

August 18, 2020

Mr. Bradford Billings State of New Mexico Oil Conservation Division 1220 South St Francis Drive Santa Fe, NM 87505

RE: 2-RP-4202

Mr. Billings,

In compliance with 19.15.29.15(B) NMAC and the agreement submitted by Apache Corporation on November 8, 2018, Apache Corporation is submitting information related to closure for the release occurring July 26, 2012. Apache is respectfully submitting the deferment request based on remediation and studies occurring in 2017 that demonstrate the site meeting the requirements of the agency. Unless further information is requested by NMOCD, Apache Corporation considers this release deferred.

If there are any questions, please feel free to contact me by telephone at 432-818-1000 or by e-mail at Larry.Baker@ApacheCorp.com.

Sincerely,

Larry Baker

Larry Baker Environmental Technician Sr. Apache Corporation

Attachment: Deferment Report Dated August 18, 2020

303 Veterans Airpark Lane Midland, TX 79705

Deferment Request

August 18, 2020

Re: Barnsdall Federal Battery Case # 2RP-4202

On 4/25/2017 a release occurred due to a header riser pipe failed resulting in the loss of fluid. The release (GPS: 32.811419, -104.058036) is located east of Artesia, New Mexico in unit letter A section 27 township 17S range 29E. A groundwater survey was conducted utilizing data from the NMOSE. The depth to groundwater is 76 feet below ground surface. A remediation plan was submitted and approved by OCD on 8/15/2017.

The release area was excavated to a depth of four feet in accordance with the remediation plan. On 9/11/2017 bottom and wall samples were collected and submitted to a commercial laboratory for analysis of chloride, TPH, and BTEX. Laboratory results were slightly elevated for chlorides at bottom 1, 2, east wall, and the north wall samples. The north wall samples 2 and 3 had elevated values of DRO. The east wall was further excavated and a sample was collected on 11/20/2017 and submitted to a commercial laboratory for analysis of chloride. The north wall was not further excavated due to the length of the wall and the close proximity of one foot to the lined facility. A 20 mil reinforced liner was installed at 4 feet in accordance with the approved remediation plan. All excavated material was hauled to an OCD approved facility and the excavation was backfilled with clean imported caliche to ground surface in accordance with the OCD approved remediation plan.

Apache Corporation has completed the remediation in accordance with the approved plan except for the 1 foot area along the north wall and request that area be deferred until abandonment of the facility.

Enclosed: C-141, Groundwater data, Maps, Sample Data, and Laboratory Results

Submitted by;

. Bruce . Baker

Environmental Technician larry.baker@apachecorp.com Cell# 432-631-6982 Off# 432-818-1000

Received by OCD: 8/19/2020 7:16:28 AM	Page 3 of 3
District I ARTESIA DISTRICT State	of New Mexico NM OIL CONSERVATION
District II MAY 08 2017 Energy Minera	als and Natural Resources Form C-141 Revised August 8, 2011
811 S. First St., Artesia, NM 88210	servation Division MAY Quemat Q1Zopy to appropriate District Office in accordance with 19.15.29 NMAC.
1000 Rio Brazos Road, Aztec, NM 8/410	accordance with 19.15.29 NMAC.
1220 S. St. Engrada Dr. Santa En. NM 97505	Fe, NM 87505 RECEIVED
Release Notificati	ion and Corrective Action
NAB1713158268	OPERATOR Initial Report Final Report
Name of Company Apache Corporation 873	Contact Bruce Baker
Address 2350 W Marland Street, Hobbs, NM 88240	Telephone No. (432) 631-6982
Facility Name Barnsdall Federal Battery	Facility Type Battery
Surface Owner Federal Mineral Owner	er API No. 30-015-42364
	ON OF RELEASE
Unit LetterSectionTownshipRangeFeet from theNoA2717S29E	orth/South Line Feet from the East/West Line County
	Eddy
Latitude 32.811	419 Longitude -104.058036
	RE OF RELEASE
Type of Release Oil and Produced Water	Volume of Release 4 barrels of Volume Recovered 1 barrel of oil and 3
	water and 1 barrel of oil barrels of water
Source of Release Header	Date and Hour of OccurrenceDate and Hour of Discovery 4/24/20174/24/2017at 5:00 a.m.
Was Immediate Notice Given?	If YES, To Whom?
Yes 🗌 No 🗌 Not Requir	
By Whom? Bruce Baker Was a Watercourse Reached?	Date and Hour 4/25/2017 at 12:33 pm via email If YES, Volume Impacting the Watercourse.
\square Yes \square No	If TES, volume impacting the watercourse.
If a Watercourse was Impacted, Describe Fully.*	
Describe Cause of Problem and Remedial Action Taken.*	
A header riser pipe failed resulting in the release of fluids. The line w	as isolated and vacuum trucks dispatched to pick-up standing fluid. The riser was
repaired.	New Groups are be found in the
	New forms can be found in the New Mexico State Website in forms:
Describe Area Affected and Cleanup Action Taken.* The release affected 1400 square feet of pasture south of the ba	
The release affected 1400 square feet of pusture south of the ba	OCD/forms.html
	to the best of my knowledge and understand that pursuant to NMOCD rules and
	se notifications and perform corrective actions for releases which may endanger y the NMOCD marked as "Final Report" does not relieve the operator of liability
should their operations have failed to adequately investigate and reme	diate contamination that pose a threat to ground water, surface water, human health
or the environment. In addition, NMOCD acceptance of a C-141 repo federal, state, or local laws and/or regulations.	ort does not relieve the operator of responsibility for compliance with any other
Λ	OIL CONSERVATION DIVISION
Signature: Bruce Backer	
	Approved by Environmental Specialist:
Printed Name: Bruce Baker	
Title: Environmental Technician	Approval Date: 5/10/17 Expiration Date: N/A
E-mail Address: larry.baker@apachecorp.com	Conditions of Approval:
	Conditions of Approval: See attached Attached
Date: 5/5/2017 Phone: (432) 631-6982 Attach Additional Sheets If Necessary	2RP-4202

.

Received by OCD: 8/19/2020 7:16:28 AM Form C-141 State of New Mexico

Oil Conservation Division

	Page 4 of 36
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🔽 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🔽 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🔽 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗹 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🔽 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🖉 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. Field data
- Data table of soil contaminant concentration data
- \checkmark Depth to water determination
- Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Page 3

Form C-141	0 7:16:28 AM State of New Mex	rico		Page 5 of
Page 4	Oil Conservation Di		Incident ID	
rage 4	On Conservation Di	VISIOII	District RP	
			Facility ID	
			Application ID	
regulations all operators are re public health or the environme failed to adequately investigat	nation given above is true and compl equired to report and/or file certain re ent. The acceptance of a C-141 repo te and remediate contamination that p a C-141 report does not relieve the o wker Baken pachecorp.com	elease notifications and perform of rt by the OCD does not relieve th pose a threat to groundwater, sur- perator of responsibility for comp	corrective actions for releas ne operator of liability shou face water, human health or pliance with any other fede ental Tech SR.	es which may endanger ld their operations have the environment. In

Received by OCD: 8/19/2020 7:16:28 AM State of New Mexico

Oil Conservation Division

Remediation Plan Checklist: Each of the following items must be included in the plan.

Incident ID		
District RP		
Facility ID		
Application ID		

Page 6 of 36

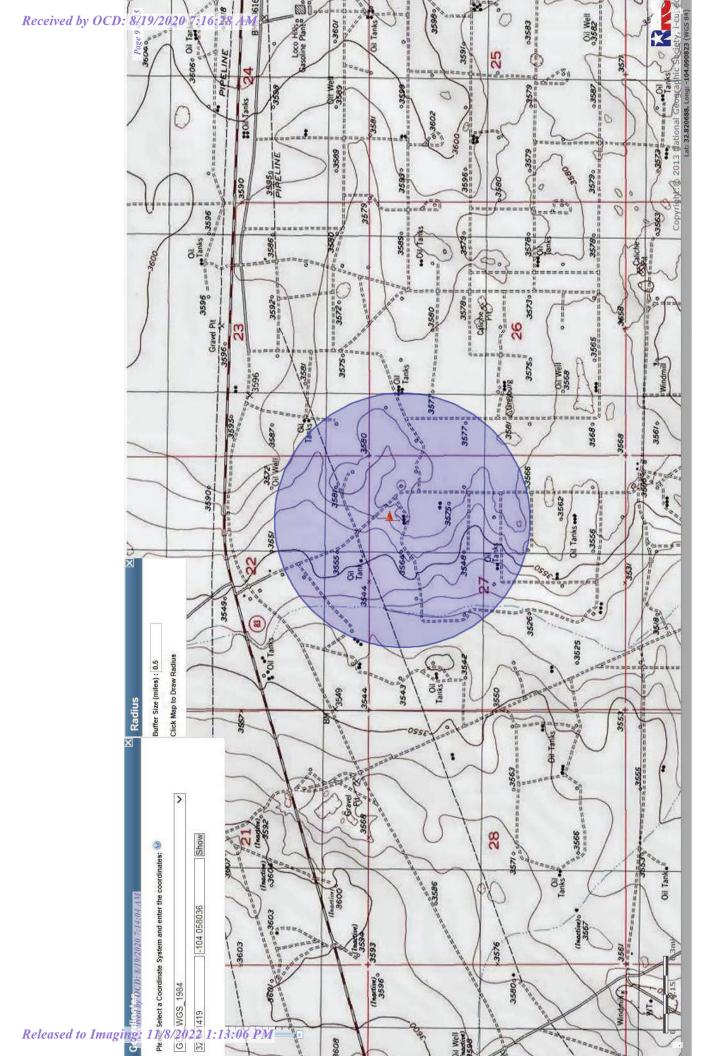
Remediation Plan

Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. \checkmark Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. ______ _{Title:} Environmental Tech SR. Printed Name: Larry Baker Signature: Larry Baker Date: 8/18/2020 email: larry.baker@apachecorp.com Telephone: 432-631-6982 **OCD Only** Received by: Date: Deferral Approved Approved with Attached Conditions of Approval Approved Denied Hall Date: 11/8/2022 Signature:

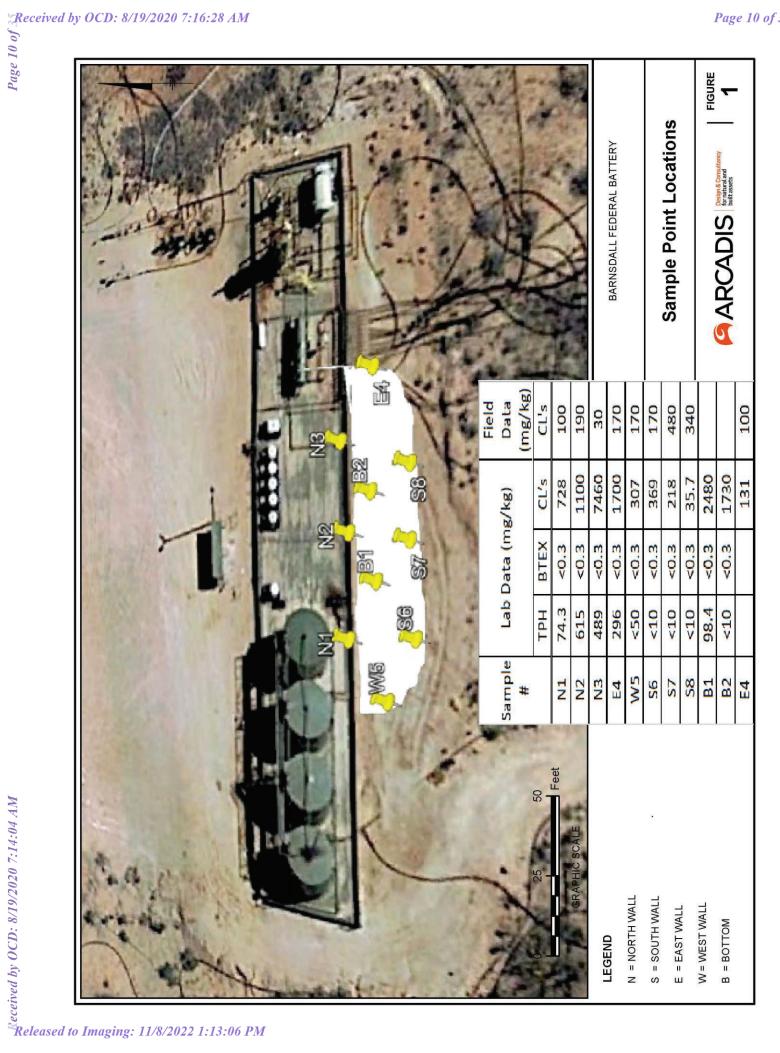
Page 5

Received by OCD: 8/19/2020 7:16:28 AM

Page 7 of 36


New Mexico Office of the State Engineer **Point of Diversion Summary**

			(quarters a (quarters		2=NE 3=S est to large) (NAD83 UTI	M in meters)	
Well Tag	POD	Number	Q64 Q16			· ·	X	Y	
-	RA	11807 POD1	1 2	3 2	2 17S	29E	587360	3631585 🌍	
Driller Lice Driller Nam		1348 TAYLOR, CLINT	Driller Cor	npany:	ТА	YLOR V	WATER WEI	LL SERVICE	
Drill Start D	Date:	11/23/2012	Drill Finisl		1	1/26/201		g Date:	~ ~
Log File Da		03/26/2013	PCW Rev				Sou		Shallow
Pump Type	:		Pipe Disch	arge Siz	ze:		Esti	mated Yield:	4 GPM
Casing Size	:	4.50	Depth Wel	1:	1	31 feet	Dep	oth Water:	76 feet
	Wate	er Bearing Stratificat	ions:	Тор	Bottom	Descr	iption		
				104	128	Other	/Unknown		
		Casing Perfor	ations:	Тор	Bottom	l			
				91	131				


The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

8/18/20 12:07 PM

POINT OF DIVERSION SUMMARY

Page 9 of 36

4M
4:04
) 7:14
2020
8/19/
OCD:
by
ived
Recei

Released to Imaging: 11/8/2022 1:13:06 PM

	Sample ID	Depth	Chloride	Benzene	Toulene	Ethybenze	Total	Total	GRO	DRO	EXT DRO
Date						ne	Xylenes	BTEX			
9/11/2017	North Wall 1	2'	728	<0:050	<0:050	<0.050	<0.150	<0.300	<50.0	607	74.3
9/11/2017	North Wall2	2'	1100	<0:050	<0:050	<0.050	<0.150	<0.300	<50.0	1990	615
9/11/2017	North Wall 3	2'	7460	<0.050	<0.050	<0.050	<0.150	<0.300	<50.0	1400	489
9/11/2017	West Wall 5	2'	307	<0:050	<0:050	<0.050	<0.150	<0.300	<50.0	92.1	<50.0
9/11/2017	East Wall 4	2'	1700	<0:050	<0:050	<0.050	<0.150	<0.300	<50.0	276	296
11/20/2017	East Wall 4	2'	131								
9/11/2017	South Wall 6	2'	369	<0:050	<0:050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0
9/11/2017	South Wall 7	2'	218	<0:050	<0:050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0
9/11/2017	South Wall 8	2'	35.7	<0:050	<0:050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0
9/11/2017	Bottom 1	4'	2480	<0:050	<0:050	<0.050	<0.150	<0.300	<50.0	171	98.4
9/11/2017	Bottom 2	4'	1730	<0:050	<0:050	<0.150	<0.300	<10.0	<10.0	<10.0	<10.0

•

.

September 28, 2017

RYAN MULLER ARCADIS U.S., INC. 2999 OAK ROAD, SUITE 300 WALNUT CREEK, CA 94597

RE: BARNSDALL CTB

Enclosed are the results of analyses for samples received by the laboratory on 09/11/17 15:05.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-17-9. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Total Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Cardinal Laboratories is accredited through the State of New Mexico Environment Department for:

Method SM 9223-B	Total Coliform and E. coli (Colilert MMO-MUG)
Method EPA 524.2	Regulated VOCs and Total Trihalomethanes (TTHM)
Method EPA 552.2	Total Haloacetic Acids (HAA-5)

Accreditation applies to public drinking water matrices for State of Colorado and New Mexico.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

ARCADIS U.S., INC.	,	BARNSDALL CTB	Reported:
2999 OAK ROAD, SUITE 300	Project Number:	NONE GIVEN	28-Sep-17 11:54
WALNUT CREEK CA, 94597	Project Manager:	RYAN MULLER	
	Fax To:	NOT GIVEN	

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
NORTH WALL 1	H702410-01	Soil	11-Sep-17 11:30	11-Sep-17 15:05
NORTH WALL 2	H702410-02	Soil	11-Sep-17 11:32	11-Sep-17 15:05
EAST WALL 4	H702410-03	Soil	11-Sep-17 11:36	11-Sep-17 15:05
SOUTH WALL 6	H702410-04	Soil	11-Sep-17 11:40	11-Sep-17 15:05
SOUTH WALL 7	H702410-05	Soil	11-Sep-17 11:42	11-Sep-17 15:05
SOUTH WALL 8	H702410-06	Soil	11-Sep-17 11:44	11-Sep-17 15:05
BOTTOM 1	H702410-07	Soil	11-Sep-17 13:15	11-Sep-17 15:05
BOTTOM 2	H702410-08	Soil	11-Sep-17 13:17	11-Sep-17 15:05
NORTH WALL 3	H702410-09	Soil	11-Sep-17 11:34	11-Sep-17 15:05
WEST WALL 5	H702410-10	Soil	11-Sep-17 13:30	11-Sep-17 15:05

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC. 2999 OAK ROAD, SUITE 300 WALNUT CREEK CA, 94597			Reported: 28-Sep-17 11:54							
				FH WALI 410-01 (So						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	al Laborat	ories					
Volatile Organic Compounds by	EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Surrogate: 4-Bromofluorobenzene (PID)			99.5 %	72-1	48	7091206	MS	12-Sep-17	8021B	
Petroleum Hydrocarbons by GC	FID									
GRO C6-C10	<50.0		50.0	mg/kg	5	7091201	MS	12-Sep-17	8015B	
DRO >C10-C28	209		50.0	mg/kg	5	7091201	MS	12-Sep-17	8015B	QR-03
EXT DRO >C28-C36	74.3		50.0	mg/kg	5	7091201	MS	12-Sep-17	8015B	
Surrogate: 1-Chlorooctane			79.5 %	28.3-	164	7091201	MS	12-Sep-17	8015B	
Surrogate: 1-Chlorooctadecane			111 %	34.7-	157	7091201	MS	12-Sep-17	8015B	
			Green Anal	ytical Labo	oratories					
Soluble (DI Water Extraction)										
Chloride	728		20.0	mg/kg wet	20	B709128	JDA	25-Sep-17	EPA300.0	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

				FH WALI 410-02 (So						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	ıl Laborat	ories					
Volatile Organic Compounds by E	PA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Surrogate: 4-Bromofluorobenzene (PID)			105 %	72-1	48	7091206	MS	12-Sep-17	8021B	
Petroleum Hydrocarbons by GC F	ID									
GRO C6-C10	<50.0		50.0	mg/kg	5	7091201	MS	12-Sep-17	8015B	
DRO >C10-C28	1990		50.0	mg/kg	5	7091201	MS	12-Sep-17	8015B	
EXT DRO >C28-C36	615		50.0	mg/kg	5	7091201	MS	12-Sep-17	8015B	
Surrogate: 1-Chlorooctane			82.6 %	28.3-	164	7091201	MS	12-Sep-17	8015B	
Surrogate: 1-Chlorooctadecane			137 %	34.7-	157	7091201	MS	12-Sep-17	8015B	
			Green Anal	ytical Labo	oratories					
Soluble (DI Water Extraction)	1100		50.0	malia	50	D700129	ID A	25 8 17	EDA 200.0	
Chloride	1100		50.0	mg/kg wet	50	B709128	JDA	25-Sep-17	EPA300.0	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC. 2999 OAK ROAD, SUITE 300 WALNUT CREEK CA, 94597			Project Num Project Mana		ie given N muller			2	Reported: 8-Sep-17 11:	54
				T WALL 410-03 (So	-					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	al Laborat	ories					
Volatile Organic Compounds by 1	EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Surrogate: 4-Bromofluorobenzene (PID)			101 %	72	148	7091206	MS	12-Sep-17	8021B	
Petroleum Hydrocarbons by GC	FID									
GRO C6-C10	<50.0		50.0	mg/kg	5	7091201	MS	12-Sep-17	8015B	
DRO >C10-C28	576		50.0	mg/kg	5	7091201	MS	12-Sep-17	8015B	
EXT DRO >C28-C36	296		50.0	mg/kg	5	7091201	MS	12-Sep-17	8015B	
Surrogate: 1-Chlorooctane			74.3 %	28.3-	-164	7091201	MS	12-Sep-17	8015B	
Surrogate: 1-Chlorooctadecane			108 %	34.7-	-157	7091201	MS	12-Sep-17	8015B	
Soluble (DI Water Extraction)			Green Anal	ytical Lab	oratories					
Soluble (DI Water Extraction) Chloride	1700		50.0	mg/kg wet	50	B709128	JDA	25-Sep-17	EPA300.0	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC. 2999 OAK ROAD, SUITE 300 WALNUT CREEK CA, 94597	Project: BARNSDALL CTB Project Number: NONE GIVEN Project Manager: RYAN MULLER Fax To: NOT GIVEN								Reported: 28-Sep-17 11:54			
				[°] H WALI 410-04 (So								
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes		
			Cardina	l Laborat	ories							
Volatile Organic Compounds by	EPA Method	8021										
Benzene*	< 0.050		0.050	mg/kg	50	7091206	MS	12-Sep-17	8021B			
Toluene*	< 0.050		0.050	mg/kg	50	7091206	MS	12-Sep-17	8021B			
Ethylbenzene*	< 0.050		0.050	mg/kg	50	7091206	MS	12-Sep-17	8021B			
Total Xylenes*	< 0.150		0.150	mg/kg	50	7091206	MS	12-Sep-17	8021B			
Total BTEX	< 0.300		0.300	mg/kg	50	7091206	MS	12-Sep-17	8021B			
Surrogate: 4-Bromofluorobenzene (PID)			106 %	72-1	148	7091206	MS	12-Sep-17	8021B			
Petroleum Hydrocarbons by GC	FID											
GRO C6-C10	<10.0		10.0	mg/kg	1	7091201	MS	12-Sep-17	8015B			
DRO >C10-C28	<10.0		10.0	mg/kg	1	7091201	MS	12-Sep-17	8015B			
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	7091201	MS	12-Sep-17	8015B			
Surrogate: 1-Chlorooctane			84.0 %	28.3-	164	7091201	MS	12-Sep-17	8015B			
Surrogate: 1-Chlorooctadecane			92.2 %	34.7-	157	7091201	MS	12-Sep-17	8015B			
			Green Analy	ytical Lab	oratories							
Soluble (DI Water Extraction)												
Chloride	369		10.0	mg/kg wet	10	B709128	JDA	22-Sep-17	EPA300.0			

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC. 2999 OAK ROAD, SUITE 300 WALNUT CREEK CA, 94597			Project Num Project Mana		e given N Muller			2	Reported: 8-Sep-17 11:	54
				TH WALL 410-05 (So						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	ıl Laborato	ories					
Volatile Organic Compounds by	EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Surrogate: 4-Bromofluorobenzene (PID)			105 %	72-1	48	7091206	MS	12-Sep-17	8021B	
Petroleum Hydrocarbons by GC	FID									
GRO C6-C10	<10.0		10.0	mg/kg	1	7091201	MS	12-Sep-17	8015B	
DRO >C10-C28	<10.0		10.0	mg/kg	1	7091201	MS	12-Sep-17	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	7091201	MS	12-Sep-17	8015B	
Surrogate: 1-Chlorooctane			90.5 %	28.3-	164	7091201	MS	12-Sep-17	8015B	
Surrogate: 1-Chlorooctadecane			99.6 %	34.7-	157	7091201	MS	12-Sep-17	8015B	
			Green Anal	ytical Labo	oratories					
Soluble (DI Water Extraction)										
Chloride	218		10.0	mg/kg wet	10	B709128	JDA	22-Sep-17	EPA300.0	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC. 2999 OAK ROAD, SUITE 300 WALNUT CREEK CA, 94597			Project Num Project Mana		e given N Muller			2	Reported: 8-Sep-17 11:	54
				H WALI 410-06 (So						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Volatile Organic Compounds by 1	EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Surrogate: 4-Bromofluorobenzene (PID)			103 %	72-1	48	7091206	MS	12-Sep-17	8021B	
Petroleum Hydrocarbons by GC	FID									
GRO C6-C10	<10.0		10.0	mg/kg	1	7091201	MS	12-Sep-17	8015B	
DRO >C10-C28	<10.0		10.0	mg/kg	1	7091201	MS	12-Sep-17	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	7091201	MS	12-Sep-17	8015B	
Surrogate: 1-Chlorooctane			85.2 %	28.3-	164	7091201	MS	12-Sep-17	8015B	
Surrogate: 1-Chlorooctadecane			91.7 %	34.7-	157	7091201	MS	12-Sep-17	8015B	
			Green Analy	ytical Labo	oratories					
Soluble (DI Water Extraction)										
Chloride	35.7		10.0	mg/kg wet	10	B709128	JDA	22-Sep-17	EPA300.0	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC. 2999 OAK ROAD, SUITE 300 WALNUT CREEK CA, 94597			Project Num Project Mana	ber: NO	N MULLER			2	Reported: 8-Sep-17 11:	54
)TTOM 1 410-07 (So						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	ıl Laborat	ories					
Volatile Organic Compounds by 1	EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Surrogate: 4-Bromofluorobenzene (PID)			102 %	72-	148	7091206	MS	12-Sep-17	8021B	
Petroleum Hydrocarbons by GC	FID									
GRO C6-C10	<50.0		50.0	mg/kg	5	7091201	MS	12-Sep-17	8015B	
DRO >C10-C28	771		50.0	mg/kg	5	7091201	MS	12-Sep-17	8015B	
EXT DRO >C28-C36	98.4		50.0	mg/kg	5	7091201	MS	12-Sep-17	8015B	
Surrogate: 1-Chlorooctane			83.3 %	28.3	-164	7091201	MS	12-Sep-17	8015B	
Surrogate: 1-Chlorooctadecane			104 %	34.7	-157	7091201	MS	12-Sep-17	8015B	
			Green Analy	ytical Lab	oratories					
Soluble (DI Water Extraction)	2400		100	malka	100	B709128	JDA	25-Sep-17	EPA300.0	
Chloride	2480		100	mg/kg wet	100	D/09128	JDA	25-Sep-1/	EPA300.0	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC. 2999 OAK ROAD, SUITE 300 WALNUT CREEK CA, 94597			Project Num Project Mana		e given N muller			2	Reported: 28-Sep-17 11:	54
				OTTOM 2 410-08 (So	il)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	al Laborato	ories					
Volatile Organic Compounds by I	EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	7091206	MS	12-Sep-17	8021B	
Surrogate: 4-Bromofluorobenzene (PID)			102 %	72-1	48	7091206	MS	12-Sep-17	8021B	
Petroleum Hydrocarbons by GC	FID									
GRO C6-C10	<10.0		10.0	mg/kg	1	7091201	MS	12-Sep-17	8015B	
DRO >C10-C28	<10.0		10.0	mg/kg	1	7091201	MS	12-Sep-17	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	7091201	MS	12-Sep-17	8015B	
Surrogate: 1-Chlorooctane			89.6 %	28.3-	164	7091201	MS	12-Sep-17	8015B	
Surrogate: 1-Chlorooctadecane			97.0 %	34.7-	157	7091201	MS	12-Sep-17	8015B	
			Green Anal	ytical Labo	oratories					
Soluble (DI Water Extraction)						D			FR. 200.0	
Chloride	1730		50.0	mg/kg wet	50	B709128	JDA	25-Sep-17	EPA300.0	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC. 2999 OAK ROAD, SUITE 300 WALNUT CREEK CA, 94597		Project: BARNSDALL CTB Project Number: NONE GIVEN Project Manager: RYAN MULLER Fax To: NOT GIVEN							Reported: 28-Sep-17 11:54			
				FH WALI 410-09 (So								
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes		
			Cardina	al Laborat	ories							
Volatile Organic Compounds by	EPA Method	8021										
Benzene*	< 0.050		0.050	mg/kg	50	7091206	MS	12-Sep-17	8021B			
Toluene*	< 0.050		0.050	mg/kg	50	7091206	MS	12-Sep-17	8021B			
Ethylbenzene*	< 0.050		0.050	mg/kg	50	7091206	MS	12-Sep-17	8021B			
Total Xylenes*	< 0.150		0.150	mg/kg	50	7091206	MS	12-Sep-17	8021B			
Total BTEX	< 0.300		0.300	mg/kg	50	7091206	MS	12-Sep-17	8021B			
Surrogate: 4-Bromofluorobenzene (PID)			101 %	72-	148	7091206	MS	12-Sep-17	8021B			
Petroleum Hydrocarbons by GC	FID											
GRO C6-C10	<50.0		50.0	mg/kg	5	7091201	MS	12-Sep-17	8015B			
DRO >C10-C28	1400		50.0	mg/kg	5	7091201	MS	12-Sep-17	8015B			
EXT DRO >C28-C36	489		50.0	mg/kg	5	7091201	MS	12-Sep-17	8015B			
Surrogate: 1-Chlorooctane			81.5 %	28.3	-164	7091201	MS	12-Sep-17	8015B			
Surrogate: 1-Chlorooctadecane			116 %	34.7	-157	7091201	MS	12-Sep-17	8015B			
			Green Anal	ytical Lab	oratories							
Soluble (DI Water Extraction) Chloride	7460		200	mg/kg wet	200	B709128	JDA	25-Sep-17	EPA300.0			

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Page 23 of 36

Analytical Results For:

ARCADIS U.S., INC. 2999 OAK ROAD, SUITE 300 WALNUT CREEK CA, 94597			Project Num Project Mana	ber: NO	N MULLER			2	Reported: 8-Sep-17 11:	54
				5T WALL 410-10 (So						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	al Laborat	ories					
Volatile Organic Compounds by	EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	7091301	MS	13-Sep-17	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	7091301	MS	13-Sep-17	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	7091301	MS	13-Sep-17	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	7091301	MS	13-Sep-17	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	7091301	MS	13-Sep-17	8021B	
Surrogate: 4-Bromofluorobenzene (PID)			103 %	72-	148	7091301	MS	13-Sep-17	8021B	
Petroleum Hydrocarbons by GC	FID									
GRO C6-C10	<50.0		50.0	mg/kg	5	7091201	MS	12-Sep-17	8015B	
DRO >C10-C28	92.1		50.0	mg/kg	5	7091201	MS	12-Sep-17	8015B	
EXT DRO >C28-C36	<50.0		50.0	mg/kg	5	7091201	MS	12-Sep-17	8015B	
Surrogate: 1-Chlorooctane			100 %	28.3	-164	7091201	MS	12-Sep-17	8015B	
Surrogate: 1-Chlorooctadecane			119 %	34.7	-157	7091201	MS	12-Sep-17	8015B	
Salukla (DI Water Friter 4)			Green Anal	ytical Lab	oratories					
Soluble (DI Water Extraction) Chloride	307		10.0	mg/kg wet	10	B709128	JDA	22-Sep-17	EPA300.0	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC. 2999 OAK ROAD, SUITE 300 WALNUT CREEK CA, 94597	Project: Project Number: Project Manager:		Reported: 28-Sep-17 11:54	
WALNUT CREEK CA, 94597	, ,	NOT GIVEN		

Volatile Organic Compounds by EPA Method 8021 - Quality Control Cardinal Laboratories

Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
			Prepared &	Analyzed:	12-Sep-17				
ND	0.050	mg/kg							
ND	0.050	mg/kg							
ND	0.050	mg/kg							
ND	0.150	mg/kg							
ND	0.300	mg/kg							
ND		mg/kg	0.0500		99.3	72-148			
			Prepared &	Analyzed:	12-Sep-17				
1.63	0.050	mg/kg	2.00		81.4	79.5-124			
1.71	0.050	mg/kg	2.00		85.7	75.5-127			
1.89	0.050	mg/kg	2.00		94.3	77.7-125			
5.70	0.150	mg/kg	6.00		94.9	70.9-124			
0.0489		mg/kg	0.0500		97.8	72-148			
			Prepared &	Analyzed:	12-Sep-17				
1.62	0.050	mg/kg	2.00		81.2	79.5-124	0.180	6.5	
1.75	0.050	mg/kg	2.00		87.5	75.5-127	2.03	7.02	
1.91	0.050	mg/kg	2.00		95.5	77.7-125	1.28	7.83	
5.76	0.150	mg/kg	6.00		96.0	70.9-124	1.09	7.78	
0.0489		mg/kg	0.0500		97.8	72-148			
-	ND ND ND ND ND 1.63 1.71 1.89 5.70 0.0489 1.62 1.75 1.91 5.76	Result Limit ND 0.050 ND 0.050 ND 0.050 ND 0.050 ND 0.050 ND 0.050 ND 0.150 ND 0.300 ND 0.050 5.70 0.150 0.0489 1.62 0.050 1.91 0.050 5.76 0.150	Result Limit Units ND 0.050 mg/kg ND 0.050 mg/kg ND 0.050 mg/kg ND 0.050 mg/kg ND 0.150 mg/kg ND 0.300 mg/kg ND 0.300 mg/kg 1.63 0.050 mg/kg 1.89 0.050 mg/kg 5.70 0.150 mg/kg 0.0489 mg/kg 1.75 1.62 0.050 mg/kg 1.91 0.050 mg/kg 5.76 0.150 mg/kg	Result Limit Units Level Prepared & ND 0.050 mg/kg ND 0.150 mg/kg ND 0.300 mg/kg ND 0.300 mg/kg ND 0.300 mg/kg ND 0.300 mg/kg ND 0.050 mg/kg 1.63 0.050 mg/kg 1.63 0.050 mg/kg 1.89 0.050 mg/kg 0.0489 mg/kg 0.050 Prepared & 1.62 0.050 mg/kg 1.62 0.050 mg/kg 2.00 1.75 0.050 mg/kg 2.00 1.75 0.050 mg/kg 2.00 1.75 0.050 mg/kg 2.00 1.91 0.050<	Result Limit Units Level Result Prepared & Analyzed: ND 0.050 mg/kg ND 0.150 mg/kg ND 0.300 mg/kg ND 0.050 mg/kg 1.63 0.050 mg/kg 0.050 mg/kg 6.00 0.0489 mg/kg 0.0500 Prepared & Analyzed: 1.62 0.050 mg/kg 1.62 0.050 mg/kg 2	Result Limit Units Level Result %REC Prepared & Analyzed: 12-Sep-17 ND 0.050 mg/kg ND 0.150 mg/kg ND 0.300 mg/kg ND 0.300 mg/kg ND 0.300 mg/kg ND 0.050 mg/kg 1.63 0.050 mg/kg 0.0489 mg/kg 0.0500 97.8 Prepared & Analyzed: 12-Sep-17 1.62 0.050 mg/kg 0.050 mg/kg 2.00 91 0.050 mg/kg <tr< td=""><td>Result Limit Units Level Result %REC Limits Prepared & Analyzed: 12-Sep-17 ND 0.050 mg/kg </td><td>Result Limit Units Level Result %REC Limits RPD Prepared & Analyzed: 12-Sep-17 ND 0.050 mg/kg </td><td>Result Limit Units Level Result %REC Limits RPD Limit Prepared & Analyzed: 12-Sep-17 ND 0.050 mg/kg </td></tr<>	Result Limit Units Level Result %REC Limits Prepared & Analyzed: 12-Sep-17 ND 0.050 mg/kg	Result Limit Units Level Result %REC Limits RPD Prepared & Analyzed: 12-Sep-17 ND 0.050 mg/kg	Result Limit Units Level Result %REC Limits RPD Limit Prepared & Analyzed: 12-Sep-17 ND 0.050 mg/kg

Batch 7091301 - Volatiles

Blank (7091301-BLK1)				Prepared & Analy	zed: 13-Sep-17		
Benzene	ND	0.050	mg/kg				
Toluene	ND	0.050	mg/kg				
Ethylbenzene	ND	0.050	mg/kg				
Total Xylenes	ND	0.150	mg/kg				
Total BTEX	ND	0.300	mg/kg				
Surrogate: 4-Bromofluorobenzene (PID)	ND		mg/kg	0.0500	99.8	72-148	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC. 2999 OAK ROAD, SUITE 300 WALNUT CREEK CA, 94597	Project Number: Project Manager:		Reported: 28-Sep-17 11:54	
--	-------------------------------------	--	------------------------------	--

Volatile Organic Compounds by EPA Method 8021 - Quality Control

Cardinal Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 7091301 - Volatiles										
LCS (7091301-BS1)	Prepared & Analyzed: 13-Sep-17									
Benzene	1.79	0.050	mg/kg	2.00		89.6	79.5-124			
Toluene	1.93	0.050	mg/kg	2.00		96.3	75.5-127			
Ethylbenzene	2.12	0.050	mg/kg	2.00		106	77.7-125			
Total Xylenes	6.32	0.150	mg/kg	6.00		105	70.9-124			
Surrogate: 4-Bromofluorobenzene (PID)	0.0493		mg/kg	0.0500		98.5	72-148			
LCS Dup (7091301-BSD1)				Prepared &	Analyzed:	13-Sep-17				
Benzene	1.82	0.050	mg/kg	2.00		91.0	79.5-124	1.54	6.5	
Toluene	1.96	0.050	mg/kg	2.00		98.2	75.5-127	1.98	7.02	
Ethylbenzene	2.15	0.050	mg/kg	2.00		108	77.7-125	1.67	7.83	
Total Xylenes	6.48	0.150	mg/kg	6.00		108	70.9-124	2.50	7.78	
Surrogate: 4-Bromofluorobenzene (PID)	0.0494		mg/kg	0.0500		98.9	72-148			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Petroleum Hydrocarbons by GC FID - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7091201 - General Prep - Organics										
Blank (7091201-BLK1)				Prepared &	Analyzed:	12-Sep-17				
GRO C6-C10	ND	10.0	mg/kg							
DRO >C10-C28	ND	10.0	mg/kg							
EXT DRO >C28-C35	ND	10.0	mg/kg							
EXT DRO >C28-C36	ND	10.0	mg/kg							
Total TPH C6-C28	ND	10.0	mg/kg							
Surrogate: 1-Chlorooctane	46.4		mg/kg	50.0		92.8	28.3-164			
Surrogate: 1-Chlorooctadecane	50.4		mg/kg	50.0		101	34.7-157			
LCS (7091201-BS1)				Prepared &	Analyzed:	12-Sep-17				
GRO C6-C10	180	10.0	mg/kg	200		89.8	76.6-119			
DRO >C10-C28	196	10.0	mg/kg	200		98.0	81.4-124			
Total TPH C6-C28	376	10.0	mg/kg	400		93.9	79.4-121			
Surrogate: 1-Chlorooctane	50.2		mg/kg	50.0		100	28.3-164			
Surrogate: 1-Chlorooctadecane	55.3		mg/kg	50.0		111	34.7-157			
LCS Dup (7091201-BSD1)				Prepared &	Analyzed:	12-Sep-17				
GRO C6-C10	178	10.0	mg/kg	200		89.0	76.6-119	0.881	7.94	
DRO >C10-C28	193	10.0	mg/kg	200		96.3	81.4-124	1.76	9.83	
Total TPH C6-C28	371	10.0	mg/kg	400		92.7	79.4-121	1.34	8.57	
Surrogate: 1-Chlorooctane	49.4		mg/kg	50.0		98.8	28.3-164			
Surrogate: 1-Chlorooctadecane	53.8		mg/kg	50.0		108	34.7-157			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC. 2999 OAK ROAD, SUITE 300 WALNUT CREEK CA, 94597	Project: BA Project Number: NO Project Manager: RY, Fax To: NO	YAN MULLER	Reported: 28-Sep-17 11:54
--	---	------------	------------------------------

Soluble (DI Water Extraction) - Quality Control

Green Analytical Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B709128 - General Prep - Wet Chem										
Blank (B709128-BLK1)				Prepared:	8-Sep-17 A	analyzed: 22	2-Sep-17			
Chloride	ND	10.0	mg/kg wet							
LCS (B709128-BS1)				Prepared:	8-Sep-17 A	analyzed: 22	2-Sep-17			
Chloride	242	10.0	mg/kg wet	250		96.8	85-115			
LCS Dup (B709128-BSD1)	Prepared: 18-Sep-17 Analyzed: 22-Sep-17									
Chloride	240	10.0	mg/kg wet	250		95.9	85-115	0.980	20	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ceived by OCI): 8/19/2020	0 7:16:28 AM	6ad	7 2 2 2	- 99			Page 29 of
Cooler packed with ice (✓) Specify Turnaround Requirements: Shipping Tracking #:	Sill Apacence - Lab Name: Nord input labor Hables	Special Instructions/Comments:		South Wall 7 South Wall 7 South Wall 8	North Wall I Eastward 4	Sampler's Printed Name: Sampler's Printed Name: Sampler's Printed Name: Ni 40, TAV 1 of 1 May 8 M. Sample ID	contact & company Name: Address City 004 N. B: 9 Spring 94 State 210	ARCADIS Mathematic Environment - Buildings: HTD241
Sample Receipt:	tody Seal (9/11 1317 9/11 1134 9/11 1330	11	9/11/11/30 /	KUOV IVIALOV IVIALOV Project ♥ Sampler's Signature: Collection Type (✓) Date	Fax: E-mail Address:	
Fim. Date Time? 1505 9/11	Printed Name: Printed Name: A La Janna I & Kaws Signature:	Special QA/QQ		XXX XXX	××××	(1) Matrix 1944 805 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Preservative F	CHAIN OF CUSTODY & LABORAT ANALYSIS REQUEST FORM
Firm/Courier: DateTime:	Received By Relinquished By Printed Name: Signature:	□ Special QA/QC Instructions(*):				H. Other: Matrix Key: So - Soil W - Water T - Tissue REMARKS	SIS & METHOD	FORY Page of
Date/Time:	Laboratory Received By Printed Name: Signature:					9. 10 SE - Sedir SL - Sludg A - Air	Container Information Ke 1. 40 ml Vial 2. 1 L Amber 3. 250 ml Plastic 4. 500 ml Plastic 5. Encore 6. 2 oz. Glass 7. 4 oz. Glass 8. 8 oz. Glass	Keys 18 of 18

November 28, 2017

RYAN MUELLER ARCADIS - MIDLAND 1004 N BIG SPRING ST., SUITE 300 MIDLAND, TX 79701

RE: APACHE

Enclosed are the results of analyses for samples received by the laboratory on 11/20/17 13:50.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-17-9. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Total Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Cardinal Laboratories is accredited through the State of New Mexico Environment Department for:

Method SM 9223-B	Total Coliform and E. coli (Colilert MMO-MUG)
Method EPA 524.2	Regulated VOCs and Total Trihalomethanes (TTHM)
Method EPA 552.2	Total Haloacetic Acids (HAA-5)

Accreditation applies to public drinking water matrices for State of Colorado and New Mexico.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

ARCADIS - MIDLAND 1004 N BIG SPRING ST., SUITE : MIDLAND TX, 79701	500	oject Number:	RYAN MUELLER	Reported: 28-Nov-17 17:47
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EAST WALL 4	H703233-01	Soil	20-Nov-17 10:30	20-Nov-17 13:50

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS - MIDLAND 1004 N BIG SPRING ST., SUITE 300 MIDLAND TX, 79701			Project Nun Project Mana	nber: BA	APACHE BARNSDALE RYAN MUELLER NA			Reported: 28-Nov-17 17:47		
				ST WAL						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Green Anal	ytical La	boratories					
Soluble (DI Water Extrac	ction)									
Chloride	131		10.0	mg/kg wet	t 10	B711202	JDA	27-Nov-17	EPA300.0	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS - MIDLAND 1004 N BIG SPRING ST., SUITE 300 MIDLAND TX, 79701	Project: Project Number: Project Manager: Fax To:	RYAN MUELLER	Reported: 28-Nov-17 17:47
--	--	--------------	------------------------------

Soluble (DI Water Extraction) - Quality Control

Green Analytical Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Thatyte	Result	Linit	Oints	Level	Result	/orcle	Linits	ICI D	Linit	10003
Batch B711202 - General Prep - Wet Chem										
Blank (B711202-BLK1)				Prepared: 2	22-Nov-17	Analyzed: 2	7-Nov-17			
Chloride	ND	10.0	mg/kg wet							
LCS (B711202-BS1)				Prepared: 2	22-Nov-17	Analyzed: 2	7-Nov-17			
Chloride	244	10.0	mg/kg wet	250		97.5	85-115			
LCS Dup (B711202-BSD1)	Prepared: 22-Nov-17 Analyzed: 27-Nov-17									
Chloride	245	10.0	mg/kg wet	250		98.0	85-115	0.458	20	

Cardinal Laboratories

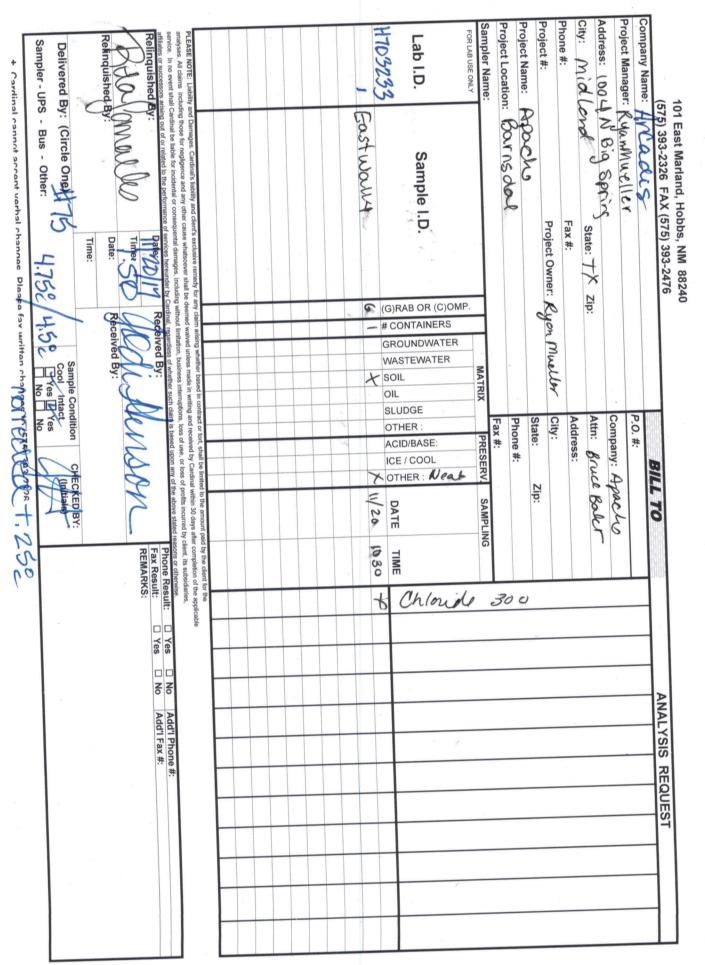
*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below $6^{\circ}\mathrm{C}$


Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page 35 of 36

CARDINAL Laboratories

Page 6 of 6

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
APACHE CORPORATION	873
303 Veterans Airpark Ln	Action Number:
Midland, TX 79705	9764
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Create By	d Condition	Condition Date
bhall	Deferral approved. Incident status will remain "Closure Not Approved" until final remediation is completed during retrofitting or abandonment, whichever comes first.	11/8/2022

Action 9764