Page 6

Oil Conservation Division

	Page 1 of 89
Incident ID	nAPP2222130109
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report. NA A scaled site and sampling diagram as described in 19.15.29.11 NMAC X Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) Description of remediation activities I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name: Jim Raley Title: Environmental Specialist Signature: _____ Date: _____ email: jim.raley@dvn.com Telephone: 575-689-7597 **OCD Only** Date: 09/26/2022 Jocelyn Harimon Received by: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: <u>Robert Hamlet</u> Date: <u>12/14/2022</u> Printed Name: ______ Robert Hamlet ______ Title: __Environmental Specialist - Advanced

.

September 21, 2022

Vertex Project #: 22E-02951

Spill Closure Report:	RDX Federal 17 #035H
	Section 17, Township 26 South, Range 30 East
	API: 30-015-43884
	County: Eddy
	Incident Report: nAPP2222130109

 Prepared For:
 WPX Energy Permian, LLC

 5315 Buena Vista Drive

 Carlsbad, New Mexico 88220

New Mexico Oil Conservation Division – District 2 – Artesia 811 South 1st Street Artesia, New Mexico 88210

WPX Energy Permian, LLC (WPX) retained Vertex Resource Services Inc. (Vertex) to conduct a Spill Assessment for a release of produced water caused by a pinhole that developed in the produced water dump line at RDX Federal 17 #035H, API 30-015-43884, Incident nAPP2222130109 (hereafter referred to as "RDX"). WPX provided spill notification to the New Mexico Oil Conservation District (NMOCD) District 2, via submission of an initial C-141 Release Notification (Attachment 1). This letter provides a description of the Spill Assessment and includes a request for Spill Closure. The spill area is located at N 32.0492796, W -103.909725.

Background

The site is located approximately 14.96 miles southeast of Malaga, New Mexico (Google Inc., 2022). The legal location for the site is Section 17, Township 26 South and Range 30 East in Eddy County, New Mexico. The spill area is located on Bureau of Land Management (BLM) property.

The Geological Map of New Mexico (New Mexico Bureau of Geology and Mineral Resources, 2022) indicates the site's surface geology is comprised primarily of Qoa -Older alluvial deposits of upland plains and piedmont areas and is characterized as calcic soils and eolian cover sediments of High Plains region (middle to lower Pleistocene). The Natural Resources Conservation Service *Web Soil Survey* characterizes the predominant soil texture on the site is Potter-Simona complex. It tends to be well drained with high runoff and very low available moisture levels in the soil profile (United States Department of Agriculture, Natural Resources Conservation Service, 2022).

The surrounding landscape is associated with ridges, hills, plains, and alluvial fans at elevations of 2,750 to 5,000 feet above sea level. The climate is semi-arid, with an annual precipitation ranging between 8 to 16 inches. Historically, the plant community has grassland aspect, dominated by grasses with shrubs. Black grama is dominant with a mixture of creosotebush, mesquite, and catclaw mimosa shrubs. Overgrazing and extended drought can reduce grass cover (United States Department of Agriculture, Natural Resources Conservation Service, 2022).

vertex.ca

There is no surface water located on-site. The nearest significant watercourse, as defined in Subsection P of 19.15.17.7 Mexico Administrative Code (NMAC; New Mexico Oil Conservation Division, 2018) is the Pecos River located approximately 4.9 miles southwest of the site (Google Inc., 2022). There are no continuous flowing watercourses or significant watercourses, lakebeds, sinkholes, playa lakes, or other critical water or community features as outlined in Paragraph (4) of Subsection C of 19.15.29.12 NMAC.

Incident Description

RDX Federal 17 #035H, nAPP2222130109

The spill occurred on August 8, 2022, due to pinhole leak on the produced water dump line. The spill was reported on August 9, 2022, and involved the release of approximately 5 barrels (bbl.) of produced water into the lined containment of the tank battery. Approximately 5 bbl. of free fluid was removed during initial spill clean-up. The NMOCD C-141 Report: nAPP2222130109 is included in Attachment 1. The Daily Field Report (DFRs) and site photographs are included in Attachment 2.

Closure Criteria Determination

The depth to groundwater was determined using information from the United States Geological Survey National Water Information Mapping System and Office of the State Engineers Water Rights Database. A 0.5-mile search radius was used to determine groundwater depth. The closest recorded depth to groundwater was determined to be 200 feet below ground surface (bgs) and 1.42 miles from the site (New Mexico Office of the State Engineer, New Mexico Water Rights Reporting System, 2022). Documentation used in Closure Criteria Determination research is included in Attachment 3.

vertex.ca

WPX Energy Permian, LLC

RDX Federal 17 #035H, nAPP2222130109

2022 Spill Assessment and Closure September 2022

	Criteria Worksheet			
	ne: RDX Federal 17 #035H ordinates:	X: 32.0492796	Y: -103.909725	
	cific Conditions	Value	Unit	Reference
1	Depth to Groundwater	125	feet	1
-	Within 300 feet of any continuously flowing	125		
2	watercourse or any other significant watercourse	25,860	feet	2
	Within 200 feet of any lakebed, sinkhole or playa			
3	lake (measured from the ordinary high-water	5,537	feet	3
5	mark)	5,557	icet	
	Within 300 feet from an occupied residence,			
4	school, hospital, institution or church	56,660	feet	4
	i) Within 500 feet of a spring or a private, domestic			
	fresh water well used by less than five households		feet	5
5	for domestic or stock watering purposes, or	.,		
Ū.	ii) Within 1000 feet of any fresh water well or			
	spring	4,986	feet	5
	Within incorporated municipal boundaries or			
	within a defined municipal fresh water field		(Y/N)	
	covered under a municipal ordinance adopted	No		
6	pursuant to Section 3-27-3 NMSA 1978 as			6
	amended, unless the municipality specifically			
	approves			
7	Within 300 feet of a wetland	484	feet	7
8	Within the area overlying a subsurface mine	No	(Y/N)	8
			Critical	
•			High	
9	Within an unstable area (Karst Map)		Medium	9
			Low	
10	Mithin - 100	500		10
10	Within a 100-year Floodplain	500	year	10
		Upton-Simona		
11	Soil Type	complex		11
		Shallow, Shallow		
12	Ecological Classification	Sandy		12
		Canay		
13	Geology	Qoa		13
			<50'	
	NMAC 19.15.29.12 E (Table 1) Closure Criteria	<50'	51-100'	
			>100'	

Based on data included in the closure criteria determination worksheet, the release at RDX would not be subject to the requirements of Paragraph (4) of Subsection C of 19.15.29.12 NMAC and the closure criteria for the site would be determined to be associated with the following constituent concentration limits based on depth to groundwater. The

vertex.ca

Page 5 of 89

closure criteria determined for the site are associated with the following constituent concentration limits as presented in Table 1.

Table 1. Closure Criteria for Soils Impacted by a Release			
Minimum depth below any point within the horizontal boundary of the release to groundwater	Constituent	Limit	
less than 10,000 mg/l TDS		-	
	Chloride	600 mg/kg	
< 50 feet	TPH (GRO+DRO+MRO)	100 mg/kg	
	BTEX	50 mg/kg	
	Benzene	10 mg/kg	

TDS - Total dissolved solids

TPH - Total petroleum hydrocarbons = gasoline range organics (GRO) + diesel range organics (DRO) + motor oil range organics (MRO) BTEX - Benzene, toluene, ethylbenzene, and xylenes

Remedial Actions Taken

An initial site inspection of the spill area was completed on September 16, 2022, which identified the area of the spill specified in the initial C-141 Report. The DFR associated with the site inspection is included in Attachment 2.

Notification that a liner inspection was scheduled to be completed was provided to the NMOCD on September 12, 2022. Visual observation of the liner was completed on all sides and the base of the containment, around equipment, and of all seams in the liner. As evidenced in the DFR (Attachment 2) liner integrity was confirmed. The Liner Inspection Notification email is included in Attachment 4.

Closure Request

Vertex recommends no remediation action to address the release at RDX Federal 17 #035H. The secondary containment liner appeared to be intact and had the ability to contain the release, as shown in the inspection photographs included with the DFR (Attachment 2). There are no anticipated risks to human, ecological or hydrological receptors associated with the release site.

Vertex requests that incident nAPP2222130109 be closed as all closure requirements set forth in Subsection E of 19.15.29.12 NMAC have been met. WPX certifies that all information in this report and the attachments is correct, and that they have complied with all applicable closure requirements and conditions specified in Division rules and directives to meet NMOCD requirements to obtain closure on the open release at RDX Federal 17 #035H.

vertex.ca

2022 Spill Assessment and Closure September 2022

Should you have any questions or concerns, please do not hesitate to contact the undersigned at 575.361.9880 or mpeppin@vertex.ca.

Monica Peppin PROJECT MANAGER, REPORTING

September 21, 2022

Date

Attachments

- Attachment 1. NMOCD C-141 Report
- Attachment 2. Daily Field Report(s) with Pictures
- Attachment 3. Closure Criteria for Soils Impacted by a Release Research Determination Documentation
- Attachment 4. Required 48-hr Notification of Liner Inspection to Regulatory Agencies

vertex.ca

References

- Google Inc. (2022). *Google Earth Pro (Version 7.3.4)* [Software]. Retrieved from http://www.google.com/earth on September 1, 2022.
- New Mexico Bureau of Geology and Mineral Resources. (2022). *Interactive Geologic Map*. Retrieved from http://geoinfo.nmt.edu.
- New Mexico Mining and Minerals Division. (2022). *Coal Mine Resources in New Mexico*. Retrieved from http://www.emnrd.state.nm.us/MMD/gismapminedata.html
- New Mexico Oil Conservation Division. (2018). *New Mexico Administrative Code Natural Resources and Wildlife Oil and Gas Releases*. Santa Fe, New Mexico.
- New Mexico Office of the State Engineer, New Mexico Water Rights Reporting System. (2022). Water Column/Average Depth to Water Report. Retrieved from http://nmwrrs.ose.state.nm.us/nmwrrs/waterColumn.html
- United States Department of Agriculture, Natural Resources Conservation Service. (2022). *Web Soil Survey*. Retrieved from https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx.
- United States Department of Homeland Security, FEMA Flood Map Service Center. (2020). *Flood Map Number* 35015C1875D. Retrieved from https://msc.fema.gov/portal/search?AddressQuery=malaga%20new%20 mexico#searchresultsanchor
- United States Department of the Interior, Bureau of Land Management. (2018). *New Mexico Cave/Karsts*. Retrieved from https://www.blm.gov/programs/recreation/recreation-programs/caves/new-mexico.
- United States Fish and Wildlife Service. (2022). National Wetlands Inventory Surface Waters and Wetland. Retrieved from https://www.fws.gov/ wetlands/data/Mapper.html.

vertex.ca

Limitations

This report has been prepared for the sole benefit of WPX Energy Permian, LLC. This document may not be used by any other person or entity, with the exception of the New Mexico Oil Conservation Division and Bureau of Land Management, without the express written consent of Vertex Resource Services Inc. (Vertex) and WPX Energy Permian, LLC. Any use of this report by a third party, or any reliance on decisions made based on it, or damages suffered as a result of the use of this report are the sole responsibility of the user.

The information and conclusions contained in this report are based upon work undertaken by trained professional and technical staff in accordance with generally accepted scientific practices current at the time the work was performed. The conclusions and recommendations presented represent the best judgement of Vertex based on the data collected during the assessment. Due to the nature of the assessment and the data available, Vertex cannot warrant against undiscovered environmental liabilities. Conclusions and recommendations presented in this report should not be considered legal advice.

vertex.ca

ATTACHMENT 1

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Page 10 of 89

Incident ID	nAPP2222130109
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party WPX Energy Permain, LLC	OGRID 246289
Contact Name Jim Raley	Contact Telephone 575-689-7597
Contact email Jim.Raley@dvn.com	Incident # (assigned by OCD) nAPP2222130109
Contact mailing address 5315 Buena Vista Drive, Carlsbad, NM 88220	

Location of Release Source

Latitude _____32.0492796____

Longitude ____-103.909725____

(NAD 83 in decimal degrees to 5 decimal places)

Site Name: RDX FEDERAL 17 #035H	Site Type: Oil Well
Date Release Discovered: 8/8/2022	API# (if applicable) 30-015-43884

Unit Letter	Section	Township	Range	County
D	17	26S	30E	Eddy

Surface Owner: State Federal Tribal Private (Name:

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)				
Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)		
Produced Water	Volume Released (bbls) 10	Volume Recovered (bbls) 10		
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No		
Condensate	Volume Released (bbls)	Volume Recovered (bbls)		
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)		
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)		
Cause of Release: Produced water dump line developed pinhole leak, allowing for release of approx 10 bbls produced water to lined secondary containment.				

Released Volume estimate = Recovered Volume as lined containment.

Was this a major release as defined by	If YES, for what reason(s) does the responsible party consider this a major release? Volume exceeded 25 bbls.
19.15.29.7(A) NMAC?	
🗌 Yes 🖾 No	
If YES, was immediate no	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:Jim Raley	Im Raley Title:Environmental Professional		
Signature:	Date:8/09/2022		
email:jim.raley@dvn.com	Telephone: 575-689-7597		
OCD Only			
Received by:	_ Date:		

Page 2

Received by OCD: 9/26/2022 8:01:49 AM Form C-141 State of New Mexico

Oil Conservation Division

	Page 12 of 8	59
Incident ID	nAPP2222130109	
District RP		
Facility ID		
Application ID		

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>200</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🔀 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🔀 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🔀 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🔀 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🔀 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	Yes X No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🔀 No
Are the lateral extents of the release within 300 feet of a wetland?	Yes X No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🔀 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🔀 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗶 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🔀 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- X Field data
- MA Data table of soil contaminant concentration data
- X Depth to water determination
- X Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- N/A Boring or excavation logs
- \mathbf{X} Photographs including date and GIS information
- MA Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

eceived by OCD: 9/26/20	22 8:01:49 AM State of New Mexico			Page 13 of				
			Incident ID	nAPP2222130109				
ge 4	Oil Conservation Division	1	District RP					
			Facility ID					
			Application ID					
public health or the environ failed to adequately investig addition, OCD acceptance of and/or regulations. Printed Name: Jin	required to report and/or file certain release no ment. The acceptance of a C-141 report by the gate and remediate contamination that pose a th of a C-141 report does not relieve the operator of <u>n Raley</u>	e OCD does not reli areat to groundwate of responsibility for 	eve the operator of liability sl er, surface water, human health r compliance with any other for Environmental Specialist	hould their operations have n or the environment. In				
email:jim.raley@dvr	a.com	Telephone:	575-689-7597					
OCD Only Received by: Jocely	n Harimon	Date: _	09/26/2022					

Page 6

Oil Conservation Division

Incident ID	nAPP2222130109
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report. NA A scaled site and sampling diagram as described in 19.15.29.11 NMAC X Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) Description of remediation activities I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name: Jim Raley Title: Environmental Specialist Signature: _____ Date: _____ Telephone: 575-689-7597 email: jim.raley@dvn.com **OCD Only** Date: 09/26/2022 Jocelyn Harimon Received by: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.

Closure Approved by:	_ Date:
Printed Name:	Title:

•

ATTACHMENT 2

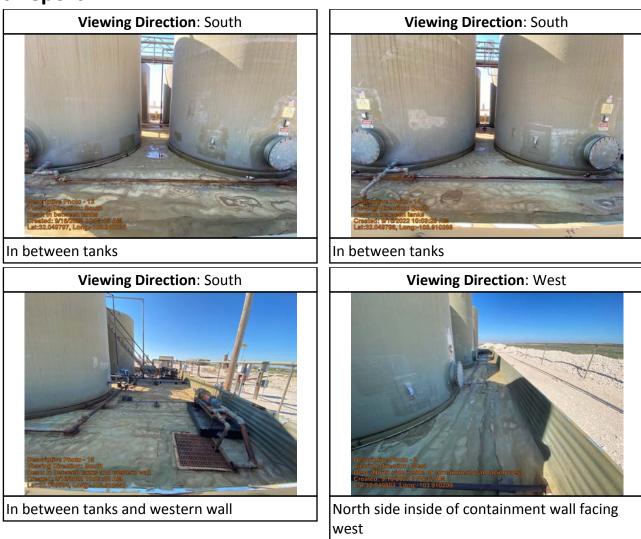
Client:	Devon Energy Corporation	Inspection Date:	9/16/2022
Site Location Name:	RDX Federal 17 #035H	Report Run Date:	9/16/2022 6:10 PM
Client Contact Name:	Wes Matthews	API #:	
Client Contact Phone #:	(575) 748-0176		
Unique Project ID		Project Owner:	
Project Reference #		Project Manager:	
		Summary of	Times
Arrived at Site	9/16/2022 9:10 AM		
Departed Site	9/16/2022 10:06 AM		
		Field Note	es

9:40 Arrived on site and filled out JSA

9:40 Liner inspection to be done with Monica Peppin


10:05 Liner cleaned

10:05 No signs of potential breach


Next Steps & Recommendations

1 Closer report

Page 19 of 89

Inside containment wall facing west on southern wall

In between tanks facing west

Inside of containment wall on north side facing west

Run on 9/16/2022 6:10 PM UTC

Daily Site Visit Signature

Inspector: Jacob Reta

Signature:

Run on 9/16/2022 6:10 PM UTC

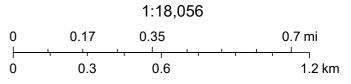
•

ATTACHMENT 3

RDX Federal 17 #035H

5/18/2022, 2:15:04 PM

GIS WATERS PODs


OSE District Boundary SiteBoundaries New Mexico State Trust Lands

0 Active

0

Pending

Both Estates

Esri, HERE, Garmin, (c) OpenStreetMap contributors, Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community, Source: Esri, Maxar, Earthstar Geographics, and the GIS User Community, U.S. Department of Energy Office of Legacy Management

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

	112.1/	404 1977 - Se	54.t	9 10 10 10	58
--	--------	------------------	------	---------------------	----

www.ose.state.nm.us

	005 000 1	NOCD (1)(7)	LNUMPERS					OSE FILE NUM					
7	OSE POD NU C-4068 PO	•	L NUMBER)					C-4068	YIDER(3)				
GENERAL AND WELL LOCATION													
EY	WELL OWNE							PHONE (OPTI	UNAL)				
PÕ.	-		Production, LLC										
FT	WELL OWNE							CITY		STATE	- 41	ZIP	
WE	3500 One V	Williams (Center MD 35,					Tulsa		OK	74172		
ĝ	WELL		DE	GREES N	MINUTES	SECONDS		<u> </u>					
ΓV	LOCATIO	N LAT	TITUDE	32	2	43.95	N	* ACCURACY	REQUIRED: ONE TEN	TH OF A SE	COND		
RA.	(FROM GPS	S)		103	53	39.23	W	* DATUM REQUIRED: WGS 84					
ENE	DESCRIPTIO		IGITUDE				¢ DI ¢	R (SECTION TO	WANGLIND DANGEN MAL	EDE AVAII	A D I E		
3						LANDMARK	.5 – PL3	S (SECTION, TO	WINSHDIF, KANOE) WII		ADIL.		
_	NW/4SW/4	INW/4 Se	ction 16, Township	26S, Range 30 I	s, N.M.P.M.								
	LICENSE NUI	MBER	NAME OF LICENSED	DRILLER					NAME OF WELL DR	ILLING COM	APANY		
	124	9		Jacki	e D. Atkins				Atkins Eng	ineering A	ssociates, h	nc.	
	DRILLING ST	TARTED	DRILLING ENDED	DEPTH OF COMPLE	TED WELL (FT) ВО	RE HO	LE DEPTH (FT)	DEPTH WATER FIR	ST ENCOUN	TERED (FT)		
	5/11/2		5/12/2017	n	ı/a			125	no	ne encour	itered		
			<u> </u>						STATIC WATER LEV	EL IN COM	PLETED WE	LL (FT)	
	COMPLETED	WELL IS:	ARTESIAN	🔽 DRY HOLE	SHALLOW	(UNCONFIN	VED)			n/a	10		
IO											in the second	energy energy energy energy energy	
IAT	DRILLING FL	JUID:	AIR	MUD	ADDITIVE	S - SPECIFY	:						
& CASING INFORMATION	DRILLING M	ETHOD:	ROTARY	HAMMER	CABLE TO	OOL 🔽	OTHE	hollow stem	i auger wi	th air rotai	ry		
NFC	DEPTH ((feet bgl)	BORE HOLE	CASING MAT	ERIAL AND	OR	~	ASING	CASING	CASING WALL		SLOT	
G I	FROM	TO	DIAM		ADE	_		NECTION	INSIDE DIAM.		KNESS	SIZE	
SIN			(inches)	(include each o	casing string, a ons of screen)	and	T	YPE	(inches)	(inc	(inches)		
CA	0	125	±6.625		n/a			n/a	n/a	n/a 👘		n/a	
G&	· · · · ·	125	-0.025		n/a								
DRILLING											<		
RIL					******								
2. DI													
									<u>.</u>				
					<u>umm</u>								
	î			l I		L			I	<u>I</u>		l	
	DEPTH (feet bgl)	BORE HOLE		NNÚLAR SE				AMOUNT		METHO		
IAL	FROM	то	DIAM. (inches)	GRAVEL	PACK SIZE-	RANGE BY	INTE	RVAL	(cubic feet)		PLACEM	IENT	
ANNULAR MATERIAL	n/a	n/a	n/a		n	/a			n/a		n/a		
IAT									· ·				
RN													
JLA		· ·					·						
INN			· · · · · · · · · · · · · · · · · · ·										
3. AI			-										
۲. ۳									<u> </u>				
									<u> </u>				
[·····	OSE INTER	NAL USE	(LICI N				1		WELL RECORD	<u>& LOG (V</u>	ersion 10/29	9/15) 7	
	NUMBER	<u> </u>	4060		POD NU	MBER	 		NUMBER (<u>00</u>	<u> </u>		
LOC	ATION	\sim	S ZOF		12.1				FXD	/	PAGE	1 OF 2	

.3.

0

<u>20165</u>

306

LOCATION

.

	DEPTH () FROM	feet bgl) TO	THICKNESS (feet)	COLOR AND TYPE OF MATERIAL ENCOUNTERED INCLUDE WATER-BEARING CAVITIES OR FRACTURE 2 (attach supplemental sheets to fully describe all units)	ZONES	BEAF	TER RING? / NO)	YIEL WA BEA	IATED D FOR TER- RING S (gpm)
	0	5	5	white caliche small gravel		Y	 ✓ N		
	5	20	15	light brown fine sand with small gravel		Y	√ N		
	20	40	20	tan sand, medium gravel, sandstone		Y	√ N		
	40	50	10	white tannish sand/sandstone		Y	✓ N		
	50	90	40	tannish very fine sandstone		Y	√ N		
Ţ	90	110	20	fine reddish tan sandstone		Y	√ N		<u> </u>
4. HYDROGEOLOGIC LOG OF WELL	110	125	15	fine reddish sandstone with small layers of reddish clay		Y	√ N		
OF						Y	N		
00					_	Y	N		
			l l			Y	N		<u></u>
LOG						Y	N		
GEO						Y	Ň		
NO.						Y	N		
HYI				······································		Y	N	11 A B 410 A	میں رور انہوں میں رور انہوں انہوں
4						Y	N		
						Y	N		
						Y	N	·: ***	
						Ŷ	N		
						Y	N	1022 	
						Y	N	n, maren 19 €	ماند ²⁰⁰ میں 1990 - 1994 میں 1997 - 1994 میں 19 19 - 1994 میں 19
						Y	N	100 - 100 -	No.
				DF WATER-BEARING STRATA: BAILER OTHER – SPECIFY:		L ESTIN		0.0)0
z	WELL TEST	TEST	RESULTS - ATTA	CH A COPY OF DATA COLLECTED DURING WELL TESTING E, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN	, INCLUDIN	IG DISCI	HARGE M	METHOD	,
	MISCELLAN	I NEOUS INF		adapted from Souder Miller & Associates oversight. Boring ing advanced with combination of air rotary and hollow stem					
				ing not converted to well. Boring abandoned see plugging re		ing. No v			
TEST; RIG SUPERV		E(S) OF DI	Bor		cord.		<u> </u>	IAN LICE	NSEE:
A LEST; KIG SUPERV	PRINT NAM		Bor	ISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL	cord.		<u> </u>	AN LICE	NSEE:
5. TEST; RIG SUPERV	PRINT NAM Guadalupe " THE UNDER CORRECT R	Lupe" Ley SIGNED H ECORD OF BRMIT HO	Bor RILL RIG SUPERV ba, Shane Eldridg EREBY CERTIFIF THE ABOVE DE DER WITHIN 20	ISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL re S THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND I SCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WE DAYS AFTER COMPLETION OF WELL DRILLING:	CONSTRUC	TION O	THER TH	A TRUE	AND
6. SIGNATURE 5. TEST; RIG SUPERVISION	PRINT NAM Guadalupe " THE UNDER CORRECT R	Lupe" Ley SIGNED H ECORD OF BRMIT HOP	Bor RILL RIG SUPERV ba, Shane Eldridg EREBY CERTIFIE THE ABOVE DE DER WITHIN 20	ISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL TSOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL TS THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND I SCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WE DAYS AFTER COMPLETION OF WELL DRILLING: Jackie D. Atkins	CONSTRUC	E FOREC	THER TH	A TRUE	AND
SIGNALUKE S. LESI; KIG SUPERV	PRINT NAM Guadalupe " THE UNDER CORRECT R	Lupe" Ley SIGNED H ECORD OF BRMIT HOP	Bor RILL RIG SUPERV ba, Shane Eldridg EREBY CERTIFIE THE ABOVE DE DER WITHIN 20	ISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL re S THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND I SCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WE DAYS AFTER COMPLETION OF WELL DRILLING:	CONSTRUC	E FOREC	THER TH GOING IS THE STA	A TRUE	 AND
o, storyst UNE 3, t Est, MUS SUFEKY	PRINT NAM Guadalupe " THE UNDER CORRECT R	Lupe" Ley SIGNED H ECORD OF SRMIT HOP SIGNATU	Bor RILL RIG SUPERV ba, Shane Eldridg EREBY CERTIFIE THE ABOVE DE DER WITHIN 20	ISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL STHAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND I SCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WE DAYS AFTER COMPLETION OF WELL DRILLING: Jackie D. Atkins / PRINT SIGNEE NAME	CONSTRUC	E FOREC WITH 1 5/17/	THER TH GOING IS THE STA' /2017 DATE	A TRUE TE ENGR	AND NEER

Tom Blaine, P.E. State Engineer

Roswell Office 1900 WEST SECOND STREET ROSWELL, NM 88201

Page 26 of 89

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

Trn Nbr: 606777 File Nbr: C 04068 Well File Nbr: C 04068 POD1

Jun. 12, 2017

JUSTIN BARMORE RKI EXPLORATION AND PRODUCTION LLC 3500 ONE WILLIAMS CENTER MD 35 TULSA, OK 74172

Greetings:

The above numbered permit was issued in your name on 05/08/2017.

The Well Record was received in this office on 05/17/2017, stating that it had been completed on 05/12/2017, and was a dry well. The well is to be plugged or capped or otherwise maintained in a manner satisfactory to the State Engineer.

Please note that another well can be drilled under this permit if the well is completed and the well log filed on or before 05/15/2018.

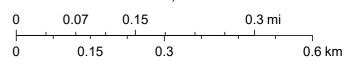
If you have any questions, please feel free to contact us.

Sincerely,

Deborah Dunaway (575) 622 - 6521

drywell

RDX Federal 17 #035H



5/18/2022, 2:30:39 PM

New Mexico State Trust Lands Both Estates

SiteBoundaries

Esri, HERE, Garmin, (c) OpenStreetMap contributors, Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community, Source: Esri, Maxar, Earthstar Geographics, and the GIS User Community, U.S. Department of Energy Office of Legacy Management

							=NE 3=S	· · · · ·	(NAD83	UTM in meters)	
Well Tag	POD	Number		Qe	64 Q16	Q4 Se	c Tws	Rng		X Y	(
	C 03	483		4	4	4 05	5 26S	30E	60429	6 354825	l 🌍	
Driller Lice	nse:	1509		Dril	ler Con	npany:	BM	S DRIL	LLING C	OMPANY		
Driller Nam	e:	BEAURE	EGARD, I	RICHA	RD							
Drill Start D	Date:	06/03/20)11	Dril	Finish	Date:	06	5/08/201	11	Plug Date:		
Log File Dat	te:	07/14/20)11	PCV	V Rev I	Date:				Source:	Shallow	
Pump Type:	:	SUBME	R	Pipe	Discha	arge Siz	ze:			Estimated Y	ield: 35 GPM	
Casing Size:	:	8.00		Dep	th Well	:	70	00 feet		Depth Wate	r: 200 feet	
	Wate	r Bearing	g Stratific	ations		Тор	Bottom	Desci	ription			
			,			200	255		-	vel/Conglom	erate	
						285	320			vel/Conglom		
						320	360			vel/Conglom		
						510	650	Shale	/Mudstor	ne/Siltstone		
		Casi	ing Perfo	rations	:	Тор	Bottom					
						180	260					
						280	360					
						500	680					
	Meter	r Numbei	r:	14452			Meter 1	Make:		MASTERM	ETER	
	Meter	r Serial N	umber:	32530	329		Meter	Multipl	lier:	100.0000		
	Numb	per of Dia	als:	6			Meter '	Туре:		Diversion		
	Unit o	of Measu	re:	Gallor	is		Return	Flow F	Percent:			
	Usage	e Multipli	ier:				Readin	g Frequ	uency:			
Meter R	x eading	gs (in Acı	re-Feet)									
Read	Date	Year	Mtr Re	ading	Flag	Rdr	Comm	ent			Mtr Amount	Onlin
07/11/2	2011	2011		10	А	bd	WELL COM S		SET UP	FOR	0	
04/01/2	2014	2014	13	88668	А	RPT					0	
04/02/2	2014	2014	4	44195	А	RPT					0	
07/01/2	2014	2014		62284	А	RPT					5.551	
10/01/2	2014	2014	(91448	А	RPT					8.950	
12/31/2	2014	2014	12	26199	А	RPT					10.665	
02/01/2	2015	2015	1.	38888	А	RPT					3.894	
03/02/2	2015	2015	1:	50578	А	RPT					3.588	
04/01/2	2015	2015	1:	57715	А	RPT					2.190	
04/30/2	2015	2015	1′	70037	А	RPT					3.781	
05/31/2	2015	2015	13	82144	А	RPT					3.716	

Released to Imaging: 12/14/2022 2:19:12 PM

	4/01/2016 5/01/2016	2016 2016	246331 248057		mb mb	0 0.530
	6/01/2016	2016	262631		mb	4.473
0	7/01/2016	2016	271192		mb	2.627
0	8/01/2016	2016	273040	А	mb	0.567
0	9/01/2016	2016	283123	А	mb	3.094
1	0/01/2016	2016	290786	А	mb	2.352
*	*YTD Met	er Amounts:	Year		Amount	
			2011		0	
			2014		25.166	
			2015		36.253	
			2016		14.258	

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

5/4/22 2:37 PM

POINT OF DIVERSION SUMMARY

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW###### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	has been , uned, le is	1	```					/ 2=NE est to lar	3=SW 4=SE	E) AD83 UTM in m	neters)	(In fe	eet)		
8)	closed)	POD Sub-			Q		is are	Sinan	.51 10 141	gest) (I		leters)	(111)	,	Vater
POD Number	Code	basin	County	-	-	-	Sec	Tws	Rng	Х	Y	DistanceDep	othWellDept	hWater Co	olumn
<u>C 04068 POD1</u>		CUB	ED	1	3	1	16	26S	30E	604397	3546018 🌍	1520			
<u>C 01360</u>		CUB	ED	4	3	3	05	26S	30E	602997	3548152 🌍	1735	770	173	597
<u>C 01361</u>		CUB	ED	3	4	3	05	26S	30E	603240	3548157 🌍	1766	775	184	591
<u>C 03483</u>		С	ED	4	4	4	05	26S	30E	604296	3548251 🌍	2286	700	200	500
<u>C 03581 POD1</u>		CUB	ED	4	4	4	05	26S	30E	604298	3548291 🌍	2320	800	320	480
<u>C 04561 POD1</u>		CUB	ED	4	3	3	24	26S	29E	599924	3543208 🌍	4397			
											Averag	ge Depth to Wate	er:	219 fee	et
												Minimum De	pth:	173 fee	et
												Maximum Dep	oth:	320 fee	et
Record Count: 6															
UTMNAD83 Radiu	<u>s Search (ii</u>	n meters	<u>):</u>												
Easting (X): 602	2930		North	ning	(Y)):	3546	6418			Radius: 5000				
The data is furnished by the laccuracy, completeness, reliable										derstanding th	nat the OSE/ISC ma	ake no warranties,	expressed or in	plied, concern	ning the
5/4/22 2:37 DM												WATER COL	UMN/ AVER	AGE DEPTI	H TO

5/4/22 2:37 PM

WATER COLUMN/ AVERAGE DEPTH TO WATER

Received by OCD: 9/26/2022 8:01:49 AM

RDX Federal 17 #035H Proximity Map

Nearest Active Well C 04068 POD1 Exploration Well Distance: 0.94 miles (4986 feet)

Nearest Depth to Groundwater (DTGW) Reference C 03483 Livestock Water Well Distance: 1.42 miles (7500 feet) DTGW: 200 feet DTGW: 06/08/2011

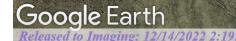
E: *)

C 04068 POD1

- SN

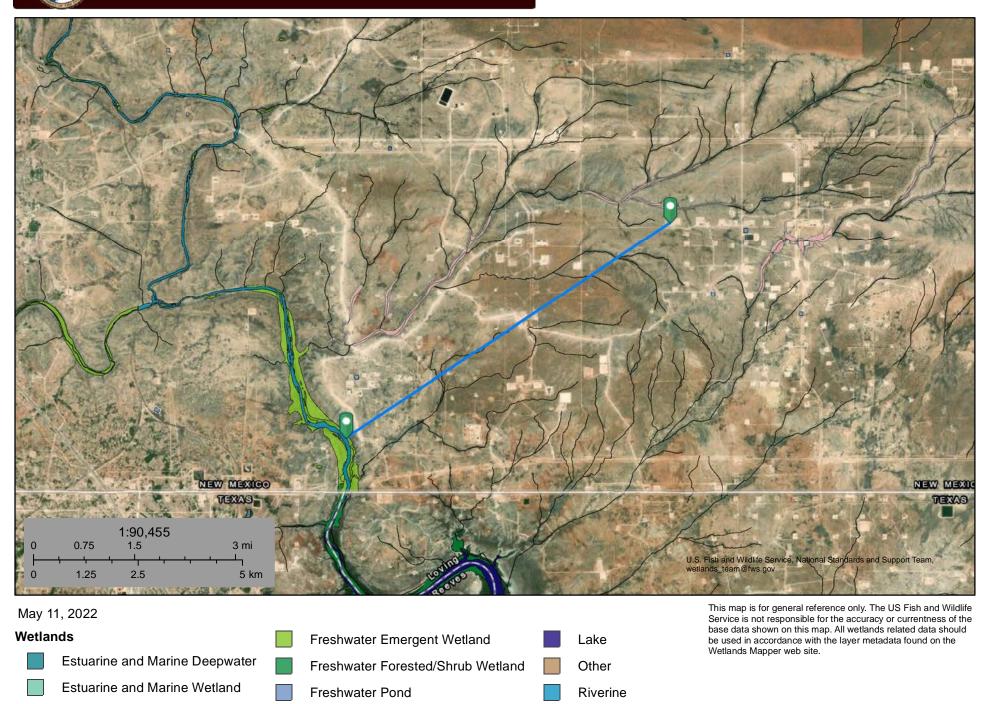
a: -+

Legend


mi

RDX Federal 17 #035

Page 31 of 89


Water Wells

RDX Federal 17 #035

National Wetlands Inventory

RDX Federal 17 #035H Watercourse

Released to Imaging: 12/14/2022 2:19:12 PM

National Wetlands Inventory (NWI) This page was produced by the NWI mapper

U.S. Fish and Wildlife Service

National Wetlands Inventory

Pond 5537 feet

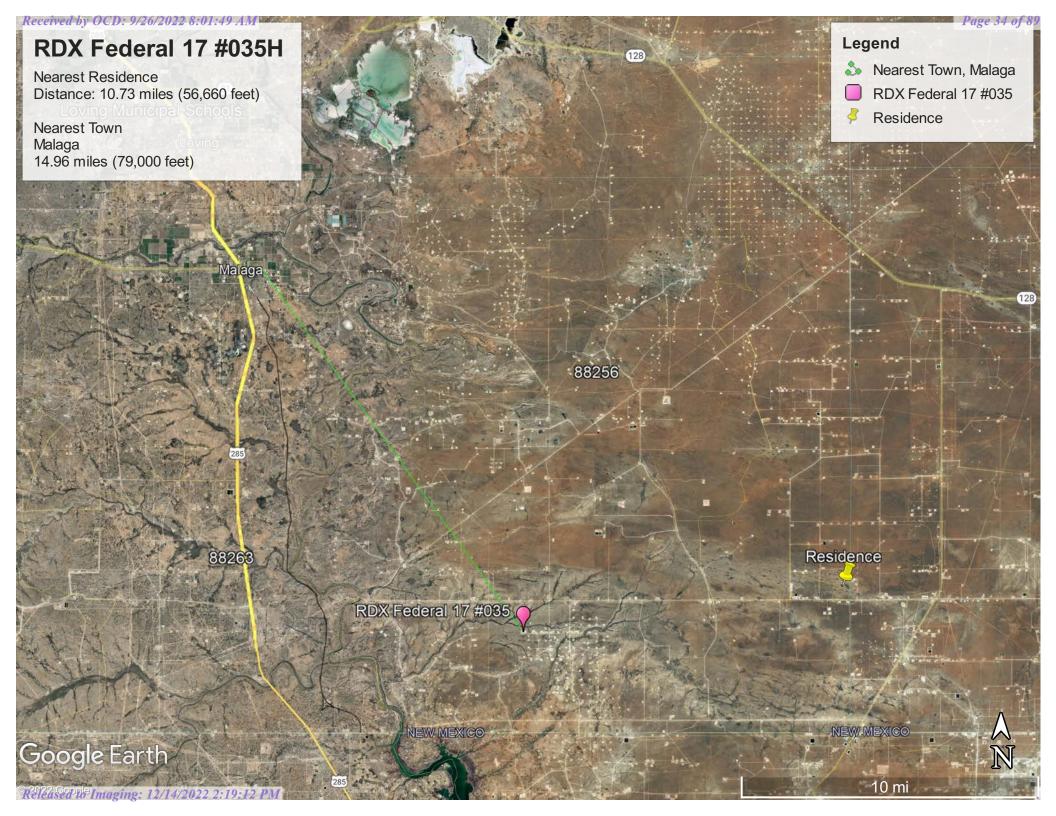
May 4, 2022

Wetlands

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland

- **Freshwater Pond**

Freshwater Emergent Wetland

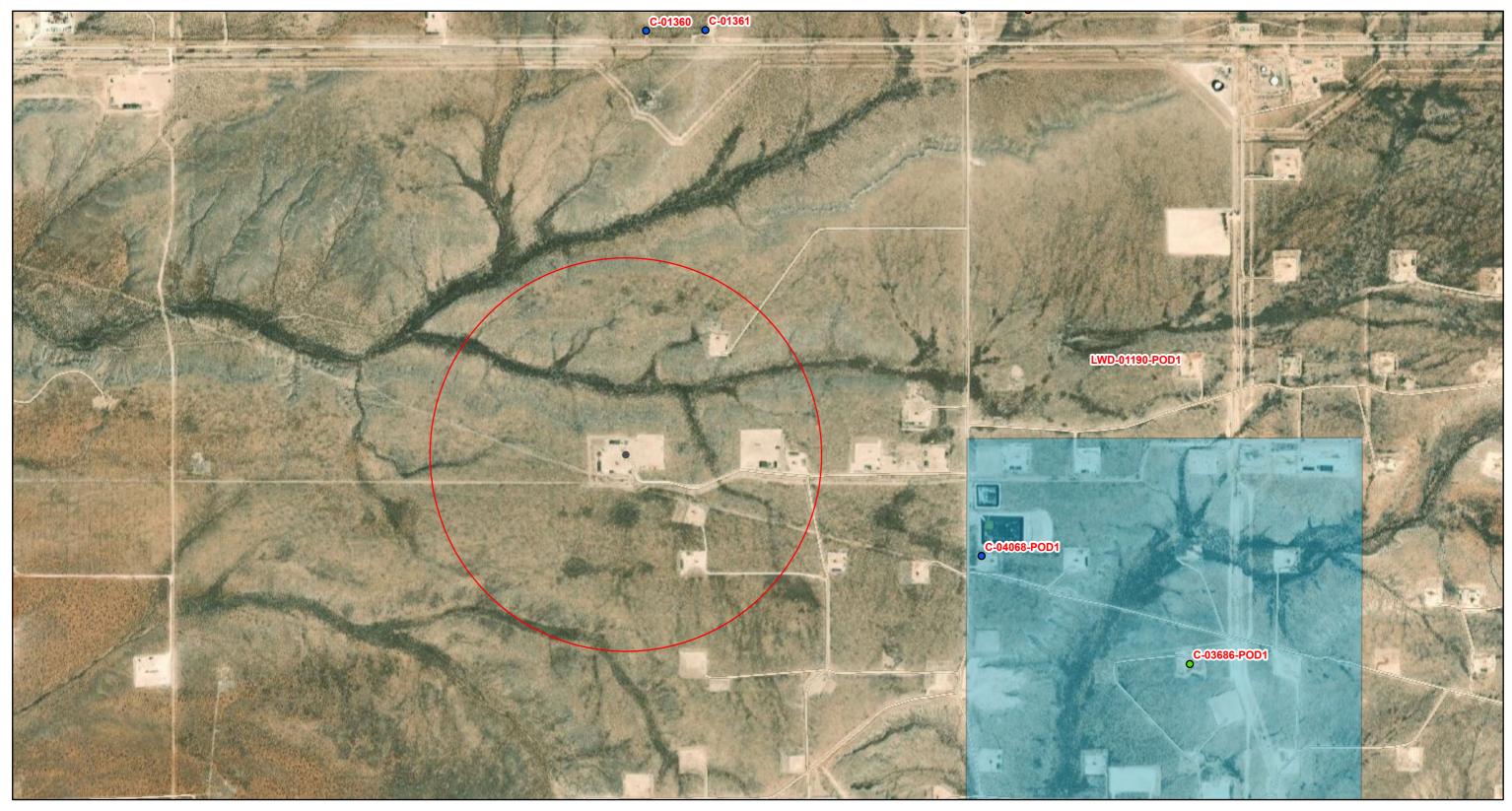

Freshwater Forested/Shrub Wetland

Lake Other Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Released to Imaging: 12/14/2022 2:19:12 PM

National Wetlands Inventory (NWI) This page was produced by the NWI mapper


(quarters are 1=NW 2=NE 3=SW 4=SE)		
	(quarters are smallest to largest)	(NAD83 UTM in meters)
Well Tag POD Number C 04068 POD1	Q64 Q16 Q4 Sec Tws Rng 1 3 1 16 26S 30E	X Y 604397 3546018
Driller License: 1249	Driller Company: ATKINS	ENGINEERING ASSOC. INC.
Driller Name: JACKIE D ATKINS		
Drill Start Date: 05/11/2017	Drill Finish Date: 05/12/2	017 Plug Date:
Log File Date: 05/17/2017	PCW Rcv Date:	Source:
Pump Type:	Pipe Discharge Size:	Estimated Yield:
Casing Size:	Depth Well:	Depth Water:

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

5/4/22 2:53 PM

POINT OF DIVERSION SUMMARY

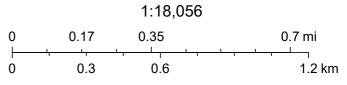
OSE POD Locations 0.5 miles

5/4/2022, 2:50:56 PM

GIS WATERS PODs •

0 Active

0


Plugged

Pending

New Mexico State Trust Lands Both Estates

OSE District Boundary

SiteBoundaries

Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community, Esri, HERE, Garmin, (c) OpenStreetMap contributors, Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community, U.S. Department of Energy Office of Legacy

New Mexico Office of the State Engineer Water Right Summary

	WR File	Number:	C 03483	3		Subbasin:	С	Cross Re	ference:	-	
2	Primary	Purpose:	STK	72-12-1	LIVE	STOCK WAT	ERING				
et image list	Primary	Status:	PMT	PERMI	Т						
	Total Acr	es:				Subfile:	-			Header: -	
	Total Div	ersion:	3			Cause/Cas	e: -				
		Owner:	DBA PA	SCHAL	RAN	CH LLC					
	C	Contact:	JANEY	LOREE	PASC	HAL					
ocument	x on File										
				Statu	18			From/			
	Trn # D	oc File	e/Act	1	2 T	Transaction Des	c.	То	Acres	Diversion	Consumptive
	<u>721910 CO</u>	WNF 20	22-03-17	CHG F	RC C	C 03483 POD1		Т		0	
g <u>et</u> <u>images</u>	<u>588093 721</u>	<u>121 2016</u>	<u>-05-31</u>	PMT A	APR C	C 03483 POD1		Т		3	
g <u>et</u> images	<u>543409 CO</u>	WNF 20	14-03-17	CHG F	RC C	C 03483		Т	0	0	
get images	<u>476565 EX</u>	PL 2011	<u>-04-15</u>	PMT L	OG C	C 03483		Т	0	0	
urrent P	x Points of Div	version									
				Q		(NAD83 UTN	M in meters)			
POD 1 <u>C 034</u>	Number 83	Well	-			Sec Tws Rng 05 26S 30E	X 604296	¥ 3548251) .5 MI E	Location Des . OF C-	
<u>C 034</u>	83 POD2				3 3	04 26S 30E	604566	3548253 🧲	1361;PI	IPELINE RD	
<u>C 034</u>	83 POD3			4	3 3	04 26S 30E	604558	3548291	5		
ource	х										
		Acres D	iversion	CU	Use	Priority	Source De	scription			
							GW				

5/4/22 2:44 PM

WATER RIGHT SUMMARY

Received by OCD: 9/26/2022 8:01:49 AM

New Mexico Office of the State Engineer Water Right Summary

P	WR File Num	nber: C 04	068		Subbasin:	CUB	Cross Refe	erence:	-	
	Primary Purp	pose: EXP	EXP	LORA	ΓΙΟΝ					
<u>get image list</u>	Primary State	us: PM7	r peri	MIT						
	Total Acres:				Subfile:	-			Header:	-
	Total Diversio	on: 0			Cause/Case	: -				
	Use	er: RKI	EXPLOR	RATIO	N & PROD., LLC	2				
	Conta	act: JUS	ΓIN BAR	MORE	Ξ					
Document	s on File									
			St	atus			From/			
_	Trn # Doc	File/Act	1	2	Transaction Desc	c.	То	Acres	Diversion	Consumptive
images get	606777 EXPL	2017-05-08	PMT	APR	C 04068 POD1		Т	0	0	
Current P	x oints of Diversion	on			0	NAD83 UT	M in meters)			
			(Q	(-					
POD N	Number	Well Tag	Source (64Q160	Q4Sec Tws Rng	Х	Y	Other l	Location De	sc
<u>C 0406</u>	<u>68 POD1</u>			1 3	1 16 26S 30E	604397	3546018 🧉	SB-1		

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

5/4/22 2:53 PM

WATER RIGHT SUMMARY

New Mexico Office of the State Engineer

Active & Inactive Points of Diversion (with Ownership Information)

		(acre ft per annu	m)				(R=POD has been replaced and no longer serves this file, C=the file is closed)		rs are sn	nallest		SW 4=SE) st)	(NAD8	3 UTM in meter	rs)
VR File Nbr	Sub basin CUB	Use Diversion	n Owner 0 EL PASO NATURAL GAS	County ED	POD Number <u>C 01360</u>	Well Tag	Code Grant	Source Shallow		4 Sec	Tws 26S		X 02996	¥ 3548152 🍋	Distance 1735
01361	CUB	IND	0 EL PASO NATURAL GAS	ED	<u>C 01361</u>			Shallow	3 4 3	3 05	26S	30E 6	03240	3548157 🧉	1766
03448	С	PRO	0 DEVON ENERGY CORP.	ED	<u>C 01360</u>			Shallow	4 3 3	3 05	26S	30E 6	02996	3548152 🧉	1735
03449	С	PRO	0 OGX RESOURCES	ED	<u>C 01360</u>			Shallow	4 3 3	3 05	26S	30E 6	02996	3548152	1735
03483	С	STK	3 DBA PASCHAL RANCH LLC	ED	<u>C 03483</u>			Shallow	444	4 05	26S	30E 6	04296	3548251	2286
				ED	<u>C 03483 POD2</u>				3 3	3 04	26S	30E 6	04565	3548253	2458
				ED	<u>C 03483 POD3</u>				4 3 3	3 04	26S	30E 6	04557	3548291 🧉	2481
03501	С	PRO	0 DEVON ENERGY CO.	ED	<u>C 03483</u>			Shallow	444	4 05	26S	30E 6	04296	3548251	2286
03502	С	PRO	0 DEVON ENERGY CO	ED	<u>C 03483</u>			Shallow	444	4 05	26S	30E 6	04296	3548251 🧉	2286
03503	С	PRO	0 DEVON ENERGY CO.	ED	<u>C 03483</u>			Shallow	444	4 05	26S	30E 6	04296	3548251	2286
03581	CUB	EXP	0 BUREAU OF LAND MANAGEMENT	ED	<u>C 03581 POD1</u>			Shallow	444	4 05	26S	30E 6	04298	3548291	2320
03608	С	PRO	0 DEVON ENERGY CORP.	ED	<u>C 03581 POD1</u>			Shallow	444	4 05	26S	30E 6	04298	3548291	2320
03686	CUB	CPS	0 C P MASTERS INC	ED	<u>C 03686 POD1</u>				1 1 4	4 16	26S	30E 6	05257	3545585	2471
03792	С	STK	3 BECKHAM RANCH INC	ED	<u>C 03792 POD1</u>				1 1 1	29	26S	30E 6	02879	3543094 🧉	3324
03793	С	STK	3 BECKHAM RANCH INC	ED	<u>C 03793 POD1</u>				142	2 30	26S	30E 6	02348	3542716	3747
04068	CUB	EXP	0 RKI EXPLORATION & PROD., LLC	ED	<u>C 04068 POD1</u>				1 3 1	16	26S	30E 6	04397	3546018	1520
04561	CUB	MON	0 WSP GLOBAL INC	ED	<u>C 04561 POD1</u>	NA			4 3 3	3 24	26S	29E 5	99923	3543208	4397
04612	С	STK	3 BUREAU OF LAND MANAGEMENT	ED	<u>C 04612 C-3581</u>	NA			444	4 05	26S	30E 6	04298	3548291	2320
WD 01190	CUB	PLS 8	.1 BUCK & LARUE JACKSON TRUST	ED	LWD 01190 POD1				143	3 09	26S	30E 6	04838	3546802*	1946
Record Count:	19													_	
UTMNAD83	Radius	<u>Search (in met</u>	ers):												
Easting (X): 6029	930	Northing (Y): 3546418		Radius: 5000										
Sorted by: F	ile Numl	ber													
UTM location w	as derive	d from PLSS - se	e Help												

5/4/22 2:28 PM

ACTIVE & INACTIVE POINTS OF DIVERSION

Received by OCD: 9/26/2022 8:01:49 AM RDX Federal 17 #035H

285

Real Property

Malaga

20

Nearest Town: Malaga, NM Distance: 14.96 miles (79,000 feet) LegendPage 40 of 89RDX Federal 17 #035H

RDX Federal 17 #035H

1 8

1 h . has all and

I

U.S. Fish and Wildlife Service

National Wetlands Inventory

Riparian Zone 484 feet

Lake

Other

Riverine

Freshwater Emergent Wetland

Freshwater Pond

Freshwater Forested/Shrub Wetland

May 4, 2022

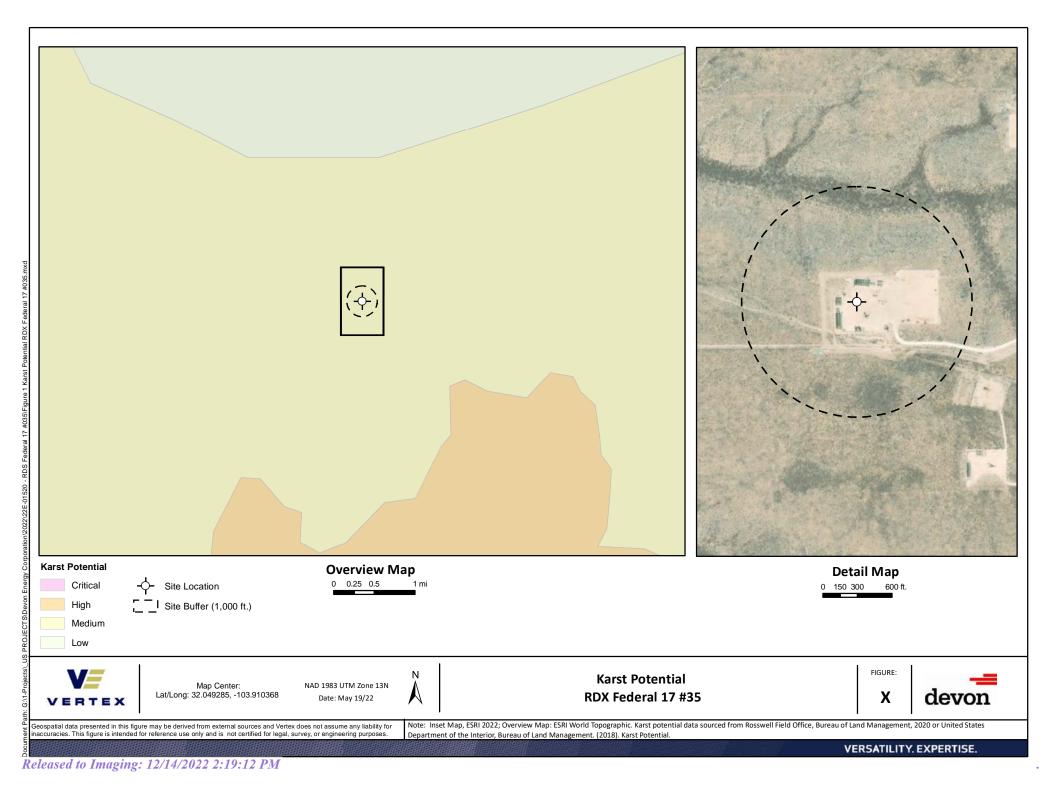
Wetlands

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland

- Released to Imaging: 12/14/2022 2:19:12 PM

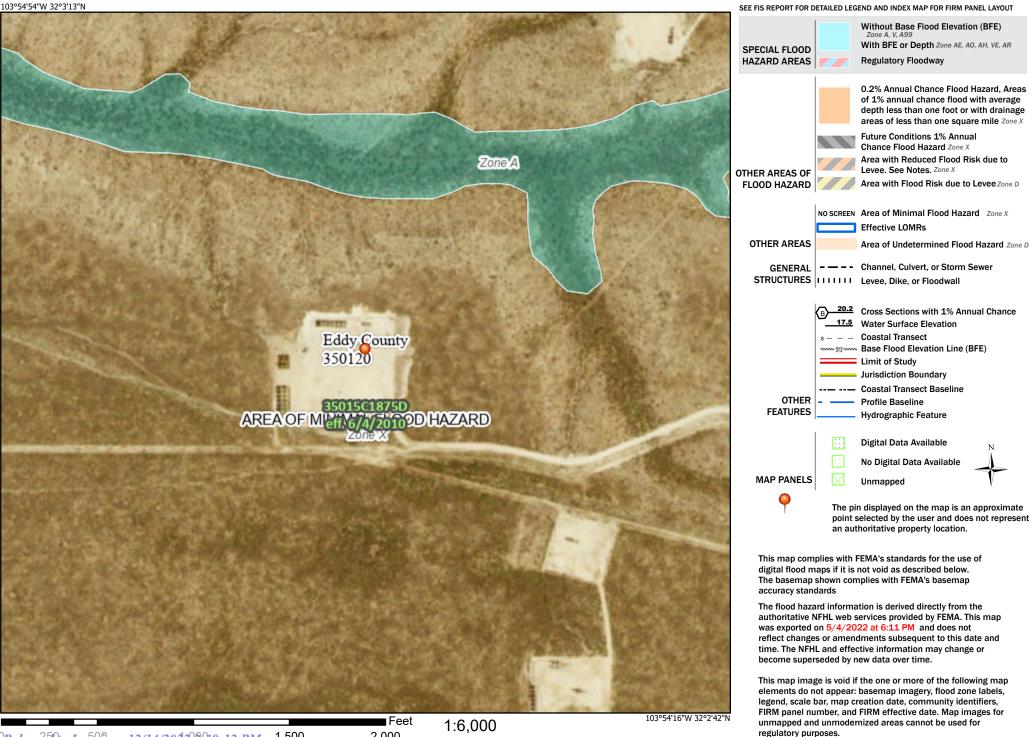
This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Active Mines in New Mexico


P + 6 + 2 + 4 * 0 + 1 m m m	_							1			1.
10^{10} 11^{11}		Part 10	- 9.7	12	7	8	0	10	11	12	
T255 R99E IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		TCKELL D	raw							1.5.	5
T255 R99E IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII											
T255 R99E IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	,	A								Rea.	
27 22 31 31 32 21 22 23 34 10 21 22 23 24 34 27 26 25 80 30 21 27 26 25 33 34 35 38 31 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 36 31 32 31 34 35 36 31 32 31 34 35 36 31 31 32 31	-	16 15	14	13	18	17	16	15	14	13	
27 22 31 31 32 21 22 23 34 10 21 22 23 24 34 27 26 25 80 30 21 27 26 25 33 34 35 38 31 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 36 31 32 31 34 35 36 31 32 31 34 35 36 31 31 32 31	2	1. 14 8					TOFO	D2.05	145		
31 27 26 25 58 28 28 20 27 26 25 31 34 35 38 31 32 33 34 35 39 31 34 35 38 31 32 33 34 35 39 4 3 22 1 6 3 4 3 22 1 6 3 4 3 22 1 6 3 4 3 22 1 6 10 11 12 1 6 3 4 3 22 1 10 11 12 1 6 3 4 3 22 1 10 11 12 1 10 11 12 11 13 12 12 13 14 13 14 13 14 13 12 12 12 13 14 10 15 20 17 16 25 13<		T25S R29E					1203	K3UC	(
31 27 76 25 30 70 27 26 25 32 34 35 36 31 32 33 34 35 80 31 34 35 36 31 32 33 34 35 80 4 3 2 1 6 5 4 3 2 1 10 11 12 1 6 5 4 3 2 1 10 11 12 1 6 5 4 3 2 1 10 11 12 1 12 1 12 13 12 23 24 14 10 12 13 14 13 12 23 24 36 36 20 27 23 9 9 9 12 23 36 36 20 27 24	e.	21- 22	23	24	19	20	21	22	23	24	
33 34 35 36 31 32 33 34 35 36 3 3 2 1 6 3 6 3 2 1 3 3 2 1 6 3 6 3 2 1 3 3 2 1 6 3 6 3 2 1 3 10 11 12 1 6 3 6 9 10 11 12 10 11 12 1 <	1	- By a	1. 11	12.7 1	and the	115		18	2. 28.		
33 34 35 36 31 32 33 34 35 36 3 3 2 1 6 3 6 3 2 1 3 3 2 1 6 3 6 3 2 1 3 3 2 1 6 3 6 3 2 1 3 10 11 12 1 6 3 6 9 10 11 12 10 11 12 1 <									(
33 34 35 36 31 32 33 34 35 36 3 3 2 1 6 3 6 3 2 1 3 3 2 1 6 3 6 3 2 1 3 3 2 1 6 3 6 3 2 1 3 10 11 12 1 6 3 6 9 10 11 12 10 11 12 1 <	2	1. 1. 1.	¥ 1.5.5	19.15	1. A. A.	1 5	11-22		200 °		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	28 27	26	25	30	29	28	27	26	25	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-81				-				1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-					3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		33 34	35	36	31	32	33	34	35	36	
10 11 12 7 9 9 10 11 12 16 15 14 13 18 17 16 15 14 13 21 22 23 24 19 20 21 22 23 4 7 PHANT 9M 28 27 26 25 30 29 28 27 26 25 33 34 35 36 31 32 33 34 35 36		2 1						1		2 1	
10 11 12 7 9 9 10 11 12 16 15 14 13 18 17 16 15 14 13 21 22 23 24 19 20 21 22 23 4 7 PHANT 9M 28 27 26 25 30 29 28 27 26 25 33 34 35 36 31 32 33 34 35 36						<u>.</u>					
10 11 12 7 9 9 10 11 12 16 15 14 13 18 17 16 15 14 13 21 22 23 24 19 20 21 22 23 4 7 PHANT 9M 28 27 26 25 30 29 28 27 26 25 33 34 35 36 31 32 33 34 35 36	ß	St. S.			1 1 L L	- 1.00	1 it	19 -	2.3	1 - E -	
b 10 11 12 7 N N N 0 10 11 12 16 15 14 13 18 17 16 15 14 13 21 22 23 24 19 20 21 22 23 24 28 27 26 25 30 29 28 27 26 25 33 34 36 36 31 32 33 34 35 36	-	4 1 3	2	1	6	5	4	3	2	_'~	
b 10 11 12 7 N N N 0 10 11 12 16 15 14 13 18 17 16 15 14 13 21 22 23 24 19 20 21 22 23 24 28 27 26 25 30 29 28 27 26 25 33 34 36 36 31 32 33 34 35 36	2	1 4 1 V 1	- 1	8 A /		The second second		- B	15		
0 10 11 12 7 8 9 10 11 12 10 15 14 13 18 17 16 0 15 14 13 10 15 14 13 18 17 16 0 15 14 13 12 22 23 24 19 20 21 22 23 24 21 22 23 24 19 20 21 22 23 24 28 27 28 25 30 29 28 27 26 25 33 34 36 36 31 32 33 34 35 36	-	1	read of 7			. a	- 44	<u> </u>			
Image:	Ż	9 10	11	12	111 100	D ₈	9	10	1 11	12	
16 15 14 13 18 17 16 15 14 13 21 22 23 24 19 20 21 22 23 24 28 27 26 25 30 29 28 27 26 25 33 34 35 36 31 32 33 34 35 36		1 3 1 - M.	- 12 1	1 - 20	us h y	- 12-2		1	Jun		
T26S R29E 14 13 10 11 T26S R30E 11				B		-					
T26S R29E 14 13 10 11 T26S R30E 11		Stand of the	121				2 - 4	100 A			
21 22 23 24 19 20 21 22 23 24 28 27 26 25 30 20 28 27 26 25 33 34 35 36 31 32 33 34 35 36		a the second sec	14	13	18	17			14	13	
28 27 26 25 30 29 28 27 26 25 33 34 35 36 31 32 33 34 35 36		IZ65 KZ9E	18 -		1	1	Q 1203	ROUE	in a		
28 27 26 25 30 29 28 27 26 25 33 34 35 36 31 32 33 34 35 36		314				JAN 19	8			Prov	
28 27 26 25 30 29 28 27 26 25 33 34 35 36 31 32 33 34 35 36		21 22		24	10	20	21	22	23	24	1
28 27 26 25 30 20 28 27 26 25 33 34 35 36 31 32 33 34 35 36	2		23	1 1 -	the start	4					8 M
28 27 26 25 30 29 28 27 26 25 33 34 36 36 31 32 33 34 35 36											
33 34 36 31 32 33 34 35 36	1	THE YOU	1		12.10	K					
33 34 36 36 31 32 33 34 35 36		28 27	26	25	30	29	28	27	26	25	
				2 12		hij -		1			
		33 34	3 <mark>5</mark>	36	31	32	33	34	35	36	
			1 22/	-	2						

EMNRD MMD GIS Coordinator

Released to Imaging: 12/14/2022 2:19:12 PM NM Energy, Minerals and Natural Resources Department (http://nm-emnrd.maps.arcgis.com/apps/webappviewer/index.html?id=1b5e577974664d689b47790897ca2795)



Received by OCD: 9/26/2022 8:01:49,AM National Flood Hazard Layer FIRMette

Legend

Page 44 of 89

Release 4 to Imaging: 12/14/2022 2999:12 PM 1,500 2.000

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Eddy Area, New Mexico

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

•

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	
Map Unit Legend	
Map Unit Descriptions	
Eddy Area, New Mexico	
PS—Potter-Simona complex, 5 to 25 percent slopes	
US—Upton-Simona complex, 1 to 15 percent slopes, eroded	15
References	18

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic classes has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

.

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Received by OCD: 9/26/2022 8:01:49 AM

Page 53 of 89

.

•

Custom Soil Resource Report

		EGEND		MAP INFORMATION		
	st (AOI) rea of Interest (AOI)	e	poil Area tony Spot	The soil surveys that comprise your AOI were mapped at 1:20,000.		
Soils Soils Soils So Special Point So Special Point So Cira Ci	bil Map Unit Polygons bil Map Unit Lines bil Map Unit Points	Image: Solution of the sector of the sec	ery Stony Spot /et Spot /ther pecial Line Features 25 treams and Canals	 1:20,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data a of the version date(s) listed below. Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 17, Sep 12, 2021 Soil map units are labeled (as space allows) for map scales 		
☆ Sir }> Sli	everely Eroded Spot nkhole ide or Slip odic Spot			 1:50,000 or larger. Date(s) aerial images were photographed: Feb 7, 2020—May 12, 2020 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. 		

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
PS	Potter-Simona complex, 5 to 25 percent slopes	0.0	0.2%
US	Upton-Simona complex, 1 to 15 percent slopes, eroded	14.2	99.8%
Totals for Area of Interest		14.3	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Eddy Area, New Mexico

PS—Potter-Simona complex, 5 to 25 percent slopes

Map Unit Setting

National map unit symbol: 1w57 Elevation: 2,750 to 5,000 feet Mean annual precipitation: 8 to 16 inches Mean annual air temperature: 57 to 70 degrees F Frost-free period: 180 to 230 days Farmland classification: Not prime farmland

Map Unit Composition

Potter and similar soils: 80 percent Simona and similar soils: 15 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Potter

Setting

Landform: Ridges, hills Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope Landform position (three-dimensional): Side slope, crest, nose slope, head slope Down-slope shape: Convex Across-slope shape: Linear Parent material: Alluvium

Typical profile

H1 - 0 to 10 inches: gravelly loam H2 - 10 to 60 inches: cemented material

Properties and qualities

Slope: 5 to 25 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 60 percent
Maximum salinity: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: Very low (about 1.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: R042XC025NM - Shallow Hydric soil rating: No

Description of Simona

Setting

Landform: Plains, alluvial fans Landform position (three-dimensional): Rise Down-slope shape: Convex, linear Across-slope shape: Linear Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 11 inches: gravelly fine sandy loam
H2 - 11 to 19 inches: gravelly fine sandy loam
H3 - 19 to 60 inches: cemented material

Properties and qualities

Slope: 5 to 10 percent
Depth to restrictive feature: 7 to 20 inches to petrocalcic
Drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: Very low (about 2.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: D Ecological site: R042XC002NM - Shallow Sandy Hydric soil rating: No

Minor Components

Simona

Percent of map unit: 3 percent Ecological site: R042XC002NM - Shallow Sandy Hydric soil rating: No

Rock outcrop

Percent of map unit: 2 percent Hydric soil rating: No

US—Upton-Simona complex, 1 to 15 percent slopes, eroded

Map Unit Setting

National map unit symbol: 1w66 Elevation: 2,000 to 5,700 feet Mean annual precipitation: 6 to 14 inches Mean annual air temperature: 57 to 70 degrees F Frost-free period: 180 to 260 days Farmland classification: Not prime farmland

Map Unit Composition

Upton and similar soils: 40 percent *Simona and similar soils:* 35 percent *Minor components:* 25 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Upton

Setting

Landform: Ridges, fans Landform position (three-dimensional): Side slope, rise Down-slope shape: Convex Across-slope shape: Convex Parent material: Residuum weathered from limestone

Typical profile

H1 - 0 to 9 inches: gravelly loam

H2 - 9 to 13 inches: gravelly loam

H3 - 13 to 21 inches: cemented

H4 - 21 to 60 inches: very gravelly loam

Properties and qualities

Slope: 1 to 15 percent
Depth to restrictive feature: 7 to 20 inches to petrocalcic
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high (0.01 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 75 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: Very low (about 1.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s

Custom Soil Resource Report

Hydrologic Soil Group: D *Ecological site:* R042XC025NM - Shallow *Hydric soil rating:* No

Description of Simona

Setting

Landform: Plains, alluvial fans Landform position (three-dimensional): Rise Down-slope shape: Convex, linear Across-slope shape: Linear Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 6 inches: gravelly fine sandy loam *H2 - 6 to 20 inches:* gravelly fine sandy loam *H3 - 20 to 24 inches:* indurated

Properties and qualities

Slope: 1 to 5 percent
Depth to restrictive feature: 7 to 20 inches to petrocalcic
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: Very low (about 2.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: D Ecological site: R042XC002NM - Shallow Sandy Hydric soil rating: No

Minor Components

Rock outcrop

Percent of map unit: 9 percent Hydric soil rating: No

Dune land

Percent of map unit: 8 percent Hydric soil rating: No

Pajarito

Percent of map unit: 8 percent Ecological site: R042XC003NM - Loamy Sand Hydric soil rating: No

•

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

USDA Natural Resources Conservation Service

Ecological site R042XC002NM Shallow Sandy

Accessed: 05/04/2022

General information

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

Associated sites

R042XC004NM	Sandy
	Sandy sites often occur in association or in a complex with Shallow Sandy Sites.

Similar sites

ſ	R042XC004NM	Sandy
		Sandy ecological sites are similar to Shallow Sandy sites in species composition and Transition pathways.

Table 1. Dominant plant species

Tree	Not specified
Shrub	Not specified
Herbaceous	Not specified

Physiographic features

This site occures on plains, alluvial fans, uplands, or fan piedmonts. The parent material consists of mixed loamy alluvium or eolian material derived from igneous and sedimentory bedrock. The petrocalcic layer is at a depth of 10 to 25 inches and undulating.

Slopes are nearly level to undulating, usually less than 9 percent. Elevations range from 2,842 to 4,500 feet.

Table 2. Representative physiographic features

Landforms	(1) Plain(2) Fan piedmont(3) Alluvial fan
Elevation	2,842–4,500 ft
Slope	1–9%
Aspect	Aspect is not a significant factor

Climatic features

The average annual precipitation ranges from 8 to 13 inches. Variations of 5 inches, more or less, are common. Over 80 percent of the precipitation falls from April through October. Most of the summer precipitation comes in the form of high intensity – short duration thunderstorms.

Temperatures are characterized by distinct seasonal changes and large annual and diurnal temperature changes. The average annual temperature is 61 degrees with extremes of 25 degrees below zero in the winter to 112 degrees in the summer.

The average frost-free season is from 207 to 220 days. The last killing frost is in late March or early April, and the first killing frost is in late October or early November.

Temperature and rainfall both favor warm season perennial plant growth. In years of abundant spring moisture, annual forbs and cool season grasses can make up an important component of the site. The vegetation of this site can take advantage of the moisture and the time it falls. Because of the soil profile, little moisture can be stored in the soil for any length of time. Moisture is readily available to the plants from the time it falls. Strong winds from the southwest blow from January through June which rapidly dries out the soil profile during a critical period for plant growth.

Climate data was obtained from http://www.wrcc.sage.dri.edu/summary/climsmnm.html web site using 50% probability for freeze-free and frost-free seasons using 28.5 degrees F and 32.5 degrees F respectively.

Frost-free period (average)	221 days
Freeze-free period (average)	240 days
Precipitation total (average)	13 in

Influencing water features

This site is not influenced from water from wetlands or streams.

Soil features

Soils are very shallow to shallow, less than 20 inches in depth. Surface and subsurface textures are gravelly loamy sand, gravelly fine sandy loam or fine sandy loam.

An indurated calache layer occurs at depths of 6 to 25 inches and is at an average of 15 inches from the surface. Underlying material textures are very gravelly fine sandy loam, very gravelly sandy loam, gravelly fine sandy loam. Gravels are calcium carbonate concretions, calcium carbonate content ranges from 30 to 65 percent.

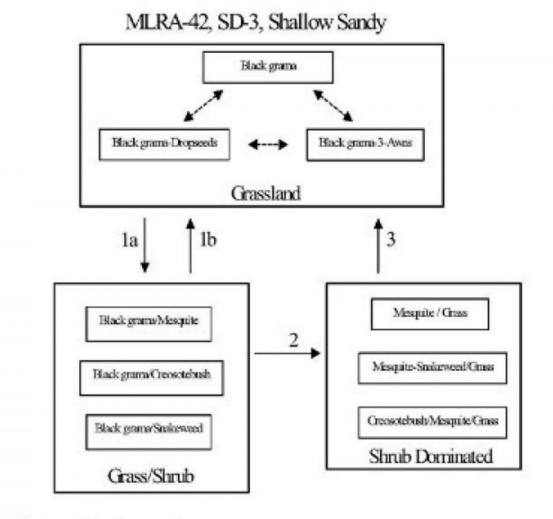
The indurated caliche layer typically holds water up in the profile for short periods within the root zone of plants. These soils will blow if left unprotected by vegetation.

Minimum and maximum values listed below represent the characteristic soils for this site.

Characteristic soils are: Simona Jerag

Table 4. Representative soil features

Surface texture	(1) Fine sandy loam(2) Loamy fine sand(3) Gravelly fine sandy loam
Family particle size	(1) Loamy
Drainage class	Well drained to moderately well drained
Permeability class	Moderately slow to moderate
Soil depth	7–24 in
Surface fragment cover <=3"	5–25%
Surface fragment cover >3"	0%
Available water capacity (0-40in)	1–2 in
Calcium carbonate equivalent (0-40in)	5–15%
Electrical conductivity (0-40in)	0–4 mmhos/cm
Sodium adsorption ratio (0-40in)	0
Soil reaction (1:1 water) (0-40in)	7.4–8
Subsurface fragment volume <=3" (Depth not specified)	5–25%
Subsurface fragment volume >3" (Depth not specified)	0%


Ecological dynamics

Overview

The Shallow Sandy site occurs on upland plains, and tops of low ridges and mesas, associated with Sandy, Loamy Sand, and Shallow sites. Coarse to moderately coarse soil surface textures, shallow depth (<20 inches) to an indurated caliche layer (petrocalcic horizon), and an overwhelming dominance by black grama help to distinguish this site. The historic plant community of the Shallow Sandy site is a black grama dominated grassland sparsely dotted with shrubs. Shrubs, especially mesquite and creosotebush can increase or colonize due to the dispersal of shrub seeds by livestock or wildlife. This increase in mesquite and colonization of creosotebush may be enhanced by proximity to areas with existing high shrub densities. Fire suppression, and the loss of grass cover due to overgrazing or drought may facilitate the increase and encroachment of shrubs. Persistent loss of grass cover, competition for resources by shrubs, and periods of climate with increased winter precipitation and dry summers, may initiate the transition to a shrub-dominated state.

State and transition model

Plant Communities and Transitional Pathways (diagram)

1a. Seed dispersal, drought, overgrazing, fire suppression.

1b. Prescribed fire, brush control, prescribed grazing.

2. Persistent loss of grass cover, resource competition, increased winter precipitation.

3. Brush control, range seeding, prescribed grazing,

Figure 4.

State 1 Historic Climax Plant Community

Community 1.1 Historic Climax Plant Community

Grassland: This site responds well to management and is resistant to state change, due to the shallow depth to petrocalcic horizon and sandy surface textures. The sandy surface textures allow rapid water infiltration and the petrocalcic horizon helps to keep water perched and available to shallow rooted grasses. Black grama is the dominant species in the historic plant community, averaging 50 to 60 percent of the total production for this site. Bush muhly, blue grama, and dropseeds are present as sub-dominants. Typically, yucca, javalinabush, range

Received by OCD: 9/26/2022 8:01:49 AM

ratany, prickly pear, and mesquite are sparsely dotted across the landscape. Leatherweed croton, cutleaf happlopappus, wooly groundsel, and threadleaf groundsel are common forbs. Continuous heavy grazing or extended periods of drought will cause a loss of grass cover characterized by a decrease in black grama, bush muhly, blue and sideoats grama, plains bristlegrass, and Arizona cottontop. Dropseeds and or threeawns may increase and become sub-dominant to black grama. Continued loss of grass cover in conjunction with dispersal of shrub seeds and fire suppression is believed to cause the transition to a state with increased amounts of shrubs (Grass/Shrub state).

Diagnosis: Black grama is the dominant grass species. Grass cover uniformly distributed. Shrubs are a minor component averaging only two to five percent canopy cover. Litter cover is high (40-50 percent of area), and litter movement is limited to smaller size class litter and short distances (<. 5m).

Other grasses that could appear on this site would include: six-weeks grama, fluffgrass, false-buffalograss, hairy grama, little bluestem, bristle panicum, cane bluestem, Indian ricegrass, tridens spp., and red lovegrass.

Other woody plants include: pricklypear, cholla, fourwing saltbush, catclaw mimosa, winterfat, American tarbush and mesquite.

Other forbs include: globemallow, verbena, desert holly, senna, plains blackfoot, trailing fleabane, fiddleneck, deerstongue, wooly Indianwheat, and locoweed.

Table 5. Annual production by plant type

Plant Type	Low (Lb/Acre)	Representative Value (Lb/Acre)	
Grass/Grasslike	474	652	830
Forb	78	107	136
Shrub/Vine	48	66	84
Total	600	825	1050

Table 6. Ground cover

Tree foliar cover	0%
Shrub/vine/liana foliar cover	0%
Grass/grasslike foliar cover	30-35%
Forb foliar cover	0%
Non-vascular plants	0%
Biological crusts	0%
Litter	40-50%
Surface fragments >0.25" and <=3"	0%
Surface fragments >3"	0%
Bedrock	0%
Water	0%
Bare ground	15-25%

Figure 6. Plant community growth curve (percent production by month). NM2802, R042XC002NM-Shallow Sandy-HCPC. SD-3 Shallow Sandy - Warm season plant community.

Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	3	5	10	10	25	30	12	5	0	0

Grass/Shrub

Community 2.1 Grass/Shrub

Grass/Shrub: This state is characterized by the notable presence of shrubs, especially mesquite, broom snakeweed, and/or creosotebush, however grasses remain as the dominant species. Black grama is the dominant grass species. Threeawns and or dropseeds are sub-dominant. The susceptibility of the Shallow Sandy site to shrub encroachment may be higher when located adjacent to other sites with high densities of mesquite or creosotebush. Retrogression within this site is characterized by decreases in grass cover and increasing densities of shrubs.

Diagnosis: Black grama remains as the dominant grass species. Grass cover varies in response to the amount of shrub increase, ranging from uniform to patchy. Shrubs are found at increased densities relative to the grassland state, especially mesquite, creosotebush, or broom snakeweed.

Transition to Grass/Shrub (1a) Historically fire may have kept mesquite and other shrubs in check by completely killing some species and disrupting seed production cycles and suppressing the establishment of shrub seedlings in others. Fire suppression combined with seed dispersal by livestock and wildlife is believed to be the factors responsible for the establishment and increase in shrubs.1, 3 Loss of grass cover due to overgrazing, prolonged periods of drought, or their combination, reduces fire fuel loads and increases the susceptibility of the site to shrub establishment.

Key indicators of approach to transition: Increase in the relative abundance of dropseeds and threeawns Presence of shrub seedlings Loss of organic matter—evidenced by an increase in physical soil crusts 8

Transition back to Grassland (1b) Brush control is necessary to initiate the transition back to the grassland state. If adequate fuel loads remain, possibly the reintroduction of fire as a management tool will assist in the transition back, however, mixed results have been observed concerning the effects of fire on black grama grasslands.6 Prescribed grazing will help ensure adequate rest following brush control and will assist in the establishment and maintenance of grass cover capable of sustaining fire.

State 3 Shrub Dominated

Community 3.1 Shrub Dominated

Shrub-Dominated: Across the range of soil types included in the Shallow Sandy site, mesquite is typically the dominant shrub, but it does occur as a co-dominant or sub-dominant species with creosotebush or broom snakeweed. Mesquite tends to dominate when the Shallow Sandy site occurs as part of a complex or in association with Sandy or Loamy Sand sites. Creosotebush tends to dominate on Shallow Sandy sites that occur as part of, or adjacent to Shallow Sites. Broom snakeweed increases in response to heavy grazing, but tends to cycle in and out depending on timing of rainfall. However, once the site is dominated by shrubs and snakeweed becomes well established, it tends to remain as a major component in the shrub dominated state.

Diagnosis: Mesquite, creosotebush, or snakeweed cover is high, exceeding that of grasses. Grass cover is patchy with large connected bare areas present. Black grama, threeawns, or dropseeds may be the dominant grass. Evidence of accelerated wind erosion in the form of pedestalling of plants, and soil deposition around shrub bases may be common.

Transition to Shrub-Dominated (2) Persistent loss of grass cover and the resulting increased competition between shrubs and remaining grasses for dwindling resources (especially soil moisture) may drive this transition.5 Additionally periods of increased winter precipitation may facilitate periodic episodes of shrub expansion and establishment. 4

Key indicators of approach to transition:

Increase in size and frequency of bare patches.

Loss of grass cover in shrub interspaces.

Increased signs of erosion, evidenced by pedestalling of plants, and soil and litter deposition on leeward side of plants. 7

Transition back to Grassland (3) Brush control is necessary to reduce competition from shrubs and reestablish grasses. Range seeding may be necessary if insufficient grasses remain, The benefits, and costs, will vary depending upon the degree of site degradation, and adequate precipitation following seeding.

Additional community tables

Table 7. Community 1.1 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Lb/Acre)	Foliar Cover (%)
Grass	/Grasslike				
1	Warm Season	413–495			
	black grama	BOER4	Bouteloua eriopoda	413–495	_
2	Warm Season			41–83	
	bush muhly	MUPO2	Muhlenbergia porteri	41–83	_
3	Warm Season	•		41–83	
	blue grama	BOGR2	Bouteloua gracilis	41–83	_
4	Warm Season	•		25–41	
	sideoats grama	BOCU	Bouteloua curtipendula	25–41	_
5	Warm Season			41–83	
	spike dropseed	SPCO4	Sporobolus contractus	41–83	_
	sand dropseed	SPCR	Sporobolus cryptandrus	41–83	_
	mesa dropseed	SPFL2	Sporobolus flexuosus	41–83	-
6	Warm Season	17–41			
	threeawn	ARIST	Aristida	17–41	_
7	Warm Season			41–83	
	Arizona cottontop	DICA8	Digitaria californica	41–83	_
	plains bristlegrass	SEVU2	Setaria vulpiseta	41–83	-
8	Warm Season	41–83			
	mat sandbur	CELO3	Cenchrus longispinus	41–83	_
	hooded windmill grass	CHCU2	Chloris cucullata	41–83	-
9	Other Perennial Grasses			25–41	
	Grass, perennial	2GP	Grass, perennial	25–41	_
Shrub	/Vine				
10	Shrub	8–25			
	javelina bush	COER5	Condalia ericoides	8–25	_
11	Shrub	8–25			
	уисса	YUCCA	Yucca	8–25	_
12	Shrub	8–25			
	jointfir	EPHED	Ephedra	8–25	_
	littleleaf ratany	KRER	Krameria erecta	8–25	_
13	Shruh		•	R_25	

5	onius			0-20	
	featherplume	DAFO	Dalea formosa	8–25	-
14	Shrub	8–25			
	broom snakeweed	GUSA2	Gutierrezia sarothrae	8–25	_
15	Other Shrubs	-		25–41	
	Shrub (>.5m)	2SHRUB	Shrub (>.5m)	25–41	_
Forb		-			
16	Forb	17–41			
	leatherweed	CRPOP	Croton pottsii var. pottsii	17–41	_
	Goodding's tansyaster	MAPIG2	Machaeranthera pinnatifida ssp. gooddingii var. gooddingii	17–41	_
17	Forb	17–41			
	woolly groundsel	PACA15	Packera cana	17–41	-
	threadleaf ragwort	SEFLF	Senecio flaccidus var. flaccidus	17–41	-
18	Forb	8–25			
	whitest evening primrose	OEAL	Oenothera albicaulis	8–25	-
19	Other Forbs	8–25			
	Forb (herbaceous, not grass nor grass-like)	2FORB	Forb (herbaceous, not grass nor grass- like)	8–25	_

Animal community

This site provides habitats which support a resident animal community that is characterized by pronghorn antelope, swift fox, black-tailed jackrabbit, spotted ground squirrel, Ord's kangaroo rat, northern grasshopper mouse, coyote, horned lark, meadowlark, lark bunting, scaled quail, morning dove, side-blotched lizard, round-tailed horned lizard, marbled whiptail, prairie rattlesnake and ornate box turtle.

Hydrological functions

The runoff curve numbers are determined by field investigations using hydraulic cover conditions and hydrologic soil groups.

Hydrologic Interpretations Soil Series Hydrologic Group Jarag D Simona D

Recreational uses

This site offers recreation for hiking, horseback riding, nature observation and photography, and quail and dove hunting. During years of abundant spring moisture, this site displays a riot of color from wildflowers during May and June. A few summer and fall flowers also occur.

Wood products

The natural potential plant community of this site affords little or no wood products. Where the site has been invaded by mesquite or cholla cactus the roots and stems of these plants provide attractive material for a variety of curiosities, such as lamps and small furniture.

Other products

This site is suitable for grazing by all kinds and classes of livestock during all seasons of the year. Because of the sandy textures and shallow profile, this site will respond rapidly to management. As this site deteriorates, plants such as black grama, bush muhly, blue and sideoats grama, plains bristlegrass and Arizona cottontop, will decrease and be replaced by plants such as threeawns, mesquite, creosote bush, and broom snakeweed. This also causes a decrease in ground cover, leaving the soil to blow. This site responds best to a system of management that rotates the season of use.

Other information

Guide to Suggested Initial Stocking Rate Acres per Animal Unit Month Similarity Index Ac/AUM $100 - 76 \ 2.5 - 3.5$ $75 - 51 \ 3.2 - 4.6$ $50 - 26 \ 4.5 - 7.5$ $25 - 0 \ 7.6 +$

Inventory data references

Data collection for this site was done in conjunction with the progressive soil surveys within the Southern Desertic Basins, Plains and Mountains, Major Land Resource Areas of New Mexico. This site has been mapped and correlated with soils in the following soil surveys. Eddy County, Lea County, and Chaves County.

Other references

Literature References:

1. Brooks, M.L. and D.A. Pyke. 2001. Invasive plants and fire in the deserts of North America. Pages 1–14 in K.E.M. Galley and T.P. Wilson (eds.). Proceedings of the Invasive Species Workshop: the Role of Fire in the Control and Spread of Invasive Species.

2. Hennessy, J.T., R.P. Gibbens, J.M. Tromble, and M. Cardenas. 1983. Water properties of caliche. J. Range Manage. 36: 723-726.

3. Humphrey, R.R. 1974. Fire in the deserts and desert grassland of North America. In: Kozlowski, T. T.; Ahlgren, C. E., eds. Fire and ecosystems. New York: Academic Press: 365-400.

4. Moir, W.H., and J. A. Ludwig. 1991. Plant succession and changing land features in desert grasslands. P. 15-18. In P.F. Ffolliott and W.T. Swank (eds.) People and the temperate region: a summary of research from the United States Man and the Biosphere Program 1991. U.S. Dept. State, Publ No. 9839, Nat. Tech. Info. Serv., U.S. Dept. Commerce, Springfield, Illinois. 63 p.

5. Tiedemann, A. R. and J. O. Klemmedson. 1977. Effect of mesquite trees on vegetation and soils in the desert grassland. J. Range Manage. 30: 361-367.

6. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (2002, September). Fire Effects Information System, [Online]. Available: http://www.fs.fed.us/database/feis/ [accessed 2/10/03].

7. U.S. Department of Agriculture, Natural Resources Conservation Service. 2001. Soil Quality Information Sheets. Rangeland Soil Quality—Wind Erosion. Rangeland Sheet 10 [Online]. Available: http://www.statlab.iastate.edu/survey/SQI/range.html

8. U.S. Department of Agriculture, Natural Resources Conservation Service. 2001. Soil Quality Information Sheets. Rangeland Soil Quality—Physical and Biological Soil Crusts. Rangeland Sheet 7 [Online]. Available: http://www.statlab.iastate.edu/survey/SQI/range.html

Contributors

David Trujillo Don Sylvester

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	
Contact for lead author	
Date	
Approved by	
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

- 1. Number and extent of rills:
- 2. Presence of water flow patterns:
- 3. Number and height of erosional pedestals or terracettes:
- 4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):
- 5. Number of gullies and erosion associated with gullies:
- 6. Extent of wind scoured, blowouts and/or depositional areas:
- 7. Amount of litter movement (describe size and distance expected to travel):
- 8. Soil surface (top few mm) resistance to erosion (stability values are averages most sites will show a range of values):

- 9. Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):
- 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:
- 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):
- 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):

Dominant:

Sub-dominant:

Other:

Additional:

- 13. Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):
- 14. Average percent litter cover (%) and depth (in):
- 15. Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annualproduction):
- 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:
- 17. Perennial plant reproductive capability:

USDA Natural Resources Conservation Service

Ecological site R042XC025NM Shallow

Accessed: 05/04/2022

General information

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

Table 1. Dominant plant species

Tree	Not specified
Shrub	Not specified
Herbaceous	Not specified

Physiographic features

This site occurs on knolls, ridges, hillslopes alluvial fans and escarpments. Slopes range fro 0 to 25 percent and average about 7 percent. Direction of slope varies and is usually not significant. Elevations range from 2,842 to 4,500 feet.

•	
Landforms	(1) Hill(2) Ridge(3) Fan piedmont
Flooding frequency	None
Ponding frequency	None
Elevation	2,842–4,500 ft
Slope	0–25%
Aspect	Aspect is not a significant factor

Table 2. Representative physiographic features

Climatic features

The average annual precipitation ranges from 8 to 13 inches. Variations of 5 inches, more or less, are common. Over 80 percent of the precipitation falls from April through October. Most of the summer precipitation comes in the form of high intensity – short duration thunderstorms.

Temperatures are characterized by distinct seasonal changes and large annual and diurnal temperature changes. The average annual temperature is 61 degrees with extremes of 25 degrees below zero in the winter to 112 degrees in the summer.

The average frost-free season is 180 to 220 days. The last killing frost is late March or early April, and the first killing frost is in late October or early November.

Temperature and rainfall both favor warm season perennial plant growth. In years of abundant spring moisture, annual forbs and cool season grasses can make up an important component of this site. Because of the shallow soil depth, the vegetation on this site can take advantage of moisture almost anytime it falls. Strong winds that blow from the west and southwest blow from January through June, which accelerates soil drying at a critical time for cool season plant growth.

Climate data was obtained from http://www.wrcc.sage.dri.edu/summary/climsmnm.html web site using 50% probability for freeze-free and frost-free seasons using 28.5 degrees F and 32.5 degrees F respectively.

Table 3. Representative climatic features

Frost-free period (average)	220 days
Freeze-free period (average)	240 days
Precipitation total (average)	13 in

Influencing water features

This site is not influenced from water from wetlands or streams.

Soil features

The soils of this site are shallow to very shallow. Soils are derived from mixed calcareous eolian deposits derived from sedimentary rock. Surface layers are very cobbly loam, very gravelly loam, gravelly loam, cobbly loam, gravelly fine sandy loam or gravelly sandy loam.

There is an indurated caliche layer or limestone bedrock that occurs within 20 inches and averages less than 10 inches. Limestone or caliche layer may be the restrictive layer.

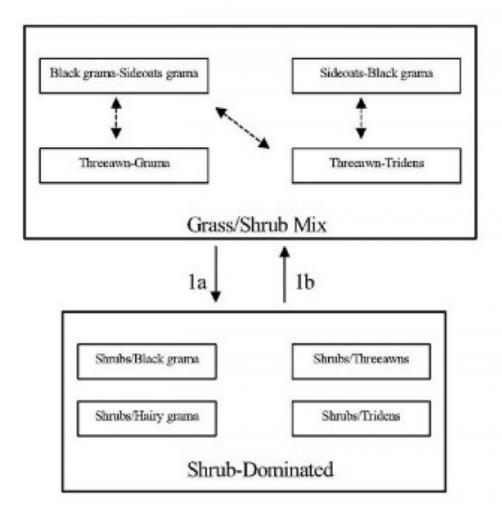
Minimum and maximum values listed below represent the characteristic soils for this site.

Characteristic soils:

Lozier Potter Tencee Upton Ector Kimbrough

Table 4. Representative soil features

Surface texture	(1) Gravelly loam(2) Extremely gravelly loam(3) Extremely cobbly loam
Family particle size	(1) Loamy
Drainage class	Well drained
Permeability class	Very slow to moderately slow
Soil depth	4–20 in
Surface fragment cover <=3"	15–40%
Available water capacity (0-40in)	1 in
Calcium carbonate equivalent (0-40in)	15–60%
Electrical conductivity (0-40in)	0–2 mmhos/cm
Sodium adsorption ratio (0-40in)	0–1
Soil reaction (1:1 water) (0-40in)	7.4–8.4
Subsurface fragment volume <=3" (Depth not specified)	13–42%
Subsurface fragment volume >3" (Depth not specified)	0–1%


Ecological dynamics

Overview:

The Shallow site is associated with and Limestone Hills, Loamy, and Shallow Sandy sites. When associated with Limestone Hills, the Shallow site occurs on the summits, foot slopes and toeslopes of hills. Loamy sites often occur as areas between low elongated hills with rounded crests (Shallow site). When the Shallow Sandy site and Shallow site occur in association, the Shallow Sandy soils occupy the tops of low ridges and the Shallow site soils occur on the steeper sideslopes of the ridge. The historic plant community of the Shallow site has the aspect of a grassland/shrub mix, dominated by grasses, but with shrubs common throughout the site. Black grama is the dominant grass species; creosotebush, mesquite, and catclaw mimosa are common shrubs. Overgrazing and or extended drought can reduce grass cover, effect a change in grass species dominance, and may result in a shrub-dominated state. 1

State and transition model

Plant Communities and Transitional Pathways (diagram)

MLRA-42, SD-3, Shallow

1a. Extended drought, overgrazing, no fire

1b. Brush control, Prescribed grazing

Figure 4.

State 1 Grass/Shrub Mix

Community 1.1 Grass/Shrub Mix

Grassland/Shrub Mix: The historic plant community is dominated by black grama with sideoats grama as the subdominant. Blue grama, hairy grama, bush muhly, and sand dropseed also occur in significant amounts. Sideoats grama can occur as the dominant grass with black grama as sub-dominant on the western side of the Land Resource Unit SD-3. This may be due to higher average elevation on the west side. Retrogression within this state due to extended drought or overgrazing will cause a decrease in species such as black grama, sideoats grama, blue grama, and bush muhly. Threeawns may become the dominant grass species due to a decline in more palatable grasses or because of its ability to quickly recover following drought. Continued loss of grass cover and associated increase in amount of bare ground may result in a shrub-dominated state. Decreased fire frequencies may also be

Received by OCD: 9/26/2022 8:01:49 AM

an important component in the cause of this transition.

Diagnosis: Grass cover is fairly uniform, however, surface gravel, cobble, and bare ground make up a large percent of total ground cover, and grass production during unfavorable years may only average 150-175 pounds per acre. Shrubs are common with canopy cover averaging five to ten percent. Evidence of erosion such as rills and gullies are rare, but may occur on slopes greater than eight percent.

Table 5. Annual production by plant type

Plant Type	Low (Lb/Acre)	Representative Value (Lb/Acre)	
Grass/Grasslike	168	352	536
Shrub/Vine	63	131	200
Forb	20	42	64
Total	251	525	800

Table 6. Ground cover

Tree foliar cover	0%
Shrub/vine/liana foliar cover	5-10%
Grass/grasslike foliar cover	10-15%
Forb foliar cover	0%
Non-vascular plants	0%
Biological crusts	0%
Litter	5-8%
Surface fragments >0.25" and <=3"	0%
Surface fragments >3"	0%
Bedrock	0%
Water	0%
Bare ground	40-60%

Figure 6. Plant community growth curve (percent production by month). NM2825, R042XC025NM Shallow HCPC. R042XC025NM Shallow HCPC Warm Season Plant Community.

Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	3	5	10	10	25	30	12	5	0	0

State 2 Shrub-Dominated

Community 2.1 Shrub-Dominated

Shrub-Dominated: This state is characterized by an increase in shrubs and a decrease in grass cover relative to grassland/shrub mix. As grass cover decreases shrubs increase, especially creosotebush, catclaw mimosa, whitethorn acacia, and mesquite. Each of these shrub species may become dominant in localized areas or across the site, depending on the spatial variability in soil characteristics and landscape position. Black grama, threeawns, hairy grama, or hairy tridens may be the dominant grass species. Fluffgrass, burrograss and broom snakeweed increase in representation. The Shallow site is resistant to state change, due to the natural rock armor of the soil and a shallow impermeable layer. The amount of rock fragments on the soil surface assist in retarding erosion. On Shallow sites with low slope, the shallow depth to either a petrocalcic layer or limestone bedrock helps to keep water perched and available to shallow rooted grasses for extended periods. 2

Diagnosis: Shrubs are the dominant species, especially creosotebush, catclaw mimosa, whitethorn acacia, or mesquite. Grass cover is variable ranging from patchy with large connected bare areas present to sparse with only a limited amount in shrub inter-spaces.

Transition to Shrub-Dominated (1a) Overgrazing and or extended periods of drought, and suppression of natural fire regimes are thought to cause this transition. As grass cover is lost, soil fertility and available soil moisture decline, due to the reduction of organic matter and decreased infiltration.3 Shrubs have the ability to extract nutrients and water from a greater area of soil than grasses and are better able to utilize limited water. Competition by shrubs for water and nutrients limits grass recruitment and establishment. Fire historically may have played a part in suppressing shrub expansion; fire suppression may therefore facilitate shrub expansion.

Key indicators of approach to transition:

*Decrease or change in composition or distribution of grass cover.

*Increase in size and frequency of bare patches.

*Increase in amount of shrub seedlings.

Transition back to Grassland/Shrub Mix (1b) Brush control is necessary to re-establish grasses. Prescribed grazing will help to ensure proper forage utilization and sustain grass cover. Once the transition is reversed and grass cover is re-established, periodic use of prescribed fire may assist in maintaining the Grassland/Shrub state.

Additional community tables

Table 7. Community 1.1 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Lb/Acre)	Foliar Cover (%)		
Grass	rass/Grasslike						
1				105–158			
	black grama	BOER4	Bouteloua eriopoda	105–158	_		
2				79–105			
	sideoats grama	BOCU	Bouteloua curtipendula	79–105	_		
3			•	79–105			
	blue grama	BOGR2	Bouteloua gracilis	79–105	_		
	hairy grama	BOHI2	Bouteloua hirsuta	79–105	_		
4			•	26–53			
	bush muhly	MUPO2	Muhlenbergia porteri	26–53	_		
5			•	16–26			
	cane bluestem	BOBA3	Bothriochloa barbinodis	16–26	_		
6				26–53			
	sand dropseed	SPCR	Sporobolus cryptandrus	26–53	-		
7				16–26			
	hairy woollygrass	ERPI5	Erioneuron pilosum	16–26	-		
8				5–16			
	ear muhly	MUAR	Muhlenbergia arenacea	5–16	-		
9				5–16			
	New Mexico feathergrass	HENE5	Hesperostipa neomexicana	5–16	-		
10				5–16			
	low woollygrass	DAPU7	Dasyochloa pulchella	5–16	-		
11				16–26			
	Grass, perennial	2GP	Grass, perennial	16–26	_		

Released to Imaging: 12/14/2022 2:19:12 PM

Forb				I	
12		-		11–26	
	stemless four-nerve daisy	TEACE	Tetraneuris acaulis var. epunctata	11–26	
13				5–16	
	woolly groundsel	PACA15	Packera cana	5–16	
14				5–16	
	globemallow	SPHAE	Sphaeralcea	5–16	
15		-1	•	5–16	
	bladderpod	LESQU	Lesquerella	5–16	
16		-1	•	5–16	
	cassia	CASSI	Cassia	5–16	
17			<u>I</u>	11–26	
	Forb (herbaceous, not grass nor grass-like)	2FORB	Forb (herbaceous, not grass nor grass-like)	11–26	
Shru	ıb/Vine				
18				5–16	
	littleleaf sumac	RHMI3	Rhus microphylla	5–16	
19				5–16	
	creosote bush	LATR2	Larrea tridentata	5–16	
20				5–16	
	littleleaf ratany	KRER	Krameria erecta	5–16	
21				5–16	
	javelina bush	COER5	Condalia ericoides	5–16	
22				5–16	
	American tarwort	FLCE	Flourensia cernua	5–16	
23			<u></u>	5–16	
	crown of thorns	KOSP	Koeberlinia spinosa	5–16	
24			·	11–26	
	honey mesquite	PRGL2	Prosopis glandulosa	11–26	
	honey mesquite	PRGL2	Prosopis glandulosa	11–26	
25				5–16	
	catclaw mimosa	MIACB	Mimosa aculeaticarpa var. biuncifera	5–16	
26		1		5–16	
	pricklypear	OPUNT	Opuntia	5–16	
27		1	· ·	11–26	
	mariola	PAIN2	Parthenium incanum	11–26	
	mariola	PAIN2	Parthenium incanum	11–26	
28		<u> I </u>		5–16	
	broom snakeweed	GUSA2	Gutierrezia sarothrae	5–16	
29		<u> I </u>	1	16–26	
-	Shrub (>.5m)		Shrub (>.5m)	16–26	

Animal community

This site provides habitats which support a resident animal community that is characterized by desert cottontail, spotted ground squirrel, Merriam's kangaroo rat, cactus mouse, white-throated woodrat, gray fox, spotted skunk, roadrunner, Swainson's hawk, white-necked raven, cactus wren, pyrrhuloxia, lark sparrow, mourning dove, scaled quail, leopard lizard, round-tailed horned lizard, prairie rattlesnake, marbled whiptail, and greater earless lizard. Where associated with limestone hills, mule deer utilize this site.

Where large woody shrubs occur, most resident birds and scissor-tailed flycatcher, morning dove, lark sparrow and Swainson's hawk nest.

Hydrological functions

The runoff curve numbers are determined by field investigations using hydraulic cover conditions and hydrologic soil groups.

Hydrologic Interpretations Soil Series------ Hydrologic Group Lozier------ D Potter------ C Tencee------ D Upton------ C Kimbrough------ D Upton------ D Ector------ D

Recreational uses

This site offers recreation potential for hiking, horseback riding, rock hunting, nature photography and bird hunting and birding. During years of abundant spring moisture, a colorful array of wild flowers is displayed during May and June. A few summer and fall flowers also occur.

Wood products

This site has no potential for wood production.

Other products

This site is suited for grazing by all kinds and classes of livestock during all seasons of the year. Missmanagement will cause a decrease in black grama, sideoats grama, and blue grama, bush muhly and New Mexico feathergrass. A corresponding increase in bare ground will occur. There will also be an increase in muhlys, fluffgrass, creosotebush, javalinabush, catclaw, and mesquite. This site will respond best to a system of management that rotates the season of use.

Other information

Guide to Suggested Initial Stocking Rate Acres per Animal Unit Month Similarity Index------ Ac/AUM

- 100 76----- 3.7 4.5 75 - 51----- 4.3 - 5.5
- 50 26----- 5.3 10.0
- 25 0----- 10.1 +

Inventory data references

Data collection for this site was done in conjunction with the progressive soil surveys within the Southern Desertic Basins, Plains and Mountains, Major Land Resource Areas of New Mexico (SD-3). This site has been mapped and

Other references

Literature Cited:

1. Humphrey, R.R. 1974. Fire in the deserts and desert grassland of North America. In: Kozlowski, T. T.; Ahlgren, C. E., eds. Fire and ecosystems. New York: Academic Press: 365-400.

2. Hennessy, J.T., R.P. Gibbens, J.M. Tromble, and M. Cardenas. 1983. Water properties of caliche. J. Range Manage. 36: 723-726.

3. U.S. Department of Agriculture, Natural Resources Conservation Service. 2001. Soil Quality Information Sheets. Rangeland Soil Quality—Infiltration, Organic Matter, Rangeland Sheets 5,6. [Online]. Available: http://www.statlab.iastate.edu/survey/SQI/range.html

Contributors

David Trujillo Don Sylvester

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	
Contact for lead author	
Date	
Approved by	
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

- 1. Number and extent of rills:
- 2. Presence of water flow patterns:
- 3. Number and height of erosional pedestals or terracettes:
- 4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):

- 5. Number of gullies and erosion associated with gullies:
- 6. Extent of wind scoured, blowouts and/or depositional areas:
- 7. Amount of litter movement (describe size and distance expected to travel):
- 8. Soil surface (top few mm) resistance to erosion (stability values are averages most sites will show a range of values):
- 9. Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):
- 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:
- 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):
- 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):

Dominant:

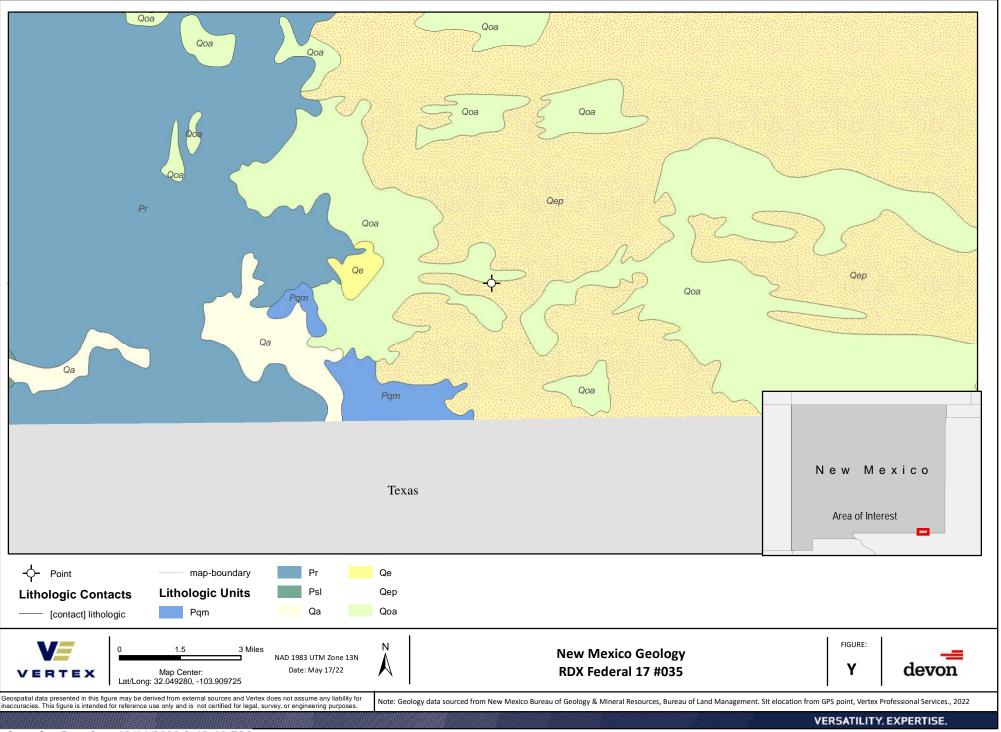
Sub-dominant:

Other:

Additional:

- 13. Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):
- 14. Average percent litter cover (%) and depth (in):
- 15. Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annualproduction):
- 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if

their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:


17. Perennial plant reproductive capability:

#035

ral 17

RDX

Federal 17 #035/Figure Y Geol

ATTACHMENT 4

Monica Peppin

From:	Dhugal Hanton <vertexresourcegroupusa@gmail.com></vertexresourcegroupusa@gmail.com>
Sent:	September 12, 2022 3:16 PM
То:	Enviro, OCD, EMNRD; CFO_Spill, BLM_NM
Cc:	Raley, Jim; Monica Peppin
Subject:	Multiple Liner Inspections 48-HR Notification

All,

Please accept this email as 48-hr notification that Vertex Resource Services has scheduled multiple liner inspections to be conducted for the following releases:

nAPP2222130109 DOR: 8/8/2022 Site Name: RDX 17 Federal #035H

nAPP2222750606 DOR: 8/15/2022 Site Name: RDX 17 Federal #040H

nAPP2218938856 DOR: 7/7/2022 Site Name: RDX 17 Federal #010H

This work will be completed on behalf of WPX Energy Permian, LLC

On Friday, September 16, 2022 at approximately 8:00 a.m., Jacob Reta will be on site to conduct liner inspections. He can be reached at 505-506-0040. If you need directions to the site, please do not hesitate to contact him. If you have any questions or concerns regarding this notification, please give me a call at 575-361-9880.

Thank you,

Monica Peppin Project Manager

Vertex Resource Services Inc. 3101 Boyd Drive, Carlsbad, NM 88220

P 575.725.5001 Ext. 711 C 575.361.9880 F

www.vertex.ca

Confidentiality Notice: This message and any attachments are solely for the intended recipient and may contain confidential or privileged information. If you are not the intended recipient, any disclosure, copying, use, or distribution of the information included in this message and any attachment is prohibited. If you have received this communication in error, please notify us by reply email and immediately and permanently delete this message and any attachments. Thank you.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
WPX Energy Permian, LLC	246289
Devon Energy - Regulatory	Action Number:
Oklahoma City, OK 73102	146036
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By Condition

We have received your closure report and final C-141 for Incident #NAPP2222130109 RDX FEDERAL 17 #035H, thank you. This closure is approved. 12/14/2022 rhamlet

CONDITIONS

Action 146036

Condition Date