2022 Annual Groundwater Monitoring Report

REVIEWED

By Mike Buchanan at 10:52 am, May 17, 2023

Review of the Plains All American Pipeline, LP Livingston Line - Bob McCasland 2022 Annual Groundwater Monitoring Report: Content Satisfactory

- 1. Continue to gauge and sample MW-2, MW-3, MW-5, MW-6 quarterly for BTEX.
- 2. MW-7, MW-8, MW-10, MW-11 shall continue to be gauged and sampled annually. MW-9 gauged quarterly and sampled if enough volume is present.
- 3. PSH recovery shall continue monthly. for MW-4. Monthly PAH recovery shall continue for MW-5 4. 2023 Annual Groundwater Monitoring will be submitted to OCD no later than April 1, 2024

Plains All American Pipeline, LP Livingston Line – Bob McCasland

Lea County, New Mexico
Unit Letter "K", Section 3, Township 21 South, Range 37 East
Latitude 32.504135 North, Longitude 103.151345 West
Plains SRS #: 2001-11226
NMOCD Reference #: 1RP-0395
NMOCD Incident ID #: nAPP2109736613

Prepared By:

Etech Environmental & Safety Solutions, Inc.

6309 Indiana Ave., Ste. D Lubbock, TX 79413

Ben J. Arguijo

Joel W/Lowry

Midland • San Antonio • Lubbock • Hobbs • Lafayette

TABLE OF CONTENTS

1.0	INTRODUCTION & SITE DESCRIPTION	1
2.0	BACKGROUND INFORMATION	1
3.0	FIELD ACTIVITIES	2
	3.1 Product Recovery	2
	3.2 Groundwater Recovery	2
	3.3 Groundwater Monitoring	
4.0	LABORATORY RESULTS	3
	SUMMARY	
	ANTICIPATED ACTIONS	
	LIMITATIONS	
	DISTRIBUTION	

FIGURES

Figure 1 – Site Location Map

- Figure 2A Inferred Groundwater Gradient Map 1Q2022
- $Figure\ 2B-Inferred\ Groundwater\ Gradient\ Map-2Q2022$
- $Figure\ 2C-Inferred\ Groundwater\ Gradient\ Map-3Q2022$
- $Figure\ 2D-Inferred\ Groundwater\ Gradient\ Map-4Q2022$
- Figure 3A Groundwater Concentration Map 1Q2022
- Figure 3B Groundwater Concentration Map 2Q2022
- $Figure\ 3C-Groundwater\ Concentration\ Map-3Q2022$
- Figure 3D Groundwater Concentration Map 4Q2022

TABLES

- Table 1 Groundwater Elevation & PSH Thickness Summary
- Table 2 Groundwater BTEX Concentration Analytical Summary
- Table 3 MW-4 PSH/BTEX Impacted Groundwater Recovery Summary
- Table 4 MW-5 BTEX Impacted Groundwater Recovery Summary
- Table 5 Concentrations of PAH in Groundwater Summary

APPENDICES

Appendix A – Laboratory Analytical Reports

1.0 INTRODUCTION & SITE DESCRIPTION

Etech Environmental & Safety Solutions (Etech), on behalf of Plains All American Pipeline, LP (Plains), has prepared this 2022 Annual Groundwater Monitoring Report for the Livingston Line to Bob McCasland Pipeline Release Site in accordance with the New Mexico Oil Conservation Division (NMOCD) letter of May 1998, requiring submittal of an Annual Monitoring Report by April 1st of each year.

The legal description of the Livingston Line to Bob McCasland Pipeline Release Site is Unit Letter "K" (NE/SW), Section 3, Township 21 South, Range 37 East, in Lea County, New Mexico. The property affected by the release is owned by Mr. Bob McCasland. The geographic coordinates of the Release Site are 32.504135° North latitude and 103.151345° West longitude. A "Site Location Map" is provided as Figure 1.

2.0 BACKGROUND INFORMATION

Based on information provided by the client, on July 13, 2001, an estimated release of four (4) barrels (bbls) of crude oil was reported to the New Mexico Oil Conservation District (NMOCD). The release covered an area of approximately 1,600 square feet (ft²) along a pipeline right-of-way and an adjacent caliche road. Initial excavation activities were conducted by a third-party environmental contractor in an effort to stockpile saturated soils and expose the release source to facilitate repair of the pipeline. The pipeline excavation activities continued into December 2001. A total of approximately 11,445 cubic yards (yd³) of hydrocarbon-impacted soil were excavated and stockpiled at the Site. Earthen berms were constructed around the stockpiles to prevent constituent runoff. Analytical results for soil samples collected from the excavation indicated benzene, toluene, ethylbenzene, and total xylenes (BTEX) concentrations were above NMOCD remedial threshold limits. A *Soil Characterization Report and Remediation Plan Report*, dated June 2006, was submitted to the NMOCD. This report detailed remediation activities conducted at the Site, in-place soil concentrations, and recommendations for in-situ hydrocarbon-impacted soil closure.

Investigation activities were conducted from August 16 through 22, 2001, which included the advancement of 17 exploratory soil borings. During this time, it was determined groundwater had been impacted at approximately 30 feet below ground surface (bgs). Based on these field observations, three (3) groundwater monitor wells (MW-1, MW-2, and MW-3) were installed proximate to the release area to evaluate the extent and magnitude of the Release. Groundwater samples collected from the groundwater monitor wells exhibited concentrations of BTEX constituents above applicable New Mexico Water Quality Control Commission (NMWQCC) Groundwater Standards. Subsequently, three (3) additional monitor wells (MW-4, MW-5, and MW-6) were installed at the Site. A measurable thickness of phase-separated hydrocarbons (PSH) was detected in monitor well MW-4 following installation.

To delineate the lateral extent of groundwater impact at the Site, three (3) additional monitor wells (MW-7, MW-8 and MW-9) were installed in June 2004. Two (2) additional monitor wells (MW-10 and MW-11) were installed in November 2004. During installation of these monitor wells, soil samples were collected and submitted to AnalySys, Inc., in Austin, Texas, for analysis of total

petroleum hydrocarbons (TPH) and BTEX constituents. BTEX constituents for all soil samples from the monitor wells were below NMOCD remedial threshold limits. TPH concentrations from soil samples collected from monitor wells MW-7, MW-10, and MW-11 were at or below appropriate laboratory analytical method detection limits (MDLs).

In February 2023, Etech, at the request of Plains, assumed project management and oversight responsibilities for groundwater remediation activities at the Livingston Line to Bob McCasland Pipeline Release project Site.

Currently, there are a total of 11 monitor wells (MW-1 through MW-11) on-site. Monitor wells MW-2, MW-3, MW-5, and MW-6 are gauged and sampled on a quarterly schedule. Monitor wells MW-7, MW-8, MW-10, and MW-11 are gauged and sampled on an annual basis. Monitor well MW-1 is not sampled as it has been gauged as "dry". Monitor well MW-4 is currently not sampled due to the presence of PSH. Monitor well MW-9 has insufficient volume and recharge to sample.

3.0 FIELD ACTIVITIES

3.1 Product Recovery

A measurable thickness of PSH was detected in monitor well MW-4 following installation. Manual recovery of PSH and hydrocarbon-impacted groundwater from MW-4 commenced in 2018. Approximately 32 gallons of hydrocarbon-impacted groundwater and 3.64 gallons of PSH were recovered from MW-4 during the 2022 reporting period. A total of approximately 210 gallons (5.00 barrels) of PSH has been recovered since 2018. The average PSH thickness measured in monitor well MW-4 was 3.19 feet. Groundwater gauging and PSH recovery data for monitor well MW-4 is summarized in Table 3.

All recovered fluids were disposed of at an NMOCD-approved disposal facility.

3.2 Groundwater Recovery

Manual recovery of dissolved-phase hydrocarbon impacted groundwater from monitor well MW-5 commenced in May 2019. Approximately 27.5 gallons (0.65 bbls) of impacted groundwater was recovered from monitor well MW-5 during the 2022 reporting period. Approximately 162 gallons (3.85 bbls) of impacted groundwater has been recovered since 2019. Groundwater gauging and recovery data for monitor well MW-5 is summarized in Table 4.

All recovered fluids were disposed of at an NMOCD-approved disposal facility.

3.3 Groundwater Monitoring

The on-site monitor wells were gauged and sampled by a previous environmental contractor on March 15 (1Q2022), June 9 (2Q2022), and September 27 (3Q2022) of 2022. Due to a change in project management and oversight, no groundwater sampling was conducted during the fourth (4th) quarter of 2022. Etech assumed oversight responsibilities for the Site in February 2023 and conducted a groundwater monitoring event (4Q2022) on February 17, 2023 (the earliest available

opportunity) in order to assess the levels and extent of PSH and dissolved-phase constituents in the groundwater at the Site. The groundwater monitoring events consisted of measuring static water levels in the on-site monitor wells (MW-1 through MW-11), checking for the presence of PSH, and purging and sampling of each well exhibiting sufficient recharge. Purged water was placed into a polystyrene aboveground storage tank (AST) and disposed of at an NMOCD-approved disposal facility.

Groundwater samples were collected utilizing low-flow sampling equipment, including a bladder pump and multi-parameter meter. Prior to sample collection, readings on the multi-parameter meter were recorded for a minimum of four (4) cycles of five (5) minutes each. Each groundwater sample collected was placed in laboratory-supplied containers appropriate to the analysis requested and placed on ice in a cooler.

An annual monitoring event for polycyclic aromatic hydrocarbons (PAH) was conducted on March 15, 2022. Based on sampling criteria provided by the NMOCD, only monitor wells MW-2, MW-3, MW-5 and MW-6 were subject to annual PAH monitoring. PAH sampling requirements for the monitor wells had been met in years prior. However, all on-site monitor wells sampled during the 4th quarter of 2020 were inadvertently analyzed for PAH. The resulting analyses indicated that none of the monitor wells sampled during the 4th quarter of 2020 exceeded PAH Action Levels established by Section 20.6.2.3103 of the New Mexico Administrative Code (NMAC). In an effort to adhere to the requirement for two (2) consecutive years of PAH concentrations below action levels set forth by the NMOCD, monitor wells MW-2, MW-3, MW-5, and MW-6 were sampled during the first quarter of 2022 (1Q2022). A summary of PAH analyses is provided as Table 5.

Locations of the groundwater monitor wells and the inferred groundwater elevations, which were constructed from measurements collected during the 2022 quarterly sampling events, are depicted in Figures 2A through 2D. The maps indicate an average groundwater gradient of approximately 0.003 feet/foot to the east-southeast across the Site. Groundwater elevation and PSH thickness data is summarized in Table 1.

4.0 LABORATORY RESULTS

Groundwater samples collected from the on-site monitor wells during the quarterly and annual monitoring events were delivered to Eurofins Environment Testing South Central, LLC, in Midland, Texas, for determination of BTEX and/or PAH constituent concentrations by Environmental Protection Agency (EPA) Methods SW846-8021b and SW846 8270C, respectively. A summary of laboratory analytical results is presented in Table 2. A summary of PAH constituent concentrations is provided in Table 5. Groundwater concentration maps are provided as Figures 3A through 3D. Laboratory analytical reports are provided as Appendix A.

Laboratory analytical results were compared to NMOCD regulatory limits based on the New Mexico groundwater standards found in Section 20.6.2.3103 of the New Mexico Administrative Code (NMAC).

Monitor Well MW-1

Monitor well MW-1 gauged dry and was not able to be sampled during the reporting period.

Monitor Well MW-2

Laboratory analytical results indicated benzene, toluene, ethylbenzene, and total xylene concentrations were less than the appropriate laboratory MDL and less than NMOCD regulatory standards in each of the submitted groundwater samples.

PAH constituent concentrations in the annual groundwater sample were less than the appropriate laboratory MDLs and less than NMWQCC Drinking Water Standards.

Monitor Well MW-3

Laboratory analytical results indicated benzene, ethylbenzene, and total xylene concentrations were less than the appropriate laboratory MDL and less than NMOCD regulatory standards in each of the submitted groundwater samples. Toluene concentrations were also less than the NMOCD regulatory standard in each sample and ranged from less than the appropriate laboratory MDL in 2Q2022, 3Q2022, and 4Q2022 to 0.000401 mg/L in 1Q2022.

PAH constituent concentrations in the annual groundwater sample were less than the appropriate laboratory MDLs and less than NMWQCC Drinking Water Standards.

Monitor Well MW-4

Monitor well MW-4 was not sampled during the reporting period due to the presence of PSH.

Monitor Well MW-5

Laboratory analytical results indicated benzene concentrations ranged from less than the appropriate laboratory MDL in 1Q2022, 3Q2022, and 4Q2022 to 0.000596 mg/L in 2Q2022. Toluene concentrations ranged from less than the appropriate laboratory MDL in 2Q2022, 3Q2022, and 4Q2022 to 0.000459 mg/L in 1Q2022. Ethylbenzene concentrations ranged from less than the appropriate laboratory MDL in 2Q2022 and 3Q2022 to 0.000780 mg/L in 4Q2022. Total xylene concentrations ranged from less than the appropriate laboratory MDL in 1Q2022, 2Q2022, and 3Q2022 to 0.000804 mg/L in 4Q2022.

Benzene, toluene, ethylbenzene, and total xylene concentrations were less than NMOCD regulatory standards in each of the submitted groundwater samples.

PAH constituent concentrations in the annual groundwater sample were less than NMWQCC Drinking Water Standards.

Monitor Well MW-6

Laboratory analytical results indicated benzene, ethylbenzene, and total xylene concentrations were less than the appropriate laboratory MDL and less than NMOCD regulatory standards in each of the submitted groundwater samples. Toluene concentrations were less than the NMOCD regulatory standard in each sample and ranged from less than the appropriate laboratory MDL in 2Q2022, 3Q2022, and 4Q2022 to 0.000403 mg/L in 1Q2022.

PAH constituent concentrations in the annual groundwater sample were less than the appropriate laboratory MDLs and less than NMWQCC Drinking Water Standards.

Monitor Well MW-7

Laboratory analytical results indicated benzene, toluene, ethylbenzene, and total xylene concentrations were less than the appropriate laboratory MDL and less than NMOCD regulatory standards in each of the submitted annual groundwater samples.

Monitor Well MW-8

Laboratory analytical results indicated benzene, ethylbenzene, and total xylene concentrations were less than the appropriate laboratory MDL and less than NMOCD regulatory standards. The toluene concentration of 0.000435 mg/L was also less than the NMOCD regulatory standard.

Monitor Well MW-9

Monitor well MW-9 exhibited insufficient well volume/recharge and was not able to be sampled during the reporting period.

Monitor Well MW-10

Laboratory analytical results indicated benzene, toluene, ethylbenzene, and total xylene concentrations were less than the appropriate laboratory MDL and less than NMOCD regulatory standards in each of the submitted annual groundwater samples.

Monitor Well MW-11

Laboratory analytical results indicated benzene, toluene, ethylbenzene, and total xylene concentrations were less than the appropriate laboratory MDL and less than NMOCD regulatory standards in each of the submitted annual groundwater samples.

5.0 SUMMARY

This report presents the results of groundwater monitoring activities for the 2022 annual monitoring period. Currently, there are 11 groundwater monitor wells (MW-1 through MW-11) on-site. Monitor wells MW-2, MW-3, MW-5, and MW-6 were gauged and sampled during all four (4) quarters of the monitoring period. Monitor wells MW-7, MW-8, MW-10, and MW-11 are on

a annual sampling schedule and were sampled during 1Q2022. The results of these sampling events are summarized above. Monitor well MW-1 gauged dry and was not able to be sampled during the reporting period. Monitor well MW-4 was not sampled due to the presence of PSH. Monitor well MW-9 exhibited insufficient well volume/recharge throughout the reporting period and was not able to be sampled.

Groundwater gauging data collected during the monitoring period indicates an average groundwater gradient of approximately 0.003 feet/foot to the east-southeast across the Site.

During the reporting period, approximately 32.0 gallons of hydrocarbon-impacted groundwater and 3.64 gallons of PSH were recovered, by manual recovery, from monitor well MW-4. A total of approximately 210 gallons (5.00 barrels) of PSH has been recovered since recovery commenced in 2018. The average PSH thickness measured in monitor well MW-4 was 3.19 feet.

Approximately 27.5 gallons of dissolved-phase hydrocarbon-impacted groundwater was recovered from monitor well MW-5 during the 2022 reporting period. Approximately 162 gallons (3.85 bbls) of impacted groundwater has been recovered since recovery commenced in 2019.

Review of laboratory analytical results from groundwater samples collected during the reporting period indicated BTEX constituent concentrations were less than NMOCD regulatory standards in all submitted groundwater samples. PAH constituent concentrations were less than NMOCD regulatory standards in the annual samples collected from monitor wells MW-2, MW-3, MW-5, and MW-6 in 1Q2022.

6.0 ANTICIPATED ACTIONS

Monitor wells MW-2, MW-3, MW-5, and MW-6 will continue to be gauged and sampled quarterly for BTEX. Monitor wells MW-7, MW-8, MW-10, and MW-11 will continue to be gauged and sampled on an annual basis. Monitor well MW-9 will be gauged on a quarterly basis and sampled if the monitor well exhibits sufficient volume/recharge.

Monthly recovery of PSH will continue from monitor well MW-4.

Monthly recovery of dissolved-phase hydrocarbon-impacted groundwater will continue from monitor well MW-5 in an effort to control the down-gradient migration of the dissolved-phase plume.

PAH sampling requirements have been met for monitor wells MW-2, MW-3, MW-5, and MW-6. No additional PAH sampling will be conducted from the wells.

Results of the 2023 sampling and recovery events will be reported in the 2023 Annual Monitoring Report, which will be submitted to the NMOCD by April 1, 2024.

7.0 LIMITATIONS

Etech Environmental & Safety Solutions, Inc., has prepared this 2022 Annual Groundwater Monitoring Report to the best of its ability. No other warranty, expressed or implied, is made or intended. Etech has examined and relied upon documents reference in the report and on oral statements made by certain individuals. Etech has not conducted an independent examination of the facts contained in referenced materials and statements. Etech has presumed the genuineness of these documents and statements and that the information provided therein is true and accurate. Etech has prepared the report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Etech notes that the facts and conditions referenced in this report may change over time, and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Plains All American Pipeline, LP. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Etech and/or Plains All American Pipeline, LP.

8.0 DISTRIBUTION

Plains All American Pipeline, LP 1106 Griffith Drive Midland, Texas 79706

Nelson Velez Environmental Specialist - Advanced New Mexico Oil Conservation Division 1000 Rio Brazos Road Aztec, NM 87410

Jeff Dann

Plains All American Pipeline, LP 333 Clay Street, Suite 1600 Houston, Texas 77002

(Electronic Submission)

Figure 1 Site Location Map

Figures 2A - 2D Inferred Groundwater Gradient Maps

Figures 3A - 3D Groundwater Concentration Maps

Tables 1 - 5

Table 1 Groundwater Elevation & PSH¹ Thickness Summary

Livingston Line - Bob McCasland Pipeline Leak Lea County, New Mexico Plains SRS #: 2001-11226 Etech Project #: 17475 NMOCD² Incident #: nAPP2109736613

All measurements are in feet above mean sea level

Monitoring Well (Well Diameter ")		All IIICasu			ove mean sea	ICVEI	
MW-1 (2") Gauged Flevation* Flevatio	Monitoring Woll	Deta	Top of	Depth to	Depth to	PSH	Corrected
NW-1 (2") Continue			~			Thickness	Groundwater
MW-1 (2")	(well blameter ")	Gauged		_	_	(feet)	Elevation**
MW-1 (2") 09/24/21		02/10/21	Elevation,	(1661)	(1661)		
MW-1 (2")							
MW-1 (2") 12/13/21							
MW-1 (2') 03/15/22 09/27/22 09							
MW-2 (2") 03/10/21 09/24/21 12/13/21 09/24/21 09/27/22 09	MW-1 (2")		2.439.09		D	RY	
MW-2 (2")	(/		,				
MW-2 (2")							
MW-2 (2") 03/10/21 09/24/21 09/27/22 08/09/27/22 08/09/27/22 09/27/22 08/09/27							
MW-2 (2") 06/15/21		02/21/23					
MW-2 (2") 06/15/21		00/40/04	T		0.400.40		
MW-2 (2")				-		-	
MW-2 (2")				-		-	,
MW-2 (2')							
MW-3 (2") 33/15/22 - 33.304 - 3.399.58 3.399.51 - 33.394 - 3.399.51 - 3.398.91 - 3.398.91 - 3.398.91 - 3.399.01 - 34.43 - 3.399.01 - 34.43 - 3.399.01 - 33.90.01 - 33.99.01 - 34.43 - 3.399.01 - 34.40 - 3.399.01 - 34.40 - 3.399.01 - 34.94 - 3.399.01 - 34.94 - 3.398.67 - 35.25 - 3.398.78 - 35.25 - 3.398.78 - 35.25 - 3.398.78 - 35.25 - 3.398.38 - 3.398.78 - 35.25 - 3.398.38 - 3.398.78 - 35.25 - 3.398.38 - 3.398.38 - 3.398.38 - 3.398.38 - 3.398.38 - 3.398.38 - 3.398.38 - 3.399.24 - 34.24 - 3.399.38 - 3.399.37 - 34.24 - 3.399.38 - 3.399.37 - 34.24 - 3.399.38 - 3.399.38 - 3.399.38 - 3.399.49	MW-2 (2")		3,432.62				
MW-3 (2") 03/10/21 03/15/22 03/21/23 03/21/23	= \= /		,				
MW-3 (2") 03/10/21 03/15/22 03/10/21 03/15/22 09/24/21 09/24/21 03/15/22 09/27/22 03/15/22 09/27/22 03/15/22							
MW-3 (2") 03/10/21 06/15/21 09/24/21 3,433.61				-		-	
MW-3 (2")		02/21/23		-	33.61	-	3,399.01
MW-3 (2")			ı				T
MW-3 (2") 12/13/21				-			
MW-3 (2")				-		-	
MW-5 (2") 03/15/22 06/09/22 09/27/22 03/15/22 09/27/22 03/15/22 09/27/22 03/15/22 09/27/22 03/15/22 09/27/22 03/15/22 09/27/22 03/15/22 09/27/22 03/15/22 09/27/22 03/15/22 09/27/22 03/15/22 09/27/22 03/15/22 09/27/22 03/15/22 09/27/22 03/15/22 09/27/22 03/15/22 09/27/22 03/15/22 09/27/22 03/15/22 09/27/22 03/15/22 03/15/22 09/27/22 03/15/22 03				-		-	
MW-4 (2") 03/15/22 09/27/22	MW-3 (2")		3 433 61	-		-	
MW-4 (2") 09/27/22 02/21/23	WW 0 (2)	03/15/22	0,100.01	-	34.74	-	3,398.87
MW-4 (2") 03/10/21 03/15/22 4/27/2022 03/10/21 03/15/22 0		06/09/22		-	35.25	-	3,398.36
MW-4 (2") 03/10/21 03/15/22 03/40/22 03/45 33.25 1.20 3,400.02 32.45 34.56 2.11 3,399.48 32.90 35.67 2.77 3,398.93 32.58 34.58 2.00 3,399.37 32.58 34.58 2.00 3,399.37 32.58 34.58 2.00 3,399.37 32.58 34.58 2.00 3,399.37 32.58 35.98 3.38 3399.143 32.6 35.98 3.38 3399.143 33.86 37.08 3.22 3397.907		09/27/22		-	36.00	-	3,397.61
MW-4 (2") 06/15/21 09/24/21 12/13/21 3,432.25 32.58 34.56 2.11 3,399.48 32.90 35.67 2.77 3,398.93 32.58 34.58 2.00 3,399.37 32.57 35.49 2.92 3,399.24 32.6 35.98 3.38 3399.143 33.86 37.08 3.22 3397.907		02/21/23		-	35.47	-	3,398.14
MW-4 (2") 06/15/21 09/24/21 12/13/21 3,432.25 32.58 34.56 2.11 3,399.48 32.90 35.67 2.77 3,398.93 32.58 34.58 2.00 3,399.37 32.57 35.49 2.92 3,399.24 32.6 35.98 3.38 3399.143 33.86 37.08 3.22 3397.907							
MW-4 (2") 09/24/21 12/13/21 03/15/22 4/27/2022 4/27/2022 09/27/22 02/21/23 3,432.25 32.58 34.58 2.00 3,399.37 32.57 35.49 2.92 3,399.24 32.6 35.98 3.38 3399.143 33.86 37.08 3.22 3397.907 02/21/23							3,400.02
MW-4 (2")		06/15/21		32.45	34.56		3,399.48
MW-4 (2") 03/15/22 4/27/2022 3,399.24 32.6 35.98 3.38 3399.143 33.86 37.08 3.22 3397.907 33.86 37.08 3.22 3397.907 33.86 37.08 3.22 3397.907 33.86 37.08 3.22 3397.907 33.86 37.08 3.22 3397.907 37.00		09/24/21		32.90	35.67	2.77	3,398.93
MW-5 (2")	M\M/_4 (2")	12/13/21	3 /32 25	32.58	34.58	2.00	3,399.37
MW-5 (2")	10100-4 (2)	03/15/22	3,432.23	32.57	35.49	2.92	3,399.24
MW-5 (2") 03/10/21 09/24/21 12/13/21 03/15/22 06/09/22 09/27/22 09/27/22 06/09/22 09/27/22 06/09/22 09/27/22 06/09/22 09/27/22 06/09/22 06/09/22 09/27/22 06/09/22 06/09/22 09/27/22 06/09/22 06/09/22 09/27/22 06/09/22 09/27/22 06/09/22 09/27/22 06/09/22 09/27/22 09/27/22 09/27/22 06/09/22 09/27/20 09/27/22 09		4/27/2022		32.6	35.98	3.38	3399.143
MW-5 (2") 03/10/21		09/27/22		33.86	37.08	3.22	3397.907
MW-5 (2") 06/15/21 09/24/21 12/13/21 03/15/22 06/09/22 09/27/20 09/27/22 09		02/21/23					-
MW-5 (2") 06/15/21 09/24/21 12/13/21 03/15/22 06/09/22 09/27/20 09/27/22 09							
MW-5 (2")				-	29.32	-	3,400.31
MW-5 (2") 12/13/21 03/15/22 06/09/22 09/27/22 3,429.63 - 31.24 - 3,398.39 - 30.14 - 3,399.49 - 30.80 - 3,398.83 - 3,398.83 - 3,398.85 - 31.49 - 3,398.85 - 3,398.85 - 3,398.85 - 3,398.85 - 3,398.85 - 3,399.77 - 30.13 - 3,399.17 - 30.13 - 3,399.17 - 30.13 - 3,399.17 - 30.13 - 3,398.62 - 30.13 - 3,398.62 - 30.13 - 3,398.62 - 30.13 - 3,398.62 - 30.13 - 3,398.62 - 30.13 - 3,398.62 - 30.13 - 3,398.62 - 30.13 - 3,398.62 - 30.13 - 3,398.62 - 30.13 - 3,398.62 - 30.13 - 3,398.62 - 30.13 - 3,398.62 - 30.13 - 3,398.62 - 30.13 - 3,398.83 - 3,398.83 - 3,398.92 - 30.13 - 3,398.92 - 30.13 - 3,398.92 - 30.99 - 3,398.31 - 3,397.59		06/15/21		-	29.96	-	3,399.67
MW-6 (2") 03/15/22 06/09/22 09/27/22 3,429.03 - 30.14 - 3,399.49 - 30.80 - 3,398.83 - 3,398.85 - 31.49 - 3,398.85 - 31.49 - 3,398.85 - 31.49 - 3,398.85 - 3,398.85 - 3,398.85 - 3,399.77 - 30.13 - 3,399.17 - 30.68 - 3,398.62 - 30.47 - 3,398.83 - 3,398.82 - 30.47 - 3,398.83 - 3,398.82 - 30.99 - 3,398.31 - 30.99 - 3,398.31 - 3,397.59		09/24/21		-	30.45	-	3,399.18
MW-6 (2")	MM 5 (2")	12/13/21	3 420 62	-	31.24	-	3,398.39
MW-6 (2")	IVIVV-O (∠)		3,429.03	-	30.14	-	
MW-6 (2")			1	-	30.80	-	
MW-6 (2")			1	-		-	
MW-6 (2")				-		_	
MW-6 (2")							
MW-6 (2")		03/10/21		-	29.53	-	3,399.77
MW-6 (2") 12/13/21 03/15/22 06/09/22 09/27/22 3,429.30 - 30.38 - 3,398.92 - 30.99 - 3,398.31 - 30.99 - 3,398.31 - 31.71 - 3,397.59		06/15/21		-	30.13	-	3,399.17
03/15/22 06/09/22 09/27/22 03/15/22 06/09/22 09/27/22 - 30.38 - 3,398.92 - 30.99 - 3,398.31 - 31.71 - 3,397.59		09/24/21		-	30.68	-	3,398.62
03/15/22 - 30.38 - 3,398.92 06/09/22 - 30.99 - 3,398.31 09/27/22 - 31.71 - 3,397.59	MIM 6 (2")	12/13/21	3 420 20	-	30.47	_	3,398.83
06/09/22 - 30.99 - 3,398.31 09/27/22 - 31.71 - 3,397.59	IVIVV-O (∠)	03/15/22	3,429.30	-	30.38	-	3,398.92
09/27/22 - 31.71 - 3,397.59			1	-		-	
				-		-	
		02/21/23		-	30.94	-	3,398.36

- 1. PSH = Phase Separated Hydrocarbons
- 2. NMOCD = New Mexico Oil Conservation Division
- 3. TOC = Top of Casing
- * Elevations based on the North American Vertical Datum of 1988.
- ** Corrected groundwater elevations were extrapolated using a PSH specific gravity of 0.85, if PSH was gauged in the monitoring well.

Table 1 Groundwater Elevation & PSH¹ Thickness Summary

Livingston Line - Bob McCasland Pipeline Leak Lea County, New Mexico Plains SRS #: 2001-11226 Etech Project #: 17475 NMOCD² Incident #: nAPP2109736613

All measurements are in feet above mean sea level

Monitoring Well (Well Diameter ")	Date Gauged	Top of Casing (TOC) ³ Elevation*	Depth to PSH Below TOC (feet)	Depth to Water Below TOC (feet) 30.12	PSH Thickness (feet)	Corrected Groundwater Elevation**
	06/15/21		-	30.80	-	3,400.57
	09/24/21		-	31.33	-	3,400.04
MW-7 (2")	12/13/21	3,431.37	-	31.05	-	3,400.32
	03/15/22		-	30.93	-	3,400.44
	09/27/22		-	32.38	-	3,398.99
						,
_	03/10/21		-	30.64	-	3,400.43
	06/15/21		-	31.24	-	3,399.83
MW-8 (4")	09/24/21	3,431.07	-	31.80	-	3,399.27
10100-0 (4)	12/13/21	3,431.07	-	31.60	-	3,399.47
	03/15/22		-	31.50	-	3,399.57
	09/27/22		-	32.85	-	3,398.22
	03/10/21		-	29.72	-	3,400.07
	06/15/21		-	30.33	-	3,399.46
MW-9 (2")	09/24/21	3,429.79	-	30.88	-	3,398.91
WW-5 (Z)	12/13/21	0,420.70	-	30.66	-	3,399.13
	03/15/22		-	30.55	-	3,399.24
	09/27/22		-	31.48	-	3,398.31
	03/10/21		-	29.18	-	3,400.31
	06/15/21		-	29.76	-	3,399.73
MW-10 (2")	09/24/21	3.429.49	-	30.30	-	3,399.19
10 (2)	12/13/21	0,120110	-	30.06	-	3,399.43
	03/15/22		-	29.98	-	3,399.51
	09/27/22		-	31.34	-	3,398.15
	03/10/21		-	28.32	-	3,400.00
	06/15/21		-	28.90	-	3,399.42
MW-11 (2")	09/24/21	3,428.32	-	29.44	-	3,398.88
` '	12/13/21	,	-	29.21	-	3,399.11
	03/15/22		-	29.13	-	3,399.19
	09/27/22		<u> </u>	30.46	<u> </u>	3,397.86

- PSH = Phase Separated Hydrocarbons
- 2. NMOCD = New Mexico Oil Conservation Division
- 3. TOC = Top of Casing

^{*} Elevations based on the North American Vertical Datum of 1988.

 $^{^{\}star\star}$ Corrected groundwater elevations were extrapolated using a PSH specific gravity of 0.85, if PSH was gauged in the monitoring well.

Table 2 **Groundwater BTEX¹ Concentration Analytical Summary**

Livingston Line - Bob McCasland Pipeline Leak Lea County, New Mexico Plains SRS #: 2001-11226 Etech Project #: 17475 NMOCD² Incident ID#: nAPP2109736613

All concentrations are in milligrams per liter (mg/L)

Monitoring Well NMOCD RRA	Date	EPA SW846-8021B													
NMOCD RRA			Toluene	Ethylbenzene	M,P- Xylenes	O- Xylenes	Total Xylenes	Total BTEX							
	L CRITERIA ³	0.01	0.75	0.75	тот	TAL XYLENES	0.62	NE ⁴							
	03/10/2021							l.							
	06/15/2021														
	09/24/2021														
MW-1	12/13/2021			Drv	- Not Sampled										
	03/15/2022			5.,	rtot oampioa										
	06/09/2022														
	09/27/2022														
	02/17/2023														
	03/10/2021	<0.00200	<0.00200	<0.00200	<0.00400	<0.0200	<0.00200	<0.00200							
ŀ	06/15/2021	0.00189 J	< 0.000367	<0.00260	<0.000629	<0.000642	<0.000642	0.00189 J							
ŀ	09/24/2021	<0.00200	<0.00200	<0.00200	<0.00400	<0.00200	<0.00400	0.00297							
ŀ	12/13/2021	<0.00200	<0.00200	<0.00200	<0.00400	<0.00200	<0.00400	<0.00400							
MW-2	03/15/2022	<0.000408	< 0.000367	<0.000657	<0.000629	<0.000642	<0.000642	<0.00065							
İ	06/09/2022	<0.000408	< 0.000367	< 0.000657	<0.000629	<0.000642	<0.000642	<0.00065							
	09/27/2022	<0.000533	<0.000475	<0.000411	<0.00124	<0.000551	<0.00124	< 0.00124							
İ	02/17/2023	<0.000408	< 0.000367	< 0.000657	< 0.000629	< 0.000642	<0.000642	<0.00065							
	03/10/2021	<0.00200	<0.00200	<0.00200	<0.00400	<0.00200	<0.00200	<0.00200							
	06/15/2021	<0.000408	<0.000367	<0.000657	<0.000629	0.00177 J	0.00177 J	0.00177							
	09/24/2021	<0.00200	<0.00200	<0.00200	<0.00400	<0.00200	<0.00400	<0.00200							
MW-3	12/13/2021	<0.00200	<0.00200	<0.00200	<0.00400	<0.00200	<0.00400	<0.00400							
	03/15/2022	<0.000408	0.000401 J	<0.000657	<0.000629	<0.000642	<0.000642	<0.00065							
	06/09/2022	<0.000408	<0.000367	<0.000657	<0.000629	<0.000642	<0.000642	<0.00065							
	09/27/2022	<0.000533	<0.000475	<0.000411	<0.00124	<0.000551	<0.00124	<0.00124							
	02/17/2023	<0.000408	<0.000367	<0.000657	<0.000629	<0.000642	<0.000642	<0.00065							
	00/40/0004	l .													
ŀ	03/10/2021														
ŀ	06/15/2021 09/24/2021														
MW-4	12/13/2021		Not Sample	d Due to the present	ce of Phase Sep	parated Hydroca	arbons (PSH)								
MW-4	12/13/2021 03/15/2022		Not Sampled	d Due to the present	ce of Phase Sep	parated Hydroca	arbons (PSH)								
MW-4	12/13/2021 03/15/2022 06/09/2022		Not Sampled	d Due to the present	ce of Phase Sep	parated Hydroca	arbons (PSH)								
MW-4	12/13/2021 03/15/2022 06/09/2022 09/27/2022		Not Sampled	d Due to the present	ce of Phase Sep	parated Hydroca	arbons (PSH)								
MW-4	12/13/2021 03/15/2022 06/09/2022		Not Sampled	d Due to the presend	ce of Phase Sep	parated Hydroca	arbons (PSH)								
MW-4	12/13/2021 03/15/2022 06/09/2022 09/27/2022 02/17/2023	<0.000408				,		0.00332							
MW-4	12/13/2021 03/15/2022 06/09/2022 09/27/2022	<0.000408 0.000622 J	Not Sampled <0.000367 <0.000367	0.00253 <0.000657	0.000792 J	<0.000642	0.000792 J 0.000988 J								
MW-4	12/13/2021 03/15/2022 06/09/2022 09/27/2022 02/17/2023 06/15/2021		<0.000367	0.00253	0.000792 J	,	0.000792 J	0.00161							
MW-4	12/13/2021 03/15/2022 06/09/2022 09/27/2022 02/17/2023 06/15/2021 DUP-1	0.000622 J	<0.000367 <0.000367	0.00253 <0.000657	0.000792 J <0.000629	<0.000642 0.000988 J	0.000792 J 0.000988 J	0.00161 0.00258							
MW-4	12/13/2021 03/15/2022 06/09/2022 09/27/2022 02/17/2023 06/15/2021 DUP-1 09/24/2021	0.000622 J <0.00200	<0.000367 <0.000367 <0.00200	0.00253 <0.000657 <0.00200	0.000792 J <0.000629 <0.00400	<0.000642 0.000988 J <0.00200	0.000792 J 0.000988 J <0.00400	0.00161 0.00258 0.00224							
	12/13/2021 03/15/2022 06/09/2022 09/27/2022 02/17/2023 06/15/2021 DUP-1 09/24/2021 DUP-1	0.000622 J <0.00200 <0.00200	<0.000367 <0.000367 <0.00200 <0.00200	0.00253 <0.000657 <0.00200 <0.00200	0.000792 J <0.000629 <0.00400 <0.00400	<0.000642 0.000988 J <0.00200 <0.00200	0.000792 J 0.000988 J <0.00400 <0.00400	0.00161 0.00258 0.00224 <0.00400							
MW-4	12/13/2021 03/15/2022 06/09/2022 09/27/2022 02/17/2023 06/15/2021 DUP-1 09/24/2021 DUP-1 12/13/2021	0.000622 J <0.00200 <0.00200 <0.00200	<0.000367 <0.000367 <0.00200 <0.00200 <0.00200	0.00253 <0.000657 <0.00200 <0.00200 <0.00200	0.000792 J <0.000629 <0.00400 <0.00400 <0.00400	<0.000642 0.000988 J <0.00200 <0.00200 <0.00200	0.000792 J 0.000988 J <0.00400 <0.00400 <0.00400	0.00161 0.00258 0.00224 <0.00400 <0.00400							
	12/13/2021 03/15/2022 06/09/2022 09/27/2022 02/17/2023 06/15/2021 DUP-1 09/24/2021 DUP-1 12//3/2021 DUP-1	0.000622 J <0.00200 <0.00200 <0.00200 <0.00200	<0.000367 <0.000367 <0.00200 <0.00200 <0.00200 <0.00200	0.00253 <0.000657 <0.00200 <0.00200 <0.00200 <0.00200	0.000792 J <0.000629 <0.00400 <0.00400 <0.00400 <0.00400	<0.000642 0.000988 J <0.00200 <0.00200 <0.00200 <0.00200	0.000792 J 0.000988 J <0.00400 <0.00400 <0.00400	0.00161 0.00258 0.00224 <0.00400 <0.00400 0.00116							
	12/13/2021 03/15/2022 06/09/2022 09/27/2022 02/17/2023 06/15/2021 DUP-1 09/24/2021 DUP-1 12/13/2021 DUP-1 03/15/2022	0.000622 J <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	<0.000367 <0.000367 <0.00200 <0.00200 <0.00200 <0.00200 0.00200	0.00253 <0.000657 <0.00200 <0.00200 <0.00200 <0.00200 0.00200	0.000792 J <0.000629 <0.00400 <0.00400 <0.00400 <0.00400 <0.000629	<0.000642 0.000988 J <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.000792 J 0.000988 J <0.00400 <0.00400 <0.00400 <0.00400 <0.000642	0.00161. 0.00258 0.00224 <0.00400 <0.00416. 0.00111.							
	12/13/2021 03/15/2022 06/09/2022 09/27/2022 02/17/2023 06/15/2021 DUP-1 09/24/2021 DUP-1 12/13/2021 DUP-1 03/15/2022 DUP-1	0.000622 J <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.000408	<0.000367 <0.000367 <0.00200 <0.00200 <0.00200 <0.00200 0.00200 0.000459 J 0.000433 J	0.00253 <0.000657 <0.00200 <0.00200 <0.00200 <0.00200 0.000700 J 0.000673 J	0.000792 J <0.000629 <0.00400 <0.00400 <0.00400 <0.00400 <0.000629	<0.000642 0.000988 J <0.00200 <0.00200 <0.00200 <0.00200 <0.000642 <0.000642	0.000792 J 0.000988 J <0.00400 <0.00400 <0.00400 <0.00400 <0.000642	0.00161. 0.00258 0.00224 <0.00400 <0.00416. 0.00111. <0.00065							
	12/13/2021 03/15/2022 06/09/2022 09/27/2022 02/17/2023 06/15/2021 DUP-1 09/24/2021 DUP-1 12/13/2021 DUP-1 03/15/2022 DUP-1 06/09/2022	0.000622 J <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.000408 <0.000408 0.000596J <0.000533	<0.000367 <0.000367 <0.00200 <0.00200 <0.00200 <0.00200 0.000459 J 0.000433 J <0.000367 <0.000475	0.00253 <0.000657 <0.00200 <0.00200 <0.00200 <0.00200 0.000700 J 0.000657 <0.000411 <0.000411	0.000792 J <0.000629 <0.00400 <0.00400 <0.00400 <0.000629 <0.000629 <0.000629 <0.00124 <0.00124	<0.000642 0.000988 J <0.00200 <0.00200 <0.00200 <0.00200 <0.000642 <0.000642 <0.000642 <0.000651	0.000792 J 0.000988 J <0.00400 <0.00400 <0.00400 <0.000642 <0.000642 <0.000642 <0.00124	0.00161 0.00258 0.00224 <0.00400 <0.00416 0.00111 <0.00065 <0.00124 <0.00124							
	12/13/2021 03/15/2022 06/09/2022 09/27/2023 06/15/2021 DUP-1 09/24/2021 DUP-1 12/13/2021 DUP-1 03/15/2022 DUP-1 06/09/2022 09/27/2022	0.000622 J <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.000408 <0.000408 0.000596J <0.000533	<0.000367 <0.000367 <0.00200 <0.00200 <0.00200 <0.00200 0.000439 J 0.000433 J <0.000367 <0.000475	0.00253 <0.000657 <0.00200 <0.00200 <0.00200 <0.00200 0.000700 J 0.000673 J <0.000657 <0.000411	0.000792 J <0.000629 <0.00400 <0.00400 <0.00400 <0.00400 <0.000629 <0.000629 <0.000629 <0.00124	<0.000642 0.000988 J <0.00200 <0.00200 <0.00200 <0.00200 <0.000642 <0.000642 <0.000651	0.000792 J 0.000988 J <0.00400 <0.00400 <0.00400 <0.00400 <0.000642 <0.000642 <0.000642 <0.00124	0.00161 0.00258 0.00224 <0.00400 <0.00416 0.00111 <0.00065 <0.00124 <0.00124							
	12/13/2021 03/15/2022 06/09/2022 09/27/2022 02/17/2023 06/15/2021 DUP-1 09/24/2021 DUP-1 12/13/2021 DUP-1 03/15/2022 DUP-1 06/09/2022 09/27/2022 DUP-1 06/09/2022 09/27/2022 DUP-1 02/17/2023	0.000622 J <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.000408 <0.000596J <0.000533 <0.000533 <0.000408	<0.000367 <0.000367 <0.00200 <0.00200 <0.00200 <0.00200 0.000459 J 0.000459 J <0.000367 <0.000475 <0.000475	0.00253 <0.000657 <0.00200 <0.00200 <0.00200 <0.00200 0.000700 J 0.000673 J <0.000657 <0.000411 <0.000411 0.000780J	0.000792 J <0.000629 <0.00400 <0.00400 <0.00400 <0.00400 <0.000629 <0.000629 <0.00124 <0.00124 0.000804J	<0.000642 0.000988 J <0.00200 <0.00200 <0.00200 <0.00200 <0.000642 <0.000642 <0.000642 <0.000551 <0.000642	0.000792 J 0.000988 J <0.00400 <0.00400 <0.00400 <0.00400 <0.000642 <0.000642 <0.000642 <0.00124 0.00024	0.00161 0.00258 0.00224 <0.00400 0.00116 0.00111 <0.00065 <0.0012 0.001258							
	12/13/2021 03/15/2022 06/09/2022 09/27/2022 02/17/2023 06/15/2021 DUP-1 09/24/2021 DUP-1 12/13/2021 DUP-1 03/15/2022 DUP-1 06/09/2022 09/27/2022 DUP-1 02/17/2023	0.000622 J <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.000408 <0.000596J <0.000533 <0.000408 <0.000408	<0.000367 <0.000367 <0.00200 <0.00200 <0.00200 <0.00200 0.000459 J 0.000433 J <0.000367 <0.000475 <0.000475 <0.000367	0.00253 <0.000657 <0.00200 <0.00200 <0.00200 <0.00200 0.000700 J 0.000673 J <0.000657 <0.000411 <0.000411 0.000780J	0.000792 J <0.000629 <0.00400 <0.00400 <0.00400 <0.00400 <0.000629 <0.000629 <0.000629 <0.00124 <0.00124 <0.00124 <0.000804J	<0.000642 0.000988 J <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.000642 <0.000642 <0.000551 <0.000642 <0.000642 <0.000642	0.000792 J 0.000988 J <0.00400 <0.00400 <0.00400 <0.00400 <0.000642 <0.000642 <0.00124 <0.00124 <0.000804J <0.000804J	0.00161 0.00258 0.00224 <0.00400 <0.00116 0.00111 <0.00065 <0.00124 <0.00126 <0.00126 <0.00126 <0.00126 <0.00126 <0.00126 <0.00126 <0.00126							
	12/13/2021 03/15/2022 06/09/2022 09/27/2023 06/15/2021 DUP-1 09/24/2021 DUP-1 12/13/2021 DUP-1 03/15/2022 DUP-1 06/09/2022 09/27/2022 DUP-1 02/17/2023	0.000622 J <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.000408 <0.000533 <0.000533 <0.000408 <0.000408	<0.000367 <0.000367 <0.00200 <0.00200 <0.00200 <0.00200 0.000433 J <0.000367 <0.000475 <0.000367 <0.000367	0.00253 <0.000657 <0.00200 <0.00200 <0.00200 <0.00200 0.000700 J 0.000657 <0.000411 <0.000411 0.000780J <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.000792 J <0.000629 <0.00400 <0.00400 <0.00400 <0.00400 <0.00629 <0.000629 <0.00124 <0.00124 0.000804J <0.00400 <0.00400	<0.000642 0.000988 J <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.000642 <0.000642 <0.000642 <0.000642	0.000792 J 0.000988 J <0.00400 <0.00400 <0.00400 <0.000642 <0.000642 <0.00124 <0.00124 0.000804J <0.00200 <0.000642	0.00161 0.00258 0.00224 <0.00400 0.00116 0.00111 <0.00065 <0.00122 0.00126 0.00126 0.00177							
	12/13/2021 03/15/2022 06/09/2022 09/27/2022 02/17/2023 06/15/2021 DUP-1 09/24/2021 DUP-1 12/13/2021 DUP-1 03/15/2022 DUP-1 06/09/2022 09/27/2022 DUP-1 02/17/2023	0.000622 J <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.000408 <0.000596J <0.000533 <0.000533 <0.000408 <0.00200 <0.00200	<0.000367 <0.000367 <0.00200 <0.00200 <0.00200 <0.00200 0.000459 J 0.000433 J <0.000367 <0.000475 <0.000475 <0.000367	0.00253 <0.000657 <0.00200 <0.00200 <0.00200 <0.00200 0.000700 J 0.000657 <0.000411 <0.000411 0.000780J <0.00200 <0.00200 <0.00200 <0.00200	0.000792 J <0.000629 <0.00400 <0.00400 <0.00400 <0.000629 <0.000629 <0.00124 <0.00124 0.000804J <0.00400 <0.000629 <0.00124	<0.000642 0.000988 J <0.00200 <0.00200 <0.00200 <0.00200 <0.000642 <0.000642 <0.000651 <0.000651 <0.000642 <0.000642 <0.000642 <0.000642 <0.000642	0.000792 J 0.000988 J <0.00400 <0.00400 <0.00400 <0.000642 <0.00124 <0.00124 <0.000804J <0.0000042 <0.000642 <0.000642 <0.00124 <0.00124 <0.00124 <0.00000004	0.00161, 0.00258 0.00224 <0.00400 <0.00400 0.00116, 0.00111 <0.00065 <0.00122 0.00158. <0.0000777 J <0.000777 J <0.00200							
	12/13/2021 03/15/2022 06/09/2022 09/27/2022 02/17/2023 06/15/2021 DUP-1 09/24/2021 DUP-1 12/13/2021 DUP-1 03/15/2022 DUP-1 06/09/2022 09/27/2022 DUP-1 02/17/2023	0.000622 J <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.000408 <0.000408 0.0005961 <0.000593 <0.000593 <0.000408 <0.000408 <0.000408 <0.000590 <0.000408	<0.000367 <0.000367 <0.00200 <0.00200 <0.00200 <0.00200 0.000459 J 0.000433 J <0.000475 <0.000475 <0.000475 <0.000367	0.00253 <0.000657 <0.00200 <0.00200 <0.00200 <0.00200 0.000700 J 0.000657 <0.000411 <0.000411 0.000780J <0.000657 <0.000657 <0.000200 <0.000657 <0.00200 <0.00200 <0.00200	0.000792 J <0.000629 <0.00400 <0.00400 <0.00400 <0.00629 <0.000629 <0.00124 <0.00124 0.000804J <0.000629 <0.000629 <0.00124 <0.00124 <0.000804J	<0.000642 0.000988 J <0.00200 <0.00200 <0.00200 <0.00200 <0.000642 <0.000642 <0.000551 <0.000551 <0.000642 <0.000642 <0.000642 <0.000642 <0.000642 <0.000642 <0.000642	0.000792 J 0.000988 J <0.00400 <0.00400 <0.00400 <0.000642 <0.000642 <0.00124 <0.00124 0.000804J <0.0000642 <0.000642 <0.00124 <0.00124 <0.00124 <0.00124 <0.000000 <0.000000 <0.000000000000000	0.00161, 0.00258 0.00224 <0.00400 0.00116, 0.00111, <0.00015 <0.0012 <0.0012 0.00158, 0.00200 0.000777 J <0.00200 <0.00400							
MW-5	12/13/2021 03/15/2022 06/09/2022 09/27/2022 02/17/2023 06/15/2021 DUP-1 09/24/2021 DUP-1 12/13/2021 DUP-1 03/15/2022 DUP-1 06/09/2022 09/27/2022 DUP-1 02/17/2023 03/10/2021 06/15/2021 06/15/2021 06/15/2021 06/15/2021 03/15/2022	0.000622 J <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.000408 <0.000596J <0.000533 <0.000533 <0.000408 <0.000408 <0.00200 <0.000408 <0.00200 <0.000408	<0.000367 <0.000367 <0.00200 <0.00200 <0.00200 <0.00200 0.000459 J 0.000459 J 0.000475 <0.000475 <0.000475 <0.000475 <0.000777 J B <0.00200 0.000777 J B <0.00200 0.00200 0.00200 0.00200 0.00200	0.00253 <0.0020657 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 0.000700 J 0.000673 J <0.000411 <0.000411 0.000780J <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.000792 J <0.000629 <0.00400 <0.00400 <0.00400 <0.00400 <0.00629 <0.000629 <0.00124 <0.00124 <0.000629 <0.000629 <0.000629 <0.000400 <0.000629	<.0.000642 <0.000988 J <0.00200 <0.00200 <0.00200 <0.00200 <0.000642 <0.000642 <0.000551 <0.000642 <0.000642 <0.000642 <0.0000642 <0.0000642 <0.0000642 <0.0000642 <0.0000642 <0.0000642 <0.0000642 <0.0000642 <0.0000642 <0.0000642 <0.0000642	0.000792 J 0.000988 J <0.00400 <0.00400 <0.00400 <0.00400 <0.000642 <0.000642 <0.00124 0.000804J <0.00200 <0.000642 <0.000642 <0.001642 <0.00124 <0.00124 <0.00124 <0.00124 <0.000642 <0.000642 <0.000642	0.00161 \ 0.00258 \ 0.00224 \ <0.00400 \ 0.00116 \ \ 0.00116 \ \ 0.00116 \ \ 0.00116 \ \ 0.00115 \ <0.00124 \ <0.00125 \ \ 0.000125 \ \ 0.00125 \ 0.00125 \ \ 0.00							
MW-5	12/13/2021 03/15/2022 06/09/2022 09/27/2022 02/17/2023 06/15/2021 DUP-1 09/24/2021 DUP-1 12/13/2021 DUP-1 03/15/2022 DUP-1 06/09/2022 09/27/2022 DUP-1 02/17/2023	0.000622 J <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.000408 <0.000408 0.0005961 <0.000593 <0.000593 <0.000408 <0.000408 <0.000408 <0.000590 <0.000408	<0.000367 <0.000367 <0.00200 <0.00200 <0.00200 <0.00200 0.000459 J 0.000433 J <0.000475 <0.000475 <0.000475 <0.000367	0.00253 <0.000657 <0.00200 <0.00200 <0.00200 <0.00200 0.000700 J 0.000657 <0.000411 <0.000411 0.000780J <0.000657 <0.000657 <0.000200 <0.000657 <0.00200 <0.00200 <0.00200	0.000792 J <0.000629 <0.00400 <0.00400 <0.00400 <0.00629 <0.000629 <0.00124 <0.00124 0.000804J <0.000629 <0.000629 <0.00124 <0.00124 <0.000804J	<0.000642 0.000988 J <0.00200 <0.00200 <0.00200 <0.00200 <0.000642 <0.000642 <0.000551 <0.000551 <0.000642 <0.000642 <0.000642 <0.000642 <0.000642 <0.000642 <0.000642	0.000792 J 0.000988 J <0.00400 <0.00400 <0.00400 <0.000642 <0.000642 <0.00124 <0.00124 0.000804J <0.0000642 <0.000642 <0.00124 <0.00124 <0.00124 <0.00124 <0.000000 <0.000000 <0.000000000000000								

- 1. BTEX = Benzene, Toluene, Ethylbenzene, and Total Xylenes
 2. NMOCD = New Mexico Oil Conservation Division
 3. RRAL Criteria = Recommended Remediation Action Level Criteria
- 4. NE = Not Established
- 3. The target analyte was positively identified below the quantitation limit and above the detection limit **Bold** text indicates a concentration exceeding the NMOCD RRAL Criteria

Table 2 **Groundwater BTEX¹ Concentration Analytical Summary**

Livingston Line - Bob McCasland Pipeline Leak Lea County, New Mexico Plains SRS #: 2001-11226 Etech Project #: 17475 NMOCD² Incident ID#: nAPP2109736613

All concentrations are in milligrams per liter (mg/L)

		7411 0011	contrations a	re in milligrams p EPA	SW846-8021										
Monitoring Well	Date Sampled	Benzene	Toluene	Ethylbenzene	M,P- Xylenes	O- Xylenes	Total Xylenes	Total BTEX							
NMOCD RRA	AL CRITERIA ³	0.01	0.75	0.75	тот	TAL XYLENES	0.62	NE ⁴							
	03/10/2021	<0.00200	<0.00200	<0.00200	<0.00400	<0.00200	<0.00200	<0.00200							
	06/15/2021														
	09/24/2021			We	Il Not Sampled										
MW-7	12/13/2021														
10100-7	03/15/2022	<0.000408	< 0.000367	<0.000657	<0.000629	<0.000642	<0.000642	<0.000657							
	06/09/2022														
	09/27/2022			We	ell Not Sampled										
	02/17/2023														
	03/10/2021	<0.00200	<0.00200	<0.00200	<0.00400	<0.00200	<0.00200	<0.00200							
	06/15/2021														
	09/24/2021		Well Not Sampled												
MW-8	12/13/2021							1							
14144 0	03/15/2022	<0.000408	0.000435 J	<0.000657	<0.000629	<0.000642	<0.000642	<0.000657							
	06/09/2022														
	09/27/2022		Well Not Sampled												
	02/17/2023														
	ı	T		T		l	l								
	03/10/2021	<0.00200	<0.00200	<0.00200	<0.00400	<0.00200	<0.00200	<0.00200							
	DUP-1	<0.00200	<0.00200	<0.00200	<0.00400	<0.00200	<0.00200	<0.00200 <0.000657							
	06/15/2021	<0.000408	0.000515 J B	<0.000657	<0.000657 <0.000629 <0.000642 <0.000642										
1010	09/24/2021	_		We	Il Not Sampled										
MW-9	12/13/2021														
	03/15/2022	_													
	06/09/2022	_		Insufficient Vol	ume for Sample	Collection									
	09/27/2022	_			·										
	02/17/2023														
	00/40/0004	<0.00200	<0.00200	<0.00200	<0.00400	<0.00200	<0.00200	<0.00200							
	03/10/2021	<0.00200	<0.00200	<0.00200	<0.00400	<0.00200	<0.00200	<0.00200							
	06/15/2021 09/24/2021	1		\\/.	ell Not Sampled										
	12/13/2021	1		We	140t Gampled										
MW-10	03/15/2022	<0.000408	<0.000367	<0.000657	<0.000629	<0.000642	<0.000642	<0.000657							
	06/09/2022	~U.UUU4U0	-0.000307	~0.000037	-0.000029	-0.000042	-0.000042	-0.000037							
	09/27/2022	1		We	ell Not Sampled										
	02/17/2023	1		***											
	02/11/2023														
	03/10/2021	<0.00200	<0.00200	<0.00200	<0.00400	<0.00200	<0.00200	<0.00200							
	06/15/2021	0.00200	0.00200	0.00200	0.00.00	0.00200	0.00200	0.00200							
	09/24/2021	1		We	ell Not Sampled										
	12/13/2021	1			,										
MW-11	03/15/2022	<0.000408	< 0.000367	< 0.000657	< 0.000629	<0.000642	<0.000642	< 0.000657							
	06/09/2022														
	09/27/2022	1		We	ell Not Sampled										
	02/17/2023	1			·										

- 1. BTEX = Benzene, Toluene, Ethylbenzene, and Total Xylenes
- 2. NMOCD = New Mexico Oil Conservation Division

- 3. RRAL Criteria = Recommended Remediation Action Level Criteria
 4. NE = Not Established
 J: The target analyte was positively identified below the quantitation limit and above the detection limit

 Bold text indicates a concentration exceeding the NMOCD RRAL Criteria

Table 3
MW-4 PSH¹/BTEX² Impacted Groundwater Recovery Summary

Livingston Line to Bob McCasland Pipeline Release Lea County, New Mexico Plains SRS #: 2001-11226 Etech Project #: 17475

NMOCD³ Incident ID#: nAPP2109736613

All elevations are measured in feet above mean sea level

Monitoring Well	Date	Depth to PSH ¹ Below Top of Casing	Depth to Water Below Top of Casing	PSH Thickness	Total Fluid Recovery (gallons)	PSH Recovered (gallons)
	01/20/2020	31.35	31.40	0.05	3.0	0.008
	01/31/2020	31.37	34.42	3.05	3.0	0.497
	02/14/2020	31.23	31.33	0.10	3.0	0.016
	02/19/2020	31.31	31.37	0.06	3.5	0.010
	02/27/2020	31.33	31.37	0.04	3.0	0.007
	03/05/2020	31.26	31.27	0.01	3.0	0.002
	03/17/2020	31.33	31.38	0.05	3.0	0.008
	05/26/2020	31.60	31.89	0.29	2.0	0.047
	06/29/2020	32.16	32.25	0.09	3.0	0.015
	07/28/2020	32.35	32.45	0.10	2.0	0.016
	08/18/2020	32.16	32.25	0.09	2.0	0.015
	10/14/2020	32.54	33.48	0.94	2.0	0.153
	11/12/2020	-	-	-	3.0	-
	12/29/2020	32.12	34.16	2.04	3.0	0.333
	01/21/2021	32.04	33.69	1.65	3.0	0.269
MW-4	02/26/2021	31.95	33.83	1.88	3.0	0.306
10100-4	03/29/2021	31.87	33.80	1.93	3.0	0.315
	04/26/2021	31.99	33.87	1.88	3.0	0.306
	05/21/2021	32.13	34.01	1.88	3.0	0.306
	06/29/2021	32.20	34.02	1.82	3.0	0.297
	07/29/2021	32.59	35.67	3.08	2.3	0.502
	08/26/2021		-	-	3.0	-
	10/25/2021	32.93	36.04	3.11	3.0	0.507
	11/30/2021	32.83	35.23	2.40	3.0	0.391
	12/20/2021	32.82	34.92	2.10	3.5	0.342
	01/25/2022	32.85	34.88	2.03	4.0	0.331
	02/23/2022	32.55	35.78	3.23	4.0	0.526
	03/29/2022	32.48	35.99	3.51	4.0	0.572
	04/27/2022	32.60	35.98	3.38	5.0	0.551
	08/31/2022	33.72	37.28	3.56	5.0	0.580
	10/19/2022	33.69	36.98	3.29	5.0	0.536
	11/22/2022	33.41	36.74	3.33	5.0	0.543
2022 Notes:	Average PSI	H Thickness:	3.19	2022 Total Recovery	32.0	3.640

- 1. PSH: Phase Separated Hydrocarbons
- 2. BTEX: Benzene, Toluene, Ethylbenzene, and Total Xylenes
- 3. NMOCD: New Mexico Oil Conservation Division
- = Data not recorded

Table 4
MW-5 BTEX¹ Impacted Groundwater Recovery Summary

Livingston Line to Bob McCasland Pipeline Release Lea County, New Mexico Plains SRS #: 2001-11226 Etech Project #: 17476

NMOCD² Incident ID#: nAPP2109736613

All elevations are measured in feet above mean sea level

	are measured in feet a	Groundwater
Monitoring Well	Date	Recovered (gallons)
	01/09/2020	3.0
	01/20/2020	5.0
	01/31/2020	3.0
	02/14/2020	5.0
	02/19/2020	5.0
	02/27/2020	4.0
	03/05/2020	5.0
	03/17/2020	5.0
	05/26/2020	5.0
	06/29/2020	5.0
	07/28/2020	4.5
	08/18/2020	5.0
	10/14/2020	3.0
	11/12/2020	5.0
	12/29/2020	3.0
	01/21/2021	3.0
MW-5	02/26/2021	5.0
	03/29/2021	5.0
	04/26/2021	5.0
	05/21/2021	5.0
	06/29/2021	5.0
	07/29/2021	3.0
	08/26/2021	3.0
	10/25/2021	3.0
	11/30/2021	2.5
	12/20/2021	4.0
	01/25/2022	4.0
	02/23/2022	3.5
	03/29/2022	5.0
	4/27/2022	0.0
	8/31/2022	5.0
	10/19/2022	5.0
	11/22/2022	5.0
2022 Total (GW ³ Recovered	27.5

Notes:

1. BTEX: Benzene, Toluene, Ethylbenzene, and Total Xylenes

2. NMOCD: New Mexico Oil Conservation Division

3. GW: Groundwater

- = Data not recorded

Concentrations of PAH¹ in Groundwater Summary

Livingston Line – Bob McCasland Lea County, New Mexico Plains SRS #: 2001-11226 Etech Project #: 17475 NMOCD² Incident ID#: nAPP2109736613

All concentrations are reported in milligrams per liter (mg/L)

			EPA SW846-8270C, 3510															
Well ID	Date Sampled	N/Aphthalene	Benzo(a)pyrene	AceN/Aphthene	AceN/Aphthylene	Anthracene	Benzo(a)anthracene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Dibenzofuran	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)Pyrene	PheN/Anthrene	Pyrene
NMWQC	C Standard⁴	0.03	0.0007								NE ⁵							
	9/13/2001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	N/A	<0.005	<0.005	<0.005	<0.005	<0.005
	7/14/2004	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	N/A	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
MW-1	3/21/2005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	N/A	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
	2/16/2006	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	N/A	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
	5/10/2007	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0004	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0004	<0.0002	<0.0002
	7/14/2004	0.0133	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	N/A	<0.00005	0.000061	<0.00005	0.000497	<0.00005
	3/21/2005	0.00883	<0.00005	0.000054	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	N/A	<0.00005	0.000052	<0.00005	0.000325	<0.00005
	2/16/2006	0.0128	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	0.000066	<0.00005	N/A	<0.00005	0.000103	<0.00005	0.000352	<0.00005
	5/10/2007	0.00779	<0.0002	<0.0002	<0.0002	0.00175	<0.0002	<0.0002	<0.0002	<0.0004	<0.0002	<0.0002	0.000442	<0.0002	0.000229	<0.0004	<0.0002	<0.0002
MW-2	2/28/2008	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	11/7/2012	0.00946	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
	9/5/2013	0.000902	<0.0000508	<0.0000508	<0.0000508	<0.0000508	<0.0000508	<0.0000508	<0.0000508	<0.0000508	<0.0000508	<0.0000508	<0.0000508	<0.0000508	<0.0000508	<0.0000508	<0.0000508	<0.0000508
	12/14/2020	<0.0000976	<0.0000573	<0.000100	<0.0000845	<0.0000869	<0.000135	<0.0000714	<0.000114	<0.000117	<0.000157	<0.0000763	N/A	<0.000158	<0.000101	<0.0000916	<0.0000854	<0.000131
	3/15/2022	<0.0000965	<0.0000567	<0.0000993	<0.0000836	<0.0000894	<0.000133	<0.0000695	<0.000112	<0.000115	<0.000155	<0.0000755	<0.0000993	<0.000156	<0.000100	<0.0000906	<0.0000844	<0.000129
·																		
	9/13/2001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	N/A	<0.005	<0.005	<0.005	<0.005	<0.005
	7/14/2004									N/A								
	9/14/2004	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	N/A	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
	3/21/2005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	N/A	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
	2/16/2006	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	N/A	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
MW-3	5/10/2007	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0004	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0004	<0.0002	<0.0002
IVIVV-3	2/28/2008	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	N/A	<0.005	<0.005	<0.005	<0.005	<0.005
Ī	9/5/2013	<0.000562	<0.0000562	<0.0000562	<0.0000562	<0.0000562	<0.0000562	<0.0000562	<0.0000562	<0.0000562	<0.0000562	<0.0000562	<0.0000562	<0.0000562	<0.0000562	<0.0000562	<0.0000562	<0.0000562
	10/5/2014		_	_				NI.	nt sampled due	to sampling frequ	iency reduction							
	10/15/2015							ĮŅ.	or sampled due	o sampling nequ	acricy reduction							
	12/14/2020	<0.000104	<0.0000613	<0.000107	<0.0000904	<0.0000930	<0.000144	<0.0000763	<0.000122	<0.000125	<0.000168	<0.0000816	N/A	<0.000169	<0.000108	<0.0000980	<0.0000913	<0.000140
	3/15/2022	<0.0000974	<0.0000572	<0.000100	<0.0000844	<0.0000902	<0.000134	<0.0000701	<0.000113	<0.000116	<0.000156	<0.0000761	<0.000100	<0.000157	<0.000101	<0.0000915	<0.0000974	<0.000130

Notes:

Released to Imaging: 5/17/2023 11:12:57 AM

- 1. PAH: Polycyclic Aromatic Hydrocarbons
- 2. NMOCD: New Mexico Oil Conservation Division
- 3. NMWQCC: New Mexico Water Quality Control Commission
- 4. NE: Not Established
- J: The target analyte was positively identified below the quantitation limit and above the detection limit

 $\textbf{Bold} \ \text{text indicates a concentration exceeding NMWQCC Drinking Water Standards}$

Concentrations of PAH¹ in Groundwater Summary

Livingston Line – Bob McCasland Lea County, New Mexico Plains SRS #: 2001-11226 Etech Project #: 17475

NMOCD² Incident ID#: nAPP2109736613

All concentrations are reported in milligrams per liter (mg/L)

									EPA S	W846-8270C.	3510							
Well ID	Date Sampled	N/Aphthalene	Benzo(a)pyrene	AceN/Aphthene	AceN/Aphthylene	Anthracene	Benzo(a)anthracene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Dibenzofuran	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)Pyrene	PheN/Anthrene	Pyrene
NMWQC	C Standard ⁴	0.03	0.0007								NE⁵							
			1	ı	1	1		·		ase-Separated H	·			1	1	1		
	2/16/2006	0.113	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	0.00252	<0.00005	N/A	<0.00005	0.000855	<0.00005	0.00916	<0.00005
	5/10/2007	0.0659	<0.0002	<0.0002	<0.0002	0.00596	<0.0002	<0.0002	<0.0002	<0.0004	<0.0002	<0.0002	0.00112	<0.0002	0.000737	<0.0004	<0.0002	<0.0002
	2/28/2008	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	12/30/2011	0.0366	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
MW-4	11/7/2012	0.101	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.00154	<0.0002	<0.0002	<0.0002	0.00494	<0.0002
	9/5/2013	0.0643	<0.0000667	<0.0000667	0.000288	<0.0000667	<0.0000667	<0.0000667	<0.0000667	<0.0000667	<0.0000667	<0.0000667	0.00092	<0.0000667	0.000419	<0.0000667	0.00328	<0.0000667
	10/5/2014	0.00869	<0.00000660	<0.00000407	<0.00000495	<0.00000236	<0.0000527	<0.00000998	<0.00000796	<0.00000583	<0.00000427	<0.0000580	0.000308	<0.00000633	0.00014	<0.00000750	0.000821	<0.00000691
	10/15/2015	0.0104	<0.000391	<0.000958	<0.000967	<0.000729	<0.000367	<0.000459	<0.000350	<0.000573	<0.000382	<0.000406	N/A	<0.000500	<0.000988	<0.000367	0.000797	0.000459
	11/14/2019	0.0107	<0.000108	<0.000108	0.000262	<0.000108	<0.000108	<0.000108	<0.000108	<0.000108	<0.000108	<0.000108	0.000831	<0.000108	0.000367	<0.000108	0.00148	<0.000108
	12/14/2020								Not sampled	due the present	ce of PSH							
	9/13/2001	0.049	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	N/A	<0.005	<0.005	<0.005	<0.005	<0.005
	7/14/2004									N/A								
	9/14/2004	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	N/A	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
	3/21/2005									N/A								
	2/16/2006	0.000415	<0.00005	0.000059	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	N/A	<0.00005	0.000147	<0.00005	0.000309	<0.00005
	5/10/2007	0.00218	<0.0002	<0.0002	<0.0002	0.00075	<0.0002	<0.0002	<0.0002	<0.0004	<0.0002	<0.0002	0.00112	<0.0002	0.000496	<0.0004	<0.0002	<0.0002
MW-5	2/28/2008	0.051	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	12/30/2011	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	11/7/2012	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
	9/5/2013	<0.0000562	<0.0000562	<0.0000562	<0.0000562	<0.0000562	<0.0000562	<0.0000562	<0.0000562	<0.0000562	<0.0000562	<0.0000562	0.000311	<0.0000562	<0.0000562	<0.0000562	<0.0000562	<0.0000562
	11/14/2019	0.00670	<0.000111	0.000233	<0.000111	<0.000111	<0.000111	<0.000111	<0.000111	<0.000111	<0.000111	<0.000111	0.00135	<0.000111	<0.000111	<0.000111	0.000242	<0.000111
	12/14/2020	<0.000101	<0.0000595	<0.000104	<0.0000878	<0.0000904	<0.000140	<0.0000742	<0.000118	<0.000121	<0.000163	<0.0000793	N/A	<0.000164	<0.000105	<0.0000953	<0.0000887	<0.000136
	3/15/2022	<0.000194	<0.0000605	<0.000106	<0.0000892	<0.0000954	<0.000142	<0.0000605	<0.000120	<0.000123	<0.000165	<0.0000805	0.000524	<0.000166	<0.000107	<0.0000968	<0.0000901	<0.000138

Notes

Released to Imaging: 5/17/2023 11:12:57 AM

- 1. PAH: Polycyclic Aromatic Hydrocarbons
- NMOCD: New Mexico Oil Conservation Division
- 3. NMWQCC: New Mexico Water Quality Control Commission
- 4. NE: Not Established
- J: The target analyte was positively identified below the quantitation limit and above the detection limit

Bold text indicates a concentration exceeding NMWQCC Drinking Water Standards

Concentrations of PAH¹ in Groundwater Summary

Livingston Line – Bob McCasland Lea County, New Mexico Plains SRS #: 2001-11226 Etech Project #: 17475

NMOCD² Incident ID#: nAPP2109736613

All concentrations are reported in milligrams per liter (mg/L)

									EPA S	W846-8270C,	3510							
Well ID	Date Sampled	N/Aphthalene	Benzo(a)pyrene	AceN/Aphthene	AceN/Aphthylene	Anthracene	Benzo(a)anthracene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Dibenzofuran	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)Pyrene	PheN/Anthrene	Pyrene
NMWQC	C Standard⁴	0.03	0.0007								NE ⁵							
	7/14/2004	0.00122	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	N/A	<0.00005	<0.00005	<0.00005	0.000085	<0.00005
	3/21/2005	0.000089	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	N/A	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
	2/16/2006	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	N/A	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
MW-6	5/10/2007	0.00095	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0004	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0004	<0.0002	<0.0002
	2/28/2008	0.009	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	N/A	<0.005	<0.005	<0.005	<0.005	<0.005
	9/5/2013	<0.0000667	<0.0000667	<0.0000667	<0.0000667	<0.0000667	<0.0000667	<0.0000667	<0.0000667	<0.0000667	<0.0000667	<0.0000667	0.000305	<0.0000667	<0.0000667	<0.0000667	<0.0000667	<0.0000667
	12/14/2020	<0.0000977	<0.0000573	<0.000100	<0.0000846	<0.0000870	<0.000135	<0.0000714	<0.000114	<0.000117	<0.000157	<0.0000764	N/A	<0.000158	<0.000101	<0.0000917	<0.0000854	<0.000131
	3/15/2022	<0.0000962	<0.0000565	<0.0000989	<0.0000833	<0.0000890	<0.000133	<0.0000692	<0.000112	<0.000115	<0.000154	<0.0000752	<0.0000989	<0.000155	<0.0000999	<0.0000903	<0.0000841	<0.000129
		1								ı	ı	ı			ı			
	7/14/2004	0.000261	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	N/A	<0.00005	<0.00005	<0.00005	0.000293	<0.00005
	3/21/2005	0.000448	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	N/A	<0.00005	<0.00005	<0.00005	0.000222	<0.00005
	2/16/2006	0.000057	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	N/A	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
MW-7	5/10/2007	0.000606	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0004	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0004	<0.0002	<0.0002
	2/28/2008	0.017	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	N/A	<0.005	<0.005	<0.005	<0.005	<0.005
	12/30/2011	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	9/5/2013	<0.0000508	<0.0000508	<0.0000508	<0.0000508	<0.0000508	<0.0000508	<0.0000508	<0.0000508	<0.0000508	<0.0000508	<0.0000508	<0.0000508	<0.0000508	<0.0000508	<0.0000508	<0.0000508	<0.0000508
ı	7/44/2004	0.000064	<0.0000E	<0.0000F	<0.0000F	<0.0000F	<0.0000F	<0.0000E	<0.0000F	<0.0000F	<0.0000F	<0.00005	N/A	<0.0000E	<0.00005	<0.0000°	0.000000	<0.0000E
	7/14/2004	0.000261	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	N/A	<0.00005	<0.00005	<0.00005	0.000293	<0.00005
<u> </u>	3/21/2005	0.000448	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	N/A	<0.00005	<0.00005	<0.00005	0.000222	<0.00005
MW-8	2/16/2006 5/10/2007	0.000057 0.000606	<0.0005 <0.0002	<0.0005 <0.0002	<0.0005 <0.0002	<0.0005 <0.0002	<0.00005	<0.0005 <0.0002	<0.0005 <0.0002	<0.00005 <0.0004	<0.0005 <0.0002	<0.0005 <0.0002	N/A <0.0002	<0.0005 <0.0002	<0.00005 <0.0002	<0.00005 <0.0004	<0.00005 <0.0002	<0.0005 <0.0002
IVIVV-O	2/28/2008	0.000606	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002 <0.005	<0.0002	<0.0002	<0.004	<0.0002	<0.0002	<0.0002 N/A	<0.0002	<0.0002	<0.004	<0.0002	<0.0002
}	12/30/2011	<0.005		<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	N/A <0.005	<0.005	<0.005	<0.005	<0.005	<0.005
-	9/5/2013	<0.005	<0.005 <0.000508	<0.005	<0.005	<0.005 <0.000508	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	3131ZU13	~0.00000000	~0.0000000	~0.00000000	~0.0000000	~0.00000000	~0.00000000	~0.0000000	~0.00000000	~0.00000000	~0.0000000	~0.0000000	~0.00000000	~0.00000000	~0.00000000	~0.00000000	~0.00000000	~0.0000000

Notes

Released to Imaging: 5/17/2023 11:12:57 AM

- 1. PAH: Polycyclic Aromatic Hydrocarbons
- 2. NMOCD: New Mexico Oil Conservation Division
- 3. NMWQCC: New Mexico Water Quality Control Commission
- 4. NE: Not Established
- J: The target analyte was positively identified below the quantitation limit and above the detection limit

Bold text indicates a concentration exceeding NMWQCC Drinking Water Standards

Concentrations of PAH¹ in Groundwater Summary

Livingston Line – Bob McCasland Lea County, New Mexico Plains SRS #: 2001-11226 Etech Project #: 17475

NMOCD² Incident ID#: nAPP2109736613

All concentrations are reported in milligrams per liter (mg/L)

								one are reported		W846-8270C,	3510							
Well ID	Date Sampled	N/Aphthalene	Benzo(a)pyrene	AceN/Aphthene	AceN/Aphthylene	Anthracene	Benzo(a)anthracene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Dibenzofuran	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)Pyrene	PheN/Anthrene	Pyrene
NMWQC	C Standard ⁴	0.03	0.0007								NE⁵							
	7/14/2004	0.00798	<0.00005	0.000089	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	N/A	<0.00005	0.000306	<0.00005	0.00008	<0.00005
	3/21/2005	0.00126	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	N/A	<0.00005	0.000076	<0.00005	0.000068	<0.00005
	2/16/2006	0.0107	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	N/A	<0.00005	0.000139	<0.00005	0.000125	<0.00005
MW-9	5/10/2007	0.00243	<0.0002	<0.0002	<0.0002	0.000222	<0.0002	<0.0002	<0.0002	<0.0004	<0.0002	<0.0002	0.00132	<0.0002	<0.0002	<0.0004	<0.0002	<0.0002
	2/28/2008	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	9/5/2013	0.00247	<0.0000588	<0.0000588	<0.0000588	<0.0000588	<0.0000588	<0.0000588	<0.0000588	<0.0000588	<0.0000588	<0.0000588	0.000354	<0.0000588	0.000262	<0.0000588	0.000287	<0.0000588
	12/14/2020	<0.0000969	<0.0000569	<0.0000996	<0.0000839	<0.0000863	<0.000134	<0.0000708	<0.000113	<0.000116	<0.000156	<0.0000757	N/A	<0.000157	<0.000100	<0.0000910	<0.0000848	<0.000130
	3/21/2005	0.00738	<0.00005	0.000083	0.000051	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	N/A	<0.00005	0.000292	<0.00005	0.000654	<0.00005
	2/16/2006									N/A								
MW-10	5/22/2006	0.000174	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	N/A	<0.00005	0.00009	<0.00005	0.000202	<0.00005
10100-10	5/10/2007	0.000688	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0004	<0.0002	<0.0002	0.00108	<0.0002	0.000388	<0.0004	<0.0002	<0.0002
	2/28/2008	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	9/5/2013	0.000548	<0.0000508	<0.000508	<0.0000508	<0.0000508	<0.000508	<0.0000508	<0.0000508	<0.0000508	<0.000508	<0.0000508	0.000714	<0.0000508	0.0000839	<0.0000508	0.0000605	<0.0000508
	3/21/2005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	N/A	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
	2/16/2006	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	N/A	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
MW-11	5/10/2007	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0004	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0004	<0.0002	<0.0002
	2/28/2008	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	N/A	<0.005	<0.005	<0.005	<0.005	<0.005
	9/5/2013	<0.0000524	<0.0000524	<0.0000524	<0.0000524	<0.0000524	<0.0000524	<0.0000524	<0.0000524	<0.0000524	<0.0000524	<0.0000524	<0.0000524	<0.0000524	<0.0000524	<0.0000524	<0.0000524	<0.0000524

Notes

Released to Imaging: 5/17/2023 11:12:57 AM

- 1. PAH: Polycyclic Aromatic Hydrocarbons
- 2. NMOCD: New Mexico Oil Conservation Division
- 3. NMWQCC: New Mexico Water Quality Control Commission
- 4. NE: Not Established
- J: The target analyte was positively identified below the quantitation limit and above the detection limit

Bold text indicates a concentration exceeding NMWQCC Drinking Water Standards

Appendix A Laboratory Analytical Reports

Environment Testing America

ANALYTICAL REPORT

Eurofins Lubbock 6701 Aberdeen Ave. Suite 8

Lubbock, TX 79424 Tel: (806)794-1296

Laboratory Job ID: 820-3677-1

Laboratory Sample Delivery Group: AR227011 Client Project/Site: Livingston Line-Bob McCasland

For:

Terracon Consulting Eng & Scientists 5847 50th St Lubbock, Texas 79424

Attn: Brett Dennis

J. KRAMER

Authorized for release by: 3/29/2022 3:45:07 PM

Jessica Kramer, Project Manager (432)704-5440

jessica.kramer@eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 5/17/2023 11:12:57 AM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

3

4

O

7

9

11

12

4 /

Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line-Bob McCasland

Laboratory Job ID: 820-3677-1 SDG: AR227011

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	17
Lab Chronicle	19
Certification Summary	21
Method Summary	22
Sample Summary	23
Chain of Custody	24
Receipt Checklists	26

2

3

4

6

8

40

11

14

14

Definitions/Glossary

Client: Terracon Consulting Eng & Scientists Job ID: 820-3677-1 Project/Site: Livingston Line-Bob McCasland SDG: AR227011

Qualifiers

GC/MS Semi VOA

Quaimer	Qualifier Description
J	Result is less than the MQL but greater than or equal to the SDL and the concentration is an estimated value.
U	Analyte was not detected at or above the SDL.
Χ	Surrogate recovery exceeds control limits

GC VOA

Qualifier	Qualifier Description
J	Result is less than the MQL but greater than or equal to the SDL and the concentration is an estimated value.
U	Analyte was not detected at or above the SDL.

Glossary

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)

MDA	willimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number

ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present Practical Quantitation Limit PQL

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line-Bob McCasland

Job ID: 820-3677-1 SDG: AR227011

227011

Job ID: 820-3677-1

Laboratory: Eurofins Lubbock

Narrative

Job Narrative 820-3677-1

Receipt

The samples were received on 3/16/2022 11:56 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.1°C

Receipt Exceptions

The lab recieved 2 containers for PAH on sample MW-7 and no containers for PAH on DUP-1. On the COC PAH was selected on DUP-1 but not on MW-7. The client was contacted and the lab was instructed by Brett Dennis to not run PAH on either samples. MW-2 (820-3677-1), MW-3 (820-3677-2), MW-5 (820-3677-3), MW-6 (820-3677-4), MW-7 (820-3677-5), MW-8 (820-3677-6), MW-10 (820-3677-7), MW-11 (820-3677-8) and DUP-1 (820-3677-9)

GC/MS Semi VOA

Method 8270D_SIM: The surrogate recovery for the blank associated with preparation batch 860-45602 and analytical batch 860-45678 was outside the upper control limits.

Method 8270D_SIM: Surrogate recovery for the following samples were outside the upper control limit: MW-2 (820-3677-1) and MW-6 (820-3677-4). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

Method 8270D_SIM: Surrogate 2-Fluorobiphenyl recovery for the following sample was outside the upper control limit: MW-5 (820-3677-3). The reported analytes are not represented by surrogate 2-Fluorobiphenyl; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

5

6

9

IU

12

IR

Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line-Bob McCasland

Client Sample ID: MW-2

Date Collected: 03/15/22 13:43

Date Received: 03/16/22 11:56

Job ID: 820-3677-1 SDG: AR227011

Lab Sample ID: 820-3677-1

Matrix: Water

Method: 8270D SIM - Semi	volatile Organic Com	npounds (G	C/MS SIM)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.0000993	U	0.000181	0.0000993	mg/L		03/18/22 19:48	03/21/22 11:52	1
Acenaphthylene	<0.0000836	U	0.000181	0.0000836	mg/L		03/18/22 19:48	03/21/22 11:52	1
Anthracene	<0.0000894	U	0.000181	0.0000894	mg/L		03/18/22 19:48	03/21/22 11:52	1
Benzo[a]anthracene	<0.000133	U	0.000181	0.000133	mg/L		03/18/22 19:48	03/21/22 11:52	1
Benzo[a]pyrene	< 0.0000567	U	0.000181	0.0000567	mg/L		03/18/22 19:48	03/21/22 11:52	1
Benzo[b]fluoranthene	<0.0000695	U	0.000181	0.0000695	mg/L		03/18/22 19:48	03/21/22 11:52	1
Benzo[g,h,i]perylene	<0.000112	U	0.000181	0.000112	mg/L		03/18/22 19:48	03/21/22 11:52	1
Benzo[k]fluoranthene	<0.000115	U	0.000181	0.000115	mg/L		03/18/22 19:48	03/21/22 11:52	1
Chrysene	<0.000155	U	0.000181	0.000155	mg/L		03/18/22 19:48	03/21/22 11:52	1
Dibenz(a,h)anthracene	<0.0000755	U	0.000181	0.0000755	mg/L		03/18/22 19:48	03/21/22 11:52	1
Dibenzofuran	<0.0000993	U	0.000181	0.0000993	mg/L		03/18/22 19:48	03/21/22 11:52	1
Fluoranthene	<0.000156	U	0.000181	0.000156	mg/L		03/18/22 19:48	03/21/22 11:52	1
Fluorene	<0.000100	U	0.000181	0.000100	mg/L		03/18/22 19:48	03/21/22 11:52	1
Indeno[1,2,3-cd]pyrene	<0.0000906	U	0.000181	0.0000906	mg/L		03/18/22 19:48	03/21/22 11:52	1
Naphthalene	< 0.0000965	U	0.00361	0.0000965	mg/L		03/18/22 19:48	03/21/22 11:52	1
Phenanthrene	<0.0000844	U	0.000181	0.0000844	mg/L		03/18/22 19:48	03/21/22 11:52	1
Pyrene	<0.000129	U	0.000181	0.000129	mg/L		03/18/22 19:48	03/21/22 11:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	149	X	54 - 146				03/18/22 19:48	03/21/22 11:52	1
Nitrobenzene-d5	139		46 - 151				03/18/22 19:48	03/21/22 11:52	1

Method: 8021B - Volatile Organic Compounds (G	C)
---	----

Method: 0021B - Volatile Organic Compounds (GC)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	<0.000408	U	0.00200	0.000408	mg/L			03/24/22 10:07	1	
Toluene	< 0.000367	U	0.00200	0.000367	mg/L			03/24/22 10:07	1	
Ethylbenzene	< 0.000657	U	0.00200	0.000657	mg/L			03/24/22 10:07	1	
m-Xylene & p-Xylene	<0.000629	U	0.00400	0.000629	mg/L			03/24/22 10:07	1	
o-Xylene	< 0.000642	U	0.00200	0.000642	mg/L			03/24/22 10:07	1	
Xylenes, Total	<0.000642	U	0.00400	0.000642	mg/L			03/24/22 10:07	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)			70 - 130			_		03/24/22 10:07	1	
1,4-Difluorobenzene (Surr)	104		70 - 130					03/24/22 10:07	1	

51 - 139

96

Method: Total BTEX -	Total BTEX Calculation
----------------------	------------------------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.000657	U	0.00400	0.000657	mg/L			03/24/22 16:40	1

Client Sample ID: MW-3

p-Terphenyl-d14

Lab Sample ID: 820-3677-2 **Matrix: Water** Date Collected: 03/15/22 14:38

Date Received: 03/16/22 11:56

	Method: 8270D	SIM - Semivolatile	Organic Com	pounds	(GC/MS SIM))
--	---------------	--------------------	-------------	--------	-------------	---

Wethou. 6270D Shirt - Sentity Glattle	Organic Con	ipoulius (GC	ivio olivi)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.000100	U	0.000182	0.000100	mg/L		03/18/22 19:48	03/21/22 12:11	1
Acenaphthylene	<0.0000844	U	0.000182	0.0000844	mg/L		03/18/22 19:48	03/21/22 12:11	1
Anthracene	<0.0000902	U	0.000182	0.0000902	mg/L		03/18/22 19:48	03/21/22 12:11	1
Benzo[a]anthracene	<0.000134	U	0.000182	0.000134	mg/L		03/18/22 19:48	03/21/22 12:11	1
Benzo[a]pyrene	<0.0000572	U	0.000182	0.0000572	mg/L		03/18/22 19:48	03/21/22 12:11	1

Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line-Bob McCasland

Client Sample ID: MW-3

Date Collected: 03/15/22 14:38

Date Received: 03/16/22 11:56

Job ID: 820-3677-1 SDG: AR227011

Lab Sample ID: 820-3677-2

Matrix: Water

Method: 8270D SIM - Semivolatile Org	ganic Compounds	(GC/MS SIM)	(Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[b]fluoranthene	<0.000701	U	0.000182	0.0000701	mg/L		03/18/22 19:48	03/21/22 12:11	1
Benzo[g,h,i]perylene	<0.000113	U	0.000182	0.000113	mg/L		03/18/22 19:48	03/21/22 12:11	1
Benzo[k]fluoranthene	<0.000116	U	0.000182	0.000116	mg/L		03/18/22 19:48	03/21/22 12:11	1
Chrysene	< 0.000156	U	0.000182	0.000156	mg/L		03/18/22 19:48	03/21/22 12:11	1
Dibenz(a,h)anthracene	<0.0000761	U	0.000182	0.0000761	mg/L		03/18/22 19:48	03/21/22 12:11	1
Dibenzofuran	<0.000100	U	0.000182	0.000100	mg/L		03/18/22 19:48	03/21/22 12:11	1
Fluoranthene	<0.000157	U	0.000182	0.000157	mg/L		03/18/22 19:48	03/21/22 12:11	1
Fluorene	<0.000101	U	0.000182	0.000101	mg/L		03/18/22 19:48	03/21/22 12:11	1
Indeno[1,2,3-cd]pyrene	<0.0000915	U	0.000182	0.0000915	mg/L		03/18/22 19:48	03/21/22 12:11	1
Naphthalene	<0.0000974	U	0.00365	0.0000974	mg/L		03/18/22 19:48	03/21/22 12:11	1
Phenanthrene	<0.0000852	U	0.000182	0.0000852	mg/L		03/18/22 19:48	03/21/22 12:11	1
Pyrene	<0.000130	U	0.000182	0.000130	mg/L		03/18/22 19:48	03/21/22 12:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	138		54 - 146				03/18/22 19:48	03/21/22 12:11	1
Nitrobenzene-d5	128		46 - 151				03/18/22 19:48	03/21/22 12:11	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000408	U	0.00200	0.000408	mg/L			03/24/22 10:28	1
Toluene	0.000401	J	0.00200	0.000367	mg/L			03/24/22 10:28	1
Ethylbenzene	<0.000657	U	0.00200	0.000657	mg/L			03/24/22 10:28	1
m-Xylene & p-Xylene	<0.000629	U	0.00400	0.000629	mg/L			03/24/22 10:28	1
o-Xylene	<0.000642	U	0.00200	0.000642	mg/L			03/24/22 10:28	1
Xylenes, Total	< 0.000642	U	0.00400	0.000642	mg/L			03/24/22 10:28	1

51 - 139

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130		03/24/22 10:28	1
1,4-Difluorobenzene (Surr)	103		70 - 130		03/24/22 10:28	1

Method: Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.000657	U	0.00400	0.000657	mg/L			03/24/22 16:40	1

Client Sample ID: MW-5

p-Terphenyl-d14

Date Collected: 03/15/22 16:28 Date Received: 03/16/22 11:56

Lab Sample ID: 820-3677-3 **Matrix: Water**

Method: 8270D SIM - Semiv	olatile Organic Con	າpounds (G	C/MS SIM)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.000106	U	0.000193	0.000106	mg/L		03/18/22 19:48	03/21/22 12:30	1
Acenaphthylene	<0.0000892	U	0.000193	0.0000892	mg/L		03/18/22 19:48	03/21/22 12:30	1
Anthracene	<0.0000954	U	0.000193	0.0000954	mg/L		03/18/22 19:48	03/21/22 12:30	1
Benzo[a]anthracene	<0.000142	U	0.000193	0.000142	mg/L		03/18/22 19:48	03/21/22 12:30	1
Benzo[a]pyrene	<0.0000605	U	0.000193	0.0000605	mg/L		03/18/22 19:48	03/21/22 12:30	1
Benzo[b]fluoranthene	<0.0000742	U	0.000193	0.0000742	mg/L		03/18/22 19:48	03/21/22 12:30	1
Benzo[g,h,i]perylene	<0.000120	U	0.000193	0.000120	mg/L		03/18/22 19:48	03/21/22 12:30	1
Benzo[k]fluoranthene	<0.000123	U	0.000193	0.000123	mg/L		03/18/22 19:48	03/21/22 12:30	1
Chrysene	<0.000165	U	0.000193	0.000165	mg/L		03/18/22 19:48	03/21/22 12:30	1
Dibenz(a,h)anthracene	<0.0000805	U	0.000193	0.0000805	mg/L		03/18/22 19:48	03/21/22 12:30	1

Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line-Bob McCasland

Client Sample ID: MW-5

Job ID: 820-3677-1 SDG: AR227011

Lab Sample ID: 820-3677-3

Matrix: Water

Date Collected: 03/15/22 16:28
Date Received: 03/16/22 11:56

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenzofuran	0.000524		0.000193	0.000106	mg/L		03/18/22 19:48	03/21/22 12:30	1
Fluoranthene	<0.000166	U	0.000193	0.000166	mg/L		03/18/22 19:48	03/21/22 12:30	1
Fluorene	<0.000107	U	0.000193	0.000107	mg/L		03/18/22 19:48	03/21/22 12:30	1
Indeno[1,2,3-cd]pyrene	<0.0000968	U	0.000193	0.0000968	mg/L		03/18/22 19:48	03/21/22 12:30	1
Naphthalene	0.000194	J	0.00386	0.000103	mg/L		03/18/22 19:48	03/21/22 12:30	1
Phenanthrene	<0.0000901	U	0.000193	0.0000901	mg/L		03/18/22 19:48	03/21/22 12:30	1
Pyrene	<0.000138	U	0.000193	0.000138	mg/L		03/18/22 19:48	03/21/22 12:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	148	X	54 - 146				03/18/22 19:48	03/21/22 12:30	1
Nitrobenzene-d5	134		46 - 151				03/18/22 19:48	03/21/22 12:30	1
p-Terphenyl-d14	125		51 - 139				03/18/22 19:48	03/21/22 12:30	1
- Method: 8021B - Volatile Or	rganic Compounds (GC)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.000408	U	0.00200	0.000408	mg/L			03/24/22 10:48	
Toluene	0.000459	J	0.00200	0.000367	mg/L			03/24/22 10:48	
Ethylbenzene	0.000700	J	0.00200	0.000657	mg/L			03/24/22 10:48	
m-Xylene & p-Xylene	<0.000629	U	0.00400	0.000629	mg/L			03/24/22 10:48	
o-Xylene	<0.000642	U	0.00200	0.000642	mg/L			03/24/22 10:48	
Xylenes, Total	< 0.000642	U	0.00400	0.000642	mg/L			03/24/22 10:48	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130		03/24/22 10:48	1
1,4-Difluorobenzene (Surr)	102		70 - 130		03/24/22 10:48	1

Method: Total BTEX - Total BTEX Calculation									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.00116	J	0.00400	0.000657	mg/L			03/24/22 16:40	1

Client Sample ID: MW-6 Lab Sample ID: 820-3677-4 Date Collected: 03/15/22 15:35 **Matrix: Water** Date Received: 03/16/22 11:56

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.0000989	U	0.000180	0.0000989	mg/L		03/18/22 19:48	03/21/22 12:50	1
Acenaphthylene	<0.0000833	U	0.000180	0.0000833	mg/L		03/18/22 19:48	03/21/22 12:50	1
Anthracene	<0.0000890	U	0.000180	0.0000890	mg/L		03/18/22 19:48	03/21/22 12:50	1
Benzo[a]anthracene	<0.000133	U	0.000180	0.000133	mg/L		03/18/22 19:48	03/21/22 12:50	1
Benzo[a]pyrene	< 0.0000565	U	0.000180	0.0000565	mg/L		03/18/22 19:48	03/21/22 12:50	1
Benzo[b]fluoranthene	<0.0000692	U	0.000180	0.0000692	mg/L		03/18/22 19:48	03/21/22 12:50	1
Benzo[g,h,i]perylene	<0.000112	U	0.000180	0.000112	mg/L		03/18/22 19:48	03/21/22 12:50	1
Benzo[k]fluoranthene	<0.000115	U	0.000180	0.000115	mg/L		03/18/22 19:48	03/21/22 12:50	1
Chrysene	<0.000154	U	0.000180	0.000154	mg/L		03/18/22 19:48	03/21/22 12:50	1
Dibenz(a,h)anthracene	<0.0000752	U	0.000180	0.0000752	mg/L		03/18/22 19:48	03/21/22 12:50	1
Dibenzofuran	<0.0000989	U	0.000180	0.0000989	mg/L		03/18/22 19:48	03/21/22 12:50	1
Fluoranthene	<0.000155	U	0.000180	0.000155	mg/L		03/18/22 19:48	03/21/22 12:50	1
Fluorene	<0.0000999	U	0.000180	0.0000999	mg/L		03/18/22 19:48	03/21/22 12:50	1
Indeno[1,2,3-cd]pyrene	<0.0000903	U	0.000180	0.0000903	mg/L		03/18/22 19:48	03/21/22 12:50	1
Naphthalene	< 0.0000962	U	0.00360	0.0000962	mg/L		03/18/22 19:48	03/21/22 12:50	1

Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line-Bob McCasland Job ID: 820-3677-1

SDG: AR227011

Client Sample ID: MW-6

Date Collected: 03/15/22 15:35 Date Received: 03/16/22 11:56

Lab Sample ID: 820-3677-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenanthrene	<0.0000841	U	0.000180	0.0000841	mg/L		03/18/22 19:48	03/21/22 12:50	1
Pyrene	<0.000129	U	0.000180	0.000129	mg/L		03/18/22 19:48	03/21/22 12:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	154	X	54 - 146				03/18/22 19:48	03/21/22 12:50	1
Nitrobenzene-d5	140		46 - 151				03/18/22 19:48	03/21/22 12:50	1
p-Terphenyl-d14	102		51 ₋ 139				03/18/22 19:48	03/21/22 12:50	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000408	U	0.00200	0.000408	mg/L			03/24/22 11:09	1
Toluene	0.000403	J	0.00200	0.000367	mg/L			03/24/22 11:09	1
Ethylbenzene	<0.000657	U	0.00200	0.000657	mg/L			03/24/22 11:09	1
m-Xylene & p-Xylene	<0.000629	U	0.00400	0.000629	mg/L			03/24/22 11:09	1
o-Xylene	<0.000642	U	0.00200	0.000642	mg/L			03/24/22 11:09	1
Xylenes, Total	<0.000642	U	0.00400	0.000642	mg/L			03/24/22 11:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130			-		03/24/22 11:09	1
1,4-Difluorobenzene (Surr)	100		70 - 130					03/24/22 11:09	1

	alculation									
Analyte	Result	Qualifier	RL	MDL	Unit	ı	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.000657	U	0.00400	0.000657	mg/L				03/24/22 16:40	1

Client Sample ID: MW-7 Lab Sample ID: 820-3677-5 Date Collected: 03/15/22 12:25 **Matrix: Water**

Date Received: 03/16/22 11:56

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000408	U	0.00200	0.000408	mg/L			03/24/22 11:29	1
Toluene	< 0.000367	U	0.00200	0.000367	mg/L			03/24/22 11:29	1
Ethylbenzene	<0.000657	U	0.00200	0.000657	mg/L			03/24/22 11:29	1
m-Xylene & p-Xylene	<0.000629	U	0.00400	0.000629	mg/L			03/24/22 11:29	1
o-Xylene	<0.000642	U	0.00200	0.000642	mg/L			03/24/22 11:29	1
Xylenes, Total	<0.000642	U	0.00400	0.000642	mg/L			03/24/22 11:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130			-		03/24/22 11:29	1
1,4-Difluorobenzene (Surr)	102		70 - 130					03/24/22 11:29	1
- Method: Total BTEX - Total B1	ΓEX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.000657	U	0.00400	0.000657	mg/L			03/24/22 16:40	1

Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line-Bob McCasland Job ID: 820-3677-1

SDG: AR227011

Client Sample ID: MW-8

Lab Sample ID: 820-3677-6

Matrix: Water

Date	Collected:	03/15/22	12:57
Date	Received:	03/16/22	11:56

Method: 8021B - Volatile Orga	nic Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000408	U	0.00200	0.000408	mg/L			03/24/22 11:49	1
Toluene	0.000435	J	0.00200	0.000367	mg/L			03/24/22 11:49	1
Ethylbenzene	< 0.000657	U	0.00200	0.000657	mg/L			03/24/22 11:49	1
m-Xylene & p-Xylene	<0.000629	U	0.00400	0.000629	mg/L			03/24/22 11:49	1
o-Xylene	<0.000642	U	0.00200	0.000642	mg/L			03/24/22 11:49	1
Xylenes, Total	<0.000642	U	0.00400	0.000642	mg/L			03/24/22 11:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130			-		03/24/22 11:49	1
1,4-Difluorobenzene (Surr)	102		70 - 130					03/24/22 11:49	1
- Method: Total BTEX - Total B	ΓEX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.000657	U	0.00400	0.000657	mg/L			03/24/22 16:40	1

Client Sample ID: MW-10 Lab Sample ID: 820-3677-7

Date Collected: 03/15/22 11:40 **Matrix: Water**

Date Received: 03/16/22 11:56

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000408	U	0.00200	0.000408	mg/L			03/24/22 12:10	1
Toluene	< 0.000367	U	0.00200	0.000367	mg/L			03/24/22 12:10	1
Ethylbenzene	<0.000657	U	0.00200	0.000657	mg/L			03/24/22 12:10	1
m-Xylene & p-Xylene	<0.000629	U	0.00400	0.000629	mg/L			03/24/22 12:10	1
o-Xylene	<0.000642	U	0.00200	0.000642	mg/L			03/24/22 12:10	1
Xylenes, Total	<0.000642	U	0.00400	0.000642	mg/L			03/24/22 12:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130			_		03/24/22 12:10	1
1,4-Difluorobenzene (Surr)	103		70 - 130					03/24/22 12:10	1
Method: Total BTEX - Total BT	EX Calculation								
Analyte	Result	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: MW-11 Lab Sample ID: 820-3677-8 Date Collected: 03/15/22 11:10 **Matrix: Water**

0.00400

0.000657 mg/L

Date Received: 03/16/22 11:56

Total BTEX

IVIE	moa:	8021B	- V	olatile	Organic	Comp	ouna	s (GC)	

<0.000657 U

Method: 8021B - Volatile Orga	inic Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000408	U	0.00200	0.000408	mg/L			03/25/22 06:11	1
Toluene	< 0.000367	U	0.00200	0.000367	mg/L			03/25/22 06:11	1
Ethylbenzene	<0.000657	U	0.00200	0.000657	mg/L			03/25/22 06:11	1
m-Xylene & p-Xylene	<0.000629	U	0.00400	0.000629	mg/L			03/25/22 06:11	1
o-Xylene	<0.000642	U	0.00200	0.000642	mg/L			03/25/22 06:11	1
Xylenes, Total	<0.000642	U	0.00400	0.000642	mg/L			03/25/22 06:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	113		70 _ 130			-		03/25/22 06:11	1
1,4-Difluorobenzene (Surr)	109		70 - 130					03/25/22 06:11	1

Eurofins Lubbock

03/24/22 16:40

Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line-Bob McCasland Job ID: 820-3677-1 SDG: AR227011

Client Sample ID: MW-11

Date Received: 03/16/22 11:56

Date Collected: 03/15/22 11:10

Lab Sample ID: 820-3677-8

Matrix: Water

Method: Total BTEX - Total BTEX C	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.000657	U	0.00400	0.000657	mg/L			03/24/22 16:40	1

Client Sample ID: DUP-1 Lab Sample ID: 820-3677-9

Date Collected: 03/15/22 00:00 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000408	U	0.00200	0.000408	mg/L			03/25/22 06:32	1
Toluene	0.000433	J	0.00200	0.000367	mg/L			03/25/22 06:32	1
Ethylbenzene	0.000673	J	0.00200	0.000657	mg/L			03/25/22 06:32	1
m-Xylene & p-Xylene	<0.000629	U	0.00400	0.000629	mg/L			03/25/22 06:32	1
o-Xylene	<0.000642	U	0.00200	0.000642	mg/L			03/25/22 06:32	1
Xylenes, Total	<0.000642	U	0.00400	0.000642	mg/L			03/25/22 06:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130			-		03/25/22 06:32	1
1,4-Difluorobenzene (Surr)	107		70 - 130					03/25/22 06:32	1
Method: Total BTEX - Total BT	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.00111	ī	0.00400	0.000657	mg/L			03/24/22 16:40	1

Surrogate Summary

Client: Terracon Consulting Eng & Scientists

Project/Site: Livingston Line-Bob McCasland

SDG: AR227011

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Matrix: Water Prep Type: Total/NA

				Percent Su
		FBP	NBZ	TPHd14
Lab Sample ID	Client Sample ID	(54-146)	(46-151)	(51-139)
820-3677-1	MW-2	149 X	139	96
820-3677-2	MW-3	138	128	92
820-3677-3	MW-5	148 X	134	125
820-3677-4	MW-6	154 X	140	102
LCS 860-45602/2-A	Lab Control Sample	128	128	126
LCSD 860-45602/3-A	Lab Control Sample Dup	137	138	130
MB 860-45602/1-A	Method Blank	146	132	147 X
Surrogate Legend				

Surrogate Legend

FBP = 2-Fluorobiphenyl

NBZ = Nitrobenzene-d5

TPHd14 = p-Terphenyl-d14

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Water Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
820-3677-1	MW-2	112	104	
820-3677-2	MW-3	106	103	
820-3677-3	MW-5	105	102	
320-3677-4	MW-6	108	100	
820-3677-5	MW-7	106	102	
820-3677-6	MW-8	109	102	
320-3677-7	MW-10	108	103	
320-3677-8	MW-11	113	109	
320-3677-9	DUP-1	107	107	
_CS 880-22187/34	Lab Control Sample	96	101	
_CS 880-22265/34	Lab Control Sample	99	103	
LCSD 880-22187/35	Lab Control Sample Dup	92	103	
LCSD 880-22265/35	Lab Control Sample Dup	101	107	
MB 880-21823/5-A	Method Blank	98	102	
MB 880-21852/5-A	Method Blank	99	101	
MB 880-22187/39	Method Blank	99	98	
MB 880-22265/39	Method Blank	98	101	

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Eurofins Lubbock

2

2

4

6

8

10

12

13

Н

RL

0.000182

0.000182

0.000182

0.000182

0.000182

0.000182

0.000182

0.000182

0.000182

0.000182

0.000182

0.000182

0.000182

0.000182

0.00365

0.000182

0.000182

Limits

54 - 146

46 - 151

51 - 139

MDL Unit

mg/L

mg/L

ma/L

mg/L

mg/L

mg/L

mg/L

mg/L

ma/L

ma/L

mg/L

0.000100

0.0000902

0.000134

0.000113

0.000116

0.000156

0.0000761

0.000100

0.000157

0.000101

0.0000915

0.0000974

0.0000852

0.000130 mg/L

0.0000844 mg/L

0.0000572 mg/L

0.0000701 mg/L

D

Prepared

03/18/22 19:48

03/18/22 19:48

03/18/22 19:48

03/18/22 19:48

03/18/22 19:48

03/18/22 19:48

03/18/22 19:48

03/18/22 19:48

03/18/22 19:48

03/18/22 19:48

03/18/22 19:48

03/18/22 19:48

03/18/22 19:48

03/18/22 19:48

03/18/22 19:48

03/18/22 19:48

03/18/22 19:48

Prepared

03/18/22 19:48

03/18/22 19:48

03/18/22 19:48

Job ID: 820-3677-1 Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line-Bob McCasland SDG: AR227011

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

MB MB

<0.000100 U

<0.0000844 U

<0.0000902 U

<0.000134 U

<0.0000572 U

<0.0000701 U

<0.000113 U

<0.000116 U

<0.000156 U

<0.0000761 U

<0.000100 U

<0.000157 U

<0.000101 U

<0.0000915 U

<0.0000974 U

<0.0000852 U

<0.000130 U

%Recovery

MB MB

146

132

147 X

Qualifier

Result Qualifier

Lab Sample ID: MB 860-45602/1-A

Matrix: Water Analysis Batch: 45678

Analyte

Acenaphthene

Anthracene

Chrysene

Dibenzofuran

Fluoranthene

Naphthalene

Phenanthrene

Fluorene

Pyrene

Surrogate

2-Fluorobiphenyl

Nitrobenzene-d5

p-Terphenyl-d14

Matrix: Water

Surrogate

2-Fluorobiphenyl

Analysis Batch: 45678

Lab Sample ID: LCS 860-45602/2-A

Acenaphthylene

Benzo[a]pyrene

Benzo[a]anthracene

Benzo[b]fluoranthene

Benzo[g,h,i]perylene

Benzo[k]fluoranthene

Dibenz(a,h)anthracene

Indeno[1,2,3-cd]pyrene

Client Sample ID: Method Blank Prep Type: Total/NA

Analyzed

03/21/22 11:13

03/21/22 11:13

03/21/22 11:13

03/21/22 11:13

03/21/22 11:13

03/21/22 11:13

03/21/22 11:13

03/21/22 11:13

03/21/22 11:13

03/21/22 11:13

03/21/22 11:13

03/21/22 11:13

03/21/22 11:13

03/21/22 11:13

03/21/22 11:13

03/21/22 11:13

03/21/22 11:13

Analyzed

03/21/22 11:13

03/21/22 11:13

03/21/22 11:13

Prep Batch: 45602

Dil Fac

Dil Fac

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Drop Potoby 45002

Prep Batch: 45602

•	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	0.0181	0.02201		mg/L		121	66 - 174
Acenaphthylene	0.0181	0.02182		mg/L		120	67 - 182
Anthracene	0.0181	0.02430		mg/L		134	55 ₋ 191
Benzo[a]anthracene	0.0181	0.02211		mg/L		122	16 _ 171
Benzo[a]pyrene	0.0181	0.02419		mg/L		133	10 - 165
Benzo[b]fluoranthene	0.0181	0.02551		mg/L		141	10 - 166
Benzo[g,h,i]perylene	0.0181	0.02273		mg/L		125	10 - 154
Benzo[k]fluoranthene	0.0181	0.02349		mg/L		129	10 - 178
Chrysene	0.0181	0.02178		mg/L		120	10 _ 172
Dibenz(a,h)anthracene	0.0181	0.02433		mg/L		134	10 - 168
Dibenzofuran	0.0181	0.02248		mg/L		124	68 - 178
Fluoranthene	0.0181	0.02444		mg/L		135	52 - 185
Fluorene	0.0181	0.02273		mg/L		125	64 - 184
Indeno[1,2,3-cd]pyrene	0.0181	0.02677		mg/L		147	10 - 160
Naphthalene	0.0181	0.02094		mg/L		115	66 - 166
Phenanthrene	0.0181	0.02248		mg/L		124	66 - 184
Pyrene	0.0181	0.02268		mg/L		125	58 - 181
	LCS LCS						

%Recovery Qualifier Limits 128 54 - 146

Client: Terracon Consulting Eng & Scientists Job ID: 820-3677-1 Project/Site: Livingston Line-Bob McCasland SDG: AR227011

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 860-45602/2-A

Lab Sample ID: LCSD 860-45602/3-A

Matrix: Water

Matrix: Water

Analysis Batch: 45678

Analysis Batch, 45679

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 45602

LCS LCS

Surrogate %Recovery Qualifier Limits Nitrobenzene-d5 128 46 - 151 p-Terphenyl-d14 126 51 - 139

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prop Ratch: 45602

Analysis Batch: 45678							Prep	Batch:	45602	
	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Acenaphthene	0.0182	0.02457		mg/L		135	66 - 174	11	40	
Acenaphthylene	0.0182	0.02456		mg/L		135	67 - 182	12	40	
Anthracene	0.0182	0.02695		mg/L		148	55 - 191	10	40	
Benzo[a]anthracene	0.0182	0.02296		mg/L		126	16 - 171	4	50	
Benzo[a]pyrene	0.0182	0.02409		mg/L		132	10 - 165	0	50	
Benzo[b]fluoranthene	0.0182	0.02579		mg/L		141	10 - 166	1	50	
Benzo[g,h,i]perylene	0.0182	0.02223		mg/L		122	10 - 154	2	50	
Benzo[k]fluoranthene	0.0182	0.02318		mg/L		127	10 - 178	1	50	
Chrysene	0.0182	0.02285		mg/L		125	10 - 172	5	50	
Dibenz(a,h)anthracene	0.0182	0.02392		mg/L		131	10 - 168	2	50	
Dibenzofuran	0.0182	0.02503		mg/L		137	68 - 178	11	40	
Fluoranthene	0.0182	0.02665		mg/L		146	52 - 185	9	40	
Fluorene	0.0182	0.02523		mg/L		138	64 - 184	10	40	
Indeno[1,2,3-cd]pyrene	0.0182	0.02634		mg/L		144	10 - 160	2	50	
Naphthalene	0.0182	0.02428		mg/L		133	66 - 166	15	40	
Phenanthrene	0.0182	0.02483		mg/L		136	66 - 184	10	40	
Pyrene	0.0182	0.02543		mg/L		139	58 - 181	11	40	

LCSD LCSD

Surrogate	%Recovery Qualifie	er Limits
2-Fluorobiphenyl	137	54 - 146
Nitrobenzene-d5	138	46 - 151
p-Terphenyl-d14	130	51 - 139

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-21823/5-A

Matrix: Water

Analysis Batch: 22265

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 21823

l		MB	MB							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Benzene	<0.000408	U	0.00200	0.000408	mg/L		03/24/22 07:30	03/24/22 17:25	1
	Toluene	<0.000367	U	0.00200	0.000367	mg/L		03/24/22 07:30	03/24/22 17:25	1
	Ethylbenzene	<0.000657	U	0.00200	0.000657	mg/L		03/24/22 07:30	03/24/22 17:25	1
	m-Xylene & p-Xylene	<0.000629	U	0.00400	0.000629	mg/L		03/24/22 07:30	03/24/22 17:25	1
	o-Xylene	<0.000642	U	0.00200	0.000642	mg/L		03/24/22 07:30	03/24/22 17:25	1
	Xylenes, Total	<0.000642	U	0.00400	0.000642	mg/L		03/24/22 07:30	03/24/22 17:25	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130	03/24/22 07:30	03/24/22 17:25	1
1,4-Difluorobenzene (Surr)	102		70 - 130	03/24/22 07:30	03/24/22 17:25	1

Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line-Bob McCasland Job ID: 820-3677-1 SDG: AR227011

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-21852/5-A

Matrix: Water Analysis Batch: 22187 Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 21852

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000408	U	0.00200	0.000408	mg/L		03/23/22 07:30	03/23/22 12:49	1
Toluene	< 0.000367	U	0.00200	0.000367	mg/L		03/23/22 07:30	03/23/22 12:49	1
Ethylbenzene	<0.000657	U	0.00200	0.000657	mg/L		03/23/22 07:30	03/23/22 12:49	1
m-Xylene & p-Xylene	<0.000629	U	0.00400	0.000629	mg/L		03/23/22 07:30	03/23/22 12:49	1
o-Xylene	<0.000642	U	0.00200	0.000642	mg/L		03/23/22 07:30	03/23/22 12:49	1
Xylenes, Total	<0.000642	U	0.00400	0.000642	mg/L		03/23/22 07:30	03/23/22 12:49	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99	70 - 130	03/23/22 07:30	03/23/22 12:49	1
1,4-Difluorobenzene (Surr)	101	70 - 130	03/23/22 07:30	03/23/22 12:49	1

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 22187

Matrix: Water

Lab Sample ID: MB 880-22187/39

мв мв

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000408	U	0.00200	0.000408	mg/L			03/24/22 00:25	1
Toluene	< 0.000367	U	0.00200	0.000367	mg/L			03/24/22 00:25	1
Ethylbenzene	<0.000657	U	0.00200	0.000657	mg/L			03/24/22 00:25	1
m-Xylene & p-Xylene	<0.000629	U	0.00400	0.000629	mg/L			03/24/22 00:25	1
o-Xylene	<0.000642	U	0.00200	0.000642	mg/L			03/24/22 00:25	1
Xylenes, Total	<0.000642	U	0.00400	0.000642	mg/L			03/24/22 00:25	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared A	nalyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130	03/2	24/22 00:25	1
1,4-Difluorobenzene (Surr)	98		70 - 130	03/2	24/22 00:25	1

Lab Sample ID: LCS 880-22187/34

Matrix: Water

Analysis Batch: 22187

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.08615		mg/L		86	70 - 130	
Toluene	0.100	0.08619		mg/L		86	70 - 130	
Ethylbenzene	0.100	0.08574		mg/L		86	70 - 130	
m-Xylene & p-Xylene	0.200	0.1982		mg/L		99	70 - 130	
o-Xylene	0.100	0.1001		mg/L		100	70 - 130	

LCS LCS

Surrogate	%Recovery Q	ualifier	Limits
4-Bromofluorobenzene (Surr)	96		70 - 130
1,4-Difluorobenzene (Surr)	101		70 - 130

Lab Sample ID: LCSD 880-22187/35

Matrix: Water

Analysis Batch: 22187

/ maryolo Batom 22 for									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.08363	-	mg/L		84	70 - 130	3	20

Eurofins Lubbock

Prep Type: Total/NA

Released to Imaging: 5/17/2023 11:12:57 AM

Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line-Bob McCasland Job ID: 820-3677-1

SDG: AR227011

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-22187/35

Matrix: Water

Analysis Batch: 22187

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	0.100	0.08001		mg/L		80	70 - 130	7	20
Ethylbenzene	0.100	0.08117		mg/L		81	70 - 130	5	20
m-Xylene & p-Xylene	0.200	0.1853		mg/L		93	70 - 130	7	20
o-Xylene	0.100	0.09285		mg/L		93	70 - 130	8	20

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	92	70 _ 130
1,4-Difluorobenzene (Surr)	103	70 - 130

Lab Sample ID: MB 880-22265/39 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 22265

Prep Type: Total/NA

мв мв

Analyte Result Qualifier MDL Unit Prepared Analyzed Dil Fac Benzene <0.000408 U 0.00200 0.000408 03/25/22 05:02 mg/L Toluene <0.000367 U 0.00200 0.000367 mg/L 03/25/22 05:02 Ethylbenzene 0.00200 0.000657 03/25/22 05:02 <0.000657 U mg/L 0.00400 0.000629 mg/L 03/25/22 05:02 m-Xylene & p-Xylene <0.000629 U o-Xylene <0.000642 U 0.00200 0.000642 mg/L 03/25/22 05:02 <0.000642 U 0.00400 0.000642 mg/L 03/25/22 05:02 Xylenes, Total

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98	70 - 130		03/25/22 05:02	1
1,4-Difluorobenzene (Surr)	101	70 - 130		03/25/22 05:02	1

Lab Sample ID: LCS 880-22265/34

Matrix: Water

Analysis Batch: 22265

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits Benzene 0.100 0.08847 mg/L 88 70 - 130 Toluene 0.100 0.08497 mg/L 85 70 - 130 Ethylbenzene 0.100 0.09013 mg/L 90 70 - 130 0.200 0.2092 70 - 130 m-Xylene & p-Xylene mg/L 105 o-Xylene 0.100 0.1045 105 70 - 130 mg/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		70 - 130
1.4-Difluorobenzene (Surr)	103		70 - 130

Lab Sample ID: LCSD 880-22265/35

Matrix: Water

Analysis Batch: 22265

Client Sample ID: Lab	Control Sample Dup
	Prop Type: Total/NA

Prep Type: Total/NA

-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09222		mg/L		92	70 - 130	4	20
Toluene	0.100	0.08628		mg/L		86	70 - 130	2	20
Ethylbenzene	0.100	0.08990		mg/L		90	70 - 130	0	20

Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line-Bob McCasland Job ID: 820-3677-1

SDG: AR227011

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

LCSD LCSD

%Recovery Qualifier

101

107

Lab Sample ID: LCSD 880-22265/35

Matrix: Water

Surrogate

Analysis Batch: 22265

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
m-Xylene & p-Xylene	0.200	0.2081		mg/L		104	70 - 130	1	20
o-Xylene	0.100	0.1047		mg/L		105	70 - 130	0	20
	m-Xylene & p-Xylene	Analyte Added m-Xylene & p-Xylene 0.200	Analyte Added m-Xylene & p-Xylene Result 0.200 0.2081	AnalyteAddedResultQualifierm-Xylene & p-Xylene0.2000.2081	AnalyteAddedResultQualifierUnitm-Xylene & p-Xylene0.2000.2081mg/L	AnalyteAddedResult on the control of the contro	AnalyteAddedResult QualifierUnitD%Recm-Xylene & p-Xylene0.2000.2081mg/L104	Analyte Added Result presented Qualifier of the presentation Unit of the presentation D mode %Recult presentation Limits m-Xylene & p-Xylene 0.200 0.2081 mg/L 104 70 - 130	Analyte Added Result Qualifier Unit D %Rec Limits RPD m-Xylene & p-Xylene 0.200 0.2081 mg/L 104 70 - 130 1

Limits

70 - 130

70 - 130

QC Association Summary

Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line-Bob McCasland

Job ID: 820-3677-1 SDG: AR227011

GC/MS Semi VOA

Prep Batch: 45602

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
820-3677-1	MW-2	Total/NA	Water	3511	
820-3677-2	MW-3	Total/NA	Water	3511	
820-3677-3	MW-5	Total/NA	Water	3511	
820-3677-4	MW-6	Total/NA	Water	3511	
MB 860-45602/1-A	Method Blank	Total/NA	Water	3511	
LCS 860-45602/2-A	Lab Control Sample	Total/NA	Water	3511	
LCSD 860-45602/3-A	Lab Control Sample Dup	Total/NA	Water	3511	

Analysis Batch: 45678

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
820-3677-1	MW-2	Total/NA	Water	8270D SIM	45602
820-3677-2	MW-3	Total/NA	Water	8270D SIM	45602
820-3677-3	MW-5	Total/NA	Water	8270D SIM	45602
820-3677-4	MW-6	Total/NA	Water	8270D SIM	45602
MB 860-45602/1-A	Method Blank	Total/NA	Water	8270D SIM	45602
LCS 860-45602/2-A	Lab Control Sample	Total/NA	Water	8270D SIM	45602
LCSD 860-45602/3-A	Lab Control Sample Dup	Total/NA	Water	8270D SIM	45602

GC VOA

Prep Batch: 21823

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-21823/5-A	Method Blank	Total/NA	Water	5035	

Prep Batch: 21852

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-21852/5-A	Method Blank	Total/NA	Water	5035	

Analysis Batch: 22187

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
820-3677-1	MW-2	Total/NA	Water	8021B	
820-3677-2	MW-3	Total/NA	Water	8021B	
820-3677-3	MW-5	Total/NA	Water	8021B	
820-3677-4	MW-6	Total/NA	Water	8021B	
820-3677-5	MW-7	Total/NA	Water	8021B	
820-3677-6	MW-8	Total/NA	Water	8021B	
820-3677-7	MW-10	Total/NA	Water	8021B	
MB 880-21852/5-A	Method Blank	Total/NA	Water	8021B	21852
MB 880-22187/39	Method Blank	Total/NA	Water	8021B	
LCS 880-22187/34	Lab Control Sample	Total/NA	Water	8021B	
LCSD 880-22187/35	Lab Control Sample Dup	Total/NA	Water	8021B	

Analysis Batch: 22265

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
820-3677-8	MW-11	Total/NA	Water	8021B	
820-3677-9	DUP-1	Total/NA	Water	8021B	
MB 880-21823/5-A	Method Blank	Total/NA	Water	8021B	21823
MB 880-22265/39	Method Blank	Total/NA	Water	8021B	
LCS 880-22265/34	Lab Control Sample	Total/NA	Water	8021B	
LCSD 880-22265/35	Lab Control Sample Dup	Total/NA	Water	8021B	

Eurofins Lubbock

2

3

4

6

Q

9

11

QC Association Summary

Client: Terracon Consulting Eng & Scientists

Project/Site: Livingston Line-Bob McCasland

SDG: AR227011

GC VOA

Analysis Batch: 22305

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
820-3677-1	MW-2	Total/NA	Water	Total BTEX	
820-3677-2	MW-3	Total/NA	Water	Total BTEX	
820-3677-3	MW-5	Total/NA	Water	Total BTEX	
820-3677-4	MW-6	Total/NA	Water	Total BTEX	
820-3677-5	MW-7	Total/NA	Water	Total BTEX	
820-3677-6	MW-8	Total/NA	Water	Total BTEX	
820-3677-7	MW-10	Total/NA	Water	Total BTEX	
820-3677-8	MW-11	Total/NA	Water	Total BTEX	
820-3677-9	DUP-1	Total/NA	Water	Total BTEX	

1

6

0

9

10

13

J

Job ID: 820-3677-1 SDG: AR227011

Project/Site: Livingston Line-Bob McCasland

Client Sample ID: MW-2

Client: Terracon Consulting Eng & Scientists

Lab Sample ID: 820-3677-1

Matrix: Water

Date Collected: 03/15/22 13:43 Date Received: 03/16/22 11:56

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3511			55.4 mL	2 mL	45602	03/18/22 19:48	MR	XEN STF
Total/NA	Analysis	8270D SIM		1			45678	03/21/22 11:52	IS	XEN STF
Total/NA	Analysis	8021B		1	5 mL	5 mL	22187	03/24/22 10:07	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			22305	03/24/22 16:40	AJ	XEN MID

Lab Sample ID: 820-3677-2

Matrix: Water

Date Collected: 03/15/22 14:38 Date Received: 03/16/22 11:56

Client Sample ID: MW-3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3511			54.9 mL	2 mL	45602	03/18/22 19:48	MR	XEN STF
Total/NA	Analysis	8270D SIM		1			45678	03/21/22 12:11	IS	XEN STF
Total/NA	Analysis	8021B		1	5 mL	5 mL	22187	03/24/22 10:28	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			22305	03/24/22 16:40	AJ	XEN MID

Client Sample ID: MW-5

Lab Sample ID: 820-3677-3

Date Collected: 03/15/22 16:28

Matrix: Water

Date Received: 03/16/22 11:56

Batch Dil Initial Final Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA 3511 45602 MR Prep 51.9 mL 2 mL 03/18/22 19:48 XEN STF Total/NA 8270D SIM Analysis 45678 03/21/22 12:30 IS XEN STF Total/NA Analysis 8021B 5 mL 5 mL 22187 03/24/22 10:48 KL XEN MID 1 22305 Total/NA Analysis Total BTEX 03/24/22 16:40 XEN MID

Client Sample ID: MW-6 Lab Sample ID: 820-3677-4

Date Collected: 03/15/22 15:35

Date Received: 03/16/22 11:56

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3511			55.6 mL	2 mL	45602	03/18/22 19:48	MR	XEN STF
Total/NA	Analysis	8270D SIM		1			45678	03/21/22 12:50	IS	XEN STF
Total/NA	Analysis	8021B		1	5 mL	5 mL	22187	03/24/22 11:09	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			22305	03/24/22 16:40	AJ	XEN MID

Client Sample ID: MW-7 Lab Sample ID: 820-3677-5

Date Collected: 03/15/22 12:25
Date Received: 03/16/22 11:56
Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	22187	03/24/22 11:29	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			22305	03/24/22 16:40	AJ	XEN MID

Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line-Bob McCasland

Lab Sample ID: 820-3677-6

Matrix: Water

XEN MID

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	22187	03/24/22 11:49	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			22305	03/24/22 16:40	AJ	XEN MID

Client Sample ID: MW-10 Lab Sample ID: 820-3677-7

Date Collected: 03/15/22 11:40 **Matrix: Water**

Date Received: 03/16/22 11:56

Client Sample ID: MW-8

Date Collected: 03/15/22 12:57

Date Received: 03/16/22 11:56

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	22187	03/24/22 12:10	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			22305	03/24/22 16:40	AJ	XEN MID

Client Sample ID: MW-11 Lab Sample ID: 820-3677-8

Date Collected: 03/15/22 11:10 Date Received: 03/16/22 11:56

Batch Final Dil Batch Batch Initial Prepared Method Prep Type Туре Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA 8021B 22265 03/25/22 06:11 Analysis 5 mL 5 mL ΑJ XEN MID

Client Sample ID: DUP-1 Lab Sample ID: 820-3677-9

22305

03/24/22 16:40

Date Collected: 03/15/22 00:00 **Matrix: Water**

Date Received: 03/16/22 11:56

Analysis

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	22265	03/25/22 06:32	AJ	XEN MID
Total/NA	Analysis	Total BTEX		1			22305	03/24/22 16:40	AJ	XEN MID

Laboratory References:

Total/NA

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Total BTEX

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Accreditation/Certification Summary

Client: Terracon Consulting Eng & Scientists
Project/Site: Livingston Line-Bob McCasland

Job ID: 820-3677-1 SDG: AR227011

Laboratory: Eurofins Houston

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	P	rogram	Identification Number	Expiration Date
Texas	N	ELAP	T104704215-21-44	06-30-22
The following analytes	are included in this report, b	ut the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes f
The following analytes the agency does not o Analysis Method	• •	ut the laboratory is not certif Matrix	ied by the governing authority. This list ma	ay include analytes f

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pi	rogram	Identification Number	Expiration Date 06-30-22	
Texas	N	ELAP	T104704400-21-22		
The following analytes	are included in this report, b	ut the laboratory is not certif	fied by the governing authority. This list ma	ay include analytes for	
the agency does not of	fer certification.				
Analysis Method	Prep Method	Matrix	Analyte		
Total BTEX		Water	Total BTEX		

Eurofins Lubbock

2

3

4

6

0

3

11

13

Method Summary

Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line-Bob McCasland Job ID: 820-3677-1

SDG: AR227011

Method 8270D SIM	Method Description Semivolatile Organic Compounds (GC/MS SIM)	Protocol SW846	Laboratory XEN STF
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
3511	Microextraction of Organic Compounds	SW846	XEN STF
5030B	Purge and Trap	SW846	XEN MID

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440 XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Sample Summary

Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line-Bob McCasland

Job ID: 820-3677-1 SDG: AR227011

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
820-3677-1	MW-2	Water	03/15/22 13:43	03/16/22 11:56
820-3677-2	MW-3	Water	03/15/22 14:38	03/16/22 11:56
820-3677-3	MW-5	Water	03/15/22 16:28	03/16/22 11:56
820-3677-4	MW-6	Water	03/15/22 15:35	03/16/22 11:56
820-3677-5	MW-7	Water	03/15/22 12:25	03/16/22 11:56
820-3677-6	MW-8	Water	03/15/22 12:57	03/16/22 11:56
820-3677-7	MW-10	Water	03/15/22 11:40	03/16/22 11:56
820-3677-8	MW-11	Water	03/15/22 11:10	03/16/22 11:56
820-3677-9	DUP-1	Water	03/15/22 00:00	03/16/22 11:56

3

4

5

7

8

9

4 4

12

13

Loc: 820 **3677**

CHAIN	OF	CUST	ODY	RECO	RD
-------	----	------	-----	------	----

									Laboratory:	Laboratory: Xenco Address: 6701 Aberdeen Lubbock, Texas 79424				ANAI	YSIS					LAB USE ONLY DUE DATE:		
		딬			2		:0		Address.					REQU	ESTE			\top		TEMP OF COOLER WHEN RECEIVED (°C) 3 9 1 1		
Office	Location		Lubbo	ock					Phone:	Phone:										WHEN RECEIVED (C) 3.974.1		
			_						Contact:										}	1		Page 1 of 1
roje	ct Manage		Brett	Den	nis				SRS #:		20	2001-11226			_			- 1				
amp	ler's Name		Aaroi	n Ad	ams				Sampler's Sig	nature	2					8021)	8270)					
 roje	ct Number					Project	Name					No. T	ype of	Contain	ners	thod	thod					
	А	R227011			l		Living	ston Line - Bo	b McCasland			Z	₹			Me	Me					
Matrix	Date	Time		Comp	Grab		Identifying	Marks of Sa	mple(s)	Start Depth	End Depth	40 ml VOA	60 ml VOA			BTEX (EPA Method 8021)	PAHs (EPA Method 8270)					Lab Sample ID
w	3/15/2022	1343			х			MW-2		, , , , , , , , , , , , , , , , , , ,		3	2			х	X		\top		1	Edd ddinpie id
w	3/15/2022	1438		10	Х			MW-3				3	2			Х	Х					
SW	3/15/2022	1628			Х			MW-5				3	2			Х	Х		_	180000	in in in in in in in in in in in in in i	IN CONTRACTOR WATER COMMENTS OF THE STREET
sw.	3/15/2022	1535			Х			MW-6				3	2			Х	Х					
w	3/15/2022	1225			х			MW-7				3				Х						
w	3/15/2022	1257			х			MW-8				3				Х		830	820.36	3677 Chain of Custody		
SW	3/15/2022	1140			х			MW-10				3				Х					,, Cu	ain of Custody
sw	3/15/2022	1110			×			MW-11				3				Х					1	
sw	3/15/2022				X		<u> </u>	DUP-1				3	2			_X	*	31101	u	+	+-	
					6																±	
	ROUND TIM		,,,,		X	Normal	□ 48-Hou	r Rush	24-Hour Rush Received by (Signature)		TRRP	Labor	atory	Review		klist		□ Ye	es [□ No		
0		/			-		3/1471	1:56	amley	1.	100	aple	N	3/16	1124	11:0	U	NOTES:		BIII	airectiy	y to Plains Pipeline
elinquis	ned by (Signature)					ļ	late:	Time:	Received by (Signature)			11		Date:		Time:		e-mail results to: brett.dennis@terracon.com				
elinguis	ned by (Signature)						late:	Time;	Received by (Signature) Date: Ti			Time;						con.com				
etr. I	4 - (6)							7:						Date:		There					paalp.	
einquis	ned by (Signature)					ľ	late:	Time:	Received by (Signature)					Date.		Time:			ma	ochoa	@paalp	o.com
Matrix	W	/-Wastewater			W - Wate	,	\$ - Soll	L - Liqui	id A - Air Bag	C Charcos	al tube		St - Sludge	,				-				
Container	vo	4 - 40 ml vial			A/G - Am	ber Glass 1L	250 ml - Gla	ss wide mouth	P/O - Plastic or other	-												
						1	ubbock Of	fice = 5827	50th Street, St	rite 1	m L	ubbo	ck, 1	exas	7942	4 =	806-	300-01	40			
								_	Responsive •	Reso	urce	ful =	Rel	iable								

Eurofins Lubbock

6701 Aberdeen Ave. Suite 8 Lubbock, TX 79424 Phone: 806-794-1296

Chain of Custody Record

🔆 eurofins

Environment Testing America

Received by OCD: 4/17/2023 10:46:38 AM

											_						
Client Information (Sub Contract Lab)	Sampler	, , , , , , , , , , , , , , , , , , ,			b PM: ramer	er Jessica					Carrier Tracking No(s),				COC No: 820-3373.1	<u> </u>	
Slient Contact: Shipping/Receiving	Phone: E-Ma						State o Kramer@eurofinset.com Texas					tate of Origin:			Page:		
Company:								5			Page 1 of 1						
urofins Environment Testing South Centr							ditations Required (See note): AP Texas 820-3677-1										
Address: 1145 Greenbriar Dr	Due Date Requests 3/22/2022	ed:				Analysis Requested Preservation Codes:											
City:	TAT Requested (da	ays):						$\overline{}$	larysis	, iteq	<u>lested</u>			2020	A HCL B NaOH	M Hexane N None	
Stafford State, Zip.	1					į				1 1	ļ		1 1		C Zn Acetate	O AsNaQ2	
DX, 77477							<u>}</u>	ļ		1 1	-				D Nitric Acid E NaHSO4	P Na204S Q Na2SO3	_
Phone; 281-240-4200(Tel)	P0 #:					1							1		Q 7411041104	R Na2S2O3 5 H2SO4	
mail:	wo#:			-	(ewine)					[1 [H Ascorbic Acid	T TSP Dode U Acelone	acamydrate
roject Name:	Project #:				<u> </u>		<u> </u>		1					(effices	J DI Water K EDTA	V MCAA W pH4-5	
Livingston Line-Bob McCasland	88000105				8	2 1	<u> </u>		 	1 1					L EDA	Z other (spe	icify)
ite:	SSOW#:														Other		
			Sample	Matrix	1000									lieretuvienti ja s			
		Sample	Туре	(W=water, S=solid.		Serion Sil	1 2							H.			
Sample Identification - Client ID (Lab ID)	Sample Date	Time	(C=comp, G=grab)	O=weste/ol BT=Tissue, A=			HA H			1 1			1 1		Special In	nstructions/l	Note:
			Maraja jir ja							45	3,794.			\$ \$K	Texton III	2.98	क्ति स्टार अक्ट
/IW-2 (820-3677-1)	3/15/22	13:43 Central		Water			x					34.0					
/IW-3 (820-3677-2)	3/15/22	14:38 Central		Water			x				_ _			2			
ЛW-5 (820-3677-3)	3/15/22	16;28 Central		Water			x							22			
/IW-6 (820-3677-4)	3/15/22	15:35 Central		Water		П	×							22			
		_					_										
			_			П											
											\top						
tote: Since taboratory accreditations are subject to change, Eurofins Environment aboratory does not currently maintain accreditation in the State of Origin listed aboratory does not currently maintain accreditation in the State of Origin listed aboratory does not status should be brought to Eurofins Environment Testing South Can	ove for analysis/lests	/matrix being a	nalyzed, the sa	amples must	be ship	pped ba	ack to the E	urofins En	vironment	Testing	South Cen	trai IICI	aboretory	or other i	instructions will be o	myided Anyich	conces to
Possible Hazard Identification					_	Sam	ple Disp	osal (A	fee may	/ be as	sessed	if samp	les are	retaine	d longer than 1	month)	
Inconfirmed						╽┖	1 <u>Return</u>	To Clier	ıt	\square_{Di}	sposal E	y Lab		ا Archi	ive For	Months	
Deliverable Requested: I II III, IV Other (specify)	Primary Delivera	able Rank: 2	-			Spec	ial Instru	ctions/Q	C Requi	rement	s:						
mpty Kit Relinquished by:		Date:			Tìr	me:					Meth	od of Ship	ment				
Miles 1 Rugaley	3116122	17:0		Company		R	ecewed by	X				Dat	e/Time:	,		Company	
Celingerism atoy:	Date/Time:			Company		R	Received by					3		U	1045	Company	\overline{a}
telinquished by:	Date/Time:			Сопрапу		R	eceived by					Dail	e/Time:(Company	
Custody Seals Intact: Custody Seal No.						c	Cooler Temperature(s) °C and Other Remarks:										

13

Ver: 06/08/2021

Login Sample Receipt Checklist

Client: Terracon Consulting Eng & Scientists

Job Number: 820-3677-1

SDG Number: AR227011

Login Number: 3677 List Source: Eurofins Lubbock

List Number: 1

Creator: Ruggles, Ashley

Question	Answer	Comment
		Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

1

_

3

4

6

o

9

11

12

Login Sample Receipt Checklist

Client: Terracon Consulting Eng & Scientists

Job Number: 820-3677-1

SDG Number: AR227011

List Source: Eurofins Houston
List Number: 3
List Creation: 03/17/22 01:06 PM

Creator: Milone, Jeancarlo

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

3

4

6

8

10

12

13

14

<6mm (1/4").

Login Sample Receipt Checklist

Client: Terracon Consulting Eng & Scientists

Job Number: 820-3677-1 SDG Number: AR227011

Login Number: 3677 **List Source: Eurofins Midland** List Number: 2 List Creation: 03/17/22 10:31 AM

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	

Released to Imaging: 5/17/2023 11:12:57 AM

www.eurofinsus.com/Env

Released to Imaging: 5/17/2023 11:12:57 AM

Environment Testing America

ANALYTICAL REPORT

Eurofins Lubbock 6701 Aberdeen Ave. Suite 8 Lubbock, TX 79424

Tel: (806)794-1296

Laboratory Job ID: 820-4570-1

Laboratory Sample Delivery Group: AR227011 Client Project/Site: Livingston Line-Bob McCasland

Terracon Consulting Eng & Scientists 5847 50th St Lubbock, Texas 79424

Attn: Brett Dennis

RAMER

Authorized for release by: 6/15/2022 10:57:31 AM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line-Bob McCasland

Laboratory Job ID: 820-4570-1 SDG: AR227011

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	10
Lab Chronicle	11
Certification Summary	12
Method Summary	13
Sample Summary	14
Chain of Custody	15
Receint Checklists	16

2

3

4

6

8

10

11

13

Definitions/Glossary

Client: Terracon Consulting Eng & Scientists

Project/Site: Livingston Line-Bob McCasland

SDG: AR227011

Qualifiers

CC	$V \cap A$
u	VUA

Qualifier	Qualifier Description
J	Result is less than the MQL but greater than or equal to the SDL and the concentration is an estimated value.
11	A 11

U Analyte was not detected at or above the SDL.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit

MQL NC

ML

MPN

C Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Level (Dioxin)

Most Probable Number

Method Quantitation Limit

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Lubbock

Released to Imaging: 5/17/2023 11:12:57 AM

Case Narrative

Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line-Bob McCasland

Job ID: 820-4570-1 SDG: AR227011

Job ID: 820-4570-1

Laboratory: Eurofins Lubbock

Narrative

Job Narrative 820-4570-1

Receipt

The samples were received on 6/10/2022 10:45 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.6° C

GC VOA

Method 8021B: The following sample was received outside of holding time: (880-15492-A-9).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

7

8

9

10

13

Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line-Bob McCasland

Date Received: 06/10/22 10:45

Job ID: 820-4570-1 SDG: AR227011

Client Sample ID: MW-2 Lab Sample ID: 820-4570-1 Date Collected: 06/09/22 14:50

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000408	U	0.00200	0.000408	mg/L			06/14/22 21:24	1
Toluene	< 0.000367	U	0.00200	0.000367	mg/L			06/14/22 21:24	1
Ethylbenzene	< 0.000657	U	0.00200	0.000657	mg/L			06/14/22 21:24	1
m-Xylene & p-Xylene	<0.000629	U	0.00400	0.000629	mg/L			06/14/22 21:24	1
o-Xylene	< 0.000642	U	0.00200	0.000642	mg/L			06/14/22 21:24	1
Xylenes, Total	<0.000642	U	0.00400	0.000642	mg/L			06/14/22 21:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130			-		06/14/22 21:24	1
1,4-Difluorobenzene (Surr)	98		70 - 130					06/14/22 21:24	1
Method: Total BTEX - Total B1	ΓEX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.000657	U	0.00400	0.000657	mg/L			06/15/22 10:29	

Client Sample ID: MW-3 Lab Sample ID: 820-4570-2

Date Collected: 06/09/22 13:50 **Matrix: Water**

Date Received: 06/10/22 10:45

Analysta	Popult	Qualifier	RL	MDI	Unit	D	Drongrad	Analyzad	Dil Fac
Analyte							Prepared	Analyzed	DII Fac
Benzene	<0.000408	U	0.00200	0.000408	mg/L			06/14/22 21:51	1
Toluene	< 0.000367	U	0.00200	0.000367	mg/L			06/14/22 21:51	1
Ethylbenzene	<0.000657	U	0.00200	0.000657	mg/L			06/14/22 21:51	1
m-Xylene & p-Xylene	<0.000629	U	0.00400	0.000629	mg/L			06/14/22 21:51	1
o-Xylene	<0.000642	U	0.00200	0.000642	mg/L			06/14/22 21:51	1
Xylenes, Total	<0.000642	U	0.00400	0.000642	mg/L			06/14/22 21:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		70 - 130			_		06/14/22 21:51	1
1,4-Difluorobenzene (Surr)	102		70 - 130					06/14/22 21:51	1
- Method: Total BTEX - Total B1	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.000657	U	0.00400	0.000657	mg/L			06/15/22 10:29	

Lab Sample ID: 820-4570-3 **Client Sample ID: MW-5** Date Collected: 06/09/22 15:25 Matrix: Water

Date Received: 06/10/22 10:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.000596	J	0.00200	0.000408	mg/L			06/14/22 22:18	1
Toluene	< 0.000367	U	0.00200	0.000367	mg/L			06/14/22 22:18	1
Ethylbenzene	< 0.000657	U	0.00200	0.000657	mg/L			06/14/22 22:18	1
m-Xylene & p-Xylene	<0.000629	U	0.00400	0.000629	mg/L			06/14/22 22:18	1
o-Xylene	< 0.000642	U	0.00200	0.000642	mg/L			06/14/22 22:18	1
Xylenes, Total	<0.000642	U	0.00400	0.000642	mg/L			06/14/22 22:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130			-		06/14/22 22:18	1
1,4-Difluorobenzene (Surr)	93		70 - 130					06/14/22 22:18	1

Eurofins Lubbock

Page 5 of 17

Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line-Bob McCasland Job ID: 820-4570-1

SDG: AR227011

Client Sample ID: MW-5

Lab Sample ID: 820-4570-3 Date Collected: 06/09/22 15:25

Matrix: Water

Date Received: 06/10/22 10:45

Method: Total BTEX - Total BTEX Calculation											
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
l	Total BTEX	<0.000657	U	0.00400	0.000657	mg/L			06/15/22 10:29	1	

Client Sample ID: MW-6 Lab Sample ID: 820-4570-4

Date Collected: 06/09/22 13:03 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000408	U	0.00200	0.000408	mg/L			06/14/22 22:45	1
Toluene	< 0.000367	U	0.00200	0.000367	mg/L			06/14/22 22:45	1
Ethylbenzene	< 0.000657	U	0.00200	0.000657	mg/L			06/14/22 22:45	1
m-Xylene & p-Xylene	<0.000629	U	0.00400	0.000629	mg/L			06/14/22 22:45	1
o-Xylene	<0.000642	U	0.00200	0.000642	mg/L			06/14/22 22:45	1
Xylenes, Total	<0.000642	U	0.00400	0.000642	mg/L			06/14/22 22:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130			-		06/14/22 22:45	1
1,4-Difluorobenzene (Surr)	100		70 - 130					06/14/22 22:45	1
Method: Total BTEX - Total BT	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.000657	U	0.00400	0.000657	mg/L			06/15/22 10:29	1

Surrogate Summary

Client: Terracon Consulting Eng & Scientists Job ID: 820-4570-1 Project/Site: Livingston Line-Bob McCasland SDG: AR227011

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Water Prep Type: Total/NA

		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
820-4570-1	MW-2	96	98	
820-4570-2	MW-3	89	102	
820-4570-3	MW-5	100	93	
820-4570-4	MW-6	104	100	
880-15492-A-9 MS	Matrix Spike	100	99	
880-15492-A-9 MSD	Matrix Spike Duplicate	99	101	
LCS 880-27467/3	Lab Control Sample	106	94	
LCSD 880-27467/4	Lab Control Sample Dup	97	104	
MB 880-27467/8	Method Blank	75	93	
Surrogate Legend				

DFBZ = 1,4-Difluorobenzene (Surr)

Job ID: 820-4570-1 Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line-Bob McCasland SDG: AR227011

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-27467/8

Analysis Batch: 27467

Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

мв мв Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Benzene <0.000408 U 0.00200 0.000408 mg/L 06/14/22 11:26 Toluene <0.000367 U 0.00200 0.000367 mg/L 06/14/22 11:26 06/14/22 11:26 Ethylbenzene <0.000657 U 0.00200 0.000657 mg/L m-Xylene & p-Xylene < 0.000629 0.00400 0.000629 mg/L 06/14/22 11:26 <0.000642 U 0.00200 0.000642 mg/L 06/14/22 11:26 o-Xylene <0.000642 U Xylenes, Total 0.00400 0.000642 mg/L 06/14/22 11:26

MB MB %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed 70 - 130 4-Bromofluorobenzene (Surr) 75 06/14/22 11:26 93 1,4-Difluorobenzene (Surr) 70 - 130 06/14/22 11:26

Lab Sample ID: LCS 880-27467/3

Matrix: Water

Analysis Batch: 27467

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.08521 mg/L 85 70 - 130 Toluene 0.100 0.08562 mg/L 86 70 - 130 Ethylbenzene 0.100 0.09219 mg/L 92 70 - 130 92 m-Xylene & p-Xylene 0.200 0.1844 mg/L 70 - 130o-Xylene 0.100 0.09287 mg/L 93 70 - 130

LCS LCS %Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 106 70 - 130 70 - 130 1,4-Difluorobenzene (Surr) 94

Lab Sample ID: LCSD 880-27467/4

Matrix: Water

Analysis Batch: 27467

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Benzene 0.100 0.1028 103 70 - 130 19 20 mg/L Toluene 0.100 0.09708 mg/L 97 70 - 130 13 20 0.100 0.09449 mg/L 94 70 - 130 2 20 Ethylbenzene m-Xylene & p-Xylene 0.200 0.1569 mg/L 78 70 - 130 16 20 0.100 0.08329 mg/L 83 70 - 130 11 20 o-Xylene

LCSD LCSD %Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 97 70 - 130 1,4-Difluorobenzene (Surr) 104 70 - 130

Lab Sample ID: 880-15492-A-9 MS

as campio is occios in the								••	umpio isi matrix opino
Matrix: Water									Prep Type: Total/NA
Analysis Batch: 27467									
	Sample	Sample	Spike	MS	MS				%Rec
maluta	Desuit	Ouglifier	A -d -dd	Daguile	Ouglifier	11-4	_	0/ Dag	Limite

Analyte Result Qualifier Added Result Qualifie Unit %Rec Limits U 71 Benzene <0.000408 0.100 0.07123 mg/L 70 - 130 Toluene <0.000367 U 0.100 0.07022 mg/L 70 70 - 130

Eurofins Lubbock

Client Sample ID: Matrix Spike

Page 8 of 17

Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line-Bob McCasland Job ID: 820-4570-1

SDG: AR227011

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-15492-A-9 MS

Lab Sample ID: 880-15492-A-9 MSD

Matrix: Water

Analysis Batch: 27467

Client Sample ID: Matrix Spike

Prep Type: Total/NA

	Sample	Sample	Бріке	INIO	IVIS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Ethylbenzene	<0.000657	U	0.100	0.07696		mg/L		77	70 - 130
m-Xylene & p-Xylene	<0.000629	U	0.200	0.1518		mg/L		76	70 - 130
o-Xylene	< 0.000642	U	0.100	0.07932		mg/L		79	70 - 130

MS MS

Surrogate	%Recovery Qu	ualifier Limits
4-Bromofluorobenzene (Surr)	100	70 - 130
1,4-Difluorobenzene (Surr)	99	70 - 130

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 27467

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.000408	U	0.100	0.07748		mg/L		77	70 - 130	8	25
Toluene	< 0.000367	U	0.100	0.07734		mg/L		77	70 - 130	10	25
Ethylbenzene	< 0.000657	U	0.100	0.08519		mg/L		85	70 - 130	10	25
m-Xylene & p-Xylene	<0.000629	U	0.200	0.1698		mg/L		85	70 - 130	11	25
o-Xylene	<0.000642	U	0.100	0.08510		mg/L		85	70 - 130	7	25

MSD MSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 99 70 - 130 1,4-Difluorobenzene (Surr) 101 70 - 130

QC Association Summary

Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line-Bob McCasland

Job ID: 820-4570-1 SDG: AR227011

GC VOA

Analysis Batch: 27467

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
820-4570-1	MW-2	Total/NA	Water	8021B	
820-4570-2	MW-3	Total/NA	Water	8021B	
820-4570-3	MW-5	Total/NA	Water	8021B	
820-4570-4	MW-6	Total/NA	Water	8021B	
MB 880-27467/8	Method Blank	Total/NA	Water	8021B	
LCS 880-27467/3	Lab Control Sample	Total/NA	Water	8021B	
LCSD 880-27467/4	Lab Control Sample Dup	Total/NA	Water	8021B	
880-15492-A-9 MS	Matrix Spike	Total/NA	Water	8021B	
880-15492-A-9 MSD	Matrix Spike Duplicate	Total/NA	Water	8021B	

Analysis Batch: 27605

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep E	Batch
820-4570-1	MW-2	Total/NA	Water	Total BTEX	
820-4570-2	MW-3	Total/NA	Water	Total BTEX	
820-4570-3	MW-5	Total/NA	Water	Total BTEX	
820-4570-4	MW-6	Total/NA	Water	Total BTEX	

7

q

10

11

13

Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line-Bob McCasland Job ID: 820-4570-1

SDG: AR227011

Client Sample ID: MW-2

Date Collected: 06/09/22 14:50 Date Received: 06/10/22 10:45 Lab Sample ID: 820-4570-1

Matrix: Water

Matrix: Water

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1			27467	06/14/22 21:24	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27605	06/15/22 10:29	SM	XEN MID

Client Sample ID: MW-3 Lab Sample ID: 820-4570-2

Date Collected: 06/09/22 13:50

Date Received: 06/10/22 10:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1			27467	06/14/22 21:51	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27605	06/15/22 10:29	SM	XEN MID

Client Sample ID: MW-5 Lab Sample ID: 820-4570-3

Date Collected: 06/09/22 15:25

Date Received: 06/10/22 10:45

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1			27467	06/14/22 22:18	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27605	06/15/22 10:29	SM	XEN MID

Client Sample ID: MW-6 Lab Sample ID: 820-4570-4 **Matrix: Water**

Date Collected: 06/09/22 13:03

Date Received: 06/10/22 10:45

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1			27467	06/14/22 22:45	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27605	06/15/22 10:29	SM	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Terracon Consulting Eng & Scientists Job ID: 820-4570-1 Project/Site: Livingston Line-Bob McCasland SDG: AR227011

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date		
Texas	NI	ELAP	T104704400-21-22	06-30-22		
The following analytes	are included in this report, but	it the laboratory is not certifi	ied by the governing authority. This list ma	ay include analytes for v		
the agency does not of	fer certification.	•	, , ,	ay include analytes for v		
• .	•	it the laboratory is not certifi Matrix	ied by the governing authority. This list ma	ay include analytes for v		

Method Summary

Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line-Bob McCasland Job ID: 820-4570-1

SDG: AR227011

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
5030B	Purge and Trap	SW846	XEN MID

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line-Bob McCasland

Job ID: 820-4570-1 SDG: AR227011

0D0. AR227011

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
820-4570-1	MW-2	Water	06/09/22 14:50	06/10/22 10:45
820-4570-2	MW-3	Water	06/09/22 13:50	06/10/22 10:45
820-4570-3	MW-5	Water	06/09/22 15:25	06/10/22 10:45
820-4570-4	MW-6	Water	06/09/22 13:03	06/10/22 10:45

Δ

5

7

8

4.6

11

10

12

CHAIN OF CUS1 820-457

820-4570	Chain of	Custody

											Laboratory:	Xeno	:0				ANA	LYSIS				_		1
		Terracon Address:			6701	Aber	deen			REQ	JESTE	D					DUE DATE:							
												Lubb	ock, T	exas 7	9424					ľ				TEMP OF COOLER WHEN RECEIVED (°C) 5 U/5.
			1	.i.							8 1									1				WILLIAM 15, 97.97.
лпс	Location	1	Lubboc	K.	-					_	Phone:				-			l		l				D 4 4
roio	ct Manag	or	Brett D	2001	oic .					_	Contact: SRS #:		20	01-11	226			1		[ł	Page <u>1</u> of <u>1</u>
	ler's Nam		Aaron								Sampler's Sig	natur		101-11	/		 =			1				
anı	101 3 14011		Adion	Aut	11113						Jampier 3 Jig	/		[/			1 802			ŀ				
roje	ct Numbe	er			- 1	Project	Name	;						No. T	ype of	Containers] §							
		AR227011						Living	ston Lin	e - Bob l	McCasland			_ 8		1 1	Ž		1	İ				
Matrix	Date	Time		Comp	Grab		lde	entifyinį	g Marks	of Samp	le(s)	Start Depth	End Depth	40 ml VOA			 BTEX (EPA Method 8021)							Lab Sample ID
w	6/9/2022	1450		\dashv	x				MW-2			1	†	3			x		1-					
w	6/9/2022	1350	-	7	x				MW-3					3			X		†					<u> </u>
w	6/9/2022	1525		7	х				MW-5			1	1	3			X							
w	6/9/2022	1303		T	×				MW-6					3			х							
T					コ		$\overline{}$						1				1		1					
Т			$\overline{}$	7					$\overline{}$				1						1					
Т					\Box														1					
				ヿ		1	T'											Π						
				\neg		70	1																	
T,				\neg	\Box	/																		
7				\neg	寸										-									
JRN	ROUND TI	ME			N (Normal		☐ 48-Hot	ır Rush		24-Hour Rush		TRRP	Labo	ratory	Review Ch	ecklist			Yes		No	·	
linquis	hed by (Signatur	auti	5 L	1	La	6	Date:	0/22	Time: 10	:45	Received by (Signature	71.	Ru	aule	W	(e)10/2	2 100	:45	NOT	ES:		Bill d	irectly	y to Plains Pipeline
linguis	hed by (Signatur	re)					Date:		Time:		Received by (Signature)		11		Date:	Time;		_	il resu	lts to:			
linguels	hed by (Signatur	re)					Date:		Time:		Received by (Signature					Date:	Time:		4					rracon.com
ett ragans	inco by (September	,					Date.		1		necewed by (Signature	,					1						terrac paalp.c	con.com
linguls	hed by (Signatur	re)					Date:		Time:		Received by (Signature)				Date:	Time:		┪				paalp.	
									-										1				paalp	
triz		WW-Wastewater		٧	V - Wate	1		S - Soll		l - Liquid	A - Air Bag	C - Charc	oal tube		SL - Sludg	30	•							
ntainer		VOA - 40 ml vial		A	VG - Ami	ber Glass 1L		250 ml = Gl	ass wide mouth		P/O - Plastic or other													

Page 15 of 17

6/15/2022

Received by OCD: 4/17/2023 10:46:38 AM

Login Sample Receipt Checklist

Client: Terracon Consulting Eng & Scientists Job Number: 820-4570-1 SDG Number: AR227011

Login Number: 4570 List Source: Eurofins Lubbock

List Number: 1

Creator: Ruggles, Ashley

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

Login Sample Receipt Checklist

Client: Terracon Consulting Eng & Scientists

Job Number: 820-4570-1 SDG Number: AR227011

Login Number: 4570 List Source: Eurofins Midland Lis

List Number: 2		List Creation: 06/13/22 09:41 AM
Creator: Rodriguez, Leticia		
Question	Answer	Comment

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 5/17/2023 11:12:57 AM

Environment Testing America

ANALYTICAL REPORT

Eurofins Lubbock 6701 Aberdeen Ave. Suite 8

Lubbock, TX 79424 Tel: (806)794-1296

Laboratory Job ID: 820-5965-1

Laboratory Sample Delivery Group: AR227011

Client Project/Site: Livingston Line

Terracon Consulting Eng & Scientists 5847 50th St Lubbock, Texas 79424

Attn: Aaron Adams

RAMER

Authorized for release by: 10/5/2022 1:51:22 PM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Terracon Consulting Eng & Scientists

Project/Site: Livingston Line

Laboratory Job ID: 820-5965-1

SDG: AR227011

Analytical test results meet all requirements of the associated regulatory program (e.g., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis. Data qualifiers are applied to note exceptions. Noncompliant quality control (QC) is further explained in narrative comments. QC data that exceed the upper limits and are associated with non-detect samples are qualified but no further narration is needed since the bias is high and does not change a non-detect result. Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Coliform MCLs

· Based on the EPA primary drinking water standard MCL for total coliforms, a water supply is considered bacteriologically "SAFE" if no coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 cfu/100mL" or "NEG" for the coliform test. If you report indicates a positive result "POS" or a value greater than or equal to one, then your supply is "UNSAFE FOR DRINKING" contact your local health department.

Warranties, Terms, and Conditions

· Analyses for Field Parameters are performed by Eurofins Philadelphia field staff. Locations and certifications are identified on the Chain of Custody as follows:

ERF = field staff performs tests under NJ State certification #02015 VL = field staff performs tests under NJ State certification #06005 WG = field staff performs tests under NJ State certification #PA001

H = field staff performs tests under NJ NELAP certification #PA093, PA NELAP certification # 46-

05499

- · Test results meet all TNI or other applicable regulatory agency requirements, including holding times and preservation, unless otherwise indicated.
- · The report shall not be reproduced, except in full, without the written consent of the laboratory
- · All samples are collected as "grab" samples unless otherwise identified.
- · Reported results related only to the samples as tested. Eurofins Philadelphia is not responsible for sample integrity unless sampling has been performed by a member of our staff.
- · Eurofins Philadelphia is not responsible for sampling and/or testing omissions. Note that regulatory authorities may assess substantial fines for testing omissions. Please track your sample collection schedules and results on a regular basis (e.g. weekly, monthly, or quarterly) to ensure compliance.
- · Eurofins' online data portal "TotalAccess" will provide you with real-time access to collection dates and testing results. Please contact Client Services for further information.
- The following personnel or their deputies have approved the results of the tests performed by Eurofins Philadelphia: Nicki Smith (Environmental Chemistry) and Jacqueline Gartner (Water Microbiology).

Jessica Kramer

Project Manager

10/5/2022 1:51:22 PM

RAMER

Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line

Laboratory Job ID: 820-5965-1 SDG: AR227011

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	12
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receint Checklists	18

Eurofins Lubbock 10/5/2022

Definitions/Glossary

Job ID: 820-5965-1 Client: Terracon Consulting Eng & Scientists Project/Site: Livingston Line SDG: AR227011

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

Analyte was not detected at or above the SDL.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis

Percent Recovery %R CFL Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) EDL LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Terracon Consulting Eng & Scientists

Project/Site: Livingston Line

Job ID: 820-5965-1 SDG: AR227011

Job ID: 820-5965-1

Laboratory: Eurofins Lubbock

Narrative

Job Narrative 820-5965-1

Receipt

The samples were received on 9/29/2022 9:51 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.7°C

GC/MS VOA

Method 8260C: The following sample(s) was collected in a properly preserved vial; however, the pH was outside the required criteria when verified by the laboratory. The sample was analyzed within the 7-day holding time specified for unpreserved samples: MW-3 (820-5965-2). Note: pH 5.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: Terracon Consulting Eng & Scientists

Job ID: 820-5965-1 SDG: AR227011

Project/Site: Livingston Line

Lab Sample ID: 820-5965-1

Date Collected: 09/27/22 12:40 Date Received: 09/29/22 09:51

Client Sample ID: MW-6

Matrix: Water

Method: SW846 8260C - Volatile Organic Compounds by GC	/MS
Analysis Daniel Overliften	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000533	U	0.00100	0.000533	mg/L			10/03/22 14:43	1
Toluene	<0.000475	U	0.00100	0.000475	mg/L			10/03/22 14:43	1
Ethylbenzene	<0.000411	U	0.00100	0.000411	mg/L			10/03/22 14:43	1
m,p-Xylenes	<0.00124	U	0.0100	0.00124	mg/L			10/03/22 14:43	1
o-Xylene	<0.000551	U	0.00100	0.000551	mg/L			10/03/22 14:43	1
Xylenes, Total	<0.00124	U	0.0100	0.00124	mg/L			10/03/22 14:43	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		63 - 144		10/03/22 14:43	1
4-Bromofluorobenzene (Surr)	88		74 - 124		10/03/22 14:43	1
Dibromofluoromethane (Surr)	99		75 - 131		10/03/22 14:43	1
Toluene-d8 (Surr)	90		80 - 117		10/03/22 14:43	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00124	U	0.0100	0.00124	mg/L			10/05/22 11:29	1

Client Sample ID: MW-3

Lab Sample ID: 820-5965-2

Date Collected: 09/27/22 13:35 Date Received: 09/29/22 09:51

Matrix: Water

Method: SW846 8260C - Volatile Organic Compounds by GC/MS

Method: SW846 8260C -	•	•							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000533	U	0.00100	0.000533	mg/L			10/03/22 15:06	1
Toluene	<0.000475	U	0.00100	0.000475	mg/L			10/03/22 15:06	1
Ethylbenzene	<0.000411	U	0.00100	0.000411	mg/L			10/03/22 15:06	1
m,p-Xylenes	<0.00124	U	0.0100	0.00124	mg/L			10/03/22 15:06	1
o-Xylene	<0.000551	U	0.00100	0.000551	mg/L			10/03/22 15:06	1
Xylenes, Total	<0.00124	U	0.0100	0.00124	mg/L			10/03/22 15:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	63 - 144	10/03/22 15:06	1
4-Bromofluorobenzene (Surr)	89	74 - 124	10/03/22 15:06	1
Dibromofluoromethane (Surr)	100	75 - 131	10/03/22 15:06	1
Toluene-d8 (Surr)	90	80 - 117	10/03/22 15:06	1

Mothod:	TAL SOD Total I	RTEY - Total	BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00124	U	0.0100	0.00124	mg/L			10/05/22 11:29	1

Client Sample ID: MW-2 Lab Sample ID: 820-5965-3 Date Collected: 09/27/22 14:20 **Matrix: Water**

Date

Method: SW846 8260C - Volatile Organic Compounds by GC/MS										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	<0.000533	U	0.00100	0.000533	mg/L			09/30/22 21:05	1	
Toluene	<0.000475	U	0.00100	0.000475	mg/L			09/30/22 21:05	1	
Ethylbenzene	<0.000411	U	0.00100	0.000411	mg/L			09/30/22 21:05	1	
m,p-Xylenes	<0.00124	U	0.0100	0.00124	mg/L			09/30/22 21:05	1	
o-Xylene	<0.000551	U	0.00100	0.000551	mg/L			09/30/22 21:05	1	

Client: Terracon Consulting Eng & Scientists

Project/Site: Livingston Line

Date Collected: 09/27/22 14:20

Job ID: 820-5965-1 SDG: AR227011

Client Sample ID: MW-2 Lab Sample ID: 820-5965-3

Matrix: Water

Date Received: 09/29/22 09:51

Method: SW846 8260C - Volati	ile Organic Comp	ounds by G	C/MS (Contin	ued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	<0.00124	U	0.0100	0.00124	mg/L			09/30/22 21:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		63 - 144			_		09/30/22 21:05	1
4-Bromofluorobenzene (Surr)	90		74 - 124					09/30/22 21:05	1
Dibromofluoromethane (Surr)	102		75 - 131					09/30/22 21:05	1
Toluene-d8 (Surr)	90		80 - 117					09/30/22 21:05	1

Method: TAL SOP Total BTEX - Total BTEX Calculation										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Total BTEX	<0.00124	U	0.0100	0.00124	mg/L			10/05/22 11:29	1

Client Sample ID: MW-5 Lab Sample ID: 820-5965-4

Date Collected: 09/27/22 15:05 **Matrix: Water**

Date Received: 09/29/22 09:51

Method: SW846 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000533	U	0.00100	0.000533	mg/L			09/30/22 21:27	1
Toluene	<0.000475	U	0.00100	0.000475	mg/L			09/30/22 21:27	1
Ethylbenzene	<0.000411	U	0.00100	0.000411	mg/L			09/30/22 21:27	1
m,p-Xylenes	<0.00124	U	0.0100	0.00124	mg/L			09/30/22 21:27	1
o-Xylene	< 0.000551	U	0.00100	0.000551	mg/L			09/30/22 21:27	1
Xylenes, Total	<0.00124	U	0.0100	0.00124	mg/L			09/30/22 21:27	1

Surrogate	%Recovery Quality	ifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	63 - 144		09/30/22 21:27	1
4-Bromofluorobenzene (Surr)	89	74 - 124		09/30/22 21:27	1
Dibromofluoromethane (Surr)	102	75 ₋ 131		09/30/22 21:27	1
Toluene-d8 (Surr)	91	80 - 117		09/30/22 21:27	1

ſ	Method: TAL SOP Total BTEX - To	tal BTEX Calc	ulation							
l	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Total BTEX	<0.00124	U	0.0100	0.00124	mg/L			10/05/22 11:29	1

Client Sample ID: DUP-1 Lab Sample ID: 820-5965-5 Date Collected: 09/27/22 00:00 **Matrix: Water**

Date Received: 09/29/22 09:51

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000533	U	0.00100	0.000533	mg/L			10/03/22 15:29	1
Toluene	<0.000475	U	0.00100	0.000475	mg/L			10/03/22 15:29	1
Ethylbenzene	<0.000411	U	0.00100	0.000411	mg/L			10/03/22 15:29	1
m,p-Xylenes	<0.00124	U	0.0100	0.00124	mg/L			10/03/22 15:29	1
o-Xylene	< 0.000551	U	0.00100	0.000551	mg/L			10/03/22 15:29	1
Xylenes, Total	<0.00124	U	0.0100	0.00124	mg/L			10/03/22 15:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		63 - 144			-		10/03/22 15:29	1
4-Bromofluorobenzene (Surr)	89		74 - 124					10/03/22 15:29	1
Dibromofluoromethane (Surr)	100		75 - 131					10/03/22 15:29	1

Client: Terracon Consulting Eng & Scientists

Project/Site: Livingston Line

Job ID: 820-5965-1 SDG: AR227011

Client Sample ID: DUP-1

Lab Sample ID: 820-5965-5

Date Collected: 09/27/22 00:00 Date Received: 09/29/22 09:51 Matrix: Water

Method: SW846 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepare	d Analyzed	Dil Fac
Toluene-d8 (Surr)	90		80 - 117		10/03/22 15:29	1

Method: TAL SOP Total BTEX - Tot	al BTEX Cald	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00124	U	0.0100	0.00124	mg/L			10/05/22 11:29	1

5

7

9

11

13

14

Surrogate Summary

Client: Terracon Consulting Eng & Scientists

Job ID: 820-5965-1 Project/Site: Livingston Line SDG: AR227011

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Surrogate			
		DCA	BFB	DBFM	TOL		
Lab Sample ID	Client Sample ID	(63-144)	(74-124)	(75-131)	(80-117)		
820-5965-1	MW-6	100	88	99	90		
820-5965-2	MW-3	97	89	100	90		
820-5965-3	MW-2	100	90	102	90		
820-5965-4	MW-5	99	89	102	91		
820-5965-5	DUP-1	97	89	100	90		
LCS 860-71294/3	Lab Control Sample	92	97	99	90		
LCS 860-71527/3	Lab Control Sample	93	96	99	89		
LCSD 860-71294/4	Lab Control Sample Dup	91	97	98	91		
LCSD 860-71527/4	Lab Control Sample Dup	93	94	98	88		
MB 860-71294/7	Method Blank	96	90	99	90		
MB 860-71527/7	Method Blank	95	88	97	91		

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Client: Terracon Consulting Eng & Scientists

Project/Site: Livingston Line

Job ID: 820-5965-1

SDG: AR227011

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 860-71294/7

Matrix: Water

Analysis Batch: 71294

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000533	U	0.00100	0.000533	mg/L			09/30/22 13:30	1
Toluene	<0.000475	U	0.00100	0.000475	mg/L			09/30/22 13:30	1
Ethylbenzene	<0.000411	U	0.00100	0.000411	mg/L			09/30/22 13:30	1
m,p-Xylenes	<0.00124	U	0.0100	0.00124	mg/L			09/30/22 13:30	1
o-Xylene	< 0.000551	U	0.00100	0.000551	mg/L			09/30/22 13:30	1
Xylenes, Total	<0.00124	U	0.0100	0.00124	mg/L			09/30/22 13:30	1

MB MB

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96	63 - 144		09/30/22 13:30	1
4-Bromofluorobenzene (Surr)	90	74 - 124		09/30/22 13:30	1
Dibromofluoromethane (Surr)	99	75 - 131		09/30/22 13:30	1
Toluene-d8 (Surr)	90	80 - 117		09/30/22 13:30	1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 71294

Matrix: Water

Lab Sample ID: LCS 860-71294/3

		LCS				%Rec
Added	Result	Qualifier	Unit	D	%Rec	Limits
0.0500	0.05468		mg/L		109	75 - 125
0.0500	0.04979		mg/L		100	70 - 130
0.0500	0.05343		mg/L		107	75 - 125
0.0500	0.05559		mg/L		111	75 - 125
0.0500	0.05783		mg/L		116	75 - 125
	0.0500 0.0500 0.0500 0.0500	0.0500 0.05468 0.0500 0.04979 0.0500 0.05343 0.0500 0.05559	0.0500 0.05468 0.0500 0.04979 0.0500 0.05343 0.0500 0.05559	0.0500 0.05468 mg/L 0.0500 0.04979 mg/L 0.0500 0.05343 mg/L 0.0500 0.05559 mg/L	0.0500 0.05468 mg/L 0.0500 0.04979 mg/L 0.0500 0.05343 mg/L 0.0500 0.05559 mg/L	0.0500 0.05468 mg/L 109 0.0500 0.04979 mg/L 100 0.0500 0.05343 mg/L 107 0.0500 0.05559 mg/L 111

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	92		63 - 144
4-Bromofluorobenzene (Surr)	97		74 - 124
Dibromofluoromethane (Surr)	99		75 ₋ 131
Toluene-d8 (Surr)	90		80 - 117

Lab Sample ID: LCSD 860-71294/4 **Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA**

Analysis Batch: 71294

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	0.0500	0.04538	-	mg/L		91	75 - 125	19	25	
Toluene	0.0500	0.04218		mg/L		84	70 - 130	17	25	
Ethylbenzene	0.0500	0.04552		mg/L		91	75 - 125	16	25	
m,p-Xylenes	0.0500	0.04757		mg/L		95	75 - 125	16	25	
o-Xylene	0.0500	0.04937		mg/L		99	75 - 125	16	25	

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	91		63 - 144
4-Bromofluorobenzene (Surr)	97		74 - 124
Dibromofluoromethane (Surr)	98		75 - 131
Toluene-d8 (Surr)	91		80 - 117

Client: Terracon Consulting Eng & Scientists

Project/Site: Livingston Line

Job ID: 820-5965-1

SDG: AR227011

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 860-71527/7

Matrix: Water Analysis Batch: 71527 Client Sample ID: Method Blank **Prep Type: Total/NA**

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000533	U	0.00100	0.000533	mg/L			10/03/22 12:27	1
Toluene	< 0.000475	U	0.00100	0.000475	mg/L			10/03/22 12:27	1
Ethylbenzene	<0.000411	U	0.00100	0.000411	mg/L			10/03/22 12:27	1
m,p-Xylenes	<0.00124	U	0.0100	0.00124	mg/L			10/03/22 12:27	1
o-Xylene	<0.000551	U	0.00100	0.000551	mg/L			10/03/22 12:27	1
Xylenes, Total	<0.00124	U	0.0100	0.00124	mg/L			10/03/22 12:27	1

MB MB

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95	63 - 144		10/03/22 12:27	1
4-Bromofluorobenzene (Surr)	88	74 - 124		10/03/22 12:27	1
Dibromofluoromethane (Surr)	97	75 - 131		10/03/22 12:27	1
Toluene-d8 (Surr)	91	80 - 117		10/03/22 12:27	1

Lab Sample ID: LCS 860-71527/3

Matrix: Water

Analysis Batch: 71527

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.0500	0.04980	-	mg/L	<u> </u>	100	75 - 125	
Toluene	0.0500	0.04664		mg/L		93	70 - 130	
Ethylbenzene	0.0500	0.05187		mg/L		104	75 - 125	
m,p-Xylenes	0.0500	0.05464		mg/L		109	75 - 125	
o-Xylene	0.0500	0.05697		mg/L		114	75 - 125	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		63 - 144
4-Bromofluorobenzene (Surr)	96		74 - 124
Dibromofluoromethane (Surr)	99		75 - 131
Toluene-d8 (Surr)	89		80 - 117

Lab Sample ID: LCSD 860-71527/4

Matrix: Water

Analysis Batch: 71527

Client Sample	ID: Lab	Control	Sample Dup
		Prep T	ype: Total/NA

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.0500	0.04526		mg/L		91	75 - 125	10	25
Toluene	0.0500	0.04230		mg/L		85	70 - 130	10	25
Ethylbenzene	0.0500	0.04717		mg/L		94	75 - 125	9	25
m,p-Xylenes	0.0500	0.04988		mg/L		100	75 - 125	9	25
o-Xylene	0.0500	0.05200		mg/L		104	75 - 125	9	25

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		63 - 144
4-Bromofluorobenzene (Surr)	94		74 - 124
Dibromofluoromethane (Surr)	98		75 - 131
Toluene-d8 (Surr)	88		80 - 117

QC Association Summary

Client: Terracon Consulting Eng & Scientists

Project/Site: Livingston Line

Job ID: 820-5965-1 SDG: AR227011

GC/MS VOA

Analysis Batch: 71294

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
820-5965-3	MW-2	Total/NA	Water	8260C	
820-5965-4	MW-5	Total/NA	Water	8260C	
MB 860-71294/7	Method Blank	Total/NA	Water	8260C	
LCS 860-71294/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 860-71294/4	Lab Control Sample Dup	Total/NA	Water	8260C	

Analysis Batch: 71527

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
820-5965-1	MW-6	Total/NA	Water	8260C	
820-5965-2	MW-3	Total/NA	Water	8260C	
820-5965-5	DUP-1	Total/NA	Water	8260C	
MB 860-71527/7	Method Blank	Total/NA	Water	8260C	
LCS 860-71527/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 860-71527/4	Lab Control Sample Dup	Total/NA	Water	8260C	

Analysis Batch: 71973

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
820-5965-1	MW-6	Total/NA	Water	Total BTEX	
820-5965-2	MW-3	Total/NA	Water	Total BTEX	
820-5965-3	MW-2	Total/NA	Water	Total BTEX	
820-5965-4	MW-5	Total/NA	Water	Total BTEX	
820-5965-5	DUP-1	Total/NA	Water	Total BTEX	

Client: Terracon Consulting Eng & Scientists

Project/Site: Livingston Line

Analysis

Total BTEX

Job ID: 820-5965-1 SDG: AR227011

Client Sample ID: MW-6

Lab Sample ID: 820-5965-1

JBS

Matrix: Water

Date Collected: 09/27/22 12:40 Date Received: 09/29/22 09:51

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 8260C 71527 Total/NA Analysis 5 mL 5 mL 10/03/22 14:43 JBS EET HOU

1

Client Sample ID: MW-3

Total/NA

Lab Sample ID: 820-5965-2 Date Collected: 09/27/22 13:35

71973

10/05/22 11:29

Matrix: Water

EET HOU

Date Received: 09/29/22 09:51

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	71527	10/03/22 15:06	JBS	EET HOU
Total/NA	Analysis	Total BTEX		1			71973	10/05/22 11:29	JBS	EET HOU

Client Sample ID: MW-2

Lab Sample ID: 820-5965-3 Date Collected: 09/27/22 14:20

Matrix: Water

Date Received: 09/29/22 09:51

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	71294	09/30/22 21:05	JBS	EET HOU
Total/NA	Analysis	Total BTEX		1			71973	10/05/22 11:29	JBS	EET HOU

Client Sample ID: MW-5

Lab Sample ID: 820-5965-4

Matrix: Water

Date Collected: 09/27/22 15:05 Date Received: 09/29/22 09:51

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	71294	09/30/22 21:27	JBS	EET HOU
Total/NA	Analysis	Total BTEX		1			71973	10/05/22 11:29	JBS	EET HOU

Client Sample ID: DUP-1

Lab Sample ID: 820-5965-5 **Matrix: Water**

Date Collected: 09/27/22 00:00 Date Received: 09/29/22 09:51

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	71527	10/03/22 15:29	JBS	EET HOU
Total/NA	Analysis	Total BTEX		1			71973	10/05/22 11:29	JBS	EET HOU

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Accreditation/Certification Summary

Client: Terracon Consulting Eng & Scientists

Project/Site: Livingston Line

Job ID: 820-5965-1 SDG: AR227011

Laboratory: Eurofins Houston

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pro	ogram	Identification Number	Expiration Date		
Texas	NE	ELAP	T104704215-22-47	06-30-23		
The following analytes	are included in this report, but	t the laboratory is not certific	ed by the governing authority. This list ma	av include analytes for		
The following analytes the agency does not of	. ,	t the laboratory is not certific	ed by the governing authority. This list ma	ay include analytes for		
0 ,	. ,	t the laboratory is not certifi Matrix	ed by the governing authority. This list ma Analyte	ay include analytes for		

Method Summary

Client: Terracon Consulting Eng & Scientists

Project/Site: Livingston Line

Job ID: 820-5965-1

SDG: AR227011

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	EET HOU
Total BTEX	Total BTEX Calculation	TAL SOP	EET HOU
5030C	Purge and Trap	SW846	EET HOU

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Sample Summary

Client: Terracon Consulting Eng & Scientists

Project/Site: Livingston Line

Job ID: 820-5965-1

SDG: AR227011

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
820-5965-1	MW-6	Water	09/27/22 12:40	09/29/22 09:51
820-5965-2	MW-3	Water	09/27/22 13:35	09/29/22 09:51
820-5965-3	MW-2	Water	09/27/22 14:20	09/29/22 09:51
820-5965-4	MW-5	Water	09/27/22 15:05	09/29/22 09:51
820-5965-5	DUP-1	Water	09/27/22 00:00	09/29/22 09:51

Loc: 820 **5965**

10/5/2022

20-5965 Chain of Custody	

														CHAIN (OF CUS	STODY	RECO	RD	820-5965 C	nain c
1					Laboratory:	Euro					- 1	ANAL						AB USE ONLY UE DATE:		
	er			con	Address:		Aber		0434			REQU	ESTE	-				MF OF COOLER		4
						LUDO	ock, T	exas /	9424									HEN RECEIVED (°C)	7.817	10
Office Location	Lub	bock			Phone:									1						~ `
					Contact:										}			Page _	1 of 1	1
Project Manage Sampler's Name		Loyd			SRS #:						_	<u></u>					1			1
sampler's ivame	Aus	tin w	orley		Sampler's Sig	natur	in L		, ,	In -		3260			1					
Project Number				Project Name		α	uon	laio Ti	no of	Containe) poc			1					
-	AR227011				ston Line			$\overline{}$	pe or	Containe	-	Met								
Date	Time	Comp	Grab	Identifying Marks o		Start Depth	End Depth	0 ml VOA				BTEX (EPA Method 8260B)								
		+	X	MW-6		- # #	1 5	8		\vdash	\dashv	$\overline{}$			+		╁╌┼	Lab S	ample ID	-
	12:40	+	×			+-	\vdash	_ X_		-		Х			+		-		<u> </u>	
	13:35	+	X	MW-3		+	-	X		\vdash		X			+	\vdash	├┼			\dashv
V 9/27/2022	14:20	+	X			+-	-	X_			-	Х		-	-	-	-			\dashv
N 9/27/2022 N 9/27/2022	15:05	+	X	MW-5		+	-	X		\vdash		X			+-	-	├			-
W 9/27/2022		+				+-	├-	X		\vdash		X				-	\vdash			-1
		+	\vdash			+	├	-			$\overline{}$		\searrow		+	-	\vdash			-1
++	/-	+-	⊢	-		+	├	<u> </u>			-	\longrightarrow		$\rightarrow \vdash$	-	-	\vdash			4
++		┿	$\vdash \vdash$			—	<u> </u>	Ь—		\checkmark	-				+-	_	\vdash			-1
+	/	-	-			₩	├	_	-/					-1	-	-				4
1	/	-	\vdash			┦—	ļ	_	_	-	\dashv				4		\vdash			4
 		-	\vdash			_	<u> </u>	-/			_				\	<u> </u>	-		/_	-
+-/		-	\vdash			1_	↓	$\bot \angle$			_				A.	↓	\vdash			4
 		-	\vdash			-	<u> </u>	/_			_			\vdash	11	-	\vdash			4
+/-+		\vdash	-			\leftarrow	L-/	_			_	}		_	$\vdash \vdash$		\vdash			-1
+/+		Н	-+			-	1				_	\rightarrow			<u> </u>	\	\vdash			4
/		Н	-			<u> </u>	/_				_	{			\perp	1			/	4
$A \longrightarrow$		\square	-		\	$\perp \angle$					_					\Box	\vdash		· · · · · · · · · · · · · · · · · · ·	4
+ +			\rightarrow		\rightarrow	<u>X</u>		_			_				\perp					_
RNAROUND TIME		\perp	-					,									\triangle			4
			ALN	Ormal 48-Hour Rush	24-Hour Rush Received by (Signature)	TRRP	Labor	atory	Review	Chec	klist Time:	_	Bill To: Pl		No				\dashv
austo	Wale	_		9-29-22 9:	51 When	12	Ru	gas	er	9129	122	9:9	Ì٥	OIII TO. FI	airis					1
qublied by (Signature)				Date: Time:	Received by (Signature	, 1		**		Date:		Time:	•							
quished by (Signature)				Date: time;	Received by (Signature					Date:	_	Time:		e-mail re	ults to	:				-
				, me.	necesses by (38) acute	,					- 1				aaro	n.adam	ns@terra	acon.com		1
quished by (Signature)				Date: Time:	Received by (Signature)				Date:		Time:						acon.com		
	-Wastewater	,	Water	S · Soil	L - Liquid A - Air Bag	C · Charco	sal tube		SL · Słudge											
VO	- 40 mi vial		VG - Amber	Glass 11. 250 ml = Glass wide mouth	P/O - Plastic or other															_
				bbock Office	■ 5847 50th Stree	t = L	ubbo	ck. T	exas	79424	-	806-	300-0	140						
					Responsive m	_				-61-										

Page 96 of 119

Received by OCD: 4/17/2023 10:46:38 AM

Login Sample Receipt Checklist

Client: Terracon Consulting Eng & Scientists

Job Number: 820-5965-1

SDG Number: AR227011

Login Number: 5965 List Source: Eurofins Lubbock

List Number: 1

Creator: Ruggles, Ashley

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

4

10/5/2022

<6mm (1/4").

Login Sample Receipt Checklist

Client: Terracon Consulting Eng & Scientists

Job Number: 820-5965-1

SDG Number: AR227011

Login Number: 5965 **List Source: Eurofins Houston** List Number: 2

Creator: Bolch, Taylor

List Creation: 09/30/22 01:12 PM

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

<6mm (1/4").

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Joel Lowry Etech Environmental & Safety Solutions PO BOX 62228 Midland, Texas 79711

Generated 3/6/2023 2:02:58 PM

JOB DESCRIPTION

Livingston Line SDG NUMBER Lea County NM

JOB NUMBER

880-25364-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 3/6/2023 2:02:58 PM

Authorized for release by Jessica Kramer, Project Manager <u>Jessica.Kramer@et.eurofinsus.com</u> (432)704-5440

3

4

_

7

ŏ

1 N

11

12

14

Client: Etech Environmental & Safety Solutions Project/Site: Livingston Line

Laboratory Job ID: 880-25364-1 SDG: Lea County NM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	13
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Racaint Chacklists	20

Definitions/Glossary

Client: Etech Environmental & Safety Solutions

Project/Site: Livingston Line

SDG:

Job ID: 880-25364-1 SDG: Lea County NM

Qualifiers

00	١,	$\overline{}$	•
GC	v	U	А

Qualifier Description
LCS and/or LCSD is outside acceptance limits, low biased.
LCS and/or LCSD is outside acceptance limits, high biased.
LCS/LCSD RPD exceeds control limits.
MS and/or MSD recovery exceeds control limits.
Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Surrogate recovery exceeds control limits, low biased.
Indicates the analyte was analyzed for but not detected.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated

ND	Not Detected at the reporting limit (or MDL or EDL if shown)

NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive

PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)

RI	Reporting Limit or Requested Limit (Radiochemistry)

RPD	Relative Percent Difference, a measure of the relative difference between two points

TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin

TNTC Too Numerous To Count

Eurofins Midland

Case Narrative

Client: Etech Environmental & Safety Solutions

Project/Site: Livingston Line

Job ID: 880-25364-1 SDG: Lea County NM

Job ID: 880-25364-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-25364-1

Receipt

The samples were received on 3/1/2023 4:37 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.7°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: Etech Environmental & Safety Solutions

Project/Site: Livingston Line

Date Received: 03/01/23 16:37

Analyzed

03/03/23 13:22

Job ID: 880-25364-1 SDG: Lea County NM

Client Sample ID: MW-2 Lab Sample ID: 880-25364-1 Date Collected: 02/17/23 10:00

Result Qualifier

<0.000657 U

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000408	U	0.00200	0.000408	mg/L			03/03/23 09:45	1
Toluene	< 0.000367	U	0.00200	0.000367	mg/L			03/03/23 09:45	1
Ethylbenzene	< 0.000657	U	0.00200	0.000657	mg/L			03/03/23 09:45	1
m-Xylene & p-Xylene	<0.000629	U	0.00400	0.000629	mg/L			03/03/23 09:45	1
o-Xylene	<0.000642	U	0.00200	0.000642	mg/L			03/03/23 09:45	1
Xylenes, Total	<0.000642	U	0.00400	0.000642	mg/L			03/03/23 09:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	115		70 - 130			-		03/03/23 09:45	1
1,4-Difluorobenzene (Surr)	110		70 - 130					03/03/23 09:45	1

Client Sample ID: MW-3 Lab Sample ID: 880-25364-2

0.00400

RL

MDL Unit

0.000657 mg/L

D

Prepared

Date Collected: 02/17/23 12:00 **Matrix: Water**

Date Received: 03/01/23 16:37

Analyte

Total BTEX

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000408	U	0.00200	0.000408	mg/L			03/03/23 10:05	1
Toluene	< 0.000367	U	0.00200	0.000367	mg/L			03/03/23 10:05	1
Ethylbenzene	<0.000657	U	0.00200	0.000657	mg/L			03/03/23 10:05	1
m-Xylene & p-Xylene	<0.000629	U	0.00400	0.000629	mg/L			03/03/23 10:05	1
o-Xylene	<0.000642	U	0.00200	0.000642	mg/L			03/03/23 10:05	1
Xylenes, Total	<0.000642	U	0.00400	0.000642	mg/L			03/03/23 10:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		70 - 130			_		03/03/23 10:05	1
1,4-Difluorobenzene (Surr)	111		70 - 130					03/03/23 10:05	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.000657	11	0.00400	0.000657	mg/L			03/03/23 13:22	1

Client Sample ID: MW-15 Lab Sample ID: 880-25364-3 Date Collected: 02/17/23 14:00

Date Received: 03/01/23 16:37

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000408	U F1 *1 *-	0.00200	0.000408	mg/L			03/03/23 11:25	1
Toluene	< 0.000367	U F1 *1 *-	0.00200	0.000367	mg/L			03/03/23 11:25	1
Ethylbenzene	0.000780	J F1 *1 *-	0.00200	0.000657	mg/L			03/03/23 11:25	1
m-Xylene & p-Xylene		J F1 *+ *1 *-	0.00400	0.000629	mg/L			03/03/23 11:25	1
o-Xylene	<0.000642	U F1 *+ *1 *-	0.00200	0.000642	mg/L			03/03/23 11:25	1
Xylenes, Total	0.000804	J *+ *1 *- F1	0.00400	0.000642	mg/L			03/03/23 11:25	1

Eurofins Midland

Dil Fac

Matrix: Water

Client: Etech Environmental & Safety Solutions

Project/Site: Livingston Line

Client Sample ID: MW-15

Date Collected: 02/17/23 14:00 Date Received: 03/01/23 16:37

Lab Sample ID: 880-25364-3

Matrix: Water

Job ID: 880-25364-1

SDG: Lea County NM

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	116		70 - 130		03/03/23 11:25	1
1,4-Difluorobenzene (Surr)	75		70 - 130		03/03/23 11:25	1

Method: TAL SOP Total BTEX - Tot	al BTEX Calc	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.00158	J	0.00400	0.000657	mg/L			03/06/23 14:35	1

Client Sample ID: MW-6 Lab Sample ID: 880-25364-4

Date Collected: 02/17/23 13:00 **Matrix: Water**

Date Received: 03/01/23 16:37

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000408	U *- *1	0.00200	0.000408	mg/L			03/03/23 11:46	1
l foluene	< 0.000367	U *- *1	0.00200	0.000367	mg/L			03/03/23 11:46	1
Ethylbenzene	< 0.000657	U *- *1	0.00200	0.000657	mg/L			03/03/23 11:46	1
n-Xylene & p-Xylene	<0.000629	U *- *+ *1	0.00400	0.000629	mg/L			03/03/23 11:46	1
p-Xylene	<0.000642	U *- *+ *1	0.00200	0.000642	mg/L			03/03/23 11:46	1
Xylenes, Total	<0.000642	U *- *+ *1	0.00400	0.000642	mg/L			03/03/23 11:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130			-		03/03/23 11:46	1
1,4-Difluorobenzene (Surr)	67	S1-	70 - 130					03/03/23 11:46	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.000657	U	0.00400	0.000657	mg/L			03/06/23 14:35	

DFBZ = 1,4-Difluorobenzene (Surr)

Surrogate Summary

Client: Etech Environmental & Safety Solutions

Job ID: 880-25364-1 Project/Site: Livingston Line SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Water Prep Type: Total/NA

		BFB1	DFBZ1	Percent Surrogate Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	·
380-25364-1	MW-2	115	110	
380-25364-2	MW-3	112	111	
880-25364-3	MW-15	116	75	
880-25364-3 MS	MW-15	124	101	
880-25364-3 MSD	MW-15	123	93	
880-25364-4	MW-6	104	67 S1-	
880-25365-B-1 MS	Matrix Spike	114	112	
880-25365-B-1 MSD	Matrix Spike Duplicate	112	109	
LCS 880-47605/34	Lab Control Sample	115	110	
LCS 880-47689/3	Lab Control Sample	117	102	
LCSD 880-47605/35	Lab Control Sample Dup	114	109	
LCSD 880-47689/4	Lab Control Sample Dup	122	101	
MB 880-47338/5-A	Method Blank	104	104	
MB 880-47605/39	Method Blank	104	103	
MB 880-47689/8	Method Blank	77	83	
Surrogate Legend				

Eurofins Midland

Client: Etech Environmental & Safety Solutions

Method: 8021B - Volatile Organic Compounds (GC)

Project/Site: Livingston Line

Job ID: 880-25364-1

Prep Type: Total/NA

Prep Batch: 47338

Client Sample ID: Method Blank

SDG: Lea County NM

Dil Fac

Lab Sample ID: MB 880-47338/5-A

Matrix: Water

Analysis Batch: 47605

MR MR

	1410	11.0							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000408	U	0.00200	0.000408	mg/L		02/27/23 14:58	03/02/23 13:30	1
Toluene	< 0.000367	U	0.00200	0.000367	mg/L		02/27/23 14:58	03/02/23 13:30	1
Ethylbenzene	<0.000657	U	0.00200	0.000657	mg/L		02/27/23 14:58	03/02/23 13:30	1
m-Xylene & p-Xylene	<0.000629	U	0.00400	0.000629	mg/L		02/27/23 14:58	03/02/23 13:30	1
o-Xylene	<0.000642	U	0.00200	0.000642	mg/L		02/27/23 14:58	03/02/23 13:30	1
Xylenes, Total	< 0.000642	U	0.00400	0.000642	mg/L		02/27/23 14:58	03/02/23 13:30	1

MB MB

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	104		70 - 130
1,4-Difluorobenzene (Surr)	104		70 - 130

02/27/23 14:58 03/02/23 13:30 Client Sample ID: Method Blank

Analyzed

03/02/23 13:30

Prepared

02/27/23 14:58

Prep Type: Total/NA

Analysis Batch: 47605

Matrix: Water

Lab Sample ID: MB 880-47605/39

мв мв

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000408	U	0.00200	0.000408	mg/L			03/03/23 01:38	1
Toluene	< 0.000367	U	0.00200	0.000367	mg/L			03/03/23 01:38	1
Ethylbenzene	<0.000657	U	0.00200	0.000657	mg/L			03/03/23 01:38	1
m-Xylene & p-Xylene	<0.000629	U	0.00400	0.000629	mg/L			03/03/23 01:38	1
o-Xylene	<0.000642	U	0.00200	0.000642	mg/L			03/03/23 01:38	1
Xylenes, Total	<0.000642	U	0.00400	0.000642	mg/L			03/03/23 01:38	1

MB MB

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130	_		03/03/23 01:38	1
1,4-Difluorobenzene (Surr)	103		70 - 130			03/03/23 01:38	1

Lab Sample ID: LCS 880-47605/34

Matrix: Water

Analysis Batch: 47605

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

•	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1019		mg/L		102	70 - 130	
Toluene	0.100	0.1004		mg/L		100	70 - 130	
Ethylbenzene	0.100	0.1051		mg/L		105	70 - 130	
m-Xylene & p-Xylene	0.200	0.2243		mg/L		112	70 - 130	
o-Xylene	0.100	0.1109		mg/L		111	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	115	70 - 130
1.4-Difluorobenzene (Surr)	110	70 - 130

Lab Sample ID: LCSD 880-47605/35

Matrix: Water

Analysis Batch: 47605

-	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1093	-	mg/L		109	70 - 130	7	20

Eurofins Midland

Prep Type: Total/NA

Client: Etech Environmental & Safety Solutions

Job ID: 880-25364-1 Project/Site: Livingston Line SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-47605/35

Matrix: Water

Analysis Batch: 47605

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Toluene 0.100 0.1095 109 70 - 130 20 mg/L 9 Ethylbenzene 0.100 0.1130 mg/L 113 70 - 130 0.200 m-Xylene & p-Xylene 0.2412 mg/L 121 70 - 130 20 o-Xylene 0.100 0.1191 mg/L 119 70 - 130 20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	114		70 - 130
1,4-Difluorobenzene (Surr)	109		70 - 130

Lab Sample ID: 880-25365-B-1 MS

Matrix: Water

Analysis Batch: 47605

Client Sample ID: Matrix Spike

Prep Type: Total/NA

MS MS %Rec Sample Sample Spike Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits Benzene <0.000408 0.100 0.1060 106 70 - 130 mg/L Toluene <0.000367 U 0.100 0.1019 102 70 - 130 mg/L Ethylbenzene <0.000657 U 0.100 0.1065 107 70 - 130 mg/L 0.200 m-Xylene & p-Xylene 0.000712 J 0.2248 70 - 130 mg/L 112 o-Xylene <0.000642 U 0.100 0.1126 mg/L 113 70 - 130

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	114	70 - 130
1,4-Difluorobenzene (Surr)	112	70 - 130

Lab Sample ID: 880-25365-B-1 MSD

Matrix: Water

Analysis Batch: 47605

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.000408	U	0.100	0.1123		mg/L		112	70 - 130	6	25
Toluene	<0.000367	U	0.100	0.1082		mg/L		108	70 - 130	6	25
Ethylbenzene	<0.000657	U	0.100	0.1106		mg/L		111	70 - 130	4	25
m-Xylene & p-Xylene	0.000712	J	0.200	0.2332		mg/L		116	70 - 130	4	25
o-Xylene	<0.000642	U	0.100	0.1150		mg/L		115	70 - 130	2	25
	Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Analyte Result Benzene <0.000408 Toluene <0.000367 Ethylbenzene <0.000657 m-Xylene & p-Xylene 0.000712	Analyte Result Qualifier Benzene <0.000408 U Toluene <0.000367 U Ethylbenzene <0.000657 U m-Xylene & p-Xylene 0.000712 J	Analyte Result Qualifier Added Benzene <0.000408 U 0.100 Toluene <0.000367 U 0.100 Ethylbenzene <0.000657 U 0.100 m-Xylene & p-Xylene 0.000712 J 0.200	Analyte Result Qualifier Added Result Benzene <0.000408 U 0.100 0.1123 Toluene <0.000367 U 0.100 0.1082 Ethylbenzene <0.000657 U 0.100 0.1106 m-Xylene & p-Xylene 0.000712 J 0.200 0.2332	Analyte Result Qualifier Added Result Qualifier Benzene <0.000408 U 0.100 0.1123 Toluene <0.000367 U 0.100 0.1082 Ethylbenzene <0.000657 U 0.100 0.1106 m-Xylene & p-Xylene 0.000712 J 0.200 0.2332	Analyte Result Qualifier Added Result Qualifier Unit Benzene <0.000408 U 0.100 0.1123 mg/L Toluene <0.000367 U 0.100 0.1082 mg/L Ethylbenzene <0.000657 U 0.100 0.1106 mg/L m-Xylene & p-Xylene 0.000712 J 0.200 0.2332 mg/L	Analyte Result Qualifier Added Result Qualifier Unit D Benzene <0.000408 U 0.100 0.1123 mg/L Toluene <0.000367 U 0.100 0.1082 mg/L Ethylbenzene <0.000657 U 0.100 0.1106 mg/L m-Xylene & p-Xylene 0.000712 J 0.200 0.2332 mg/L	Analyte Result Qualifier Added Result Qualifier Unit D %Rec Benzene <0.000408 U 0.100 0.1123 mg/L 112 Toluene <0.000367 U 0.100 0.1082 mg/L 108 Ethylbenzene <0.000657 U 0.100 0.1106 mg/L 111 m-Xylene & p-Xylene 0.000712 J 0.200 0.2332 mg/L 116	Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Benzene <0.000408 U 0.100 0.1123 mg/L 112 70 - 130 Toluene <0.000367 U 0.100 0.1082 mg/L 108 70 - 130 Ethylbenzene <0.000657 U 0.100 0.1106 mg/L 111 70 - 130 m-Xylene & p-Xylene 0.000712 J 0.200 0.2332 mg/L 116 70 - 130	Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Benzene <0.000408 U 0.100 0.1123 mg/L 112 70 - 130 6 Toluene <0.000367 U 0.100 0.1082 mg/L 108 70 - 130 6 Ethylbenzene <0.000657 U 0.100 0.1106 mg/L 111 70 - 130 4 m-Xylene & p-Xylene 0.000712 J 0.200 0.2332 mg/L 116 70 - 130 4

MSD MSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	112	70 - 130
1,4-Difluorobenzene (Surr)	109	70 - 130

Lab Sample ID: MB 880-47689/8

Matrix: Water

Analysis Batch: 47689

Client Sample ID: Method Blank

Prep Type: Total/NA

мв мв

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000408	U	0.00200	0.000408	mg/L			03/03/23 11:04	1
Toluene	< 0.000367	U	0.00200	0.000367	mg/L			03/03/23 11:04	1
Ethylbenzene	<0.000657	U	0.00200	0.000657	mg/L			03/03/23 11:04	1
m-Xylene & p-Xylene	<0.000629	U	0.00400	0.000629	mg/L			03/03/23 11:04	1

Eurofins Midland

Page 10 of 20

Client: Etech Environmental & Safety Solutions

Project/Site: Livingston Line

Job ID: 880-25364-1

SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 880-47689/8

Matrix: Water

Analysis Batch: 47689

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	<0.000642	U	0.00200	0.000642	mg/L			03/03/23 11:04	1
Xylenes, Total	<0.000642	U	0.00400	0.000642	mg/L			03/03/23 11:04	1

MD MD

мв мв

	1110	mb				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	77		70 - 130		03/03/23 11:04	1
1,4-Difluorobenzene (Surr)	83		70 - 130		03/03/23 11:04	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 47689

Lab Sample ID: LCS 880-47689/3

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.06223	*_	mg/L		62	70 - 130	
Toluene	0.100	0.05890	*-	mg/L		59	70 - 130	
Ethylbenzene	0.100	0.06072	*-	mg/L		61	70 - 130	
m-Xylene & p-Xylene	0.200	0.1284	*_	mg/L		64	70 - 130	
o-Xylene	0.100	0.06487	*_	mg/L		65	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	117	70 - 130
1.4-Difluorobenzene (Surr)	102	70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 47689

Matrix: Water

Lab Sample ID: LCSD 880-47689/4

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1106	*1	mg/L	_	110	70 - 130	56	20
Toluene	0.101	0.1116	*1	mg/L		111	70 - 130	62	20
Ethylbenzene	0.100	0.1248	*1	mg/L		124	70 - 130	69	20
m-Xylene & p-Xylene	0.201	0.2659	*+ *1	mg/L		132	70 - 130	70	20
o-Xylene	0.101	0.1360	*+ *1	mg/L		135	70 - 130	71	20

LCSD LCSD

Surrogate	%Recovery Qua	lifier Limits
4-Bromofluorobenzene (Surr)	122	70 - 130
1,4-Difluorobenzene (Surr)	101	70 - 130

Lab Sample ID: 880-25364-3 MS

Matrix: Water

Analysis Batch: 47689

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.000408	U F1 *1 *-	0.100	0.1531	F1	mg/L		152	70 - 130	
Toluene	< 0.000367	U F1 *1 *-	0.101	0.1519	F1	mg/L		151	70 - 130	
Ethylbenzene	0.000780	J F1 *1 *-	0.100	0.1737	F1	mg/L		172	70 - 130	
m-Xylene & p-Xylene	0.000804	J F1 *+ *1	0.201	0.3753	F1	mg/L		186	70 - 130	
		*_								

Eurofins Midland

Released to Imaging: 5/17/2023 11:12:57 AM

Client Sample ID: MW-15 Prep Type: Total/NA

Client: Etech Environmental & Safety Solutions

Project/Site: Livingston Line

Job ID: 880-25364-1

SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-25364-3 MS **Matrix: Water**

Analysis Batch: 47689

Client Sample ID: MW-15 Prep Type: Total/NA

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits <0.000642 o-Xylene U F1 *+ *1 0.101 0.1832 F1 182 70 - 130 mg/L

MS MS Qualifier Surrogate %Recovery Limits 70 - 130 4-Bromofluorobenzene (Surr) 124 1,4-Difluorobenzene (Surr) 101 70 - 130

Lab Sample ID: 880-25364-3 MSD Client Sample ID: MW-15 Prep Type: Total/NA **Matrix: Water**

Analysis Batch: 47689

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.000408	U F1 *1 *-	0.100	0.1825	F1	mg/L		182	70 - 130	18	25
Toluene	< 0.000367	U F1 *1 *-	0.101	0.1681	F1	mg/L		167	70 - 130	10	25
Ethylbenzene	0.000780	J F1 *1 *-	0.100	0.1836	F1	mg/L		182	70 - 130	6	25
m-Xylene & p-Xylene	0.000804	J F1 *+ *1 *-	0.201	0.3906	F1	mg/L		194	70 - 130	4	25
o-Xylene	<0.000642	U F1 *+ *1 *	0.101	0.1921	F1	mg/L		191	70 - 130	5	25

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	123		70 - 130
1.4-Difluorobenzene (Surr)	93		70 - 130

QC Association Summary

Client: Etech Environmental & Safety Solutions

Project/Site: Livingston Line

Job ID: 880-25364-1 SDG: Lea County NM

2

GC VOA

Prep Batch: 47338

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-47338/5-A	Method Blank	Total/NA	Water	5035	

Analysis Batch: 47605

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-25364-1	MW-2	Total/NA	Water	8021B	
880-25364-2	MW-3	Total/NA	Water	8021B	
MB 880-47338/5-A	Method Blank	Total/NA	Water	8021B	47338
MB 880-47605/39	Method Blank	Total/NA	Water	8021B	
LCS 880-47605/34	Lab Control Sample	Total/NA	Water	8021B	
LCSD 880-47605/35	Lab Control Sample Dup	Total/NA	Water	8021B	
880-25365-B-1 MS	Matrix Spike	Total/NA	Water	8021B	
880-25365-B-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8021B	

Analysis Batch: 47689

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-25364-3	MW-15	Total/NA	Water	8021B	-
880-25364-4	MW-6	Total/NA	Water	8021B	
MB 880-47689/8	Method Blank	Total/NA	Water	8021B	
LCS 880-47689/3	Lab Control Sample	Total/NA	Water	8021B	
LCSD 880-47689/4	Lab Control Sample Dup	Total/NA	Water	8021B	
880-25364-3 MS	MW-15	Total/NA	Water	8021B	
880-25364-3 MSD	MW-15	Total/NA	Water	8021B	

Analysis Batch: 47751

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Bat	ch
880-25364-1	MW-2	Total/NA	Water	Total BTEX	_
880-25364-2	MW-3	Total/NA	Water	Total BTEX	
880-25364-3	MW-15	Total/NA	Water	Total BTEX	
880-25364-4	MW-6	Total/NA	Water	Total BTEX	

Eurofins Midland

Job ID: 880-25364-1 SDG: Lea County NM

Client Sample ID: MW-2

Lab Sample ID: 880-25364-1

Matrix: Water

Date Collected: 02/17/23 10:00 Date Received: 03/01/23 16:37

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	47605	03/03/23 09:45	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			47751	03/03/23 13:22	SM	EET MID

Lab Sample ID: 880-25364-2

Client Sample ID: MW-3 Date Collected: 02/17/23 12:00 **Matrix: Water**

Date Received: 03/01/23 16:37

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	47605	03/03/23 10:05	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			47751	03/03/23 13:22	SM	EET MID

Client Sample ID: MW-15 Lab Sample ID: 880-25364-3

Date Collected: 02/17/23 14:00 **Matrix: Water**

Date Received: 03/01/23 16:37

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	47689	03/03/23 11:25	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			47751	03/06/23 14:35	SM	EET MID

Client Sample ID: MW-6 Lab Sample ID: 880-25364-4 **Matrix: Water**

Date Collected: 02/17/23 13:00 Date Received: 03/01/23 16:37

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	47689	03/03/23 11:46	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			47751	03/06/23 14:35	SM	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Released to Imaging: 5/17/2023 11:12:57 AM

Accreditation/Certification Summary

Client: Etech Environmental & Safety Solutions

Job ID: 880-25364-1 Project/Site: Livingston Line SDG: Lea County NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date	
Texas	NI NI	ELAP	T104704400-22-25	06-30-23	
The following analytes	are included in this report, bu	it the laboratory is not certifi	ied by the governing authority. This list ma	av include analytes for	
• ,	•	it the laboratory is not certifi	ied by the governing authority. This list ma	ay include analytes for	
the agency does not o	•	ut the laboratory is not certifi	ied by the governing authority. This list ma	ay include analytes for	
• ,	•	ut the laboratory is not certifi Matrix	ied by the governing authority. This list ma Analyte	ay include analytes for t	

Method Summary

Client: Etech Environmental & Safety Solutions

Project/Site: Livingston Line

Job ID: 880-25364-1

000 ID. 0	00-2000	/ - - 1
SDG: Lea	County	NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
5030B	Purge and Trap	SW846	EET MID

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Etech Environmental & Safety Solutions

Project/Site: Livingston Line

Job ID: 880-25364-1

SDG: Lea County NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-25364-1	MW-2	Water	02/17/23 10:00	03/01/23 16:37
880-25364-2	MW-3	Water	02/17/23 12:00	03/01/23 16:37
880-25364-3	MW-15	Water	02/17/23 14:00	03/01/23 16:37
880-25364-4	MW-6	Water	02/17/23 13:00	03/01/23 16:37

Page 18 of 20

Released to Imaging: 5/17/2023 11:12:57 AM

Chain of Custody

Environment Testing Xenco

Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199

Work Order No: 25364

www.xenco.com

Project Manager:	et Manager: Joel Lowry						Bill to: (If different) Plains All American Pipeline						Work Order Comments											
Company Name:						Company Name.			C/O Canille Bryant						Program: UST/PST☐ PRF☐ Brownfield RRC☐ Superfunc☐							□		
						Address:			1106 Griffith Dine						State of Project:									
					City, State	Midland TX 79.706						Reporting Level II Level III PST/UST TRRF Level I							rO					
Phone: 575-396-2378 Email:																Deliver	ables	EDD		Γ □ Other·				
Project Name: Livingston Line Turn					m Around ANALYSIS REC							EQL	QUEST						Preserv	Preservative Codes				
Project Number:	17475			☐ Routine	☐ Rush		Pres. Code															None NO	Di Water H	I ₂ O
Project Location:	Lea Cont	٠.٨	M	Due Date:			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,															Cool Cool	MeOH Me	
Sampler's Name: Lach Conder TAT star			TAT starts the			Įρ		- 150m												1	HCL HC H ₂ S0 ₄ H ₂	HNO ₃ : HN NaOH Na		
SAMPLE RECEI	The state of the s	THE PROPERTY OF THE PARTY OF TH	Yes No	Wet Ice:	Yes	No	ıeteı															H₃PO₄: HP		
Samples Received In	ntact: (Yes	No,	Thermome	er ID:	IK	4	агап				-											NaHSO₄ NAB	BIS	
Cooler Custody Seal	s: Yes No	(N/A	Correction	Factor:	-00		ã		,				į.		- 1							Na ₂ S ₂ O ₃ . NaS	iO₃	
Sample Custody Sea	APPROPRIEST APPROPRIES		TTT TO STATE OF THE STATE OF TH	re Reading:	0.9	6									- 1							Zn Acetate+N		
Total Containers:	n		Corrected 7	Temperature:	00			1														NaOH+Ascort	oic Acid SAPC	
Sample Identification Matrix Date Sampled		Time Sampled	Denth I		# of Cont	3														Sample	Comments			
MW Z		W	2-17-23	10:00	_	-	3	X																
MW 3		W		12:00		_	3	X																
MW 5		W		2:00	_	_	3	X												1	1	1		
MW 6		W		1:00	_	~	3	X														ili ili ili ili ili ili ili ili ili ili	Hanara en en en en en en en en en en en en en	
																				80-25	364 C	hain of Custoo		
																				L Custoo	ly			

Total 200.7 / 6010 200.8 / 6020:

Circle Method(s) and Metal(s) to be analyzed

8RCRA 13PPM Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO2 Na Sr Tl Sn U V Zn TCLP / SPLP 6010: 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U Hg. 1631 / 245.1 / 7470 / 7471

Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofins Xanco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated.

Relinquished by: (Signature) Relinquished by: (Signature) Received by: (Signature) Date/Time

2536

Login Sample Receipt Checklist

Client: Etech Environmental & Safety Solutions

Job Number: 880-25364-1

SDG Number: Lea County NM
List Source: Eurofins Midland

Login Number: 25364

List Number: 1

Creator: Kramer, Jessica

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

2

3

4

6

8

10

. .

13

14

<6mm (1/4").

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 208274

CONDITIONS

Operator:	OGRID:				
PLAINS MARKETING L.P.	34053				
333 Clay Street Suite 1900	Action Number:				
Houston, TX 77002	208274				
	Action Type:				
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)				

CONDITIONS

Created By	Condition	Condition Date
michael.buchanan	1. Continue to gauge and sample MW-2, MW-3, MW-5, MW-6 quarterly for BTEX. 2. MW-7, MW-8, MW-10, MW-11 shall continue to be gauged and sampled annually. MW-9 gauged quarterly and sampled if enough volume is present. 3. PSH recovery shall continue monthly. for MW-4. Monthly PAH recovery shall continue for MW-5 4. 2023 Annual Groundwater Monitoring Report will be submitted to OCD no later than April 1, 2024	5/17/2023