	Page 1 of 7	77
Incident ID	nAPP2229333460	
District RP		
Facility ID		
Application ID		

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	85_(ft bgs)					
Did this release impact groundwater or surface water?						
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?						
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ⊠ No					
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ⊠ No					
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ⊠ No					
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ⊠ No					
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?						
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ⊠ No					
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ⊠ No					
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ⊠ No					
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ⊠ No					
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ⊠ No					
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and ver contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	tical extents of soil					
Characterization Report Checklist: Each of the following items must be included in the report.						
 Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well Field data □ Data table of soil contaminant concentration data □ Depth to water determination □ Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release □ Boring or excavation logs □ Photographs including date and GIS information □ Topographic/Aerial maps □ Laboratory data including chain of custody 	ls.					

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 2/15/2023 7:47:57 AM Form C-141 State of New Mexico Page 4 Oil Conservation Division

	Page 2 of	77
Incident ID	nAPP2229333460	
District RP		
Facility ID		
Application ID		

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.							
Printed Name: Amy Barnhill	Title: Lead Environmental Specialist - Water						
Signature: This	Date: 02/10/2023						
email: ABarnhill@chevron.com	Telephone: (432) 940-8524						
OCD Owler							
OCD Only							
Received by: Jocelyn Harimon Date:02/15/2023							

State of New Mexico

Incident ID n A PD2220333460

Incident ID nAPP2229333460

District RP
Facility ID
Application ID

Remediation Plan

Remediation Plan Checklist: Each of the following items must b	e included in the plan.
 ☑ Detailed description of proposed remediation technique ☑ Scaled sitemap with GPS coordinates showing delineation poin ☑ Estimated volume of material to be remediated ☑ Closure criteria is to Table 1 specifications subject to 19.15.29. ☑ Proposed schedule for remediation (note if remediation plan tin 	12(C)(4) NMAC
<u>Deferral Requests Only</u> : Each of the following items must be con	nfirmed as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around p deconstruction.	roduction equipment where remediation could cause a major facility
Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human healt	n, the environment, or groundwater.
I hereby certify that the information given above is true and comple	te to the best of my knowledge and understand that pursuant to OCD
	certain release notifications and perform corrective actions for releases unce of a C-141 report by the OCD does not relieve the operator of a and remediate contamination that pose a threat to groundwater, acceptance of a C-141 report does not relieve the operator of
Printed Name: Amy Barnhill	Title: Lead Environmental Specialist - Water
Signature: Thile	Date: 02/10/2023
email: ABarnhill@chevron.com	Telephone: (432) 940-8524
OCD Only	
Received by: Jocelyn Harimon	Date:02/15/2023
☐ Approved	Approval
Signature: Jennifer Nobili	Date: 02/24/2023

2904 W 2nd St. Roswell, NM 88201 voice: 575.624.2420 fax: 575.624.2421 www.afkinseng.com

January 30, 2023

#ogopogo_env_22

Mark Andersen

Permian Asset HSEQ Manager TETRA Technologies Inc./Swiftwater Inc. 2401 N. CR 1287 Midland,TX 79701

Phone: 432.234.0179

SUBJECT: Remediation Work Plan for the DL 10 15 OGOPOGO FEDERAL COM #422H Release (nAPP2229333460), Lea County, New Mexico

To whom it may concern,

On behalf of Atkins Engineering Associates INC. (AEA) has prepared this site assessment, delineation and remediation proposal. To properly delineate the release of liquids related to oil and gas production activities at the DL 10 15 OGOPOGO FEDERAL COM #422H AEA used *Visual Sample Plan Version 6.0* (VSP) to define a confidence interval and sample plan design. The site is in Unit I, Section 10, Township 22S, Range 33E, Lea County, New Mexico.

Table 1 summarizes release information and Site Criteria.

	Table 1: Release Information and Closure Criteria							
Name	DL 10 15 OGOPOGO FEDERAL COM #422H	Company	Chevron U.S.A., Inc					
API Number	30-025-49906	Location	32.40448, -103.55576					
Incident Number	n.A	APP2229333460						
Estimated Date of Release	10/16/22	Date Reported to NMOCD	10/16/20					
Landowner	State	Reported To	NMOCD District 2					
Source of Release	An 8 inch hose failed behind the con	nnection that res	ulted in a release to land.					
Released Volume	30 bbls	Released Material	Produced Water					
Recovered Volume	27 bbls	Net Release	3 bbls					
NMOCD Closure Criteria	51-100 feet to groundwater							
AEA Response Dates	N/A							

DL 10 15 OGOPOGO FEDERAL COM #422H January 30, 2023 Page 2 of 5

1.0 Background

On October 16, 2022, a release was discovered at the DL 10 15 OGOPOGO FEDERAL COM #422H. An 8 inch hose failed behind the connection. Through estimated soil saturation calculations, the release volume was estimated by operations staff and confirmed through the attached C141. Initial response activities were conducted by the operator, and included source elimination by means of repair and immediate site stabilization and release recovery. Figure 1 illustrates the vicinity and site location. The C-141 forms are included in Appendix A.

2.0 Site Information and Closure Criteria

The DL 10 15 OGOPOGO FEDERAL COM #422H is located approximately 25 miles West of Eunice Lea County, New Mexico on Federal (BLM) land at an elevation of approximately 3,565 feet above mean sea level (amsl).

Based upon the New Mexico Office of the State Engineers (NMOSE) online water well database, (Appendix B), depth to groundwater in the area is estimated to be 75-280 feet below grade surface (bgs). There are no known water sources within ½-mile of the location, according to the NMOSE database. (https://gis.ose.state.nm.us/gisapps/ose_pod_locations/; accessed 12/16/2023). The nearest significant watercourse is Floyd Tank, located approximately 3.5 miles North of the location. Figure 1 illustrates the site with 200 and 300 foot radii to indicate that it does not lie within a sensitive area as described in 19.15.29.12.C(4) NMAC.

Based on the information presented herein, the applicable NMOCD Closure Criteria for this site is for a groundwater depth of between 51-100 feet bgs. The site has been restored to meet the standards of Table I of 19.15.29.12 NMAC.

Table 2 demonstrates the Closure Criteria applicable to this location. Pertinent well data is attached in Appendix B.

Electromagnetic surveying was used as a "first-pass" investigation to accurately define the parameters or horizontal boundaries of the shallow soil investigation. A Geonics Ltd. EM-38 ground conductivity meter that has been factory calibrated was used on site to collect data.

Figure 1 attached is a product of the fixed-frequency EM method used to map variations in ground conductivity to identify anomalously conductive soils and infer changes in the soil characteristics and composition. This method used portable instrumentation consisting of a transmitter coil and a receiver coil. primary magnetic field from the transmitter coil induces subsurface eddy currents, which in turn generate a secondary magnetic field that is intercepted by the receiver coil. The ratio of the primary and secondary magnetic fields is related to ground conductivity represented as ECa in mS/m.

The conductivity values are not specific values from discrete depths; they are weighted averages of conductivity between the surface and the depth of exploration of the EM field and are termed "apparent conductivities". The apparent conductivity values obtained are in units of millisiemens per meter (mS/m). The apparent conductivity (ECa) of the soil has been related to the paste extract conductivity (ECe) by the relationship ECa=5ECa (McNeill, 1986a). Table 2 (from McNeill, 1986a) illustrates this general relationship. Measurements are expressed in millisiemens/meter (mS/m).

Released to Imaging: 2/24/2023 3:58:05 PM

DL 10 15 OGOPOGO FEDERAL COM #422H January 30, 2023

Page 3 of 5

Table 1: ECe to ECa Conversion

Soil Conductivity vs Salinity (from McNeill, 1986a)								
Salinity (NRCS) ECe (mS/cm) (Lab) ECa (mS/m) (EM-38) Figure Color								
NRCS Soil Background (site)	0-2	0-40	White to green					
Slight	0-4	40-80	Yellow					
Moderate	4-8	80-100	red					
High	8-12	160-240	Purple					

The table above shows the general correlation between laboratory soil saturated paste ECe and the apparent conductivity ECa measured by an EM unit.

3.0 Release Characterization and Proposed Remediation Activities

On January 17, 2023, AEA personnel arrived on site in response to the release associated with DL 10 15 OGOPOGO FEDERAL COM #422H. AEA performed site delineation activities on January 17, 2023, by collecting soil samples around the release site selected by VSP program with a systematic sampling with a random start location. Soil samples were field screened for chloride using an electrical conductivity (EC) meter.

A total of twenty-two (22) sample locations (SW1 – SW10 & BH1 – BH4) were investigated using a direct-push drill rig, to depths up to four (4) feet bgs. A minimum of three (3) delineation samples were collected at each soil bore location and field-screened using the method above. A total of twenty-two (22) samples were collected for laboratory analysis for total chloride using EPA Method 300.0; benzene, toluene, ethylbenzene, and total xylenes (BTEX) using EPA Method 8021B; and motor, diesel and gasoline range organics (MRO, DRO, and GRO) by EPA Method 8015D.

As summarized in Table 3 an shown in figure 3 and 4, results indicated that the release did not flow and or leach of the location. An on-pad area approximately 100 feet wide and 400 feet long remains impacted. The area is located to the south of the wells and runs east and west near the location's entrances. The impacted area is also bordered by a production flow lines to the north and the locations berm to the south. The effected soils are imported B-horizon from an area caliche pit.

Lab analysis confirmed the field and EM data that delineation locations SB1-SB4 are elevated in chlorides to depths of approximately two (2) foot. Composite Sample locations SW1-SW8 confirmed the horizontal extent of chloride or salt found by the EM survey. Composite Sample locations SW8-SW10 need to be extended due to the Hydrocarbon impacts found.

All samples were placed into laboratory supplied glassware, labeled, and maintained on ice until delivery to Envirotech Laboratory in Farmington, New Mexico (Appendix D).

AEA proposes an excavation of fifteen hundred (1500) cubic yards of caliche and native soil to remediate the top four (4) feet of the pad to be compliant with, 19.15.29.13(D)(1) NMAC says "The reclamation must contain a minimum of four feet of non-waste containing, uncontaminated, earthen material with chloride concentrations less than 600 mg/kg as analyzed by EPA Method 300.0."

DL 10 15 OGOPOGO FEDERAL COM #422H January 30, 2023

Page 4 of 5

Figure 3 shows the extent of the proposed excavation and existing sample locations. All laboratory results are summarized in Table 3. Laboratory reports are included in Appendix D.

All contaminated soil from the location will be hauled to a NMOCD approved facility (waste manifest will be available upon request).

As all discovered impacts are on the locations pad this Work Plan does not address or require revegetation or restoration work.

4.0 Variance and Limitations

Atkins Engineering Associates INC. (AEA) request a sample variance request from 19.15.29.D.1.c. The impacts are large in terms of horizontal area but did not substantially leach vertically. All impacts remained on pad and the post data collection activities outlined in EPA's Guidance for Data Quality Assessment (EPA, 2000) via (VSP) show that closure sample collection at the five hundred (500) to eight hundred (800) square foot interval will still achieve the same 98% confidence interval as the standard two hundred square foot sampling plan. For these reasons AEA request a closure sample interval of 500-800 square feet.

The scope of our services included: assessment sampling; verifying release stabilization; regulatory liaison; remediation; and preparing this closure report. All work has been performed in accordance with generally accepted professional environmental consulting practices for oil and gas releases in the Permian Basin in New Mexico.

If there are any questions regarding this report, please contact Austin Weyant at (575)626-3993.

Submitted by:

Atkins Engineering Associates INC

Austin Weyant Geoscientist DL 10 15 OGOPOGO FEDERAL COM #422H January 30, 2023 Page 5 of 5

ATTACHMENTS:

Figures:

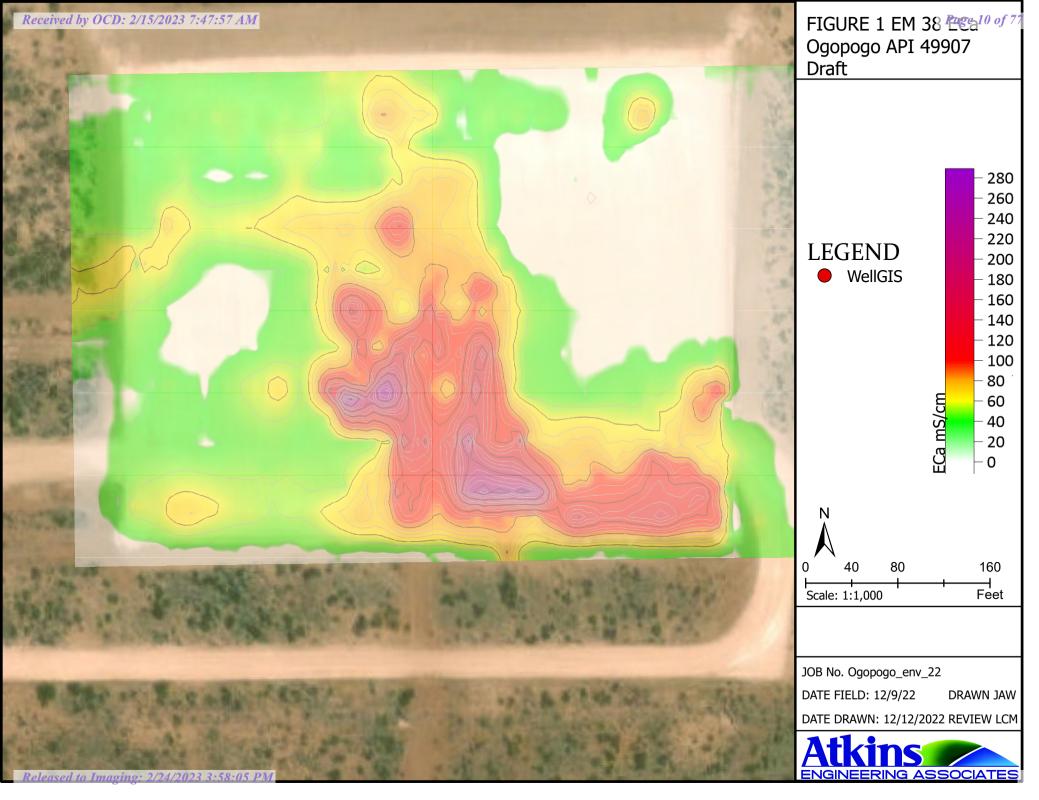
Figure 1: EM Conductivity Survey
Figure 2: Surface Water Radius Map
Figure 3: Site and Sample Location Map
Encompassing the spill on 10-16-22 (notated
by the red line at the bottom of the map) and
10-20-22 Notated by the black lines on the map
and covering the original spill on 10-16-22).

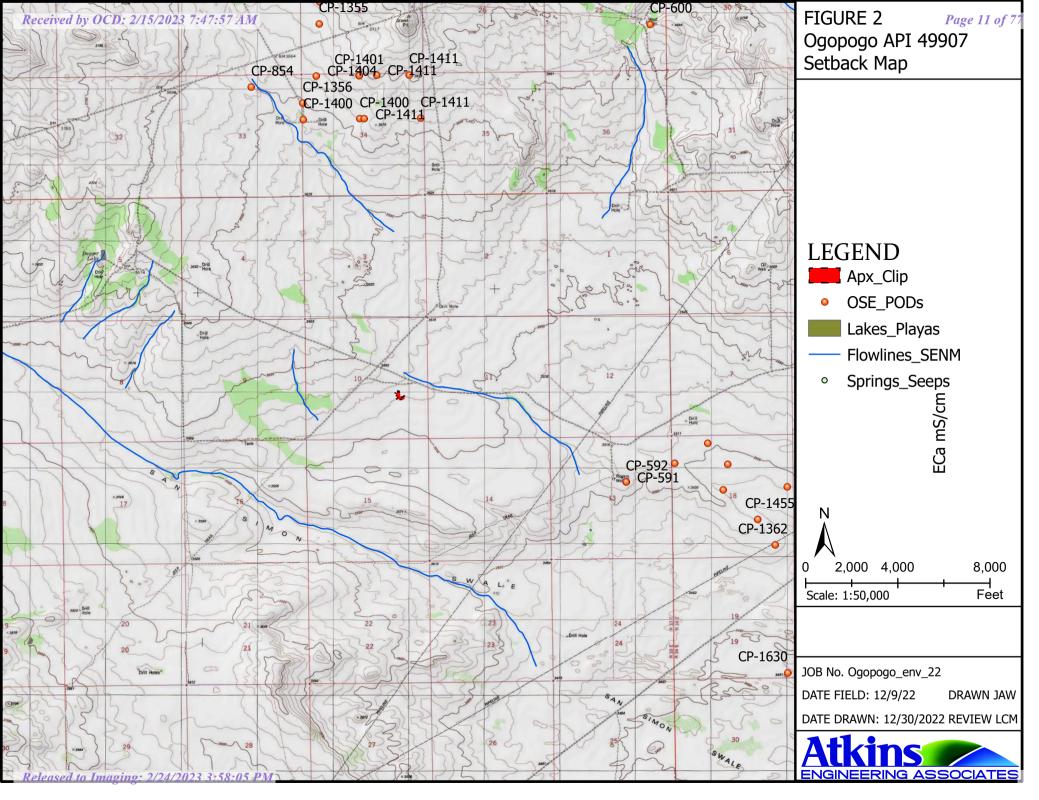
Figure 4: Pipeline map

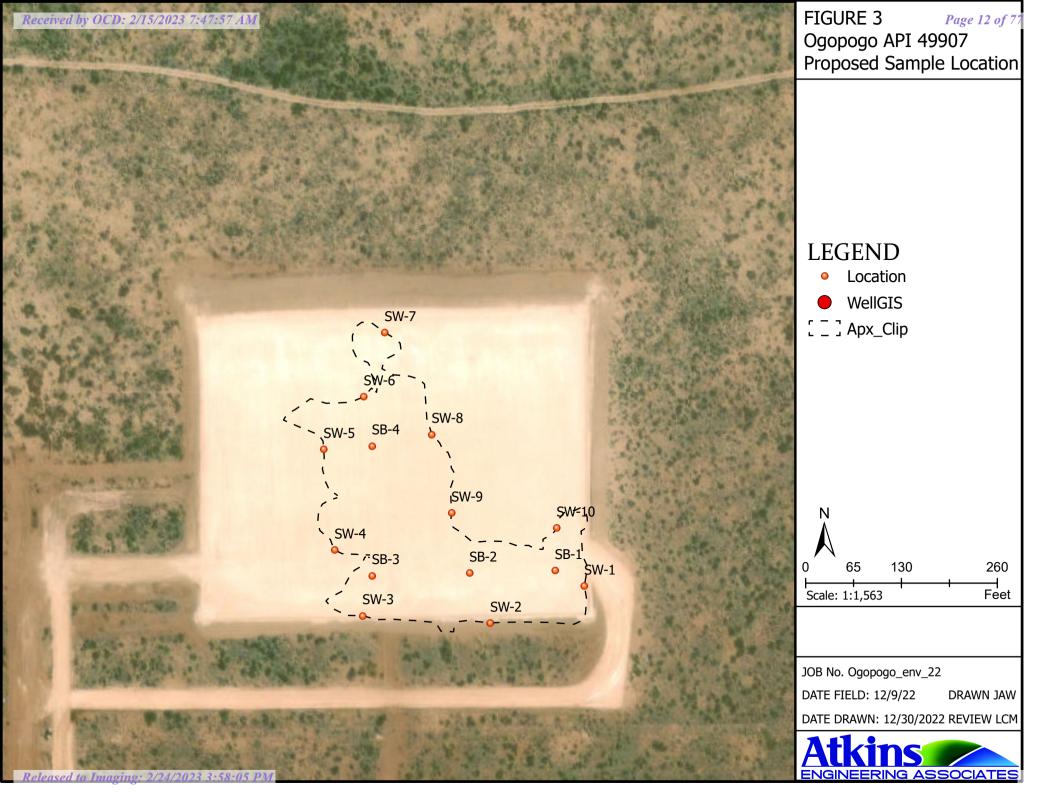
Tables:

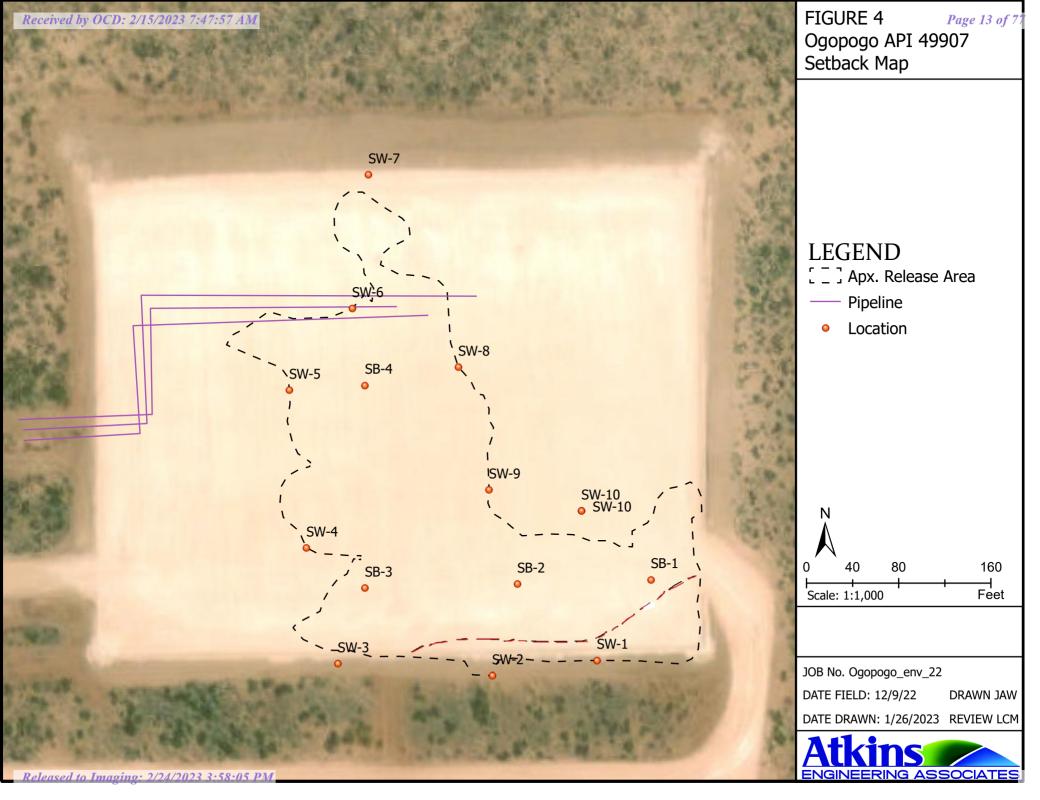
Table 2: NMOCD Closure Criteria Justification Table 3a: Summary of Initial Sample Results

Appendices:


Appendix A: Form C141


Appendix B: NMOSE Wells Report Appendix


C: VSP Sampling Protocol Appendix D:


Laboratory Analytical Reports

FIGURES

TABLES

Site Information (19.15.29.11.A(2, 3, and 4) NMAC)	Source/Notes	
Depth to Groundwater (feet bgs)	NMOSE shothole records	
Hortizontal Distance From All Water Sources Within 1/2 Mile (ft)	3.5 miles	USA Topo
Hortizontal Distance to Nearest Significant Watercourse (ft)	3.5 miles	USA Topo

Closure Criteria (19.15.2	29.12.B(4) and	d Table 1 NMAC)				
	Closure Criteria (units in mg/kg)					
Depth to Groundwater	Depth to Groundwater			GRO + DRO	ВТЕХ	Benzene
< 50' BGS		600	100		50	10
51' to 100'		10000	2500	1000	50	10
>100'		20000	2500	1000	50	10
Surface Water	yes or no	o if yes, then				
<300' from continuously flowing watercourse or other significant watercourse? <200' from lakebed, sinkhole or playa lake?	no no					
Water Well or Water Source	110					
<500 feet from spring or a private, domestic fresh water well used by						
less than 5 households for domestic or stock watering purposes?	no					
<1000' from fresh water well or spring?	no	500			50	10
Human and Other Areas			100			
<300' from an occupied permanent residence, school, hospital, no institution or church?		600	100		50	10
within incorporated municipal boundaries or within a defined no no						
<100' from wetland?						
within area overlying a subsurface mine	no	1				
within an unstable area?	no	1				
within a 100-year floodplain?	no					

Sample ID	Sample	Depth	Proposed	BTEX	Benzene	GRO	DRO	MRO	Total TPH	CI-
Gap.G 12	Date	(feet bgs)	Action	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	NMED Dele	ni Criteria		50	10				100	600
SB1 (0-1.5)	1/17/2023	0-1.5	excavate	<0.0250	<0.0251	<20.0	<25.0	<50.0	<95.0	2340
SB1 (2)	1/17/2023	2	in-situ	<0.0250	<0.0251	<20.0	<25.0	<50.0	<95.0	84.1
SB1 (3)	1/17/2023	3	in-situ	<0.0250	<0.0251	<20.0	<25.0	<50.0	<95.0	63.9
SB2 (0-1.5)	1/17/2023	0-1.5	excavate	<0.0250	<0.0251	<20.0	<25.0	<50.0	<95.0	5280
SB2 (2)	1/17/2023	2	excavate	<0.0250	<0.0251	<20.0	<25.0	<50.0	<95.0	782
SB2 (3)	1/17/2023	3	in-situ	<0.0250	<0.0251	<20.0	<25.0	<50.0	<95.0	96
SB3 (0-1.5)	1/17/2023	0-1.5	excavate	<0.0250	<0.0251	<20.0	<25.0	<50.0	<95.0	1650
SB3 (2)	1/17/2023	2	in-situ	<0.0250	<0.0251	<20.0	<25.0	<50.0	<95.0	112
SB3 (3)	1/17/2023	3	in-situ	<0.0250	<0.0251	<20.0	<25.0	<50.0	<95.0	78.2
SB4 (0-1.5)	1/17/2023	0-1.5	excavate	<0.0250	<0.0251	<20.0	<25.0	<50.0	<95.0	2220
SB4 (3)	1/17/2023	3	excavate	<0.0250	<0.0251	<20.0	80.5	256	336.5	461
SB4 (4)	1/17/2023	4	in-situ	<0.0250	<0.0251	<20.0	<25.0	<50.0	<95.0	<20
SW1	1/17/2023	0.5	in-situ	<0.0250	<0.0251	<20.0	<25.0	<50.0	<95.0	138
SW2	1/17/2023	0.5	in-situ	<0.0250	<0.0251	<20.0	48.2	<50.0	48.2	20.4
SW3	1/17/2023	0.5	in-situ	<0.0250	<0.0251	<20.0	<25.0	<50.0	<95.0	20.4
SW4	1/17/2023	0.5	excavate	<0.0250	<0.0251	<20.0	634	2240	2874	80.7
SW5	1/17/2023	0.5	in-situ	<0.0250	<0.0251	<20.0	<25.0	<50.0	<95.0	710
SW6	1/17/2023	0.5	excavate	<0.0250	<0.0251	<20.0	160	347	507	156
SW7	1/17/2023	0.5	excavate	<0.0250	<0.0251	<20.0	306	257	563	243
SW8	1/17/2023	0.5	excavate	<0.0250	<0.0251	<20.0	1280	2270	3550	198
SW9	1/17/2023	0.5	excavate	<0.0250	<0.0251	<20.0	1440	2290	3730	632
SW10	1/17/2023	0.5	excavate	<0.0250	<0.0251	<20.0	138	89.3	227.3	823

[&]quot;--" = Not Analyzed

APPENDIX A FORMS C141

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	nAPP2229333460
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party: Chevron U.S.A., Inc.			OGRID: 4323					
Contact Nan	Contact Name: Jessica Zemen				Contact Telephone: 432-530-9187			
Contact ema	Contact email: jessicazemen@chevron.com				Incident # (assigned by OCD)			
Contact mai	ling address	:6301 Deauville E	Blvd Midland, T	X 79706				
			Locatio	on of R	Release So	ource		
Latitude: 32.4	10448		(NAD 83 in	decimal de	Longitude: egrees to 5 decin	103.55576 pal places)		
Site Name: D	DL 10 15 OC	GOPOGO FEDER	AL COM #422F	H	Site Type:	Oil		
Date Release	Discovered	1: 10/16/2022			API# (if app	licable): 30-025-49906		
Unit Letter	Section	Township	Range		Coun	ty		
I	10	22S	33E	Lea				
Crude Oi		al(s) Released (Select Volume Releas		ach calcula	tions or specific	justification for the volumes provided Volume Recovered (bbls)	below)	
Crude Oi	1	Volume Releas	sed (bbls)			Volume Recovered (bbls)		
Produced	l Water		sed (bbls): 30 bbl			Volume Recovered (bbls): 27	7 bbls	
			ation of dissolved r >10,000 mg/l?	d chlorid	e in the	⊠ Yes □ No		
Condensa	ate	Volume Releas				Volume Recovered (bbls)		
Natural C	Gas	Volume Releas	sed (Mcf)			Volume Recovered (Mcf)		
Other (describe) Volume/Weight Released (provide unit				ide units)	Volume/Weight Recovered (provide units)	
Cause of Rel	lease:							
An 8" hose f	ailed behind	d the connection th	hat resulted in a i	release to	land.			

Received by OCD: 2/15/2023 7:47:57 AM Form C-141 State of New Mexico Page 2 Oil Conservation Division

	Page 19 of	77
Incident ID	nAPP2229333460	
District RP		
Facility ID		
Application ID		

Was this a major	If YES, for what reason(s) does the response	nsible party consider this a major release?
release as defined by 19.15.29.7(A) NMAC?	Release volume was over 25 bbls.	
19.13.29.7(A) NMAC?	Release volume was over 23 bols.	
⊠ Yes □ No		
If YES, was immediate no	otice given to the OCD? By whom? To w	hom? When and by what means (phone, email, etc)?
lessica Zemen sent an em	nail to Mike Bratcher on 10/16/2022 detaili	ng the release information
Jessica Zeinen sent an en	ian to wike Bratener on 10/10/2022 detain	ing the release information.
	Initial R	asnansa
	Illitiai N	esponse
The responsible	party must undertake the following actions immediate	ly unless they could create a safety hazard that would result in injury
The source of the rele	ease has been stopped.	
The impacted area ha	s been secured to protect human health and	the environment.
Released materials ha	ave been contained via the use of berms or	dikes, absorbent pads, or other containment devices.
All free liquids and re	ecoverable materials have been removed ar	d managed appropriately.
If all the actions described	d above have <u>not</u> been undertaken, explain	why:
Per 19.15.29.8 B. (4) NM	AC the responsible party may commence	remediation immediately after discovery of a release. If remediation
has begun, please attach	a narrative of actions to date. If remedial	efforts have been successfully completed or if the release occurred
within a lined containmer	nt area (see 19.15.29.11(A)(5)(a) NMAC),	please attach all information needed for closure evaluation.
		best of my knowledge and understand that pursuant to OCD rules and
		ifications and perform corrective actions for releases which may endanger OCD does not relieve the operator of liability should their operations have
		eat to groundwater, surface water, human health or the environment. In
	f a C-141 report does not relieve the operator of	responsibility for compliance with any other federal, state, or local laws
and/or regulations.		
Printed Name:Jessio	ca Zemen	Title: _Lead Environmental Specialist, Field Support
Signature: Jessica X	Zemer	Date:10/17/2022
email:jessicazemei	n@chevron.com	Telephone:432-530-9187
OCD Only		
-		
Received by:Joce	lyn Harimon	Date:11/01/2022

Received by OCD: 2/15/2023 7:47:57 AM Form C-141 State of New Mexico Page 3 Oil Conservation Division

	Page 20 of /
Incident ID	nAPP2229333460
District RP	
Facility ID	
Application ID	

Spill Calculations:

	Hor	izontal Dimensi	ions	Vertical Di	mensions	Calculated Volume		
	Diameter			Abovegrade	Belowgrade			
	(feet)	Length (feet)	Width (feet)	Depth (feet)	Depth (feet)	Gallons	Barrels	
Area 1	N/A	120	4	0.17	N/A	612.00	14.57	
Area 2	N/A	60	18	0.08	N/A	648.00	15.43	
			To	tal Volume =	1260.00	30.00		

APPENDIX B NMOSE WELLS REPORT

NO	OSE POD NO CP-1724-F	,		S North		WELL TAG ID NO			OSE FILE NO	(S).		
1. GENERAL AND WELL LOCATION	WELL OWN Merchant			Company/Glenn's	Water Well S	ervice, Inc.			PHONE (OPT) 575-398-24			
TI	WELL OWN	ER MAIL	ING A	DDRESS					CITY		STATE	ZĮP
WEL	PO Box 6	92							Tatum		NM 8	88267
Q	WELL			DE	GREES	MINUTES	SECO	iD\$			<u> </u>	
'L A	LOCATIO	N	LATIT	TUDE	32	23	44.	39 N	* ACCURACY	Y REQUIRED: ONE TEN	TH OF A SECOND	
ERA	(FROM GI	PS)	LONG	BITUDE	-103	31	1.3	4 W	* DATUM RE	QUIRED: WGS 84		
GEN	DESCRIPTE	ON RELA	ATING	WELL LOCATION TO	STREET ADDRE	SS AND COMMON	LANDM	ARKS – PLS	S (SECTION, TO	OWNSHJIP, RANGE) WE	IERE AVAILABLE	
1.	SW1/4 NV	V1/4 N	W1/4	Section 18, Town	nship 22 Sout	h, Range 34 Eas	st on M	erchant L	ivestock Cor	npany Land		
	LICENSE NO			NAME OF LICENSED						NAME OF WELL DR		
	WD	421				Corky Glenn				Glenn's V	Vater Well Service,	Inc.
	DRILLING S 04/10		,	DRILLING ENDED 04/20/19	DEPTH OF COM	IPLETED WELL (FT 1,172')		,172'	DEPTH WATER FIR	ST ENCOUNTERED (F 800'	T)
7	COMPLETE	D WELL	IS:	☑ ARTESIAN	DRY HOLE	SHALLOV	V (UNCC	NFINED)		STATIC WATER LEV	VEL IN COMPLETED V 484'	VELL (FT)
TIO	DRILLING F	LUID:		AIR	MUD	ADDITIV	ES – SPE	TIFY:		<u>.L</u>		
CASING INFORMATION	DRILLING N	METHOD:	:	ROTARY	HAMMER	CABLETO	OOL	□ отне	R - SPECIFY			
NFC	DEPTH	(feet bg	gl)	BORE HOLE	CASING N	MATERIAL AND	OR		ASING	CASING	CASING WALL	SLOT
Ş	FROM	TO	С	DIAM	finclude es	GRADE ach casing string,	and	CON	NECTION	INSIDE DIAM.	THICKNESS	SIZE
ASI				(inches)	note se	ections of screen)			TYPE ling diameter)	(inches)	(inches)	(inches)
& C	0	40)	20"	ASTM A53	3 Sch 40 Steel 16"	OD		None	15.5	.25	
S _N	0	79	9	14.75"	API Steel Gra	ide J-55/K-55 10.7	75" OD	Threa	d & Collar	10.05	.35	
DRILLING	752	1,1	72	9.875"		ng 8 5/8" / 8.625"		Pla	ain End	8.125	.25	1/8"
				ļ	(420' Total)	Bottom 378 Perfo	rated					
2.		<u> </u>									-	1-00
											23	- 13 - 1
				<u> </u>								4:-7
											N.3	-
												-
	l	<u> </u>			<u> </u>	<u> </u>				<u> </u>		
,	DEPTH	(feet bg	(ł)	BORE HOLE		T ANNULAR SE				AMOUNT		OD OF
SIA1	FROM	TC		DIAM. (inches)	GRAV	EL PACK SIZE-		BYINIE	KVAL	(cubic feet)		
TEI	0	40		20"	51		ented	C . 20 F		2 yards	<u> </u>	Pour irri
ANNULAR MAFERIAL	0	799	9.	14.75"	Float	and Shoe Cement	ied to St	irtace 29 E	sarreis	325 Sacks Pump	ea Circi	ulated
LAR										-		
E I		<u> </u>										
				 								
3,									<u> </u>			
				<u>L</u>	<u> </u>							(0.015)
	OSE INTER	NAL U	SE	724		POD NO		-1	WR-2	NO WELL RECORD	& LOG (Version 06	/30/17)
	ATION			107	1/ 2/1	E V II			IKN	Wa.	0 - 0 0	E 1 OE 2

	DEPTH (feet bgl) TO	THICKNESS (feet)	COLOR AND TYPE OF MATERIAL ENCOUNTERED - INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES (attach supplemental sheets to fully describe all units)	WATER BEARING? (YES/NO)	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
	0	5	5	Sand	Y /N	
	5	30	25	Caliche	Y /N	
	30	80	50	Sand & Red Clay	Y VN	
	80	450	370	Red Clay	Y VN	
	450	510	60	Red Shale	Y /N	
د.	510	580	70	Brown Shale	Y VN	
ÆLI	580	799	219	Brown & Red Shale	Y VN	
)F.W	799	919	120	Sand Rock	✓ Y N	
96	919	950	31	Red & Blue Shales Stringers of Sand	✓ Y N	75.00
HYDROGEOLOGIC LOG OF WELL	950	1,140	190	Sand Stone	✓ Y N	75.00
150	1,140	1,172	32	Red Shale	YVN	
EOL	1,140	1,172	32	Red State	YN	
503					YN	
YDF		<u> </u>			YN	
4. H		l			YN	
					YN	-
					YN	
					YN	
					YN	
					YN	
					YN	
	METHODI	ISED TO ES	TIMATE VIELD	OF WATER-BEARING STRATA T	OTAL ESTIMATED	
					VELL YIELD (gpm):	75.00
	PUM	P []A	IR LIFT	BAILER OTHER - SPECIFY:		
SION	WELL TES	TEST STAR	RESULTS - ATT I TIME, END TII	ACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER	IDING DISCHARGE I THE TESTING PERIC	METHOD, DD.
VIS	MISCELLA	NEOUS INF	ORMATION:			
TEST; RIG SUPERVI				to 799' drilled with mud.		
ns :			79	9' to 1,172' drilled with air and foam.		
; RIC						8
EST	PRINT NAN	(F(S) OF D	RILL RIG SUPER	VISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONST.	RUCTION OTHER TH	
5. T	1 101111 11111	ic(o) or b.	MEE MIG BOTE	(VISORIO) TIETI TROVIDED CHSTLE SCIERVISION OF WELL CONST.	ROCTION OTHER TI	BIN DICENSEE.
RE	CORRECT	RECORD OF	F THE ABOVE D	IES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL REC		
VT.V	AND THE P	ERMIT HO	LDEK WITHIN 3	0 DAYS AFTER COMPLETION OF WELL DRILLING:		
SIGNATURE	10		Je L	Corky Glenn	1, 10	
6.8	0	raj	UN	<u> </u>	[[6][
		MATI	URE OF DRILLE	R / PRINT SIGNEE NAME	DATE	
FOR	OSE INTER	NAL USE		WR-20 WELL	RECORD & LOG (Ve	rsion 06/30/2017)

POD NO.

TRN NO.

WELL TAG ID NO.

PAGE 2 OF 2

FILE NO.

LOCATION

<u> </u>				· · · · · · · · · · · · · · · · · · ·									
z	OSE POD NO CP-1724-I		O.) OGS North		WELL TAG ID NO.			OSEF	FILE NO(S).			
0								DUZON	TC (ODEE)				
CA	Merchant		s) k Company/Glenn's	Water Well Se	ervice, Inc.				NE (OPTIO 398-242				
07,			NG ADDRESS					CITY			STATE		ZIP
GENERAL AND WELL LOCATION	PO Box 6		10 FIDERLES					Tatur			NM	88	267
N C				DEGREES	MINUTES	SECONI)S	l					
AN	LOCATIO			32	23	44.3		* ACC	CURACY	REQUIRED: ONE TEN	TH OF A SECO	OND	
KA!	(FROM G	PS)	ATITUDE	-103	31	1.34		* DA	TUM REC	QUIRED: WGS 84			
ENE	DESCRIPTI		ONGITUDE ING WELL LOCATION T		SS AND COMMON			S (SEC.	TON TO	WNSHIID PANGELWE	IEDE AVAII A	RI E	
1.6	ŀ		71/4 Section 18, Tov					-				<i>DDE</i>	
	LICENSE NO) .	NAME OF LICENSE							NAME OF WELL DR	ILLING COMI	PANY	-
	WD	421			Corky Glenn					Glenn's V	Vater Well S	ervice, In	c.
	DRILLING S 04/1		DRILLING ENDED 04/20/19	DEPTH OF COM	IPLETED WELL (FT) 1,172')	bore ho	LE DEP' ,172'	TH (FT)	DEPTH WATER FIR	ST ENCOUNT 800'	ERED (FT)	
z	COMPLETE	D WELL IS	ARTESIAN	DRY HOLE	SHALLOW	V (UNCON	(FINED)			STATIC WATER LEV	VEL IN COMPI 484'	LETED WE	ELL (FT)
TIO	DRILLING F	LUID:	AIR	✓ MUD	ADDITIVE	ES – SPECI	FY:			I			
CASING INFORMATION	DRILLING N	METHOD.	✓ ROTARY	HAMMER	CABLETO	XOL	ОТНЕ	R – SPE	CIFY.				
NFC	DEPTH	(feet bgl)	BORE HOLE	CASING M	ATERIAL AND	OR	C	ASING		CASING	CASING	WALL	SLOT
Ş	FROM	то	DIAM	(include es	GRADE ach casing string, a	and	CON	NECTIO		INSIDE DIAM.	THICK	NESS	SIZE
ASI			(inches)		ections of screen)		(add coup	YPE ling diar	neter)	(inches)	(inch	ies)	(inches)
જ	0	40	20"		3 Sch 40 Steel 16"			None		15.5	.25		
NG ING	0	799	14.75*		de J-55/K-55 10.7			d & Co		10.05	.35		
DRILLING	752	1,172	9.875"		ng 8 5/8" / 8.625" (Pla	in End		8.125	.25	·	1/8"
2. DR				(420 Total)	Bottom 378 Perfo	rated							
		<u> </u>											
		Ţ								•	7919	2	S
												<u> </u>	E
	<u> </u>	 										<u> </u>	<u> </u>
	<u> </u>										ي ا	<u>-</u>	<u>L </u>
	DEPTH	(feet bgl)	DOILE HOLL		T ANNULAR SEA					AMOUNT		METHO	
IAI	FROM	то	DIAM. (inches)	GRAV	EL PACK SIZE-I		BY INTE	RVAL		(cubic feet)		PLACEN	
TE	0	40'	20"	-		ented				2 yards	-	Top:	
ANNULAR MATERIAL	0	799'	14.75"	Float	and Shoe Cement	ed to Sur	face 29 B	arrels		325 Sacks Pump	ed , n	Circult	nen ri
][A]	· · · · · · · · · · · · · · · · · · ·						•						
Z									, .	·,	<u>-</u>		
3. A												1	
FOR	OSE INTER	NAL US	<u></u>						WR-20) WELL RECORD	& LOG (Ver	sion 06/3	0/17)
	E NO.				POD NO.				TRN				
LOC	CATION							WELL.	TAG II	O NO.		PAGE	1 OF 2

	DEPTH (feet bgl) TO	THICKNESS (feet)	COLOR AND TYPE OF MATERIAL ENCOUNTERED - INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES (attach supplemental sheets to fully describe all units)	WATER BEARING? (YES/NO)	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
	0	5	5	Sand	Y √N	
	5	30	25	Caliche	Y ✓N	
	30	80	50	Sand & Red Clay	Y ✓N	
	80	450	370	Red Clay	Y ✓N	
	450	510	60	Red Shale	Y ✓N	<u> </u>
1	510	580	70	Brown Shale	Y ✓N	
VEL	580	799	219	Brown & Red Shale	Y ✓N	
OF V	799	919	120	Sand Rock	✓Y N	
4. HYDROGEOLOGIC LOG OF WELL	919	950	31	Red & Blue Shales Stringers of Sand	✓Y N	75.00
IC F	950	1,140	190	Sand Stone	✓Y N	
507	1,140	1,172	32	Red Shale	Y √N	
EOI					Y N	
ROG				- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y N	
HVD					Y N	
4.1		_		-	Y N	-
					Y N	
	 				Y N	
					Y N	
					Y N	
					Y N	
-					Y N	
	METHOD U	SED TO ES	TIMATE YIELD	OF WATER-BEARING STRATA: T	OTAL ESTIMATED	
	PUM	P 🗸 A	IR LIFT	BAILER OTHER – SPECIFY:	WELL YIELD (gpm):	75.00
	<u> </u>					
NOIS	WELL TES	T STAR	RESULTS - ATT. T TIME, END TII	ACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER	JDING DISCHARGE N	METHOD, DD.
:VIS	MISCELLA	NEOUS INF	ORMATION:			
PER				to 799' drilled with mud.		
S SI			/9	9' to 1,172' drilled with air and foam.		
l; Ri						+
TEST; RIG SUPERVI	PRINT NAM	ME(S) OF D	RILL RIG SUPER	RVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONST	RUCTION OTHER TH	IAN LICENSEE:
5.						
	THE UNDE	RSIGNED I	HEREBY CERTIF	TIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF	THE FOREGOING I	S A TRUE AND
JRE	CORRECT I	RECORD O	F THE ABOVE D	DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL REG TO DAYS AFTER COMPLETION OF WELL DRILLING:		
IAT	nne me i		1		/ /	
SIGNATURE		Mrs B	Le Le	Corky Glenn	111/19	
6.5	$ \iota$	SICKLET	URE OF DRILLE	ER / PRINT SIGNEE NAME	DATE	
	<u> </u>	- JICOM		A CONTRACTOR AND	DATE	
roi	ACE NITED	NIAT TICE		WB 40 WELL	DECORD # LOC (IV.	: 07 (20/2013)

POD NO.

TRN NO.

WELL TAG ID NO.

PAGE 2 OF 2

FILE NO.

LOCATION

NC	OSE POD NO POD1 (TV		NO.)			WELL	TAG ID NO.				OSE FILE NO(S CP-1899	3).					
OCATIO	WELL OWN		E(S)							F	PHONE (OPTIO	ONAL)					
WELL L	WELL OWN 4111 S Tic			DDRESS							CITY Carlsbad			STAT		88220	ZIP
GENERAL AND WELL LOCATION	WELL LOCATIO		LATIT		GREES 32		NUTES 23	SECO	.07 N	Ή.	* ACCURACY * DATUM REQ			TH OF	A SECO	ND	
SNEF	(FROM GI	I		HITUDE	103		35	16.		<u>'</u>							
1. GI				WELL LOCATION TO S R33E, NMPM	STREET ADDI	RESS AN	D COMMON	LANDM	IARKS – P	LSS ((SECTION, TO	WNSHJIP, RA	NGE) WH	ERE A	VAILAB	BLE	
	LICENSE NO			NAME OF LICENSED		Jackie	D. Atkins					NAME OF				ANY ociates, In	nc.
	DRILLING S 2/9/2			DRILLING ENDED 2/24/2022	DEPTH OF CO		ED WELL (FT casing	")	BORE H	±10	DEPTH (FT) 01	DEPTH WA	ATER FIR		OUNTE /a	RED (FT)	
N	COMPLETE	D WELL I	S:	ARTESIAN	✓ DRY HO	LE [SHALLOV	W (UNCO	ONFINED)			WATER LEVI PLETED WEL		/a		24/22, 3	MEASURED /8/2022
ATIC	DRILLING F	LUID:		AIR	MUD MUD		ADDITIVI	ES – SPE	CIFY:								
ORM	DRILLING M	ÆTHOD:	F	ROTARY HAMI	MER CAB	LE TOOI	OTHE	ER – SPE	CIFY:	Hol	llow Stem A	Auger	CHECK INSTAL	HERE	IF PITL	ESS ADAP	TER IS
INF	DEPTH		_	BORE HOLE	CASING	MATE	RIAL AND	/OR		CASI	ING	CASI		CA	SING '	WALL	SLOT
2. DRILLING & CASING INFORMATION	FROM	то		DIAM (inches)		each ca	sing string, s of screen)	and		TYI	ECTION PE g diameter)	INSIDE I		T	HICKN (inche		SIZE (inches)
& C	0	101	l	±8.5		Bori	ing				-						-
CING					-									_			
RIL														-			
2. D																	
					-							DBED	II MAR	115	2022	ам8:47	
					-												
	DEPTH	(feet bgl)	BORE HOLE	LI	ST AN	NULAR SE	AL MA	TERIAL	AN	D	AM	OUNT		1	метног	O OF
IAL	FROM	то		DIAM. (inches)	GRA	VEL PA	ACK SIZE-	RANGI	E BY IN	ΓERV	VAL	(cub	ic feet)		I	PLACEM	ENT
ANNULAR MATERIAL																	
R MA														-			
LAI														-			
NN																	
3. A																	
	OSE INTER			20.0			I	$\overline{}$				WELL RE	CORD	& LOC	(Vers	ion 01/28	3/2022)
FILE	ATION	P -	_		0 0	00	POD NO.	20	DOI	Ι_	TRN N		17-3	-13	5	DACE	L OF 2
LUC	ATION	52	2	252	8 2	25	5	2		W	ELL TAG ID	NO.	JH			PAGE 1	OF 2

	DEPTH (1	feet bgl)		COLOR A	ND TYPE OF N	MATERIAL E	NCOUNTERED -		WATER	ESTIMATED
	FROM	то	THICKNESS (feet)	INCLUDE WAT	ER-BEARING	CAVITIES O	R FRACTURE ZO	ONES	BEARING? (YES / NO)	YIELD FOR WATER- BEARING ZONES (gpm)
	0	9	9	Sand, Fir	ne-grained, poor	ly graded with	caliche, Brown		Y / N	ZOTTES (gpin)
	9	19	10		ine-grained, poo				Y ✓N	
	19	34	15				-angular gravel, Ta	an	y ✓n	
	34	44	10	s	and, Fine-grain	ed, poorly grad	ded, Tan		y ✓n	
	44	49	5	Sand, Fine-gra	ined, poorly gra	ded with sub-a	angular gravel, Bro	wn	y ✓n	
Г	49	101	52		Clay, with s	and ,Dry, Bro	wn		Y ✓N	
4. HYDROGEOLOGIC LOG OF WELL									Y N	
OF 1									Y N	
9O									Y N	
ICI									Y N	
907									Y N	
EO									Y N	
ROC									Y N	
HAD									Y N	
4.									Y N	
									Y N	
									Y N	
									Y N	
									Y N	
									Y N	
									Y N	
	METHOD U	SED TO ES	TIMATE YIELD	OF WATER-BEARIN	NG STRATA:			TOT	AL ESTIMATED	
	PUM	P	IR LIFT	BAILER O	THER – SPEC	IFY:		WEI	LL YIELD (gpm):	0.00
NO	WELL TES			ACH A COPY OF DA						
5. TEST; RIG SUPERVISION	MISCELLA	NEOUS INF	ORMATION:	- 11			1 . 1 . 1 . 1 . 1	. 1.11		1.1
PER			fe	emporary well mater et below ground sur	face, then hyd	and he soil be rated bentoni	ite chips ten feet	using drill below gro	ound surface to sur	face.
SU					•		•			
RIC								nech	IT MAR 11 202	O 800151
EST	PRINT NAN	(F(S) OF DI	RILL RIG SUPER	RVISOR(S) THAT PRO	OVIDED ONSI	TE SUPERVI	SION OF WELL	10 44 mm (a)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	dec last the last state of the
5. T	Shane Eldri	7. (7.)			0 (1000	I DOI DRIVE	DIGITOR WEEDS	onbino	011011 0111211 111	an Breshibsen
	Share Elari	age, came								
TURE	CORRECT I	RECORD O	F THE ABOVE I	FIES THAT, TO THE DESCRIBED HOLE A 30 DAYS AFTER COM	ND THAT HE	OR SHE WIL	L FILE THIS WE			
6. SIGNATURE	Jack A	tkins		J:	ackie D. Atkir	ıs			3/10/2022	
•		SIGNAT	URE OF DRILLE	ER / PRINT SIGNEE	ENAME		_		DATE	
FO	R OSE INTER	NAI IICE					W/D 20	WEILDE	CORD & LOG (Ver	sion 01/28/2022)
	ENO.		1899		POD NO.	PODI	TRN NO		17713	51011 U1/20/2U22)
LO	CATION		SESE	8	225	33 E	WELL TAG ID		NA	PAGE 2 OF 2

Mike A. Hamman, P.E. State Engineer

Roswell Office 1900 WEST SECOND STREET ROSWELL, NM 88201

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

Trn Nbr: 717713 File Nbr: CP 01899

Well File Nbr: CP 01899 POD1

Mar. 22, 2022

MELODIE SANJARI MARATHON OIL 4111 S TIDWELL RD CARLSBAD, NM 88220

Greetings:

The above numbered permit was issued in your name on 01/31/2022.

The Well Record was received in this office on 03/11/2022, stating that it had been completed on 02/24/2022, and was a dry well. The well is to be plugged according to 19.27.4.30 NMAC.

Please note that another well can be drilled under this permit if the well is completed and the well log filed on or before 01/31/2023.

If you have any questions, please feel free to contact us.

Sincerely,

Megen Telles (575)622-6521

drywell

APPENDIX C VSP SAMPLING PROTOCOL

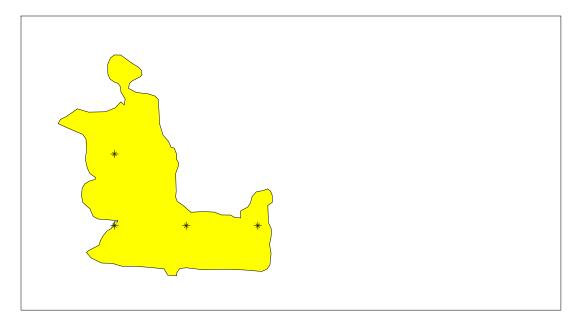
VSP Sample Design Report for Calculating a Two-Sided Confidence Interval for the Population Mean Using Systematic Grid Sampling

Summary

This report summarizes the sampling design used, associated statistical assumptions, as well as general guidelines for conducting post-sampling data analysis. Sampling plan components presented here include how many sampling locations to choose and where within the sampling area to collect those samples. The type of medium to sample (i.e., soil, groundwater, etc.) and how to analyze the samples (in-situ, fixed laboratory, etc.) are addressed in other sections of the sampling plan.

The following table summarizes the sampling design developed. A figure that shows sampling locations in the field and a table that lists sampling location coordinates are also provided below.

SUMMARY OF SAM	IPLING DESIGN
Primary Objective of Design	Construct a Confidence Interval on the True Mean
Type of Sampling Design	Parametric
Sample Placement (Location) in the Field	Systematic sampling with a random start location
Formula for calculating number of sampling locations	Confidence Limits using Student's t-distribution
Calculated total number of samples	4
Number of samples on map ^a	4
Number of selected sample areas ^b	1
Specified sampling area ^c	9812.89 ft ²
Size of grid / Area of grid cell ^d	49.53 feet / 2453.22 ft ²
Grid pattern	Square
Total cost of sampling ^e	\$7,840.00


^a This number may differ from the calculated number because of 1) grid edge effects, 2) adding judgment samples, or 3) selecting or unselecting sample areas.

^b The number of selected sample areas is the number of colored areas on the map of the site. These sample areas contain the locations where samples are collected.

^c The sampling area is the total surface area of the selected colored sample areas on the map of the site.

^d Size of grid / Area of grid cell gives the linear and square dimensions of the grid used to systematically place samples.

^e Including measurement analyses and fixed overhead costs. See the Cost of Sampling section for an explanation of the costs presented here.

	Area: Ogopogo												
X Coord	Y Coord	Label	Value	Туре	Historical	Sample Area							
-11527786.1788	3816448.0692			Systematic									
-11527736.6487	3816448.0692			Systematic									
-11527687.1187	3816448.0692			Systematic									
-11527786.1788	3816497.5992			Systematic									

Primary Sampling Objective

The primary purpose of sampling at this site is to construct a confidence interval on the true population mean value. After the samples are collected and analyzed, the resulting sample values can be used to construct a two-sided confidence interval. Once the confidence interval is computed (which will be an upper and a lower threshold), you can have the specified confidence that the true population mean is between the upper and lower thresholds.

Selected Sampling Approach

A parametric design was used to determine the number of samples. A parametric formula was chosen because the conceptual model and historical information (e.g., historical data from this site or a very similar site) indicate that parametric assumptions are true. These assumptions will be examined in post-sampling data analysis.

Both parametric and non-parametric equations rely on assumptions about the population. Typically, however, non-parametric equations require fewer assumptions and allow for more uncertainty about the statistical distribution of values at the site. The trade-off is that if the parametric assumptions are valid, the required number of samples is usually less than if a non-parametric equation was used.

VSP offers many options to determine the locations at which measurements are made or samples are collected and subsequently measured. For this design, systematic grid point sampling was chosen. Locating the sample points systematically provides data that are all equidistant apart. This approach does not provide as much information about the spatial structure of the potential contamination as simple random sampling does. Knowledge of the spatial structure is useful for geostatistical analysis. However, it ensures that all portions of the site are equally represented. Statistical analyses of systematically collected data are valid if a random start to the grid is used.

Number of Total Samples: Calculation Equation and Inputs

The equation used to calculate the number of samples is based on a confidence interval calculation using the Student's t-distribution. The formula used to calculate the number of samples is:

$$n = \left(\frac{t_{1-\alpha/2,df}}{d}\right)^2 \left(s_{sample}^2 + \frac{s_{analytical}^2}{r}\right)$$

where

n is the recommended minimum sample size for the study area,

S_{sample} is the estimated standard deviation due to the inherent variability in the sampling process when analytical error is zero,

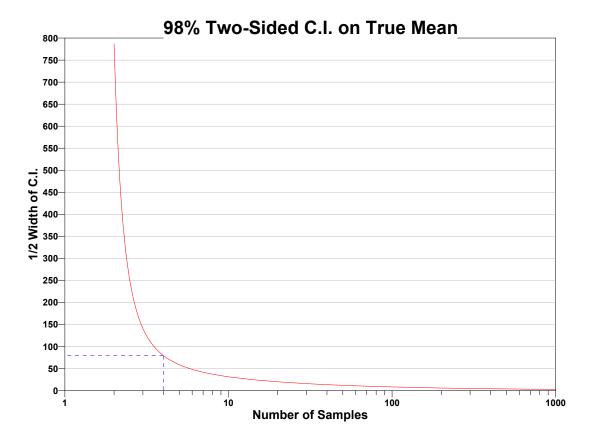
S_{analytical} is the estimated standard deviation due to the inherent variability in the analysis process alone,

r is the number of times an individual sample is analyzed,

is the maximum acceptable probability that the true mean will not lie in the confidence interval (the confidence level is $1-\alpha$),

d is the half-width of the confidence interval.

is the value of the Student's t-distribution with df=n-1 degrees of freedom such that the proportion of the distribution less than $t_{1-\alpha/2}$ is $1-\alpha/2$.


Because *n* appears on both sides of the equation (on the right side it appears in the degrees of freedom of the t-statistic), the equation must be solved iteratively. VSP does this automatically using the iteration scheme in Gilbert (1987, pg. 32).

The values of these inputs that result in the calculated number of sampling locations are:

Analyto	n	Parameter					
Analyte		S _{sample}	S _{analytical}	r	d	α	t _{1-α/2,df}
Analyte 1	4	18	30	1	600	2%	-1e+12 a

^a This value is automatically calculated by VSP based upon the user defined value of α

The following figure is a graph representing the relationship between the half-width of the confidence interval and the number of samples. The blue dashed line illustrates the specified maximum desirable confidence interval half-width. Where this dashed line intersects the red curve is the number of samples calculated by VSP.

Statistical Assumptions

The assumptions associated with the formulas for computing the number of samples are:

- 1. the sample mean is normally distributed,
- 2. the population values are not spatially or temporally correlated, and
- 3. the sampling locations will be selected probabilistically.

The first two assumptions will be assessed in a post data collection analysis. The last assumption is valid because the gridded sample locations were selected based on a random start.

Sensitivity Analysis

The sensitivity of the calculation of number of samples was explored by varying the analytical standard deviation, confidence level $(1-\alpha)$ (%), width of confidence interval and sampling standard deviation. The following table shows the results of this analysis.

Number of Samples							
	s _{sample} =36		s _{sample} =18				
		s _{analytical} =36	s _{analytical} =18	s _{analytical} =36	s _{analytical} =18		
CL=99	d=300	3	2	2	1		
	d=600	1	1	1	1		
	d=900	1	1	1	4		
	d=300	1	1	1	4		
CL=97	d=600	4	3	3	1		
	d=900	2	1	1	1		
CL=95	d=300	1	3	3	2		
	d=600	2	1	1	1		
	d=900	1	1	1	1		

	d=300	3	2	2	1
CL=93	d=600	1	1	1	1
	d=900	1	1	1	1
	d=300	2	1	1	1
CL=91	d=600	1	1	1	1
	d=900	1	1	1	1

 $s_{analytical}$ = Analytical Standard Deviation CL = Confidence Level (1- α) (%) d = Width of Confidence Interval s_{sample} = Sampling Standard Deviation

Cost of Sampling

The total cost of the completed sampling program depends on several cost inputs, some of which are fixed, and others that are based on the number of samples collected and measured. Based on the numbers of samples determined above, the estimated total cost of sampling and analysis at this site is \$7,840.00, which averages out to a per sample cost of \$1,960.00. The following table summarizes the inputs and resulting cost estimates.

COST INFORMATION						
Cost Details	Per Analysis	Per Sample	4 Samples			
Field collection costs		\$35.00	\$140.00			
Analytical costs (Analyte 1)	\$675.00	\$675.00	\$2,700.00			
Sum of Field & Analytical costs		\$710.00	\$2,840.00			
Fixed planning and validation costs			\$5,000.00			
Total cost			\$7,840.00			

Recommended Data Analysis Activities

Post data collection activities generally follow those outlined in EPA's Guidance for Data Quality Assessment (EPA, 2000). The data analysts will become familiar with the context of the problem and goals for data collection and assessment. The data will be verified and validated before being subjected to statistical or other analyses. Graphical and analytical tools will be used to verify to the extent possible the assumptions of any statistical analyses that are performed as well as to achieve a general understanding of the data. The data will be assessed to determine whether they are adequate in both quality and quantity to support the primary objective of sampling.

Because the primary objective for sampling for this site is to compute a confidence interval, the data should be assessed in this context. Assuming the data are adequate, at least one statistical test should be done to evaluate whether the data are normally distributed. Appropriate confidence intervals for the mean value should then be calculated. Results of the exploratory and quantitative assessments of the data should be reported, along with conclusions that may be supported by them.

This report was automatically produced* by Visual Sample Plan (VSP) software version 7.19.

This design was last modified 12/30/2022 1:14:57 PM.

Software and documentation available at https://www.pnnl.gov/projects/visual-sample-plan

Software copyright (c) 2022 Battelle Memorial Institute. All rights reserved.

* - The report contents may have been modified or reformatted by end-user of software.

APPENDIX D LABORATORY ANALYTICAL REPORTS

Report to:
Austin Weyant

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Atkins Engineering Associates Inc.

Project Name: OGO POGO

Work Order: E301103

Job Number: 20071-0001

Received: 1/20/2023

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 1/24/23

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise.

Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc.

Envirotech Inc, holds the Utah TNI certification NM00979 for data reported.

Envirotech Inc, holds the Texas TNI certification T104704557 for data reported.

Envirotech Inc, holds the NM SDWA certification for data reported. (Lab #NM00979)

Date Reported: 1/24/23

Austin Weyant 2904 W. 2nd

Roswell, NM 88201

Project Name: OGO POGO

Workorder: E301103

Date Received: 1/20/2023 7:00:00AM

Austin Weyant,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 1/20/2023 7:00:00AM, under the Project Name: OGO POGO.

The analytical test results summarized in this report with the Project Name: OGO POGO apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman

Laboratory Director Office: 505-632-1881

Cell: 775-287-1762

whinchman@envirotech-inc.com

Raina Schwanz

Laboratory Administrator Office: 505-632-1881

rainaschwanz@envirotech-inc.com

Alexa Michaels

Sample Custody Officer Office: 505-632-1881

labadmin@envirotech-inc.com

Field Offices:

Southern New Mexico Area Lynn Jarboe

Technical Representative/Client Services

Office: 505-421-LABS(5227)

Cell: 505-320-4759

ljarboe@envirotech-inc.com

West Texas Midland/Odessa Area Rayny Hagan

Technical Representative Office: 505-421-LABS(5227)

Envirotech Web Address: www.envirotech-inc.com

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	5
Sample Data	6
SB1 - (0 - 1.5)	6
SB1 - 2	7
SB1 - 3	8
SB2 - (0 - 1 1/2)	9
SB2 - 2	10
SB2 - 3	11
SB3 - (0 - 1.5)	12
SB3 - 2'	13
SB3 - 3	14
SB4 - (0 - 1.5)	15
SB4 - 3'	16
SW1	17
SW2	18
SW3	19
SW4	20
SW5	21
SW6	22
SW7	23
SW8	24
SW9	25

Table of Contents (continued)

	SW10	26
	SB4 - 4'	27
Q	C Summary Data	28
	QC - Volatile Organic Compounds by EPA 8260B	28
	QC - Volatile Organics by EPA 8021B	29
	QC - Nonhalogenated Organics by EPA 8015D - GRO	30
	QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	32
	QC - Anions by EPA 300.0/9056A	34
D	efinitions and Notes	36
С	hain of Custody etc.	37

Sample Summary

Atkins Engineering Associates Inc.	Project Name:	OGO POGO	Reported:
2904 W. 2nd	Project Number:	20071-0001	Reported:
Roswell NM, 88201	Project Manager:	Austin Weyant	01/24/23 12:01

Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
SB1 - (0 - 1.5)	E301103-01A	Soil	01/17/23	01/20/23	Glass Jar, 2 oz.
SB1 - 2	E301103-02A	Soil	01/17/23	01/20/23	Glass Jar, 2 oz.
SB1 - 3	E301103-03A	Soil	01/17/23	01/20/23	Glass Jar, 2 oz.
SB2 - (0 - 1 1/2)	E301103-04A	Soil	01/17/23	01/20/23	Glass Jar, 2 oz.
SB2 - 2	E301103-05A	Soil	01/17/23	01/20/23	Glass Jar, 2 oz.
SB2 - 3	E301103-06A	Soil	01/17/23	01/20/23	Glass Jar, 2 oz.
SB3 - (0 - 1.5)	E301103-07A	Soil	01/17/23	01/20/23	Glass Jar, 2 oz.
SB3 - 2'	E301103-08A	Soil	01/17/23	01/20/23	Glass Jar, 2 oz.
SB3 - 3	E301103-09A	Soil	01/17/23	01/20/23	Glass Jar, 2 oz.
SB4 - (0 - 1.5)	E301103-10A	Soil	01/17/23	01/20/23	Glass Jar, 2 oz.
SB4 - 3'	E301103-11A	Soil	01/17/23	01/20/23	Glass Jar, 2 oz.
SW1	E301103-12A	Soil	01/17/23	01/20/23	Glass Jar, 2 oz.
SW2	E301103-13A	Soil	01/17/23	01/20/23	Glass Jar, 2 oz.
SW3	E301103-14A	Soil	01/17/23	01/20/23	Glass Jar, 2 oz.
SW4	E301103-15A	Soil	01/17/23	01/20/23	Glass Jar, 2 oz.
SW5	E301103-16A	Soil	01/17/23	01/20/23	Glass Jar, 2 oz.
SW6	E301103-17A	Soil	01/17/23	01/20/23	Glass Jar, 2 oz.
SW7	E301103-18A	Soil	01/17/23	01/20/23	Glass Jar, 2 oz.
SW8	E301103-19A	Soil	01/17/23	01/20/23	Glass Jar, 2 oz.
SW9	E301103-20A	Soil	01/17/23	01/20/23	Glass Jar, 2 oz.
SW10	E301103-21A	Soil	01/17/23	01/20/23	Glass Jar, 2 oz.
SB4 - 4'	E301103-22A	Soil	01/17/23	01/20/23	Glass Jar, 2 oz.

Atkins Engineering Associates Inc.	Project Name:	OGO POGO	
2904 W. 2nd	Project Number:	20071-0001	Reported:
Roswell NM, 88201	Project Manager:	Austin Weyant	1/24/2023 12:01:48PM

SB1 - (0 - 1.5) E301103-01

		E301103-01					
Applieto	Result	Reporting Limit	D:I-	ution	Prepared	Analyzad	Notes
Analyte	Result	Limit	Dili	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2303068
Benzene	ND	0.0250		1	01/20/23	01/20/23	
Ethylbenzene	ND	0.0250		1	01/20/23	01/20/23	
Toluene	ND	0.0250		1	01/20/23	01/20/23	
o-Xylene	ND	0.0250		1	01/20/23	01/20/23	
p,m-Xylene	ND	0.0500		1	01/20/23	01/20/23	
Total Xylenes	ND	0.0250		1	01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		98.7 %	70-130		01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		97.8 %	70-130		01/20/23	01/20/23	
Surrogate: Toluene-d8		97.6 %	70-130		01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2303068
Gasoline Range Organics (C6-C10)	ND	20.0		1	01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		98.7 %	70-130		01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		97.8 %	70-130		01/20/23	01/20/23	
Surrogate: Toluene-d8		97.6 %	70-130		01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	KM		Batch: 2303061
Diesel Range Organics (C10-C28)	ND	25.0		1	01/20/23	01/20/23	
Oil Range Organics (C28-C36)	ND	50.0		1	01/20/23	01/20/23	
Surrogate: n-Nonane		99.9 %	50-200		01/20/23	01/20/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	BA		Batch: 2303075
Chloride	2340	40.0		2	01/20/23	01/20/23	

Atkins Engineering Associates Inc.	Project Name:	OGO POGO	
2904 W. 2nd	Project Number:	20071-0001	Reported:
Roswell NM, 88201	Project Manager:	Austin Weyant	1/24/2023 12:01:48PM

SB1 - 2

E3011	03-02
-------	-------

		Reporting				
Analyte	Result	Limit	Dilut	ion Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	A	Analyst: IY		Batch: 2303068
Benzene	ND	0.0250	1	01/20/23	01/20/23	
Ethylbenzene	ND	0.0250	1	01/20/23	01/20/23	
Toluene	ND	0.0250	1	01/20/23	01/20/23	
o-Xylene	ND	0.0250	1	01/20/23	01/20/23	
p,m-Xylene	ND	0.0500	1	01/20/23	01/20/23	
Total Xylenes	ND	0.0250	1	01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		96.6 %	70-130	01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		96.7 %	70-130	01/20/23	01/20/23	
Surrogate: Toluene-d8		97.4 %	70-130	01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	A	Analyst: IY		Batch: 2303068
Gasoline Range Organics (C6-C10)	ND	20.0	1	01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		96.6 %	70-130	01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		96.7 %	70-130	01/20/23	01/20/23	
Surrogate: Toluene-d8		97.4 %	70-130	01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	A	Analyst: KM		Batch: 2303061
Diesel Range Organics (C10-C28)	ND	25.0	1	01/20/23	01/20/23	
Oil Range Organics (C28-C36)	ND	50.0	1	01/20/23	01/20/23	
Surrogate: n-Nonane		103 %	50-200	01/20/23	01/20/23	
1	mg/kg	mg/kg	A	Analyst: BA		Batch: 2303075
Anions by EPA 300.0/9056A	88	88				

Atkins Engineering Associates Inc.	Project Name:	OGO POGO	
2904 W. 2nd	Project Number:	20071-0001	Reported:
Roswell NM, 88201	Project Manager:	Austin Weyant	1/24/2023 12:01:48PM

SB1 - 3 E301103-03

		Reporting					
Analyte	Result	Limit	Dilu	tion Pr	epared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst: IY			Batch: 2303068
Benzene	ND	0.0250	1	01	/20/23	01/20/23	
Ethylbenzene	ND	0.0250	1	. 01	/20/23	01/20/23	
Toluene	ND	0.0250	1	. 01	/20/23	01/20/23	
o-Xylene	ND	0.0250	1	01	/20/23	01/20/23	
p,m-Xylene	ND	0.0500	1	01	/20/23	01/20/23	
Total Xylenes	ND	0.0250	1	. 01	/20/23	01/20/23	
Surrogate: Bromofluorobenzene		98.1 %	70-130	01	1/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		93.3 %	70-130	01	1/20/23	01/20/23	
Surrogate: Toluene-d8		97.6 %	70-130	01	1/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	-	Analyst: IY			Batch: 2303068
Gasoline Range Organics (C6-C10)	ND	20.0	1	. 01	/20/23	01/20/23	
Surrogate: Bromofluorobenzene		98.1 %	70-130	01	1/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		93.3 %	70-130	01	1/20/23	01/20/23	
Surrogate: Toluene-d8		97.6 %	70-130	01	1/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst: KM			Batch: 2303061
Diesel Range Organics (C10-C28)	ND	25.0	1	01	/20/23	01/20/23	
Oil Range Organics (C28-C36)	ND	50.0	1	01	/20/23	01/20/23	
Surrogate: n-Nonane		98.2 %	50-200	01	1/20/23	01/20/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst: BA			Batch: 2303075
Chloride	63.9	20.0	1	01	/20/23	01/20/23	

Atkins Engineering Associates Inc.	Project Name:	OGO POGO	
2904 W. 2nd	Project Number:	20071-0001	Reported:
Roswell NM, 88201	Project Manager:	Austin Weyant	1/24/2023 12:01:48PM

SB2 - (0 - 1 1/2)

	Reporting						
Analyte	Result	Limit	Dilut	tion	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg			Analyst: I	Y		Batch: 2303068
Benzene	ND	0.0250	1		01/20/23	01/20/23	
Ethylbenzene	ND	0.0250	1		01/20/23	01/20/23	
Toluene	ND	0.0250	1		01/20/23	01/20/23	
o-Xylene	ND	0.0250	1		01/20/23	01/20/23	
p,m-Xylene	ND	0.0500	1		01/20/23	01/20/23	
Total Xylenes	ND	0.0250	1		01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		97.1 %	70-130		01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		98.7 %	70-130		01/20/23	01/20/23	
Surrogate: Toluene-d8		96.2 %	70-130		01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	1	Analyst: I	Y		Batch: 2303068
Gasoline Range Organics (C6-C10)	ND	20.0	1		01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		97.1 %	70-130		01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		98.7 %	70-130		01/20/23	01/20/23	
Surrogate: Toluene-d8		96.2 %	70-130		01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	1	Analyst: k	ΚM		Batch: 2303061
Diesel Range Organics (C10-C28)	ND	25.0	1		01/20/23	01/20/23	
Oil Range Organics (C28-C36)	ND	50.0	1		01/20/23	01/20/23	
Surrogate: n-Nonane		93.1 %	50-200		01/20/23	01/20/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	1	Analyst: E	BA		Batch: 2303075
Chloride	5280	200	10	0	01/20/23	01/20/23	

Atkins Engineering Associates Inc.	Project Name:	OGO POGO	
2904 W. 2nd	Project Number:	20071-0001	Reported:
Roswell NM, 88201	Project Manager:	Austin Weyant	1/24/2023 12:01:48PM

SB2 - 2

		2001100 00					
		Reporting					AT .
Analyte	Result	Limit	Dil	lution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg mg/kg			Analyst:	IY		Batch: 2303068
Benzene	ND	0.0250		1	01/20/23	01/20/23	
Ethylbenzene	ND	0.0250		1	01/20/23	01/20/23	
Toluene	ND	0.0250		1	01/20/23	01/20/23	
o-Xylene	ND	0.0250		1	01/20/23	01/20/23	
p,m-Xylene	ND	0.0500		1	01/20/23	01/20/23	
Total Xylenes	ND	0.0250		1	01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		96.3 %	70-130		01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		96.1 %	70-130		01/20/23	01/20/23	
Surrogate: Toluene-d8		99.4 %	70-130		01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2303068
Gasoline Range Organics (C6-C10)	ND	20.0		1	01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		96.3 %	70-130		01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		96.1 %	70-130		01/20/23	01/20/23	
Surrogate: Toluene-d8		99.4 %	70-130		01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	KM		Batch: 2303061
Diesel Range Organics (C10-C28)	ND	25.0	•	1	01/20/23	01/20/23	
Oil Range Organics (C28-C36)	ND	50.0		1	01/20/23	01/20/23	
Surrogate: n-Nonane		102 %	50-200		01/20/23	01/20/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	BA		Batch: 2303075
Chloride	782	20.0		1	01/20/23	01/20/23	
Chioriac	. 52	20.0					

Atkins Engineering Associates Inc.	Project Name:	OGO POGO	
2904 W. 2nd	Project Number:	20071-0001	Reported:
Roswell NM, 88201	Project Manager:	Austin Weyant	1/24/2023 12:01:48PM

SB2 - 3

		Reporting					
Analyte	Result	Limit	Dilut	tion	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	A	Analyst: IY	•		Batch: 2303068
Benzene	ND	0.0250	1		01/20/23	01/20/23	
Ethylbenzene	ND	0.0250	1		01/20/23	01/20/23	
Toluene	ND	0.0250	1		01/20/23	01/20/23	
o-Xylene	ND	0.0250	1		01/20/23	01/20/23	
p,m-Xylene	ND	0.0500	1		01/20/23	01/20/23	
Total Xylenes	ND	0.0250	1		01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		97.3 %	70-130		01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		101 %	70-130		01/20/23	01/20/23	
Surrogate: Toluene-d8		96.2 %	70-130		01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - GRO		mg/kg	A	Analyst: IY			Batch: 2303068
Gasoline Range Organics (C6-C10)	ND	20.0	1		01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		97.3 %	70-130		01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		101 %	70-130		01/20/23	01/20/23	
Surrogate: Toluene-d8		96.2 %	70-130		01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	A	Analyst: K	M		Batch: 2303061
Diesel Range Organics (C10-C28)	ND	25.0	1		01/20/23	01/20/23	
Oil Range Organics (C28-C36)	ND	50.0	1		01/20/23	01/20/23	
Surrogate: n-Nonane		101 %	50-200		01/20/23	01/20/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	A	Analyst: B	A		Batch: 2303075
-	96.0	20.0	1		01/20/23	01/20/23	

Atkins Engineering Associates Inc.	Project Name:	OGO POGO	
2904 W. 2nd	Project Number:	20071-0001	Reported:
Roswell NM, 88201	Project Manager:	Austin Weyant	1/24/2023 12:01:48PM

SB3 - (0 - 1.5)

	E301103-07								
		Reporting							
Analyte	Result	Limit	Dilut	tion Prepared	Analyzed	Notes			
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	A	Analyst: IY		Batch: 2303068			
Benzene	ND	0.0250	1	01/20/23	01/20/23				
Ethylbenzene	ND	0.0250	1	01/20/23	01/20/23				
Toluene	ND	0.0250	1	01/20/23	01/20/23				
o-Xylene	ND	0.0250	1	01/20/23	01/20/23				
p,m-Xylene	ND	0.0500	1	01/20/23	01/20/23				
Total Xylenes	ND	0.0250	1	01/20/23	01/20/23				
Surrogate: Bromofluorobenzene		98.1 %	70-130	01/20/23	01/20/23				
Surrogate: 1,2-Dichloroethane-d4		96.9 %	70-130	01/20/23	01/20/23				
Surrogate: Toluene-d8		96.5 %	70-130	01/20/23	01/20/23				
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	A	Analyst: IY		Batch: 2303068			
Gasoline Range Organics (C6-C10)	ND	20.0	1	01/20/23	01/20/23				
Surrogate: Bromofluorobenzene		98.1 %	70-130	01/20/23	01/20/23				
Surrogate: 1,2-Dichloroethane-d4		96.9 %	70-130	01/20/23	01/20/23				
Surrogate: Toluene-d8		96.5 %	70-130	01/20/23	01/20/23				
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	A	Analyst: KM		Batch: 2303061			
Diesel Range Organics (C10-C28)	ND	25.0	1	01/20/23	01/20/23				
Oil Range Organics (C28-C36)	ND	50.0	1	01/20/23	01/20/23				
Surrogate: n-Nonane		101 %	50-200	01/20/23	01/20/23				
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst: BA		Batch: 2303075			
		•			•				

200

1650

10

01/20/23

01/20/23

Chloride

Atkins Engineering Associates Inc.	Project Name:	OGO POGO	
2904 W. 2nd	Project Number:	20071-0001	Reported:
Roswell NM, 88201	Project Manager:	Austin Weyant	1/24/2023 12:01:48PM

SB3 - 2'

E30	11	Λ3	ΛQ
E30	ш	.บง-	·vo

		Reporting					
Analyte	Result	Limit	Dilu	tion	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	I	Analyst: IY			Batch: 2303068
Benzene	ND	0.0250	1		01/20/23	01/20/23	
Ethylbenzene	ND	0.0250	1		01/20/23	01/20/23	
Toluene	ND	0.0250	1		01/20/23	01/20/23	
o-Xylene	ND	0.0250	1		01/20/23	01/20/23	
p,m-Xylene	ND	0.0500	1		01/20/23	01/20/23	
Total Xylenes	ND	0.0250	1		01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		97.2 %	70-130		01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		96.7 %	70-130		01/20/23	01/20/23	
Surrogate: Toluene-d8		96.8 %	70-130		01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - GRO		mg/kg	1	Analyst: IY			Batch: 2303068
Gasoline Range Organics (C6-C10)	ND	20.0	1		01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		97.2 %	70-130		01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		96.7 %	70-130		01/20/23	01/20/23	
Surrogate: Toluene-d8		96.8 %	70-130		01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	1	Analyst: KN	Л		Batch: 2303061
Diesel Range Organics (C10-C28)	ND	25.0	1		01/20/23	01/20/23	
Oil Range Organics (C28-C36)	ND	50.0	1		01/20/23	01/20/23	
Surrogate: n-Nonane		102 %	50-200		01/20/23	01/20/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	1	Analyst: BA	1		Batch: 2303075
						·	

Atkins Engineering Associates Inc.

Project Name: OGO POGO

2904 W. 2nd Project Number: 20071-0001 Reported:

Roswell NM, 88201 Project Manager: Austin Weyant 1/24/2023 12:01:48PM

SB3 - 3

		Reporting					
Analyte	Result	Limit	Dilut	tion Pre	epared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	A	Analyst: IY			Batch: 2303068
Benzene	ND	0.0250	1	01/	/20/23	01/20/23	
Ethylbenzene	ND	0.0250	1	01/	20/23	01/20/23	
Toluene	ND	0.0250	1	01/	20/23	01/20/23	
o-Xylene	ND	0.0250	1	01/	20/23	01/20/23	
p,m-Xylene	ND	0.0500	1	01/	20/23	01/20/23	
Total Xylenes	ND	0.0250	1	01/	/20/23	01/20/23	
Surrogate: Bromofluorobenzene		98.0 %	70-130	01/	/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		98.4 %	70-130	01/	/20/23	01/20/23	
Surrogate: Toluene-d8		97.8 %	70-130	01/	/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	A	Analyst: IY			Batch: 2303068
Gasoline Range Organics (C6-C10)	ND	20.0	1	01/	/20/23	01/20/23	
Surrogate: Bromofluorobenzene		98.0 %	70-130	01/	/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		98.4 %	70-130	01/	/20/23	01/20/23	
Surrogate: Toluene-d8		97.8 %	70-130	01/	/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	I	Analyst: KM			Batch: 2303061
Diesel Range Organics (C10-C28)	ND	25.0	1	01/	/20/23	01/20/23	
Oil Range Organics (C28-C36)	ND	50.0	1	01/	/20/23	01/20/23	
Surrogate: n-Nonane	·	99.7 %	50-200	01/	/20/23	01/20/23	
	/1	mg/kg	4	Analyst: BA			Batch: 2303075
Anions by EPA 300.0/9056A	mg/kg	ilig/kg	1	maryst. D71			Datell. 2303073

Γ.	Atkins Engineering Associates Inc.	Project Name:	OGO POGO	
	2904 W. 2nd	Project Number:	20071-0001	Reported:
]	Roswell NM, 88201	Project Manager:	Austin Weyant	1/24/2023 12:01:48PM

SB4 - (0 - 1.5)

	D 1	Reporting	F.''				N.
Analyte	Result	Limit	Dilu	ition	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst: Γ	Y		Batch: 2303068
Benzene	ND	0.0250	1	l	01/20/23	01/20/23	
Ethylbenzene	ND	0.0250	1	l	01/20/23	01/20/23	
Toluene	ND	0.0250	1	l	01/20/23	01/20/23	
o-Xylene	ND	0.0250	1	l	01/20/23	01/20/23	
p,m-Xylene	ND	0.0500	1	l	01/20/23	01/20/23	
Total Xylenes	ND	0.0250	1	[01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		99.3 %	70-130		01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		101 %	70-130		01/20/23	01/20/23	
Surrogate: Toluene-d8		99.0 %	70-130		01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst: Γ	Y		Batch: 2303068
Gasoline Range Organics (C6-C10)	ND	20.0	1	l	01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		99.3 %	70-130		01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		101 %	70-130		01/20/23	01/20/23	
Surrogate: Toluene-d8		99.0 %	70-130		01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst: K	ΣM		Batch: 2303061
Diesel Range Organics (C10-C28)	ND	25.0	1	1	01/20/23	01/20/23	_
Oil Range Organics (C28-C36)	ND	50.0	1	l	01/20/23	01/20/23	
Surrogate: n-Nonane		101 %	50-200		01/20/23	01/20/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst: B	BA		Batch: 2303075
Chloride	2220	40.0		2	01/20/23	01/20/23	

Atkins Engine	ering Associates Inc.	Project Name:	OGO POGO	
2904 W. 2nd		Project Number:	20071-0001	Reported:
Roswell NM,	88201	Project Manager:	Austin Weyant	1/24/2023 12:01:48PM

SB4 - 3'

		E301103-11					
Reporting							
Analyte	Result	Limit	Dilu	ıtion F	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst: IY			Batch: 2303068
Benzene	ND	0.0250	1	1 0	01/20/23	01/20/23	
Ethylbenzene	ND	0.0250	1	1 0	01/20/23	01/20/23	
Toluene	ND	0.0250	1	1 0	01/20/23	01/20/23	
o-Xylene	ND	0.0250	1	1 0	01/20/23	01/20/23	
p,m-Xylene	ND	0.0500	1	1 0	01/20/23	01/20/23	
Total Xylenes	ND	0.0250	1	1 0	01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		99.4 %	70-130	C	01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		96.3 %	70-130	6	01/20/23	01/20/23	
Surrogate: Toluene-d8		98.4 %	70-130	C	01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst: IY			Batch: 2303068
Gasoline Range Organics (C6-C10)	ND	20.0	1	1 0	01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		99.4 %	70-130	C	01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		96.3 %	70-130	0	01/20/23	01/20/23	
Surrogate: Toluene-d8		98.4 %	70-130	C	01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst: KM			Batch: 2303061
Diesel Range Organics (C10-C28)	80.5	25.0	1	1 0	01/20/23	01/20/23	
Oil Range Organics (C28-C36)	256	50.0	1	1 0	01/20/23	01/20/23	
Surrogate: n-Nonane		65.5 %	50-200	C	01/20/23	01/20/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst: BA			Batch: 2303075

20.0

01/20/23

01/20/23

461

Chloride

Atkins Engineering Associates Inc.	Project Name:	OGO POGO	
2904 W. 2nd	Project Number:	20071-0001	Reported:
Roswell NM, 88201	Project Manager:	Austin Weyant	1/24/2023 12:01:48PM

SW1

		Reporting					
Analyte	Result	Limit	Dilu	tion	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2303068
Benzene	ND	0.0250	1		01/20/23	01/20/23	
Ethylbenzene	ND	0.0250	1		01/20/23	01/20/23	
Toluene	ND	0.0250	1	l	01/20/23	01/20/23	
o-Xylene	ND	0.0250	1		01/20/23	01/20/23	
p,m-Xylene	ND	0.0500	1	l	01/20/23	01/20/23	
Total Xylenes	ND	0.0250	1		01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		98.2 %	70-130		01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		94.8 %	70-130		01/20/23	01/20/23	
Surrogate: Toluene-d8		96.9 %	70-130		01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2303068
Gasoline Range Organics (C6-C10)	ND	20.0	1		01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		98.2 %	70-130		01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		94.8 %	70-130		01/20/23	01/20/23	
Surrogate: Toluene-d8		96.9 %	70-130		01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	KM		Batch: 2303061
Diesel Range Organics (C10-C28)	ND	25.0	1		01/20/23	01/21/23	
Oil Range Organics (C28-C36)	ND	50.0	1	Į.	01/20/23	01/21/23	
Surrogate: n-Nonane		105 %	50-200		01/20/23	01/21/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	BA		Batch: 2303075

Atkins Engineering Associates Inc.	Project Name:	OGO POGO	
2904 W. 2nd	Project Number:	20071-0001	Reported:
Roswell NM, 88201	Project Manager:	Austin Weyant	1/24/2023 12:01:48PM

SW2 E301103-13

Analyte	Result	Reporting Limit	Dib	ution	Prepared	Analyzed	Notes
Tillelyte					•	7 mary zea	
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2303068
Benzene	ND	0.0250		1	01/20/23	01/20/23	
Ethylbenzene	ND	0.0250		1	01/20/23	01/20/23	
Toluene	ND	0.0250		1	01/20/23	01/20/23	
o-Xylene	ND	0.0250		1	01/20/23	01/20/23	
p,m-Xylene	ND	0.0500		1	01/20/23	01/20/23	
Total Xylenes	ND	0.0250		1	01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		96.6 %	70-130		01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		98.7 %	70-130		01/20/23	01/20/23	
Surrogate: Toluene-d8		97.1 %	70-130		01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2303068
Gasoline Range Organics (C6-C10)	ND	20.0		1	01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		96.6 %	70-130		01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		98.7 %	70-130		01/20/23	01/20/23	
Surrogate: Toluene-d8		97.1 %	70-130		01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	KM		Batch: 2303061
Diesel Range Organics (C10-C28)	48.2	25.0		1	01/20/23	01/20/23	
Oil Range Organics (C28-C36)	ND	50.0		1	01/20/23	01/20/23	
Surrogate: n-Nonane		105 %	50-200		01/20/23	01/20/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	BA		Batch: 2303075

20.0

01/20/23

01/20/23

20.4

Chloride

Atkins Engineering Associates Inc.	Project Name:	OGO POGO	
2904 W. 2nd	Project Number:	20071-0001	Reported:
Roswell NM, 88201	Project Manager:	Austin Weyant	1/24/2023 12:01:48PM

SW3

		Reporting					
Analyte	Result	Limit	Di	lution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	: IY		Batch: 2303068
Benzene	ND	0.0250		1	01/20/23	01/20/23	
Ethylbenzene	ND	0.0250		1	01/20/23	01/20/23	
Toluene	ND	0.0250		1	01/20/23	01/20/23	
o-Xylene	ND	0.0250		1	01/20/23	01/20/23	
p,m-Xylene	ND	0.0500		1	01/20/23	01/20/23	
Total Xylenes	ND	0.0250		1	01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		97.4 %	70-130		01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		98.6 %	70-130		01/20/23	01/20/23	
Surrogate: Toluene-d8		98.0 %	70-130		01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	: IY		Batch: 2303068
Gasoline Range Organics (C6-C10)	ND	20.0		1	01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		97.4 %	70-130		01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		98.6 %	70-130		01/20/23	01/20/23	
Surrogate: Toluene-d8		98.0 %	70-130		01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	: KM		Batch: 2303061
Diesel Range Organics (C10-C28)	ND	25.0		1	01/20/23	01/20/23	
Oil Range Organics (C28-C36)	ND	50.0		1	01/20/23	01/20/23	
Surrogate: n-Nonane		95.9 %	50-200		01/20/23	01/20/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	: BA		Batch: 2303075
	20.4	20.0		1	01/20/23	01/20/23	

Atkins Engineering Associates Inc.	Project Name:	OGO POGO	
2904 W. 2nd	Project Number:	20071-0001	Reported:
Roswell NM, 88201	Project Manager:	Austin Weyant	1/24/2023 12:01:48PM

SW4

		Reporting					
Analyte	Result	Limit	Dilut	tion	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	I	Analyst: IY	7		Batch: 2303068
Benzene	ND	0.0250	1		01/20/23	01/20/23	
Ethylbenzene	ND	0.0250	1		01/20/23	01/20/23	
Toluene	ND	0.0250	1		01/20/23	01/20/23	
o-Xylene	ND	0.0250	1		01/20/23	01/20/23	
p,m-Xylene	ND	0.0500	1		01/20/23	01/20/23	
Total Xylenes	ND	0.0250	1		01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		99.1 %	70-130		01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		99.5 %	70-130		01/20/23	01/20/23	
Surrogate: Toluene-d8		97.0 %	70-130		01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	1	Analyst: IY	7		Batch: 2303068
Gasoline Range Organics (C6-C10)	ND	20.0	1		01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		99.1 %	70-130		01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		99.5 %	70-130		01/20/23	01/20/23	
Surrogate: Toluene-d8		97.0 %	70-130		01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	1	Analyst: K	M		Batch: 2303061
Diesel Range Organics (C10-C28)	ND	25.0	1		01/20/23	01/20/23	
Oil Range Organics (C28-C36)	ND	50.0	1		01/20/23	01/20/23	
Surrogate: n-Nonane		106 %	50-200		01/20/23	01/20/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	1	Analyst: B	A		Batch: 2303075
Amons by ETA 500.0/7050A							

Atkins Engineering Associates Inc.	Project Name:	OGO POGO	
2904 W. 2nd	Project Number:	20071-0001	Reported:
Roswell NM, 88201	Project Manager:	Austin Weyant	1/24/2023 12:01:48PM

SW5

		Reporting					
Analyte	Result	Limit	Di	lution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	: IY		Batch: 2303068
Benzene	ND	0.0250		1	01/20/23	01/20/23	
Ethylbenzene	ND	0.0250		1	01/20/23	01/20/23	
Toluene	ND	0.0250		1	01/20/23	01/20/23	
o-Xylene	ND	0.0250		1	01/20/23	01/20/23	
p,m-Xylene	ND	0.0500		1	01/20/23	01/20/23	
Total Xylenes	ND	0.0250		1	01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		98.2 %	70-130		01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		97.6 %	70-130		01/20/23	01/20/23	
Surrogate: Toluene-d8		98.6 %	70-130		01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	: IY		Batch: 2303068
Gasoline Range Organics (C6-C10)	ND	20.0		1	01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		98.2 %	70-130		01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		97.6 %	70-130		01/20/23	01/20/23	
Surrogate: Toluene-d8		98.6 %	70-130		01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	: KM		Batch: 2303061
Diesel Range Organics (C10-C28)	634	25.0		1	01/20/23	01/21/23	
Oil Range Organics (C28-C36)	2240	50.0		1	01/20/23	01/21/23	
Surrogate: n-Nonane		102 %	50-200		01/20/23	01/21/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	: BA		Batch: 2303075
	710	20.0		1	01/20/23	01/20/23	

Atkins Engineering Associates Inc.	Project Name:	OGO POGO	
2904 W. 2nd	Project Number:	20071-0001	Reported:
Roswell NM, 88201	Project Manager:	Austin Weyant	1/24/2023 12:01:48PM

SW6

		Reporting					
Analyte	Result	Limit	Dil	lution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	: IY		Batch: 2303068
Benzene	ND	0.0250		1	01/20/23	01/20/23	
Ethylbenzene	ND	0.0250		1	01/20/23	01/20/23	
Toluene	ND	0.0250		1	01/20/23	01/20/23	
o-Xylene	ND	0.0250		1	01/20/23	01/20/23	
p,m-Xylene	ND	0.0500		1	01/20/23	01/20/23	
Total Xylenes	ND	0.0250		1	01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		98.1 %	70-130		01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		100 %	70-130		01/20/23	01/20/23	
Surrogate: Toluene-d8		99.8 %	70-130		01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	: IY		Batch: 2303068
Gasoline Range Organics (C6-C10)	ND	20.0		1	01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		98.1 %	70-130		01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		100 %	70-130		01/20/23	01/20/23	
Surrogate: Toluene-d8		99.8 %	70-130		01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	: KM		Batch: 2303061
Diesel Range Organics (C10-C28)	160	25.0		1	01/20/23	01/23/23	
Oil Range Organics (C28-C36)	347	50.0		1	01/20/23	01/23/23	
Surrogate: n-Nonane		108 %	50-200		01/20/23	01/23/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	: BA		Batch: 2303075
	156	20.0			01/20/23	01/20/23	

Atkins Engineering Associates Inc.	Project Name:	OGO POGO	
2904 W. 2nd	Project Number:	20071-0001	Reported:
Roswell NM, 88201	Project Manager:	Austin Weyant	1/24/2023 12:01:48PM

SW7

		Reporting					
Analyte	Result	Limit	Dilu	ıtion	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2303068
Benzene	ND	0.0250	1	1	01/20/23	01/20/23	
Ethylbenzene	ND	0.0250	1	1	01/20/23	01/20/23	
Toluene	ND	0.0250	1	1	01/20/23	01/20/23	
o-Xylene	ND	0.0250	1	1	01/20/23	01/20/23	
p,m-Xylene	ND	0.0500	1	1	01/20/23	01/20/23	
Total Xylenes	ND	0.0250	1	1	01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		97.5 %	70-130		01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		97.5 %	70-130		01/20/23	01/20/23	
Surrogate: Toluene-d8		95.7 %	70-130		01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2303068
Gasoline Range Organics (C6-C10)	ND	20.0	1	1	01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		97.5 %	70-130		01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		97.5 %	70-130		01/20/23	01/20/23	
Surrogate: Toluene-d8		95.7 %	70-130		01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	KM		Batch: 2303061
Diesel Range Organics (C10-C28)	306	25.0	1	1	01/20/23	01/23/23	
Oil Range Organics (C28-C36)	257	50.0	1	1	01/20/23	01/23/23	
Surrogate: n-Nonane		108 %	50-200		01/20/23	01/23/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	BA		Batch: 2303075

Atkins Engineering Associates Inc.	Project Name:	OGO POGO	
2904 W. 2nd	Project Number:	20071-0001	Reported:
Roswell NM, 88201	Project Manager:	Austin Weyant	1/24/2023 12:01:48PM

SW8

		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	Analy	st: IY		Batch: 2303068
Benzene	ND	0.0250	1	01/20/23	01/20/23	
Ethylbenzene	ND	0.0250	1	01/20/23	01/20/23	
Toluene	ND	0.0250	1	01/20/23	01/20/23	
o-Xylene	ND	0.0250	1	01/20/23	01/20/23	
p,m-Xylene	ND	0.0500	1	01/20/23	01/20/23	
Total Xylenes	ND	0.0250	1	01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		98.3 %	70-130	01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		97.9 %	70-130	01/20/23	01/20/23	
Surrogate: Toluene-d8		97.4 %	70-130	01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	st: IY		Batch: 2303068
Gasoline Range Organics (C6-C10)	ND	20.0	1	01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		98.3 %	70-130	01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		97.9 %	70-130	01/20/23	01/20/23	
Surrogate: Toluene-d8		97.4 %	70-130	01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	st: KM		Batch: 2303061
Diesel Range Organics (C10-C28)	1280	500	20	01/20/23	01/23/23	
Oil Range Organics (C28-C36)	2270	1000	20	01/20/23	01/23/23	
Surrogate: n-Nonane		97.7 %	50-200	01/20/23	01/23/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	st: BA		Batch: 2303075

Atkins Engineering Associates Inc.	Project Name:	OGO POGO	
2904 W. 2nd	Project Number:	20071-0001	Reported:
Roswell NM, 88201	Project Manager:	Austin Weyant	1/24/2023 12:01:48PM

SW9

		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	Anal	yst: IY		Batch: 2303068
Benzene	ND	0.0250	1	01/20/23	01/20/23	
Ethylbenzene	ND	0.0250	1	01/20/23	01/20/23	
Toluene	ND	0.0250	1	01/20/23	01/20/23	
o-Xylene	ND	0.0250	1	01/20/23	01/20/23	
p,m-Xylene	ND	0.0500	1	01/20/23	01/20/23	
Total Xylenes	ND	0.0250	1	01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		97.8 %	70-130	01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		98.3 %	70-130	01/20/23	01/20/23	
Surrogate: Toluene-d8		97.7 %	70-130	01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Anal	yst: IY		Batch: 2303068
Gasoline Range Organics (C6-C10)	ND	20.0	1	01/20/23	01/20/23	
Surrogate: Bromofluorobenzene		97.8 %	70-130	01/20/23	01/20/23	
Surrogate: 1,2-Dichloroethane-d4		98.3 %	70-130	01/20/23	01/20/23	
Surrogate: Toluene-d8		97.7 %	70-130	01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Anal	yst: KM		Batch: 2303061
Diesel Range Organics (C10-C28)	1440	250	10	01/20/23	01/23/23	
Oil Range Organics (C28-C36)	2290	500	10	01/20/23	01/23/23	
Surrogate: n-Nonane		108 %	50-200	01/20/23	01/23/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Anal	yst: BA		Batch: 2303075

Atkins Engineering Associates Inc.	Project Name:	OGO POGO	
2904 W. 2nd	Project Number:	20071-0001	Reported:
Roswell NM, 88201	Project Manager:	Austin Weyant	1/24/2023 12:01:48PM

SW10

		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Ana	lyst: SL		Batch: 2303066
Benzene	ND	0.0250	1	01/20/23	01/20/23	
Ethylbenzene	ND	0.0250	1	01/20/23	01/20/23	
Toluene	ND	0.0250	1	01/20/23	01/20/23	
o-Xylene	ND	0.0250	1	01/20/23	01/20/23	
p,m-Xylene	ND	0.0500	1	01/20/23	01/20/23	
Total Xylenes	ND	0.0250	1	01/20/23	01/20/23	
Surrogate: 4-Bromochlorobenzene-PID		104 %	70-130	01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Ana	lyst: SL		Batch: 2303066
Gasoline Range Organics (C6-C10)	ND	20.0	1	01/20/23	01/20/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		97.4 %	70-130	01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Ana	lyst: KM		Batch: 2303065
Diesel Range Organics (C10-C28)	138	25.0	1	01/20/23	01/20/23	
Oil Range Organics (C28-C36)	89.3	50.0	1	01/20/23	01/20/23	
Surrogate: n-Nonane		92.9 %	50-200	01/20/23	01/20/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst: BA			Batch: 2303072
Chloride	823	20.0	1	01/20/23	01/20/23	

Atkins Engineering Associates Inc.	Project Name:	OGO POGO	
2904 W. 2nd	Project Number:	20071-0001	Reported:
Roswell NM, 88201	Project Manager:	Austin Weyant	1/24/2023 12:01:48PM

SB4 - 4'

		2001100 22				
Analyte	Result	Reporting Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	•		Batch: 2303066
Benzene	ND	0.0250	1	01/20/23	01/20/23	
Ethylbenzene	ND	0.0250	1	01/20/23	01/20/23	
Toluene	ND	0.0250	1	01/20/23	01/20/23	
o-Xylene	ND	0.0250	1	01/20/23	01/20/23	
p,m-Xylene	ND	0.0500	1	01/20/23	01/20/23	
Total Xylenes	ND	0.0250	1	01/20/23	01/20/23	
Surrogate: 4-Bromochlorobenzene-PID		104 %	70-130	01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	st: SL		Batch: 2303066
Gasoline Range Organics (C6-C10)	ND	20.0	1	01/20/23	01/20/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		99.4 %	70-130	01/20/23	01/20/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	st: KM		Batch: 2303065
Diesel Range Organics (C10-C28)	ND	25.0	1	01/20/23	01/20/23	
Oil Range Organics (C28-C36)	ND	50.0	1	01/20/23	01/20/23	
Surrogate: n-Nonane		85.8 %	50-200	01/20/23	01/20/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst: BA			Batch: 2303072
Chloride	ND	20.0	1	01/20/23	01/20/23	

OGO POGO Atkins Engineering Associates Inc. Project Name: Reported: 2904 W. 2nd Project Number: 20071-0001 Roswell NM, 88201 Project Manager: Austin Weyant 1/24/2023 12:01:48PM **Volatile Organic Compounds by EPA 8260B** Analyst: IY Reporting Spike Source Rec RPD Analyte Result Limit Level Result Rec Limits RPD Limit mg/kg mg/kg mg/kg mg/kg % % % % Notes Blank (2303068-BLK1) Prepared: 01/20/23 Analyzed: 01/20/23 ND 0.0250 ND Ethylbenzene 0.0250 Toluene ND 0.0250 ND o-Xylene 0.0250 ND p,m-Xylene 0.0500 ND 0.0250 Total Xylenes Surrogate: Bromofluorobenzene 0.488 0.500 97.5 70-130 Surrogate: 1,2-Dichloroethane-d4 0.495 0.500 98.9 70-130 0.500 97.3 70-130 Surrogate: Toluene-d8 0.487 LCS (2303068-BS1) Prepared: 01/20/23 Analyzed: 01/20/23 2.45 0.0250 2.50 98.1 70-130 Benzene 2.50 70-130 2.20 87.9 Ethylbenzene 0.0250 2.22 0.0250 2.50 88.8 70-130 92.0 70-130 2.30 0.0250 2.50 o-Xylene 4.42 5.00 88.5 70-130 p,m-Xylene 0.0500 6.72 0.0250 7.50 89.6 70-130 Total Xylenes Surrogate: Bromofluorobenzene 0.507 0.500 101 70-130 0.500 97.2 70-130 Surrogate: 1,2-Dichloroethane-d4 0.486 70-130 Surrogate: Toluene-d8 0.485 0.500 Matrix Spike (2303068-MS1) Source: E301103-01 Prepared: 01/20/23 Analyzed: 01/20/23 2.93 0.0250 2.50 ND 117 48-131 45-135 Ethylbenzene 2.63 0.0250 2.50 ND 105 48-130 Toluene 2.66 0.0250 2.50 ND 106 2.73 0.0250 2.50 ND 109 43-135 o-Xylene ND 105 43-135 p,m-Xylene 5.27 0.0500 5.00 Total Xylenes 7.99 0.0250 7.50 ND 107 43-135 0.499 0.500 99.8 70-130 Surrogate: Bromofluorobenzene 0.500 97.8 70-130 Surrogate: 1,2-Dichloroethane-d4 0.489 0.500 70-130 0.485 97.0 Surrogate: Toluene-d8 Matrix Spike Dup (2303068-MSD1) Source: E301103-01 Prepared: 01/20/23 Analyzed: 01/20/23 2.83 0.0250 2.50 ND 113 48-131 3.31 23

Ethylbenzene

Toluene

o-Xylene

p,m-Xylene

Total Xylenes

Surrogate: Toluene-d8

Surrogate: Bromofluorobenzene

Surrogate: 1,2-Dichloroethane-d4

2.55

2.57

2.66

5.13

7.79

0.497

0.484

0.481

0.0250

0.0250

0.0250

0.0500

0.0250

2.50

2.50

2.50

5.00

7.50

0.500

0.500

0.500

ND

ND

ND

ND

ND

103

107

103

104

99.4

96.7

45-135

48-130

43-135

43-135

43-135

70-130

70-130

70-130

2.86

3.50

2.39

2.67

2.57

27

24

27

27

27

Surrogate: 4-Bromochlorobenzene-PID

QC Summary Data

Atkins Engineering Associates Inc.	Project Name:	OGO POGO	Reported:
2904 W. 2nd	Project Number:	20071-0001	•
Roswell NM, 88201	Project Manager:	Austin Weyant	1/24/2023 12:01:48PM

Ansher		Organics	by EDA 902	-				
A		Volatile Organics by EPA 8021B						
Analyte Resu	Reporting lt Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
mg/kg	g mg/kg	mg/kg	g mg/kg	%	%	%	%	Notes
Blank (2303066-BLK1)						Prepared: 0	1/20/23 An	nalyzed: 01/20/23
Benzene ND	0.0250							
Ethylbenzene ND	0.0250							
Toluene ND	0.0250							
o-Xylene ND	0.0250							
p,m-Xylene ND	0.0500							
Total Xylenes ND	0.0250							
Surrogate: 4-Bromochlorobenzene-PID 8.22	1	8.00		103	70-130			
LCS (2303066-BS1)						Prepared: 0	1/20/23 An	nalyzed: 01/20/23
Benzene 5.20	0.0250	5.00		104	70-130			
Ethylbenzene 5.59	0.0250	5.00		112	70-130			
Toluene 5.62	0.0250	5.00		112	70-130			
p-Xylene 5.74	0.0250	5.00		115	70-130			
p,m-Xylene 11.3	0.0500	10.0		113	70-130			
Total Xylenes 17.1	0.0250	15.0		114	70-130			
Surrogate: 4-Bromochlorobenzene-PID 8.20).	8.00		102	70-130			
LCS Dup (2303066-BSD1)						Prepared: 0	1/20/23 An	nalyzed: 01/20/23
Benzene 4.92	0.0250	5.00		98.4	70-130	5.44	20	
Ethylbenzene 5.29	0.0250	5.00		106	70-130	5.58	20	
Toluene 5.33	0.0250	5.00		107	70-130	5.43	20	
o-Xylene 5.43	0.0250	5.00		109	70-130	5.55	20	
p,m-Xylene 10.7		10.0		107	70-130	5.54	20	
Total Xylenes 16.2	0.0250	15.0		108	70-130	5.54	20	

70-130

Atkins Engineering Associates Inc.

Project Name: OGO POGO
2904 W. 2nd
Project Number: 20071-0001

Roswell NM, 88201
Project Manager: Austin Weyant

1/24/2023 12:01:48PM

Nonhalogenated	Organics by	EPA	.8015D -	GRO

Analyst: SL

Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes

Blank (2303066-BLK1)						Prepared: 0	1/20/23	Analyze	d: 01/20/23
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.95		8.00	99.4	70-130				
LCS (2303066-BS2)						Prepared: 0	1/20/23	Analyze	d: 01/20/23
Gasoline Range Organics (C6-C10)	51.6	20.0	50.0	103	70-130				
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.95		8.00	99.4	70-130				
LCS Dup (2303066-BSD2)						Prepared: 0	1/20/23	Analyze	d: 01/20/23
Gasoline Range Organics (C6-C10)	57.8	20.0	50.0	116	70-130	11.3	20		
Surrogate: 1-Chloro-4-fluorobenzene-FID	8.03		8.00	100	70-130				

Atkins Engineering Associates Inc.

Project Name: OGO POGO

2904 W. 2nd Project Number: 20071-0001

Roswell NM, 88201 Project Manager: Austin Weyant 1/24/2023 12:01:48PM

	Non		Analyst: IY						
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2303068-BLK1)							Prepared: 0	1/20/23 Analy	yzed: 01/20/23
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: Bromofluorobenzene	0.488		0.500		97.5	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.495		0.500		98.9	70-130			
Surrogate: Toluene-d8	0.487		0.500		97.3	70-130			
LCS (2303068-BS2)							Prepared: 0	1/20/23 Analy	yzed: 01/20/23
Gasoline Range Organics (C6-C10)	53.1	20.0	50.0		106	70-130			
Surrogate: Bromofluorobenzene	0.489		0.500		97.7	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.484		0.500		96.7	70-130			
Surrogate: Toluene-d8	0.483		0.500		96.6	70-130			
Matrix Spike (2303068-MS2)				Source:	E301103-0)1	Prepared: 0	1/20/23 Analy	yzed: 01/20/23
Gasoline Range Organics (C6-C10)	62.5	20.0	50.0	ND	125	70-130			
Surrogate: Bromofluorobenzene	0.496		0.500		99.2	70-130			

Surrogate: 1,2-Dichloroethane-d4	0.491		0.500		98.1	70-130			
Surrogate: Toluene-d8	0.488		0.500		97.5	70-130			
Matrix Spike Dup (2303068-MSD2)				Source:	E301103-0	1	Prepared: 0	1/20/23 Analyzed: 01	/20/23
Gasoline Range Organics (C6-C10)	60.4	20.0	50.0	ND	121	70-130	3.40	20	
Surrogate: Bromofluorobenzene	0.497		0.500		99.3	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.505		0.500		101	70-130			
Surrogate: Toluene-d8	0.482		0.500		96.4	70-130			

Atkins Engineering Associates Inc.	Project Name:	OGO POGO	Reported:
2904 W. 2nd	Project Number:	20071-0001	·
Roswell NM, 88201	Project Manager:	Austin Weyant	1/24/2023 12:01:48PM

Roswell NM, 88201		Project Manage	r: Aı	ıstin Weyant					1/24/2023 12:01:48PI
	Nonha	logenated Or		Analyst: KM					
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2303061-BLK1)							Prepared: 0	1/20/23 Ar	nalyzed: 01/20/23
Diesel Range Organics (C10-C28)	ND	25.0							
Dil Range Organics (C28-C36)	ND	50.0							
Surrogate: n-Nonane	51.5		50.0		103	50-200			
LCS (2303061-BS1)							Prepared: 0	1/20/23 Ar	nalyzed: 01/20/23
Diesel Range Organics (C10-C28)	251	25.0	250		100	38-132			
Surrogate: n-Nonane	51.4		50.0		103	50-200			
Matrix Spike (2303061-MS1)				Source:	E301103-0)1	Prepared: 0	1/20/23 Ar	nalyzed: 01/20/23
Diesel Range Organics (C10-C28)	260	25.0	250	ND	104	38-132			
Surrogate: n-Nonane	49.2		50.0		98.4	50-200			
Matrix Spike Dup (2303061-MSD1)				Source:	E301103-0)1	Prepared: 0	1/20/23 Ar	nalyzed: 01/20/23
Diesel Range Organics (C10-C28)	259	25.0	250	ND	103	38-132	0.527	20	
Surrogate: n-Nonane	47.8		50.0		95.7	50-200			

Atkins Engineering Associates Inc.	Project Name:	OGO POGO	Reported:
2904 W. 2nd	Project Number:	20071-0001	•
Roswell NM, 88201	Project Manager:	Austin Weyant	1/24/2023 12:01:48PM

Roswell NM, 88201		Project Manager	r: At	istin Weyant					1/24/2023 12:01:48PN
	Nonha	logenated Or	ganics by	EPA 8015I) - DRO	/ORO			Analyst: KM
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2303065-BLK1)							Prepared: 0	1/20/23 A	nalyzed: 01/20/23
Diesel Range Organics (C10-C28)	ND	25.0							
Dil Range Organics (C28-C36)	ND	50.0							
urrogate: n-Nonane	54.2		50.0		108	50-200			
LCS (2303065-BS1)							Prepared: 0	1/20/23 A	analyzed: 01/20/23
Diesel Range Organics (C10-C28)	251	25.0	250		101	38-132			
urrogate: n-Nonane	48.3		50.0		96.5	50-200			
Matrix Spike (2303065-MS1)				Source:	E301105-0)2	Prepared: 0	1/20/23 A	analyzed: 01/20/23
Diesel Range Organics (C10-C28)	273	25.0	250	ND	109	38-132			
urrogate: n-Nonane	40.2		50.0		80.5	50-200			
Matrix Spike Dup (2303065-MSD1)				Source:	E301105-0)2	Prepared: 0	1/20/23 A	analyzed: 01/20/23
Diesel Range Organics (C10-C28)	263	25.0	250	ND	105	38-132	3.70	20	
Gurrogate: n-Nonane	33.5		50.0		67.0	50-200			

Atkins Engineering Associates Inc. 2904 W. 2nd	Project Name: Project Number:	OGO POGO 20071-0001	Reported:
Roswell NM, 88201	Project Manager:	Austin Weyant	1/24/2023 12:01:48PM

Anions	by	EPA	300	.0/9	056A
--------	----	-----	-----	------	------

Analyst: BA

Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	N.	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes	┙
Blank (2303072-BLK1)						P	repared: 0	1/20/23 Anal	yzed: 01/20/23	

Blank (2303072-BLK1)	,										
Chloride	ND	20.0									
LCS (2303072-BS1)						Prepared: 01/	/20/23 Analyzed: 01/20/23				
Chloride	252	20.0	250	101	90-110						
LCS Dup (2303072-BSD1)						Prepared: 01/	/20/23 Analyzed: 01/20/23				
Chloride	253	20.0	250	101	90-110	0.209	20				

Atkins Engineering Associates Inc.		Project Name:		GO POGO					Reported:
2904 W. 2nd Roswell NM, 88201		Project Number: Project Manager:		0071-0001 ustin Weyant					1/24/2023 12:01:48PM
		Anions	by EPA 3	300.0/9056 <i>A</i>	A				Analyst: BA
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2303075-BLK1)							Prepared: (01/20/23 A	nalyzed: 01/20/23
Chloride	ND	20.0							
LCS (2303075-BS1)							Prepared: (01/20/23 A	nalyzed: 01/20/23
Chloride	259	20.0	250		103	90-110			
Matrix Spike (2303075-MS1)				Source:	E301103-0	1	Prepared: (01/20/23 A	nalyzed: 01/20/23
Chloride	2600	40.0	250	2340	106	80-120			
Matrix Spike Dup (2303075-MSD1)				Source:	E301103-0	1	Prepared: (01/20/23 A	nalyzed: 01/20/23
Chloride	2760	40.0	250	2340	168	80-120	5.74	20	M4

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Definitions and Notes

Atkins Engineering Associates Inc.	Project Name:	OGO POGO	
2904 W. 2nd	Project Number:	20071-0001	Reported:
Roswell NM, 88201	Project Manager:	Austin Weyant	01/24/23 12:01

M4 Matrix spike recovery value is suspect since the analyte concentration in the sample is disproportionate to the spike level. The

associated LCS spike recovery was acceptable.

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

DNI Did Not Ignite

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

Client: ATKONS ENG				La	b Us	se Or	nly			_		TA	Т	FPA P	rogram
Project: 060 P0 C0 Project Manager: AUST W WEY WY Address:		Lab	WO#	102			Numb			1D	2D	3D	Standard	CWA	SDWA
713 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ES	501	103			071-						X	14	1000
City State 7 in CANASIAN					_	Analy	sis an	d Met	hod						RCRA
Phone: @ austro 5156263943 Email:		5													
Email: atkinsay.com		8015	801										NAAL CO	State	LTVI
Report due by:		O by	O by	8021	1260	010	300.						NM CO	UT AZ	TX
Time Sampled Date Sampled Matrix No. of Containers Sample ID	Lab Number	DRO/ORO by	GRO/DRO by 8015	BTEX by	VOC by 8260	Metals 6010	Chloride 300.0		верос					Remarks	<u> </u>
11.73 1/17 3 S 1202 SB1 - (0-1.5)	1							1	X	\neg					
1123 1 1 SBI - 2	2							j	X						
1134 SBI - 3	3							j	X					7	***************************************
11:58 SB2- (0-12)	4							1	Ž						
11:5e SB2-2	5)	X						
12.12 SB2-3	6)							
1233 SB3- (0-1.5)	7							X							
12:33 SB3- 82'	8							1	V						
12:3 \ SB3 - 3	9					31-500		>							
1320 V V SB4 - (0-1.5)	10							>							
Additional Instructions:															
I, (field sampler), attest to the validity and authenticity of this sample. I am aware that tampering with or intentionally mislabelling date or time of collection is considered fraged and may be grounds for legal action. Sampled by:	the sample lo	ocation,	,										rived on ice the day t °C on subsequent da		ed or received
Relinquistred by: (Signature) Time: BB Time: BB Received by: (Signature) Au dulle Club	Date 1-13-	23	Time 9	:43		Rece	eived (on ice	•	Lal		e Onl	y		
Relinquished by: (Signature) Date Time Received by: (Signature) All Time Received by: (Signature)	Date / - 19-	25	Time	30		T1_				Г2 Г2			T3		
Relinquistred by: (Signature) Date Time Received by: Signature) 1-(4-73) 2300 Butture The	1/20/2	'3 ·	Time 7:	00		AVG	Temp	o °C	4						
Sample Matrix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O - Other	Container	Туре	: g - g	lass. ı	p - p	lq/vlc	astic. a	ag - an	nber	glass	s, v - '	VOA			
Note: Samples are discarded 30 days after results are reported unless other arrangements are made. Hazardous samples is applicable only to these samples is applicable only to the samples is applicable.	nples will be	retur	ned to	client	t or d	ispose	d of at	the cli	ent e	xpens	se. T	he rep	ort for the analy	sis of the a	bove
samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is	limited to th	ne am	ount p	aid fo	r on t	he re	port.							4	

Client: ATKONS ENG Bill To	-			La	b Us	se On	ıly					TAT	Г	FPA P	rogram
Project: Project Manager: AUST W FYIWT Address:		Lab	WQ#	103	2	Job	Numb 07/-	er	,	1D	2D		Standard	CWA	SDWA
Address: 213 W MEMOL) Address: City, State, Zip		E.	301	103		15-0	-		1000000				X		2000
City State Zin CAUSING	().	-	Т		-	Analy	sis and	d Meth	hod				_		RCRA
Phone: @ austra 556165943 Email:		15	12											State	
Email: atkinsay.com	8	y 8015	y 8015	=	0		0.0		- 1				NM CO		TX
Report due by:	1	RO b	RO b	by 802.	826	6010	e 300							7.1	
Time Sampled Date Sampled Matrix No. of Containers Sample ID	Lab Number	DRO/ORO by	GRO/DRO by	втех ь	VOC by 8260	Metals 6010	Chloride 300.0		BGDOC					Remarks	
1305/11/13 > 1 165 SB4 - 3'	11								X						
14.59 Sul	12														
14.10 SWZ	13							$ \hat{a} $						70	
140e 5N3	14							X							
W.O. SWY	15								X						46
143 SUS	lle							>							
147D SUG	17							7	X						.00
1428 SW7	18							λ	X						
14:15 SW8	19)	X						
1436 V V Sng	20							\rangle							
Additional Instructions:									-1						
I, (field sampler), attest to the validity and authenticity of this sample. I am aware that tampering with or intentionally mislabelling date or tine of collection is considered fraud and may be grounds for legal action. Sampled by:	the sample Ic	ocation	,										ved on ice the day t C on subsequent da		d or received
Relinquished by: (Signature) Date Date Time Received by: (Signature) Received by: (Signature) Received by: (Signature)	Date	13		:43		Rece	eived o	on ice		Lal		e Only			
Michelle Carlo 1923 1715 Loverso La	1-19-	-23	Time	50		<u>T1</u>			Ţ	<u>г</u> 2			T3		
Relinquished by: (Signature) Date Time Received by: (Signature) 1923 230 Received by: (Signature) Nt	1/20/	23	7:	00		AVG	Temp	°c_	4						
Sample Matrix: S - Soff, Sd - Solid, Sg - Sludge, A - Aqueous, O - Other	Container	г Туре	: g - g	lass, p	- pc	lv/pl	astic a	g - am	ber	glass	s, v - \	VOA			***************************************
Note: Samples are discarded 30 days after results are reported unless other arrangements are made. Hazardous samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is	nples will be	retur	ned to	client	or di	spose	d of at	the clie	ent e	xpens	se. T	he repo	ort for the analy	sis of the a	oove
Land the laboratory is	minted to th	ne am	ount p	ald for	on t	ne rep	ort.								

Client: ATKSN	2 ENC	2		Bill	То				La	b Us	e On	lv				TA	AT.		FDΔD	rogram
Project:	1.677	1. \	17	Attention:	×.	_	Lab	WO#	‡		Job	Numb	er ,	10	2D	3D		andard	CWA	SDWA
Project Manager:		ERMOL	TIMIT	Address:			E 3	30	1103	5_	200	71-0	100					X		
	MUSBAE	ENNOT	2_ [City, State, Zip							Analy	sis and	Meth	od			1			RCRA
Phone: A au	THE B	5/5/6	Tte 3943	Phone:																
Email: UTKM	Sery.co	1	1000	Email:	- 1		8015	8015											State	S. S. Sterry M. Co.
Report due by:	xy.co	•					by 8	by 8	8021	09	10	0.00						NM CO	UT AZ	TX
Time		No. of	T			Lab	0%0	DRO	by 8(ıy 82	s 60.	de 3		,						
Sampled Date Sampl	ed Matrix	Containers	Sample ID			Number	DRO/ORO by	GRO/DRO by	BTEX by 8	VOC by 8260	Metals 6010	Chloride 300.0	20058						Remarks	
14:41/1/2/2	3 5	(200	SW	(0)		21)							
13/50	V	V	SR.	4-41		22							1		_		\neg			
13/3/	-	-	00	7-1		00		_					1	1						
														+	+					
										-			-	+	-	-	\vdash			
	1																			
		54.1												\top	1				-	
								-		-			-	+	-	-			COMPS	
Additional Instruc	tions:																			
l, (field sampler), attest to	the validity and	authenticity	of this sample. I am a	ware that tampering with or intention	nally mislabelling th	ne sample lo	cation	,			Sample	s requirin	g therma	l preser	vation mi	ust be rea	ceived o	n ice the day t	hey are samp	ed or received
date or time of collection	is considered fro	aud and may	be grounds for legal ac		19													ubsequent da		
Relinquished by: (Signa	Tyel-	Date	(8 B) Tingy	Received by: (Signature)		1+8-2	2	Time	:43						Lab U		ly			
Relinquished by: (Signa	ture)	Date	Time	Received by: (Signature))//, [5	Date		Time		-	Kece	eived o	in ice:	(D/N					
	angel		923 171	5 Korengo Z	en 1	1-19-	23	11	130		T1_			<u>T2</u>				T3		
Relinquished by: (Signature)	& Ke	20 mars and 10 mar	7-23 Z36	Required by the nature	That !	1/20/2	23	Time 7:	α		AVG	Temp	°c '	4						
Sample Matrix: S - Soil, So	- Solid, Sg - Sluc	ige, A - Aque	ous, O - Other			Container	Туре	: g - g	glass, p	- nc	olv/pl	astic a	g - am	ber gl	ass, v	- VOA				
Note: Samples are disc	arded 30 days	after result	s are reported unles	s other arrangements are made.	Hazardous samp	oles will be	retur	ned to	client	or di	isnose	d of at t	he clie	nt exp	ense.	The re	port fo	or the analy	sis of the a	ibove
samples is applicable of	nly to those sa	imples rece	ved by the laborato	y with this COC. The liability of th	ne laboratory is lir	mited to th	ne am	ount p	paid for	on t	he re	oort.								

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

Instructions: Please take note of any NO checkmarks.

If we receive no response concerning these items within 24 hours of the date of this notice, all the samples will be analyzed as requested.

Client:	Atkins Engineering Associates Inc.	Date Received:	01/20/23	07:00		Work Order ID:	E301103
Phone:	(575) 626-3993	Date Logged In:	01/19/23	15:23		Logged In By:	Caitlin Christian
Email:	austin@atkinseng.com	Due Date:	01/25/23	17:00 (3 day TAT)			
Chain of	Custody (COC)						
	ne sample ID match the COC?		Yes				
	ne number of samples per sampling site location ma	tch the COC	Yes				
	amples dropped off by client or carrier?		Yes	Carrier: <u>Co</u>	<u>ourier</u>		
	e COC complete, i.e., signatures, dates/times, reque	sted analyses?	Yes				
5. Were a	Il samples received within holding time? Note: Analysis, such as pH which should be conducted i i.e, 15 minute hold time, are not included in this disucssi	•	Yes			Comments	s/Resolution
Sample T	Curn Around Time (TAT)						
6. Did the	e COC indicate standard TAT, or Expedited TAT?		Yes				
Sample C							
	sample cooler received?		Yes				
8. If yes,	was cooler received in good condition?		Yes				
9. Was th	e sample(s) received intact, i.e., not broken?		Yes				
10. Were	custody/security seals present?		No				
11. If yes	, were custody/security seals intact?		NA				
	e sample received on ice? If yes, the recorded temp is 4°C Note: Thermal preservation is not required, if samples ar minutes of sampling visible ice, record the temperature. Actual sample	re received w/i 15	Yes C				
	Container _	- F	_				
	queous VOC samples present?		No				
	OC samples collected in VOA Vials?		NA				
	head space less than 6-8 mm (pea sized or less)?		NA				
	trip blank (TB) included for VOC analyses?		NA				
	on-VOC samples collected in the correct containers	?	Yes				
	appropriate volume/weight or number of sample contai		Yes				
Field Lal	• • • • • • • • • • • • • • • • • • • •						
-	field sample labels filled out with the minimum info	ormation:					
	ample ID?		Yes				
	ate/Time Collected?		Yes	L			
C	ollectors name?		No				
	<u>Preservation</u>						
	the COC or field labels indicate the samples were p	reserved?	No				
	ample(s) correctly preserved?	. 1.0	NA				
24. Is lab	filteration required and/or requested for dissolved r	netals?	No				
	se Sample Matrix						
	the sample have more than one phase, i.e., multipha		No				
27. If yes	, does the COC specify which phase(s) is to be analy	yzed?	NA				
Subcontr	act Laboratory						
28. Are sa	amples required to get sent to a subcontract laborate	ory?	No				
29. Was a	subcontract laboratory specified by the client and i	f so who?	NA	Subcontract Lab:	: na		
Client I	nstruction_						

Signature of client authorizing changes to the COC or sample disposition.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 186350

CONDITIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	186350
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jnobui	Remediation Plan Approved with Conditions. Composite confirmation samples will be collected from the bottom and sidewalls of the excavation from areas representing no more than four hundred (400) square feet. Lateral delineation was not achieved at sample points SW4 through SW10. Sidewall samples should be delineated to 600 mg/kg for chlorides and 100 mg/kg for TPH to define the edge of the release. Delineation is based on laboratory analysis.	2/24/2023