

November 7, 2018

Maria Pruett Oil Conservation Division, District 2 811 S First St. Artesia, NM 88210

Ryan Mann New Mexico State Land Office 2827 N. Dal Paso Suite 117 Hobbs, NM 88240

Re: Remediation Work Plan

SRO State Com #046H (2/1/18)

RP#: 2RP-4600

GPS: 32.077915, -104.116168

Unit Letter D, Section 5, Township 26 South, Range 28 East

Eddy County, New Mexico

Ms. Pruett / Mr. Ryan,

COG Operating, LLC (COG) is pleased to submit the following remediation work plan in response to a release that occurred at the SRO State Com #046H Tank Battery located in Unit Letter D, Section 5, Township 26 South and Range 28 East in Eddy County, New Mexico.

BACKGROUND

An oil and produced water release was discovered at the SRO State Com #046H tank battery on February 1, 2018 and a C-141 initial report was submitted and approved by the New Mexico Oil Conservation Division (NMOCD). The release was due to a valve being left in the wrong position on the free water knockout (FWKO) and resulted in an overflow of the oil tanks. The majority of the released fluid remained inside of the lined containment with some overspray in the adjacent pasture. Approximately ten (10) barrels of oil and thirty-five (35) barrels of produced water were released with eight (8) barrels of oil and thirty-three (33) barrels of produced water recovered. The initial C-141 is shown in Appendix A.

GROUNDWATER AND REGULATORY

According to the USGS groundwater data, the depth to groundwater in the area appears to be <50 feet below surface. The water well information is shown in Appendix B.

One Concho Center | 600 West Illinois Avenue | Midland, Texas 79701 | P 432.683.7443 | F 432.683.7441

An evaluation and site determinations were performed in accordance to the New Mexico Oil Conservation Division (NMOCD) Rule (Title 19 Chapter 15 Part 29) for releases on oil and gas development and production facilities in New Mexico (effective August 14, 2018). According to the site characterization evaluation, the extent of the release are located within a continuously flowing watercourse or other significant watercourse. No other receptors (water wells, playas, karst, lake beds or ordinance boundaries) were located within each specific boundaries or distance from the site. The groundwater data and the site characterization evaluation data is summarized in Appendix B. The delineation and closure criteria are listed below:

General Site Characterization and Groundwater:

Site Characterization	Average Groundwater Depth (ft.)
Within 300 feet of a significant watercourse	<50 feet

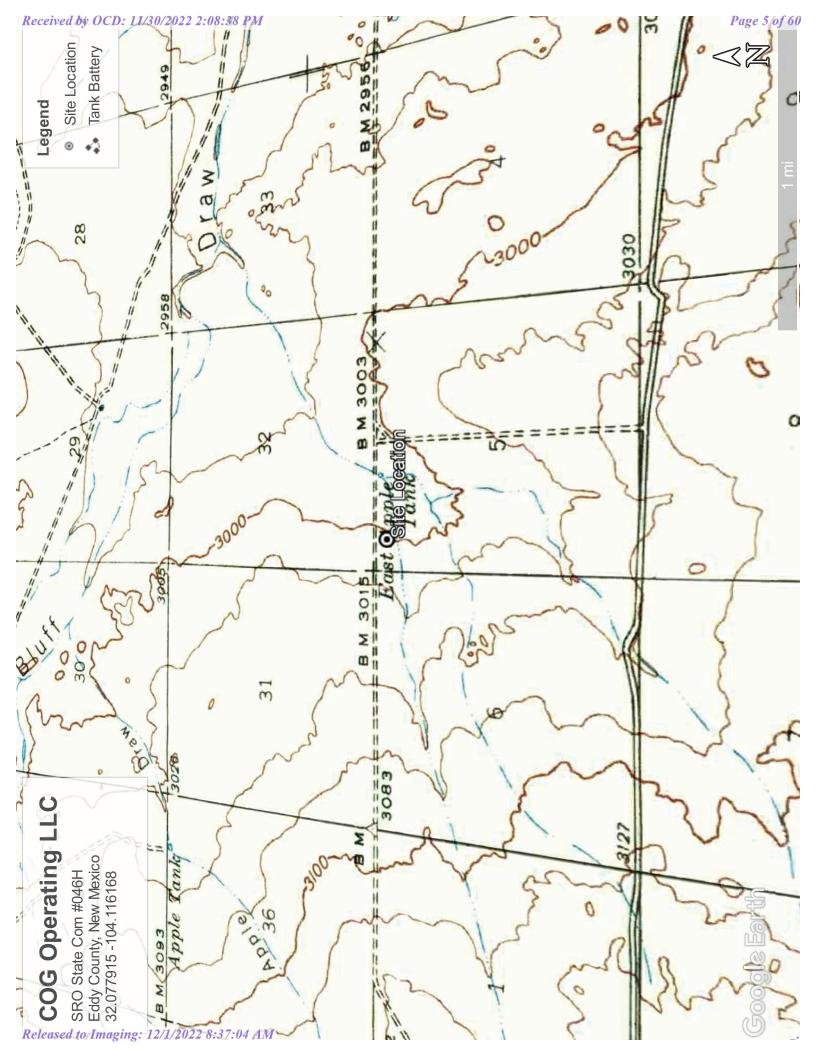
Delineation and Closure Criteria:

Remedial Action	n Levels (RALs)
Chlorides	600 mg/kg
TPH (GRO and DRO and MRO)	100 mg/kg
TPH (GRO and DRO)	NA
Benzene	10 mg/kg
Total BTEX	50 mg/kg

REMEDIATION PLAN

- The impacted area in the vicinity of sample location of T-1 will be excavated to a depth of approximately one and one half (1.5) feet to two (2) feet below ground surface (bgs).
- The impacted area in the vicinity of the South sample location be excavated to a depth of approximately six (6) inches to one (1) foot below ground surface (bgs).
- Approximately sixty (60) to eighty (80) cubic yards of soil will be excavated.
- Composite confirmation samples will be collected from the sidewalls and bottom of the excavation and submitted to the laboratory for TPH analysis.
- All of the excavated material will be hauled to an NMOCD approved solid waste disposal facility.
- The excavation will be backfilled with "like" material and contoured to match the surrounding terrain.

SITE RECLAMATION AND RESTORATION


Delineation samples indicated chloride concentrations are below 600 mg/kg, therefore no reclamation is required for the release.

Sincerely,

Rebecca Haskell Senior HSE Coordinator rhaskell@concho.com 432-818-2372 Concho Operating, LLC

cc: File

Figures

Tables

Table 1
COG Operating LLC.
SRO State Com #046H
Eddy County, New Mexico

Limits (mg/kg) Surface Surface Surface Surface Surface Surface T 1 T 2 Z 2 Surface Surface Surface 3 3 3 3	2	Sample	1	Soil	Soil Status			TP	TPH (mg/kg)				Benzene	Total BTEX	Chloride
100 4.0	Sample ID	Depth (ft)	sample Date	In-Situ	Removed	GRO	DRO	MRO	Total	GRO	DRO	Total	(mg/kg)	(mg/kg)	(mg/kg)
100 100	Depth to	Groundwater		0											
Surface 319/2018 X 224 1290 211 1,520 224 1,320 214 1,320 0.00019 0.00019 0.00019 1 1 319/2018 X < 414 433 57.5 441 433 433 4000199 0.000199 0.000199 2 2 319/2018 X < 4150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 < 150 <th>RAL Lin</th> <th>nits (mg/kg)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>100</th> <th></th> <th></th> <th>100</th> <th>10</th> <th>20</th> <th>009</th>	RAL Lin	nits (mg/kg)						-	100			100	10	20	009
gr 3192018 X 413 57.5 491 <14.9 433 433 433 400199 <0.00199 1-1 31/92018 X 4150 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0<	T-1	Surface	3/19/2018	×		22.4	1,290	211	1,520	22.4	1,290	1,312	<0.00201	0.00958	<49.1
1	T-1	9	3/19/2018	×		<14.9	433	57.5	491	<14.9	433	433	<0.00199	<0.00199	<24.9
2° 227/2018 X	T-1	1,	3/19/2018	×		<15.0	252	29.4	281	<15.0	252	252	<0.00200	<0.00200	<24.9
Surface 3/19/2018 X	T-1	2,	2/27/2018	×		<15.0	<15.0	<15.0	<15.0	<15.0	<15.0	<15.0	<0.00199	<0.00199	<4.97
Surface 319/2018 X < <15.0 615.0															
1.1 2/27/2018 X	South	Surface	3/19/2018	×		<15.0	859	159	1,020	<15.0	859	859	<0.00202	<0.00202	9.78
Surface 3/19/2018 X <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <	₽	-	2/27/2018	×		<15.0	<15.0	<15.0	<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<4.99
Surface 3/19/2018 X <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <															
1. 3/19/2018 X < <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0	East	Surface	3/19/2018	×		<15.0	<15.0	<15.0	<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	7.09
2 2	, te	+	3/19/2018	×		<15.0	<15.0	<15.0	<15.0	<15.0	<15.0	<15.0	<0.00199	<0.00199	<4.99
Surface 3/19/2018 X <14.9 25.7 <19.9 25.7 <14.9 25.7 <14.9 25.7 <14.9 25.7 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <1	#	2'	2/27/2018	×		<14.9	<14.9	<14.9	<14.9	<14.9	<14.9	<14.9	<0.00199	<0.00199	<5.00
Surface 3/19/2018 X															
6° 1 3/19/2018 X < <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <t< td=""><td>st</td><td>Surface</td><td>3/19/2018</td><td>×</td><td></td><td><14.9</td><td>25.7</td><td><19.9</td><td>25.7</td><td><14.9</td><td>25.7</td><td>25.7</td><td><0.00199</td><td><0.00199</td><td><49.5</td></t<>	st	Surface	3/19/2018	×		<14.9	25.7	<19.9	25.7	<14.9	25.7	25.7	<0.00199	<0.00199	<49.5
1' 3/19/2018 X <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <1	st	9	3/19/2018	×		<15.0	<15.0	<15.0	<15.0	<15.0	<15.0	<15.0	<0.00202	<0.00202	<49.5
3' 2/27/2018 X <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15	st	-	3/19/2018	×		<15.0	<15.0	<15.0	<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<49.9
3' 2/27/2018 X <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <0.00200	10	3,	2/27/2018	×		<15.0	<15.0	<15.0	<15.0	<15.0	<15.0	<15.0	<0.00198	<0.00198	72.7
3' 227/2018 X <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0															
		3,	2/27/2018	×		<15.0	<15.0	<15.0	<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	55.8

Not Analyzed

-

Appendix A

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	
District RP	2RP-4600
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	COG Operating, LLC	OGRID	229137
Contact Name	Robert McNeill	Contact Telephone	(432) 683-7443
Contact email	RMcNeill@concho.com	Incident # (assigned by OCD)	
Contact mailing address	600 West Illinois Avenue, Midlar	nd, Texas 79701	

			Location	of R	elease Source		
Latitude	32.0779)15	(NAD 83 in dec	cimal de	Longitude	4.116168	
Site Name		SRO State Co			Lat. The	ank Battery	
Date Release	e Discovered					80-025-39951	
Unit Letter	Section	Township	Range		County		
D	5	26S	28E		Eddy		
Surface Own	er: State	☐ Federal ☐ Tr	ibal □ Private (/	Name:)

Nature and Volume of Release

Material	(s) Released (Select all that apply and attach calculations or specific	justification for the volumes provided below)
Crude Oil	Volume Released (bbls) 10	Volume Recovered (bbls) 8
Produced Water	Volume Released (bbls) 35	Volume Recovered (bbls) 33
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	■ Yes □ No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
	·	·

Cause of Release

Downstream valve on FWKO water dump was left in the wrong position sending excess fluid to the oil tanks resulting in an overflow into the secondary containment. The valve position was corrected. The majority of the fluid remained inside of the line containment. There was some overspray in the pasture adjacent to the location. A vacuum truck was dispatched to remove all freestanding fluids. Concho will evaluate the site to determine if we may commence remediation immediately or delineate any possible impact from the release and we will present a remediation work plan to the NMOCD for approval prior to any significant remediation activities.

Incident ID	
District RP	2RP-4600
Facility ID	
Application ID	

TT7 41' '	ICYEC C 1 () 1 (1			
Was this a major release as defined by	If YES, for what reason(s) does the respon			
19.15.29.7(A) NMAC?	The spill was greater than 25 ba	rrels of fluid.		
Yes No				
If YES, was immediate n	otice given to the OCD? By whom? To wh	om? When and by what means (phone, email, etc)?		
An email was sent t	to Crystal Waver (NMOCD) and T	ammy Honea (NMSLO) by Rebecca Haskell on		
February 1, 2018 at				
	Initial Ro	esponse		
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury				
The source of the rele	ease has been stopped.			
The impacted area has been secured to protect human health and the environment.				
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.				
All free liquids and recoverable materials have been removed and managed appropriately.				
If all the actions described above have <u>not</u> been undertaken, explain why:				
if all the actions describe	d above have <u>not</u> occir undertaken, explain v	vily.		
has begun, please attach	a narrative of actions to date. If remedial	emediation immediately after discovery of a release. If remediation efforts have been successfully completed or if the release occurred lease attach all information needed for closure evaluation.		
		pest of my knowledge and understand that pursuant to OCD rules and		
		actions and perform corrective actions for releases which may endanger CD does not relieve the operator of liability should their operations have		
		at to groundwater, surface water, human health or the environment. In		
	of a C-141 report does not relieve the operator of	responsibility for compliance with any other federal, state, or local laws		
and/or regulations.	aca Hackell	Soniar USE Coordinator		
Printed Name:	са паѕкен	Title: Senior HSE Coordinator		
Signature: _ Relleca	Cca Haskell Haskell	Date: 11/6/2018 Telephone: (432) 818-2372		
_{email:} rhaskell@c		Telephone: (432) 818-2372		
Ciliani.		receptione.		
OCD Only				
Received by:		Date:		

Page 12 of 60

Incident ID	
District RP	2RP-4600
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<50 (ft bgs)
Did this release impact groundwater or surface water?	☐ Yes ■ No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	■ Yes □ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ■ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ■ No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ■ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ■ No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ■ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ■ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ■ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ■ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ■ No
Did the release impact areas not on an exploration, development, production, or storage site?	■ Yes □ No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and ver contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	tical extents of soil
Characterization Report Checklist: Each of the following items must be included in the report.	
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well Field data Data table of soil contaminant concentration data Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release Boring or excavation logs Photographs including date and GIS information Topographic/Aerial maps	ls.
Laboratory data including chain of custody	

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 11/30/2022 2:08:38 PM Form C-141 State of New Mexico Page 4 Oil Conservation Division

Page 13 of 60

Incident ID	
District RP	2RP-4600
Facility ID	
Application ID	

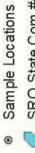
I hereby certify that the information given above is true and complete to the regulations all operators are required to report and/or file certain release not public health or the environment. The acceptance of a C-141 report by the failed to adequately investigate and remediate contamination that pose a thr addition, OCD acceptance of a C-141 report does not relieve the operator of and/or regulations.	ifications and perform corrective actions for releases which may endanger OCD does not relieve the operator of liability should their operations have eat to groundwater, surface water, human health or the environment. In
Printed Name: Rebecca Haskell	Title: Senior HSE Coordinator
Signature: Relecca Haskell	Date: 11/6/18
email: rhaskell@concho.com	Telephone: 432-818-2372
	· ————————————————————————————————————
OCD Only	
Received by:	Date:

Page 14 of 60

		 •
Incident ID		
District RP	2RP-4600	
Facility ID		l
Application ID		

Remediation Plan

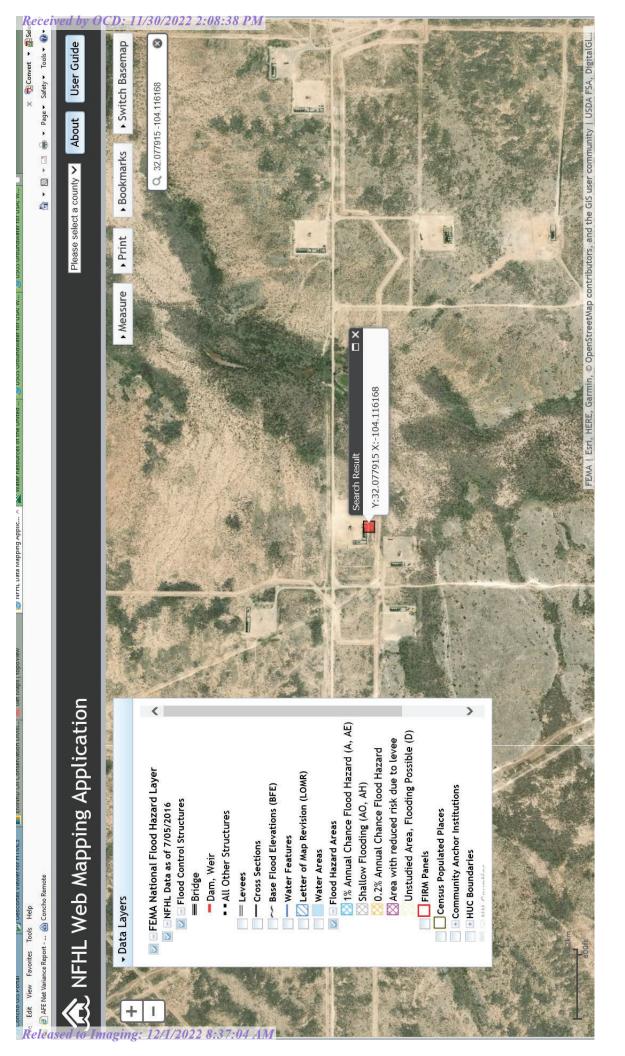
Remediation Plan Checklist: Each of the following items must be	included in the plan.					
 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12 Proposed schedule for remediation (note if remediation plan time 	2(C)(4) NMAC					
Deferral Requests Only: Each of the following items must be conj	firmed as part of any request for deferral of remediation.					
Contamination must be in areas immediately under or around prodeconstruction.	duction equipment where remediation could cause a major facility					
Extents of contamination must be fully delineated.						
Contamination does not cause an imminent risk to human health,	the environment, or groundwater.					
I hereby certify that the information given above is true and complete rules and regulations all operators are required to report and/or file complicitly which may endanger public health or the environment. The acceptant liability should their operations have failed to adequately investigate surface water, human health or the environment. In addition, OCD are responsibility for compliance with any other federal, state, or local later than the complete responsibility for compliance with any other federal, state, or local later than the complete rules and regulations are required to report and/or file complete rules and required to adequately investigate surface water, human health or the environment. In addition, OCD are responsibility for compliance with any other federal, state, or local late rules are required to report and required rules and required rules are required to report and rules are required to rules	ertain release notifications and perform corrective actions for releases ce of a C-141 report by the OCD does not relieve the operator of and remediate contamination that pose a threat to groundwater, ecceptance of a C-141 report does not relieve the operator of					
Printed Name: Rebecca Haskell						
Signature: Relleca Haskell	Date: 11/6/18 Telephone: 432-818-2372					
OCD Only						
Received by:	Date:					
☐ Approved With Attached Conditions of A	approval Denied Deferral Approved					
Signature: Hall	Date: 12/1/2022					

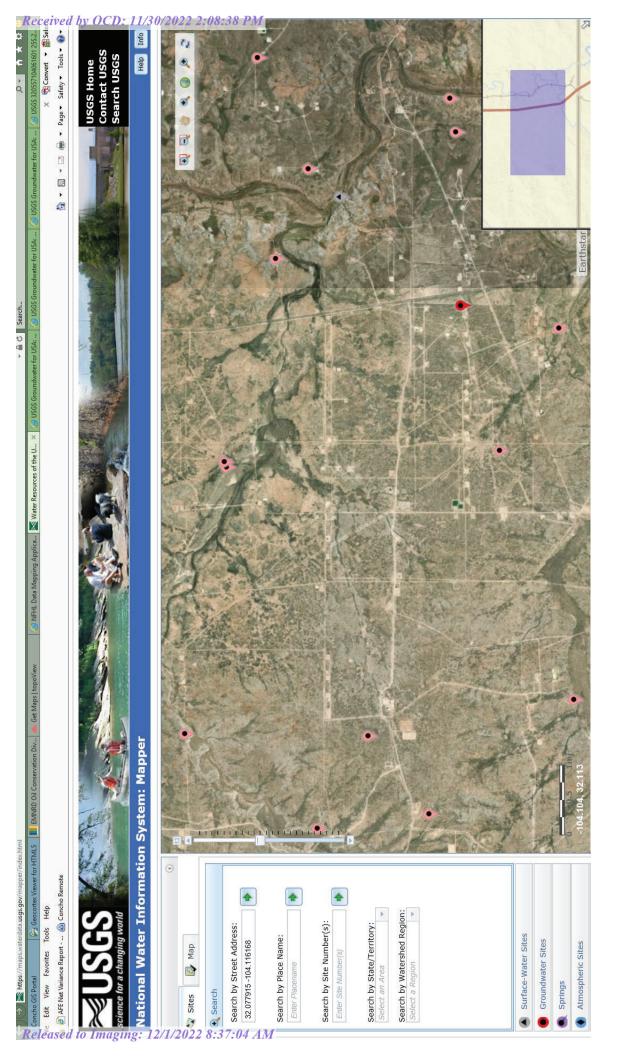

Appendix B

Legend

HGH CRIT

MEDIUM MOJ




SRO State Com #46H

Tank Battery

South

O BG @ 8°

Appendix C

Certificate of Analysis Summary 578118 2M Environmental Services LLC, Odessa, TX

Project Name: COG SRO State COM 046H

Date Received in Lab: Fri Mar-02-18 04:41 pm Report Date: 13-MAR-18

Project Manager: Jessica Kramer

	Lab Id:	578118-001	578118-002	578118-003	578118-004	578118-005	
Analysis Donnostod	Field Id:	South @ 1'	T-1 @ 2'	East @ 2'	West @ 3'	BG @ 3'	
Analysis requesied	Depth:						
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	
	Sampled:	Feb-27-18 10:20	Feb-27-18 10:40	Feb-27-18 11:50	Feb-27-18 12:45	Feb-27-18 13:50	
BTEX by EPA 8021B	Extracted:	Mar-09-18 16:45	Mar-09-18 16:45	Mar-09-18 16:45	Mar-09-18 16:45	Mar-12-18 08:00	
	Analyzed:	Mar-10-18 02:57	Mar-10-18 03:17	Mar-10-18 03:36	Mar-10-18 03:55	Mar-12-18 09:27	
	Units/RL:	mg/kg RL					
Benzene		<0.00200 0.00200	<0.00199 0.00199	<0.00199 0.00199	<0.00198 0.00198	<0.00200 0.00200	
Toluene		<0.00200 0.00200	<0.00199 0.00199	<0.00199 0.00199	<0.00198 0.00198	<0.00200 0.00200	
Ethylbenzene		<0.00200 0.00200	<0.00199 0.00199	<0.00199 0.00199	<0.00198 0.00198	<0.00200 0.00200	
m,p-Xylenes		<0.00401 0.00401	<0.00398 0.00398	<0.00398 0.00398	<0.00397 0.00397	<0.00399 0.00399	
o-Xylene		<0.00200 0.00200	<0.00199 0.00199	<0.00199 0.00199	<0.00198 0.00198	<0.00200 0.00200	
Total Xylenes		<0.00200 0.00200	<0.00199 0.00199	<0.00199 0.00199	<0.00198 0.00198	<0.00200 0.00200	
Total BTEX		<0.00200 0.00200	<0.00199 0.00199	<0.00199 0.00199	<0.00198 0.00198	<0.00200 0.00200	
Chloride by EPA 300	Extracted:	Mar-12-18 10:30					
	Analyzed:	Mar-12-18 15:52	Mar-12-18 16:14	Mar-12-18 16:19	Mar-12-18 17:06	Mar-13-18 14:44	
	Units/RL:	mg/kg RL					
Chloride		<4.99 4.99	<4.97 4.97	<5.00 5.00	72.7 49.9	55.8 4.98	
TPH By SW8015 Mod	Extracted:	Mar-10-18 16:00					
	Analyzed:	Mar-11-18 05:06	Mar-11-18 06:26	Mar-11-18 06:51	Mar-11-18 07:17	Mar-11-18 07:43	
	Units/RL:	mg/kg RL					
Gasoline Range Hydrocarbons (GRO)		<15.0 15.0	<15.0 15.0	<14.9 14.9	<15.0 15.0	<15.0 15.0	
Diesel Range Organics (DRO)		<15.0 15.0	<15.0 15.0	<14.9 14.9	<15.0 15.0	<15.0 15.0	
Oil Range Hydrocarbons (ORO)		<15.0 15.0	<15.0 15.0	<14.9 14.9	<15.0 15.0	<15.0 15.0	
Total TPH		<15.0 15.0	<15.0 15.0	<14.9 14.9	<15.0 15.0	<15.0 15.0	
							1

Jessica Vramer

Project Assistant Jessica Kramer

Page 1 of 21

Final 1.000

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

Eddy Co NM Matt Green

Project Location:

Project Id:

Contact:

Analytical Report 578118

for

2M Environmental Services LLC

Project Manager: Matt Green COG SRO State COM 046H

13-MAR-18

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-18-24), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-17-16), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab code: TX00127): Texas (T104704221-17-12)
Xenco-Lubbock (EPA Lab code: TX00139): Texas (T104704219-17-16)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-18-14)
Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)
Xenco-Atlanta (LELAP Lab ID #04176)

13-MAR-18

Project Manager: **Matt Green 2M Enviromental Services LLC**1219 W University Blvd
Odessa, TX 79764

Reference: XENCO Report No(s): 578118

COG SRO State COM 046H Project Address: Eddy Co NM

Matt Green:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 578118. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 578118 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jessica Kramer

Jessica Vramer

Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 578118

2M Environmental Services LLC, Odessa, TX

COG SRO State COM 046H

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
South @ 1'	S	02-27-18 10:20		578118-001
T-1 @ 2'	S	02-27-18 10:40		578118-002
East @ 2'	S	02-27-18 11:50		578118-003
West @ 3'	S	02-27-18 12:45		578118-004
BG @ 3'	S	02-27-18 13:50		578118-005

Version: 1.%

CASE NARRATIVE

Client Name: 2M Environmental Services LLC Project Name: COG SRO State COM 046H

Project ID: Report Date: 13-MAR-18 Work Order Number(s): 578118 Date Received: 03/02/2018

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3043351 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030. Lab Sample ID 578118-001 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Benzene, Ethylbenzene, Toluene, m,p-Xylenes, o-Xylene recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 578118-001, -002, -003, -004.

The Laboratory Control Sample for Toluene, Benzene, m,p-Xylenes, Ethylbenzene, o-Xylene is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3043503 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Final 1.000

2M Environmental Services LLC, Odessa, TX

COG SRO State COM 046H

Sample Id: South @ 1' Matrix: Soil Date Received:03.02.18 16.41

Lab Sample Id: 578118-001

Date Collected: 02.27.18 10.20

Prep Method: E300P

Analytical Method: Chloride by EPA 300

% Moisture:

Tech:

OJS

Wet Weight

Analyst: Seq Number: 3043528

OJS

Date Prep:

03.12.18 10.30

Basis:

Parameter	Cas Number	Result	RL	Uni	s Analysis Date	Flag	Dil
Chloride	16887-00-6	<4.99	4.99	mg/l	g 03.12.18 15.52	U	1

Analytical Method: TPH By SW8015 Mod

Prep Method: TX1005P

% Moisture:

Tech: Analyst: ARMARM

03.10.18 16.00 Date Prep:

Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	03.11.18 05.06	U	1
Diesel Range Organics (DRO)	C10C28DRO	<15.0	15.0		mg/kg	03.11.18 05.06	U	1
Oil Range Hydrocarbons (ORO)	PHCG2835	<15.0	15.0		mg/kg	03.11.18 05.06	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	03.11.18 05.06	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	93	%	70-135	03.11.18 05.06		
o-Terphenyl		84-15-1	92	%	70-135	03.11.18 05.06		

2M Environmental Services LLC, Odessa, TX

COG SRO State COM 046H

Sample Id: South @ 1'

Matrix: Soil

Date Received:03.02.18 16.41

Lab Sample Id: 578118-001

Date Collected: 02.27.18 10.20

Prep Method: SW5030B

Analytical Method: BTEX by EPA 8021B

% Moisture:

Tech: ALJ

Analyst:

ALJ

Date Prep: 03.09.18 16.45

Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	03.10.18 02.57	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	03.10.18 02.57	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	03.10.18 02.57	U	1
m,p-Xylenes	179601-23-1	< 0.00401	0.00401		mg/kg	03.10.18 02.57	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	03.10.18 02.57	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	03.10.18 02.57	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	03.10.18 02.57	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	92	%	70-130	03.10.18 02.57		
4-Bromofluorobenzene		460-00-4	109	%	70-130	03.10.18 02.57		

2M Environmental Services LLC, Odessa, TX

COG SRO State COM 046H

Soil

03.12.18 10.30

Sample Id: T-1 @ 2' Matrix:

Date Prep:

Date Received:03.02.18 16.41

Lab Sample Id: 578118-002

Date Collected: 02.27.18 10.40

Prep Method: E300P

OJS

Analytical Method: Chloride by EPA 300

Tech:

% Moisture:

Basis:

Wet Weight

OJS Analyst:

Seq Number: 3043528

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	<4.97	4.97	mg/kg	03.12.18 16.14	U	1

Analytical Method: TPH By SW8015 Mod

Prep Method: TX1005P

% Moisture:

Tech: Analyst: ARMARM

03.10.18 16.00 Date Prep:

Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	03.11.18 06.26	U	1
Diesel Range Organics (DRO)	C10C28DRO	<15.0	15.0		mg/kg	03.11.18 06.26	U	1
Oil Range Hydrocarbons (ORO)	PHCG2835	<15.0	15.0		mg/kg	03.11.18 06.26	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	03.11.18 06.26	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	89	%	70-135	03.11.18 06.26		
o-Terphenyl		84-15-1	87	%	70-135	03.11.18 06.26		

2M Environmental Services LLC, Odessa, TX

COG SRO State COM 046H

Soil

Sample Id: T-1 @ 2'

Matrix:

Date Received:03.02.18 16.41

Lab Sample Id: 578118-002

Date Collected: 02.27.18 10.40

Prep Method: SW5030B

% Moisture:

Tech: AL.

Analyst:

ALJ ALJ

Analytical Method: BTEX by EPA 8021B

Date Prep: 03.09.18 16.45

Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	03.10.18 03.17	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	03.10.18 03.17	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	03.10.18 03.17	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	03.10.18 03.17	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	03.10.18 03.17	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	03.10.18 03.17	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	03.10.18 03.17	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	104	%	70-130	03.10.18 03.17		
1,4-Difluorobenzene		540-36-3	88	%	70-130	03.10.18 03.17		

2M Environmental Services LLC, Odessa, TX

COG SRO State COM 046H

Soil

Sample Id: East @ 2'

Matrix:

Date Received:03.02.18 16.41

Lab Sample Id: 578118-003

Date Collected: 02.27.18 11.50

Prep Method: E300P

Analytical Method: Chloride by EPA 300

% Moisture:

Tech: OJS

Analyst:

OJS

Date Prep: 03.12.18 10.30

Basis:

Wet Weight

Seq Number: 3043528

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	< 5.00	5.00	mg/kg	03.12.18 16.19	U	1

Analytical Method: TPH By SW8015 Mod

Prep Method: TX1005P

% Moisture:

Tech: Analyst: ARM ARM

Date Prep: 03.10.18 16.00

Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<14.9	14.9		mg/kg	03.11.18 06.51	U	1
Diesel Range Organics (DRO)	C10C28DRO	<14.9	14.9		mg/kg	03.11.18 06.51	U	1
Oil Range Hydrocarbons (ORO)	PHCG2835	<14.9	14.9		mg/kg	03.11.18 06.51	U	1
Total TPH	PHC635	<14.9	14.9		mg/kg	03.11.18 06.51	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	109	%	70-135	03.11.18 06.51		
o-Terphenyl		84-15-1	109	%	70-135	03.11.18 06.51		

2M Environmental Services LLC, Odessa, TX

COG SRO State COM 046H

Soil

Sample Id: East @ 2' Matrix:

Date Received:03.02.18 16.41

Lab Sample Id: 578118-003

Date Collected: 02.27.18 11.50

Analytical Method: BTEX by EPA 8021B

Prep Method: SW5030B

Tech:

ALJ

% Moisture:

Analyst:

ALJ

Date Prep: 03.09.18 16.45 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	03.10.18 03.36	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	03.10.18 03.36	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	03.10.18 03.36	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	03.10.18 03.36	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	03.10.18 03.36	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	03.10.18 03.36	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	03.10.18 03.36	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	103	%	70-130	03.10.18 03.36		
1,4-Difluorobenzene		540-36-3	88	%	70-130	03.10.18 03.36		

2M Environmental Services LLC, Odessa, TX

COG SRO State COM 046H

Sample Id: West @ 3' Matrix: Soil Date Received:03.02.18 16.41

Lab Sample Id: 578118-004

Date Collected: 02.27.18 12.45

Prep Method: E300P

Tech: OJS

Analytical Method: Chloride by EPA 300

% Moisture:

Analyst:

OJS

Date Prep: 03.12.18 10.30 Basis:

Wet Weight

Seq Number: 3043528

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	72.7	49.9	mg/kg	03.12.18 17.06		10

Analytical Method: TPH By SW8015 Mod

Prep Method: TX1005P

% Moisture:

Tech: Analyst: ARMARM

03.10.18 16.00 Date Prep:

Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	03.11.18 07.17	U	1
Diesel Range Organics (DRO)	C10C28DRO	<15.0	15.0		mg/kg	03.11.18 07.17	U	1
Oil Range Hydrocarbons (ORO)	PHCG2835	<15.0	15.0		mg/kg	03.11.18 07.17	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	03.11.18 07.17	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	102	%	70-135	03.11.18 07.17		
o-Terphenyl		84-15-1	99	%	70-135	03.11.18 07.17		

2M Environmental Services LLC, Odessa, TX

COG SRO State COM 046H

Sample Id: West @ 3'

Matrix:

Soil

Date Received:03.02.18 16.41

Lab Sample Id: 578118-004

Date Collected: 02.27.18 12.45

Prep Method: SW5030B

....

% Moisture:

Tech:

Analyst:

ALJ ALJ

Analytical Method: BTEX by EPA 8021B

Date Prep: 03.09.18 16.45

Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00198	0.00198		mg/kg	03.10.18 03.55	U	1
Toluene	108-88-3	< 0.00198	0.00198		mg/kg	03.10.18 03.55	U	1
Ethylbenzene	100-41-4	< 0.00198	0.00198		mg/kg	03.10.18 03.55	U	1
m,p-Xylenes	179601-23-1	< 0.00397	0.00397		mg/kg	03.10.18 03.55	U	1
o-Xylene	95-47-6	< 0.00198	0.00198		mg/kg	03.10.18 03.55	U	1
Total Xylenes	1330-20-7	< 0.00198	0.00198		mg/kg	03.10.18 03.55	U	1
Total BTEX		< 0.00198	0.00198		mg/kg	03.10.18 03.55	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	104	%	70-130	03.10.18 03.55		
1,4-Difluorobenzene		540-36-3	93	%	70-130	03.10.18 03.55		

2M Environmental Services LLC, Odessa, TX

COG SRO State COM 046H

Sample Id: BG @ 3'

Matrix:

Soil

Date Received:03.02.18 16.41

Lab Sample Id: 578118-005

Date Collected: 02.27.18 13.50

Prep Method: E300P

% Moisture:

Tech: Analyst: OJS OJS

Analytical Method: Chloride by EPA 300

Date Prep:

03.12.18 10.30

Basis:

Wet Weight

Seq Number: 3043528

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	55.8	4.98	mg/kg	03.13.18.14.44		1

Analytical Method: TPH By SW8015 Mod

Prep Method: TX1005P

% Moisture:

Tech: Analyst: ARM ARM

Date Prep: 03.10.18 16.00

Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	03.11.18 07.43	U	1
Diesel Range Organics (DRO)	C10C28DRO	<15.0	15.0		mg/kg	03.11.18 07.43	U	1
Oil Range Hydrocarbons (ORO)	PHCG2835	<15.0	15.0		mg/kg	03.11.18 07.43	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	03.11.18 07.43	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	101	%	70-135	03.11.18 07.43		
o-Terphenyl		84-15-1	100	%	70-135	03.11.18 07.43		

2M Environmental Services LLC, Odessa, TX

COG SRO State COM 046H

Sample Id: BG @ 3'

Matrix:

Soil

Date Received:03.02.18 16.41

Lab Sample Id: 578118-005

Date Collected: 02.27.18 13.50

Prep Method: SW5030B

% Moisture:

Tech: AI

ALJ

Analytical Method: BTEX by EPA 8021B

Date Prep: 03.12.18 08.00

Basis:

Wet Weight

Analyst: ALJ

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	03.12.18 09.27	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	03.12.18 09.27	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	03.12.18 09.27	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	03.12.18 09.27	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	03.12.18 09.27	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	03.12.18 09.27	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	03.12.18 09.27	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	115	%	70-130	03.12.18 09.27		
1,4-Difluorobenzene		540-36-3	80	%	70-130	03.12.18 09.27		

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

SMP Client Sample BLK Method Blank

BKS/LCS Blank Spike/Laboratory Control Sample BKSD/LCSD Blank Spike Duplicate/Laboratory Control Sample Duplicate

MD/SD Method Duplicate/Sample Duplicate MS Matrix Spike MSD: Matrix Spike Duplicate

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Flag

Seq Number:

QC Summary 578118

2M Environmental Services LLC

COG SRO State COM 046H

LCSD

LCSD

Analytical Method: Chloride by EPA 300

3043528 Matrix: Solid

LCS

Spike

LCS Sample Id: 7640592-1-BKS MB Sample Id: 7640592-1-BLK

MR

E300P Prep Method:

Date Prep: 03.12.18

LCSD Sample Id: 7640592-1-BSD %RPD RPD Limit Units Analysis

Limits Flag **Parameter** Result Amount Result Date %Rec Result %Rec

Chloride 03.12.18 15:42 < 5.00 250 261 104 265 106 90-110 2 20 mg/kg

LCS

Analytical Method: Chloride by EPA 300

Seq Number: 3043528 Matrix: Soil

MS Sample Id:

Parent Sample Id: 578118-001 578118-001 S

E300P Prep Method: Date Prep: 03.12.18

MSD Sample Id: 578118-001 SD

Spike MS MS %RPD RPD Limit Units Parent MSD **MSD** Limits Analysis Flag **Parameter** Result Date Result Amount %Rec Result %Rec

Chloride <4.99 250 232 93 232 93 90-110 0 20 mg/kg 03.12.18 15:58

Analytical Method: Chloride by EPA 300

Prep Method: E300P 3043528 Matrix: Soil 03.12.18 Seq Number: Date Prep:

MS Sample Id: 578119-005 S MSD Sample Id: 578119-005 SD Parent Sample Id: 578119-005

MS %RPD RPD Limit Units Parent Spike MS MSD MSD Limits Analysis Flag **Parameter** Result Date Result %Rec Amount Result %Rec Chloride 48.3 247 295 100 296 100 90-110 0 20 03.12.18 17:51 mg/kg

Analytical Method: TPH By SW8015 Mod

TX1005P Prep Method: Seq Number: 03.10.18 3043415 Matrix: Solid Date Prep:

7640554-1-BKS LCSD Sample Id: 7640554-1-BSD LCS Sample Id: MB Sample Id: 7640554-1-BLK

%RPD RPD Limit Units MB Spike LCS LCS Limits Analysis LCSD LCSD **Parameter** Result %Rec Date Result Amount %Rec Result 03.11.18 04:13 Gasoline Range Hydrocarbons (GRO) 1000 989 99 988 99 70-135 0 <15.0 35 mg/kg 03.11.18 04:13 1040 104 1030 70-135 35 mg/kg Diesel Range Organics (DRO) 1000 103 1 <15.0

MB MB LCS LCS LCSD Limits Units Analysis LCSD **Surrogate** %Rec Flag %Rec Flag %Rec Flag Date 1-Chlorooctane 94 110 108 70-135 % 03.11.18 04:13 03.11.18 04:13 o-Terphenyl 95 111 106 70-135 %

Flag

Flag

Seq Number:

Parent Sample Id:

QC Summary 578118

2M Environmental Services LLC

COG SRO State COM 046H

Analytical Method: TPH By SW8015 Mod

578118-001

3043415 Matrix: Soil

MS Sample Id: 578118-001 S

TX1005P Prep Method:

Date Prep: 03.10.18

SW5030B

SW5030B

MSD Sample Id: 578118-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Gasoline Range Hydrocarbons (GRO)	<15.0	1000	896	90	995	100	70-135	10	35	mg/kg	03.11.18 05:33	
Diesel Range Organics (DRO)	<15.0	1000	938	94	1020	102	70-135	8	35	mg/kg	03.11.18 05:33	
				1S	MS	MSD	MS	D 1	imits	Units	Analysis	

Surrogate %Rec Flag Date Flag %Rec 03.11.18 05:33 1-Chlorooctane 105 113 70-135 % o-Terphenyl 101 110 70-135 % 03.11.18 05:33

Analytical Method: BTEX by EPA 8021B

Prep Method: Seq Number: 3043351 Matrix: Solid Date Prep: 03.09.18

LCS Sample Id: 7640522-1-BKS LCSD Sample Id: 7640522-1-BSD MB Sample Id: 7640522-1-BLK

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date
Benzene	< 0.00200	0.0998	0.0842	84	0.0895	90	70-130	6	35	mg/kg	03.10.18 00:44
Toluene	< 0.00200	0.0998	0.0894	90	0.0952	95	70-130	6	35	mg/kg	03.10.18 00:44
Ethylbenzene	< 0.00200	0.0998	0.101	101	0.107	107	70-130	6	35	mg/kg	03.10.18 00:44
m,p-Xylenes	< 0.00399	0.200	0.199	100	0.213	107	70-130	7	35	mg/kg	03.10.18 00:44
o-Xylene	< 0.00200	0.0998	0.0980	98	0.104	104	70-130	6	35	mg/kg	03.10.18 00:44
	MB	MB	L	CS I	.CS	LCSI	D LCS	D L	imits	Units	Analysis

Surrogate	%Rec	Flag	%Rec	Flag	%Rec	Flag	Limits	Units	Analysis Date
1,4-Difluorobenzene	83		95		85		70-130	%	03.10.18 00:44
4-Bromofluorobenzene	99		110		103		70-130	%	03.10.18 00:44

Analytical Method: BTEX by EPA 8021B Prep Method:

Seq Number: 3043503 Matrix: Solid Date Prep: 03.12.18 LCS Sample Id: 7640672-1-BKS LCSD Sample Id: 7640672-1-BSD MB Sample Id: 7640672-1-BLK

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date]
Benzene	< 0.00202	0.101	0.0909	90	0.0883	88	70-130	3	35	mg/kg	03.12.18 06:55	
Toluene	< 0.00202	0.101	0.0972	96	0.0942	94	70-130	3	35	mg/kg	03.12.18 06:55	
Ethylbenzene	< 0.00202	0.101	0.111	110	0.109	109	70-130	2	35	mg/kg	03.12.18 06:55	
m,p-Xylenes	< 0.00403	0.202	0.219	108	0.214	107	70-130	2	35	mg/kg	03.12.18 06:55	
o-Xylene	< 0.00202	0.101	0.106	105	0.105	105	70-130	1	35	mg/kg	03.12.18 06:55	

Surrogate	MB %Rec	MB Flag	LCS %Rec	LCS Flag	LCSD %Rec	LCSD Flag	Limits	Units	Analysis Date
1,4-Difluorobenzene	83		86		84		70-130	%	03.12.18 06:55
4-Bromofluorobenzene	110		119		118		70-130	%	03.12.18 06:55

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery

[D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) |[D] = 100 * (C) / [B]

LCS = Laboratory Control Sample

A = Parent Result

C = MS/LCS Result

E = MSD/LCSD Result

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

Seq Number:

Seq Number:

Parent Sample Id:

Parent Sample Id:

QC Summary 578118

2M Environmental Services LLC

COG SRO State COM 046H

Analytical Method: BTEX by EPA 8021B

578118-001

3043351 Matrix: Soil

MS Sample Id: 578118-001 S

SW5030B Prep Method:

Date Prep: 03.09.18

MSD Sample Id: 578118-001 SD

Spike MS MS Limits %RPD RPD Limit Units Parent MSD **MSD** Analysis Flag **Parameter** Result Amount Result Date %Rec Result %Rec 70-130 03.10.18 01:22 Benzene < 0.00202 0.101 0.0556 55 0.0586 59 5 35 X mg/kg Toluene 70-130 03.10.18 01:22 < 0.00202 0.101 0.0555 55 0.0617 62 11 35 X mg/kg 03.10.18 01:22 Ethylbenzene 55 70-130 X < 0.00202 0.101 0.0557 0.0675 68 19 35 mg/kg m,p-Xylenes < 0.00403 0.202 0.108 53 0.134 67 70-130 21 35 03.10.18 01:22 X mg/kg 03.10.18 01:22 o-Xylene < 0.00202 0.101 0.0543 54 0.0672 67 70-130 21 35 mg/kg X

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
1,4-Difluorobenzene	90		90		70-130	%	03.10.18 01:22
4-Bromofluorobenzene	105		117		70-130	%	03.10.18 01:22

Analytical Method: BTEX by EPA 8021B

3043503

578649-001

Matrix: Soil MS Sample Id: 578649-001 S Prep Method:

SW5030B

03.12.18

Date Prep: MSD Sample Id: 578649-001 SD

%RPD RPD Limit Units Spike MS MS Limits Parent Analysis MSD MSD **Parameter** Flag Amount Result Date Result %Rec %Rec Result 03.12.18 07:34 0.0996 70-130 Benzene < 0.00199 0.0584 59 0.065666 12 35 mg/kg X Toluene < 0.00199 0.0996 0.0607 61 0.0664 70-130 9 35 03.12.18 07:34 X 66 mg/kg Ethylbenzene < 0.00199 0.0996 0.0666 67 0.0704 70 70-130 6 35 mg/kg 03.12.18 07:34 X 03.12.18 07:34 m,p-Xylenes < 0.00398 0.199 70-130 35 X 0.131 66 0.13869 5 mg/kg 03.12.18 07:34 o-Xylene < 0.00199 0.09960.0651 65 0.0709 71 70-130 9 35 mg/kg Χ

Surrogate	MS %Rec	MS Flag	111010	MSD Limits Flag	Units	Analysis Date
1,4-Difluorobenzene	83		87	70-130	%	03.12.18 07:34
4-Bromofluorobenzene	120		129	70-130	%	03.12.18 07:34

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: 2M Environmental Services LLC

Date/ Time Received: 03/02/2018 04:41:00 PM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Work Order #: 578118

Temperature Measuring device used: R8

	Sample Receipt Checklist	Comments
#1 *Temperature of cooler(s)?		1
#2 *Shipping container in good condition	?	Yes
#3 *Samples received on ice?		Yes
#4 *Custody Seals intact on shipping co	ntainer/ cooler?	N/A
#5 Custody Seals intact on sample bottle	es?	N/A
#6*Custody Seals Signed and dated?		N/A
#7 *Chain of Custody present?		Yes
#8 Any missing/extra samples?		No
#9 Chain of Custody signed when relinque	uished/ received?	Yes
#10 Chain of Custody agrees with samp	le labels/matrix?	Yes
#11 Container label(s) legible and intact	?	Yes
#12 Samples in proper container/ bottle?		Yes
#13 Samples properly preserved?		Yes
#14 Sample container(s) intact?		Yes
#15 Sufficient sample amount for indicat	ed test(s)?	Yes
#16 All samples received within hold time	e?	Yes
#17 Subcontract of sample(s)?		N/A
#18 Water VOC samples have zero hear	dspace?	N/A
* Must be completed for after-hours de Analyst:	elivery of samples prior to placing in	n the refrigerator
Checklist completed by: Checklist reviewed by:	Katie Lowe Jessica Warner Jessica Kramer	Date: 03/05/2018 Date: 03/05/2018

Analytical Report 579755

for

2M Environmental Services LLC

Project Manager: Matt Green COG SRO State Com #046

21-MAR-18

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-18-24), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-17-16), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab code: TX00127): Texas (T104704221-17-12)
Xenco-Lubbock (EPA Lab code: TX00139): Texas (T104704219-17-16)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-18-14)
Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)
Xenco-Atlanta (LELAP Lab ID #04176)

21-MAR-18

Project Manager: **Matt Green 2M Enviromental Services LLC**1219 W University Blvd
Odessa, TX 79764

Reference: XENCO Report No(s): 579755

COG SRO State Com #046
Project Address: Eddy County NM

Matt Green:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 579755. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 579755 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jessica Kramer

Jessica Vramer

Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 579755

2M Environmental Services LLC, Odessa, TX

COG SRO State Com #046

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
South @ Surface	S	03-19-18 10:00		579755-001
T-1 @ Surface	S	03-19-18 10:05		579755-002
T-1 @ 6"	S	03-19-18 10:07		579755-003
T-1 @ 1'	S	03-19-18 10:10		579755-004
East @ Surface	S	03-19-18 10:13		579755-005
East @ 1'	S	03-19-18 10:16		579755-006
West @ Surface	S	03-19-18 10:20		579755-007
West @ 6"	S	03-19-18 10:23		579755-008
West @ 1'	S	03-19-18 10:26		579755-009

CASE NARRATIVE

Client Name: 2M Environmental Services LLC Project Name: COG SRO State Com #046

Project ID: Report Date: 21-MAR-18
Work Order Number(s): 579755

Date Received: 03/20/2018

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3044365 BTEX by EPA 8021B

Lab Sample ID 579755-002 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Benzene, Ethylbenzene, Toluene, m,p-Xylenes, o-Xylene recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 579755-001, -002, -003, -004, -005, -006, -007, -008, -009.

The Laboratory Control Sample for Toluene, Benzene, m,p-Xylenes, Ethylbenzene, o-Xylene is within laboratory Control Limits, therefore the data was accepted.

Benzene, Ethylbenzene, Toluene, m,p-Xylenes, o-Xylene Relative Percent Difference (RPD) between matrix spike and duplicate were above quality control limits.

Samples in the analytical batch are: 579755-001, -002, -003, -004, -005, -006, -007, -008, -009 Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Certificate of Analysis Summary 579755 2M Environmental Services LLC, Odessa, TX

Project Name: COG SRO State Com #046

Date Received in Lab: Tue Mar-20-18 03:00 pm Report Date: 21-MAR-18

Project Manager: Jessica Kramer

Public P		Lab Id:	579755-001	579755-002	579755-003	579755-004	579755-005	579755-006
Purple P	Anniverse Dogwood	Field Id:	South @ Surface	T-1 @ Surface	T-1 @ 6"	T-1 @ 1'	East @ Surface	East @ 1'
Marich Marich Marich SOIL S	naisan bay sistinus	Depth:						
BTEX by EPA 8021B Sampled: Mar-19-18 10:00 Mar-19-18 10:05 Mar-20-18 17:00 Mar-20-18 17:0		Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
BTEX by EPA 8021B Extracted: Nar-20-18 17:00 Mar-20-18 17		Sampled:		Mar-19-18 10:05	Mar-19-18 10:07	Mar-19-18 10:10	Mar-19-18 10:13	Mar-19-18 10:16
Mar-20-18 20-35 Mar-20-18	BTEX by EPA 8021B	Extracted:		Mar-20-18 17:00				
Chiefaction		Analyzed:	Mar-20-18 20:03	Mar-20-18 20:21	Mar-20-18 20:39	Mar-20-18 20:57	Mar-20-18 21:16	Mar-20-18 21:34
		Units/RL:						mg/kg RL
Chloride by EPA 300 Chloride by Chloride by EPA 300 Chloride by Chloride by Chlori	Benzene							<0.00199 0.00199
Choice Coorsis Coors	Toluene				1			<0.00199 0.00199
Chloride by EPA 300 Extracted; Ama20-18 13:00 Ama20-18 13:00 Ama-20-18 13:	Ethylbenzene							<0.00199 0.00199
Chloride by EPA 300 Chloride by Ch	m,p-Xylenes							<0.00398 0.00398
Chloride by EPA 300 Extracted: Analyzed: Analy	o-Xylene							<0.00199 0.00199
Chloride by EPA 300 Extracted: Analyzed: Analyzed: Mar-20-18 18:00 Mar-20-18 18:00 Mar-20-18 18:00 Mar-20-18 18:00 Mar-20-18 18:00 Anar-20-18 18:00 Anar-20-18 18:00 Mar-20-18 18:01 Mar-20-18 17:00	Total Xylenes							<0.00199 0.00199
Chloride by EPA 300 Extracted: Mar-20-18 18:00 Mar-20-18 21:31 Mar-20-18 21:37 Mar-20-18 2	Total BTEX							<0.00199 0.00199
TPH by SW8015 Model By Control B	Chloride by EPA 300	Extracted:		Mar-20-18 18:00				
TPH by SW8015 Mod Extracted; RD/FG		Analyzed:	Mar-20-18 21:05	Mar-20-18 21:21	Mar-20-18 21:26	Mar-20-18 21:31	Mar-20-18 21:37	Mar-20-18 21:53
TPH by SW8015 Mod Extracted: Mar-20-18 17:00 M		Units/RL:						mg/kg RL
TPH by SW8015 Mod Extracted; Mar-20-18 17:00 Mar-20-18 19:20 Mar-20-18 19:20 Mar-20-18 19:39 Mar-20-18 19:39 Mar-20-18 19:39 Mar-20-18 19:39 Mar-20-18 19:39 Mar-20-18 19:30 Mar-20-18 19:	Chloride							<4.99 4.99
Analyzed: Mar-20-18 18:22 Mar-20-18 18:41 Mar-20-18 19:00 Mar-20-18 19:20 Mar-20-18 19:39 Mar-20-18 19:30 Mar-20-18 19:30<	TPH by SW8015 Mod	Extracted:		Mar-20-18 17:00				
Range Hydrocarbons (GRO) Lonits/RL mg/kg RL RL RL RL RL		Analyzed:	_	Mar-20-18 18:41	Mar-20-18 19:00	Mar-20-18 19:20	Mar-20-18 19:39	Mar-20-18 19:59
Range Hydrocarbons (GRO) <15.0		Units/RL:						mg/kg RL
Age Organics (DRO) 859 15.0 1290 15.0 433 14.9 252 15.0 < 15.0	Gasoline Range Hydrocarbons (GRO)							<15.0 15.0
Hydrocarbons (ORO) 150 15.0 211 15.0 45.75 14.9 29.4 15.0 15.0 15.0 1020 15.0 15.0 15.0 491 14.9 281 15.0 15.0 15.0	Diesel Range Organics (DRO)							<15.0 15.0
1020 15.0 15.0 491 14.9 281 15.0 <15.0 <15.0 <15.0	Oil Range Hydrocarbons (ORO)							<15.0 15.0
	Total TPH		1020 15.0	1520 15.0	491 14.9	281 15.0	<15.0 15.0	<15.0 15.0

lession Manner

Project Assistant Jessica Kramer

Final 1.000

Page 5 of 19

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Version: 1.%

Eddy County NM Matt Green

Project Location:

Project Id:

Contact:

Certificate of Analysis Summary 579755 2M Environmental Services LLC, Odessa, TX

Project Name: COG SRO State Com #046

Date Received in Lab: Tue Mar-20-18 03:00 pm

Report Date: 21-MAR-18

Project Manager: Jessica Kramer

	Lab Id:	579755-007	579755-008	579755-009	
Analysis Pomostod	Field Id:	West @ Surface	West @ 6"	West @ 1'	
naisanhay sistinut	Depth:				
	Matrix:	SOIL	SOIL	SOIL	
	Sampled:	Mar-19-18 10:20	Mar-19-18 10:23	Mar-19-18 10:26	
BTEX by EPA 8021B	Extracted:	Mar-20-18 17:00	Mar-20-18 17:00	Mar-20-18 17:00	
	Analyzed:	Mar-20-18 21:52	Mar-20-18 22:11	Mar-20-18 22:28	
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	
Benzene		<0.00199 0.00199	<0.00202 0.00202	<0.00200 0.00200	
Toluene		<0.00199 0.00199	<0.00202 0.00202	<0.00200 0.00200	
Ethylbenzene		<0.00199 0.00199	<0.00202 0.00202	<0.00200 0.00200	
m,p-Xylenes		<0.00398 0.00398	<0.00404 0.00404	<0.00401 0.00401	
o-Xylene		<0.00199 0.00199	<0.00202 0.00202	<0.00200 0.00200	
Total Xylenes		<0.00199 0.00199	<0.00202 0.00202	<0.00200 0.00200	
Total BTEX		<0.00199 0.00199	<0.00202 0.00202	<0.00200 0.00200	
Chloride by EPA 300	Extracted:	Mar-20-18 18:00	Mar-20-18 18:00	Mar-20-18 18:00	
	Analyzed:	Mar-20-18 21:58	Mar-20-18 22:03	Mar-20-18 22:09	
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	
Chloride		<49.5 49.5	<49.5 49.5	<49.9 49.9	
TPH by SW8015 Mod	Extracted:	Mar-20-18 17:00	Mar-20-18 17:00	Mar-20-18 17:00	
	Analyzed:	Mar-20-18 20:59	Mar-21-18 09:57	Mar-21-18 10:16	
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	
Gasoline Range Hydrocarbons (GRO)		<14.9 14.9	<15.0 15.0	<15.0 15.0	
Diesel Range Organics (DRO)		25.7 14.9	<15.0 15.0	<15.0 15.0	
Oil Range Hydrocarbons (ORO)		<14.9 14.9	<15.0 15.0	<15.0 15.0	
Total TPH		25.7 14.9	<15.0 15.0	<15.0 15.0	

Jessica Vramer

Project Assistant Jessica Kramer

Page 6 of 19

Final 1.000

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Eddy County NM Matt Green

Project Location:

Project Id:

Contact:

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

SMP Client Sample BLK Method Blank

BKS/LCS Blank Spike/Laboratory Control Sample BKSD/LCSD Blank Spike Duplicate/Laboratory Control Sample Duplicate

MD/SD Method Duplicate/Sample Duplicate MS Matrix Spike MSD: Matrix Spike Duplicate

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Project Name: COG SRO State Com #046

Work Orders: 579755,

o-Terphenyl

Sample: 579755-001 / SMP

Project ID:

Lab Batch #: 3044342 Units: mg/kg Date Analyzed: 03/20/18 18:22

Matrix: Soil Batch:

49.9

88

70-135

Units:	mg/kg	Date Analyzed: 03/20/18 18:22	SU	RROGATE RI	ECOVERY S	STUDY	
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooct	ane	Analytes	91.7	99.7	92	70-135	
o-Terphenyl	<u> </u>		41.4	49.9	83	70-135	

Lab Batch #: 3044342 Sample: 579755-002 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 03/20/18 18:41 SURROGATE RECOVERY STUDY Amount True Control TPH by SW8015 Mod Limits Found Flags Amount Recovery [A] [B] %R %R [D] **Analytes** 1-Chlorooctane 93.6 99.7 94 70-135

43.9

Lab Batch #: 3044342 Sample: 579755-003 / SMP Batch: Matrix: Soil

Units: mg/kg Date Analyzed: 03/20/18 19:00 SURROGATE RECOVERY STUDY

TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	101	99.6	101	70-135	
o-Terphenyl	51.3	49.8	103	70-135	

Lab Batch #: 3044342 Sample: 579755-004 / SMP Batch: Matrix: Soil

Units:	mg/kg	Date Analyzed: 03/20/18 19:20	SURROGATE RECOVERY STUDY						
TPH by SW8015 Mod Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooc	etane	·	96.1	99.9	96	70-135			
o-Terpheny	yl		49.6	50.0	99	70-135			

Lab Batch #: 3044342 Sample: 579755-005 / SMP Batch: Matrix: Soil

Units:	mg/kg	Date Analyzed: 03/20/18 19:39	SURROGATE RECOVERY STUDY						
	ТРН	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
		Analytes			[D]				
1-Chlorooc	ctane		94.2	99.9	94	70-135			
o-Terpheny	yl		45.6	50.0	91	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Version: 1.%

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: COG SRO State Com #046

Work Orders: 579755,

Sample: 579755-006 / SMP

Project ID:

Lab Batch #: 3044342 Units: mø/kø

Date Analyzed: 03/20/18 19:59

Matrix: Soil Batch:

Units:	mg/kg	Date Analyzed: 03/20/18 19:59	SURROGATE RECOVERY STUDY					
	TPH by SW8015 Mod Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
		Allalytes			[-]			
1-Chlorooct	ane		97.3	99.8	97	70-135		
o-Terpheny	o-Terphenyl			49.9	101	70-135		

Lab Batch #: 3044365 Sample: 579755-001 / SMP Batch: Matrix: Soil

Units: mg/kg Date Analyzed: 03/20/18 20:03 SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B Limits Found Amount Flags Recovery [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0244 0.0300 81 70-130 4-Bromofluorobenzene 0.0373 0.0300 124 70-130

Lab Batch #: 3044365 Sample: 579755-002 / SMP Batch: Matrix: Soil

Units: mg/kg Date Analyzed: 03/20/18 20:21 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0217	0.0300	72	70-130	
4-Bromofluorobenzene	0.0366	0.0300	122	70-130	

Lab Batch #: 3044365 Sample: 579755-003 / SMP Batch: Matrix: Soil

Date Analyzed: 03/20/18 20:39

•		200 (EICT)			
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0223	0.0300	74	70-130	
4-Bromofluorobenzene	0.0384	0.0300	128	70-130	

Lab Batch #: 3044365 Sample: 579755-004 / SMP Batch: Matrix: Soil

Units:	mg/kg	Date Analyzed: 03/20/18 20:57	SURROGATE RECOVERY STUDY						
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
		Analytes			[12]				
1,4-Difluor	obenzene		0.0213	0.0300	71	70-130			
4-Bromoflu	orobenzene		0.0386	0.0300	129	70-130			

^{*} Surrogate outside of Laboratory QC limits

mg/kg

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Version: 1.%

Units:

SURROGATE RECOVERY STUDY

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: COG SRO State Com #046

Work Orders: 579755, **Lab Batch #:** 3044342

Sample: 579755-007 / SMP

Project ID:

IInits. mø/kø

Matrix: Soil Batch: - 1

Units:	mg/kg	Date Analyzed: 03/20/18 20:59	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod Analytes			Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooc	tane		88.9	99.6	89	70-135		
o-Terpheny	o-Terphenyl			49.8	80	70-135		

Lab Batch #: 3044365 Sample: 579755-005 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 03/20/18 21:16 SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B Found Limits Flags Amount Recovery [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0231 0.0300 77 70-130 4-Bromofluorobenzene 0.0377 0.0300

Lab Batch #: 3044365 Sample: 579755-006 / SMP Batch: Matrix: Soil

Units: mg/kg Date Analyzed: 03/20/18 21:34

SURROGATE RECOVERY STUDY

126

70-130

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0216	0.0300	72	70-130	
4-Bromofluorobenzene	0.0382	0.0300	127	70-130	

Lab Batch #: 3044365 Sample: 579755-007 / SMP Batch: Matrix: Soil

Units:	mg/kg	Date Analyzed: 03/20/18 21:52	SURROGATE RECOVERY STUDY					
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1.4-Difluoro	ohenzene	Analytes	0.0219	0.0300	73	70-130		
4-Bromoflu			0.0219	0.0300	129	70-130		

Lab Batch #: 3044365 Sample: 579755-008 / SMP Batch: Matrix: Soil

Units:	mg/kg	Date Analyzed: 03/20/18 22:11	SURROGATE RECOVERY STUDY						
	BTEX by EPA 8021B			True Amount [B]	Recovery %R	Control Limits %R	Flags		
		Analytes			[D]				
1,4-Difluor	1,4-Difluorobenzene			0.0300	86	70-130			
4-Bromofluorobenzene			0.0365	0.0300	122	70-130			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Version: 1.%

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: COG SRO State Com #046

Work Orders: 579755,

Sample: 579755-009 / SMP

Project ID:

Lab Batch #: 3044365 Units: mg/kg

Date Analyzed: 03/20/18 22:28

Matrix: Soil Batch:

Units:	mg/kg	Date Analyzed: 03/20/18 22:28	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
		Analytes			[D]		
1,4-Difluorobo	1,4-Difluorobenzene			0.0300	71	70-130	
4-Bromofluorobenzene			0.0373	0.0300	124	70-130	

Lab Batch #: 3044342 Sample: 579755-008 / SMP Batch: Matrix: Soil

Units: mg/kg Date Analyzed: 03/21/18 09:57 SURROGATE RECOVERY STUDY

TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	92.1	99.9	92	70-135	
o-Terphenyl	42.8	50.0	86	70-135	

Lab Batch #: 3044342 Sample: 579755-009 / SMP Batch: Matrix: Soil

Units: mg/kg Date Analyzed: 03/21/18 10:16 SURROGATE RECOVERY STUDY

TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	90.3	99.9	90	70-135	
o-Terphenyl	45.0	50.0	90	70-135	

Lab Batch #: 3044342 Sample: 7641202-1-BLK / BLK Matrix: Solid

Units: mg/kg Date Analyzed: 03/20/18 17:24 SURROGATE RECOVERY STUDY Amount True Control TPH by SW8015 Mod Found Amount Recovery Limits Flags %R %R [B] [A] [D] **Analytes** 1-Chlorooctane 93 70-135 92.8 100 o-Terphenyl 50.0 102 70-135 51.1

Lab Batch #: 3044365 Sample: 7641218-1-BLK / BLK Batch: 1 Matrix: Solid

Units:	mg/kg	Date Analyzed: 03/20/18 19:09	SU	RROGATE RE	ECOVERY S	STUDY	
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluoro	obenzene	Analytes	0.0286	0.0300	95	70-130	
4-Bromofluo	orobenzene		0.0383	0.0300	128	70-130	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Version: 1.%

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: COG SRO State Com #046

Work Orders: 579755, **Lab Batch #:** 3044365

Sample: 7641218-1-BKS / BKS

Project ID:

Unites ma/lea

Date Analyzed: 03/20/18 17:36

Batch: 1 Matrix: Solid

Units:	mg/kg	Date Analyzed: 03/20/18 17:36	SU	RROGATE RE	ECOVERY S	STUDY	
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluorol	benzene		0.0303	0.0300	101	70-130	
4-Bromofluo	robenzene		0.0367	0.0300	122	70-130	

Lab Batch #: 3044342 Sample: 7641202-1-BKS / BKS Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 03/20/18 17:44 SURROGATE RECOVERY STUDY Amount True Control TPH by SW8015 Mod Limits Found Flags Amount Recovery [A] [B] %R %R [D] **Analytes** 1-Chlorooctane 94.3 100 94 70-135 o-Terphenyl 50.0 46.8 94 70-135

Lab Batch #: 3044365 Sample: 7641218-1-BSD / BSD Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 03/20/18 17:54 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0311	0.0300	104	70-130	
4-Bromofluorobenzene	0.0376	0.0300	125	70-130	

Lab Batch #: 3044342 Sample: 7641202-1-BSD / BSD Batch: 1 Matrix: Solid

Units:	mg/kg	Date Analyzed: 03/20/18 18:03	SU	RROGATE RE	ECOVERY S	STUDY	
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooc	tane		96.0	100	96	70-135	
o-Terpheny	/1		48.3	50.0	97	70-135	

Units:	mg/kg	Date Analyzed: 03/20/18 18:13	SU	RROGATE RE	ECOVERY S	STUDY	
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluoro	obenzene	Analytes	0.0218	0.0300	73	70-130	
4-Bromoflu	orobenzene		0.0255	0.0300	85	70-130	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Version: 1.%

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: COG SRO State Com #046

Work Orders: 579755,

Sample: 579755-006 S / MS

Project ID:

Lab Batch #: 3044342 Matrix: Soil Batch: Units: mø/kø Date Analyzed: 03/20/18 20:18 SUPPOCATE DECOVERY STUDY

onts. Ingreg Date Analyzeu. 03/20/10/20.10	SU	RROGATE RI	ECOVERY	STUDY	
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	93.0	100	93	70-135	
o-Terphenyl	47.1	50.0	94	70-135	

Lab Batch #: 3044365 Sample: 579755-002 SD / MSD Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 03/20/18 18:32 SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B Limits **Found** Amount Recovery Flags [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0221 0.0300 74 70-130 4-Bromofluorobenzene 0.0211 0.0300 70 70-130

Lab Batch #: 3044342 Sample: 579755-006 SD / MSD Matrix: Soil Batch:

Units: mg/kg Date Analyzed: 03/20/18 20:39 SURROGATE RECOVERY STUDY Amount True Control TPH by SW8015 Mod Limits Flags Found Amount Recovery %R %R [A] [B] [D] **Analytes** 1-Chlorooctane 102 99.8 102 70-135 o-Terphenyl 49.5 49.9 99 70-135

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Version: 1.%

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Final 1.000

BS / BSD Recoveries

Project Name: COG SRO State Com #046

Date Prepared: 03/20/2018 Work Order #: 579755

Sample: 7641218-1-BKS

Batch #: 1

Date Analyzed: 03/20/2018

Project ID:

Matrix: Solid

Units:	mg/kg		BLANK	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	PIKE / B	LANK S	PIKE DUPL	ICATE 1	RECOVE	RY STUD	Y	
B. Analytes	FEX by EPA 8021B	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD	Control Limits %R	Control Limits %RPD	Flag
Benzene		<0.00199	0.0994	0.0944	95	0.0998	0.103	103	6	70-130	35	
Toluene		<0.00199	0.0994	0.0948	95	0.0998	0.103	103	8	70-130	35	
Ethylbenzene	ene	<0.00199	0.0994	0.101	102	0.0998	0.109	109	8	70-130	35	
m,p-Xylenes	nes	<0.00398	0.199	0.197	66	0.200	0.212	106	7	70-130	35	
o-Xylene		<0.00199	0.0994	0.0997	100	0.0998	0.107	107	7	70-130	35	

Sample: 7641157-1-BKS Lab Batch ID: 3044312 SCMAnalyst:

Date Prepared: 03/20/2018

Batch #: 1

Matrix: Solid

Date Analyzed: 03/20/2018

	mg/kg		BLAN	K /BLANK S	PIKE / E	LANKS	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	ICATE 1	RECOVE	RY STUD	X	
	Chloride by EPA 300	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	tes		[B]	[C]	[D]	<u>a</u>	Result [F]	[6]				
Chloride		<5.00	250	237	95	250	236	94	0	90-110	20	

Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes Relative Percent Difference RPD = 200*[(C-F)/(C+F)]

Lab Batch ID: 3044365

ALJ

Analyst:

Final 1.000

BS / BSD Recoveries

Project Name: COG SRO State Com #046

Date Prepared: 03/20/2018 Work Order #: 579755

Project ID:

Date Analyzed: 03/20/2018 Matrix: Solid

Lab Batch ID: 3044342		Sample: 7641202-1-BKS	Batc	Batch #: 1					Matrix: Solid	bilo		
Units:	mg/kg		BLAN	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	SPIKE / I	3LANK S	PIKE DUP	LICATE 1	RECOVE	SRY STUD	Y.	
	TPH by SW8015 Mod	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	Blk. Spk Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	rtes	<u>\</u>	[B]	kesunt [C]	[D]	Œ	Duplicate Result [F]	¥ [5]	%	%0K	%KFD	
Gasoline F	Gasoline Range Hydrocarbons (GRO)	<15.0	1000	1050	105	1000	1080	108	3	70-135	35	
Diesel Raı	Diesel Range Organics (DRO)	<15.0	1000	903	06	1000	981	86	8	70-135	35	

Page 15 of 19

Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Relative Percent Difference RPD = 200*[(C-F)/(C+F)]

ARM

Analyst:

Form 3 - MS / MSD Recoveries

Project Name: COG SRO State Com #046

Batch #: QC-Sample ID: 579755-002 S

03/20/2018

Date Analyzed:

Released to Imaging: 12/1/2022 8:37:04 AM

Reporting Units:

3044365

Lab Batch ID:

579755

Work Order #:

Date Prepared: 03/20/2018

Analyst: ALJ

Matrix: Soil

Project ID:

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spike Sample Sa Spike Result Sa Added [C] 9	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00202	0.101	0.0227	22	0.100	0.0378	38	50	70-130	35	XF
Toluene	0.00254	0.101	0.0188	16	0.100	0.0343	32	58	70-130	35	XF
Ethylbenzene	<0.00202	0.101	0.0138	14	0.100	0.0314	31	78	70-130	35	XF
m,p-Xylenes	0.00455	0.202	0.0279	12	0.200	0.0624	29	92	70-130	35	XF
o-Xylene	0.00249	0.101	0.0144	12	0.100	0.0320	30	92	70-130	35	XF
Lab Batch ID: 3044312 C	QC- Sample ID: 579572-004 S	579572	-004 S	Bat	Batch #:	1 Matrix: Soil	: Soil				

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Analyst: SCM

Date Prepared: 03/20/2018

03/20/2018

Date Analyzed:

mg/kg

Reporting Units:

	Chloride by EPA 300	Parent Sample	Spike	Spiked Sample Sy Result Sz	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
	Analytes	Result [A]	Added [B]	[C]	N N N N N N N N N N	Added [E]	Result [F]	%R [G]	%	%R	%RPD)
Chloride		158	250	383	06	250	376	87	2	90-110	20	×
Lab Batch ID:	3044312 Q	QC- Sample ID:	579755-001 S	001 S	Bat	Satch #:	1 Matrix:	:: Soil				

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY mg/kg Reporting Units:

Date Prepared: 03/20/2018

03/20/2018

Date Analyzed:

Analyst: SCM

Chlorida by FPA 300	Parent		Spiked Sample	Spiked		Duplicate	Spiked		Control	Control	
Childrac by Et A 300	Sample	Spike	Result Sa	Sample		Spiked Sample	Dup.	RPD	Limits	Limits	Flag
	Result	Added	<u></u>	%R	4	Result [F]	%R	%	%R	%RPD	
Analytes	[A]	[B]		<u>a</u>	Ξ		<u>5</u>				
Chloride	9.78	249	238	92	249	240	92	-	90-110	20	

Relative Percent Difference RPD = 200*(C-F)/(C+F)Matrix Spike Percent Recovery [D] = 100*(C-A)/B

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Final 1.000

Page 17 of 19

Form 3 - MS / MSD Recoveries

Project Name: COG SRO State Com #046

579755

3044342 Work Order #: Lab Batch ID: Date Analyzed

Reporting Uni

Released to Imaging: 12/1/2022 8:37:04 AM

Batch #: QC-Sample ID: 579755-006 S

Matrix: Soil

Project ID:

e Analyzed:	03/20/2018	Date Prepared: 03/20/2018	03/20/20	918	An	Analyst: ARM	RM					
oorting Units:	mg/kg		M	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	[/MAT]	RIX SPII	KE DUPLICA'	TE REC	OVERY S	TUDY		
	TPH by SW8015 Mod	Parent		Spiked Sample Spiked	Spiked		Duplicate	S		Control	Control	
		Sample	Spike	Result	Sample	ike	Spiked Sample		RPD	Limits Limits	Limits	Flag
	Analytes	[A]		<u> </u>	¥ =	Added		אַ כַּי	0/	70K	70KFD	
			1		1	1		5				
Gasoline Range	Gasoline Range Hydrocarbons (GRO)	<15.0	1000	866	66	866	1040	104	5	70-135	35	
Diesel Range C	Diesel Range Organics (DRO)	<15.0	1000	921	92	866	975	86	9	70-135	35	

Relative Percent Difference RPD = 200*(C-F)/(C+F)Matrix Spike Percent Recovery [D] = 100*(C-A)/B

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Receiv	ved by O	<i>GD: 1</i>	1/30/2	2022	2:08	3:38	PM	1				T	T		10 3							P	age 58
	by O children by		Hinquish	pecial Instructions:										LAB # (lab use only)	ORDER #:	ah ilea							
	d by		- Well District	nstruct											## S	nolw)	Sampler Signature:	Telephone No:	City/State/Zip:	Company Address:	Company Name	Project Manager:	
	1	12		ions											02.		pler :	ohon	State	pany	pany	ect N	
	\	RO	Charge				- 1	- 1					So				Sign	e No	y/Zip	/ Ado	/ Nai	lana	
		2	2		1	1	West @ Surface	Ш	East @ Surface			1-7	South	量	0		atur	Y.		dres	me	ger:	
		3	C		West @ 1'	West @ 6"	(8)	East @ 1'	(8)	1-1@1	T -1 @ 6"	@ Surface	100000000000000000000000000000000000000			1		Â	lo		2	Iz	
					(8)	(S)	Sunfa	(8)	Surfa	(8)	0	urfa	Sul	S	75		2	32)2	dess	2191	MEr	latt C	
			rush			-	асе		зсе			Се	@ Surface	m	Oi	1	10	(432)230-3763	Odessa, Texas 79764	1219 W. University Blvd	viror	Matt Green	
	W	S	12												UI	18		763	xas	niver	ımer		
	Date	3-20-18	기 _														0		7976	sity E	tal S		
	0000	8	3														9		4	Blvd.	ervic		
	- KN_	15	Charge		T	T	T	T	T	\top	T	1	T	Beginning Depth	7	9					2M Environmental Services, LLC		
	Time	17,	(0		+	+	+	+	+	+	+	+	+	Ending Donth	-		R				C		
19,1539	ZD Z	7	to	-	_	+	+	\vdash	\vdash	+	+	\downarrow	+	Ending Depth			2						
	Received by PBEL:	Received by:	2		3/19	3/19	3/19/2018	3/19/2018	3/19	3/19	3/19	3/19	3/1				3						
	5 P	4 B	2/		3/19/2018	3/19/2018	9/20	9/20	3/19/2018	3/19/2018	3/19/2018	3/19/2018	3/19/2018	Date Sampled									
	188 A 1	EN.		_	8	8	18	8	18	8	18	8	8										
	7	14											Π			,	,						
	11/	1			1026	1023	1020	1016	1013	1010	1007	1005	1000	Time Sampled		(- Q	П					
	M	1			03	ω	0	00	ω	0	7	5	0			2	e-mail:	2					
	1 3	,					\vdash		\vdash	\vdash	\dagger	\vdash		Field Filtered	-	:						:	S A P
	M				-		>		->					Total #. of Containers	1		3						Permian Basin Environmental Lab, LP 10014 S. County Road 1213 Midland. Texas, 79706
				_	×	×	×	×	×	×	×	×	×	Ice		III COIL WALLE	roo					3	an B
				-	-		_	_	_	_	_	_		HNO ₃	Preservation							200	asin
				-	\vdash	-		-		-	-	_	-	HCI	vation		M					1	Env Ty R
				-	\vdash				_	-	-	-		H₂SO₄ NaOH	1&# of	N N						1 2	vironi Road
					-								-	Na ₂ S ₂ O ₃	of Co	IVII OHIITEHLAL COM							men 1121
	1 KZ	1												None	Containers	d							3 ta
1	Date Date	Date 3/25												Other (Specify)	35	id.C							ja ja
3	1	11												DW=Drinking Water SL=Sludge	2	C	1			1	1	1	5
	00	0			S	S	S	S	S	S	S	S	S	GW = Groundwater S=Soil/Solid	Matrix		Rep					_	
		Time		-	×	×	×	×	×	×	×	×	×	NP=Non-Potable Specify Other TPH: 418.1 8015M 80	15B	-	Report Format:			Pro	_	Project Name:	
ā		/ g								^				TPH: TX 1005 Ext TX 10			orm		-	Project Loc:	Project #:	ct N	
≥ D -	- (0	Cus	Sar											Cations (Ca, Mg, Na, K)			:: 22		PO #	Loc	ect #	ame	
0	$\Omega \stackrel{d}{=}$	stody	nple Cs F											Anions (CI, SO4, Alkalinity)			\boxtimes	- 1		ı			
orre	Temp: CF:(0-	on co	Con											SAR / ESP / CEC	TCLP:								
3-23 ecte	6.	ontain Is or	Con taine			_	_	_						Metals: As Ag Ba Cd Cr Pb Hg	Se	A	Standard					O	Pho
(6-23: +0.2°C) Corrected Temp:	Temp: 4, (CF:(0-6: -0.2°C	Labels on container(s) Custody seals on container(s)	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?	-	\vdash	\dashv	\dashv	-	-	-	-	_	-	Volatiles		Analyze	۵					cog	ne:
em¦	300	taine	nts: ntact		×	×	×	×	×	Ü		J		Semivolatiles BTEX 8021B/5030 or BTEX 826		For		,		Edd		SRO	432-
); <u>(</u>	3	er(s)	20	H			7	7	7	×	×	×	-	RCI	~			1		Eddy County, NM		St:	Phone: 432-661-4184
4	テ				\dashv	+	+	+	\dashv	\neg	\dashv	\dashv	-	N.O.R.M.			TRRP			unty		State	418
D					× :	×	×	× :	×	×	×	×	×	Chlorides E 300			-			Z		Com	4
1-	IR ID:R-8	< -< -	< <																			Com #046	
	ω		-														NPDES					46	
			ZZ	\vdash	× :	× ;	× ;	×	×	×	×	×	_	RUSH TAT (Pre-Schedule 24,	48, 72 hrs		ŒS						
											\perp		5	Standard TAT									

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: 2M Environmental Services LLC

Date/ Time Received: 03/20/2018 03:00:00 PM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Work Order #: 579755

Temperature Measuring device used: R8

	Sample Receipt Checklist	Comments					
#1 *Temperature of cooler(s)?		4.4					
#2 *Shipping container in good condition?	?	Yes					
#3 *Samples received on ice?		Yes					
#4 *Custody Seals intact on shipping con	tainer/ cooler?	N/A					
#5 Custody Seals intact on sample bottle	s?	N/A					
#6*Custody Seals Signed and dated?		N/A					
#7 *Chain of Custody present?		Yes					
#8 Any missing/extra samples?		No					
#9 Chain of Custody signed when relinqu	ished/ received?	Yes					
#10 Chain of Custody agrees with sample	e labels/matrix?	Yes					
#11 Container label(s) legible and intact?		Yes					
#12 Samples in proper container/ bottle?		Yes					
#13 Samples properly preserved?		Yes					
#14 Sample container(s) intact?		Yes					
#15 Sufficient sample amount for indicate	Yes						
#16 All samples received within hold time	Yes						
#16 All samples received within hold time? #17 Subcontract of sample(s)? #18 Water VOC samples have zero headspace? N/A							
#18 Water VOC samples have zero head	N/A						
* Must be completed for after-hours de Analyst:	livery of samples prior to placing in	the refrigerator					
Checklist completed by:	Janua Statie Lowe	Date: 03/20/2018					
Checklist reviewed by:		Date: 03/20/2018					

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 162717

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	162717
	Action Type:
	[IM-SD] Incident File Support Doc (ENV) (IM-BNF)

CONDITIONS

Created By	Condition	Condition Date
bhall	Perform liner inspection to ensure integrity of liner. Include pictures of liner inspection in final report.	12/1/2022
bhall	Remediation and closure must comply with 19.15.29.12 and 19.15.29.13 NMAC.	12/1/2022
bhall	2RP-4600 closed. Please reference incident #NAB1803638110 in all future communication.	12/1/2022
bhall	Submit a complete report through the OCD Permitting website by 3/3/2023.	12/1/2022