

August 7, 2023

New Mexico Oil Conservation Division New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Remediation Work Plan Baish B Battery Incident Number NAPP2235372941 Lea County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum), on behalf of Maverick Permian, LLC (Maverick), has prepared the following *Remediation Work Plan* (RWP) to address residually impacted soil resulting from an overflow of crude oil related to a tank at the Baish B Battery (Site). This RWP provides a summary of assessment and delineation activities as well as excavation and soil sampling activities completed to date. Based on remediation activities described below, Maverick is submitting this RWP to complete excavation of impacted soil in a heavily concentrated underground and aboveground flowline corridor as it relates to Incident Number NAPP2235372941.

SITE DESCRIPTION AND RELEASE SUMMARY

The Site is located in Unit K, Section 22, Township 17 South, Range 32 East, in Lea County, New Mexico (32.817358°, -103.754432°) and is associated with oil and gas exploration and production operations on Federal land managed by the Bureau of Land Management (BLM).

On November 30, 2022, a tank overflowed resulting in the release of 7.4 barrels (bbls) of crude oil on and off pad. No released fluids were recovered. Maverick reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Release Notification Form C-141 (Form C-141) on December 19, 2022. The release was assigned Incident Number NAPP2235372941.

SITE CHARACTERIZATION AND CLOSURE CRITERIA

The Site was characterized to assess the applicability of Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29 (19.15.29) of the New Mexico Administrative Code (NMAC). Results from the characterization desktop review are presented on page 3 of the Form C-141, Site Assessment/Characterization. Potential Site receptors are identified on Figure 1.

Depth to groundwater at the Site is estimated to be between 51 feet and 100 feet below ground surface (bgs) based on the nearest available groundwater well data. The closest permitted groundwater well with depth to groundwater data is New Mexico Office of the State Engineer (NMOSE) well RA-12521-POD 1, located 4,880 feet west-southwest of the Site. The groundwater well was drilled during July 2017 to depth of 105 feet bgs and has a reported depth to groundwater of 92 feet bgs. All wells used for depth

to groundwater determination are presented on Figure 1. The referenced well records are included in Appendix A.

The closest continuously flowing or significant watercourse to the Site is greater than 300 feet away. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet from a spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is not underlain by unstable geology (low potential karst designation area). Site receptors are identified on Figure 1.

Based on the results of the Site Characterization, the following NMOCD Table I Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH)-gasoline range organics (GRO) and TPH-diesel range organics (DRO): 1,000 mg/kg
- TPH: 2,500 mg/kg
- Chloride: 10,000 mg/kg

A reclamation requirement of 600 mg/kg chloride and 100 mg/kg TPH applies to the top 4 feet of the pasture area that was impacted by the release, per NMAC 19.15.29.13.D (1) for the top 4 feet of areas that will be reclaimed following remediation.

SITE ASSESSMENT AND DELINEATION ACTIVITIES

On December 1, 2022 and January 9, 2023, Site assessment activities were conducted to evaluate the release extent based on information provided on the Form C-141 and visual observations. A total of eight surface soil samples (SS01 through SS08) we collected from in and around the release extent; surface soil samples SS01 and SS02 were collected within the release extent. All soil samples were collected at 0.5 feet bgs.

Soil samples were field screened for volatile organic compounds (VOCs) utilizing a calibrated photoionization detector (PID) and chloride using Hach[®] chloride QuanTab[®] test strips. The delineation soil sample locations are depicted on Figure 2. Photographic documentation was conducted at the Site. A photographic log is included in Appendix B.

The soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported under strict chain-of-custody procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analyses of the following constituents of concern (COCs): BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH- GRO, TPH-DRO, and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

Laboratory analytical results indicated concentrations of TPH-GRO and TPH-DRO combined as well as total TPH exceeded the Closure Criteria in soil samples SS01 and SS02. As a result, excavation of impacted soil appeared warranted. Laboratory analytical results are summarized in Table 1 and the complete laboratory analytical reports are included as Appendix C.

EXCAVATION ACTIVITIES

Following Site assessment activities, excavation of impacted soil was completed between February 27, 2023 and March 2, 2023. Excavation activities were performed using a backhoe and transport vehicles, which were directed by soil screening for VOCs and chloride. Based on field screening, impacted soil was excavated by mechanical means in three locations: east, south-central, and west. The east excavation was completed to depths ranging from approximately 2 feet to 3.5 feet bgs. The south-central excavation was completed to a total depth of approximately 4 feet bgs. The western excavation was completed to total depths ranging from approximately 3 feet to 3.5 feet bgs. Photographic documentation of the excavation activities is included in Appendix B.

Following removal of the impacted soil, 5-point composite soil samples were collected every 200 square feet from the floor and sidewalls of the excavations. The 5-point composite samples were collected by placing five equivalent aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. The soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice and submitted for laboratory analysis as described in the previous section. The excavation extent and excavation soil sample locations are presented on Figure 3. Composite floor and sidewall soil samples included:

- East Excavation: FS01 through FS06 and SW01 and SW02
- South-Central Excavation: FS07 through FS10 and SW06 and SW07
- West Excavation: FS11 through FS13 and SW03 and SW04

Laboratory analytical results for all excavation floor and sidewall samples indicated all COCs were compliant with the Site Closure Criteria. All soil excavation confirmation samples collected off pad met the reclamation requirement, except for floor sample FS01, which contained 104 mg/kg TPH. Laboratory analytical results are summarized in Table 1 and laboratory analytical reports are included as Appendix C.

During excavation activities, an unmarked subsurface flowline was struck just east of the wellhead. It was determined there were other known and potentially unknown utilities in this historically heavily operated area north and east of the wellhead, and as such, Maverick postponed excavation in this area until non-destructive means were available to protect worker safety and reduce/eliminate the potential for an environmental release through inadvertently striking a flowline.

To date, the combined excavation areas (east, south-central, and west) measure approximately 2,620 square feet. A total of approximately 260 cubic yards of impacted soil were removed during excavation activities. The impacted soil was transported and properly disposed of at the R360 Facility in Hobbs, New Mexico. The excavations will be backfilled with locally procured caliche and topsoil and contoured to match the surrounding grade. Areas in the pasture will be seeded with a BLM-approved seed mixture in the fall to support germination and revegetation growth.

PROPOSED REMEDIAL ACTIONS

Additional impacted soil remains on pad north and east of the wellhead and in an area off pad to the south (Figure 4). There are untraceable subsurface flowlines in these areas and Maverick proposes to excavate the remaining impacted soil via hydrovac and/or hand shoveling. The area on the well pad (Proposed North-Central Excavation) is approximately 1,500 square feet in areal extent containing approximately 225 cubic yards of impacted soil, assuming the excavation will be completed to a

maximum depth of 4 feet bgs. The off-pad area (Proposed South Excavation) is approximately 225 square feet in areal extent containing approximately 35 cubic yards of impacted soil, assuming the excavation will be completed to a maximum depth of 4 feet bgs. Following excavation, floor and sidewall confirmation samples will be collected on a frequency of every 200 square feet and submitted for laboratory analysis of BTEX, TPH, and chloride as described above.

Based on a review of the existing excavation sizes, delineation data, and soil confirmation analytical results, the following deficiencies will also be addressed:

- Two additional floor soil samples (FS14 and FS15) and one sidewall sample (SW05) will be collected from the south-central excavation based on the excavation size;
- Additional lateral delineation soil samples will be collected to the northwest (SS09) and north (SS10) of the release extent at approximately 0.5 feet bgs to confirm the lateral extent of the release; and
- Maverick will resample floor soil sample FS01 to determine if natural attenuation supported the
 reduction of 4 mg/kg of TPH concentrations within the top 4 feet of the pasture. Floor soil sample
 FS01 will be resampled as a 5-point composite at a depth of approximately 2 feet bgs. If
 laboratory analytical results indicate natural attenuation has not reduced the TPH concentration
 in this area, the floor will be excavated until the composite floor sample is in compliance with the
 Closure Criteria and reclamation requirement.

NMOCD correspondences to date are included in Appendix D and the C-141 is included in Appendix E.

Initial response efforts and mechanical excavation of impacted soil have mitigated impacts at this Site, but based on the potential for untraceable subsurface pipelines, continued mechanical excavation was prohibited and future excavation is proposed via hydrovac or manual removal. Remedial actions will be completed within 90 days of receiving approval from NMOCD. A Closure Report will be submitted to NMOCD documenting the additional remedial actions following field work.

If you have any questions or comments, please contact Ms. Aimee Cole at (720) 384-7365 or acole@ensolum.com.

Sincerely, Ensolum, LLC

Daniel R. Moir, PG Senior Managing Geologist

Amée Cale

Aimee Cole Senior Managing Scientist

cc: Bryce Wagoner, Maverick Permian, LLC Bureau of Land Management

Appendices:

- Figure 1 Site Receptor Map
- Figure 2 Delineation Soil Sample Locations
- Figure 3 Excavation Soil Sample Locations
- Figure 4 Proposed Remedial Actions
- Table 1Soil Analytical Results
- Appendix A Referenced Well Records
- Appendix B Photographic Log
- Appendix C Laboratory Analytical Reports and Chain-of-Custody Documentation
- Appendix D NMOCD Correspondences
- Appendix E Form C-141

.

FIGURES

.

Received by OCD: 8/10/2023 3:02:55 PM

Released to Imaging: 11/17/2023 7:57:01 AM

Received by OCD: 8/10/2023 3:02:55 PM

Received by OCD: 8/10/2023 3:02:55 PM

Released to Imaging: 11/17/2023 7:57:01 AM

TABLE

.

Released to Imaging: 11/17/2023 7:57:01 AM

🖻 ENSOLUM

				Ma	TABLE 1 LE ANALYTICA Baish B Battery verick Permian, I County, New Me	LLC				
Sample Designation	Date	Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table I	Closure Criteria	(NMAC 19.15.29)	10	50	NE	NE	NE	1,000	2,500	10,000
				Asse	essment Soil San	nples				
SS01	1/9/2023	0.5	<0.201	17.7	1,820	754	<49.9	2,574	2,570	99.8
SS02	1/9/2023	0.5	<0.199	<0.398	9,810	376	<249	10,186	10,200	123
SS03	1/9/2023	0.5	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	55.8
SS04	1/9/2023	0.5	<0.00200	< 0.00399	<50.0	<50.0	<50.0	<50.0	<50.0	44.6
SS05	1/9/2023	0.5	< 0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	67.7
SS06	1/9/2023	0.5	< 0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	44.8
		<u> </u>								
SS07	1/9/2023	0.5	<0.00200	<0.00399	<49.9	<49.9	<49.9	<49.9	<49.9	48.8
SS08	1/9/2023	0.5	<0.00199	<0.00398	<50.0 avation Soil Sam	<50.0	<50.0	<50.0	<50.0	46.3
FS01	02/27/2023	2'	<0.00198	<0.00396	<49.9	104	<49.9	104	104	53.7
FS02	02/27/2023	2'	< 0.00199	< 0.00398	<49.9	55.6	<49.9	55.6	55.6	60.2
FS03	02/27/2023	3.5'	<0.00201	0.490	<50.0	<50.0	<50.0	<50.0	<50.0	55.2
FS04	02/28/2023	2'	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	69.3
FS05	02/28/2023	2'	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	43.1
FS06	02/28/2023	2'	<0.00199	< 0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	54.0
FS07	03/01/2023	4'	<0.00198	< 0.00396	<49.9	146	<49.9	146	146	106
FS08	03/01/2023	4'	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	74.9
FS09	03/01/2023	4'	<0.00200	<0.00401	<50.0	<50.0	<50.0	<50.0	<50.0	305
FS10	02/28/2023	3'	<0.00200	<0.00401	<50.0	<50.0	<50.0	<50.0	<50.0	61.9
FS11	03/01/2023	3.5'	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	158
FS12	03/01/2023	3'	<0.00200	<0.00399	<50.0	<50.0	<50.0	<50.0	<50.0	128
FS13	03/01/2023	3'	<0.00201	<0.00402	70.6	<50.0	<50.0	<50.0	70.6	82.4
SW01	02/27/2023	0-2'	<0.00202	<0.00403	66.7	<50.0	<50.0	<50.0	66.7	36.7
SW02	02/28/2023	0-2'	<0.00199	<0.00398	64.7	<50.0	<50.0	<50.0	64.7	51.8
SW03	03/01/2023	0-3'	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	80.8
SW04	03/01/2023	0-3'	<0.00200	<0.00399	<49.9	<49.9	<49.9	<49.9	<49.9	88.4
SW06	03/01/2023	0-4'	<0.00201	<0.00402	<50.0	<50.0	<50.0	<50.0	<50.0	42.3
SW07	03/01/2023	0-4'	<0.00200	<0.00399	<50.0	<50.0	<50.0	<50.0	<50.0	69.3

Released to Imaging: 11/17/2023 7:57:01 AM

Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram

NMOCD: New Mexico Oil Conservation Division

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

GRO: Gasoline Range Organics

DRO: Diesel Range Organics ORO: Oil Range Organics

TPH: Total Petroleum Hydrocarbon

Concentrations in **bold** exceed the NMOCD Table I Closure Criteria or reclamation standard where applicable.

Grey text represents samples that have been excavated

APPENDIX A

Referenced Well Records

New Mexico Office of the State Engineer Point of Diversion Summary

			(quart	ers are	1=NV	V 2=N	IE 3=SW	/ 4=SE	E)			
			(qua	ters are	e sma	llest to	o largest)		(NAD	983 UT	M in meters)	
Well Tag	POE) Number	Q64	Q16	Q4	Sec	Tws	Rng	Ş	Х	Y	
	RA	12521 POD1	3	3	4	21	17S	32E	615	127	3631271 🍯)
Driller Lic	ense:	1456	Driller	· Com	pan	y:	WH	IITE	DRILLIN	G CC	MPANY	
Driller Na	me:	WHITE, JOHN W										
Drill Start	Date:	07/21/2017	Drill F	'inish	Dat	e:	0	7/26/:	2017	Plu	g Date:	
Log File D	ate:	08/22/2017	PCW	Rcv D	ate:					Soi	irce:	Shallow
Driller Name:WHITE, JOHN WDrill Start Date:07/21/2017DiLog File Date:08/22/2017PCPump Type:Pi		Pipe D	ischa	rge	Size:				Est	imated Yield	:	
Casing Siz	e:	2.00	Pipe Discharge Size:Estimated Yield:Depth Well:105 feetDepth Water:					92 feet				
X	Wate	er Bearing Stratifica	tions:		То	рI	Bottom	De	escription			
					8	5	101	Sa	ndstone/G	ravel	/Conglomerate	e
					10	1	105	Sa	ndstone/G	ravel	/Conglomerate	e
X		Casing Perfor	ations:		То	рI	Bottom	I				
					7	5	105					

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

1/23/23 2:20 PM

POINT OF DIVERSION SUMMARY

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

TANT ENCINEURO (N CARTA FE, REMINEIX

2017 AUG 22 PM 2:55

NO	OSE POD NC MW-24). (WELL NO.	PODI	W	ELL TAG ID NO.		OSE FILE NO(RA-12521	(S).		
OCATI	WELL OWN Phillips 66			I			PHONE (OPTI 918-914-38		<u> </u>	
MELL I	WELL OWN 420 S Keel		ADDRESS 708-01 Phillips Bu	ilding)	· · · · · · · · · · · · · · · · · · ·		CITY Bartlesville		STATE OK	ZIP 74003
GENERAL AND WELL LOCATION	WELL LOCATIO (FROM GI	PS)		2GRÉES 32 103		0.21 W]	REQUIRED: ONE TEN QUIRED: WGS 84	TH OF A SECOND	
1. GENE	DESCRIPTIC Maljamar (ON RELATIN	NGITUDE		AND COMMON LANDI		SS (SECTION, TO	WNSHJIP, RANGE) WH	ERE AVAILABLE	
	LICENSE NO WD-1		NAME OF LICENSED		n W. White			NAME OF WELL DR White D	LLING COMPANY Tilling Company, Inc.	
	DRILLING S 07/21/		DRILLING ENDED 07/26/2017	DEPTH OF COMPI 1	ETED WELL (FT) 05.0	BORE HOI	LE DEPTH (FT)	DEPTH WATER FIR:	ST ENCOUNTERED (FT) 92.0)
z	COMPLETE	D WELL IS:	ARTESIAN	DRY HOLE	SHALLOW (UNC	ONFINED)		STATIC WATER LEV	EL IN COMPLETED WE 92.0	ELL (FT)
TIO	DRILLING F	LUID:	✓ AIR	MUD	ADDITIVES - SPI	ECIFY:	·····			
RMA	DRILLING M	ÆTHOD:	✓ ROTARY	HAMMER	CABLE TOOL	C OTHE	R - SPECIFY:			
& CASING INFORMATION	DEPTH FROM	(feet bgl) TO	BORE HOLE DIAM	G (include cach	TERIAL AND/OR RADE casing string, and	CONN	ASING NECTION TYPE	CASING INSIDE DIAM.	CASING WALL THICKNESS	SLOT SIZE (inches)
CAS	0.0	75.0	(inches) 7 7/8		ons of screen)	(add coupl	ling diameter)	(inches)	(inches)	(mones)
رد درج	75.0	105.0	7 7/8		PVC Screen		hreads	2.0	1/4"	.020
2. DRILLING							<u>. </u>			
ORIL										2 21 27:51 - 22-
2. I									:	
			_ <u>l </u>	 		<u> </u>		<u></u>	l_ <u></u>	<u> </u>
IAL	DEPTH FROM	(feet bgl)	BORE HOLE DIAM. (inches)		NNULAR SEAL MA			AMOUNT (cubic feet)	METHO PLACEM	ÆNT
TER	0.0	65.0	7 7/8		Portland Grou			8 Bags	Pump Mix w/T	
MA'	65.0	72.0	7 7/8		Bentonite Chi	ps		2 Bags	Hand M	
AR	72.0	105.0	7 7/8		8/16 Sand			13 Bags	Hand N	Mix
								1	1	1
NUL				[-				
ANNULAR MATERIAL								· · · · · · · · · · · · · · · · · · ·		
3. ANNUL								· · · · · · · · · · · · · · · · · · ·		
3										
3	OSE INTER	NAL USE			POD NO.		WR-20 TRN N	10/1-	<u>LOG (Version 06/30</u>	0/17)

WELL TAG ID NO.

 \mathbf{z} ~

3

LOCATION

PAGE 1 OF 2

4

•

۰.

			-		······································					~
	DEPTH (; FROM	feet bgl) TO	THICKNESS (feet)	INCLUDE WATE	ID TYPE OF MATERIAL E ER-BEARING CAVITIES O oplemental sheets to fully d	OR FRACTURE ZON	IES	WA' BEAR (YES	ING?	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
	0.0	1.0	1		Base Caliche			Y		ZONES (gpm)
	1.0	7.0	6		Brown Sand	· · · ·		T Y	√N √N	
	7.0	10.0	3					Y	✓ N	
	10.0	18.0	8.0		Reddish brown clayey sa			Y	✓ N	
	18.0	34.0	16.0		Reddish brown sand/sands			Y	✓ N	
	34.0	40.0	6.0	Dark	reddish brown silty shale HC			Y	✓ N	
4. HYDROGEOLOGIC LOG OF WELL	40.0	42.0	2.0		Reddish brown and brown sar			Y	✓ N	
E W	40.0	42.0	7.0	F		·····		Y Y	v N √N	
0.00					Reddish brown silty sha					
CLO	49.0	53.0	4.0		Greenish gray sand/sandst			Y	√ N	
OGIC	53.0	70.0	17.0		Purple brown silty sandste			Y	√ N	
OLO	70.0	85.0	15.0		Light brown sand/sandsto			Y	√ N	
OGE	85.0	101.0	16.0	Gr	een gray silty sandstone Dar			✓ Y	N	
(DR	101.0	105.0	4.0		Gray silty sandstone/sha	le		√Y	N	
T.H.		······						Y	N	
4					···			Y	N	
								Y	N	
								Y	N	
					·····			Y	N	
					•			Y	N	
				<u></u>				Y	N	
								Y	N	
	METHOD U	SED TO ES	TIMATE YIELD	OF WATER-BEARIN	G STRATA:		F	AL ESTIN		
			IR LIFT	BAILER 01	THER - SPECIFY:		WEI	L YIELD	(gpm):	0.00
NOIS	WELL TES	1 STAR	F TIME, END TH	ME, AND A TABLE SE	TA COLLECTED DURING HOWING DISCHARGE AN					
SI VIS	MISCELLA	NEOUS INF	ORMATION: H	drocarbon present in	soil					
TEST; RIG SUPERVISION			-	•						
TES	PRINT NAM	IE(S) OF DI	RILL RIG SUPER	VISOR(S) THAT PRO	VIDED ONSITE SUPERVI	SION OF WELL CO	NSTRU	CTION O	THER TH	AN LICENSEE:
5.	William B	Atkins				<u></u>				
SUGNATURE	THE UNDER CORRECT I AND THE P	RSIGNED H RECORD OI ERMIT HO	EREBY CERTIF F THE ABOVE D LEER WITHIN 3	IES THAT, TO THE B ESCRIBED HOLE AN 0 DAYS AFTER COM	EST OF HIS OR HER KNO ID THAT HE OR SHE WIL PLETION OF WELL DRIL	OWLEDGE AND BI L FILE THIS WELI LING:	ELIEF, T L RECOI	HE FORE D WITH	GOING I THE STA	S A TRUE AND TE ENGINEER
6. SJGN		1A	2					8/8/	2017	
-		SIGNAT	URE OF DRILLE	R / PRINT SIGNEE	NAME				DATE	
FOI	R OSE INTERI			·····		WR-20 W		ርብዩክ ሎ፣	00.00	sion 06/30/2017)
	E NO.				POD NO.	TRN NO.	DEL KË	COND &		51511 00/ <i>50/2017</i>)
LOG	CATION					WELL TAG ID N	D.			PAGE 2 OF 2
	• • • • •									1

APPENDIX B

Photographic Log

Released to Imaging: 11/17/2023 7:57:01 AM

APPENDIX C

Laboratory Analytical Reports & Chain of Custody Documentation

Received by OCD: 8/10/2023 3:02:55 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Hadlie Green Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 1/25/2023 3:17:52 PM

JOB DESCRIPTION

Baish B Battery SDG NUMBER Lea County NM

JOB NUMBER

890-3806-1

FOR Foreen olum Id St. 9701

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information.

Received by OCD: 8/10/2023 3:02:55 PM

Eurofins Carlsbad

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

RAMER

Generated 1/25/2023 3:17:52 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-3806-1 SDG: Lea County NM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
	5
	6
Surrogate Summary	10
QC Sample Results	11
	15
Lab Chronicle	17
Certification Summary	19
Method Summary	20
-	21
	22
	23
-	

Page 23 of 142

	Definitions/Glossary		
Client: Ensolum		DID: 890-3806-1	
Project/Site: Ba	aish B Battery SDG: *	Lea County NM	
Qualifiers		·	3
GC VOA			
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
GC Semi VOA	• · · · · · · · · · · · · · · · · · · ·		5
Qualifier	Qualifier Description		
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			
Qualifier	Qualifier Description		
F1	MS and/or MSD recovery exceeds control limits.		8
U	Indicates the analyte was analyzed for but not detected.		
Glossary			9
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry)		
MDL	Method Detection Limit		
ML	Minimum Level (Dioxin)		
MPN	Most Probable Number		
MQL	Method Quantitation Limit		
NC	Not Calculated		

 RPD
 Relative Percent Difference, a measure of the relative difference between two points

 TEF
 Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin)

Negative / Absent

Positive / Present Practical Quantitation Limit

Presumptive

Quality Control

Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

TNTC Too Numerous To Count

ND

NEG

POS

PQL PRES

QC

RER

RL

Job ID: 890-3806-1 SDG: Lea County NM

Job ID: 890-3806-1

Project/Site: Baish B Battery

Client: Ensolum

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-3806-1

Receipt

The samples were received on 1/10/2023 9:05 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 20.6°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: SS01 (890-3806-1), SS02 (890-3806-2), SS03 (890-3806-3) and SS04 (890-3806-4).

GC VOA

Method 8021B: The following sample was diluted due to the nature of the sample matrix: SS02 (890-3806-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: SS01 (890-3806-1), SS02 (890-3806-2) and (MB 880-43869/1-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300 ORGFM 28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-43791 and analytical batch 880-43930 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Page 5 of 24

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Page 24 of 142

4

5

Eurofins Carlsbad

1/25/2023

Client Sample Results

Job ID: 890-3806-1 SDG: Lea County NM

Lab Sample ID: 890-3806-1

Client Sample ID: SS01

Project/Site: Baish B Battery

Date Collected: 01/09/23 12:35 Date Received: 01/10/23 09:05

Sample Depth: 0.5

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.201	U	0.201	mg/Kg		01/13/23 08:16	01/14/23 10:55	10
Toluene	1.57		0.201	mg/Kg		01/13/23 08:16	01/14/23 10:55	100
Ethylbenzene	2.89		0.201	mg/Kg		01/13/23 08:16	01/14/23 10:55	100
m-Xylene & p-Xylene	9.28		0.402	mg/Kg		01/13/23 08:16	01/14/23 10:55	100
o-Xylene	3.96		0.201	mg/Kg		01/13/23 08:16	01/14/23 10:55	100
Xylenes, Total	13.2		0.402	mg/Kg		01/13/23 08:16	01/14/23 10:55	100
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)			70 - 130			01/13/23 08:16	01/14/23 10:55	10
1,4-Difluorobenzene (Surr)	102		70 - 130			01/13/23 08:16	01/14/23 10:55	100
Method: TAL SOP Total BTEX - T	otal BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	17.7		0.402	mg/Kg			01/25/23 16:06	1
- Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) ((GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	2570		49.9	mg/Kg			01/16/23 16:39	1
- Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	754		49.9	mg/Kg		01/13/23 08:39	01/16/23 04:21	
(GRO)-C6-C10 Diesel Range Organics (Over	1820		49.9	mg/Kg		01/13/23 08:39	01/16/23 04:21	
C10-C28)	1020		-0.0	ilightg		01/10/20 00:00	01/10/20 04.21	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		01/13/23 08:39	01/16/23 04:21	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	133	S1+	70 - 130			01/13/23 08:39	01/16/23 04:21	
o-Terphenyl	119		70 - 130			01/13/23 08:39	01/16/23 04:21	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	ography - S	oluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	99.8		4.99	mg/Kg			01/14/23 09:10	1
Client Sample ID: SS02						Lab Sar	nple ID: 890-	3806-2
Date Collected: 01/09/23 13:50							Matri	x: Solic
Date Received: 01/10/23 09:05								
Sample Depth: 0.5								
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC	;)					
Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.199	U	0.199	mg/Kg		01/13/23 08:16	01/14/23 11:16	10
Toluene	<0.199		0.199	mg/Kg		01/13/23 08:16	01/14/23 11:16	10
Ethylbenzene	<0.199	U	0.199	mg/Kg		01/13/23 08:16	01/14/23 11:16	10
m-Xylene & p-Xylene	<0.398		0.398	mg/Kg		01/13/23 08:16	01/14/23 11:16	10
o-Xylene	0.204		0.199	mg/Kg		01/13/23 08:16	01/14/23 11:16	10
*				5 5				

Xylenes, Total <0.398 U 0.398 mg/Kg 01/13/23 08:16 01/14/23 11:16 100 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 99 70 - 130 01/13/23 08:16 01/14/23 11:16 100

Eurofins Carlsbad

Matrix: Solid

5

Released to Imaging: 11/17/2023 7:57:01 AM

Client Sample Results

Job ID: 890-3806-1 SDG: Lea County NM

Client Sample ID: SS02

Project/Site: Baish B Battery

Date Collected: 01/09/23 13:50 Date Received: 01/10/23 09:05

Sample Depth: 0.5

Client: Ensolum

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	111		70 - 130			01/13/23 08:16	01/14/23 11:16	100
Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.398	U	0.398	mg/Kg			01/25/23 16:06	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	10200		249	mg/Kg			01/16/23 16:39	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	376		249	mg/Kg		01/13/23 08:39	01/16/23 03:17	5
Diesel Range Organics (Over C10-C28)	9810		249	mg/Kg		01/13/23 08:39	01/16/23 03:17	5
	<249	U	249	mg/Kg		01/13/23 08:39	01/16/23 03:17	5
OII Range Organics (Over C28-C36)						Prepared	Analyzed	Dil Fac
	%Recovery	Qualifier	Limits					
Surrogate	% Recovery 73	Qualifier	<u> </u>			01/13/23 08:39	01/16/23 03:17	5
Oll Range Organics (Over C28-C36) <i>Surrogate</i> 1-Chlorooctane o-Terphenyl						01/13/23 08:39 01/13/23 08:39	01/16/23 03:17 01/16/23 03:17	5 5
Surrogate 1-Chlorooctane o-Terphenyl	73 224	S1+	70 - 130 70 - 130					
Surrogate 1-Chlorooctane	, lon Chromato	S1+	70 - 130 70 - 130	Unit	D			

Date Received: 01/10/23 09:05 Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		01/13/23 08:16	01/14/23 08:08	1
Toluene	<0.00199	U	0.00199	mg/Kg		01/13/23 08:16	01/14/23 08:08	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		01/13/23 08:16	01/14/23 08:08	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		01/13/23 08:16	01/14/23 08:08	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		01/13/23 08:16	01/14/23 08:08	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		01/13/23 08:16	01/14/23 08:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130			01/13/23 08:16	01/14/23 08:08	1
1,4-Difluorobenzene (Surr)	111		70 - 130			01/13/23 08:16	01/14/23 08:08	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			01/25/23 16:06	1
_ Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Carlsbad

01/16/23 16:39

Matrix: Solid

5

Lab Sample ID: 890-3806-2

Total TPH

49.9

mg/Kg

<49.9 U

1

Client Sample Results

Job ID: 890-3806-1 SDG: Lea County NM

Lab Sample ID: 890-3806-4

Client Sample ID: SS03

Project/Site: Baish B Battery

Date Collected: 01/09/23 12:45 Date Received: 01/10/23 09:05

Sample Depth: 0.5

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		01/13/23 08:39	01/15/23 22:16	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		01/13/23 08:39	01/15/23 22:16	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		01/13/23 08:39	01/15/23 22:16	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	95		70 - 130			01/13/23 08:39	01/15/23 22:16	1
o-Terphenyl	98		70 - 130			01/13/23 08:39	01/15/23 22:16	1

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	55.8		4.97	mg/Kg			01/14/23 09:22	1

Client Sample ID: SS04

Date Collected: 01/09/23 12:50

Date Received: 01/10/23 09:05 Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		01/13/23 08:16	01/14/23 08:29	1
Toluene	<0.00200	U	0.00200	mg/Kg		01/13/23 08:16	01/14/23 08:29	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/13/23 08:16	01/14/23 08:29	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		01/13/23 08:16	01/14/23 08:29	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/13/23 08:16	01/14/23 08:29	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		01/13/23 08:16	01/14/23 08:29	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130			01/13/23 08:16	01/14/23 08:29	1
1,4-Difluorobenzene (Surr)	99		70 - 130			01/13/23 08:16	01/14/23 08:29	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399		0.00399	mg/Kg			01/25/23 16:06	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			01/16/23 16:39	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		01/13/23 08:39	01/15/23 22:37	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		01/13/23 08:39	01/15/23 22:37	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		01/13/23 08:39	01/15/23 22:37	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
	·	duamer						
1-Chlorooctane	118		70 - 130			01/13/23 08:39	01/15/23 22:37	1
o-Terphenyl	117		70 - 130			01/13/23 08:39	01/15/23 22:37	1

Eurofins Carlsbad

Matrix: Solid

		Client	Sample Res	sults					
Client: Ensolum Project/Site: Baish B Battery							Job ID: 890 SDG: Lea Co		2
Client Sample ID: SS04 Date Collected: 01/09/23 12:50						Lab Sa	mple ID: 890- Matri	3806-4 ix: Solid	
Date Received: 01/10/23 09:05 Sample Depth: 0.5									
Method: MCAWW 300.0 - Anions,				11:4		Ducusard	Analyzed		5
Analyte Chloride	44.6	Qualifier	4.98 RL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 01/14/23 09:28	Dil Fac	
_									
									8
									9
									13

Client: Ensolum Project/Site: Baish B Battery

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Re
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
390-3806-1	SS01	117	102	
390-3806-2	SS02	99	111	
390-3806-3	SS03	100	111	
390-3806-4	SS04	120	99	
890-3819-A-1-D MS	Matrix Spike	95	100	
390-3819-A-1-E MSD	Matrix Spike Duplicate	105	101	
_CS 880-43868/1-A	Lab Control Sample	100	95	
_CSD 880-43868/2-A	Lab Control Sample Dup	95	96	
MB 880-43747/5-A	Method Blank	99	86	
MB 880-43868/5-A	Method Blank	100	90	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix:	Solid	
		-

				Percent Surroga
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-3792-A-1-E MS	Matrix Spike	81	81	
890-3792-A-1-F MSD	Matrix Spike Duplicate	97	82	
890-3806-1	SS01	133 S1+	119	
890-3806-2	SS02	73	224 S1+	
890-3806-3	SS03	95	98	
890-3806-4	SS04	118	117	
LCS 880-43869/2-A	Lab Control Sample	113	105	
LCSD 880-43869/3-A	Lab Control Sample Dup	116	108	
MB 880-43869/1-A	Method Blank	158 S1+	167 S1+	

1CO = 1-Chlorooctane OTPH = o-Terphenyl

Page 29 of 142

5

6

Prep Type: Total/NA

Client: Ensolum

QC Sample Results

Job ID: 890-3806-1 SDG: Lea County NM

Project/Site: Baish B Battery

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-43747/	5-A							Client Sa	ample ID: Metho	
Matrix: Solid									Prep Type:	
Analysis Batch: 43877									Prep Batc	h: 4374
Analyte	MB	MB Qualifier	RL		Unit		D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200		0.00200		mg/K			01/11/23 13:33	01/13/23 16:30	
Toluene	<0.00200		0.00200		mg/K mg/K	-		01/11/23 13:33	01/13/23 16:30	
Ethylbenzene	< 0.00200		0.00200		mg/K			01/11/23 13:33	01/13/23 16:30	
m-Xylene & p-Xylene	<0.00200		0.00200					01/11/23 13:33	01/13/23 16:30	
	< 0.00400		0.00400		mg/K	-		01/11/23 13:33	01/13/23 16:30	
p-Xylene			0.00200		mg/K	-				
Xylenes, Total	<0.00400	0	0.00400		mg/K	y		01/11/23 13:33	01/13/23 16:30	
	ME	MB								
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	99)	70 - 130				_	01/11/23 13:33	01/13/23 16:30	
1,4-Difluorobenzene (Surr)	86	5	70 - 130					01/11/23 13:33	01/13/23 16:30	
Lab Sample ID: MB 880-43868/	5_0							Client Sa	mple ID: Metho	d Blar
Matrix: Solid	J-A							Chefft 3a	Prep Type:	
Analysis Batch: 43877										
Analysis Batch. 43077	MB	мв							Prep Batc	1. 4300
Analyta		Qualifier	RL		Unit		D	Broparod	Analyzed	Dil Fa
Analyte Benzene	<0.00200	- <u> </u>	0.00200		mg/K			Prepared 01/13/23 08:16	01/14/23 03:14	
					-	-				
Toluene	<0.00200		0.00200		mg/K	-		01/13/23 08:16	01/14/23 03:14	
Ethylbenzene	< 0.00200		0.00200		mg/K			01/13/23 08:16	01/14/23 03:14	
m-Xylene & p-Xylene	< 0.00400		0.00400		mg/K	-		01/13/23 08:16	01/14/23 03:14	
o-Xylene	<0.00200		0.00200		mg/K	-		01/13/23 08:16	01/14/23 03:14	
Xylenes, Total	<0.00400	U	0.00400		mg/K	g		01/13/23 08:16	01/14/23 03:14	
	ME	MB								
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	100)	70 - 130				_	01/13/23 08:16	01/14/23 03:14	
1,4-Difluorobenzene (Surr)	90)	70 - 130					01/13/23 08:16	01/14/23 03:14	
Lab Sample ID: LCS 880-43868	11 A						CI	iont Somolo	ID: Lab Control	Sampl
Matrix: Solid							01	lent Gample	Prep Type:	
Analysis Batch: 43877									Prep Batc	
Analysis Datch. 43077			Spike	1.05	LCS				%Rec	1. 4500
Analyto			Added		Qualifier	Unit		D %Rec	Limits	
Analyte Benzene			0.100	0.1038	Quaimer	mg/Kg		<u>– /// 104</u> –	70 - 130	
Toluene			0.100	0.09662		mg/Kg		97	70 - 130	
			0.100						70 - 130	
Ethylbenzene				0.1080		mg/Kg		108		
Videne 0 - Videne			0.200 0.100	0.1989 0.1040		mg/Kg mg/Kg		99 104	70 ₋ 130 70 - 130	
			0.100	0.1040		iiig/Ky		104	70 - 130	
o-Xylene	LCS LC		Limite							
o-Xylene	%Recovery Qu		Limits							
o-Xylene Surrogate 4-Bromofluorobenzene (Surr)	%Recovery 100		70 - 130							
m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	%Recovery Qu									
o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	%Recovery 100 95		70 - 130			Clie	ent S	Sample ID: L	ab Control Sam	iple Du
o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-4386 Matrix: Solid	%Recovery 100 95		70 - 130			Clie	ent S	Sample ID: La	ab Control Sam Prep Type: [:]	-
o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-4386 Matrix: Solid	%Recovery 100 95		70 - 130			Clie	ent S	Sample ID: L		Total/N
o-Xylene Surrogate 4-Bromofluorobenzene (Surr)	%Recovery 100 95		70 - 130	LCSD	LCSD	Clie	ent S	Sample ID: La	Prep Type:	Total/N

QC Sample Results

SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

3868/2-A					Clie	nt Sam	ple ID: I	Lab Contro	I Sampl	e Du
								Prep 1	Type: To	tal/N/
								Prep	Batch:	4386
		Spike	LCSD	LCSD				%Rec		RP
		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
		0.100	0.09614		mg/Kg		96	70 - 130	0	3
		0.100	0.1036		mg/Kg		104	70 - 130	4	3
		0.200	0.1896		mg/Kg		95	70 - 130	5	3
		0.100	0.09875		mg/Kg		99	70 - 130	5	3
LCSD	LCSD									
		Limits								
95		70 - 130								
96		70 - 130								
1-D MS							Client	Sample ID	: Matrix	Spik
							•			
Sample	Sample	Spike	MS	MS						
	•	Added			Unit	D	%Rec	Limits		
<0.00201	U	0.0998	0.1043		mg/Kg		105	70 - 130		
<0.00201	U	0.0998	0.09540				96	70 - 130		
<0.00201	U	0.0998	0.1017				102	70 - 130		
		0.200	0.1879				94	70 - 130		
<0.00201	U	0.0998	0.09643		mg/Kg		97	70 - 130		
MS	MS									
%Recovery	Qualifier	Limits								
95		70 - 130								
100		70 - 130								
1-E MSD					CI	lient Sa	mple ID): Matrix Sp	oike Dup	olicat
								Prep 1	Type: To	tal/N/
								Prep	Batch:	4386
Sample	Sample	Spike	MSD	MSD				%Rec		RP
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
<0.00201	U	0.101	0.08686		mg/Kg		86	70 - 130	18	3
		0.101	0.08178		mg/Kg		81	70 - 130	15	3
<0.00201	U	0.101	0.09122		mg/Kg		90	70 - 130	11	3
<0.00402	U	0.202	0.1709		mg/Kg		85	70 - 130	9	3
<0.00201	U	0.101	0.08906		mg/Kg		88	70 - 130	8	3
MSD	MSD									
11/30										
%Recovery		Limits								
	*Recovery 95 96 1-D MS Sample Result <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <i>MS %Recovery</i> 95 100 1-E MSD Sample Result <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201	LCSD LCSD %Recovery Qualifier 95 96 1-D MS Sample Sample Result Qualifier <0.00201 U <0.00201	Spike Added 0.100 0.100 0.100 0.100 0.200 0.100 LCSD LCSD %Recovery Qualifier Limits 95 70 - 130 96 70 - 130 95 70 - 130 96 70 - 130 1-D MS Sample Sample Result Qualifier Added <0.00201	Spike LCSD Added Result 0.100 0.09614 0.100 0.1036 0.200 0.1896 0.100 0.09875 LCSD LCSD %Recovery Qualifier Limits 95 70 - 130 96 70 - 130 96 70 - 130 96 70 - 130 1-D MS Qualifier Added <	Spike LCSD LCSD Added Result Qualifier 0.100 0.09614 0.00614 0.100 0.1036 0.200 0.200 0.1896 0.100 0.100 0.09875 0.09875 LCSD LCSD Qualifier Limits 95 70.130 96 70.130 96 70.130 0.09875 0.0011 LOBMS Sample Sample Sample MS MS Qualifier Added Result Qualifier 0.00201 U 0.0998 0.09540 0.00201 U 0.0998 0.09643 MS MS MS %Recovery Qualifier Limits 0.09643 MS MS MS %Recovery Qualifier Limits 95 70.130 100 70.130 100 70.130 100 70.130 100	Spike LCSD LCSD Unit 0.100 0.09614 Qualifier Unit 0.100 0.1036 mg/Kg 0.200 0.1896 mg/Kg 0.100 0.09875 mg/Kg 0.100 0.09875 mg/Kg %Recovery Qualifier Limits 95 70.130 96 70.130 96 70.130 Added Result Qualifier Unit 4.00201 0.0998 0.1043 mg/Kg <0.00201	Spike LCSD LCSD mail D 0.100 0.09614 mg/Kg 0.101 0.09614 mg/Kg 0.100 0.100 0.1036 mg/Kg 0.100 0.09875 mg/Kg 0.100 0.09875 mg/Kg 0.100 0.09875 mg/Kg %Recovery Qualifier Limits 1.00 0.103 1.00 95 70.130 96 70.130 1.00 1.014 D 1-D MS Sample Sample Spike MS MS MS - Qualifier Added Result Qualifier Unit D <0.00201	Spike LCSD LCSD Mit D %Rec 0.100 0.09614 mg/Kg 96 0.100 0.1036 mg/Kg 104 0.200 0.1896 mg/Kg 95 0.100 0.09875 mg/Kg 99 LCSD LCSD Mit Limits mg/Kg 99 %Recovery Qualifier Limits 70.130 96 70.130 1-D MS Client Added Result Qualifier Unit D %Rec <0.00201	Spike LCSD LCSD Unit D %Rec 0.100 0.09614 mg/Kg D %Rec Limits 0.100 0.09614 mg/Kg 104 70.130 0.200 0.1896 mg/Kg 95 70.130 0.200 0.1896 mg/Kg 99 70.130 0.100 0.09875 mg/Kg 99 70.130 2CSD LCSD LCSD LCSD Prop 1 95 70.130 70.130 Prop 1 Prop 1 96 70.130 Prop 1 Prop 1 Prop 1 90.009840 0.09643 mg/Kg 94 70.130	Spike LCSD LCSD Unit D %Rec Limits RPD -

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-43869/1-A Matrix: Solid Analysis Batch: 43945						Client Sa	mple ID: Metho Prep Type: ⁻ Prep Batcl	Total/NA
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		01/13/23 08:39	01/15/23 19:47	1
(GRO)-C6-C10								

QC Sample Results

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-43869	/1- A									Client Sa	ample ID:	Method	d Blank
Matrix: Solid													otal/NA
Analysis Batch: 43945												Batch	
		мв мв											
Analyte	Re	sult Qua	lifier	RL		Ur	nit	D	P	repared	Analyz	zed	Dil Fac
Diesel Range Organics (Over		50.0 U		50.0			g/Kg			3/23 08:39	01/15/23		1
C10-C28)	~	0.0.11		50.0			all a		01/1	2/22 02.20	01/15/00	10.17	1
Oll Range Organics (Over C28-C36)	<0	50.0 U		50.0		mę	g/Kg		01/1	3/23 08:39	01/15/23	19:47	1
•		MB MB							_				
Surrogate	%Recov		lifier	Limits				-		repared	Analyz		Dil Fac
1-Chlorooctane		158 S1+		70 - 130						3/23 08:39	01/15/23		1
o-Terphenyl		167 S1+		70 - 130					01/1	3/23 08:39	01/15/23	19:47	1
Lab Sample ID: LCS 880-4386	9/2-A							CI	ient	Sample	ID: Lab C	ontrol S	Sample
Matrix: Solid											Prep ⁻	Type: To	otal/NA
Analysis Batch: 43945											Prep	Batch	: 43869
-			Sp	ike	LCS	LCS					%Rec		
Analyte			Add		Result	Qualifie	er Unit		D	%Rec	Limits		
Gasoline Range Organics				00	850.0		mg/Kg		—	85	70 - 130		
(GRO)-C6-C10				-			.39						
Diesel Range Organics (Over			10	00	958.3		mg/Kg			96	70 - 130		
C10-C28)													
	LCS	LCS											
Surrogate	%Recovery	Qualifier	Limit	s									
1-Chlorooctane	113		70 _ 1	30									
o-Terphenyl	105		70 _ 1	30									
Lab Sample ID: LCSD 880-438 Matrix: Solid Analysis Batch: 43945	69/3-A						CI	ient :	Sam	iple ID: L		Type: To Batch	otal/NA
,			Sp	ike	LCSD	LCSD					%Rec		RPD
Analyte			Add			Qualifie	er Unit		D	%Rec	Limits	RPD	Limit
Gasoline Range Organics				00	969.8		mg/Kg		_	97	70 - 130	13	20
(GRO)-C6-C10					00010					0.	10 - 100		20
Diesel Range Organics (Over			10	00	903.3		mg/Kg			90	70 - 130	6	20
C10-C28)													
	LCSD	LCSD											
Surrogate	%Recovery	Qualifier	Limit	s									
1-Chlorooctane	116		70 - 1	30									
o-Terphenyl	108		70 - 1	30									
Lab Sample ID: 890-3792-A-1-	FMS									Client	Sample ID	· Matrix	r Snika
Matrix: Solid										Gient			otal/NA
Applycic Potob: 42045													
Analysis Batch: 43945	Sample	Comple	Sa	iko	ме	ме					-	Batch	
	Sample S	-	Sp			MS	vr 11n:4		~	% Pac	%Rec	Batch	
Analyte	Result	Qualifier	Add	led	Result	MS Qualifie			D	%Rec	%Rec Limits	Batch	
Analyte Gasoline Range Organics	-	Qualifier	Add				er Unit mg/Kg		<u>D</u>	%Rec	%Rec	Batch	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U	Add	led	Result				<u>D</u>		%Rec Limits	Batch	
Analyte Gasoline Range Organics (GRO)-C6-C10	Result <49.9 <49.9	Qualifier U	Add	led	Result 895.8		mg/Kg		<u>D</u>	87	%Rec Limits 70 - 130	Batch	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9	Qualifier U U MS	Add 9 9	led 198 198	Result 895.8		mg/Kg		<u>D</u>	87	%Rec Limits 70 - 130		
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9	Qualifier U	Add	led 98 98 55	Result 895.8		mg/Kg		<u>D</u>	87	%Rec Limits 70 - 130		

Page 32 of 142

Job ID: 890-3806-1

SDG: Lea County NM

Eurofins Carlsbad

o-Terphenyl

81

70 - 130

Matrix: Solid										Prep T		
Analysis Batch: 43945											Batch:	
		Sample	Spike	MSD						%Rec		RPI
Analyte		Qualifier	Added	Result		Unit		<u>D</u>	%Rec	Limits	RPD	Limi
Gasoline Range Organics	<49.9	U	997	959.7		mg/Kg			93	70 - 130	7	2
GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<49.9	U	997	917.4		mg/Kg			89	70 - 130	2	2
	MSD	MSD										
Surrogate	%Recovery		Limits									
1-Chlorooctane	97		70 - 130	-								
p-Terphenyl	82		70 - 130									
ethod: 300.0 - Anions, Ion C	Chromat	ography										
_ab Sample ID: MB 880-43791/1-/	4								Client S	ample ID: N	Nethod	Blan
Matrix: Solid										Prep ⁻	Type: S	olubl
Analysis Batch: 43930												
		MB MB										
Analyte		esult Qualifier		RL	Unit		<u>D</u>	P	repared	Analyz		Dil Fa
Chloride	<	<5.00 U		5.00	mg/K	(g				01/14/23 0	6:23	
			Spike		LCS					%Rec		
Analyte			Added 250	Result 	Qualifier			D	%Rec 109	Limits 90 - 110		
monde			250	271.0		mg/Kg			109	90 - 110		
_ab Sample ID: LCS 880-43791/3-	-A						Cl	ient	Sample	ID: Lab Co	ontrol S	ampl
Matrix: Solid										Prep ⁻	Гуре: S	olubl
Analysis Batch: 43930												
			Spike		LCS					%Rec		
Analyte			Added		Qualifier	Unit		<u>D</u>	%Rec	Limits		
Chloride			250	270.6		mg/Kg			108	90 - 110		
Lab Sample ID: 890-3798-A-1-C N	IS								Client	Sample ID:	Matrix	Spik
Matrix: Solid											Type: S	
Analysis Batch: 43930										Ĩ.		
	Sample	Sample	Spike	MS	MS					%Rec		
Analyte		Qualifier	Added		Qualifier	Unit		D	%Rec	Limits		
Chloride	149	F1	250	455.7	F1	mg/Kg			123	90 - 110		
_ab Sample ID: 890-3798-A-1-D M	ISD						Clien	t Sa	ample ID	: Matrix Sp		
Matrix: Solid Analysis Batch: 43930										Prep	Type: S	ano
-narysis Daton. +3330	Sample	Sample	Spike	MSD	MSD					%Rec		RF
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Lim

5

Job ID: 890-3806-1 SDG: Lea County NM

Eurofins Carlsbad

1

Released to Imaging: 11/17/2023 7:57:01 AM

Chloride

149 F1

250

453.0 F1

mg/Kg

122

90 - 110

20

QC Association Summary

Client: Ensolum Project/Site: Baish B Battery Job ID: 890-3806-1

SDG: Lea County NM

GC VOA

Prep Batch: 43747

Lab Sample ID MB 880-43747/5-A	Client Sample ID Method Blank	Prep Type Total/NA	Matrix	Method	Prep Batch
Prep Batch: 43868					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3806-1	SS01	Total/NA	Solid	5035	
890-3806-2	SS02	Total/NA	Solid	5035	
890-3806-3	SS03	Total/NA	Solid	5035	
890-3806-4	SS04	Total/NA	Solid	5035	
MB 880-43868/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-43868/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-43868/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3819-A-1-D MS	Matrix Spike	Total/NA	Solid	5035	
890-3819-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 43877

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3806-1	SS01	Total/NA	Solid	8021B	43868
890-3806-2	SS02	Total/NA	Solid	8021B	43868
890-3806-3	SS03	Total/NA	Solid	8021B	43868
890-3806-4	SS04	Total/NA	Solid	8021B	43868
MB 880-43747/5-A	Method Blank	Total/NA	Solid	8021B	43747
MB 880-43868/5-A	Method Blank	Total/NA	Solid	8021B	43868
LCS 880-43868/1-A	Lab Control Sample	Total/NA	Solid	8021B	43868
LCSD 880-43868/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	43868
890-3819-A-1-D MS	Matrix Spike	Total/NA	Solid	8021B	43868
890-3819-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	43868

Analysis Batch: 44764

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3806-1	SS01	Total/NA	Solid	Total BTEX	
890-3806-2	SS02	Total/NA	Solid	Total BTEX	
890-3806-3	SS03	Total/NA	Solid	Total BTEX	
890-3806-4	SS04	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 43869

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3806-1	SS01	Total/NA	Solid	8015NM Prep	
890-3806-2	SS02	Total/NA	Solid	8015NM Prep	
890-3806-3	SS03	Total/NA	Solid	8015NM Prep	
890-3806-4	SS04	Total/NA	Solid	8015NM Prep	
MB 880-43869/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-43869/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-43869/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3792-A-1-E MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-3792-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	
Analysis Batch: 43945					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3806-1	SS01	Total/NA	Solid	8015B NM	43869

Eurofins Carlsbad

Page 34 of 142

Released to Imaging: 11/17/2023 7:57:01 AM

QC Association Summary

Client: Ensolum Project/Site: Baish B Battery

GC Semi VOA (Continued)

Analysis Batch: 43945 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3806-2	SS02	Total/NA	Solid	8015B NM	43869
890-3806-3	SS03	Total/NA	Solid	8015B NM	43869
890-3806-4	SS04	Total/NA	Solid	8015B NM	43869
MB 880-43869/1-A	Method Blank	Total/NA	Solid	8015B NM	43869
LCS 880-43869/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	43869
LCSD 880-43869/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	43869
890-3792-A-1-E MS	Matrix Spike	Total/NA	Solid	8015B NM	43869
890-3792-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	43869

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3806-1	SS01	Total/NA	Solid	8015 NM	
890-3806-2	SS02	Total/NA	Solid	8015 NM	
890-3806-3	SS03	Total/NA	Solid	8015 NM	
890-3806-4	SS04	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 43791

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3806-1	SS01	Soluble	Solid	DI Leach	
890-3806-2	SS02	Soluble	Solid	DI Leach	
390-3806-3	SS03	Soluble	Solid	DI Leach	
390-3806-4	SS04	Soluble	Solid	DI Leach	
MB 880-43791/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-43791/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
_CS 880-43791/3-A	Lab Control Sample	Soluble	Solid	DI Leach	
390-3798-A-1-C MS	Matrix Spike	Soluble	Solid	DI Leach	
390-3798-A-1-D MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 43930

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3806-1	SS01	Soluble	Solid	300.0	43791
890-3806-2	SS02	Soluble	Solid	300.0	43791
890-3806-3	SS03	Soluble	Solid	300.0	43791
890-3806-4	SS04	Soluble	Solid	300.0	43791
MB 880-43791/1-A	Method Blank	Soluble	Solid	300.0	43791
LCS 880-43791/2-A	Lab Control Sample	Soluble	Solid	300.0	43791
LCS 880-43791/3-A	Lab Control Sample	Soluble	Solid	300.0	43791
890-3798-A-1-C MS	Matrix Spike	Soluble	Solid	300.0	43791
890-3798-A-1-D MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	43791

Job ID: 890-3806-1

SDG: Lea County NM

- 1

5

5 6

9

Job ID: 890-3806-1 SDG: Lea County NM

Lab Sample ID: 890-3806-1 Matrix: Solid

Date Collected: 01/09/23 12:35 Date Received: 01/10/23 09:05

Project/Site: Baish B Battery

Client Sample ID: SS01

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	43868	01/13/23 08:16	MNR	EET MID
Total/NA	Analysis	8021B		100	5 mL	5 mL	43877	01/14/23 10:55	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			44764	01/25/23 16:06	AJ	EET MID
Total/NA	Analysis	8015 NM		1			44043	01/16/23 16:39	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	43869	01/13/23 08:39	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	43945	01/16/23 04:21	AJ	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	43791	01/12/23 09:20	KS	EET MID
Soluble	Analysis	300.0		1			43930	01/14/23 09:10	СН	EET MID

Client Sample ID: SS02

Date Collected: 01/09/23 13:50

Date Received: 01/10/23 09:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	43868	01/13/23 08:16	MNR	EET MID
Total/NA	Analysis	8021B		100	5 mL	5 mL	43877	01/14/23 11:16	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			44764	01/25/23 16:06	AJ	EET MID
Total/NA	Analysis	8015 NM		1			44043	01/16/23 16:39	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	43869	01/13/23 08:39	DM	EET MID
Total/NA	Analysis	8015B NM		5	1 uL	1 uL	43945	01/16/23 03:17	AJ	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	43791	01/12/23 09:20	KS	EET MID
Soluble	Analysis	300.0		1			43930	01/14/23 09:16	СН	EET MID

Client Sample ID: SS03

Date Collected: 01/09/23 12:45

Date Received: 01/10/23 09:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	43868	01/13/23 08:16	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	43877	01/14/23 08:08	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			44764	01/25/23 16:06	AJ	EET MID
Total/NA	Analysis	8015 NM		1			44043	01/16/23 16:39	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	43869	01/13/23 08:39	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	43945	01/15/23 22:16	AJ	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	43791	01/12/23 09:20	KS	EET MID
Soluble	Analysis	300.0		1			43930	01/14/23 09:22	CH	EET MID

Client Sample ID: SS04 Date Collected: 01/09/23 12:50 Date Received: 01/10/23 09:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	43868	01/13/23 08:16	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	43877	01/14/23 08:29	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			44764	01/25/23 16:06	AJ	EET MID

Eurofins Carlsbad

Matrix: Solid

Page 36 of 142

Lab Sample ID: 890-3806-3

Lab Sample ID: 890-3806-4

Lab Sample ID: 890-3806-2

Matrix: Solid

Matrix: Solid
Job ID: 890-3806-1

Matrix: Solid

SDG: Lea County NM

Lab Sample ID: 890-3806-4

Lab Chronicle

Client: Ensolum Project/Site: Baish B Battery

Client Sample ID: SS04 Date Collected: 01/09/23 12:50

Date Received: 01/10/23 09:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			44043	01/16/23 16:39	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	43869	01/13/23 08:39	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	43945	01/15/23 22:37	AJ	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	43791	01/12/23 09:20	KS	EET MID
Soluble	Analysis	300.0		1			43930	01/14/23 09:28	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 11/17/2023 7:57:01 AM

		Accreditation/C	ertification Summary		
Client: Ensolum Project/Site: Baish B Ba	attery		-	Job ID: 890-3806-1 SDG: Lea County NM	2
Laboratory: Eurofi	ns Midland				
Unless otherwise noted, all a	nalytes for this laborator	y were covered under each acc	reditation/certification below.		
Authority		Program	Identification Number	Expiration Date	
Texas		NELAP	T104704400-22-25	06-30-23	
The following analytes a	are included in this repor	t, but the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for which	5
the agency does not off		· ·			
Analysis Method	Prep Method	Matrix	Analyte		
8015 NM		Solid			
Total BTEX		Solid	Total BTEX		
					8
					0
					9
					10
					13

Eurofins Carlsbad

.

Method Summary

Client: Ensolum Project/Site: Baish B Battery Job ID: 890-3806-1 SDG: Lea County NM

ethod	Method Description	Protocol	Laboratory
021B	Volatile Organic Compounds (GC)	SW846	EET MID
otal BTEX	Total BTEX Calculation	TAL SOP	EET MID
015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
0.00	Anions, Ion Chromatography	MCAWW	EET MID
035	Closed System Purge and Trap	SW846	EET MID
015NM Prep	Microextraction	SW846	EET MID
l Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Ensolum Project/Site: Baish B Battery Job ID: 890-3806-1 SDG: Lea County NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-3806-1	SS01	Solid	01/09/23 12:35	01/10/23 09:05	0.5	
390-3806-2	SS02	Solid	01/09/23 13:50	01/10/23 09:05	0.5	
890-3806-3	SS03	Solid	01/09/23 12:45	01/10/23 09:05	0.5	5
890-3806-4	SS04	Solid	01/09/23 12:50	01/10/23 09:05	0.5	
						8
						_
						9
						1:
						1:
						_

	Xei	Xenco	- Contraction	EL Pasc	rx (432) 704-54), TX (915) 585-	3443, Lubbock,	Midiand, 1X (432) /04-5440, San Antonio, 1X (210) 509-5354 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296	110		
				Hobbs,	NM (575) 392-7	550, Carlsbad, I	Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199		www.venco.com Pade	of
Project Manager Ha	Hadlie Green			Bill to: (if different)	Kalei Jennings	nings			ğ	ថ
	Ensolum, LLC			Company Name:	Ensolum, LLC	I, LLC		Program: UST/PST	Program: UST/PST PRP Brownfields RRC	RRC Superfund
	601 N Marienfeld St Suite 400	d St Suite 400		Address:	601 N M	601 N Marienfeld St Suite 400	Jite 400	State of Project:		
e ZIP:	Midland, TX 79701	01		City, State ZIP:	Midland,	Midland, TX 79701		Reporting: Level II	Reporting: Level II C Level III PST/UST T TRRP	
	432-557-8895		Email:	Email: kjennings@ensolum.com; hgreen@ensolum.com	olum.com; ho	green@enso	lum.com	Deliverables: EDD	ADaPT	Other:
Project Name:	Baish 8	Baish B Battery	Turn	Turn Around			NALYSIS	REQUEST	Pre	Preservative Codes
Project Number:	03D2	03D2057054	✓ Routine	7	Pres. Code				None: NO	O DI Water: H ₂ O
Project Location:	Lea Co	Lea County, NM	Due Date:						Cool: Cool	ool MeOH: Me
Sampler's Name:	Dmitry h	Dmitry Nikanorov	TAT starts the	TAT starts the day received by					HCL: HC	
PO #		2	-		ters		-		112004-112	D NaCII. IVa
Samples Received Intact:	a dual	No Thermometer ID	o vvetice.	ON GAL	ame				NaHSO4: NABIS	NABIS
Cooler Custody Seats:	Yes No	¥	1 Factor:	10-20					Na2S2O3: NaSO3	NaSO ₃
Sample Custody Seals:	1 1	N/A Temperat	Temperature Reading:	0.0	S (EF				Zn Aceta	Zn Acetate+NaOH: Zn
Total Containers:		Corrected	Corrected Temperature:		RIDE	-		-	NaChty	
Sample Identification		Matrix Sampled	d Sampled	Depth Comp (Cont CHLC	TPH (BTEX			Sa	Sample Comments
SS01	S	\$ 1/9/2023	12:35	0.5' Grab	1 ×	××				
SS02	S	5 1/9/2023	1350	0.5' Grab	1 ×	×				
SS03	S	5 1/9/2023	1245	0.5' Grab	-1 X	×				Incident Number
SS04	S	3 1/9/2023	23 1250	0.5' Grab	-1 ×	×				
		1) 60	00							
	K									
Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed) 200.8 / 6020: Metal(s) to be an		8RCRA 13PPM TCLP / SPLF	Texas 11 6010: 8RC	AI Sb As Ba Be B CRA Sb As Ba Be	8 8	Cr Co Cu Fe Co Cu Pb Mn	Mg Mn Mo Ni K Ni Se Ag Ti U	Se Ag SiO ₂ Na Sr TI Sn U Hg: 1631/245.1/7470	Sn U V Zn 7470 / 7471
Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of service. Eurofins Xenco A minimum charge date and shall not assume any festion sublity for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of service. Fundate the control of service and shall not assume any festion sublity for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of services. These terms will be enforced unless previously negotiated to the control of the c	ument and relinquis vill be liable only for	hment of samples co the cost of samples	onstitutes a valid pur and shall not assum	chase order from clie e any responsibility for	nt company to Eu or any losses or e	urofins Xenco, its expenses incurre	affiliates and subcontractors d by the client if such losses a but not analyzed. These term	. It assigns standard terms a ne due to circumstances bey Is will be enforced unless pre	and conditions ond the control vicusly negotiated.	
Relinquished by: (Signature)	Signature)) Recei	Received by: (Signature)	ure)	Date/Time	me F	Relinquished by: (Sign	ignature) Receiv	Received by: (Signature)	Date/Time
· physica		Ary	(A)		0.000	0 J				
3			0			4 0				

Page 41 of 142

5 6

12 13

Chain of Custody

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 3806 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Job Number: 890-3806-1 SDG Number: Lea County NM

List Source: Eurofins Carlsbad

Eurofins Carlsbad Released to Imaging: 11/17/2023 7:57:01 AM

Page 23 of 24

14

Job Number: 890-3806-1 SDG Number: Lea County NM

List Source: Eurofins Midland

List Creation: 01/11/23 11:43 AM

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 3806 List Number: 2 Creator: Teel, Brianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 8/10/2023 3:02:55 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Hadlie Green Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 1/16/2023 6:34:29 PM

JOB DESCRIPTION

Baish B Battery SDG NUMBER Lea County NM

JOB NUMBER

890-3807-1

FOR FOR Foreen Solum Id St. e 400 79701 5 6

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information.

Received by OCD: 8/10/2023 3:02:55 PM

Eurofins Carlsbad

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

RAMER

Generated 1/16/2023 6:34:29 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-3807-1 SDG: Lea County NM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
	5
	6
Surrogate Summary	10
QC Sample Results	11
	15
Lab Chronicle	17
Certification Summary	19
Method Summary	20
-	21
	22
	23
-	

Page 47 of 142

	Definitions/Glossary		
Client: Ensolui Project/Site: B		ID: 890-3807-1 .ea County NM	2
Qualifiers			
			3
GC VOA			
Qualifier	Qualifier Description		
S1- U	Surrogate recovery exceeds control limits, low biased. Indicates the analyte was analyzed for but not detected.		
GC Semi VOA			
Qualifier	Qualifier Description		
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			
Qualifier	Qualifier Description		
F1	MS and/or MSD recovery exceeds control limits.		
U	Indicates the analyte was analyzed for but not detected.		9
Glossary			1
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		4
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		

MDC Minimum Detectable Concentration (Radiochemistry)

MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positivo / Procent

Positive / Present POS PQL Practical Quantitation Limit PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry) RL Reporting Limit or Requested Limit (Radiochemistry) Relative Percent Difference, a measure of the relative difference between two points RPD

TEF Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Job ID: 890-3807-1 SDG: Lea County NM

Job ID: 890-3807-1

Project/Site: Baish B Battery

Client: Ensolum

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-3807-1

Receipt

The samples were received on 1/10/2023 9:05 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.6°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: SS05 (890-3807-1), SS06 (890-3807-2), SS07 (890-3807-3) and SS08 (890-3807-4).

GC VOA

Method 8021B: Surrogate recovery for the following sample was outside control limits: SS06 (890-3807-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (MB 880-43869/1-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-43792 and analytical batch 880-43924 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

5

Job ID: 890-3807-1 SDG: Lea County NM

Client Sample ID: SS05 Date Collected: 01/09/23 13:15 Date Received: 01/10/23 09:05

Project/Site: Baish B Battery

Sample Depth: 0.5

Client: Ensolum

Lab Sample ID: 890-3807-1	
Matrix: Solid	

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199	mg/Kg		01/13/23 08:16	01/14/23 09:10	
Toluene	<0.00199	U	0.00199	mg/Kg		01/13/23 08:16	01/14/23 09:10	
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		01/13/23 08:16	01/14/23 09:10	
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		01/13/23 08:16	01/14/23 09:10	
o-Xylene	<0.00199	U	0.00199	mg/Kg		01/13/23 08:16	01/14/23 09:10	
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		01/13/23 08:16	01/14/23 09:10	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	118		70 - 130			01/13/23 08:16	01/14/23 09:10	
4-Bromofluorobenzene (Surr)	117		70 - 130			01/13/23 08:16	01/14/23 10:55	100
1,4-Difluorobenzene (Surr)	115		70 - 130			01/13/23 08:16	01/14/23 09:10	1
1,4-Difluorobenzene (Surr)	102		70 - 130			01/13/23 08:16	01/14/23 10:55	100
Method: TAL SOP Total BTEX - To	tal BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			01/16/23 17:06	
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			01/16/23 16:39	
Method: SW846 8015B NM - Diese	l Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		01/13/23 08:39	01/15/23 22:59	
(GRO)-C6-C10	50.0		50.0					
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		01/13/23 08:39	01/15/23 22:59	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		01/13/23 08:39	01/15/23 22:59	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	105		70 - 130			01/13/23 08:39	01/15/23 22:59	
o-Terphenyl	109		70 - 130			01/13/23 08:39	01/15/23 22:59	
Method: MCAWW 300.0 - Anions,	Ion Chromato	ography - So	oluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	67.7		4.97	mg/Kg			01/14/23 00:28	
lient Sample ID: SS06						Lab Sar	nple ID: 890-	3807-2
ate Collected: 01/09/23 13:20								x: Solic

Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		01/13/23 08:16	01/14/23 09:31	1
Toluene	<0.00199	U	0.00199	mg/Kg		01/13/23 08:16	01/14/23 09:31	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		01/13/23 08:16	01/14/23 09:31	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		01/13/23 08:16	01/14/23 09:31	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		01/13/23 08:16	01/14/23 09:31	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		01/13/23 08:16	01/14/23 09:31	1

Eurofins Carlsbad

Released to Imaging: 11/17/2023 7:57:01 AM

Г

Client Sample Results

Job ID: 890-3807-1 SDG: Lea County NM

Lab Sample ID: 890-3807-2

Lab Sample ID: 890-3807-3

Matrix: Solid

Client Sample ID: SS06

Project/Site: Baish B Battery

Date Collected: 01/09/23 13:20 Date Received: 01/10/23 09:05

Sample Depth: 0.5

Client: Ensolum

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	68	S1-	70 - 130	01/13/23 08:16	01/14/23 09:31	1
4-Bromofluorobenzene (Surr)	99		70 - 130	01/13/23 08:16	01/14/23 11:16	100
1,4-Difluorobenzene (Surr)	67	S1-	70 - 130	01/13/23 08:16	01/14/23 09:31	1
1,4-Difluorobenzene (Surr)	111		70 - 130	01/13/23 08:16	01/14/23 11:16	100

Method: TAL SOP Total BTEX -	Total BTEX Calculation
Analyta	Popult Qualifier

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac				
Total BTEX	<0.00398	U	0.00398	mg/Kg			01/16/23 17:06	1				
Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)												

	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
	Total TPH	<50.0	U	50.0	mg/Kg			01/16/23 16:39	1	
ſ	_									

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Result Qualifier Analyte RL

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		01/13/23 08:39	01/15/23 23:20	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		01/13/23 08:39	01/15/23 23:20	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		01/13/23 08:39	01/15/23 23:20	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	106		70 - 130			01/13/23 08:39	01/15/23 23:20	1
o-Terphenyl	111		70 - 130			01/13/23 08:39	01/15/23 23:20	1

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	44.8	5.05	mg/Kg			01/14/23 00:33	1

Client Sample ID: SS07

Date Collected: 01/09/23 13:25 Date Received: 01/10/23 09:05 Sample Depth: 0.5

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		01/13/23 08:16	01/14/23 08:08	1
Toluene	<0.00200	U	0.00200	mg/Kg		01/13/23 08:16	01/14/23 08:08	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/13/23 08:16	01/14/23 08:08	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		01/13/23 08:16	01/14/23 08:08	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/13/23 08:16	01/14/23 08:08	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		01/13/23 08:16	01/14/23 08:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130			01/13/23 08:16	01/14/23 08:08	1
4-Bromofluorobenzene (Surr)	110		70 - 130			01/13/23 08:16	01/14/23 09:52	1
1,4-Difluorobenzene (Surr)	111		70 - 130			01/13/23 08:16	01/14/23 08:08	1
1,4-Difluorobenzene (Surr)	116		70 - 130			01/13/23 08:16	01/14/23 09:52	1
- Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00399	U	0.00399	mg/Kg			01/16/23 17:06	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	DIIF
Total BTEX	<0.00399		0.00399	mg/Kg			01/16/23 17:06	

Eurofins Carlsbad

Matrix: Solid

5

Released to Imaging: 11/17/2023 7:57:01 AM

Client Sample Results

Job ID: 890-3807-1 SDG: Lea County NM

Lab Sample ID: 890-3807-3

Client Sample ID: SS07

Project/Site: Baish B Battery

Date Collected: 01/09/23 13:25 Date Received: 01/10/23 09:05

Sample Depth: 0.5

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			01/16/23 16:39	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		01/13/23 08:39	01/15/23 23:41	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		01/13/23 08:39	01/15/23 23:41	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		01/13/23 08:39	01/15/23 23:41	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	102		70 - 130			01/13/23 08:39	01/15/23 23:41	1
o-Terphenyl	106		70 - 130			01/13/23 08:39	01/15/23 23:41	1
Method: MCAWW 300.0 - Anions	s, Ion Chromato	ography - So	bluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	48.8		4.99	mg/Kg			01/14/23 00:39	1

Date Collected: 01/09/23 13:30 Date Received: 01/10/23 09:05 Sample Depth: 0.5

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier Unit D Prepared Analyzed Dil Fac RL Benzene <0.00199 U 0.00199 01/13/23 08:16 01/14/23 08:29 mg/Kg Toluene <0.00199 U 0.00199 mg/Kg 01/13/23 08:16 01/14/23 08:29 Ethylbenzene <0.00199 U 0.00199 01/13/23 08:16 01/14/23 08:29 mg/Kg m-Xylene & p-Xylene <0.00398 U 0.00398 mg/Kg 01/13/23 08:16 01/14/23 08:29 o-Xylene <0.00199 U 0.00199 mg/Kg 01/13/23 08:16 01/14/23 08:29 Xylenes, Total <0.00398 U 0.00398 mg/Kg 01/13/23 08:16 01/14/23 08:29 %Recovery Qualifier Limits Surrogate Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 120 70 - 130 01/13/23 08:16 01/14/23 08:29 4-Bromofluorobenzene (Surr) 114 70 - 130 01/13/23 08:16 01/14/23 10:13 1,4-Difluorobenzene (Surr) 99 70 - 130 01/13/23 08:16 01/14/23 08:29 1,4-Difluorobenzene (Surr) 116 70 - 130 01/13/23 08:16 01/14/23 10:13 Method: TAL SOP Total BTEX - Total BTEX Calculation Result Qualifier Analyte Unit Dil Fac RL D Prepared Analyzed Total BTEX <0.00398 U 0.00398 mg/Kg 01/16/23 17:06

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)									
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Total TPH	<50.0	U	50.0	mg/Kg			01/16/23 16:39	1	
Mothod: SW/846 9015P NM Di	acal Panga Orga		20)						

	rtunge orgu		(00)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		01/13/23 08:39	01/16/23 00:02	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		01/13/23 08:39	01/16/23 00:02	1
C10-C28)								

Eurofins Carlsbad

Matrix: Solid

Released to Imaging: 11/17/2023 7:57:01 AM

1

1

1

1

1

1

1

1

1

1

Client Sample Results

Job ID: 890-3807-1 SDG: Lea County NM

Matrix: Solid

5

Client Sample ID: SS08

Project/Site: Baish B Battery

Client: Ensolum

Date Collected: 01/09/23 13:30 Date Received: 01/10/23 09:05

Lab Sample ID: 890-3807-4

Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC) (Continued)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		01/13/23 08:39	01/16/23 00:02	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	105		70 - 130			01/13/23 08:39	01/16/23 00:02	1
o-Terphenyl	108		70 - 130			01/13/23 08:39	01/16/23 00:02	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	ography - So	oluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	46.3		5.01	mg/Kg			01/14/23 00:55	1

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) BFB1 DFBZ1 Client Sample ID (70-130) (70-130) Lab Sample ID 890-3807-1 SS05 118 115 890-3807-1 SS05 117 102 890-3807-2 SS06 68 S1-67 S1-SS06 890-3807-2 111 99 890-3807-3 SS07 100 111 SS07 890-3807-3 110 116 890-3807-4 SS08 120 99 890-3807-4 SS08 116 114 890-3819-A-1-D MS Matrix Spike 95 100 890-3819-A-1-E MSD Matrix Spike Duplicate 105 101 LCS 880-43868/1-A Lab Control Sample 100 95 LCSD 880-43868/2-A Lab Control Sample Dup 95 96 MB 880-43747/5-A Method Blank 99 86 MB 880-43868/5-A Method Blank 100 90 Surrogate Legend BFB = 4-Bromofluorobenzene (Surr) DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate R
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-3792-A-1-E MS	Matrix Spike	81	81	
890-3792-A-1-F MSD	Matrix Spike Duplicate	97	82	
890-3807-1	SS05	105	109	
890-3807-2	SS06	106	111	
890-3807-3	SS07	102	106	
890-3807-4	SS08	105	108	
LCS 880-43869/2-A	Lab Control Sample	113	105	
LCSD 880-43869/3-A	Lab Control Sample Dup	116	108	
MB 880-43869/1-A	Method Blank	158 S1+	167 S1+	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Carlsbad

Job ID: 890-3807-1 SDG: Lea County NM

Prep Type: Total/NA

Prep Type: Total/NA

Page 53 of 142

QC Sample Results

Client: Ensolum Project/Site: Baish B Battery

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-4374 Matrix: Solid									mple ID: Metho Prep Type:	
Analysis Batch: 43877									Prep Batc	
Analysis Baten. 40077	МВ	мв							Thep Bate	
Analyte		Qualifier	RL		Unit		D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200		mg/Kg	1	_	01/11/23 13:33	01/13/23 16:30	
Toluene	<0.00200		0.00200		mg/Kg			01/11/23 13:33	01/13/23 16:30	
Ethylbenzene	< 0.00200		0.00200		mg/Kg	-		01/11/23 13:33	01/13/23 16:30	
m-Xylene & p-Xylene	< 0.00400		0.00400		mg/Kg			01/11/23 13:33	01/13/23 16:30	
o-Xylene	< 0.00200		0.00200		mg/Kg	-		01/11/23 13:33	01/13/23 16:30	
Xylenes, Total	< 0.00400		0.00400		mg/Kg			01/11/23 13:33	01/13/23 16:30	
· · · · · · · · · · · · · · · · · · ·						,				
		MB								
Surrogate	%Recovery	Qualifier	Limits	-				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	99		70 - 130					01/11/23 13:33	01/13/23 16:30	
1,4-Difluorobenzene (Surr)	86		70 - 130					01/11/23 13:33	01/13/23 16:30	
Lab Sample ID: MB 880-4386	8/5-A							Client Sa	mple ID: Metho	od Blan
Matrix: Solid									Prep Type:	
Analysis Batch: 43877									Prep Batc	
·	МВ	МВ								
Analyte	Result	Qualifier	RL		Unit		D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200		0.00200		mg/Kg	1	-	01/13/23 08:16	01/14/23 03:14	
Toluene	<0.00200		0.00200		mg/Kg			01/13/23 08:16	01/14/23 03:14	
Ethylbenzene	< 0.00200		0.00200		mg/Kg			01/13/23 08:16	01/14/23 03:14	
m-Xylene & p-Xylene	< 0.00400		0.00400		mg/Kg			01/13/23 08:16	01/14/23 03:14	
o-Xylene	< 0.00200		0.00200		mg/Kg	-		01/13/23 08:16	01/14/23 03:14	
Xylenes, Total	<0.00400		0.00400		mg/Kg	-		01/13/23 08:16	01/14/23 03:14	
	0.00100	0	0.00100			,		01,10,20 00110	0	
	MB	МВ								
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	100		70 - 130					01/13/23 08:16	01/14/23 03:14	
1,4-Difluorobenzene (Surr)	90		70 - 130					01/13/23 08:16	01/14/23 03:14	
Lab Sample ID: LCS 880-438	68/1-A						С	lient Sample I	ID: Lab Control	
Matrix: Solid									Prep Type:	
Analysis Batch: 43877									Prep Batc	
· · · · · · · · · · · · · · · · · · ·			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit		D %Rec	Limits	
Benzene			0.100	0.1038		mg/Kg		104	70 - 130	
Toluene			0.100	0.09662		mg/Kg		97	70 - 130	
Ethylbenzene			0.100	0.1080		mg/Kg		108	70 - 130	
m-Xylene & p-Xylene			0.200	0.1989		mg/Kg		99	70 - 130	
o-Xylene			0.100	0.1040		mg/Kg		104	70 - 130	
0-Aylene			0.100	0.1040		iiig/itg		104	70 - 150	
	LCS LCS									
Surrogate	%Recovery Qua	lifier	Limits							
4-Bromofluorobenzene (Surr)	100		70 - 130							
1,4-Difluorobenzene (Surr)	95		70 - 130							
Lab Sample ID: LCSD 880-43	8868/2-A					Cli	ent	Sample ID: La	ab Control San	nple Dur
Matrix: Solid									Prep Type:	
Analysis Batch: 43877									Prep Batc	
			Spike	LCSD	LCSD				%Rec	RPE
Analyte			Added		Qualifier	Unit		D %Rec	Limits RP	
· ···· , ••				····	A			2 ,0100		

QC Sample Results

Page 55 of 142

Job ID: 890-3807-1 SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-4	3868/2-A					Clier	nt Sam	ple ID:	Lab Contro		
Matrix: Solid										Type: To	
Analysis Batch: 43877									Prep	Batch:	43868
			Spike	LCSD	LCSD				%Rec		RPI
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Toluene			0.100	0.09614		mg/Kg		96	70 - 130	0	3
Ethylbenzene			0.100	0.1036		mg/Kg		104	70 - 130	4	3
m-Xylene & p-Xylene			0.200	0.1896		mg/Kg		95	70 - 130	5	3
o-Xylene			0.100	0.09875		mg/Kg		99	70 - 130	5	3
	LCSD	LCSD									
Surrogate	%Recovery		Limits								
4-Bromofluorobenzene (Surr)	95		70 - 130								
1,4-Difluorobenzene (Surr)	96		70 - 130								
Lab Campia ID: 000 0040 A								Olivert	0		0
Lab Sample ID: 890-3819-A- Matrix: Solid	-1-D MIS							Client	Sample ID		
										Type: To	
Analysis Batch: 43877	Sampla	Sample	Spike	ме	MS				%Rec	Batch:	4300
Analyta	•	Qualifier	Spike Added		Qualifier	Unit	D	%Rec	Limits		
Analyte Benzene			0.0998	0.1043	Quaimer	mg/Kg		105	70 - 130		
Toluene	<0.00201		0.0998	0.09540		mg/Kg		96	70 - 130 70 - 130		
Ethylbenzene	<0.00201		0.0998	0.1017		mg/Kg		102	70 - 130		
m-Xylene & p-Xylene	<0.00201		0.0998	0.1879		mg/Kg		94	70 - 130		
o-Xylene	<0.00201		0.0998	0.09643		mg/Kg		97	70 - 130		
	MS	MS									
Surrogate 4-Bromofluorobenzene (Surr)	%Recovery 	Qualifier	Limits 70 - 130								
4-Бготопиоговенzене (Surr) 1,4-Difluorobenzene (Surr)	95 100		70 - 130 70 - 130								
.,											
Lab Sample ID: 890-3819-A-	-1-E MSD					CI	ient Sa	ample IC): Matrix S		
Matrix: Solid										Гуре: То	
Analysis Batch: 43877										Batch:	
	•	Sample	Spike		MSD		_		%Rec		RPI
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Benzene	< 0.00201		0.101	0.08686		mg/Kg		86	70 - 130	18	3
Toluene	< 0.00201		0.101	0.08178		mg/Kg		81	70 - 130	15	3
	< 0.00201		0.101	0.09122		mg/Kg		90	70 - 130	11	3
m-Xylene & p-Xylene	< 0.00402		0.202	0.1709		mg/Kg		85	70 - 130	9	3
o-Xylene	<0.00201	U	0.101	0.08906		mg/Kg		88	70 - 130	8	3
	MSD										
Surrogate 4-Bromofluorobenzene (Surr)	MSD %Recovery 105		Limits								

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-43869/1-A Matrix: Solid Analysis Batch: 43945	МР	МВ				Client Sa	mple ID: Metho Prep Type: ⁻ Prep Batcl	Total/NA
Analyte		Qualifier	RL	Unit	D	Prepared	Analvzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0		50.0	mg/Kg	<u>-</u>	01/13/23 08:39	01/15/23 19:47	1

QC Sample Results

Job ID: 890-3807-1 SDG: Lea County NM

Inalysis Batch: 43945 Ne Mis Prep Batch: 43863 Prep Batch: 43863 nalyte Result Qualifier RL Unit D Preproted Analyzed Dil Fac Instance Organics (Over C28-C38) 40.0 U 50.0 mg/kg Unit D Preproted Analyzed Dil Fac urrogate MRecovery Qualifier Limite Dil Fac Preproted Analyzed Dil Fac Chiorocotane 158 S1+ 70.130 Off/1523 18.47 1 Chiorocotane 158 S1+ 70.130 Preproted Analyzed Dil Fac Chiorocotane 158 S1+ 70.130 Off/1523 18.47 1 ab Sample ID: LCS 880-43869/2-A Client Sample ID: LCS Bangle ID: LSE Control Sample Prep Pared Analyzed Dil Fac analyte Spike LCS LCS LCS MRec Limite Not Not Client Sample ID: LCS 880-43869/2-A LCS LCS LCS LCS LCS LCS LCS LCS	_ab Sample ID: MB 880-43869/1-/	4									Client S	ample ID:		
MB ME Integration Organics (Over ease Range Organics (Over C28-C38) 450.0 U 50.0 mg/kg 0/113223 08:30 0/115223 19:47 1 III Range Organics (Over C28-C38) 450.0 U 50.0 mg/kg 0/11323 08:30 0/115223 19:47 1 MB ME MB ME Propared Analyzed DI Face Critorocolare 759.5 157.7 70.130 0/11323 08:30 0/11523 19:47 1 Analyzed MB ME Limits 70.130 0/11323 08:30 0/11523 19:47 1 Analyzed MB Limits 70.130 0/11323 08:30 0/11523 19:47 7 Sample 10: LCS 880-43869/2-A Extra 177.7 70.130 Client Sample ID: Lab Control Sample Prop Type: TotI/MA Fitth Prop Type: TotI/MA Fitth	Matrix: Solid													
nahyte Result Qualifier RL Unit D Program Analyzed Dil Face bill Face sond Fange Organics (Over Analyzed Dil Face bill Face sond Face Old Face sond Face Old Face bill Face sond Face Old Face bill Face sond Face Out Face bill Face sond Face Analyzed bill Face sond Face Out Face bill Face sond Face urrogate %Recovery Face Out Face bill Face Differe Analyzed bill Face Differe Analyzed bill Face Differe ab Sample ID: LCS 880-43869/2-A fatrix: Solid saroline Face Organics (Core of Differe Spike LCS LCS CS CS Spike LCS LCS Wree	Analysis Batch: 43945											Prep	Batch:	43869
LCS LCS LCS LCS LCS LCS LCS LCS Limits MR Prop Batch: 43869 MR			MB	MB										
U10.C28) MB	Analyte	R	esult	Qualifier	F	RL	Unit		D	Р	repared	Analyz	ed	Dil Fac
MB MB Limits Prepared Analyzed DI Fac -Chienocatane 158 514 70 - 130 01/13/23 06:39 01/15/23 19:47 1 -Terphenyi 167 S1+ 70 - 130 01/13/23 06:39 01/15/23 19:47 1 ab Sample ID: LCS 880-43869/2-A Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 43869 natyse Spike LCS LCS LS KRec asoline Range Organics 1000 850.0 mg/Kg 9 70 - 130 3R0)-Co-C10 LCS LCS LCS KRec Wrec Minits asoline Range Organics (Over 1000 958.3 mg/Kg 96 70 - 130 LCS LCS LCS LCS Limits Prep Batch: 43869 Prep Datch: 43869 Prep Datch: 43869 Manaysis Batch: 43945 Spike LCSD LCSD LCSD LCSD RPD Limits SR0)-Coccinare 113 70 - 130 1000 968.8 mg/Kg 90 70 - 130 <td>Diesel Range Organics (Over C10-C28)</td> <td> <</td> <td><50.0</td> <td>U</td> <td>50</td> <td>.0</td> <td>mg/l</td> <td>≺g</td> <td></td> <td>01/1</td> <td>3/23 08:39</td> <td>01/15/23</td> <td>19:47</td> <td>1</td>	Diesel Range Organics (Over C10-C28)	<	<50.0	U	50	.0	mg/l	≺g		01/1	3/23 08:39	01/15/23	19:47	1
urogate %Recovery Qualifier Limits Prepared Analyzed Dif Face Chiorocodarie 159 51+ 70-130 01/1/323 06.39 01/1/323 09.37 01/1/323 09.47 01/1/323 09.47 01/1/323 09.47 01/1/323 09.47 01/1/323 09.47 01/1/323 09.47 01/1/323 09.47 01/1/323 09.47 01/1/323 09.47 01/1/323 09.47 01/1/1/32 09.47 01/1/1/32 09.47 01/1/1/32 09.47 01/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	Oll Range Organics (Over C28-C36)	~	<50.0	U	50	.0	mg/l	<g< td=""><td></td><td>01/1</td><td>3/23 08:39</td><td>01/15/23</td><td>19:47</td><td>1</td></g<>		01/1	3/23 08:39	01/15/23	19:47	1
Characetane 158 514 70.130 00/13/23 08:39 00/15/23 19:47 1 Terphenyl 167 51+ 70.130 00/13/23 08:39 00/15/23 19:47 1 ab Sample ID: LCS 880-43869/2-A fatrix: Solid unalysis Batch: 43945 Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 43869 nalyte Added Result Quillier Unit D %Rec Limits asoline Range Organics (Over 1000 968.3 mg/kg 96 70.130 <i>LCS LCS</i> urrogate 1000 968.3 mg/kg 96 70.130 -Cherocotane 1005 70.130 70.130 70.130 ab Sample ID: LCSD 880-43869/3-A fatrix: Solid Limits Client Sample ID: Lab Control Sample Dup Prop Type: Total/NA Prep Batch: 43945 nalyte Added Requit Qualifier Unit P Kec Rep Dup Prop Type: Total/NA Prep Batch: 43945 nalyte Added Requit Qualifier Unit P Kec NRec asoline Range Organics (Over 1000 903.3 mg/kg 90 <td< td=""><td></td><td></td><td>MB</td><td>MB</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			MB	MB										
Speptenyl 167 S1.10 01/15/23 08.39 01/15/23 19.47 1 ab Sample ID: LCS 880-43869/2-A fatrix: Solid unalysis Batch: 43945 Client Sample ID: Lab Control Sample Prep Type: Total/NA Result Client Sample ID: Lab Control Sample Prep Batch: 43869 ably a asolme Range Organics (SVer C-t0) lesel Range Organics RDO-Co-Ct0 lesel Range Organics RDO-Co-Ct0 lesel Range Organics RDO-Co-Ct0 lesel Range Organics (SVer C-t0) lesel Range Organics RDO-Co-Ct0 lesel Range Organics (SVer C-t0) lesel Range Organics (SVer C-t0) lesel Range Organics RDO-Co-Ct0 lesel Range Organics (SVer C-t0) lesel Range Organics (SVE C-t0) lesel Range Organics (SVE C-t0) lesel Range Organics (SVer C-t0) lesel Range Organics (SVE C-t0) lesel Range Organics (S	Surrogate	%Reco			Limits	_				P	repared	Analyz	ed	Dil Fac
ab Sample ID: LCS 880-43869/2-A fartrix: Solid unalysis Batch: 43945 Client Sample ID: Lab Control Sample Prep Type: Total/NA Prop Batch: 43869 nalyte Added Result Qualifier Unit D %Rec nalyte Added Result Qualifier Unit D %Rec nalyte Added Result Qualifier Unit D %Rec Limits asoline Range Organics (Over 1000 958.3 mg/Kg 96 70.130 Prep Type: Total/NA Prep Batch: 43869 Added Kecvovery Qualifier Limits Tot.130 Prep Type: Total/NA Prep Batch: 43945 ab Sample ID: LCSD 880-43869/3-A fatrix: Solid LCSD LCSD LCSD LCSD Prep Type: Total/NA Prep Batch: 43945 nalyte Spike Added Result Qualifier Unit Prep Type: Total/NA Prep Batch: 43945 nalyte Spike Spike LCSD Merc RPD Limits absample D: Rage Organics (Over 1000 903.3 mg/Kg 90 <td>-Chlorooctane</td> <td></td> <td>158</td> <td>S1+</td> <td>70 - 130</td> <td></td> <td></td> <td></td> <td></td> <td>01/1</td> <td>3/23 08:39</td> <td>01/15/23</td> <td>19:47</td> <td>1</td>	-Chlorooctane		158	S1+	70 - 130					01/1	3/23 08:39	01/15/23	19:47	1
Latrix: Solid Prep Type: Total/NA Prep Batch: 43845 nalyte Added Result Qualifier Unit D %Rec Limits asoline Range Organics 1000 958.3 mg/Kg B 70.130	-Terphenyl		167	S1+	70 - 130					01/1	3/23 08:39	01/15/23	19:47	1
Prep Batch: 43945 Prep Batch: 43869 nalyte Spike LCS LCS LCS mg/Kg p %Rec asoline Range Organics 1000 350.0 958.3 mg/Kg 96 70.130	ab Sample ID: LCS 880-43869/2	A							С	lient	Sample	ID: Lab Co	ontrol S	ample
Unalysis Batch: 43945 Prep Batch: 43869 Added asoline Range Organics (Over 10-C28) Splike LCS LCS LCS Mit D %Rec %Rec 855 //// 70 - 130 LCS LCS 1000 958.3 mg/Kg 96 70 - 130 ////////////////////////////////////	Aatrix: Solid											Prep T	ype: To	tal/NA
Spike LCS LCS VRec nalyte Added Result Qualifier Unit D %Rec SRO/-C6-C10 1000 850.0 mg/Kg 85 70 - 130 SRO/-C6-C10 1000 958.3 mg/Kg 96 70 - 130 Inc-280 LCS LCS LCS LCS LCS urrogate %Recovery Qualifier Limits 70 - 130 70 - 130 -Cherocotane 113 70 - 130 70 - 130 70 - 130 70 - 130 abs Sample ID: LCSD 880-43869/3-A LCSD LCSD LCSD LCSD LCSD Prep Type: Total/NA Atatrix: Solid Tot 50 70 - 130 13 20 70 - 130 13 20 Spoke Added Result Qualifier Unit D %Rec RPD Limits resphenyl 1000 903.3 mg/Kg 90 70 - 130 13 20 Spoloc Actio Spike LCSD	nalysis Batch: 43945													
natyte Added Result Qualifier Unit D %Rec Limits asoline Range Organics (SOP-OS-C10) lesel Range Organics (Over 1000 958.3 mg/Kg 96 70.130 10-C28) LCS LCS LCS LCS LCS Imits 70.130 10-C28) LCS LCS LCS LCS LCS Imits 70.130 -Chierocotatine 113 70.130 70.130 70.130 70.130 ab Sample ID: LCSD 880-43869/3-A Limits Frephenyl 105 70.130 ab Sample ID: LCSD 880-43869/3-A LCSD LCSD LCSD Prop Type: Total/NA hatrix: Solid Nalysis Batch: 43945 Prep Batch: 43869 Prep Batch: 43869 Prep Batch: 43869 mayte Added Result Qualifier Unit D %Rec RPD Imits 20 solide Range Organics (Over 1000 903.3 mg/Kg 90 70.130 6 20 uozal Sample ID: 890-3792-A-1-E MS LCSD <td>-</td> <td></td> <td></td> <td></td> <td>Spike</td> <td>LCS</td> <td>LCS</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-				Spike	LCS	LCS							
LCS LCSD LCSD <td>nalyte</td> <td></td> <td></td> <td></td> <td>-</td> <td>Result</td> <td>Qualifier</td> <td>Unit</td> <td></td> <td>D</td> <td>%Rec</td> <td>Limits</td> <td></td> <td></td>	nalyte				-	Result	Qualifier	Unit		D	%Rec	Limits		
LCS LCSD LCSD <thlonnts< th=""> <thlonnts< td="" th<=""><td>asoline Range Organics</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></thlonnts<></thlonnts<>	asoline Range Organics									-				
LCSLCSurrogate%RecoveryQualifierLimits-Chiorooctane11370.130-Terphenyl10570.130ab Sample ID: LCSD 880-43869/3-A tatrix: Solid unalysis Batch: 43945Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 43845nalyteAddedResultasoline Range Organics SRO/-C6.01 iesel Range Organics (OverSpikeLCSDLCSDLCSDUnitD%RecoveryQualifier1000903.3mg/Kg9070.1301320MCOctane11670.13010-C28)MarkerLimits TotalUrrogate%Recovery %RecoveryQualifierUrrogate%Recovery 108Client Sample ID: Matrix Spike Prep Type: Total/NA Prep Batch: 43869MarkerSample ID: 890-3792-A-1-E MS 108Client Sample ID: Matrix Spike Prep Type: Total/NA Prep Batch: 43869ab Sample ID: 890-3792-A-1-E MS Istrix: Solid unalysis Batch: 43945Sample Sample VSpikeMaySample ID: 890-3792-A-1-E MS 108Client Sample ID: Matrix Spike Prep Type: Total/NA Prep Batch: 43869ab Sample ID: 890-3792-A-1-E MS Istrix: Solid unalysis Batch: 43945Sample Sample VSpike MSMaySample Range Organics Range OrganicsSample Sample VSpike NSMSMarketResut QualifierQualifier VUnit MSD%RecoveryQualifier VMSMSMSMarket <td>iesel Range Organics (Over</td> <td></td> <td></td> <td></td> <td>1000</td> <td>958.3</td> <td></td> <td>mg/Kg</td> <td></td> <td></td> <td>96</td> <td>70 - 130</td> <td></td> <td></td>	iesel Range Organics (Over				1000	958.3		mg/Kg			96	70 - 130		
urrogate%Recovery 113QualifierLimits 70 - 130-Terphenyl10570 - 130-Terphenyl10570 - 130-Terphenyl10570 - 130-Terphenyl10570 - 130-Terphenyl10570 - 130-Terphenyl10570 - 130-TerphenylSpikeLCSD-TerphenylSpikeLCSD-Terphenyl1000969.8-Terphenyl1000969.8-Terphenyl1000903.3-Terphenyl10870 - 130-Terphenyl10870 - 130-Terphenyl108998-Terpheny	10-020)	105	105											
Chlorooctane 113 70.130 Terphenyl 105 70.130 ab Sample ID: LCSD 880-43869/3-A Client Sample ID: Lab Control Sample Dup tatrix: Solid Prep Type: Total/NA unalysis Batch: 43945 Added Rage Organics Added SRO-C6-C10 1000 Beel Range Organics (Over 1000 Urrogate %Recovery Wrogate 106 Value 1000 903.3 mg/Kg 90 70.130 1000 903.3 mg/Kg 90 1000 903.3 mg/Kg 90 1000 903.3 mg/Kg 90 1000 903.3 urrogate 116 Chlorooctane 116 70.130 70.130 ab Sample ID: 890-3792-A-1-E MS Client Sample ID: Matrix Spike tatrix: Solid Prep Batch: 43869 unalysis Batch: 43945 Client Sample ID: Matrix Spike Prop Type: Total/NA Prep Batch: 43869 Sample ID: 890-3792-A-1-E MS Sampl	urrogate				l imits									
LCSD			duu											
Lab Sample ID: LCSD 880-43869/3-A fatrix: Solid unalysis Batch: 43945 Client Sample ID: Lab Control Sample Du Prep Type: Total/NA Prep Batch: 43869 nalyte asoline Range Organics SROy-C6-C10 iesel Range Organics (Over Spike 1000 LCSD 969.8 LCSD mg/Kg D 97 %Rec 70.130 Imits 13 20 Marce Cilent Sample ID: Lab Control Sample Du Prep Type: Total/NA Prep Batch: 43869 NRec 90 Rec Limits RPD 1000 RPD 97 NRec Limits RPD 13 20 Marce Cilent Sample ID: Matrix Solid urrogate MRecovery %Recovery Qualifier Limits 0 90 70.130 6 20 urrogate Cohorooctane CCSD 106 CSD 70.130 Limits Client Sample ID: Matrix Spike Prep Type: Total/NA Prep Batch: 43869 ab Sample ID: 890-3792-A-1-E MS fatrix: Solid unalysis Batch: 43945 Sample Sample Spike MS MS MS Signer Trop Type: Total/NA Prep Batch: 43869 Sample ID: 890-3792-A-1-E MS fatrix: Solid unalysis Batch: 43945 Sample Spike MS MS MS MS MS %Rec Limits Sample Range Organics SROy-C6-C10 iesel Range Organics (Over <49.9														
Matrix: Solid Analysis Batch: 43945 nalyte assoline Range Organics SRO)-C6-C10 lesel Range Organics (Over 10-C28) LCSD LCSD LCSD LCSD LCSD LCSD LCSD LCSD LCSD LCSD Unit D %Rec RPD Matrix: Solid Added Result Qualifier 1000 903.3 mg/Kg 90 70-130 6 20 90 70-130 70-130 90 70-130														
Matrix: Solid Analysis Batch: 43945 nalyte assoline Range Organics SRO)-C6-C10 lesel Range Organics (Over 10-C28) LCSD LCSD LCSD LCSD LCSD LCSD LCSD LCSD LCSD LCSD Unit D %Rec RPD Matrix: Solid Added Result Qualifier 1000 903.3 mg/Kg 90 70-130 6 20 90 70-130 70-130 90 70-130	ab Sample ID: LCSD 880-43869/	3-A						Cl	ient	Sam	ple ID: L	ab Contro	Samp	le Dup
Analysis Batch: 43945 Prep Batch: 43869 Spike LCSD LCSD LCSD Make RPD Limits 20 %Rec Result Qualifier Limits 70 - 130 6 20 10-C28) LCSD LCSD LCSD LCSD Makeessan 70 - 130 6 20 70 - 130 6 20 70 - 130 6 20 70 - 130 70 -														
SpikeLCSDLCSD%RecRPDnalyteAddedResultQualifierUnitD%RecLimitsRPDiasoline Range Organics1000969.8mg/Kg9770.1301320SRO)-C6-C10iesel Range Organics (Over1000903.3mg/Kg9070.13062010-C28)LCSDLCSDLCSDimits70.130620urrogate%RecoveryQualifierLimits70.13070.130620-Terphenyl10870.13070.13070.13070.13070.13070.130ab Sample ID: 890-3792-A-1-E MS Matrix: Solid Malysis Batch: 43945SampleSampleSpikeMSMSVinitPrep Type: Total/NA Prep Batch: 43869malyteResultQualifierAddedResultQualifierUnitD%RecLimits Prep Batch: 43869sacoline Range Organics<49.9														
nalyteAddedResultQualifierUnitD%RecLimitsRPDLimitsasoline Range Organics SRO)-C6-C10 lesel Range Organics (Over1000969.8mg/Kg9070 - 1301320Marce1000903.3mg/Kg9070 - 130620Urrogate%RecoveryQualifierLimits T0 - 13070 - 130620Urrogate%RecoveryQualifierLimits T0 - 13070 - 130620-Terphenyl10870 - 13070 - 13070 - 13070 - 13070 - 130.ab Sample ID: 890-3792-A-1-E MS Aatrix: Solid unalysis Batch: 43945SampleSampleSpike AddedMSMSClient Sample ID: Matrix Spike Prep Type: Total/NA Prep Batch: 43869malyteResult QualifierQualifierAddedResult ResultQualifierU98895.8mg/Kg8770 - 130GRO)-C6-C10 iesel Range Organics<49.9					Spike	LCSD	LCSD							
asoline Range Organics 1000 969.8 mg/Kg 97 70 - 130 13 20 GRO)-C6-C10 iesel Range Organics (Over 1000 903.3 mg/Kg 90 70 - 130 6 20 10-C28) LCSD LCSD LCSD asoline Range Organics (Over Qualifier Limits 70 - 130 6 20 10-C28) Marcosctane 116 70 - 130 70 - 130 6 20 <i>LCSD</i> LCSD Imits 70 - 130 70 - 130 6 20 <i>LCSD</i> Marcosctane 116 70 - 130 70 - 130 70 - 130 ab Sample ID: 890-3792-A-1-E MS Client Sample ID: Matrix Spike Prep Type: Total/NA Markits: Solid Sample Sample Spike MS MS MS Malysis Batch: 43945 Sample Sample Spike MS MS MS MS Statrix: Solid Malysis Batch: 43945 Qualifier Added Result Qualifier Unit D %Rec Limits SRO)-C6-C10 SRO,-C6-C10 Saloge Organics (Over	nalvte				-			Unit		D	%Rec		RPD	
iese Range Organics (Over 10-C28) 1000 903.3 mg/Kg 90 70 - 130 6 20 10-C28) LCSD LCSD LCSD LCSD Chirocotane 116 70 - 130 6 20 Chlorooctane 116 70 - 130 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td></t<>										_				
LCSD LCSD urrogate <u>%Recovery</u> Qualifier Limits -Chlorooctane 116 70 - 130 -Terphenyl 108 70 - 130 Lab Sample ID: 890-3792-A-1-E MS Matrix: Solid Analysis Batch: 43945 Client Sample ID: Matrix Spike Matrix: Solid Analyte <u>Result</u> Qualifier Added <u>Result</u> Qualifier Unit <u>Prep Type: Total/NA</u> Prep Batch: 43869 Sample Sample Sample Spike MS MS <u>%Rec</u> Result Qualifier Unit <u>D</u> <u>%Rec</u> Limits SRO)-C6-C10 iesel Range Organics (Over <49.9 U 998 895.5 mg/Kg 87 70 - 130 10-C28)	-													
urrogate%RecoveryQualifierLimits-Chlorooctane11670 - 130-Terphenyl10870 - 130Aab Sample ID: 890-3792-A-1-E MS Matrix: Solid Analysis Batch: 43945Client Sample ID: Matrix Spike Prep Type: Total/NA Prep Batch: 43869Matrix: Solid Analysis Batch: 43945SampleSpikeMSMSMatrix: Solid Analysis Batch: 43945Result QualifierQualifierUnit MSD%RecMatrix: Solid Analysis Batch: 43945V998895.8mg/Kg8770 - 130Sample Sample Spike Basoline Range Organics GRO)-C6-C10 iesel Range Organics (Over<49.9					1000	903.3		mg/Kg			90	70 - 130	6	20
-Chlorooctane 116 70 - 130 -Terphenyl 108 70 - 130 .ab Sample ID: 890-3792-A-1-E MS Client Sample ID: Matrix Spike Matrix: Solid Prep Type: Total/NA Analysis Batch: 43945 Prep Batch: 43869 malyte Result Qualifier Added Rasoline Range Organics <49.9		LCSD	LCS	D										
Chlorooctane 116 70 - 130 .Terphenyl 108 70 - 130 ab Sample ID: 890-3792-A-1-E MS Client Sample ID: Matrix Spike latrix: Solid Prep Type: Total/NA nalysis Batch: 43945 Prep Batch: 43869 malyte Result Qualifier Added asoline Range Organics <49.9	urrogate	%Recovery	Qual	lifier	Limits									
ab Sample ID: 890-3792-A-1-E MSClient Sample ID: Matrix Spike Prep Type: Total/NA Prep Batch: 43945nalyteSampleSampleSpikeMSMS%RecnalyteResultQualifierAddedResultQualifierUnitD%Recasoline Range Organics<49.9					70 - 130									
Matrix: Solid Analysis Batch: 43945Prep Type: Total/NA Prep Batch: 43869SampleSampleSpikeMSMSPrep Batch: 43869InalyteResultQualifierAddedResultQualifierUnitD%Reciasoline Range Organics<49.9	-Terphenyl	108			70 - 130									
Matrix: Solid Analysis Batch: 43945Prep Type: Total/NA Prep Batch: 43869SampleSampleSpikeMSMSPrep Batch: 43869InalyteResultQualifierAddedResultQualifierUnitD%Reciasoline Range Organics<49.9	.ab Sample ID: 890-3792-A-1-E N	IS									Client	Sample ID	: Matrix	Spike
Analysis Batch: 43945SampleSampleSpikeMSMS%RecnalyteResultQualifierAddedResultQualifierUnitD%Recasoline Range Organics<49.9														
SampleSampleSpikeMSMS%RecnalyteResultQualifierAddedResultQualifierUnitD%RecLimitsasoline Range Organics<49.9														
nalyteResultQualifierAddedResultQualifierUnitD%RecLimitsasoline Range Organics<49.9		Sample	Sam	ple	Spike	MS	MS							
asoline Range Organics <49.9	nalyte	-		-	-			Unit		D	%Rec			
iesel Range Organics (Over <49.9 U 998 895.5 mg/Kg 87 70 - 130 10-C28)	asoline Range Organics									. <u> </u>				
	viesel Range Organics (Over	<49.9	U		998	895.5		mg/Kg			87	70 _ 130		
	10-028)													

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	81		70 - 130
o-Terphenyl	81		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid Analysis Batch: 43945										ype: To Batch:	
Analysis Datch. 43345	Sample	Sample	Spike	MSD	MSD				%Rec	Datch.	RPD
Analyte		Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	997	959.7		mg/Kg		93	70 - 130	7	20
Diesel Range Organics (Over C10-C28)	<49.9	U	997	917.4		mg/Kg		89	70 - 130	2	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	97		70 - 130								
o-Terphenyl	82		70 - 130								
Method: 300.0 - Anions,	Ion Chromat	ography									

Matrix: Solid							Prep Type:	Soluble	
Analysis Batch: 43924									
	MB	МВ							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Chloride	<5.00	U	5.00	mg/Kg			01/13/23 23:50	1	

Lab Sample ID: LCS 880-43792/2-A Matrix: Solid Analysis Batch: 43924			Client Sample ID: Lab Control Sample Prep Type: Soluble
Allalysis Datch. 43924			
	Spike	LCS LCS	%Rec

Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	
Chloride	250	255.0	mg/Kg		102	90 - 110	

Lab Sample ID: LCSD 880-43792/3-A Matrix: Solid Analysis Batch: 43924				Clie	nt San	nple ID:	Lab Contro Prep	ol Sample Type: Se	
-	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	251.6		mg/Kg		101	90 _ 110	1	20

Lab Sample ID: 890-3804-A-1-C MS	
Matrix: Solid	
Analysis Batch: 43924	

	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	53.1	F1	252	347.0	F1	mg/Kg		117	90 - 110	 	_

Lab Sample ID: 890-3804-A-1-D MSD Matrix: Solid							Client Sa	ample IC): Matrix S Prep	pike Dup Type: S	
Analysis Batch: 43924											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	53.1	F1	252	344.0	F1	mg/Kg		116	90 _ 110	1	20

Eurofins Carlsbad

Client Sample ID: Matrix Spike

Prep Type: Soluble

Job ID: 890-3807-1

SDG: Lea County NM

QC Association Summary

Client: Ensolum Project/Site: Baish B Battery Job ID: 890-3807-1

SDG: Lea County NM

GC VOA

Prep Batch: 43747

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-43747/5-A	Method Blank	Total/NA	Solid	5035	
Prep Batch: 43868					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3807-1	SS05	Total/NA	Solid	5035	
890-3807-2	SS06	Total/NA	Solid	5035	
890-3807-3	SS07	Total/NA	Solid	5035	
890-3807-4	SS08	Total/NA	Solid	5035	
MB 880-43868/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-43868/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-43868/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3819-A-1-D MS	Matrix Spike	Total/NA	Solid	5035	
890-3819-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 43877

Г

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3807-1	SS05	Total/NA	Solid	8021B	43868
890-3807-1	SS05	Total/NA	Solid	8021B	43868
890-3807-2	SS06	Total/NA	Solid	8021B	43868
890-3807-2	SS06	Total/NA	Solid	8021B	43868
890-3807-3	SS07	Total/NA	Solid	8021B	43868
890-3807-3	SS07	Total/NA	Solid	8021B	43868
890-3807-4	SS08	Total/NA	Solid	8021B	43868
890-3807-4	SS08	Total/NA	Solid	8021B	43868
MB 880-43747/5-A	Method Blank	Total/NA	Solid	8021B	43747
MB 880-43868/5-A	Method Blank	Total/NA	Solid	8021B	43868
LCS 880-43868/1-A	Lab Control Sample	Total/NA	Solid	8021B	43868
LCSD 880-43868/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	43868
890-3819-A-1-D MS	Matrix Spike	Total/NA	Solid	8021B	43868
890-3819-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	43868

Analysis Batch: 44115

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3807-1	SS05	Total/NA	Solid	Total BTEX	
890-3807-2	SS06	Total/NA	Solid	Total BTEX	
890-3807-3	SS07	Total/NA	Solid	Total BTEX	
890-3807-4	SS08	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 43869

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3807-1	SS05	Total/NA	Solid	8015NM Prep	
890-3807-2	SS06	Total/NA	Solid	8015NM Prep	
890-3807-3	SS07	Total/NA	Solid	8015NM Prep	
890-3807-4	SS08	Total/NA	Solid	8015NM Prep	
MB 880-43869/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-43869/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-43869/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3792-A-1-E MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-3792-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Eurofins Carlsbad

Page 58 of 142

QC Association Summary

Client: Ensolum Project/Site: Baish B Battery

Page 59 of 142

5

Job ID: 890-3807-1 SDG: Lea County NM

GC Semi VOA

Analysis Batch: 43945

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3807-1	SS05	Total/NA	Solid	8015B NM	43869
390-3807-2	SS06	Total/NA	Solid	8015B NM	43869
390-3807-3	SS07	Total/NA	Solid	8015B NM	43869
390-3807-4	SS08	Total/NA	Solid	8015B NM	43869
MB 880-43869/1-A	Method Blank	Total/NA	Solid	8015B NM	43869
_CS 880-43869/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	43869
_CSD 880-43869/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	43869
390-3792-A-1-E MS	Matrix Spike	Total/NA	Solid	8015B NM	43869
390-3792-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	43869

Analysis Batch: 44044

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3807-1	SS05	Total/NA	Solid	8015 NM	
890-3807-2	SS06	Total/NA	Solid	8015 NM	
890-3807-3	SS07	Total/NA	Solid	8015 NM	
890-3807-4	SS08	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 43792

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3807-1	SS05	Soluble	Solid	DI Leach	
890-3807-2	SS06	Soluble	Solid	DI Leach	
890-3807-3	SS07	Soluble	Solid	DI Leach	
890-3807-4	SS08	Soluble	Solid	DI Leach	
MB 880-43792/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-43792/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-43792/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-3804-A-1-C MS	Matrix Spike	Soluble	Solid	DI Leach	
890-3804-A-1-D MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 43924

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3807-1	SS05	Soluble	Solid	300.0	43792
890-3807-2	SS06	Soluble	Solid	300.0	43792
890-3807-3	SS07	Soluble	Solid	300.0	43792
890-3807-4	SS08	Soluble	Solid	300.0	43792
MB 880-43792/1-A	Method Blank	Soluble	Solid	300.0	43792
LCS 880-43792/2-A	Lab Control Sample	Soluble	Solid	300.0	43792
LCSD 880-43792/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	43792
890-3804-A-1-C MS	Matrix Spike	Soluble	Solid	300.0	43792
890-3804-A-1-D MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	43792

Released to Imaging: 11/17/2023 7:57:01 AM

Initial

Amount

5.02 g

5 mL

5.02 g

5 mL

10.00 g

1 uL

5.03 g

Final

Amount

5 mL

5 mL

5 mL

5 mL

10 mL

1 uL

50 mL

Batch

43868

43877

43868

43877

44115

44044

43869

43945

43792

43924

Number

Prepared

or Analyzed

01/13/23 08:16

01/14/23 09:10

01/13/23 08:16

01/14/23 10:55

01/16/23 17:06

01/16/23 16:39

01/13/23 08:39

01/15/23 22:59

01/12/23 09:21

01/14/23 00:28

Dil

1

100

1

1

1

1

Factor

Run

Batch

Туре

Prep

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Project/Site: Baish B Battery

Client Sample ID: SS05 Date Collected: 01/09/23 13:15

Date Received: 01/10/23 09:05

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Job ID: 890-3807-1 SDG: Lea County NM

Lab Sample ID: 890-3807-1

Analyst

MNR

MNR

MNR

MNR

AJ

AJ

DM

AJ

KS

СН

Matrix: Solid

Lab

EET MID

EET MID EET MID EET MID

Client Sample ID: SS06

Date Collected: 01/09/23 13:20 Date Received: 01/10/23 09:05

Lab Sample ID: 890-3807-2

Lab Sample ID: 890-3807-3

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	43868	01/13/23 08:16	MNR	EET MIC
Total/NA	Analysis	8021B		1	5 mL	5 mL	43877	01/14/23 09:31	MNR	EET MI
Total/NA	Prep	5035			5.03 g	5 mL	43868	01/13/23 08:16	MNR	EET MI
Total/NA	Analysis	8021B		100	5 mL	5 mL	43877	01/14/23 11:16	MNR	EET MI
Total/NA	Analysis	Total BTEX		1			44115	01/16/23 17:06	AJ	EET MIC
Total/NA	Analysis	8015 NM		1			44044	01/16/23 16:39	AJ	EET MI
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	43869	01/13/23 08:39	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	43945	01/15/23 23:20	AJ	EET MI
Soluble	Leach	DI Leach			4.95 g	50 mL	43792	01/12/23 09:21	KS	EET MID
Soluble	Analysis	300.0		1			43924	01/14/23 00:33	СН	EET MID

Client Sample ID: SS07 Date Collected: 01/09/23 13:25 Date Received: 01/10/23 09:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	43868	01/13/23 08:16	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	43877	01/14/23 08:08	MNR	EET MID
Total/NA	Prep	5035			5.01 g	5 mL	43868	01/13/23 08:16	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	43877	01/14/23 09:52	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			44115	01/16/23 17:06	AJ	EET MID
Total/NA	Analysis	8015 NM		1			44044	01/16/23 16:39	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	43869	01/13/23 08:39	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	43945	01/15/23 23:41	AJ	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	43792	01/12/23 09:21	KS	EET MID
Soluble	Analysis	300.0		1			43924	01/14/23 00:39	СН	EET MID

Client Sample ID: SS08 Date Collected: 01/09/23 13:30

Date Received: 01/10/23 09:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
rep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
otal/NA	Prep	5035			5.02 g	5 mL	43868	01/13/23 08:16	MNR	EET MID
otal/NA	Analysis	8021B		1	5 mL	5 mL	43877	01/14/23 08:29	MNR	EET MID
otal/NA	Prep	5035			5.02 g	5 mL	43868	01/13/23 08:16	MNR	EET MID
otal/NA	Analysis	8021B		1	5 mL	5 mL	43877	01/14/23 10:13	MNR	EET MID
otal/NA	Analysis	Total BTEX		1			44115	01/16/23 17:06	AJ	EET MID
otal/NA	Analysis	8015 NM		1			44044	01/16/23 16:39	AJ	EET MID
otal/NA	Prep	8015NM Prep			10.00 g	10 mL	43869	01/13/23 08:39	DM	EET MID
otal/NA	Analysis	8015B NM		1	1 uL	1 uL	43945	01/16/23 00:02	AJ	EET MID

4.99 g

1

50 mL

43792

43924

01/12/23 09:21

01/14/23 00:55

KS

СН

Laboratory References:

Soluble

Soluble

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

DI Leach

300.0

Leach

Analysis

Job ID: 890-3807-1 SDG: Lea County NM

Page 61 of 142

Lab Sample ID: 890-3807-4

Matrix: Solid

EET MID

EET MID

Laboratory: Eurofins Midland

Client: Ensolum

Authority

Project/Site: Baish B Battery

Accreditation/Certification Summary

10

Job ID: 890-3807-1 SDG: Lea County NM Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. **Identification Number** Expiration Date T104704400-22-25 06-30-23 5

NELAP Texas The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Prep Method Matrix Analyte 8015 NM Total TPH Solid Total BTEX Solid Total BTEX

Program

Method Summary

Client: Ensolum Project/Site: Baish B Battery

Job ID: 890-3807-1 SDG: Lea County NM

lethod	Method Description	Protocol	Laboratory
021B	Volatile Organic Compounds (GC)	SW846	EET MID
otal BTEX	Total BTEX Calculation	TAL SOP	EET MID
015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
00.0	Anions, Ion Chromatography	MCAWW	EET MID
035	Closed System Purge and Trap	SW846	EET MID
015NM Prep	Microextraction	SW846	EET MID
I Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Client: Ensolum Project/Site: Baish B Battery Job ID: 890-3807-1 SDG: Lea County NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-3807-1	SS05	Solid	01/09/23 13:15	01/10/23 09:05	0.5	
890-3807-2	SS06	Solid	01/09/23 13:20	01/10/23 09:05	0.5	
890-3807-3	SS07	Solid	01/09/23 13:25	01/10/23 09:05	0.5	5
890-3807-4	SS08	Solid	01/09/23 13:30	01/10/23 09:05	0.5	
						8
						9
						1:
						1:

Invironment Testing Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-334 EL Paso, TX (415) 585-344, Lubook, TX (606) 794-1296 Hobbs, NN (575) 392-7550, Carisbad, NM (575) 398-3199 Bill to: (if different) Kalei Jennings g701 Email: kiennings@ensolum.com Dounty, NM Due Date: Connection Factor: O . O No Thermometer ID: No Thermometer ID: No Thermometer ID: No Thermometer ID: No Time S 119/2023 1320 0.5° Grab 1 S 119/2023 1320 0.5° Grab 1 S 119/2023 1320 0.5° Grab 1 X X	Invironment Testing Houston, TX (281) 240-4200, Dallas, TX (214) 9 Houston, TX (432) 704-5440, San Antonio, TX (210) EL Paso, TX (915) 595-3443, Lubbock, TX (806) Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 9701 Bill to: (if different) Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 9701 Email: Company Name: Finsolum, LLC GO1 N Marienfied St Suite 400 9701 Email: Kjennings@ensolum com; hgreen@ensolum.com 10 Email: Kjennings@ensolum com; hgreen@ensolum.com 200rity, NM Due Date: 200rity, State Zip: No 200rity, NM Due Date: 200rity, State Zip: No 200rity, State Zip: No 200rity, State Zip: No 200rity, State Zip: State Zip: <	Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed Notice: Signature of this document and relinquishment of san of service. Eurofins Xenco will be liable only for the cost of a of Eurofins Xenco. A minimum charge of \$85.00 will be appli	Total 200.7 / 6010 200.8 Circle Method(s) and Metal(s) t Notice: Signature of this document and re of service. Eurofins Xenco will be liable o of Eurofins Xenco. A minimum charge of	Total 200.7 / 6010 200.8 Circle Method(s) and Metal(s) t					0007	SS06	SS05	Sample Identification	Total Containers:	: Yes	Yes		PLE RECEIPT		Sampler's Name: Dm	_		Project Name: Ba	Phone: 432-557-8895	City, State ZIP: Midland, TX 79701			Project Manager: Hadlie Green	eurotins
Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 565-3443, Luboock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 Turn Around Kalei Jennings City, State ZIP: Midland, TX 79701 Email: kjennings@ensolum. LLC Address: Goll N Marienfeld St Suite 400 Date: Rush No Parameters starts the day received by 4:30pm Starts the day received by 4:30pm <	Houston, TX (281) 240.4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 505-3334 EL Paso, TX (915) 565-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 Turn Around Kalei Jennings Midland, TX 79701 Email: Kjennings@ensolum. COM, hgreen@ensolum.com Turn Around Per. No Per. Starts the day received by 4-30pm Midland, TX 79701 Email: Kjennings@ensolum.com, hgreen@ensolum.com No Per. Starts the day received by 4-30pm Per. No Per. Starts the day received by 4-30pm Per. No Per. Starts the day received by 4-30pm Per. <th>inquishment of samples con hy for the cost of samples a \$85.00 will be applied to eac Received</th> <td>linquishment of samples con hly for the cost of samples a \$85.00 will be applied to eac</td> <td>inquishment of samples con</td> <td></td> <td></td> <td>00/10</td> <td></td> <td>+</td> <td></td> <td>-</td> <td></td> <td>Corrected</td> <td>É</td> <td>o ATA</td> <td></td> <td>-</td> <td></td> <td>itry Nikanorov</td> <td>a County NM</td> <td>3D2057054</td> <td>ish B Battery</td> <td>95</td> <td>79701</td> <td>nfeld St Suite 400</td> <td>C</td> <td>5</td> <td>Environment Ti Xenco</td>	inquishment of samples con hy for the cost of samples a \$85.00 will be applied to eac Received	linquishment of samples con hly for the cost of samples a \$85.00 will be applied to eac	inquishment of samples con			00/10		+		-		Corrected	É	o ATA		-		itry Nikanorov	a County NM	3D2057054	ish B Battery	95	79701	nfeld St Suite 400	C	5	Environment Ti Xenco
and, TX (281) 240-4200, Dallas, TX (214) 902-0300 and, TX (432) 704-5440, San Antonio, TX (210) 509-3334 Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1266 bbs, NM (575) 982-7550, Carlsbad, NM (575) 988-3199 Pressolum, CCM, Marienfeld St Suite 400 Pressolum, CCM, Ingreen@ensolum.com Pressolum, LLC Pressolum, CCM, Ingreen@ensolum.com Pressolum, CCM, Itage Pressol	ston, TX (281) 240-4200. Dallas, TX (214) 902-0300 d. TX (432) 704-5440. San Antonio. TX (210) 509-3334 aso, TX (915) 595-5343. Lubbock, TX (806) 794-1296 so, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 Midland, TX 79701 Insolum.com; hgreen@ensolum.com ANALYSIS REQ Code 0 1 X AT TPH (8015) 0 1 X X X X ANALYSIS REQ Code 0 1 X X X ANALYSIS REQ 0 1 X X X X		Received by: (Signature)	nd shall not assume any responsib h project and a charge of \$5 for ea	TCLP / SPLP 6010: 8		23	1000 0.0	1330 0.0	1320 0.5	13:15 0.5'	Time Sampled Depth	Temperature:			NW M	Wet loe: Ves	the lab, if received by 4:30p	TAT starts the day received	Due Date:		Turn Around	Email: kjennings@	City, State ZI	Address:	Company Na	Bill to: (if diffe	
ANALYSIS REQUE	s., TX (214) 902.0300 Work Order inio, TX (210) 508-3334 Work Order x, TX (800) 794-1296 Important: UST/PST PRP[] B state of Project: Reporting: Level II Level III Level II Level II Level II Level II Level I	1.10.33.90	Date/Time	ility for any losses or expenses incu ch sample submitted to Eurofins Xen	m client company to Eurofins Xenco.			-	× > × >		1 × ×	Cont CHLOI TPH (8	015)			_			₽ ∨		Code		ensolum.com; hgreen@en:		601 N Marienfeld St			ouston, TX (281) 240-4200, Dalla: and, TX (432) 704-5440, San Anto Paso, TX (915) 585-3443, Lubboc Pbbs, NM (575) 392-7550, Carlsba
	Work Order Work Order Work Order Work Order ST ST Mn Mo Ni K Se Ag SiO Mn Mo Ni K Se Ag SiO Se Ag Tl U Hg: 16: Se Ag Tl U Hg: 16: Se Ag Tl U Hg: 16: Se Ag SiO Received by: (Sign		- 1	rred by the client if such losses are due co, but not analyzed. These terms will t	I Cr Co Cu Pb Mn Mo Ni its affiliates and subcontractors. It ass										890-3807 Chain of Custo									Re		Pr		s, TX (214) 902-0300 nio, TX (210) 509-3334 n, TX (806) 794-1296 d, NM (575) 988-3199

Page 65 of 142

eurofins

12 13 14

Chain of Custody uston, TX (281) 240-4200, Dallas, TX (214) 902-0300

Job Number: 890-3807-1 SDG Number: Lea County NM

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 3807 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

14

14

Job Number: 890-3807-1 SDG Number: Lea County NM

List Source: Eurofins Midland

List Creation: 01/11/23 11:43 AM

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 3807 List Number: 2 Creator: Teel, Brianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 8/10/2023 3:02:55 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Josh Adams Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 3/16/2023 2:48:49 PM

JOB DESCRIPTION

Maverick Baish B Battery SDG NUMBER 03E2057054

JOB NUMBER

890-4231-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information.

Received by OCD: 8/10/2023 3:02:55 PM

1

Eurofins Carlsbad

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

RAMER

Generated 3/16/2023 2:48:49 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-4231-1

SDG: 03E2057054

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	22
QC Sample Results	24
QC Association Summary	37
Lab Chronicle	43
Certification Summary	49
Method Summary	50
Sample Summary	51
Chain of Custody	52
Receipt Checklists	54

	Definitions/Glossary		
Client: Ensolu Project/Site: N	n laverick Baish B Battery	Job ID: 890-4231-1 SDG: 03E2057054	2
Qualifiers			3
GC VOA			
Qualifier	Qualifier Description		
F1	MS and/or MSD recovery exceeds control limits.		
F2	MS/MSD RPD exceeds control limits		5
S1-	Surrogate recovery exceeds control limits, low biased.		
U	Indicates the analyte was analyzed for but not detected.		
GC Semi VOA			
Qualifier	Qualifier Description		

	Comment Decemption
S1-	Surrogate recovery exceeds control limits, low biased.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.
HPLC/IC	

HP

HF LO/IC	
Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
U	Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

TNTC Too Numerous To Count Project/Site: Maverick Baish B Battery

Job ID: 890-4231-1 SDG: 03E2057054

Job ID: 890-4231-1

Client: Ensolum

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-4231-1

Receipt

The samples were received on 3/3/2023 8:40 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.6°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: FS01 (890-4231-1), FS02 (890-4231-2), FS03 (890-4231-3), FS04 (890-4231-4), FS05 (890-4231-5), FS06 (890-4231-6), FS07 (890-4231-7), FS08 (890-4231-8), FS09 (890-4231-9), FS10 (890-4231-10), FS11 (890-4231-11), FS12 (890-4231-12), FS13 (890-4231-13), SW01 (890-4231-14), SW02 (890-4231-15), SW03 (890-4231-16), SW04 (890-4231-17), SW06 (890-4231-18) and SW07 (890-4231-19).

GC VOA

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-48442 and analytical batch 880-48426 was outside the control limits.

Method 8021B: Surrogate recovery for the following samples were outside control limits: FS05 (890-4231-5) and FS06 (890-4231-6). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-48320 and analytical batch 880-48570 were outside control limits for one or more analytes, see QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8021B: Surrogate recovery for the following sample was outside control limits: (880-25480-A-11-F MS). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Reanalysis of the following sample(s) was performed outside of the analytical holding time.: SW01 (890-4231-14).

No additional analytical or guality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD NM: Surrogate recovery for the following sample was outside control limits: (890-4231-A-8-D MS). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: FS13 (890-4231-13), SW01 (890-4231-14) and SW02 (890-4231-15). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300 ORGFM 28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-48060 and 880-48060 and analytical batch 880-48158 were outside control limits for one or more analytes, see QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits. The associated samples are: FS11 (890-4231-11), FS12 (890-4231-12), FS13 (890-4231-13), SW01 (890-4231-14), SW02 (890-4231-15), SW03 (890-4231-16), SW04 (890-4231-17), SW06 (890-4231-18), SW07 (890-4231-19), (890-4231-A-11-C MS) and (890-4231-A-11-D MSD).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.
Method: SW846 8021B - Volatile Organic Compounds (GC)

Result Qualifier

<0.00198 U

<0.00198 U

<0.00198 U

<0.00396 U

<0.00198 U

<0.00396 U

%Recovery Qualifier

RL

0.00198

0.00198

0.00198

0.00396

0.00198

0.00396

Limits

Job ID: 890-4231-1 SDG: 03E2057054

Analyzed

03/13/23 14:37

03/13/23 14:37

03/13/23 14:37

03/13/23 14:37

03/13/23 14:37

03/13/23 14:37

Analyzed

Matrix: Solid

Dil Fac

1

1

1

1

1

Dil Fac

Client Sample ID: FS01

Date Collected: 02/27/23 13:50 Date Received: 03/03/23 08:40

Sample Depth: 2'

Client: Ensolum

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

Lab Sample ID: 890-4231-1

Prepared

03/13/23 08:00

03/13/23 08:00

03/13/23 08:00

03/13/23 08:00

03/13/23 08:00

03/13/23 08:00

Prepared

5

3

4-Bromofluorobenzene (Surr)	99		70 - 130			03/13/23 08:00	03/13/23 14:37	
1,4-Difluorobenzene (Surr)	102		70 - 130			03/13/23 08:00	03/13/23 14:37	
Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00396	U	0.00396	mg/Kg			03/13/23 17:17	
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	104		49.9	mg/Kg			03/07/23 13:47	
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		03/06/23 08:24	03/06/23 18:27	
Diesel Range Organics (Over C10-C28)	104		49.9	mg/Kg		03/06/23 08:24	03/06/23 18:27	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		03/06/23 08:24	03/06/23 18:27	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	120		70 - 130			03/06/23 08:24	03/06/23 18:27	
o-Terphenyl	126		70 - 130			03/06/23 08:24	03/06/23 18:27	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	53.7		4.98	mg/Kg			03/08/23 22:57	
lient Sample ID: FS02						Lab Sar	nple ID: 890-4	4231-2
ate Collected: 02/27/23 13:55							Matri	x: Soli
ate Received: 03/03/23 08:40								
ate Received: 03/03/23 08:40 ample Depth: 2' Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))					
ample Depth: 2'		ounds (GC) Qualifier) RL	Unit	D	Prepared	Analyzed	Dil Fa

Toluene <0.00199 U 0.00199 mg/Kg 03/13/23 08:00 03/13/23 15:03 1 0.00199 Ethylbenzene <0.00199 U mg/Kg 03/13/23 08:00 03/13/23 15:03 1 0.00398 03/13/23 15:03 m-Xylene & p-Xylene <0.00398 U mg/Kg 03/13/23 08:00 1 o-Xylene <0.00199 U 0.00199 03/13/23 08:00 03/13/23 15:03 mg/Kg 1 Xylenes, Total <0.00398 U 0.00398 03/13/23 08:00 03/13/23 15:03 mg/Kg 1 %Recovery Qualifier Limits Prepared Surrogate Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 70 - 130 03/13/23 08:00 03/13/23 15:03 104

Eurofins Carlsbad

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

Client Sample Results

Job ID: 890-4231-1 SDG: 03E2057054

Matrix: Solid

5

Lab Sample ID: 890-4231-2

Client Sample ID: FS02

Date Collected: 02/27/23 13:55 Date Received: 03/03/23 08:40

Sample Depth: 2'

Client: Ensolum

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1,4-Difluorobenzene (Surr)	91		70 - 130			03/13/23 08:00	03/13/23 15:03	·
Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398	mg/Kg			03/13/23 17:17	
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	55.6		49.9	mg/Kg			03/07/23 13:47	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		03/06/23 08:24	03/06/23 18:49	
Diesel Range Organics (Over C10-C28)	55.6		49.9	mg/Kg		03/06/23 08:24	03/06/23 18:49	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		03/06/23 08:24	03/06/23 18:49	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane			70 - 130			03/06/23 08:24	03/06/23 18:49	
p-Terphenyl	120		70 - 130			03/06/23 08:24	03/06/23 18:49	÷
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	60.2		4.98	mg/Kg			03/08/23 23:12	

Date Received: 03/03/23 08:40

Sample Depth: 3.5'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		03/13/23 08:00	03/13/23 15:29	1
Toluene	<0.00201	U	0.00201	mg/Kg		03/13/23 08:00	03/13/23 15:29	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		03/13/23 08:00	03/13/23 15:29	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		03/13/23 08:00	03/13/23 15:29	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		03/13/23 08:00	03/13/23 15:29	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		03/13/23 08:00	03/13/23 15:29	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	84		70 - 130			03/13/23 08:00	03/13/23 15:29	1
1,4-Difluorobenzene (Surr)	91		70 - 130			03/13/23 08:00	03/13/23 15:29	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.490		0.00402	mg/Kg			03/13/23 17:17	1
Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
,								

Job ID: 890-4231-1 SDG: 03E2057054

Lab Sample ID: 890-4231-3

Client Sample ID: FS03

Date Collected: 02/27/23 14:40 Date Received: 03/03/23 08:40

Sample Depth: 3.5'

Client: Ensolum

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		03/06/23 08:24	03/06/23 19:11	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		03/06/23 08:24	03/06/23 19:11	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/06/23 08:24	03/06/23 19:11	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	103		70 - 130			03/06/23 08:24	03/06/23 19:11	1
o-Terphenyl	116		70 _ 130			03/06/23 08:24	03/06/23 19:11	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	55.2	4.95	mg/Kg			03/08/23 23:17	1

Client Sample ID: FS04

Date Collected: 02/28/23 11:35

Date Received: 03/03/23 08:40

Sample Depth: 2'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		03/09/23 10:06	03/13/23 18:16	1
Toluene	<0.00199	U	0.00199	mg/Kg		03/09/23 10:06	03/13/23 18:16	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		03/09/23 10:06	03/13/23 18:16	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		03/09/23 10:06	03/13/23 18:16	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		03/09/23 10:06	03/13/23 18:16	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		03/09/23 10:06	03/13/23 18:16	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		70 - 130			03/09/23 10:06	03/13/23 18:16	1
1,4-Difluorobenzene (Surr)	88		70 - 130			03/09/23 10:06	03/13/23 18:16	1
Method: TAL SOP Total BTEX - T Analyte		Culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Total BTEX		Qualifier U	0.00398	Unit mg/Kg	<u> </u>	Prepared	Analyzed 03/16/23 15:40	Dil Fac
Analyte	Result <0.00398	Qualifier U	0.00398		<u>D</u> 	Prepared		Dil Fac 1 Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Diese	Result <0.00398	Qualifier U ics (DRO) (Qualifier	0.00398	mg/Kg		<u>·</u>	03/16/23 15:40	1
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte	Result <0.00398 Range Organ Result <49.9	Qualifier U ics (DRO) (1 Qualifier U	0.00398 GC) RL 49.9	mg/Kg Unit		<u>·</u>	03/16/23 15:40 Analyzed	1
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH	Result <0.00398 Range Organ Result <49.9 sel Range Orga	Qualifier U ics (DRO) (1 Qualifier U	0.00398 GC) RL 49.9	mg/Kg Unit		<u>·</u>	03/16/23 15:40 Analyzed	1
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics	Result <0.00398 Range Organ Result <49.9 sel Range Orga	Qualifier U ics (DRO) (Qualifier U nics (DRO) Qualifier	0.00398 GC) <u>RL</u> 49.9 (GC)	mg/Kg	<u>D</u>	Prepared	03/16/23 15:40 Analyzed 03/08/23 15:27	1 Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese	Result <0.00398 Range Organ Result <49.9 sel Range Orga Result	Qualifier U ics (DRO) (Qualifier U mics (DRO) Qualifier U	0.00398 GC) RL 49.9 (GC) RL	mg/Kg Unit mg/Kg Unit	<u>D</u>	Prepared	03/16/23 15:40 Analyzed 03/08/23 15:27 Analyzed	1 Dil Fac

Dil Fac %Recovery Qualifier Limits Prepared Analyzed Surrogate 70 - 130 03/07/23 10:19 1-Chlorooctane 03/08/23 02:00 101 1 o-Terphenyl 93 70 - 130 03/07/23 10:19 03/08/23 02:00 1

		Clien	it Sample Re	sults				
Client: Ensolum			-				Job ID: 890	-4231-
Project/Site: Maverick Baish B Batte	ery						SDG: 03E2	205705
Client Sample ID: FS04						Lab Sar	nple ID: 890-	4231-
Date Collected: 02/28/23 11:35							-	x: Soli
Date Received: 03/03/23 08:40								
Sample Depth: 2'								
	O han 100	hu Oslubi	l-					
Method: EPA 300.0 - Anions, Ion Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	69.3		5.01	mg/Kg			03/08/23 23:22	
- Client Semple ID: ES05						Lob Cor		4024
Client Sample ID: FS05						Lab Sar	nple ID: 890-	
Date Collected: 02/28/23 11:40 Date Received: 03/03/23 08:40							Matri	x: Soli
Sample Depth: 2'								
-								
Method: SW846 8021B - Volatile)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199		0.00199	mg/Kg		03/09/23 10:06	03/13/23 18:36	
Toluene	<0.00199		0.00199	mg/Kg		03/09/23 10:06	03/13/23 18:36	
Ethylbenzene	<0.00199		0.00199	mg/Kg		03/09/23 10:06	03/13/23 18:36	
m-Xylene & p-Xylene	<0.00398		0.00398	mg/Kg		03/09/23 10:06	03/13/23 18:36	
o-Xylene	<0.00199		0.00199	mg/Kg		03/09/23 10:06	03/13/23 18:36	
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		03/09/23 10:06	03/13/23 18:36	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	50	S1-	70 - 130			03/09/23 10:06	03/13/23 18:36	
1,4-Difluorobenzene (Surr)	125		70 - 130			03/09/23 10:06	03/13/23 18:36	
_ Method: TAL SOP Total BTEX - T	otal BTEX Cal	sulation						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398		0.00398	mg/Kg			03/16/23 15:40	
-								
Method: SW846 8015 NM - Diese					_			
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9	mg/Kg			03/08/23 15:27	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		03/07/23 10:19	03/08/23 02:21	
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		03/07/23 10:19	03/08/23 02:21	
C10-C28) Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		03/07/23 10:19	03/08/23 02:21	
	10.0	-	10.0			10,01,20 10.10	20,00,20 02.21	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil F
1-Chlorooctane	109		70 - 130			03/07/23 10:19	03/08/23 02:21	
o-Terphenyl	105		70 - 130			03/07/23 10:19	03/08/23 02:21	
- Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solub	le					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa

Eurofins Carlsbad

Method: SW846 8021B - Volatile Organic Compounds (GC)

Result Qualifier

<0.00199 U

<0.00199 U

<0.00199 U

<0.00398 U

<0.00199 U

<0.00398 U

%Recovery Qualifier

RL

0.00199

0.00199

0.00199

0.00398

0.00199

0.00398

Limits

Job ID: 890-4231-1 SDG: 03E2057054

Client Sample ID: FS06

Date Collected: 02/28/23 11:45 Date Received: 03/03/23 08:40

Sample Depth: 2'

Client: Ensolum

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

Lab Sample ID: 890-4231-6 Matrix: Solid

Analyzed

03/13/23 18:56

03/13/23 18:56

03/13/23 18:56

03/13/23 18:56

03/13/23 18:56

03/13/23 18:56

Analyzed

231-6 Solid 4 Dil Fac

1

1

1

1

1

Dil Fac

-Bromofluorobenzene (Surr)	40	S1-	70 - 130			03/09/23 10:06	03/13/23 18:56	
,4-Difluorobenzene (Surr)	97		70 - 130			03/09/23 10:06	03/13/23 18:56	
Method: TAL SOP Total BTEX - To	otal BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
otal BTEX	<0.00398	U	0.00398	mg/Kg			03/16/23 15:40	
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
ōtal TPH	<50.0	U	50.0	mg/Kg			03/08/23 15:27	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics GRO)-C6-C10	<50.0	U	50.0	mg/Kg		03/07/23 10:19	03/08/23 02:42	
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		03/07/23 10:19	03/08/23 02:42	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/07/23 10:19	03/08/23 02:42	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
-Chlorooctane	109		70 - 130			03/07/23 10:19	03/08/23 02:42	
p-Terphenyl	106		70 - 130			03/07/23 10:19	03/08/23 02:42	
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	54.0		5.01	mg/Kg			03/08/23 23:41	
lient Sample ID: FS07						Lab Sar	nple ID: 890-	4231-7
ate Collected: 03/01/23 08:00							Matri	x: Solic
ate Received: 03/03/23 08:40								

Method: SW846 8021B - Volati	le Organic Comp	ounas (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00198	U	0.00198	mg/Kg		03/10/23 14:43	03/15/23 14:05	1
Toluene	<0.00198	U	0.00198	mg/Kg		03/10/23 14:43	03/15/23 14:05	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		03/10/23 14:43	03/15/23 14:05	1
m-Xylene & p-Xylene	<0.00396	U	0.00396	mg/Kg		03/10/23 14:43	03/15/23 14:05	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		03/10/23 14:43	03/15/23 14:05	1
Xylenes, Total	<0.00396	U	0.00396	mg/Kg		03/10/23 14:43	03/15/23 14:05	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	44	S1-	70 - 130			03/10/23 14:43	03/15/23 14:05	1

Eurofins Carlsbad

Results

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

Prepared

03/09/23 10:06

03/09/23 10:06

03/09/23 10:06

03/09/23 10:06

03/09/23 10:06

03/09/23 10:06

Prepared

Client Sample Results

Job ID: 890-4231-1 SDG: 03E2057054

Matrix: Solid

5

Lab Sample ID: 890-4231-7

Client Sample ID: FS07

Date Collected: 03/01/23 08:00 Date Received: 03/03/23 08:40

Sample Depth: 4'

Client: Ensolum

Method: S	W846 8021B - Volatile Organic Compounds (GC) (Continued)
moundare	

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	83		70 - 130			03/10/23 14:43	03/15/23 14:05	1
Method: TAL SOP Total BTEX -	Total BTEX Calo	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396	mg/Kg			03/16/23 15:40	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	146		49.9	mg/Kg			03/08/23 15:27	1
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		03/07/23 10:19	03/08/23 03:03	1
GRO)-C6-C10								
Discal Damas Opposites (Over	146		49.9	mg/Kg		03/07/23 10:19	03/08/23 03:03	
Diesel Range Organics (Over	140							
C10-C28)	140							
· ·	<49.9	U	49.9	mg/Kg		03/07/23 10:19	03/08/23 03:03	1
C10-C28)			49.9 Limits	mg/Kg		03/07/23 10:19 Prepared	03/08/23 03:03 Analyzed	Dil Fac
C10-C28) Oll Range Organics (Over C28-C36)	<49.9			mg/Kg				Dil Fac
C10-C28) DII Range Organics (Over C28-C36) Surrogate	<49.9 %Recovery		Limits	mg/Kg		Prepared	Analyzed	Dil Fac
C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane p-Terphenyl	<49.9 <u>%Recovery</u> 105 95	Qualifier	Limits 70 - 130 70 - 130	mg/Kg		Prepared 03/07/23 10:19	Analyzed	Dil Fac
C10-C28) DII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<49.9 <u>%Recovery</u> 105 95 n Chromatograp	Qualifier	Limits 70 - 130 70 - 130	mg/Kg Unit	D	Prepared 03/07/23 10:19	Analyzed	Dil Fac

Client Sample ID: FS08

Date Collected: 03/01/23 07:55 Date Received: 03/03/23 08:40

Lab Sample ID: 890-4231-8 Matrix: Solid

Sample Depth: 4'

Method: SW846 8021B - Volati	ile Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		03/10/23 14:43	03/15/23 14:26	1
Toluene	<0.00199	U	0.00199	mg/Kg		03/10/23 14:43	03/15/23 14:26	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		03/10/23 14:43	03/15/23 14:26	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		03/10/23 14:43	03/15/23 14:26	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		03/10/23 14:43	03/15/23 14:26	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		03/10/23 14:43	03/15/23 14:26	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	76		70 - 130			03/10/23 14:43	03/15/23 14:26	1
1,4-Difluorobenzene (Surr)	67	S1-	70 - 130			03/10/23 14:43	03/15/23 14:26	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			03/16/23 15:40	1
- Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			03/09/23 12:02	1

Job ID: 890-4231-1 SDG: 03E2057054

Lab Sample ID: 890-4231-8

Analyzed

03/08/23 21:56

03/08/23 21:56

03/08/23 21:56

Analyzed

03/08/23 21:56

03/08/23 21:56

Lab Sample ID: 890-4231-9

Client Sample ID: FS08

Date Collected: 03/01/23 07:55 Date Received: 03/03/23 08:40

Sample Depth: 4'

Client: Ensolum

Method: SW846 8015B NM - Diesel	l Range Orga	nics (DRO) (0	GC)			
Analyte	Result	Qualifier	RL	Unit	D	Prepared
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		03/08/23 10:34
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		03/08/23 10:34
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/08/23 10:34

Surrogate	%Recovery	Qualifier	Limits	Prepared
1-Chlorooctane	102		70 - 130	03/08/23 10:34
o-Terphenyl	122		70 - 130	03/08/23 10:34

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	74.9		4.95	mg/Kg			03/08/23 23:51	1

Client Sample ID: FS09

Date Collected: 03/01/23 12:00

Date Received: 03/03/23 08:40

Sample Depth: 4'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		03/10/23 14:43	03/15/23 14:47	1
Toluene	<0.00200	U	0.00200	mg/Kg		03/10/23 14:43	03/15/23 14:47	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		03/10/23 14:43	03/15/23 14:47	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		03/10/23 14:43	03/15/23 14:47	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		03/10/23 14:43	03/15/23 14:47	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		03/10/23 14:43	03/15/23 14:47	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	42	S1-	70 - 130			03/10/23 14:43	03/15/23 14:47	1
1,4-Difluorobenzene (Surr)	85		70 - 130			03/10/23 14:43	03/15/23 14:47	1
Method: TAL SOP Total BTEX - 1 Analyte	Result	Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Diese	Result <0.00401	Qualifier U ics (DRO) (0.00401	mg/Kg			03/16/23 15:40	Dil Fac
Analyte Total BTEX	Result <0.00401	Qualifier U ics (DRO) (Qualifier	0.00401		<u>D</u>	Prepared Prepared		
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte	Result <0.00401 el Range Organ Result <50.0 sel Range Orga Result	Qualifier U ics (DRO) (Qualifier U nics (DRO) Qualifier	0.00401 GC) RL 50.0 (GC) RL	mg/Kg Unit			03/16/23 15:40 Analyzed	Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics	Result <0.00401 Range Organ Result <50.0 sel Range Orga	Qualifier U ics (DRO) (Qualifier U nics (DRO) Qualifier	0.00401 GC) RL 50.0 (GC)	mg/Kg Unit mg/Kg	D	Prepared	03/16/23 15:40 Analyzed 03/09/23 12:02	Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies	Result <0.00401 el Range Organ Result <50.0 sel Range Orga Result	Qualifier U ics (DRO) (Qualifier U nics (DRO) Qualifier U	0.00401 GC) RL 50.0 (GC) RL	mg/Kg Unit mg/Kg Unit	D	Prepared	03/16/23 15:40 Analyzed 03/09/23 12:02 Analyzed	Dil Fac

Dil Fac %Recovery Qualifier Limits Prepared Analyzed Surrogate 03/08/23 10:34 03/08/23 23:02 1-Chlorooctane 88 70 - 130 1 o-Terphenyl 105 70 - 130 03/08/23 10:34 03/08/23 23:02 1

Eurofins Carlsbad

1

1

1

1

1

		Clien	nt Sample Res	sults				
Client: Ensolum			-				Job ID: 890	-4231-
Project/Site: Maverick Baish B Batte	ery						SDG: 03E2	205705
Client Sample ID: FS09						Lab Sar	nple ID: 890-	4231-
Date Collected: 03/01/23 12:00							-	x: Soli
Date Received: 03/03/23 08:40								
Sample Depth: 4'								
	0							
Method: EPA 300.0 - Anions, Ion Analyte	· · ·	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	305		5.01	mg/Kg			03/08/23 23:56	
						Lah Cam		004 4
Client Sample ID: FS10						Lab Sam	ple ID: 890-4	
Date Collected: 02/28/23 14:35							watr	ix: Soli
Date Received: 03/03/23 08:40 Sample Depth: 3'								
-								
Method: SW846 8021B - Volatile				11-34	-	Durante	A see borne al	D 11 E
Analyte	<0.00200	Qualifier	RL	Unit	D	Prepared 03/10/23 12:35	Analyzed 03/14/23 12:46	Dil Fa
Benzene Toluene	<0.00200		0.00200	mg/Kg		03/10/23 12:35	03/14/23 12:46	
Ethylbenzene	<0.00200		0.00200	mg/Kg		03/10/23 12:35	03/14/23 12:46	
m-Xylene & p-Xylene	<0.00200		0.00200	mg/Kg		03/10/23 12:35	03/14/23 12:46	
o-Xylene	<0.00401		0.00401	mg/Kg		03/10/23 12:35	03/14/23 12:46	
Xylenes, Total	<0.00200		0.00200	mg/Kg mg/Kg		03/10/23 12:35	03/14/23 12:46	
Ayienes, Total	\$0.00401	0	0.00401	ilig/itg		00/10/20 12:00	03/14/23 12.40	
Surrogate	%Recovery		Limits			Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	113		70 - 130			03/10/23 12:35	03/14/23 12:46	
1,4-Difluorobenzene (Surr)	105		70 - 130			03/10/23 12:35	03/14/23 12:46	
Method: TAL SOP Total BTEX - T	otal BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00401	U	0.00401	mg/Kg			03/16/23 15:40	
- Mothed: CW/24C 2045 NM Disco			C ()					
Method: SW846 8015 NM - Diese Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Total TPH	<50.0		50.0	mg/Kg			03/09/23 12:02	
-								
Method: SW846 8015B NM - Dies								
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		03/08/23 10:34	03/08/23 23:23	
(GRO)-C6-C10 Diesel Range Organics (Over	<50.0	ш	50.0	mg/Kg		03/08/23 10:34	03/08/23 23:23	
C10-C28)	~50.0	5	50.0	iiig/itg		00/00/20 10.04	00100120 20.20	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/08/23 10:34	03/08/23 23:23	
Surrogato	% Passiver	Qualifiar	Limite			Bronarad	Analyzad	
Surrogate 1-Chlorooctane	_ <u>%Recovery</u> 84	Qualifier				Prepared 03/08/23 10:34	Analyzed 03/08/23 23:23	Dil F
o-Terphenyl	84 99		70 - 130 70 - 130			03/08/23 10:34	03/08/23 23:23	
- 161µ11611y1 - -	99		10 - 130			03/00/23 10.34	03/00/23 23.23	
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solub	le					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	61.9		4 99	ma/Ka	-		03/09/23 00:00	

Eurofins Carlsbad

03/09/23 00:00

Chloride

4.99

mg/Kg

61.9

Job ID: 890-4231-1 SDG: 03E2057054

Lab Sample ID: 890-4231-11

Client Sample ID: FS11

Date Collected: 03/01/23 10:00 Date Received: 03/03/23 08:40

Client: Ensolum

	Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199	mg/Kg		03/10/23 14:43	03/15/23 15:08	
Toluene	<0.00199	U	0.00199	mg/Kg		03/10/23 14:43	03/15/23 15:08	
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		03/10/23 14:43	03/15/23 15:08	
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		03/10/23 14:43	03/15/23 15:08	
o-Xylene	<0.00199	U	0.00199	mg/Kg		03/10/23 14:43	03/15/23 15:08	
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		03/10/23 14:43	03/15/23 15:08	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	66	S1-	70 - 130			03/10/23 14:43	03/15/23 15:08	
1,4-Difluorobenzene (Surr)	68	S1-	70 - 130			03/10/23 14:43	03/15/23 15:08	
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398	mg/Kg			03/16/23 15:40	
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)					
metriou. Owono ou io ivivi - Diese								
	• •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte Total TPH	• •		RL 50.0	<mark>Unit</mark> mg/Kg	<u> </u>	Prepared	Analyzed 03/09/23 12:02	Dil Fa
Analyte Total TPH	Result <50.0	U	50.0		D	Prepared		
Analyte Total TPH Method: SW846 8015B NM - Dies	Result <50.0	U nics (DRO) Qualifier	50.0 (GC)	mg/Kg			03/09/23 12:02	
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	Result <50.0 sel Range Orga Result	U nics (DRO) Qualifier U	50.0 (GC) RL	mg/Kg Unit		Prepared	03/09/23 12:02 Analyzed	
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	el Range Orga Result Sel Range Orga Result <50.0	U nics (DRO) Qualifier U	50.0 (GC) RL 50.0	mg/Kg Unit mg/Kg		Prepared 03/08/23 10:34	03/09/23 12:02 Analyzed 03/08/23 23:45	
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Orga Result Result <50.0 <50.0	U nics (DRO) Qualifier U	50.0 (GC) RL 50.0 50.0	mg/Kg Unit mg/Kg mg/Kg		Prepared 03/08/23 10:34 03/08/23 10:34	03/09/23 12:02 Analyzed 03/08/23 23:45 03/08/23 23:45	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	el Range Orga Result (<50.0 (<50.0 (<50.0 (<50.0) (<50.0)	U nics (DRO) Qualifier U U U	50.0 (GC) RL 50.0 50.0 50.0	mg/Kg Unit mg/Kg mg/Kg		Prepared 03/08/23 10:34 03/08/23 10:34 03/08/23 10:34	03/09/23 12:02 Analyzed 03/08/23 23:45 03/08/23 23:45 03/08/23 23:45	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <50.0	U nics (DRO) Qualifier U U U	50.0 (GC) RL 50.0 50.0 50.0 Limits	mg/Kg Unit mg/Kg mg/Kg		Prepared 03/08/23 10:34 03/08/23 10:34 03/08/23 10:34 Prepared	03/09/23 12:02 Analyzed 03/08/23 23:45 03/08/23 23:45 03/08/23 23:45 Analyzed	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <50.0	U nics (DRO) Qualifier U U U Qualifier	50.0 (GC) RL 50.0 50.0 50.0 <u>Limits</u> 70 - 130 70 - 130	mg/Kg Unit mg/Kg mg/Kg		Prepared 03/08/23 10:34 03/08/23 10:34 03/08/23 10:34 Prepared 03/08/23 10:34	O3/09/23 12:02 Analyzed 03/08/23 23:45 03/08/23 23:45 03/08/23 23:45 03/08/23 23:45 03/08/23 23:45	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <50.0	U nics (DRO) Qualifier U U U Qualifier	50.0 (GC) RL 50.0 50.0 50.0 <u>Limits</u> 70 - 130 70 - 130	mg/Kg Unit mg/Kg mg/Kg		Prepared 03/08/23 10:34 03/08/23 10:34 03/08/23 10:34 Prepared 03/08/23 10:34	O3/09/23 12:02 Analyzed 03/08/23 23:45 03/08/23 23:45 03/08/23 23:45 03/08/23 23:45 03/08/23 23:45	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion	Result <50.0	U nics (DRO) Qualifier U U Qualifier Ohy - Solubl Qualifier	50.0 RL 50.0 50.0 50.0 50.0 50.0 50.0 50.0 70.130 70.130 70.130 6	mg/Kg Unit mg/Kg mg/Kg mg/Kg	D	Prepared 03/08/23 10:34 03/08/23 10:34 03/08/23 10:34 Prepared 03/08/23 10:34 03/08/23 10:34	03/09/23 12:02 Analyzed 03/08/23 23:45 03/08/23 23:45 03/08/23 23:45 Analyzed 03/08/23 23:45 03/08/23 23:45	
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte	Result <50.0	U nics (DRO) Qualifier U U Qualifier Ohy - Solubl Qualifier	50.0 RL 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 6 RL	mg/Kg Unit mg/Kg mg/Kg mg/Kg	D	Prepared 03/08/23 10:34 03/08/23 10:34 03/08/23 10:34 Prepared 03/08/23 10:34 03/08/23 10:34 Prepared	03/09/23 12:02 Analyzed 03/08/23 23:45 03/08/23 23:45 03/08/23 23:45 Analyzed Analyzed	Dil Fa Dil Fa
Analyte Total TPH Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <50.0	U nics (DRO) Qualifier U U Qualifier Ohy - Solubl Qualifier	50.0 RL 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 6 RL	mg/Kg Unit mg/Kg mg/Kg mg/Kg	D	Prepared 03/08/23 10:34 03/08/23 10:34 03/08/23 10:34 Prepared 03/08/23 10:34 03/08/23 10:34 Prepared	O3/09/23 12:02 Analyzed 03/08/23 23:45 03/08/23 23:45 03/08/23 23:45 03/08/23 23:45 03/08/23 23:45 03/08/23 23:45 03/08/23 23:45 03/08/23 23:45 03/08/23 23:45 03/08/23 23:45 03/08/23 23:45 03/08/23 03:08/23 03:08 23:45 03/08/23 00:05 DIE DID: 890-44	Dil Fa Dil Fa

		/					
Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
< 0.00200	U	0.00200	mg/Kg		03/10/23 14:43	03/15/23 15:28	1
<0.00200	U	0.00200	mg/Kg		03/10/23 14:43	03/15/23 15:28	1
<0.00200	U	0.00200	mg/Kg		03/10/23 14:43	03/15/23 15:28	1
<0.00399	U	0.00399	mg/Kg		03/10/23 14:43	03/15/23 15:28	1
<0.00200	U	0.00200	mg/Kg		03/10/23 14:43	03/15/23 15:28	1
<0.00399	U	0.00399	mg/Kg		03/10/23 14:43	03/15/23 15:28	1
%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
102		70 - 130			03/10/23 14:43	03/15/23 15:28	1
	Result <0.00200	Result Qualifier <0.00200	Result Qualifier RL <0.00200	Result Qualifier RL Unit <0.00200	Result Qualifier RL Unit D <0.00200	Result Qualifier RL Unit D Prepared <0.00200	<0.00200

Eurofins Carlsbad

Matrix: Solid

Client Sample Results

Job ID: 890-4231-1 SDG: 03E2057054

Matrix: Solid

5

Lab Sample ID: 890-4231-12

Client Sample ID: FS12

Date Collected: 03/01/23 09:40 Date Received: 03/03/23 08:40

Sample Depth: 3'

Client: Ensolum

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	73		70 - 130			03/10/23 14:43	03/15/23 15:28	
Method: TAL SOP Total BTEX - 1	otal BTEX Calo	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00399	U	0.00399	mg/Kg			03/16/23 15:40	
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0	mg/Kg			03/09/23 12:02	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		03/08/23 10:34	03/09/23 00:07	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		03/08/23 10:34	03/09/23 00:07	
C10-C28)	50.0		50.0				~~~~~~	
Oll Range Organics (Over C28-C36)	<50.0	0	50.0	mg/Kg		03/08/23 10:34	03/09/23 00:07	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	87		70 - 130			03/08/23 10:34	03/09/23 00:07	
o-Terphenyl	105		70 - 130			03/08/23 10:34	03/09/23 00:07	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	128		5.00	mg/Kg			03/09/23 00:20	

Date Received: 03/03/23 08:40 Sample Depth: 3'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		03/10/23 14:43	03/15/23 15:49	1
Toluene	<0.00201	U	0.00201	mg/Kg		03/10/23 14:43	03/15/23 15:49	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		03/10/23 14:43	03/15/23 15:49	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		03/10/23 14:43	03/15/23 15:49	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		03/10/23 14:43	03/15/23 15:49	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		03/10/23 14:43	03/15/23 15:49	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	114		70 - 130			03/10/23 14:43	03/15/23 15:49	1
1,4-Difluorobenzene (Surr)	105		70 - 130			03/10/23 14:43	03/15/23 15:49	1
- Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			03/16/23 15:40	1
- Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Job ID: 890-4231-1 SDG: 03E2057054

Lab Sample ID: 890-4231-13

Client Sample ID: FS13

Date Collected: 03/01/23 11:50 Date Received: 03/03/23 08:40

_							
C	am	-	De			21	
	am	Die	De	DII	12.	5	

Client: Ensolum

pth: 3'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	70.6		50.0	mg/Kg		03/08/23 10:34	03/09/23 00:28	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		03/08/23 10:34	03/09/23 00:28	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/08/23 10:34	03/09/23 00:28	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	3	S1-	70 - 130			03/08/23 10:34	03/09/23 00:28	1
o-Terphenyl	5	S1-	70 - 130			03/08/23 10:34	03/09/23 00:28	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	82.4	5.00	mg/Kg			03/09/23 00:25	1

Client Sample ID: SW01

Date Collected: 02/27/23 14:50 Date Received: 03/03/23 08:40

Sample Depth: 0-2'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		03/13/23 08:00	03/13/23 15:56	1
Toluene	<0.00202	U	0.00202	mg/Kg		03/13/23 08:00	03/13/23 15:56	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		03/13/23 08:00	03/13/23 15:56	1
m-Xylene & p-Xylene	<0.00403	U	0.00403	mg/Kg		03/13/23 08:00	03/13/23 15:56	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		03/13/23 08:00	03/13/23 15:56	1
Xylenes, Total	<0.00403	U	0.00403	mg/Kg		03/13/23 08:00	03/13/23 15:56	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130			03/13/23 08:00	03/13/23 15:56	1
1,4-Difluorobenzene (Surr)	96		70 - 130			03/13/23 08:00	03/13/23 15:56	1
Method: TAL SOP Total BTEX -				11-24	_	Durante	A	D!! 5
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403	mg/Kg			03/13/23 17:17	1
Method: SW846 8015 NM - Dies	sel Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	66.7		50.0	mg/Kg			03/09/23 12:02	1
Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	66.7		50.0	mg/Kg		03/08/23 10:34	03/09/23 00:49	1
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		03/08/23 10:34	03/09/23 00:49	1
C10-C28) Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/08/23 10:34	03/09/23 00:49	1
Surrogate	%Recovery	Qualifiar	Limits			Prepared	Analyzed	Dil Fac

Matrix: Solid

		Clien	t Sample Re	sults				
Client: Ensolum Project/Site: Maverick Baish B Batte	ery						Job ID: 890 SDG: 03E2	
Client Sample ID: SW01						Lab Sam	ple ID: 890-4	231-1
Date Collected: 02/27/23 14:50							•	x: Soli
Date Received: 03/03/23 08:40							matri	
Sample Depth: 0-2'								
_								
Method: EPA 300.0 - Anions, Ion		-			_	- ·		
Analyte Chloride		Qualifier		Unit mg/Kg	<u>D</u>	Prepared	Analyzed 03/09/23 00:39	Dil Fa
-								
Client Sample ID: SW02						Lab Sam	ple ID: 890-4	231-1
Date Collected: 02/28/23 11:50							Matri	ix: Soli
Date Received: 03/03/23 08:40								
Sample Depth: 0-2'								
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	< 0.00199	U	0.00199	mg/Kg		03/10/23 12:35	03/14/23 13:07	
Toluene	<0.00199	U	0.00199	mg/Kg		03/10/23 12:35	03/14/23 13:07	
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		03/10/23 12:35	03/14/23 13:07	
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		03/10/23 12:35	03/14/23 13:07	
o-Xylene	<0.00199	U	0.00199	mg/Kg		03/10/23 12:35	03/14/23 13:07	
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		03/10/23 12:35	03/14/23 13:07	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	127		70 - 130			03/10/23 12:35	03/14/23 13:07	
1,4-Difluorobenzene (Surr)	109		70 - 130			03/10/23 12:35	03/14/23 13:07	
 Method: TAL SOP Total BTEX - To	otal BTEX Cal	aulation						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398	mg/Kg			03/16/23 15:40	
-								
Method: SW846 8015 NM - Diese				1114		Description	A	
Analyte		Qualifier	RL	<u>Unit</u>	D	Prepared	Analyzed	Dil Fa
Total TPH	64.7		50.0	mg/Kg			03/09/23 12:02	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	64.7		50.0	mg/Kg		03/08/23 10:34	03/09/23 01:11	
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		03/08/23 10:34	03/09/23 01:11	
C10-C28)				5.5				
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/08/23 10:34	03/09/23 01:11	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil F
			70 120			03/08/23 10:34	03/09/23 01:11	
1-Chlorooctane	0.8	51-	70 - 130			03/00/23 10.34	03/09/23 01.11	

Method: EPA 300.0 - Anions, Ion C	hromatograph	y - Soluble						
Analyte	Result C	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	51.8		4.95	mg/Kg			03/09/23 00:44	1

Job ID: 890-4231-1 SDG: 03E2057054

Lab Sample ID: 890-4231-16

Client Sample ID: SW03

Date Collected: 03/01/23 11:05 Date Received: 03/03/23 08:40

Sample Depth: 0-3'

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		03/10/23 14:43	03/15/23 18:13	1
Toluene	<0.00199	U	0.00199	mg/Kg		03/10/23 14:43	03/15/23 18:13	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		03/10/23 14:43	03/15/23 18:13	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		03/10/23 14:43	03/15/23 18:13	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		03/10/23 14:43	03/15/23 18:13	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		03/10/23 14:43	03/15/23 18:13	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130			03/10/23 14:43	03/15/23 18:13	1
1,4-Difluorobenzene (Surr)	103		70 - 130			03/10/23 14:43	03/15/23 18:13	1
Method: TAL SOP Total BTEX -	Total BTEX Calo	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			03/16/23 15:40	1
Method: SW846 8015 NM - Dies	ol Pango Organ		CO					
				Unit	п	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier	RL	Unit ma/Ka	D	Prepared	Analyzed	Dil Fac
Analyte		Qualifier		Unit mg/Kg	<u>D</u>	Prepared	Analyzed 03/09/23 11:59	
Analyte Total TPH	Result <49.9	Qualifier U	RL 49.9		<u> </u>	Prepared		
Analyte Total TPH Method: SW846 8015B NM - Die	Result <49.9	Qualifier U	RL 49.9		<u>D</u> 	Prepared		
Analyte Total TPH Method: SW846 8015B NM - Die Analyte	Result <49.9	Qualifier U Inics (DRO) Qualifier	(GC)	mg/Kg		<u>.</u>	03/09/23 11:59	1
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10	Result <49.9 esel Range Orga Result <49.9	Qualifier U Qualifier Qualifier U	RL 49.9 (GC) RL 49.9	Unit mg/Kg		Prepared 03/08/23 10:30	03/09/23 11:59 Analyzed 03/08/23 21:56	1 Dil Fac 1
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9 esel Range Orga Result	Qualifier U Qualifier Qualifier U	RL 49.9 (GC) RL	mg/Kg Unit		Prepared	03/09/23 11:59 Analyzed	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9 esel Range Orga Result <49.9 <49.9	Qualifier U Qualifier U U U	RL 49.9 (GC) RL 49.9 49.9	mg/Kg Unit mg/Kg mg/Kg		Prepared 03/08/23 10:30 03/08/23 10:30	03/09/23 11:59 Analyzed 03/08/23 21:56 03/08/23 21:56	1 1 1
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9 esel Range Orga Result <49.9	Qualifier U Qualifier U U U	RL 49.9 (GC) RL 49.9	Unit mg/Kg		Prepared 03/08/23 10:30	03/09/23 11:59 Analyzed 03/08/23 21:56	1 Dil Fac 1
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36)	Result <49.9 esel Range Orga Result <49.9 <49.9	Qualifier U Qualifier U U U U	RL 49.9 (GC) RL 49.9 49.9	mg/Kg Unit mg/Kg mg/Kg		Prepared 03/08/23 10:30 03/08/23 10:30	03/09/23 11:59 Analyzed 03/08/23 21:56 03/08/23 21:56	1 1 1
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate	Result <49.9	Qualifier U Qualifier U U U U	RL 49.9 (GC) RL 49.9 49.9 49.9 49.9	mg/Kg Unit mg/Kg mg/Kg		Prepared 03/08/23 10:30 03/08/23 10:30 03/08/23 10:30	03/09/23 11:59 Analyzed 03/08/23 21:56 03/08/23 21:56 03/08/23 21:56	1 Dil Fac 1 1 1
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.9	Qualifier U Qualifier U U U Qualifier	RL 49.9 (GC) RL 49.9 49.9 49.9 Limits	mg/Kg Unit mg/Kg mg/Kg		Prepared 03/08/23 10:30 03/08/23 10:30 03/08/23 10:30 Prepared	03/09/23 11:59 Analyzed 03/08/23 21:56 03/08/23 21:56 03/08/23 21:56 Analyzed	1 Dil Fac 1 1 1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <49.9	Qualifier U Qualifier U U U Qualifier	RL 49.9 (GC) RL 49.9 49.9 49.9 49.9 70.130 70.130	mg/Kg Unit mg/Kg mg/Kg		Prepared 03/08/23 10:30 03/08/23 10:30 03/08/23 10:30 Prepared 03/08/23 10:30	O3/09/23 11:59 Analyzed 03/08/23 21:56 03/08/23 21:56 03/08/23 21:56 03/08/23 21:56 03/08/23 21:56	1 Dil Fac 1 1 1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, loi Analyte	Result <49.9 esel Range Orga Result <49.9 <49.9 <49.9 <49.9 %Recovery 86 92 m Chromatograp	Qualifier U Qualifier U U U Qualifier	RL 49.9 (GC) RL 49.9 49.9 49.9 49.9 70.130 70.130	mg/Kg Unit mg/Kg mg/Kg		Prepared 03/08/23 10:30 03/08/23 10:30 03/08/23 10:30 Prepared 03/08/23 10:30	O3/09/23 11:59 Analyzed 03/08/23 21:56 03/08/23 21:56 03/08/23 21:56 03/08/23 21:56 03/08/23 21:56	1 Dil Fac 1 1 1 <i>Dil Fac</i>

Client Sample ID: SW04 Date Collected: 03/01/23 11:15

Date Received: 03/03/23 08:40

Sample Depth: 0-3'

Method: SW846 8021B - Volat	ile Organic Comp	ounds (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		03/10/23 14:43	03/15/23 18:34	1
Toluene	<0.00200	U	0.00200	mg/Kg		03/10/23 14:43	03/15/23 18:34	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		03/10/23 14:43	03/15/23 18:34	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		03/10/23 14:43	03/15/23 18:34	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		03/10/23 14:43	03/15/23 18:34	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		03/10/23 14:43	03/15/23 18:34	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	123		70 - 130			03/10/23 14:43	03/15/23 18:34	1

Eurofins Carlsbad

Lab Sample ID: 890-4231-17

Matrix: Solid

Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

Method: TAL SOP Total BTEX - Total BTEX Calculation

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

%Recovery Qualifier

Result Qualifier

Result Qualifier

Result Qualifier

<49.9 U

<49.9 U

<49.9 U

112

<0.00399 U

Client Sample Results

Limits

70 - 130

RL

RL

49.9

RL

49.9

49.9

0.00399

Unit

Unit

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Job ID: 890-4231-1 SDG: 03E2057054

Analyzed

03/15/23 18:34

Analyzed

03/16/23 15:40

Analyzed

Client Sample ID: SW04

Date Collected: 03/01/23 11:15

Client: Ensolum

Surrogate

Analyte

Analyte

Analyte

C10-C28)

(GRO)-C6-C10

Total TPH

Total BTEX

Date Received: 03/03/23 08:40 Sample Depth: 0-3'

1,4-Difluorobenzene (Surr)

Gasoline Range Organics

Diesel Range Organics (Over

Lab Sample ID:	890-4231-17
	Matrix: Solid

Prepared

03/10/23 14:43

Prepared

Prepared

Prepared

03/08/23 10:30

03/08/23 10:30

D

D

D

Matrix: Solid

Dil Fac

Dil Fac

Dil Fac

1

1

	1	03/09/23 11:59
	Dil Fac	Analyzed
	1	03/08/23 23:02
	1	03/08/23 23:02
13	1	03/08/23 23:02
	Dil Fac	Analyzed

Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg	03/08/23 10:30	03/08/23 23:02	
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	
1-Chlorooctane	101		70 - 130		03/08/23 10:30	03/08/23 23:02	
o-Terphenyl	107		70 - 130		03/08/23 10:30	03/08/23 23:02	
Method: EPA 300.0 - Anions, Ion	Chromatogram	ohv - Solubl	e				

Method: EPA 300.0 - Anions, Ion C	hromatography - Soluble						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	88.4	5.05	mg/Kg			03/09/23 00:54	1

Client Sample ID: SW06

Date Collected: 03/01/23 12:10 Date Received: 03/03/23 08:40 Sample Depth: 0-4'

Lab Sample ID: 890-4231-18

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		03/10/23 14:43	03/15/23 19:58	1
Toluene	<0.00201	U	0.00201	mg/Kg		03/10/23 14:43	03/15/23 19:58	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		03/10/23 14:43	03/15/23 19:58	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		03/10/23 14:43	03/15/23 19:58	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		03/10/23 14:43	03/15/23 19:58	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		03/10/23 14:43	03/15/23 19:58	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130			03/10/23 14:43	03/15/23 19:58	1
1,4-Difluorobenzene (Surr)	89		70 - 130			03/10/23 14:43	03/15/23 19:58	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			03/16/23 15:40	1
Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
			50.0					

Job ID: 890-4231-1 SDG: 03E2057054

Matrix: Solid

Dil Fac

1

Lab Sample ID: 890-4231-18

Analyzed

Lab Sample ID: 890-4231-19

Prepared

03/08/23 10:30 03/08/23 23:23

D

Client Sample ID: SW06

Date Collected: 03/01/23 12:10 Date Received: 03/03/23 08:40

Sample Depth: 0-4'

Client: Ensolum

Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO) (C	SC)	
Analyte	Result	Qualifier	RL	Unit
Gasoline Range Organics	<50.0	U	50.0	mg/Kg
(GRO)-C6-C10				
Dissel Dange Organics (Over	~50.0		50.0	malka

<50.0	U	50.0	mg/Kg	03/08/23 10:30	03/08/23 23:23	1
<50.0	U.	50.0	ma/Ka	03/08/23 10:30	03/08/23 23:23	1
	0	00.0	inging	00/00/20 10:00	00/00/20 20:20	·
%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
92		70 - 130		03/08/23 10:30	03/08/23 23:23	1
103		70 - 130		03/08/23 10:30	03/08/23 23:23	1
	<50.0 %Recovery 92		<50.0 U 50.0 <u>%Recovery</u> <u>Qualifier</u> <u>Limits</u> <u>92</u> 70 - 130	<50.0 U 50.0 mg/Kg <u>%Recovery</u> <u>Qualifier</u> <u>Limits</u> <u>70 - 130</u>	<50.0 U 50.0 mg/Kg 03/08/23 10:30 %Recovery Qualifier Limits Prepared 92 70 - 130 03/08/23 10:30	<50.0 U 50.0 mg/Kg 03/08/23 10:30 03/08/23 23:23 %Recovery Qualifier Limits Prepared Analyzed 92 70 - 130 03/08/23 10:30 03/08/23 23:23

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	42.3	5.00	mg/Kg			03/09/23 00:59	1

Client Sample ID: SW07

Date Collected: 03/01/23 12:15

Date Received: 03/03/23 08:40 Sample Depth: 0-4'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		03/10/23 14:43	03/15/23 20:19	1
Toluene	<0.00200	U	0.00200	mg/Kg		03/10/23 14:43	03/15/23 20:19	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		03/10/23 14:43	03/15/23 20:19	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		03/10/23 14:43	03/15/23 20:19	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		03/10/23 14:43	03/15/23 20:19	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		03/10/23 14:43	03/15/23 20:19	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130			03/10/23 14:43	03/15/23 20:19	1
1,4-Difluorobenzene (Surr)	73		70 - 130			03/10/23 14:43	03/15/23 20:19	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			03/16/23 15:40	1
Method: SW846 8015 NM - Die	sel Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			03/09/23 11:59	1
Method: SW846 8015B NM - D	iesel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg	03/08/23 10:30	03/08/23 23:45	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg	03/08/23 10:30	03/08/23 23:45	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg	03/08/23 10:30	03/08/23 23:45	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane	92		70 - 130		03/08/23 10:30	03/08/23 23:45	1
o-Terphenyl	92		70 - 130		03/08/23 10:30	03/08/23 23:45	1

		Client	Sample Res	sults					1
Client: Ensolum Project/Site: Maverick Baish B Battery	/						Job ID: 890 SDG: 03E2		2
Client Sample ID: SW07 Date Collected: 03/01/23 12:15						Lab San	nple ID: 890-4 Matri	231-19 ix: Solid	
Date Received: 03/03/23 08:40 Sample Depth: 0-4'									4
Method: EPA 300.0 - Anions, Ion C Analyte		hy - Soluble Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	5
Chloride	69.3		5.00	mg/Kg		Tropuloc	03/09/23 01:03	1	
									8
									9
									13

5 6

Job ID: 890-4231-1 SDG: 03E2057054

Prep Type: Total/NA

Project/Site: Maverick Baish B Battery
Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

Client: Ensolum

				Percent Surrogate Recovery ((Accep
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
880-25394-A-3-F MS	Matrix Spike	91	108		
880-25394-A-3-G MSD	Matrix Spike Duplicate	97	103		
880-25480-A-11-F MS	Matrix Spike	52 S1-	84		
880-25480-A-11-G MSD	Matrix Spike Duplicate	117	97		
890-4215-A-1-B MS	Matrix Spike	98	105		
890-4215-A-1-C MSD	Matrix Spike Duplicate	102	103		
890-4223-A-1-E MS	Matrix Spike	111	93		
890-4223-A-1-F MSD	Matrix Spike Duplicate	109	94		
890-4231-1	FS01	99	102		
890-4231-2	FS02	104	91		
890-4231-3	FS03	84	91		
890-4231-4	FS04	86	88		
890-4231-5	FS05	50 S1-	125		
890-4231-6	FS06	40 S1-	97		
890-4231-7	FS07	44 S1-	83		
890-4231-8	FS08	76	67 S1-		
890-4231-9	FS09	42 S1-	85		
890-4231-10	FS10	113	105		
890-4231-11	FS11	66 S1-	68 S1-		
890-4231-12	FS12	102	73		
	FS12	102	73 105		
890-4231-13					
890-4231-14	SW01	103	96		
890-4231-15	SW02	127	109		
890-4231-16	SW03	120	103		
890-4231-17	SW04	123	112		
890-4231-18	SW06	107	89		
890-4231-19	SW07	103	73		
LCS 880-48192/1-A	Lab Control Sample	93	102		
LCS 880-48320/1-A	Lab Control Sample	97	97		
LCS 880-48332/1-A	Lab Control Sample	102	89		
LCS 880-48442/1-A	Lab Control Sample	90	108		
LCSD 880-48192/2-A	Lab Control Sample Dup	93	103		
LCSD 880-48320/2-A	Lab Control Sample Dup	94	105		
LCSD 880-48332/2-A	Lab Control Sample Dup	99	90		
LCSD 880-48442/2-A	Lab Control Sample Dup	92	105		
MB 880-48192/5-A	Method Blank	93	95		
MB 880-48320/5-A	Method Blank	83	90		
MB 880-48332/5-A	Method Blank	84	94		
MB 880-48442/5-A	Method Blank	59 S1-	91		
Surrogate Legend					

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Surrogate Summary

Page 90 of 142

5 6 7

Job ID: 890-4231-1 SDG: 03E2057054

Prep Type: Total/NA

Project/Site: Maverick Baish B Battery Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

Client: Ensolum

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
ab Sample ID	Client Sample ID	(70-130)	(70-130)	
80-25357-A-22-C MS	Matrix Spike	115	111	
0-25357-A-22-D MSD	Matrix Spike Duplicate	105	106	
0-25537-A-41-E MS	Matrix Spike	126	107	
0-25537-A-41-F MSD	Matrix Spike Duplicate	125	106	
0-4231-1	FS01	120	126	
-4231-2	FS02	115	120	
-4231-3	FS03	103	116	
4231-4	FS04	101	93	
-4231-5	FS05	109	105	
4231-6	FS06	109	106	
-4231-7	FS07	105	95	
4231-8	FS08	102	122	
4231-8 MS	FS08	119	134 S1+	
4231-8 MSD	FS08	106	121	
-4231-9	FS09	88	105	
-4231-10	FS10	84	99	
1231-11	FS11	106	129	
231-12	FS12	87	105	
231-13	FS13	3 S1-	5 S1-	
231-14	SW01	0.7 S1-	0.7 S1-	
31-15	SW01 SW02	0.8 S1-	0.4 S1-	
231-16	SW02 SW03	86	92	
31-16 MS	SW03	116	3 <u>2</u> 117	
231-16 MSD	SW03	124	117	
231-17	SW03 SW04	124	107	
231-17 231-18	SW04 SW06	92	107	
	SW06 SW07		92	
231-19		92		
380-47868/2-A	Lab Control Sample	126	135 S1+	
880-48015/2-A	Lab Control Sample	101	89	
880-48107/2-A	Lab Control Sample	105	116	
880-48109/2-A	Lab Control Sample	84	98	
D 880-47868/3-A	Lab Control Sample Dup	114	119	
D 880-48015/3-A	Lab Control Sample Dup	95	84	
D 880-48107/3-A	Lab Control Sample Dup	119	118	
SD 880-48109/3-A	Lab Control Sample Dup	81	97	
880-47868/1-A	Method Blank	110	125	
380-48015/1-A	Method Blank	121	117	
880-48107/1-A	Method Blank	103	110	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Client: Ensolum

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-48192/5-4	4					Client Sa	mple ID: Metho
Matrix: Solid							Prep Type: 7
Analysis Batch: 48425							Prep Batch
	MB	MB					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed
Benzene	<0.00200	U	0.00200	mg/Kg		03/09/23 10:06	03/13/23 11:51
Toluene	<0.00200	U	0.00200	mg/Kg		03/09/23 10:06	03/13/23 11:51
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		03/09/23 10:06	03/13/23 11:51
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		03/09/23 10:06	03/13/23 11:51
o-Xylene	<0.00200	U	0.00200	mg/Kg		03/09/23 10:06	03/13/23 11:51
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		03/09/23 10:06	03/13/23 11:51
	МВ	МВ					
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed
4-Bromofluorobenzene (Surr)	93		70 - 130			03/09/23 10:06	03/13/23 11:51

95

1,4-Difluorobenzene (Surr)

Lab Sample ID: LCS 880-48192/1-A Matrix: Solid

Analysis Batch: 48425

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.08568		mg/Kg		86	70 - 130	
Toluene	0.100	0.08848		mg/Kg		88	70 - 130	
Ethylbenzene	0.100	0.08317		mg/Kg		83	70 - 130	
m-Xylene & p-Xylene	0.200	0.1706		mg/Kg		85	70 - 130	
o-Xylene	0.100	0.08409		mg/Kg		84	70 - 130	

70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	93		70 - 130
1,4-Difluorobenzene (Surr)	102		70 - 130

Lab Sample ID: LCSD 880-48192/2-A

Matrix: Solid

	Analysis Batch: 48425							Prep	Batch:	481 92
		Spike	LCSD	LCSD				%Rec		RPD
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	Benzene	0.100	0.08482		mg/Kg		85	70 - 130	1	35
	Toluene	0.100	0.08647		mg/Kg		86	70 - 130	2	35
	Ethylbenzene	0.100	0.08262		mg/Kg		83	70 - 130	1	35
	m-Xylene & p-Xylene	0.200	0.1696		mg/Kg		85	70 - 130	1	35
	o-Xylene	0.100	0.08441		mg/Kg		84	70 - 130	0	35
I										

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	93		70 - 130
1,4-Difluorobenzene (Surr)	103		70 - 130

Lab Sample ID: 890-4215-A-1-B MS

Matrix: Solid alucia Databu 49425

Analysis Batch: 48425									Prep	Batch: 48192
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U	0.0998	0.1023		mg/Kg		102	70 - 130	
Toluene	<0.00199	U	0.0998	0.1046		mg/Kg		105	70 - 130	

arlsbad

Prep Type: Total/NA

Dil Fac

1

1

1

1

1

1

1

1

Dil Fac

Client Sample	ID: Lab	Control	Sample
· · · · ·			

Client Sample ID: Lab Control Sample Dup

03/13/23 11:51

03/09/23 10:06

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 48192

Eurofins (

Client Sample ID: Matrix Spike

MS MS

0.09862

0.2013

0.09902

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

Spike

Added

0.0998

0.200

0.0998

Limits 70 - 130

70 - 130

Client: Ensolum Project/Site: Maverick Baish B Battery

Lab Sample ID: 890-4215-A-1-B MS

Matrix: Solid

Analyte

o-Xylene

Surrogate

Ethylbenzene

m-Xylene & p-Xylene

Analysis Batch: 48425

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Sample Sample

<0.00199

<0.00398 U

<0.00199 U

%Recovery

Result Qualifier

U

MS MS

98

105

Qualifier

Job ID: 890-4231-1 SDG: 03E2057054

Prep Type: Total/NA

Prep Batch: 48192

Client Sample ID: Matrix Spike

%Rec

Limits

70 - 130

70 - 130

70 - 130

%Rec

98

100

98

D

2 3 4 5 6 7 8 9 10 11

Client Sample ID: N	latrix Spike Duplicate
	Prep Type: Total/NA

Client Sample ID: Method Blank

03/14/23 11:43

03/14/23 11:43

Client Sample ID: Lab Control Sample

03/10/23 12:35

03/10/23 12:35

Prep Type: Total/NA

Prep Batch: 48320

Matrix: Solid Analysis Batch: 48425

Lab Sample ID: 890-4215-A-1-C MSD

Analysis Batch: 48425									Prep	Batch:	48192	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	< 0.00199	U	0.100	0.09603		mg/Kg		95	70 - 130	6	35	
Toluene	<0.00199	U	0.100	0.09757		mg/Kg		97	70 - 130	7	35	i
Ethylbenzene	<0.00199	U	0.100	0.09340		mg/Kg		92	70 - 130	5	35	
m-Xylene & p-Xylene	<0.00398	U	0.201	0.1938		mg/Kg		95	70 - 130	4	35	i
o-Xylene	<0.00199	U	0.100	0.09584		mg/Kg		94	70 - 130	3	35	

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		70 - 130
1,4-Difluorobenzene (Surr)	103		70 - 130

Lab Sample ID: MB 880-48320/5-A Matrix: Solid Analysis Batch: 48570

-	MB	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		03/10/23 12:35	03/14/23 11:43	1
Toluene	<0.00200	U	0.00200	mg/Kg		03/10/23 12:35	03/14/23 11:43	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		03/10/23 12:35	03/14/23 11:43	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		03/10/23 12:35	03/14/23 11:43	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		03/10/23 12:35	03/14/23 11:43	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		03/10/23 12:35	03/14/23 11:43	1
	МВ	МВ						
Surrogate	%Recoverv	Qualifier	Limits			Prepared	Analvzed	Dil Fac

ourrogate	<i>Junceovery</i>	Quanner	Linits
4-Bromofluorobenzene (Surr)	83		70 - 130
1,4-Difluorobenzene (Surr)	90		70 - 130

Lab Sample ID: LCS 880-48320/1-A Matrix: Solid Analysis Batch: 48570

-	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.100	0.09096		mg/Kg		91	70 - 130
Toluene	0.100	0.08633		mg/Kg		86	70 - 130
Ethylbenzene	0.100	0.08686		mg/Kg		87	70 - 130
m-Xylene & p-Xylene	0.200	0.1794		mg/Kg		90	70 - 130

Eurofins Carlsbad

Prep Type: Total/NA

Prep Batch: 48320

1

Spike

Added

0.100

Limits

70 - 130

70 - 130

Client: Ensolum Project/Site: Maverick Baish B Battery

Lab Sample ID: LCS 880-48320/1-A

Matrix: Solid

Analyte

o-Xylene

Surrogate

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

Analysis Batch: 48570

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

LCS LCS

97

97

Qualifier

%Recovery

Prep Type: Total/NA

Prep Batch: 48320

Client Sample ID: Lab Control Sample

%Rec

Limits

70 - 130

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

%Rec

91

D

	5
,	7
	8
	9

Lab Sample ID: LCSD 880-48320/2-A Client Sample ID: Lab Control Sample Dup Matrix: Solid Prep Type: Total/NA Analysis Batch: 48570 Prep Batch: 48320 Spike LCSD LCSD RPD %Rec RPD Added Result Qualifier Unit D %Rec Limits Limit 0.100 0.09452 mg/Kg 95 70 - 130 4 35 0.100 0.08623 mg/Kg 86 70 - 130 0 35 0.100 0.08454 mg/Kg 85 70 - 130 3 35 0.200 35 m-Xylene & p-Xylene 0.1705 mg/Kg 85 70 - 130 5 0.100 0.08598 86 70 - 130 35 mg/Kg 5

LCS LCS

Qualifier

Unit

mg/Kg

Result

0.09083

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	94		70 - 130
1,4-Difluorobenzene (Surr)	105		70 - 130

Lab Sample ID: 880-25480-A-11-F MS Matrix: Solid

Analysis Batch: 48570 Prep Batch: 48320 Spike MS MS Sample Sample %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Benzene < 0.00198 U F1 0.0998 0.04568 F1 mg/Kg 45 70 - 130 0.0998 Toluene <0.00198 U F1 F2 0.04254 F1 mg/Kg 41 70 - 130 Ethylbenzene <0.00198 U F1 F2 0.0998 0.03566 F1 mg/Kg 36 70 - 130 m-Xylene & p-Xylene <0.00396 U F1 F2 0.200 0.05862 F1 mg/Kg 29 70 - 130 o-Xylene <0.00198 U F1 F2 0.0998 0.02939 F1 mg/Kg 29 70 - 130

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	52	S1-	70 - 130
1,4-Difluorobenzene (Surr)	84		70 - 130

Lab Sample ID: 880-25480-A-11-G MSD Matrix: Solid

Analysis Batch: 48570									Prep	Batch:	48320
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00198	U F1	0.100	0.05128	F1	mg/Kg		51	70 - 130	12	35
Toluene	<0.00198	U F1 F2	0.100	0.06096	F1 F2	mg/Kg		59	70 - 130	36	35
Ethylbenzene	<0.00198	U F1 F2	0.100	0.07369	F2	mg/Kg		74	70 - 130	70	35
m-Xylene & p-Xylene	<0.00396	U F1 F2	0.200	0.1519	F2	mg/Kg		76	70 - 130	89	35
o-Xylene	<0.00198	U F1 F2	0.100	0.07690	F2	mg/Kg		76	70 - 130	89	35

Eurofins Carlsbad

Prep Type: Total/NA

Client: Ensolum Project/Site: Maverick Baish B Battery

Lab Sample ID: 880-25480-A-11-G MSD

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

SDG: 03E2057054

Client Sample ID: Matrix Spike Duplicate

Matrix: Solid Prep Type: Total/NA Analysis Batch: 48570 Prep Batch: 48320 MSD MSD %Recovery Surrogate Qualifier Limits 4-Bromofluorobenzene (Surr) 117 70 - 130 1,4-Difluorobenzene (Surr) 97 70 - 130 Lab Sample ID: MB 880-48332/5-A **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA Analysis Batch: 48639 Prep Batch: 48332 MB MB Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac <0.00200 Ū 0.00200 03/10/23 14:43 03/15/23 13.23 Benzene mg/Kg 1 Toluene <0.00200 U 0.00200 03/10/23 14:43 03/15/23 13:23 mg/Kg 1 <0.00200 U 0.00200 03/10/23 14:43 03/15/23 13:23 Ethvlbenzene mg/Kg 1 m-Xylene & p-Xylene <0.00400 U 0.00400 mg/Kg 03/10/23 14:43 03/15/23 13:23 o-Xylene <0.00200 U 0.00200 03/10/23 14:43 03/15/23 13:23 mg/Kg 1 Xylenes, Total <0.00400 U 0.00400 mg/Kg 03/10/23 14:43 03/15/23 13:23 MB MB Qualifier Limits Dil Fac Surrogate %Recovery Prepared Analyzed 4-Bromofluorobenzene (Surr) 84 70 - 130 03/10/23 14:43 03/15/23 13:23 1,4-Difluorobenzene (Surr) 94 70 - 130 03/10/23 14:43 03/15/23 13:23 Lab Sample ID: LCS 880-48332/1-A **Client Sample ID: Lab Control Sample** Matrix: Solid Analysis Batch: 48639 Prep Batch: 48332 LCS LCS Spike %Rec Analyte Added **Result Qualifier** Unit D %Rec Limits Benzene 0.100 0.07765 78 70 - 130 mg/Kg 0.07670 77 Toluene 0 100 70 - 130 mg/Kg Ethylbenzene 0.100 0.07977 mg/Kg 80 70 - 130 70 - 130 m-Xylene & p-Xylene 0.200 0.1622 mg/Kg 81 o-Xylene 0.100 0.08264 mg/Kg 83 70 - 130 LCS LCS %Recovery Qualifier Limits Surrogate 102 70 - 130 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 89 70 - 130

Lab Sample ID: LCSD 880-48332/2-A Matrix: Solid Analysis Batch: 48639

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

Prep Batch: 48332 Spike LCSD LCSD %Rec RPD Added Result Qualifier Unit %Rec Limits RPD Limit D 0.100 0.08413 mg/Kg 84 70 - 130 8 35 0.08221 70 - 130 0.100 mg/Kg 82 35 7 0.100 0.08334 mg/Kg 83 70 - 130 35 4 0.200 0 1699 85 70 - 13035 m-Xylene & p-Xylene mg/Kg 5 0.100 0.08958 mg/Kg 90 70 - 130 35 8

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		70 - 130

Eurofins Carlsbad

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Client: Ensolum Project/Site: Maverick Baish B Battery

Toluene

o-Xylene

Ethylbenzene

Xylenes, Total

Surrogate

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-48 Matrix: Solid	8332/2-A					Cli	ent Sar	nple ID: L	ab Control	l Sampl ype: To	
Analysis Batch: 48639									Prep	Batch:	48332
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1,4-Difluorobenzene (Surr)	90		70 - 130								
Lab Sample ID: 890-4223-A-	1-E MS							Client	Sample ID:	Matrix	Spike
Matrix: Solid										ype: To	
Analysis Batch: 48639									Prep	Batch:	48332
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene	<0.00201	U F1	0.100	0.03352	F1	mg/Kg		33	70 - 130		
Toluene	<0.00201	U F1	0.100	0.03897	F1	mg/Kg		39	70 - 130		
Ethylbenzene	<0.00201	U F1	0.100	0.04351	F1	mg/Kg		43	70 - 130		
m-Xylene & p-Xylene	<0.00402	U F1	0.200	0.08603	F1	mg/Kg		43	70 - 130		
o-Xylene	<0.00201	U F1	0.100	0.04474	F1	mg/Kg		45	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	111		70 - 130								
1,4-Difluorobenzene (Surr)	93		70 - 130								
Lab Sample ID: 890-4223-A-	1-F MSD					(Client S	ample ID	: Matrix Sp	ike Dup	licate
Matrix: Solid									Prep T	ype: To	tal/NA
Analysis Batch: 48639									Prep	Batch:	48332
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
	oumpie										
Analyte		Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
		Qualifier	Added	Result 0.02719		Unit mg/Kg	<u>D</u>	% Rec	Limits 70 - 130	RPD 21	Limit 35
Benzene	Result				F1		<u>D</u>				
Benzene Toluene	Result <0.00201	U F1 U F1	0.0996	0.02719	F1 F1	mg/Kg	<u> </u>	27	70 - 130	21	35
Benzene Toluene Ethylbenzene	Result <0.00201	U F1 U F1 U F1 U F1	0.0996	0.02719 0.03113	F1 F1 F1	mg/Kg mg/Kg	<u> </u>	27 31	70 - 130 70 - 130	21 22	35 35
Benzene Foluene Ethylbenzene n-Xylene & p-Xylene	Result <0.00201	U F1 U F1 U F1 U F1 U F1	0.0996 0.0996 0.0996	0.02719 0.03113 0.03380	F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg	<u>D</u>	27 31 34	70 - 130 70 - 130 70 - 130	21 22 25	35 35 35
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Result <0.00201 <0.00201 <0.00201 <0.00402	U F1 U F1 U F1 U F1 U F1	0.0996 0.0996 0.0996 0.199	0.02719 0.03113 0.03380 0.06818	F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	27 31 34 34	70 - 130 70 - 130 70 - 130 70 - 130	21 22 25 23	35 35 35 35
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene	Result <0.00201	U F1 U F1 U F1 U F1 U F1 U F1	0.0996 0.0996 0.0996 0.199	0.02719 0.03113 0.03380 0.06818	F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	27 31 34 34	70 - 130 70 - 130 70 - 130 70 - 130	21 22 25 23	35 35 35 35
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene Surrogate	Result <0.00201 <0.00201 <0.00201 <0.00402 <0.00201 MSD	U F1 U F1 U F1 U F1 U F1 WSD	0.0996 0.0996 0.0996 0.199 0.0996	0.02719 0.03113 0.03380 0.06818	F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	27 31 34 34	70 - 130 70 - 130 70 - 130 70 - 130	21 22 25 23	35 35 35 35
Benzene Foluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr)	Result <0.00201	U F1 U F1 U F1 U F1 U F1 WSD	0.0996 0.0996 0.199 0.0996 <i>Limits</i>	0.02719 0.03113 0.03380 0.06818	F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	27 31 34 34	70 - 130 70 - 130 70 - 130 70 - 130	21 22 25 23	35 35 35 35
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	Result <0.00201	U F1 U F1 U F1 U F1 U F1 WSD	0.0996 0.0996 0.199 0.0996 <u>Limits</u> 70 - 130	0.02719 0.03113 0.03380 0.06818	F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	27 31 34 34 38	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	21 22 25 23 17	35 35 35 35 35 35
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-4844	Result <0.00201	U F1 U F1 U F1 U F1 U F1 WSD	0.0996 0.0996 0.199 0.0996 <u>Limits</u> 70 - 130	0.02719 0.03113 0.03380 0.06818	F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	27 31 34 34 38	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	21 22 25 23 17 Method	35 35 35 35 35 35 8 Blank
o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-4844 Matrix: Solid	Result <0.00201	U F1 U F1 U F1 U F1 U F1 WSD	0.0996 0.0996 0.199 0.0996 <u>Limits</u> 70 - 130	0.02719 0.03113 0.03380 0.06818	F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	27 31 34 34 38	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 ample ID: I Prep T	21 22 25 23 17 Wethod	35 35 35 35 35 35 8 Jank tal/NA
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-4844 Matrix: Solid	Result <0.00201	U F1 U F1 U F1 U F1 U F1 WSD	0.0996 0.0996 0.199 0.0996 <u>Limits</u> 70 - 130	0.02719 0.03113 0.03380 0.06818	F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	27 31 34 34 38	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 ample ID: I Prep T	21 22 25 23 17 Method	35 35 35 35 35 35 8 Jank tal/NA
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr)	Result <0.00201 <0.00201 <0.00402 <0.00201 MSD %Recovery 109 94 42/5-A	U F1 U F1 U F1 U F1 U F1 MSD Qualifier	0.0996 0.0996 0.199 0.0996 <u>Limits</u> 70 - 130	0.02719 0.03113 0.03380 0.06818 0.03787	F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg		27 31 34 34 38	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 ample ID: I Prep T	21 22 25 23 17 Method ype: To Batch:	35 35 35 35 35 35 8 Jank tal/NA

03/13/23 11:59

03/13/23 11:59

03/13/23 11:59

03/13/23 11:59

03/13/23 11:59

Analyzed

03/13/23 11:59

03/13/23 11:59

Page 95 of 142

Job ID: 890-4231-1

SDG: 03E2057054

Released to Imaging: 11/17/2023 7:57:01 AM

<0.00200 U

<0.00200 U

<0.00400 U

<0.00200 U

<0.00400 U

%Recovery

MB MB

59 S1-

91

Qualifier

0.00200

0.00200

0.00400

0.00200

0.00400

Limits

70 - 130

70 - 130

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

03/13/23 08:00

03/13/23 08:00

03/13/23 08:00

03/13/23 08:00

03/13/23 08:00

Prepared

03/13/23 08:00

03/13/23 08:00

1

1

1

1

1

1

1

Dil Fac

Client: Ensolum Project/Site: Maverick Baish B Battery Job ID: 890-4231-1 SDG: 03E2057054

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-484	42/1-A						Client	Sample	ID: Lab Control Sam
Matrix: Solid									Prep Type: Total/
Analysis Batch: 48426									Prep Batch: 484
			Spike	LCS	LCS				%Rec
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene			0.100	0.1007		mg/Kg		101	70 - 130
Toluene			0.100	0.08959		mg/Kg		90	70 - 130
Ethylbenzene			0.100	0.09671		mg/Kg		97	70 - 130
m-Xylene & p-Xylene			0.200	0.2023		mg/Kg		101	70 - 130
o-Xylene			0.100	0.09558		mg/Kg		96	70 - 130
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
4-Bromofluorobenzene (Surr)	90		70 - 130						
1,4-Difluorobenzene (Surr)	108		70 - 130						

Lab Sample ID: LCSD 880-48442/2-A Matrix: Solid Analysis Batch: 48426

Analysis Batch: 48426								Batch:	48442
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1032		mg/Kg		103	70 - 130	2	35
Toluene	0.100	0.08730		mg/Kg		87	70 - 130	3	35
Ethylbenzene	0.100	0.09347		mg/Kg		93	70 - 130	3	35
m-Xylene & p-Xylene	0.200	0.1962		mg/Kg		98	70 - 130	3	35
o-Xylene	0.100	0.09363		mg/Kg		94	70 - 130	2	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	92		70 - 130
1,4-Difluorobenzene (Surr)	105		70 - 130

Lab Sample ID: 880-25394-A-3-F MS Matrix: Solid Analysis Batch: 48426

Analysis Batch: 48426									Prep B	Batch: 48442
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U	0.100	0.1049		mg/Kg		105	70 - 130	
Toluene	<0.00200	U	0.100	0.09636		mg/Kg		96	70 - 130	
Ethylbenzene	<0.00200	U	0.100	0.1053		mg/Kg		105	70 - 130	
m-Xylene & p-Xylene	<0.00400	U	0.201	0.2196		mg/Kg		108	70 - 130	
o-Xylene	<0.00200	U	0.100	0.1024		mg/Kg		102	70 - 130	
	MS	MS								

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	91		70 - 130
1,4-Difluorobenzene (Surr)	108		70 - 130

Lab Sample ID: 880-25394-A-3-G MSD Matrix: Solid

Analysis Batch: 48426

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U	0.0996	0.1009		mg/Kg		101	70 - 130	4	35
Toluene	<0.00200	U	0.0996	0.09566		mg/Kg		96	70 - 130	1	35
Ethylbenzene	<0.00200	U	0.0996	0.1025		mg/Kg		103	70 - 130	3	35

Eurofins Carlsbad

Prep Type: Total/NA

Prep Batch: 48442

5 6 7

Client Sample ID: Matrix Spike Duplicate

Client: Ensolum Project/Site: Maverick Baish B Battery Page 97 of 142

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-25394-A Matrix: Solid	A-3-G MSD					CI	ient Sa	ample ID		ype: To	tal/NA
Analysis Batch: 48426	Sample	Sample	Spike	MSD	MSD				%Rec	Batch:	40442 RPD
Analyte	•	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
m-Xylene & p-Xylene	<0.00400	U	0.199	0.2150		mg/Kg		107	70 - 130	2	35
o-Xylene	<0.00200	U	0.0996	0.1025		mg/Kg		103	70 - 130	0	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	97		70 - 130								
1,4-Difluorobenzene (Surr)	103		70 - 130								

125

Lab Sample ID: MB 880-47868/1- Matrix: Solid Analysis Batch: 47856		МВ				Client Sa	nple ID: Method Blani Prep Type: Total/N/ Prep Batch: 4786			
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac		
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		03/06/23 08:24	03/06/23 08:33	1		
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		03/06/23 08:24	03/06/23 08:33	1		
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/06/23 08:24	03/06/23 08:33	1		
	МВ	МВ								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac		
1-Chlorooctane			70 - 130			03/06/23 08:24	03/06/23 08:33	1		

Lab Sample ID: LCS 880-47868/2-A	١
Matrix: Solid	

Analysis Batch: 47856

o-Terphenyl

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	1067		mg/Kg		107	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	1020		mg/Kg		102	70 - 130	
C10-C28)								

70 - 130

	LCS	LCS	
Surrogate	%Recovery	%Recovery Qualifier	Limits
1-Chlorooctane	126		70 - 130
o-Terphenyl	135	S1+	70 - 130

Lab Sample ID: LCSD 880-47868/3-A Matrix: Solid Analysis Batch: 47856				Clier	it Sam	nple ID:		ol Sampl Type: To Batch:	tal/NA
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	961.3		mg/Kg		96	70 - 130	10	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	912.4		mg/Kg		91	70 - 130	11	20
C10-C28)									

Eurofins Carlsbad

7

03/06/23 08:33

Prep Type: Total/NA

Prep Batch: 47868

Client Sample ID: Lab Control Sample

1

03/06/23 08:24

Client: Ensolum Project/Site: Maverick Baish B Battery

Oll Range Organics (Over C28-C36)

C10-C28)

Method: 8015B NM ni 0 -11

Method: 8015B NM - Diesel F	Range Or	rgar	nics (DR	:O) (GC)) (Continu	ied)								
Lab Sample ID: LCSD 880-47868/	/ 3-A							Cli	ent	Sam	ple ID: L	ab Contro	ol Sampl	e Dup
Matrix: Solid													Type: To	
Analysis Batch: 47856												Prep	Batch:	47868
	LCSD	LCS	D											
Surrogate	%Recovery			Limits										
1-Chlorooctane	114	-		70 - 130	-									
o-Terphenyl	119			70 - 130										
	- WO										Olivert		- Madula	Omilia
Lab Sample ID: 880-25357-A-22-C	5 IVIS										Client	Sample ID		
Matrix: Solid													Type: To	
Analysis Batch: 47856	Sample	Sam	nlo	Spike	M	S MS						%Rec	Batch:	4/000
Analyte	Result		-	Added		lt Qualifi	ior	Unit		D	%Rec	Limits		
Gasoline Range Organics	<49.9			998	999.						97	70 - 130		
Gasoline Range Organics (GRO)-C6-C10	>+ 3.3	U		330	333.	2		mg/Kg			31	70 - 150		
Diesel Range Organics (Over	<49.9	U		998	109	9		mg/Kg			110	70 - 130		
C10-C28)								0.0						
	MS	мs												
Surrogate	%Recovery	Qua	lifier	Limits										
1-Chlorooctane	115			70 - 130	-									
o-Terphenyl	111			70 - 130										
										_				
Lab Sample ID: 880-25357-A-22-E	D MSD							•	Clie	nt Sa	mple ID:	: Matrix Sp		
Matrix: Solid													Туре: То	
Analysis Batch: 47856		_	_									-	Batch:	
	Sample		-	Spike		D MSD	_			_		%Rec		RPD
Analyte	Result		lifier	Added		It Qualifi		Unit		<u>D</u>	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U		999	107	9		mg/Kg			105	70 - 130	8	20
Diesel Range Organics (Over	<49.9	U		999	105	0		mg/Kg			105	70 - 130	5	20
C10-C28)								0 0						
	MSD	MSD)											
Surrogate	%Recovery			Limits										
1-Chlorooctane	105			70 - 130	-									
o-Terphenyl	106			70 - 130										
Lab Sample ID: MB 880-48015/1-/	Α									0	Client Sa	ample ID:	Method	Blank
Matrix: Solid												Prep 1	Type: To	tal/NA
Analysis Batch: 47992												Prep	Batch:	48015
			МВ											
Analyte			Qualifier		RL		Jnit		D		epared	Analyz		Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<	<50.0	U		50.0	n	ng/Kg			03/07	/23 10:19	03/07/23	19:58	1
Diesel Range Organics (Over	<	<50.0	U		50.0	n	ng/Kg			03/07	/23 10:19	03/07/23	19:58	1

	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac		
1-Chlorooctane	121		70 - 130	03/07/23 10:19	03/07/23 19:58	1		
o-Terphenyl	117		70 - 130	03/07/23 10:19	03/07/23 19:58	1		

50.0

mg/Kg

<50.0 U

Eurofins Carlsbad

03/07/23 19:58

03/07/23 10:19

Page 98 of 142

Job ID: 890-4231-1 SDG: 03E2057054

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

ab Sample ID: LCS 880-480	15/2-A						Client	Sample	D: Lab Co	ontrol S	ample
Matrix: Solid										Гуре: То	-
Analysis Batch: 47992										Batch:	
-			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics			1000	912.7		mg/Kg		91	70 - 130		
GRO)-C6-C10											
Diesel Range Organics (Over			1000	818.2		mg/Kg		82	70 - 130		
C10-C28)											
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
I-Chlorooctane	101		70 - 130								
p-Terphenyl	89		70 - 130								
ab Sample ID: LCSD 880-48	3015/3-A					Clie	nt Sam	ple ID: I	Lab Contro	ol Sampl	le Dup
Matrix: Solid									Prep 1	Гуре: То	tal/NA
Analysis Batch: 47992										Batch:	
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics			1000	891.6		mg/Kg		89	70 - 130	2	20
GRO)-C6-C10											
Diesel Range Organics (Over			1000	809.4		mg/Kg		81	70 - 130	1	20
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
-Chlorooctane	95		70 - 130								
-Terphenyl	84		70 - 130								
	-41-E MS							Client	Sample ID		
∟ab Sample ID: 880-25537-A Matrix: Solid	-41-E MS							Client		: Matrix Гуре: To	
Matrix: Solid								Client	Prep 1 Prep		tal/NA
Matrix: Solid	Sample	Sample	Spike		MS			Client	Prep 1 Prep %Rec	Гуре: То	tal/NA
Matrix: Solid Analysis Batch: 47992 ^{Analyte}	Sample Result	Qualifier	Added	Result	MS Qualifier	Unit	<u>D</u>	%Rec	Prep 1 Prep %Rec Limits	Гуре: То	tal/NA
Matrix: Solid Analysis Batch: 47992 Analyte Basoline Range Organics	Sample	Qualifier	-			- <mark>Unit</mark> mg/Kg	D		Prep 1 Prep %Rec	Гуре: То	tal/NA
Matrix: Solid Analysis Batch: 47992 Analyte Basoline Range Organics GRO)-C6-C10	Sample Result <49.9	Qualifier U	Added 999	Result 1051		mg/Kg	<u>D</u>	%Rec	Prep 7 Prep %Rec Limits 70 - 130	Гуре: То	tal/NA
Matrix: Solid Analysis Batch: 47992 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	Sample Result	Qualifier U	Added	Result			D	%Rec	Prep 1 Prep %Rec Limits	Гуре: То	tal/NA
Matrix: Solid Analysis Batch: 47992 Analyte Basoline Range Organics GRO)-C6-C10	Sample Result <49.9	Qualifier U	Added 999	Result 1051		mg/Kg	D	%Rec	Prep 7 Prep %Rec Limits 70 - 130	Гуре: То	tal/NA
Matrix: Solid Analysis Batch: 47992 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	Sample 	Qualifier U	Added 999	Result 1051		mg/Kg	<u>D</u>	%Rec	Prep 7 Prep %Rec Limits 70 - 130	Гуре: То	tal/NA
Matrix: Solid Analysis Batch: 47992 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	Sample 	Qualifier U U	Added 999	Result 1051		mg/Kg	D	%Rec	Prep 7 Prep %Rec Limits 70 - 130	Гуре: То	tal/NA
Matrix: Solid Analysis Batch: 47992 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	Sample <u>Result</u> <49.9 <49.9 <i>MS</i>	Qualifier U U	Added	Result 1051		mg/Kg	<u> </u>	%Rec	Prep 7 Prep %Rec Limits 70 - 130	Гуре: То	tal/NA
Matrix: Solid Analysis Batch: 47992 Malyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate -Chlorooctane	Sample Result <49.9 <49.9 MS %Recovery	Qualifier U U	Added 999 999 Limits	Result 1051		mg/Kg	<u>D</u>	%Rec	Prep 7 Prep %Rec Limits 70 - 130	Гуре: То	tal/NA
Matrix: Solid Analysis Batch: 47992 Sasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate C-Chlorooctane D-Terphenyl	Sample Result <49.9 <49.9 MS %Recovery 126 107	Qualifier U U	Added 999 999 <u>Limits</u> 70 - 130	Result 1051		mg/Kg		%Rec 101 82	Prep %Rec Limits 70 - 130 70 - 130	Type: To Batch: 	tal/NA 48015
Matrix: Solid Analysis Batch: 47992 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate -Chlorooctane D-Terphenyl Lab Sample ID: 880-25537-A	Sample Result <49.9 <49.9 MS %Recovery 126 107	Qualifier U U	Added 999 999 <u>Limits</u> 70 - 130	Result 1051		mg/Kg		%Rec 101 82	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To Batch: 	tal/NA 48015
Matrix: Solid Analysis Batch: 47992 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Sample Result <49.9 <49.9 MS %Recovery 126 107	Qualifier U U	Added 999 999 <u>Limits</u> 70 - 130	Result 1051		mg/Kg		%Rec 101 82	Prep 7 Prep % %Rec Limits 70 - 130 70 - 130 70 - 130 20: Matrix Sp Prep 7	Type: To Batch: pike Dup Type: To	tal/NA 48015
Matrix: Solid Analysis Batch: 47992 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-25537-A	Sample Result <49.9 <49.9 MS %Recovery 126 107	Qualifier U U	Added 999 999 <u>Limits</u> 70 - 130	Result 1051		mg/Kg		%Rec 101 82	Prep 7 Prep % %Rec Limits 70 - 130 70 - 130 70 - 130 20: Matrix Sp Prep 7	Type: To Batch: 	tal/NA 48015
Matrix: Solid Analysis Batch: 47992 Sasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate -Chlorooctane -Terphenyl Lab Sample ID: 880-25537-A Matrix: Solid	Sample Result <49.9 <49.9 <i>S</i> <i>S</i> <i>S</i> <i>S</i> <i>S</i> <i>S</i> <i>S</i> <i></i>	Qualifier U U	Added 999 999 <u>Limits</u> 70 - 130	Result 1051 837.6		mg/Kg		%Rec 101 82	Prep 7 Prep % %Rec Limits 70 - 130 70 - 130 70 - 130 20: Matrix Sp Prep 7	Type: To Batch: pike Dup Type: To	tal/NA 48015
Matrix: Solid Analysis Batch: 47992 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-25537-A Matrix: Solid Analysis Batch: 47992	Sample Result <49.9 <49.9 MS <u>%Recovery</u> 126 107 -41-F MSD Sample Result	Qualifier U MS Qualifier Sample Qualifier	Added 999 999 Limits 70 - 130 70 - 130	Result 1051 837.6 MSD	Qualifier	mg/Kg		%Rec 101 82	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - Prep 7 Prep 7	Type: To Batch: pike Dup Type: To	tal/NA 48015 blicate tal/NA 48015
Matrix: Solid Analysis Batch: 47992 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-25537-A Matrix: Solid Analysis Batch: 47992 Analyte Basoline Range Organics	Sample Result <49.9 <49.9 MS %Recovery 126 107 -41-F MSD Sample	Qualifier U MS Qualifier Sample Qualifier	Added 999 999 <u>Limits</u> 70 - 130 70 - 130 Spike	Result 1051 837.6 MSD	Qualifier	mg/Kg mg/Kg Cl	ient Sa	%Rec 101 82	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - Prep 1 Prep 1 Prep 2 %Rec	Dike Dup Dike Dup Dype: To Datch:	blicate tal/NA 48015
Matrix: Solid Analysis Batch: 47992 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-25537-A Matrix: Solid Analysis Batch: 47992 Analyte Basoline Range Organics GRO)-C6-C10	Sample Result <49.9 <49.9 MS %Recovery 126 107 -41-F MSD Sample Result <49.9	Qualifier U MS Qualifier Qualifier U	Added 999 999 <u>Limits</u> 70 - 130 70 - 130 70 - 130 80 50 80 80 999	Result 1051 837.6 MSD Result 1056	Qualifier	mg/Kg mg/Kg Cl Unit mg/Kg	ient Sa	%Rec 101 82 ample IC %Rec 102	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Prep 1 Prep %Rec Limits 70 - 130	Dike Dup Type: To Dike Dup Type: To Distance: Batch: RPD 1	blicate tal/NA 48015
Matrix: Solid Analysis Batch: 47992 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-25537-A Matrix: Solid Analysis Batch: 47992 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	Sample Result <49.9 <49.9 MS <u>%Recovery</u> 126 107 -41-F MSD Sample Result	Qualifier U MS Qualifier Qualifier U	Added 999 999 <u>Limits</u> 70 - 130 70 - 130 70 - 130	Result 1051 837.6 MSD Result	Qualifier	mg/Kg mg/Kg Cl	ient Sa	<u>%Rec</u> 101 82 ample IC	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 70 - 190	Dike Dup Dike Dup Type: To Datch: 	blicate tal/NA 48015
Matrix: Solid Analysis Batch: 47992 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate -Chlorooctane -Terphenyl Lab Sample ID: 880-25537-A Matrix: Solid Analysis Batch: 47992 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	Sample Result <49.9 <49.9 MS %Recovery 126 107 -41-F MSD Sample Result <49.9	Qualifier U MS Qualifier Qualifier U	Added 999 999 <u>Limits</u> 70 - 130 70 - 130 70 - 130 80 50 80 80 999	Result 1051 837.6 MSD Result 1056	Qualifier	mg/Kg mg/Kg Cl Unit mg/Kg	ient Sa	%Rec 101 82 ample IC %Rec 102	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Prep 1 Prep %Rec Limits 70 - 130	Dike Dup Type: To Dike Dup Type: To Distance: Batch: RPD 1	blicate tal/NA 48015
Matrix: Solid Analysis Batch: 47992 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-25537-A Matrix: Solid Analysis Batch: 47992 Analyte Basoline Range Organics GRO)-C6-C10	Sample Result <49.9 <49.9 <i>MS</i> <i>%Recovery</i> 126 107 -41-F MSD Sample <u>Result</u> <49.9 <49.9	Qualifier U MS Qualifier Qualifier U	Added 999 999 <u>Limits</u> 70 - 130 70 - 130 70 - 130 80 50 80 80 999	Result 1051 837.6 MSD Result 1056	Qualifier	mg/Kg mg/Kg Cl Unit mg/Kg	ient Sa	%Rec 101 82 ample IC %Rec 102	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Prep 1 Prep %Rec Limits 70 - 130	Dike Dup Type: To Dike Dup Type: To Distance: Batch: RPD 1	blicate tal/NA 48015
Matrix: Solid Analysis Batch: 47992 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-25537-A Matrix: Solid Analysis Batch: 47992 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	Sample Result <49.9 <49.9 <i>MS</i> <i>%Recovery</i> 126 107 -41-F MSD Sample <u>Result</u> <49.9 <49.9	Qualifier U MS Qualifier Qualifier U U	Added 999 999 <u>Limits</u> 70 - 130 70 - 130 70 - 130 80 50 80 80 999	Result 1051 837.6 MSD Result 1056	Qualifier	mg/Kg mg/Kg Cl Unit mg/Kg	ient Sa	%Rec 101 82 ample IC %Rec 102	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Prep 1 Prep %Rec Limits 70 - 130	Dike Dup Type: To Dike Dup Type: To Distance: Batch: RPD 1	blicate tal/NA 48015

Client: Ensolum

Job ID: 890-4231-1 SDG: 03E2057054

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-25537-A-4 Matrix: Solid	1-F MSD							Cli	ent Sa	ample ID:	Matrix Spike I Prep Type:	
Analysis Batch: 47992											Prep Bato	
Analysis Batch. 47992											Fiep Ball	11. 400 1
	MSD	MSE)									
Surrogate	%Recovery	Qua	lifier	Limits								
o-Terphenyl	106			70 - 130								
Lab Sample ID: MB 880-48107	/1-A									Client Sa	mple ID: Meth	od Blan
Matrix: Solid											Prep Type:	
Analysis Batch: 48081											Prep Bato	
		мв	мв								Trop Bate	
Analyte	R		Qualifier	R			Unit	D	Р	repared	Analyzed	Dil Fa
Gasoline Range Organics		<50.0					mg/Kg		-	8/23 10:30	03/08/23 20:50	
(GRO)-C6-C10		-00.0	0		5		ing/itg		00,0	0,20 10.00	00/00/20 20:00	
Diesel Range Organics (Over	<	<50.0	U	50.)		mg/Kg		03/0	8/23 10:30	03/08/23 20:50	
C10-C28)												
Oll Range Organics (Over C28-C36)	<	\$50.0	U	50.	C	1	mg/Kg		03/0	8/23 10:30	03/08/23 20:50	
a <i>i</i>									_			
Surrogate	%Reco		Qualifier	Limits	-					repared	Analyzed	Dil Fa
1-Chlorooctane		103		70 - 130						8/23 10:30	03/08/23 20:50	
o-Terphenyl		110		70 - 130					03/0	8/23 10:30	03/08/23 20:50	
Analyte				Spike Added	Result	LCS Qualif	ier Uni	t	D	%Rec	%Rec Limits	
Gasoline Range Organics				1000	951.6		mg	′Kg		95	70 - 130	
(GRO)-C6-C10				1000	1000						70 100	
Diesel Range Organics (Over C10-C28)				1000	1208		mgi	кg		121	70 - 130	
	LCS	LCS										
Surrogate	%Recovery	Qua	lifier	Limits								
1-Chlorooctane												
1-Chilorooclane	105			70 - 130								
o-Terphenyl	105 116			70 - 130 70 - 130								
o-Terphenyl	116							Clien	t Sar		ah Control San	nle Du
o-Terphenyl Lab Sample ID: LCSD 880-481	116							Clien	t Sam	ple ID: L	ab Control San	-
o-Terphenyl Lab Sample ID: LCSD 880-481 Matrix: Solid	116							Clien	t Sarr	iple ID: L	Prep Type:	Total/N
o-Terphenyl Lab Sample ID: LCSD 880-481	116			70 - 130				Clien	t Sarr	iple ID: L	Prep Type: Prep Bate	Total/N h: 4810
o-Terphenyl Lab Sample ID: LCSD 880-481 Matrix: Solid Analysis Batch: 48081	116			70 ₋ 130 Spike		LCSD				-	Prep Type: Prep Bato %Rec	Total/N h: 4810 RP
o-Terphenyl Lab Sample ID: LCSD 880-481 Matrix: Solid Analysis Batch: 48081 Analyte	116			70 - 130 Spike Added	Result		ier Uni	t	t Sam D_	%Rec	Prep Type: Prep Bato %Rec Limits RF	Total/N h: 4810 RP D Lim
o-Terphenyl Lab Sample ID: LCSD 880-481 Matrix: Solid Analysis Batch: 48081 Analyte Gasoline Range Organics	116			70 ₋ 130 Spike				t		-	Prep Type: Prep Bato %Rec	Total/N h: 4810 RP
o-Terphenyl Lab Sample ID: LCSD 880-481 Matrix: Solid Analysis Batch: 48081 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	116			70 - 130 Spike Added	Result		ier Uni	t ′Kg		%Rec	Prep Type: Prep Bato %Rec Limits RF	Total/N h: 4810 RP D Lim
o-Terphenyl Lab Sample ID: LCSD 880-481 Matrix: Solid Analysis Batch: 48081 Analyte Gasoline Range Organics	116 07/3-A			70 - 130 Spike Added 1000	Result 941.9		ier Uni mg	t ′Kg		%Rec	Prep Type: Prep Bato %Rec Limits RF 70 - 130	Total/N h: 4810 RP <u>D</u> <u>Lim</u> <u>2</u>
o-Terphenyl Lab Sample ID: LCSD 880-481 Matrix: Solid Analysis Batch: 48081 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	116 07/3-A 			70 - 130 Spike Added 1000	Result 941.9		ier Uni mg	t ′Kg		%Rec	Prep Type: Prep Bato %Rec Limits RF 70 - 130	Total/N h: 4810 RP <u>D</u> <u>Lim</u> <u>2</u>
o-Terphenyl Lab Sample ID: LCSD 880-481 Matrix: Solid Analysis Batch: 48081 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	116 07/3-A 			70 - 130 Spike Added 1000 1000 Limits	Result 941.9		ier Uni mg	t ′Kg		%Rec	Prep Type: Prep Bato %Rec Limits RF 70 - 130	Total/N h: 4810 RP <u>D</u> <u>Lim</u> <u>2</u>
o-Terphenyl Lab Sample ID: LCSD 880-481 Matrix: Solid Analysis Batch: 48081 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	116 07/3-A 			70 - 130 Spike Added 1000	Result 941.9		ier Uni mg	t ′Kg		%Rec	Prep Type: Prep Bato %Rec Limits RF 70 - 130	Total/N h: 4810 RP <u>D</u> <u>Lim</u> <u>2</u>

MS MS

MSD MSD

947.7

994.0

Result Qualifier

1008

988.9

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

D

%Rec

97

99

99

Spike

Added

998

998

Limits

70 - 130

70 - 130

Spike

Added

999

999

Limits

70 - 130

70 - 130

Client: Ensolum Project/Site: Maverick Baish B Battery

Lab Sample ID: 890-4231-16 MS

Lab Sample ID: 890-4231-16 MSD

Matrix: Solid

(GRO)-C6-C10

C10-C28)

Surrogate

o-Terphenyl

Analyte

C10-C28)

Surrogate

o-Terphenyl

o-Terphenyl

1-Chlorooctane

Matrix: Solid

1-Chlorooctane

Matrix: Solid

(GRO)-C6-C10

Analysis Batch: 48081

Gasoline Range Organics

Diesel Range Organics (Over

Analyte

Analysis Batch: 48081

Gasoline Range Organics

Diesel Range Organics (Over

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Sample Sample

<49.9 U

<49.9 U

116

117

MS MS %Recovery Qualifier

Sample Sample

<49.9 U

<49.9 U

124

117

MSD MSD %Recovery Qualifier

....

124

Result Qualifier

Result Qualifier

Client Sample ID: SW03

Prep Type: Total/NA

Prep Batch: 48107

5
7
8
9

20

1

1

Prep Batch: 48109

03/08/23 20:50

Client Sample ID: SW03 Prep Type: Total/NA Prep Batch: 48107

			%Rec		RPD	
Unit	D	%Rec	Limits	RPD	Limit	
mg/Kg		91	70 - 130	6	20	2

70 - 130

%Rec

Limits

70 - 130

70 - 130

Client Sample ID: Method Blank	
Prep Type: Total/NA	

03/08/23 10:34

Analysis Batch: 48083

Lab Sample ID: MB 880-48109/1-A

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		03/08/23 10:34	03/08/23 20:50	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		03/08/23 10:34	03/08/23 20:50	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/08/23 10:34	03/08/23 20:50	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	102		70 - 130			03/08/23 10:34	03/08/23 20:50	1

70 - 130

Lab Sample ID: LCS 880-48109/2-A
Matrix: Solid
Analysis Batch: 48083

				Clien	t Sample	e ID: Lab C	ontrol Sample
						Prep ⁻	Type: Total/NA
						Prep	Batch: 48109
Spike	LCS	LCS				%Rec	
Added	Result	Qualifier	Unit	D	%Rec	Limits	

Analyte	Added	Result	Qualifier U	Jnit D	%Rec	Limits	
Gasoline Range Organics	1000	1190	m	ng/Kg	119	70 - 130	
(GRO)-C6-C10							
Diesel Range Organics (Over	1000	1034	m	ng/Kg	103	70 - 130	
C10-C28)							

Eurofins Carlsbad

Client: Ensolum Project/Site: Maverick Baish B Battery

Lab Sample ID: LCS 880-48109/2-A

Matrix: Solid

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

ampi	e Resul	ts							
						Job I	D: 890-4	231-1	
						SDG	: 03E20	57054	
(GC) (Continue	ed)							
				Client	Sample	ID: Lab Co	ontrol S	ample	
						Prep 1	ype: To Batch:	tal/NA	
						Top	Duton	10100	5
its									
130									
130			Clie	nt Com		l ch Contro	l Compl	o Dun	7
			Cile	nt San	ipie iD: i	Lab Contro			
							Type: To		ð
pike	LCSD					%Rec	Batch:	40109 RPD	
Ided		Qualifier	Unit	D	%Rec	Limits	RPD	Limit	9
000	1057	Quanner	mg/Kg	— -	106	70 - 130	12	20	
000	1007		ilig/itg		100	70-100	12	20	

Analysis Batch: 48083		
	LCS	LCS
Surrogate	%Recovery	Qualif

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	84		70 - 130
o-Terphenyl	98		70 - 130

Lab Sample ID: LCSD 880-4810	9/3-A					Clie	nt San	ple ID:	Lab Contro	I Sampl	e Dup
Matrix: Solid									Prep 1	Type: To	tal/NA
Analysis Batch: 48083									Prep	Batch:	48109
-			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics			1000	1057		mg/Kg		106	70 - 130	12	20
(GRO)-C6-C10											
Diesel Range Organics (Over			1000	857.9		mg/Kg		86	70 - 130	19	20
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	81		70 - 130								
o-Terphenyl	97		70 - 130								
Lab Sample ID: 890-4231-8 MS									Client Sa	mple ID:	FS08
Matrix: Solid										Type: To	
Analysis Batch: 48083										Batch:	
Analysis Batch. 40005	Sample	Sample	Spike	MS	MS				%Rec	Datch.	40103
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<50.0		1000	1010		mg/Kg		101	70 - 130		
(GRO)-C6-C10	-00.0	0	1000	1010		mg/itg		101	10-100		
Diesel Range Organics (Over	<50.0	U	1000	1068		mg/Kg		107	70 - 130		
C10-C28)						0 0					
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	119		70 - 130								

Sunogate	/artecovery	quanner	Linits
1-Chlorooctane	119		70 - 130
o-Terphenyl	134	S1+	70 - 130

Lab Sample ID: 890-4231-8 MSI Matrix: Solid Analysis Batch: 48083	D									mple ID: ype: To Batch:	tal/NA
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	1000	884.3		mg/Kg		88	70 - 130	13	20
Diesel Range Organics (Over C10-C28)	<50.0	U	1000	959.6		mg/Kg		96	70 - 130	11	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	106		70 - 130
o-Terphenyl	121		70 - 130

Client: Ensolum

QC Sample Results

Job ID: 890-4231-1 SDG: 03E2057054

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-48060/1-A									Client S	Sample ID: N	lethod	Blan
Matrix: Solid										Prep 7	Гуре: S	olubl
Analysis Batch: 48158												
		MB MB										
Analyte	R	esult Qualifier		RL	Unit		D	Pr	repared	Analyze	ed	Dil Fa
Chloride		<5.00 U		5.00	mg/K	g				03/08/23 2	2:43	
Lab Sample ID: LCS 880-48060/2-	A						Clie	ent	Sample	ID: Lab Co	ntrol S	ampl
Matrix: Solid											Гуре: S	
Analysis Batch: 48158												
			Spike	LCS	LCS					%Rec		
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits		
Chloride			250	273.7		mg/Kg			109	90 - 110		
Lab Sample ID: LCSD 880-48060/3	3-A					CI	ient S	am	ple ID:	Lab Control	Sampl	le Du
Matrix: Solid											Гуре: S	
Analysis Batch: 48158												
····,···			Spike	LCSD	LCSD					%Rec		RP
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Lim
Chloride			250	274.0		mg/Kg			110	90 - 110	0	2
Lab Sample ID: 890-4231-1 MS										Client San	nle ID	· FSI
Matrix: Solid											Type: S	
Analysis Batch: 48158										Trop	ype. o	olub
Analysis Datch. 40150	Sample	Sample	Spike	MS	MS					%Rec		
Analyte	•	Qualifier	Added		Qualifier	Unit		D	%Rec	Limits		
Chloride	53.7		249	323.3	quamer	mg/Kg			108	90 - 110		
						5 5						
Lab Sample ID: 890-4231-1 MSD										Client San	nple ID:	: FS0
Matrix: Solid											Гуре: S	
Analysis Batch: 48158												
-	Sample	Sample	Spike	MSD	MSD					%Rec		RP
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Lin
Chloride	53.7		249	323.0		mg/Kg			108	90 - 110	0	2
Lab Sample ID: 890-4231-11 MS										Client Sar	nple ID	: FS1
Matrix: Solid										Prep 7	Гуре: S	olub
Analysis Batch: 48158												
	Sample	Sample	Spike	MS	MS					%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit		D	%Rec	Limits		
Chloride	158	F1	249	345.7	F1	mg/Kg			75	90 - 110		
Lab Sample ID: 890-4231-11 MSD										Client Sar	nple ID	: FS1
Matrix: Solid											Гуре: S	
Analysis Batch: 48158												
	-	Sample	Spike	MSD	MSD					%Rec		RP
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Lim
	158			342.8								

QC Association Summary

Client: Ensolum Project/Site: Maverick Baish B Battery

Job ID: 890-4231-1 SDG: 03E2057054

GC VOA

Prep Batch: 48192

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
390-4231-4	FS04	Total/NA	Solid	5035	
90-4231-5	FS05	Total/NA	Solid	5035	
90-4231-6	FS06	Total/NA	Solid	5035	
B 880-48192/5-A	Method Blank	Total/NA	Solid	5035	
.CS 880-48192/1-A	Lab Control Sample	Total/NA	Solid	5035	
CSD 880-48192/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
390-4215-A-1-B MS	Matrix Spike	Total/NA	Solid	5035	
390-4215-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	
ep Batch: 48320					
_ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
390-4231-10	FS10	Total/NA	Solid	5035	
390-4231-15	SW02	Total/NA	Solid	5035	
MB 880-48320/5-A	Method Blank	Total/NA	Solid	5035	
_CS 880-48320/1-A	Lab Control Sample	Total/NA	Solid	5035	

Total/NA

Total/NA

Solid

Solid

5035

5035

Prep Batch: 48332

880-25480-A-11-F MS

880-25480-A-11-G MSD

Matrix Spike

Matrix Spike Duplicate

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4231-7	FS07	Total/NA	Solid	5035	
890-4231-8	FS08	Total/NA	Solid	5035	
890-4231-9	FS09	Total/NA	Solid	5035	
890-4231-11	FS11	Total/NA	Solid	5035	
890-4231-12	FS12	Total/NA	Solid	5035	
890-4231-13	FS13	Total/NA	Solid	5035	
890-4231-16	SW03	Total/NA	Solid	5035	
890-4231-17	SW04	Total/NA	Solid	5035	
890-4231-18	SW06	Total/NA	Solid	5035	
890-4231-19	SW07	Total/NA	Solid	5035	
MB 880-48332/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-48332/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-48332/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-4223-A-1-E MS	Matrix Spike	Total/NA	Solid	5035	
890-4223-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 48425

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4231-4	FS04	Total/NA	Solid	8021B	48192
890-4231-5	FS05	Total/NA	Solid	8021B	48192
890-4231-6	FS06	Total/NA	Solid	8021B	48192
MB 880-48192/5-A	Method Blank	Total/NA	Solid	8021B	48192
LCS 880-48192/1-A	Lab Control Sample	Total/NA	Solid	8021B	48192
LCSD 880-48192/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	48192
890-4215-A-1-B MS	Matrix Spike	Total/NA	Solid	8021B	48192
890-4215-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	48192
Analysis Batch: 48426					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4231-1	FS01	Total/NA	Solid	8021B	48442

QC Association Summary

Client: Ensolum Project/Site: Maverick Baish B Battery

GC VOA (Continued)

Analysis Batch: 48426 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4231-2	FS02	Total/NA	Solid	8021B	48442
890-4231-3	FS03	Total/NA	Solid	8021B	48442
890-4231-14	SW01	Total/NA	Solid	8021B	48442
MB 880-48442/5-A	Method Blank	Total/NA	Solid	8021B	48442
LCS 880-48442/1-A	Lab Control Sample	Total/NA	Solid	8021B	48442
LCSD 880-48442/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	48442
880-25394-A-3-F MS	Matrix Spike	Total/NA	Solid	8021B	48442
880-25394-A-3-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	48442

Prep Batch: 48442

000-20094-A-0-F 1V10		TOTAI/INA	5010	00210	40442	
880-25394-A-3-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	48442	8
Prep Batch: 48442						9
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-4231-1	FS01	Total/NA	Solid	5035		10
890-4231-2	FS02	Total/NA	Solid	5035		
890-4231-3	FS03	Total/NA	Solid	5035		44
890-4231-14	SW01	Total/NA	Solid	5035		
MB 880-48442/5-A	Method Blank	Total/NA	Solid	5035		12
LCS 880-48442/1-A	Lab Control Sample	Total/NA	Solid	5035		12
LCSD 880-48442/2-A	Lab Control Sample Dup	Total/NA	Solid	5035		4.0
880-25394-A-3-F MS	Matrix Spike	Total/NA	Solid	5035		13
880-25394-A-3-G MSD	Matrix Spike Duplicate	Total/NA	Solid	5035		
						114

Analysis Batch: 48540

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4231-1	FS01	Total/NA	Solid	Total BTEX	
890-4231-2	FS02	Total/NA	Solid	Total BTEX	
890-4231-3	FS03	Total/NA	Solid	Total BTEX	
890-4231-4	FS04	Total/NA	Solid	Total BTEX	
890-4231-5	FS05	Total/NA	Solid	Total BTEX	
890-4231-6	FS06	Total/NA	Solid	Total BTEX	
890-4231-7	FS07	Total/NA	Solid	Total BTEX	
890-4231-8	FS08	Total/NA	Solid	Total BTEX	
890-4231-9	FS09	Total/NA	Solid	Total BTEX	
890-4231-10	FS10	Total/NA	Solid	Total BTEX	
890-4231-11	FS11	Total/NA	Solid	Total BTEX	
890-4231-12	FS12	Total/NA	Solid	Total BTEX	
890-4231-13	FS13	Total/NA	Solid	Total BTEX	
890-4231-14	SW01	Total/NA	Solid	Total BTEX	
890-4231-15	SW02	Total/NA	Solid	Total BTEX	
890-4231-16	SW03	Total/NA	Solid	Total BTEX	
890-4231-17	SW04	Total/NA	Solid	Total BTEX	
890-4231-18	SW06	Total/NA	Solid	Total BTEX	
890-4231-19	SW07	Total/NA	Solid	Total BTEX	

Analysis Batch: 48570

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4231-10	FS10	Total/NA	Solid	8021B	48320
890-4231-15	SW02	Total/NA	Solid	8021B	48320
MB 880-48320/5-A	Method Blank	Total/NA	Solid	8021B	48320
LCS 880-48320/1-A	Lab Control Sample	Total/NA	Solid	8021B	48320
LCSD 880-48320/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	48320
880-25480-A-11-F MS	Matrix Spike	Total/NA	Solid	8021B	48320

Eurofins Carlsbad

Page 105 of 142

5

Job ID: 890-4231-1 SDG: 03E2057054

Job ID: 890-4231-1 SDG: 03E2057054

5

GC VOA (Continued)

Analysis Batch: 48570 (Continued)

Lab Sample ID 880-25480-A-11-G MSD	Client Sample ID Matrix Spike Duplicate	Prep Type Total/NA	Matrix Solid	<u>Method</u> 8021B	Prep Batch 48320
Analysis Batch: 48639		Total/NA	Solia	602 TB	40320

_ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
90-4231-7	FS07	Total/NA	Solid	8021B	48332
390-4231-8	FS08	Total/NA	Solid	8021B	48332
390-4231-9	FS09	Total/NA	Solid	8021B	48332
390-4231-11	FS11	Total/NA	Solid	8021B	48332
390-4231-12	FS12	Total/NA	Solid	8021B	48332
890-4231-13	FS13	Total/NA	Solid	8021B	48332
890-4231-16	SW03	Total/NA	Solid	8021B	48332
390-4231-17	SW04	Total/NA	Solid	8021B	48332
890-4231-18	SW06	Total/NA	Solid	8021B	48332
890-4231-19	SW07	Total/NA	Solid	8021B	48332
MB 880-48332/5-A	Method Blank	Total/NA	Solid	8021B	48332
LCS 880-48332/1-A	Lab Control Sample	Total/NA	Solid	8021B	48332
LCSD 880-48332/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	48332
890-4223-A-1-E MS	Matrix Spike	Total/NA	Solid	8021B	48332
890-4223-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	48332

GC Semi VOA

Analysis Batch: 47856

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4231-1	FS01	Total/NA	Solid	8015B NM	47868
890-4231-2	FS02	Total/NA	Solid	8015B NM	47868
890-4231-3	FS03	Total/NA	Solid	8015B NM	47868
MB 880-47868/1-A	Method Blank	Total/NA	Solid	8015B NM	47868
LCS 880-47868/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	47868
LCSD 880-47868/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	47868
880-25357-A-22-C MS	Matrix Spike	Total/NA	Solid	8015B NM	47868
880-25357-A-22-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	47868

Prep Batch: 47868

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4231-1	FS01	Total/NA	Solid	8015NM Prep	
890-4231-2	FS02	Total/NA	Solid	8015NM Prep	
890-4231-3	FS03	Total/NA	Solid	8015NM Prep	
MB 880-47868/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-47868/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-47868/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-25357-A-22-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-25357-A-22-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 47992

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4231-4	FS04	Total/NA	Solid	8015B NM	48015
890-4231-5	FS05	Total/NA	Solid	8015B NM	48015
890-4231-6	FS06	Total/NA	Solid	8015B NM	48015
890-4231-7	FS07	Total/NA	Solid	8015B NM	48015
MB 880-48015/1-A	Method Blank	Total/NA	Solid	8015B NM	48015

Eurofins Carlsbad

Page 106 of 142

QC Association Summary

Client: Ensolum Project/Site: Maverick Baish B Battery

GC Semi VOA (Continued)

Analysis Batch: 47992 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
LCS 880-48015/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	48015
LCSD 880-48015/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	48015
880-25537-A-41-E MS	Matrix Spike	Total/NA	Solid	8015B NM	48015
880-25537-A-41-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	48015
Prep Batch: 48015					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4231-4	FS04	Total/NA	Solid	8015NM Prep	
890-4231-5	FS05	Total/NA	Solid	8015NM Prep	
890-4231-6	FS06	Total/NA	Solid	8015NM Prep	
890-4231-7	FS07	Total/NA	Solid	8015NM Prep	
MB 880-48015/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-48015/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-48015/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-25537-A-41-E MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
000-20001-/ (-+ I-L INO			Solid	8015NM Prep	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4231-1	FS01	Total/NA	Solid	8015 NM	
890-4231-2	FS02	Total/NA	Solid	8015 NM	
890-4231-3	FS03	Total/NA	Solid	8015 NM	
890-4231-4	FS04	Total/NA	Solid	8015 NM	
890-4231-5	FS05	Total/NA	Solid	8015 NM	
890-4231-6	FS06	Total/NA	Solid	8015 NM	
890-4231-7	FS07	Total/NA	Solid	8015 NM	
890-4231-8	FS08	Total/NA	Solid	8015 NM	
390-4231-9	FS09	Total/NA	Solid	8015 NM	
890-4231-10	FS10	Total/NA	Solid	8015 NM	
890-4231-11	FS11	Total/NA	Solid	8015 NM	
390-4231-12	FS12	Total/NA	Solid	8015 NM	
890-4231-13	FS13	Total/NA	Solid	8015 NM	
890-4231-14	SW01	Total/NA	Solid	8015 NM	
890-4231-15	SW02	Total/NA	Solid	8015 NM	
890-4231-16	SW03	Total/NA	Solid	8015 NM	
890-4231-17	SW04	Total/NA	Solid	8015 NM	
890-4231-18	SW06	Total/NA	Solid	8015 NM	
890-4231-19	SW07	Total/NA	Solid	8015 NM	

Analysis Batch: 48081

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4231-16	SW03	Total/NA	Solid	8015B NM	48107
890-4231-17	SW04	Total/NA	Solid	8015B NM	48107
890-4231-18	SW06	Total/NA	Solid	8015B NM	48107
890-4231-19	SW07	Total/NA	Solid	8015B NM	48107
MB 880-48107/1-A	Method Blank	Total/NA	Solid	8015B NM	48107
LCS 880-48107/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	48107
LCSD 880-48107/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	48107
890-4231-16 MS	SW03	Total/NA	Solid	8015B NM	48107
890-4231-16 MSD	SW03	Total/NA	Solid	8015B NM	48107

Eurofins Carlsbad

Job ID: 890-4231-1 SDG: 03E2057054

QC Association Summary

Client: Ensolum Project/Site: Maverick Baish B Battery Job ID: 890-4231-1 SDG: 03E2057054

GC Semi VOA

Analysis Batch: 48083

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-4231-8	FS08	Total/NA	Solid	8015B NM	48109	
890-4231-9	FS09	Total/NA	Solid	8015B NM	48109	
890-4231-10	FS10	Total/NA	Solid	8015B NM	48109	
890-4231-11	FS11	Total/NA	Solid	8015B NM	48109	
890-4231-12	FS12	Total/NA	Solid	8015B NM	48109	
890-4231-13	FS13	Total/NA	Solid	8015B NM	48109	
890-4231-14	SW01	Total/NA	Solid	8015B NM	48109	_
890-4231-15	SW02	Total/NA	Solid	8015B NM	48109	8
MB 880-48109/1-A	Method Blank	Total/NA	Solid	8015B NM	48109	
LCS 880-48109/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	48109	g
LCSD 880-48109/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	48109	
890-4231-8 MS	FS08	Total/NA	Solid	8015B NM	48109	
890-4231-8 MSD	FS08	Total/NA	Solid	8015B NM	48109	
rep Batch: 48107						
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
890-4231-16	SW03	Total/NA	Solid	8015NM Prep		
890-4231-17	SW04	Total/NA	Solid	8015NM Prep		
890-4231-18	SW06	Total/NA	Solid	8015NM Prep		
890-4231-19	SW07	Total/NA	Solid	8015NM Prep		
MB 880-48107/1-A	Method Blank	Total/NA	Solid	8015NM Prep		

Prep Batch: 48107

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-4231-16	SW03	Total/NA	Solid	8015NM Prep		
890-4231-17	SW04	Total/NA	Solid	8015NM Prep		
890-4231-18	SW06	Total/NA	Solid	8015NM Prep		
890-4231-19	SW07	Total/NA	Solid	8015NM Prep		
MB 880-48107/1-A	Method Blank	Total/NA	Solid	8015NM Prep		
LCS 880-48107/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep		
LCSD 880-48107/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep		
890-4231-16 MS	SW03	Total/NA	Solid	8015NM Prep		
890-4231-16 MSD	SW03	Total/NA	Solid	8015NM Prep		

Prep Batch: 48109

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4231-8	FS08	Total/NA	Solid	8015NM Prep	-
890-4231-9	FS09	Total/NA	Solid	8015NM Prep	
890-4231-10	FS10	Total/NA	Solid	8015NM Prep	
890-4231-11	FS11	Total/NA	Solid	8015NM Prep	
890-4231-12	FS12	Total/NA	Solid	8015NM Prep	
890-4231-13	FS13	Total/NA	Solid	8015NM Prep	
890-4231-14	SW01	Total/NA	Solid	8015NM Prep	
890-4231-15	SW02	Total/NA	Solid	8015NM Prep	
MB 880-48109/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-48109/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-48109/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-4231-8 MS	FS08	Total/NA	Solid	8015NM Prep	
890-4231-8 MSD	FS08	Total/NA	Solid	8015NM Prep	

HPLC/IC

Leach Batch: 48060

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4231-1	FS01	Soluble	Solid	DI Leach	
890-4231-2	FS02	Soluble	Solid	DI Leach	
890-4231-3	FS03	Soluble	Solid	DI Leach	
890-4231-4	FS04	Soluble	Solid	DI Leach	
890-4231-5	FS05	Soluble	Solid	DI Leach	

Eurofins Carlsbad
QC Association Summary

Client: Ensolum Project/Site: Maverick Baish B Battery

HPLC/IC (Continued)

Leach Batch: 48060 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4231-6	FS06	Soluble	Solid	DI Leach	
890-4231-7	FS07	Soluble	Solid	DI Leach	•••••••
890-4231-8	FS08	Soluble	Solid	DI Leach	
890-4231-9	FS09	Soluble	Solid	DI Leach	
890-4231-10	FS10	Soluble	Solid	DI Leach	
890-4231-11	FS11	Soluble	Solid	DI Leach	
890-4231-12	FS12	Soluble	Solid	DI Leach	_
890-4231-13	FS13	Soluble	Solid	DI Leach	
890-4231-14	SW01	Soluble	Solid	DI Leach	_
890-4231-15	SW02	Soluble	Solid	DI Leach	
890-4231-16	SW03	Soluble	Solid	DI Leach	
890-4231-17	SW04	Soluble	Solid	DI Leach	
890-4231-18	SW06	Soluble	Solid	DI Leach	
890-4231-19	SW07	Soluble	Solid	DI Leach	
MB 880-48060/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-48060/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-48060/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-4231-1 MS	FS01	Soluble	Solid	DI Leach	
890-4231-1 MSD	FS01	Soluble	Solid	DI Leach	
890-4231-11 MS	FS11	Soluble	Solid	DI Leach	
890-4231-11 MSD	FS11	Soluble	Solid	DI Leach	

Analysis Batch: 48158

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4231-1	FS01	Soluble	Solid	300.0	48060
890-4231-2	FS02	Soluble	Solid	300.0	48060
890-4231-3	FS03	Soluble	Solid	300.0	48060
890-4231-4	FS04	Soluble	Solid	300.0	48060
890-4231-5	FS05	Soluble	Solid	300.0	48060
890-4231-6	FS06	Soluble	Solid	300.0	48060
890-4231-7	FS07	Soluble	Solid	300.0	48060
890-4231-8	FS08	Soluble	Solid	300.0	48060
890-4231-9	FS09	Soluble	Solid	300.0	48060
890-4231-10	FS10	Soluble	Solid	300.0	48060
890-4231-11	FS11	Soluble	Solid	300.0	48060
890-4231-12	FS12	Soluble	Solid	300.0	48060
890-4231-13	FS13	Soluble	Solid	300.0	48060
890-4231-14	SW01	Soluble	Solid	300.0	48060
890-4231-15	SW02	Soluble	Solid	300.0	48060
890-4231-16	SW03	Soluble	Solid	300.0	48060
890-4231-17	SW04	Soluble	Solid	300.0	48060
890-4231-18	SW06	Soluble	Solid	300.0	48060
890-4231-19	SW07	Soluble	Solid	300.0	48060
MB 880-48060/1-A	Method Blank	Soluble	Solid	300.0	48060
LCS 880-48060/2-A	Lab Control Sample	Soluble	Solid	300.0	48060
LCSD 880-48060/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	48060
890-4231-1 MS	FS01	Soluble	Solid	300.0	48060
890-4231-1 MSD	FS01	Soluble	Solid	300.0	48060
890-4231-11 MS	FS11	Soluble	Solid	300.0	48060
890-4231-11 MSD	FS11	Soluble	Solid	300.0	48060

Eurofins Carlsbad

Page 109 of 142

Job ID: 890-4231-1 SDG: 03E2057054

Job ID: 890-4231-1 SDG: 03E2057054

Lab Sample ID: 890-4231-1 Matrix: Solid

Date Collected: 02/27/23 13:50 Date Received: 03/03/23 08:40

Client Sample ID: FS01

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	48442	03/13/23 08:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	48426	03/13/23 14:37	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			48540	03/13/23 17:17	SM	EET MID
Total/NA	Analysis	8015 NM		1			48051	03/07/23 13:47	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	47868	03/06/23 08:24	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	47856	03/06/23 18:27	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	48060	03/07/23 14:28	KS	EET MID
Soluble	Analysis	300.0		1			48158	03/08/23 22:57	SMC	EET MID

Client Sample ID: FS02

Date Collected: 02/27/23 13:55

Date Received: 03/03/23 08:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	48442	03/13/23 08:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	48426	03/13/23 15:03	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			48540	03/13/23 17:17	SM	EET MID
Total/NA	Analysis	8015 NM		1			48051	03/07/23 13:47	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	47868	03/06/23 08:24	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	47856	03/06/23 18:49	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	48060	03/07/23 14:28	KS	EET MID
Soluble	Analysis	300.0		1			48158	03/08/23 23:12	SMC	EET MID

Client Sample ID: FS03

Date Collected: 02/27/23 14:40

Date Received: 03/03/23 08:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	48442	03/13/23 08:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	48426	03/13/23 15:29	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			48540	03/13/23 17:17	SM	EET MID
Total/NA	Analysis	8015 NM		1			48051	03/07/23 13:47	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	47868	03/06/23 08:24	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	47856	03/06/23 19:11	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	48060	03/07/23 14:28	KS	EET MID
Soluble	Analysis	300.0		1			48158	03/08/23 23:17	SMC	EET MID

Client Sample ID: FS04 Date Collected: 02/28/23 11:35 Date Received: 03/03/23 08:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	48192	03/09/23 10:06	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	48425	03/13/23 18:16	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			48540	03/16/23 15:40	SM	EET MID

Eurofins Carlsbad

Lab Sample ID: 890-4231-2 Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-4231-3

Lab Sample ID: 890-4231-4

5

9

Matrix: Solid

Job ID: 890-4231-1 SDG: 03E2057054

Lab Sample ID: 890-4231-4 Matrix: Solid

Lab Sample ID: 890-4231-5

Lab Sample ID: 890-4231-6

Lab Sample ID: 890-4231-7

Matrix: Solid

Matrix: Solid

Matrix: Solid

Date Collected: 02/28/23 11:35 Date Received: 03/03/23 08:40

Client Sample ID: FS04

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			48051	03/08/23 15:27	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	48015	03/07/23 10:19	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	47992	03/08/23 02:00	AJ	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	48060	03/07/23 14:28	KS	EET MID
Soluble	Analysis	300.0		1			48158	03/08/23 23:22	SMC	EET MID

Client Sample ID: FS05 Date Collected: 02/28/23 11:40

Date Received: 03/03/23 08:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	48192	03/09/23 10:06	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	48425	03/13/23 18:36	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			48540	03/16/23 15:40	SM	EET MID
Total/NA	Analysis	8015 NM		1			48051	03/08/23 15:27	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	48015	03/07/23 10:19	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	47992	03/08/23 02:21	AJ	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	48060	03/07/23 14:28	KS	EET MID
Soluble	Analysis	300.0		1			48158	03/08/23 23:26	SMC	EET MID

Client Sample ID: FS06

Date Collected: 02/28/23 11:45 Date Received: 03/03/23 08:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	48192	03/09/23 10:06	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	48425	03/13/23 18:56	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			48540	03/16/23 15:40	SM	EET MID
Total/NA	Analysis	8015 NM		1			48051	03/08/23 15:27	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	48015	03/07/23 10:19	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	47992	03/08/23 02:42	AJ	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	48060	03/07/23 14:28	KS	EET MID
Soluble	Analysis	300.0		1			48158	03/08/23 23:41	SMC	EET MID

Client Sample ID: FS07

Date Collected: 03/01/23 08:00 Date Received: 03/03/23 08:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	48332	03/10/23 14:43	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	48639	03/15/23 14:05	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			48540	03/16/23 15:40	SM	EET MID
Total/NA	Analysis	8015 NM		1			48051	03/08/23 15:27	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	48015	03/07/23 10:19	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	47992	03/08/23 03:03	AJ	EET MID

Eurofins Carlsbad

Lab Chronicle

Job ID: 890-4231-1 SDG: 03E2057054

Lab Sample ID: 890-4231-7

Client Sample ID: FS07 Date Collected: 03/01/23 08:00

Client: Ensolum

Date Received: 03/03/23 08:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.02 g	50 mL	48060	03/07/23 14:28	KS	EET MID
Soluble	Analysis	300.0		1			48158	03/08/23 23:46	SMC	EET MID

Client Sample ID: FS08

Date Collected: 03/01/23 07:55 Date Received: 03/03/23 08:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	48332	03/10/23 14:43	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	48639	03/15/23 14:26	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			48540	03/16/23 15:40	SM	EET MID
Total/NA	Analysis	8015 NM		1			48051	03/09/23 12:02	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	48109	03/08/23 10:34	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	48083	03/08/23 21:56	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	48060	03/07/23 14:28	KS	EET MID
Soluble	Analysis	300.0		1			48158	03/08/23 23:51	SMC	EET MID

Client Sample ID: FS09 Date Collected: 03/01/23 12:00 Date Received: 03/03/23 08:40

Dil Final Batch Batch Initial Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 5035 4.99 g 5 mL 48332 03/10/23 14:43 MNR EET MID Total/NA 8021B 5 mL 48639 03/15/23 14:47 EET MID Analysis 1 5 mL AJ Total/NA Analysis Total BTEX 48540 03/16/23 15:40 SM EET MID 1 Total/NA Analysis 8015 NM 1 48051 03/09/23 12:02 SM EET MID Total/NA Prep 8015NM Prep 10.00 g 10 mL 48109 03/08/23 10:34 EET MID AJ Total/NA Analysis EET MID 8015B NM 1 1 uL 1 uL 48083 03/08/23 23:02 SM Soluble Leach DI Leach 4.99 g 50 mL 48060 03/07/23 14:28 KS EET MID Soluble Analysis 300.0 1 48158 03/08/23 23:56 SMC EET MID

Client Sample ID: FS10 Date Collected: 02/28/23 14:35

Date Received: 03/03/23 08:40

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	48320	03/10/23 12:35	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	48570	03/14/23 12:46	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			48540	03/16/23 15:40	SM	EET MID
Total/NA	Analysis	8015 NM		1			48051	03/09/23 12:02	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	48109	03/08/23 10:34	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	48083	03/08/23 23:23	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	48060	03/07/23 14:28	KS	EET MID
Soluble	Analysis	300.0		1			48158	03/09/23 00:00	SMC	EET MID

Eurofins Carlsbad

Matrix: Solid Lab Sample ID: 890-4231-8 Matrix: Solid

Lab Sample ID: 890-4231-9 Matrix: Solid

Lab Sample ID: 890-4231-10

Matrix: Solid

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Client Sample ID: FS11

Date Collected: 03/01/23 10:00

Date Received: 03/03/23 08:40

Client: Ensolum

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Initial

Amount

5.03 g

5 mL

10.00 g

1 uL

5.03 g

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

Batch

48332

48639

48540

48051

48109

48083

48060

48158

Number

Job ID: 890-4231-1 SDG: 03E2057054

Lab Sample ID: 890-4231-11

Analyst

MNR

AJ

SM

SM

A.I

SM

ĸs

SMC

Prepared

or Analyzed

03/10/23 14:43

03/15/23 15:08

03/16/23 15:40

03/09/23 12:02

03/08/23 10:34

03/08/23 23:45

03/07/23 14:28

03/09/23 00:05

Matrix: Solid

Lab

EET MID

Matrix: Solid

Lab Sample ID: 890-4231-12 Matrix: Solid

Lab Sample ID: 890-4231-13

Lab Sample ID: 890-4231-14

u 1x: 30110

11 12 13

Client Sample ID: FS12 Date Collected: 03/01/23 09:40

Date Received: 03/03/23 08:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	48332	03/10/23 14:43	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	48639	03/15/23 15:28	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			48540	03/16/23 15:40	SM	EET MID
Total/NA	Analysis	8015 NM		1			48051	03/09/23 12:02	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	48109	03/08/23 10:34	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	48083	03/09/23 00:07	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	48060	03/07/23 14:28	KS	EET MID
Soluble	Analysis	300.0		1			48158	03/09/23 00:20	SMC	EET MID

Client Sample ID: FS13

Date Collected: 03/01/23 11:50

Date Received: 03/03/23 08:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	48332	03/10/23 14:43	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	48639	03/15/23 15:49	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			48540	03/16/23 15:40	SM	EET MID
Total/NA	Analysis	8015 NM		1			48051	03/09/23 12:02	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	48109	03/08/23 10:34	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	48083	03/09/23 00:28	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	48060	03/07/23 14:28	KS	EET MID
Soluble	Analysis	300.0		1			48158	03/09/23 00:25	SMC	EET MID

Client Sample ID: SW01 Date Collected: 02/27/23 14:50 Date Received: 03/03/23 08:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	48442	03/13/23 08:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	48426	03/13/23 15:56	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			48540	03/13/23 17:17	SM	EET MID

Eurofins Carlsbad

Matrix: Solid

Dil

1

1

1

1

1

Factor

Run

Job ID: 890-4231-1 SDG: 03E2057054

Lab Sample ID: 890-4231-14 Matrix: Solid

Lab Sample ID: 890-4231-16

Lab Sample ID: 890-4231-17

Matrix: Solid

Matrix: Solid

Date Collected: 02/27/23 14:50 Date Received: 03/03/23 08:40

Client Sample ID: SW01

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			48051	03/09/23 12:02	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	48109	03/08/23 10:34	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	48083	03/09/23 00:49	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	48060	03/07/23 14:28	KS	EET MID
Soluble	Analysis	300.0		1			48158	03/09/23 00:39	SMC	EET MID

Client Sample ID: SW02 Date Collected: 02/28/23 11:50

Date Received: 03/03/23 08:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	48320	03/10/23 12:35	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	48570	03/14/23 13:07	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			48540	03/16/23 15:40	SM	EET MID
Total/NA	Analysis	8015 NM		1			48051	03/09/23 12:02	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	48109	03/08/23 10:34	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	48083	03/09/23 01:11	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	48060	03/07/23 14:28	KS	EET MID
Soluble	Analysis	300.0		1			48158	03/09/23 00:44	SMC	EET MID

Client Sample ID: SW03

Date Collected: 03/01/23 11:05 Date Received: 03/03/23 08:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	48332	03/10/23 14:43	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	48639	03/15/23 18:13	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			48540	03/16/23 15:40	SM	EET MID
Total/NA	Analysis	8015 NM		1			48051	03/09/23 11:59	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	48107	03/08/23 10:30	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	48081	03/08/23 21:56	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	48060	03/07/23 14:28	KS	EET MID
Soluble	Analysis	300.0		1			48158	03/09/23 00:49	SMC	EET MID

Client Sample ID: SW04

Date Collected: 03/01/23 11:15 Date Received: 03/03/23 08:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	48332	03/10/23 14:43	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	48639	03/15/23 18:34	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			48540	03/16/23 15:40	SM	EET MID
Total/NA	Analysis	8015 NM		1			48051	03/09/23 11:59	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	48107	03/08/23 10:30	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	48081	03/08/23 23:02	SM	EET MID

Eurofins Carlsbad

Job ID: 890-4231-1 SDG: 03E2057054

Matrix: Solid

Matrix: Solid

Matrix: Solid

9

Lab Sample ID: 890-4231-17

Lab Sample ID: 890-4231-18

Lab Sample ID: 890-4231-19

Client Sample ID: SW04 Date Collected: 03/01/23 11:15

Client: Ensolum

Date Received: 03/03/23 08:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.95 g	50 mL	48060	03/07/23 14:28	KS	EET MID
Soluble	Analysis	300.0		1			48158	03/09/23 00:54	SMC	EET MID

Client Sample ID: SW06

Date Collected: 03/01/23 12:10 Date Received: 03/03/23 08:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	48332	03/10/23 14:43	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	48639	03/15/23 19:58	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			48540	03/16/23 15:40	SM	EET MID
Total/NA	Analysis	8015 NM		1			48051	03/09/23 11:59	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	48107	03/08/23 10:30	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	48081	03/08/23 23:23	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	48060	03/07/23 14:28	KS	EET MID
Soluble	Analysis	300.0		1			48158	03/09/23 00:59	SMC	EET MID

Client Sample ID: SW07 Date Collected: 03/01/23 12:15 Date Received: 03/03/23 08:40

Batch Dil Initial Final Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 5035 5.01 g 5 mL 48332 03/10/23 14:43 MNR EET MID 8021B Total/NA 5 mL 5 mL 48639 03/15/23 20:19 EET MID Analysis 1 AJ Total/NA Analysis Total BTEX 1 48540 03/16/23 15:40 SM EET MID Total/NA Analysis 8015 NM 1 48051 03/09/23 11:59 SM EET MID Total/NA Prep 8015NM Prep 10.01 g 10 mL 48107 03/08/23 10:30 AJ EET MID Total/NA Analysis 8015B NM 1 1 uL 1 uL 48081 03/08/23 23:45 SM EET MID Soluble Leach DI Leach 5 g 50 mL 48060 03/07/23 14:28 KS EET MID Soluble Analysis 300.0 1 48158 03/09/23 01:03 SMC EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

		Accreditation/C	ertification Summary		
Client: Ensolum Project/Site: Maverick I	Baish B Battery			Job ID: 890-4231-1 SDG: 03E2057054	2
Laboratory: Eurofi Unless otherwise noted, all a		vere covered under each acc	reditation/certification below.		
Authority		Program	Identification Number	Expiration Date	
Texas		IELAP	T104704400-22-25	06-30-23	5
the agency does not of	fer certification.		ied by the governing authority. This list ma	ay include analytes for which	6
Analysis Method 8015 NM	Prep Method	Matrix Solid	Analyte Total TPH		
Total BTEX		Solid	Total BTEX		
_					8
					9
					10
					13

Eurofins Carlsbad

.

Client: Ensolum

Page 117 of 142

Job ID: 890-4231-1 SDG: 03E2057054

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
	Environmental Protection Agency 'Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edit	on. November 1986 And Its Updates.	
	'Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edit = TestAmerica Laboratories, Standard Operating Procedure	on, November 1986 And Its Updates.	
Laboratory Re	e ferences: = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Eurofins Carlsbad

Sample Summary

Client: Ensolum Project/Site: Maverick Baish B Battery

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-4231-1	FS01	Solid	02/27/23 13:50	03/03/23 08:40	2'
890-4231-2	FS02	Solid	02/27/23 13:55	03/03/23 08:40	2'
890-4231-3	FS03	Solid	02/27/23 14:40	03/03/23 08:40	3.5'
890-4231-4	FS04	Solid	02/28/23 11:35	03/03/23 08:40	2'
890-4231-5	FS05	Solid	02/28/23 11:40	03/03/23 08:40	2'
890-4231-6	FS06	Solid	02/28/23 11:45	03/03/23 08:40	2'
890-4231-7	FS07	Solid	03/01/23 08:00	03/03/23 08:40	4'
890-4231-8	FS08	Solid	03/01/23 07:55	03/03/23 08:40	4'
890-4231-9	FS09	Solid	03/01/23 12:00	03/03/23 08:40	4'
890-4231-10	FS10	Solid	02/28/23 14:35	03/03/23 08:40	3'
890-4231-11	FS11	Solid	03/01/23 10:00	03/03/23 08:40	3.5'
890-4231-12	FS12	Solid	03/01/23 09:40	03/03/23 08:40	3'
890-4231-13	FS13	Solid	03/01/23 11:50	03/03/23 08:40	3'
890-4231-14	SW01	Solid	02/27/23 14:50	03/03/23 08:40	0-2'
890-4231-15	SW02	Solid	02/28/23 11:50	03/03/23 08:40	0-2'
890-4231-16	SW03	Solid	03/01/23 11:05	03/03/23 08:40	0-3'
890-4231-17	SW04	Solid	03/01/23 11:15	03/03/23 08:40	0-3'
890-4231-18	SW06	Solid	03/01/23 12:10	03/03/23 08:40	0-4'
890-4231-19	SW07	Solid	03/01/23 12:15	03/03/23 08:40	0-4'

Job ID: 890-4231-1 SDG: 03E2057054

	Хенсо	HC0			Hobbs, NM (5	(915) 585-344 575) 392-7550	EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	WAAAA	www.xenco.com Page	م 2
Project Manager	losh Adams			Bill to: (if different)	ferent)	Josh Adams		5	§	
	Ensolum, LLC			Company Name	Vame:	Ensolum, LLC	C	Program: UST/PST	Program: UST/PST PRP Brownfields RRC	Superfund
	601 N Marienfeld St Suite 400	St Suite 400		Address:		601 N Marie	601 N Marienfeld St Suite 400	State of Project:	1	
City, State ZIP:	Midland, TX 79701	<u>Q</u>		City, State ZIP.	ZIP:	Midland, TX 79701	79701	Reporting: Level II	Reporting: Level II Cevel III PST/UST TRRP	
	303-517-8437		m	nail: jadams@	ensolum.c	om, dnikan	Email: jadams@ensolum.com. dnikanorov@ensolum.com	Deliverables: EDD	ADaPT Other:	
Project Name:	Maverick Ba	Maverick Baish B Battery		Turn Around			ANALYSIS RE	REQUEST	Preserva	Preservative Codes
Project Number:	03E20	03E2057054	I Rou	tine 🔲 Rush	Pres. Code				None: NO	DI Water: H ₂ O
Project Location:	Lea Co	Lea County, NM	Due Date:	ite:					Cool: Cool	MeOH: Me
Sampler's Name:	Dmitry N	Dmitry Nikanorov	TAT sta	TAT starts the day received by	d by				HCL: HC	HNO3 HN
PO#		D	the lab,	if received by 4:30					H ₂ SO ₄ , H ₂	NaOH: Na
SAMPLE RECEIPT	Temp Blank:	Kes	No Wet Ice:	xe: Kes No	nete	0)			H ₃ PO ₄ : HP	
Samples Received Intact:	act (Yes No		Thermometer ID:	DOWN	1	300.			NaHSO4: NABIS	0
Cooler Custody Seats:	\prec	N/A Correct	Correction Factor:	- 0.	P	PA:			Na ₂ S ₂ O ₃ : NaSO ₃) ₃
Sample Custody Seals:	s: Yes No	N/A Temper	Temperature Reading:	e) ·	60	S (E			Zn Acetate+NaOH: Zn	HC THC
total Containers		Date	Date Time		Grab/ # of	ORID	X (80	of Custody	Cample	Sample Comments
		_	» с	2	Comp 4	+				
FS02	v o	2/27/2023	2023 13:55	2 I	Comp 1	\rightarrow	×			
FS03				3.5'	Comp 1	x x	X			
FS04	S	2/28/2023	2023 11:35	2"	Comp 1	××	×			
FS05	S	2/28/2023	2023 11:40	Ŋ	Comp 1	×	×			
FS06	S	2/28/2023	2023 11:45	2'	Comp 1	××	×			
FS07	S		3/1/2023 8:00	4	Comp 1	××	×			
FS08			3/1/2023 /:55	4.	Comp 1	×	×			
FS09			3/1/2023 12:00	4,	Comp 1	××	×			
FS10			2/28/2023 14:35	S.	Comp 1	××	X			
Total 200.7 / 6010			8RCRA 1	13PPM Texas 11	0.1	o As Ba B	· · · ·	Mg Mn Mo Ni K Se		V Zn
Circle Method(s) and Metal(s) to be analyzed Notice: Signature of this document and relinquishment of sa	200.8 / 60		TCLP	TCLP / SPLP 6010: 8RCRA	8RCRA	Sb As Ba	Circle Method(s) and Metal(s) to be analyzed TCLP / SPLP 6010: 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Min Mo Ni Se Ag II U Pg io Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions	Mo NI Se Ag II U tors. It assigns standard terms and	Hg: 1031/240.1/7470 / 7471 conditions	14/1
of service. Eurofins Xenco of Eurofins Xenco. A minir	10 200.8 / 60 d Metal(s) to be	20: analyzed	s constitutes a val	a charge of \$5 for	sibility for any each sample s	losses or expe	or service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofins Xenco. A minimum charge of \$55.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiation of the control of the	ses are due to circumstances beyond the control terms will be enforced unless previously negotiated	d the control usly negotiated.	
	10 200.8 / 60; d Metal(s) to be ocument and relinquis ocument and relinquis ocument and relinquis	20: analyzed hment of sample the cost of samp will be applied to	s constitutes a values and shall not a each project and			7-5-7-5-5	Relinquished by: (Signature)	-	Received by: (Signature)	Date/Time
Relinquished by: (Signature)	10 200.8 / 60: d Metal(s) to be d Metal(s) to be nument and relinquis will be liable only for num charge of \$85.00 (Signature)	20: analyzed hment of sample the cost of sample will be applied to will be applied to Ref	nples constitutes a valid purchase amples and shall not assume any ad to each project and a charge o Received by: (Signature)	gnature)		Date/ I me	ベムノを			

3/16/2023

Chain of Custody

Page 119 of 142

	Xenco	Xenco	(aso, TX (9	2) /04-344 915) 585-3 75) 392-75	Midialita, TA (4-52) 104-5440, Sati Prinorino, TA (4-19) 505-504 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs NM (575) 392-7550. Carlsbad, NM (575) 988-3199		0))
					os, ININ (or	01-760 (0	JU, Calibbad, INNI (272) 300-2133		www.xenco.com Page	of
Project Manager: Jos	Josh Adams			Bill to: (if different)		Josh Adams	ns		ğ	
	Ensolum, LLC			Company Name:		Ensolum, LLC	LLC	Program: UST/PS	Program: UST/PST 🗌 PRP 🔤 Brownfields 🗌 RRC 🗌	Superfund
	601 N Marienfeld St Suite 400	St Suite 400		Address:		601 N Ma	601 N Marienfeld St Suite 400	State of Project:		1
e ZIP:	Midland, TX 79701	_		City, State ZIP:		Midland, TX 79701	X 79701	Reporting: Level II	Reporting: Level II Level III PST/UST TRRP	
	303-517-8437		Email:	jadams@ens	olum.co	m, dnika	Email: jadams@ensolum.com, dnikanorov@ensolum.com	Deliverables: EDD	ADaPT Other:	
Project Name:	Maverick Baish B Battery	sh B Battery	Turn	Turn Around			ANALYSIS	SIS REQUEST	Preservative Codes	ve Codes
Project Number:	03E2057054	57054	 Routine 	Rush	Pres. Code				None: NO	DI Water: H ₂ O
Project Location:	Lea County, NM	nty, NM	Due Date:						Cool: Cool	MeOH: Me
Sampler's Name:	Dmitry Nikanorov	kanorov	TAT starts the	TAT starts the day received by	_					HNO3 HN
PO#			the lab, if recu	the lab, if received by 4:30pm	L				H ₂ SO ₄ : H ₂	NaOH: Na
SAMPLE RECEIPT	Temp Blank:	C Yes No	Wet Ice:	Yes No	nete	0)			H ₃ PO ₄ : HP	
Samples Received Intact:		Thermometer-ID:	ler HD		arar	300.			NaHSO ₄ : NABIS	
Cooler Custody Seals:	Yes No	MIA Correction	Factor		P	PA:			Na ₂ S ₂ O ₃ : NaSO ₃	- 7
Sample Custody Seals:	Yes No h	N/A Temperature Reading:	Reading		1	_	1		Zn Acetate+NaOH: Zn	
I otal Containers:		Lorrected 1	Corrected Lemperature:			_	(802			
Sample Identification		Matrix Date Sampled	Time Sampled	Depth Comp	p Cont	CHLO	BTEX		Sample Comments	omments
FS11	S	3/1/2023	10:00	3.5' Comp	-	××	×			
FS12	S	3/1/2023	9:40	3' Comp	р -1	×	×			
FS13	S	3/1/2023	11:50	3' Comp	-1	×	×			
SW01	s	2/27/2023	14:50	0-2' Comp	p 1	×	×			
SW02	S	2/28/2023	11:50	0-2' Comp	р -1	××	×			
SW03	S	3/1/2023	11:05	0-3' Comp	р -1	××	×			
SW04	S	3/1/2023	11:15	0-3' Comp	Þ 	×	×			
SW06	S	3/1/2023	12:10	0-4' Comp	-	×	×			
SW07	S	3/1/2023	12:15	0-4" Comp	-1	××	×			
	D									
Total 200.7 / 6010	200.8 / 6020:		8RCRA 13PPM	M Texas 11	0,1	As Ba	Be B Cd Ca Cr Co Cu		Se Ag SiO2 Na Sr Ti Sn L	V Zn
Circle Method(s) and Metal(s) to be analyzed	Metal(s) to be a	nalyzed	TCLP / SP	TCLP / SPLP 6010: 8RCRA	CRA S	sb As E	Sb As Ba Be Cd Cr Co Cu Pb Mn	Mn Mo Ni Se Ag TI U	31/245.1/7470	17471
Votice: Signature of this docu of service. Eurofins Xenco wil of Eurofins Xenco. A minimun	iment and relinquishr III be liable only for th m charge of \$85.00 w	nent of samples con le cost of samples al ill be applied to each	nstitutes a valid pur nd shall not assume h project and a cha	chase order from e any responsibilit rge of \$5 for each	client comp ty for any to sample su	pany to Eurosses or ex bmitted to	ofins Xenco, its affiliates and subcc penses incurred by the client if suc -urofins Xenco, but not analyzed. T	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofins Xenco. A minimum charge of \$85,00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	s and conditions eyond the control reviously negotiated.	
Relinquished by/(Signature)	Signature)	Receiv	Received by: (Signature)	ure)		Date/Time	e Relinquished by: (Sig	r. (Signature) Rece	ıre)	Date/Time
N.C.		lie (M			W	66.0	240°			
	_	14					4			

5

13 14

Chain of Custody

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 4231 List Number: 1 Creator: Stutzman, Amanda

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Job Number: 890-4231-1 SDG Number: 03E2057054

14

Job Number: 890-4231-1 SDG Number: 03E2057054

List Source: Eurofins Midland

List Creation: 03/06/23 12:04 PM

Login Sample Receipt Checklist

Client: Ensolum

<6mm (1/4").

Login Number: 4231 List Number: 2 Creator: Kramer, Jessica

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Eurofins Carlsbad Released to Imaging: 11/17/2023 7:57:01 AM

APPENDIX D

NMOCD Notifications

Released to Imaging: 11/17/2023 7:57:01 AM

Dan Moir

From: Sent:	Nobui, Jennifer, EMNRD <jennifer.nobui@emnrd.nm.gov> Wednesday, March 1, 2023 5:26 PM</jennifer.nobui@emnrd.nm.gov>
То:	Josh Adams
Cc:	Bratcher, Michael, EMNRD; Hamlet, Robert, EMNRD; Harimon, Jocelyn, EMNRD
Subject:	FW: [EXTERNAL] Extension Request - Baish B Battery (Incident Number NAPP2235372941)

[**EXTERNAL EMAIL**]

Hello Josh

OCD approves your request for a 60-day extension to April 29, 2023 to submit a remediation plan or closure report. Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thanks, Jennifer Nobui

From: Josh Adams <jadams@ensolum.com>
Sent: Tuesday, February 28, 2023 2:21 PM
To: Enviro, OCD, EMNRD <<u>OCD.Enviro@emnrd.nm.gov</u>>
Cc: Anna Byers <<u>abyers@ensolum.com</u>>; Joe Gable <<u>jgable@ensolum.com</u>>
Subject: [EXTERNAL] Extension Request - Baish B Battery (Incident Number NAPP2235372941)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

To Whom It May Concern,

Baish B Battery (Incident Number NAPP2235372941)

Maverick Permian, LLC (Maverick) is requesting an extension for the current deadline of February 28, 2023, for submitting a remediation work plan or closure report required in 19.15.29.12.B.(1) NMAC for Baish B Battery (Incident Number NAPP2235372941). The release was discovered on November 30, 2022, and initial site assessment activities and delineation activities have been completed. Delineation activities revealed that additional remediation is warranted. To complete additional remediation activities and submit a remediation work plan or closure report, Maverick requests a 60-day extension of this deadline until April 29, 2023.

Dallas, TX 75243

Josh Adams, PG Project Geologist 303-517-8437 Ensolum, LLC in f

PLEASE NOTE OUR NEW CORPORATE ADDRESS: Ensolum, LLC 8330 LBJ Freeway, Ste. B830

Dan Moir

From:	Enviro, OCD, EMNRD <ocd.enviro@emnrd.nm.gov></ocd.enviro@emnrd.nm.gov>
Sent:	Friday, December 30, 2022 6:41 PM
То:	Kalei Jennings
Cc:	Bratcher, Michael, EMNRD; Nobui, Jennifer, EMNRD
Subject:	RE: [EXTERNAL] Maverick- Sampling Notification (Week of 01/02/2023)

[**EXTERNAL EMAIL**]

Good morning Kalei,

Please be aware that notification requirements are **two business days**, per rule. Please proceed on your schedule. Also, please include this, and all correspondence, in the closure report to insure inclusion in the project file.

Thank you, Jocelyn

Jocelyn Harimon • Environmental Specialist Environmental Bureau EMNRD - Oil Conservation Division 1220 South St. Francis Drive | Santa Fe, NM 87505 (505)469-2821 | Jocelyn.Harimon@emnrd.nm.gov http:// www.emnrd.nm.gov

From: Kalei Jennings <kjennings@ensolum.com>
Sent: Friday, December 30, 2022 10:25 AM
To: Enviro, OCD, EMNRD <OCD.Enviro@emnrd.nm.gov>
Cc: Hadlie Green <hgreen@ensolum.com>; Josh Adams <jadams@ensolum.com>
Subject: [EXTERNAL] Maverick- Sampling Notification (Week of 01/02/2023)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

Maverick Natural Resources (Maverick) plans to complete final sampling activities at the following sites the week of January 2, 2023.

- Ruby Federal/ NAPP2231448981
- SEMU Eumont 117/ NAPP2231946665
- Oxy State F-1 / NAPP2235375291
- Jalmat 170 / NAPP2233946698
- Baish B Battery / NAPP2235372941

Thank you,

•

Dan Moir

From:	Enviro, OCD, EMNRD <ocd.enviro@emnrd.nm.gov></ocd.enviro@emnrd.nm.gov>
Sent:	Thursday, January 5, 2023 5:50 PM
То:	Kalei Jennings
Cc:	Bratcher, Michael, EMNRD; Nobui, Jennifer, EMNRD
Subject:	RE: [EXTERNAL] Maverick- Sampling Notification (Week of 01/09/2023)

[**EXTERNAL EMAIL**]

Kalei,

Thank you for the notification. Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

JΗ

Jocelyn Harimon • Environmental Specialist Environmental Bureau EMNRD - Oil Conservation Division 1220 South St. Francis Drive | Santa Fe, NM 87505 (505)469-2821 | Jocelyn.Harimon@emnrd.nm.gov http:// www.emnrd.nm.gov

From: Kalei Jennings <kjennings@ensolum.com>
Sent: Wednesday, January 4, 2023 5:08 PM
To: Enviro, OCD, EMNRD <OCD.Enviro@emnrd.nm.gov>
Cc: Hadlie Green <hgreen@ensolum.com>; Josh Adams <jadams@ensolum.com>
Subject: [EXTERNAL] Maverick- Sampling Notification (Week of 01/09/2023)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

Maverick Natural Resources (Maverick) plans to complete final sampling activities at the following sites the week of January 9, 2023.

- Oxy State F-1 / NAPP2235375291
- Jalmat 188 / NAPP2235373931
- Baish B Battery / NAPP2235372941
- MCA Battery #4 / NAPP2235376218
- VGEU 30-01 / NAPP2200643457
- EVGSAU Satellite 5 / NAPP2213957732

Thank you,

•

Dan Moir

From:	Enviro, OCD, EMNRD <ocd.enviro@emnrd.nm.gov></ocd.enviro@emnrd.nm.gov>
Sent:	Thursday, February 2, 2023 4:54 PM
То:	Kalei Jennings; Enviro, OCD, EMNRD
Cc:	Josh Adams; Hadlie Green; Bratcher, Michael, EMNRD; Nobui, Jennifer, EMNRD
Subject:	RE: [EXTERNAL] Maverick- Sampling Notification (Week of 02/06/2023)

[**EXTERNAL EMAIL**]

Kalei,

Thank you for the notification. Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

JΗ

Jocelyn Harimon • Environmental Specialist Environmental Bureau EMNRD - Oil Conservation Division 1220 South St. Francis Drive | Santa Fe, NM 87505 (505)469-2821 | Jocelyn.Harimon@emnrd.nm.gov http:// www.emnrd.nm.gov

From: Kalei Jennings <kjennings@ensolum.com>
Sent: Wednesday, February 1, 2023 8:14 PM
To: Enviro, OCD, EMNRD <OCD.Enviro@emnrd.nm.gov>
Cc: Josh Adams <jadams@ensolum.com>; Hadlie Green <hgreen@ensolum.com>
Subject: [EXTERNAL] Maverick- Sampling Notification (Week of 02/06/2023)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

Maverick Natural Resources, LLC (Maverick) plans to complete final sampling activities at the following sites the week of February 6, 2023.

- Buckey 43-01/ NAPP2230752440
- Leamex 018/ NAPP2234158858
- SC Federal Battery/ NAPP2303272686
- Baish B Battery/ NAPP2235372941
- Oxy State F-1 / NAPP2235375291

Thank you,

•

Kalei Jennings Senior Scientist 817-683-2503 Ensolum, LLC in f

Dan Moir

From:	Enviro, OCD, EMNRD <ocd.enviro@emnrd.nm.gov></ocd.enviro@emnrd.nm.gov>
Sent:	Wednesday, February 8, 2023 11:29 PM
То:	Kalei Jennings
Cc:	Nobui, Jennifer, EMNRD; Bratcher, Michael, EMNRD
Subject:	RE: [EXTERNAL] Maverick- Sampling Notification (Week of 02/13/2023)

[**EXTERNAL EMAIL**]

Kalei,

Thank you for the notification. Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

JΗ

Jocelyn Harimon • Environmental Specialist Environmental Bureau EMNRD - Oil Conservation Division 1220 South St. Francis Drive | Santa Fe, NM 87505 (505)469-2821 | Jocelyn.Harimon@emnrd.nm.gov http:// www.emnrd.nm.gov

From: Kalei Jennings <kjennings@ensolum.com>
Sent: Wednesday, February 8, 2023 2:53 PM
To: Enviro, OCD, EMNRD <OCD.Enviro@emnrd.nm.gov>
Cc: Josh Adams <jadams@ensolum.com>
Subject: [EXTERNAL] Maverick- Sampling Notification (Week of 02/13/2023)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

Maverick Natural Resources, LLC (Maverick) plans to complete final sampling activities at the following sites the week of February 13, 2023.

- EVGSAU 2801/ NAPP2221675703
- Leamex 018/ NAPP2234158858
- MCA 4/ NAPP2235376218
- Baish B Battery/ NAPP2235372941
- Oxy State F-1 / NAPP2235375291

Thank you,

•

Kalei Jennings Senior Scientist 817-683-2503 Ensolum, LLC in f

Dan Moir

From:	Enviro, OCD, EMNRD <ocd.enviro@emnrd.nm.gov></ocd.enviro@emnrd.nm.gov>
Sent:	Friday, February 17, 2023 4:24 PM
То:	Kalei Jennings
Cc:	Nobui, Jennifer, EMNRD; Bratcher, Michael, EMNRD
Subject:	RE: [EXTERNAL] Maverick- Sampling Notification (Week of 02/20/2023)

[**EXTERNAL EMAIL**]

Kalei,

Thank you for the notification. Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

JΗ

Jocelyn Harimon • Environmental Specialist Environmental Bureau EMNRD - Oil Conservation Division 1220 South St. Francis Drive | Santa Fe, NM 87505 (505)469-2821 | Jocelyn.Harimon@emnrd.nm.gov http:// www.emnrd.nm.gov

From: Kalei Jennings <kjennings@ensolum.com>
Sent: Thursday, February 16, 2023 11:28 AM
To: Enviro, OCD, EMNRD <OCD.Enviro@emnrd.nm.gov>
Cc: Bryce Wagoner <Bryce.Wagoner@mavresources.com>
Subject: [EXTERNAL] Maverick- Sampling Notification (Week of 02/20/2023)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

Maverick Permian, LLC (Maverick) plans to complete final sampling activities at the following sites the week of February 20, 2023.

- Cone Jalmat South Satellite Header / NAPP2301881992
- Leamex 018/ NAPP2234158858
- MCA 351/ NAPP2302035947
- Jalmat 188 / NAPP2235373931
- Baish B Battery/ NAPP2235372941

Thank you,

.

APPENDIX E

Final C-141

Released to Imaging: 11/17/2023 7:57:01 AM

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Page 136 of 142

Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	NAPP2235372941
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party: Maverick Permian, LLC	OGRID: 331199
Contact Name: Bryce Wagoner	Contact Telephone: 928-241-1862
Contact email: Bryce.Wagoner@mavresources.com	Incident # (assigned by OCD) NAPP2235372941
Contact mailing address: 1410 NW County Road Hobbs, NM 88240	· ·

Location of Release Source

Latitude 32.817358_

Longitude -103.754432_

(NAD 83 in decimal degrees to 5 decimal places)

Site Name: Baish B Battery	Site Type
Date Release Discovered November 30, 2022	API# (if applicable)

Unit Letter	Section	Township	Range	County
K	22	17 S	32 E	Lea

Surface Owner: State Federal Tribal Private (Name:

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls) 7.4 0bbls	Volume Recovered (bbls) 0 bbls
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Tyes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

The release was caused by a tank overflow resulting in a release on and off-pad. The release resulted in an overspray east of the battery. The source of the release has been stopped and the impacted area has been secured. Initial response and removal of saturated soil from the release area has been completed.

	Page 137 of 14
Incident ID	NAPP2235372941
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
🗌 Yes 🖾 No	
If YES, was immediate no	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:Bryce Wagoner ,	Title:Permian HSE Specialist II
Signature: Rywhyt TT	Date:12/19/2022
email:Bryce.Wagoner@mavresources.com	Telephone:928-241-1862
OCD Only	
Received by:	Date:

Page 138 of 142		Page	<i>138</i>	of 142	
-----------------	--	------	------------	--------	--

Pooled Fluids on the Surface										
	Length (ft.)	Width (ft.)	Depth (in)	# of Boundaries *edges of pool where depth is 0 . don't count shared boundaries	Oil-Water Ratio (%)	Pooled Area (ft ²)	Estimated Average Depth (ft.)	Pooled Volume (bbl.)	Volume of Oil in Subsurface (bbl.)	Volume of Water in Subsurface (bbl.)
Rectangle A					0.01	0.0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle B					0.01	0.0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle C						0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle D						0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle E						0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
						Total Vol	ume (bbls):	0.00	0.00	0.00

				Sul	osurface Fluids	6				
	Length (ft.)	Width (ft.)	Depth (in.)	Saturation (%) *10% in consolidated sediments after rain to 50% in sand with no precipitation	Oil-Water Ratio (%)	Area (ft²)	Volume (bbl.)	Estimated Volume in Subsurface (bbl.)	Volume of Oil in Subsurface (bbl.)	Volume of Water in Subsurface (bbl.)
Rectangle A	40.0	13.0	12.0	0.1	0.01	520.0	92.6	7.4	0.07	7.3
Rectangle B				0.1	0.01	0.0	0.0	0.0	0.00	0.0
Rectangle C				0.1	0.01	0.0	0.0	0.0	0.00	0.0
Rectangle D				0.1	0.01	0.0	0.0	0.0	0.00	0.0
Rectangle E				0.1	0.01	0.0	0.0	0.0	0.00	0.0
Rectangle F						0.0	0.0	0.0	0.00	0.0
Rectangle G						0.0	0.0	0.0	0.00	0.0
Rectangle H						0.0	0.0	0.0	0.00	0.0
Rectangle I						0.0	0.0	0.0	0.00	0.0
Rectangle J						0.0	0.0	0.0	0.00	0.0
						Total Volu	ume (bbls):	7.40	0.07	7.33

TOTAL RELEASE VOLUME (bbls): 7.4

Released to Imaging: 11/17/2023 7:57:01 AM

Received by OCD: 8/10/2023 3:02:55 PM Form C-141 State of New Mexico

Page 3

Oil Conservation Division

	Page 139 of 142
Incident ID	NAPP2235372941
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>51 (ft bgs)</u>
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🖂 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- \boxtimes Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

eceived by OCD: 8/10/2	023 3:02:55 PM State of New Mexico	0		Page 140 of 14
			Incident ID	NAPP2235372941
Page 4	Oil Conservation Divis	510n	District RP	
			Facility ID	
			Application ID	
regulations all operators and public health or the enviro failed to adequately invest addition, OCD acceptance and/or regulations. Printed Name:Bryce Signature:Bryce email:Bryce.Wagon	formation given above is true and complete re required to report and/or file certain releas nment. The acceptance of a C-141 report by igate and remediate contamination that pose of a C-141 report does not relieve the opera e Wagoner er@mavresources.com	se notifications and perform co y the OCD does not relieve the e a threat to groundwater, surfa ator of responsibility for comp Title: Permian HSE Date:08/07/202	orrective actions for rele e operator of liability sho ice water, human health liance with any other fee Specialist II3	eases which may endanger ould their operations have or the environment. In deral, state, or local laws
OCD Only Received by: Shelly Wo	ells	Date: <u>8/10/2</u>	023	

Received by OCD: 8/10/2023 3:02:55 PM State of New Mexico

Page 5

Oil Conservation Division

Incident ID	NAPP2235372941
District RP	
Facility ID	
Application ID	

Remediation Plan

<u>Remediation Plan Checklist</u>: Each of the following items must be included in the plan. Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. _____ Title: __ Permian HSE Specialist II _____ Printed Name: Bryce Wagoner Date: ____08/07/23_____ Signature: ____ email: _ Bryce. Wagoner@mavresources.com _____ Telephone: _928-241-1862 _____ **OCD Only** _____ Date: <u>8/10/2023</u> Received by: Shelly Wells Approved Approved with Attached Conditions of Approval Denied Deferral Approved see text box below - \mathcal{NV} <u>Date</u>: 11/17/2023 Nelson Velez Signature: Remediation plan is approved with the following conditions;

1. In order to achieve a more accurate estimation for depth to water, Maverick Permian must drill an exploratory boring as close to the point of release to determine if water is greater than 50 feet or choose to utilize the most stringent closure criteria.

2. Maverick must receive OCD pre-approval of the boring location prior to its advancement. Email correspondence is acceptable.

3. Maverick has 90-days (February 15, 2024) to submit its appropriate or final closure report.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	250693
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
nvelez	Remediation plan is approved with the following conditions; 1. In order to achieve a more accurate estimation for depth to water, Maverick Permian must drill an exploratory boring as close to the point of release to determine if water is greater than 50 feet or choose to utilize the most stringent closure criteria. 2. Maverick must receive OCD pre-approval of the boring location prior to its advancement. Email correspondence is acceptable. 3. Maverick has 90-days (February 15, 2024) to submit its appropriate or final closure report.	11/17/2023

Action 250693