50	7.86	7.87	105	105	70.0-130			0.127	25	
o-Xylene	3.75	4.07	4.09	109	109	70.0-130			0.490	25	
Styrene	3.75	3.94	3.86	105	103	70.0-130			2.05	25	
A	CCOUNT:			PR	OJECT:		SDG:			DATE/TIME:	
HilCorp-	Farmington, NM						L12942	85		12/16/20 15:46	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3602177-1 12/10/2	0 08:39 • (LCSI	D) R3602177-2	12/10/20 09:2	0						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Bromoform	3.75	3.82	3.73	102	99.5	70.0-130			2.38	25
1,1,2,2-Tetrachloroethane	3.75	3.55	3.50	94.7	93.3	70.0-130			1.42	25
4-Ethyltoluene	3.75	4.05	3.94	108	105	70.0-130			2.75	25
1,3,5-Trimethylbenzene	3.75	3.96	3.96	106	106	70.0-130			0.000	25
1,2,4-Trimethylbenzene	3.75	4.10	4.09	109	109	70.0-130			0.244	25
1,3-Dichlorobenzene	3.75	3.70	3.78	98.7	101	70.0-130			2.14	25
1,4-Dichlorobenzene	3.75	3.82	3.80	102	101	70.0-130			0.525	25
Benzyl Chloride	3.75	3.18	3.04	84.8	81.1	70.0-152			4.50	25
1,2-Dichlorobenzene	3.75	3.88	3.73	103	99.5	70.0-130			3.94	25
1,2,4-Trichlorobenzene	3.75	4.03	3.68	107	98.1	70.0-160			9.08	25
Hexachloro-1,3-butadiene	3.75	3.84	3.84	102	102	70.0-151			0.000	25
Naphthalene	3.75	4.08	3.95	109	105	70.0-159			3.24	25
TPH (GC/MS) Low Fraction	203	208	208	102	102	70.0-130			0.000	25
Allyl Chloride	3.75	3.63	3.49	96.8	93.1	70.0-130			3.93	25
2-Chlorotoluene	3.75	3.97	3.85	106	103	70.0-130			3.07	25
Methyl Methacrylate	3.75	3.73	3.70	99.5	98.7	70.0-130			0.808	25
Tetrahydrofuran	3.75	3.50	3.50	93.3	93.3	70.0-137			0.000	25
2,2,4-Trimethylpentane	3.75	3.96	3.88	106	103	70.0-130			2.04	25
Viny l Bromide	3.75	3.79	3.79	101	101	70.0-130			0.000	25
Isopropylbenzene	3.75	4.09	4.09	109	109	70.0-130			0.000	25
(S) 1,4-Bromofluorobenzene				101	101	60.0-140				

ACCOUNT: HilCorp-Farmington, NM PROJECT:

SDG: L1294285

WG1592182

Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY L1294285-01

Method Blank (MB)

(MB) R3603767-3 12/15/20	/IB) R3603767-3 12/15/20 12:53								
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	ppbv		ppbv	ppbv					
Cyclohexane	U		0.0753	0.200					
n-Hexane	U		0.206	0.630					
(S) 1,4-Bromofluorobenzene	95.5			60.0-140					

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3603767-1 12/15/20 11:33 • (LCSD) R3603767-2 12/15/20 12:14											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
n-Hexane	3.75	4.16	4.07	111	109	70.0-130			2.19	25	
Cyclohexane	3.75	4.14	4.08	110	109	70.0-130			1.46	25	
(S) 1,4-Bromofluorobenzene				98.1	97.9	60.0-140					

ACCOUNT:	
HilCorp-Farmington, I	NM

PROJECT:

SDG: L1294285

WG1589564

Organic Compounds (GC) by Method D1946

QUALITY CONTROL SUMMARY

Method Blank (MB)

MB) R3602254-3 12/10/20 11:57								
MB Result	MB Qualifier	MB MDL	MB RDL					
%		%	%					
0.917		0.225	5.00					
U		0.665	2.00					
U		0.121	0.500					
) 11:57 MB Result % 0.917 U U) 11:57 MB Result <u>MB Qualifier</u> % 0.917 U U U	MB Result MB Qualifier MB MDL % % 0.917 0.225 U 0.665 U 0.121					

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3602254-1 12/10/20 11:44 • (LCSD) R3602254-2 12/10/20 11:51											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	%	%	%	%	%	%			%	%	
Oxygen	20.0	20.6	20.3	103	102	70.0-130			1.47	20	
Carbon Monoxide	2.50	2.29	2.24	91.6	89.6	70.0-130			2.21	20	
Carbon Dioxide	2.50	2.48	2.44	99.2	97.6	70.0-130			1.63	20	
Methane	2.00	1.95	1.90	97.5	95.0	70.0-130			2.60	20	

ACCOUNT:	
HilCorp-Farmington.	NM

PROJECT:

SDG: L1294285

GLOSSARY OF TERMS

*

Τс

Śs

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory acplicable to the results reported in the attached report. * Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State	Accredi	tations
01010		10110110

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshire
Arkansas	88-0469	New Jersey-NELAP
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina ¹
Georgia	NELAP	North Carolina ³
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio–VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky ¹⁶	KY90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	Al30792	Tennessee ¹⁴
Louisiana ¹	LA180010	Texas
Maine	TN00003	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

Nebraska	NE-OS-15-05
Nevada	TN000032021-1
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	TN00003
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-20-18
Texas⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	998093910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
FPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

PROJECT:

SDG: L1294285

			Billing Info	rmation:					Analysis	/ Contai	ner / Preservat	ive									
			ATTN: J	ennifer Dea	al	Pres Chk															
Report to:			Email To:	ilcorp.com	• khoekstra@h	ilcorp															
Project Description: Bell Federal Gas C	om B # 1		Juccien	City/State Collected: A	ztec, NM																
Phone: 505-324-5128 Fax:	Client Project	#		Lab Project #	ŧ		dlar														
Collected by (print): K Hoekstra	Site/Facility ID Bell Feder	Site/Facility ID # Bell Federal Gas Com B # 1			P.O. # m B # 1		PC Ted		P.O. #		PC Ted		PC Tec								
Collected by (signature):	Rush? (L	ab MUST Be I	Notified) ay	Quote #			GAS														
Immediately Packed on Ice N Y	Next Da Two Da Three D	y 5 Day y 10 Da ay	(Rad Only) y (Rad Only)	Date I	Results Needed	No. of	5, FIX														
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	TO-1														
SVE Q4 Air Sample	2	Air		12-8	10:05	1	×														
and second and the second	Sec. 18	lan in		R. Frank		1															
									-												
						-															
						1															
* Matrix:	Remarks:		I																		
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater				-					pł Flo	w	Temp										
DW - Drinking Water OT - Other	Samples return	rned via: edEx Cou	rier		Tracking #							Su									
Relinquished by (Signature)	f	Date:	-20	Time: 10:05	Received by: (Sign	nature)		and stars a	Trip Bl	ank Rece	eived: Yes/N HCL/ TBR	MeoH									
Refinquished by : (Signature)		Date:		Time:	Received by: (Sign	nature)	/	1	Temp:	MB	°C Bottles Red	teived: If p									
Relinguished by : (Signature)		Date:		Time:	Received for lah l	Signa	turel		Date:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Time:	Hc									

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 20 of 20

CONDITIONS

Action 18291

CONDITIONS						
Operator:	OGRID:					
HILCORP ENERGY COMPANY	372171					
1111 Travis Street	Action Number:					
Houston, TX 77002	18291					
	Action Type: [UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)					

CONDITIONS

Created By	Condition	Condition Date
nvelez	Accepted for the record. See App ID 124694 for most updated status.	9/27/2022