

October 25, 2023

New Mexico Oil Conservation Division New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Revised Remediation Work Plan Cabo Wabo Federal Com 704H, 705H & 706H Incident Number NAPP2301334575 Lea County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum), on behalf of COG Operating, LLC (COG), has prepared the following *Revised Remediation Work Plan* (Revised Work Plan) for the Cabo Wabo Federal Com 704H, 705H, & 706H (Site). This *Revised Work Plan* documents assessment and soil sampling activities completed to date and proposes additional remediation activities in response to the denial of the original *Remediation Work* Plan (Work Plan) submitted to the New Mexico Oil Conservation Division (NMOCD) on April 4, 2023. NMOCD denied the original Work Plan on August 18, 2023, for the following reasons:

 The Remediation Plan is Denied. Limited soil removal around subsurface pipelines is denied. Contaminated soil should be removed safely with alternative methods. Due to the sensitive nature of the release location, the variance for 500 ft² confirmation samples is denied. Please collect confirmation samples, representing no more than 200 ft². Off-pad, all horizontal delineation samples must come from the sidewalls of the excavation. All samples must be analyzed for constituents listed in Table I of 19.15.29.13 NMAC. All off pad areas must meet reclamation standards set forth in the OCD Spill Rule. The work will need to occur in 90 days after the work plan has been reviewed.

BACKGROUND

The Site is located in Unit O, Section 26, Township 25 South, Range 29 East, in Eddy County, New Mexico (32.0963°, -103.9541°) and is associated with oil and gas exploration and production operations on Federal Land managed by the Bureau of Land Management (BLM).

On December 30, 2022, a pump housing leak resulted in the release of approximately 14.8 barrels (bbls) of treated produced water onto a right-of-way (ROW) adjacent to an access road. A vacuum truck was immediately dispatched to the Site to recover free-standing fluids; approximately 14 bbls of treated produced water were recovered. COG reported the release to the NMOCD on a Release Notification Form C-141 (Form C-141) on January 13, 2023. The release was assigned Incident Number NAPP2301334575.

The April 4, 2023, *Work Plan* detailed site characterization according to Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29 (19.15.29) of the New Mexico Administrative

E N S O L U M

Code (NMAC). Results from the site characterization are presented on page 3 of the Form C-141, Site Assessment/Characterization. Potential site receptors are identified on Figure 1. Based on the results of the Site Characterization, the following NMOCD Table I Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total Petroleum Hydrocarbons (TPH): 100 mg/kg
- Chloride: 600 mg/kg

SITE ASSESSMENT ACTIVITIES AND LABORATORY ANALYTICAL RESULTS

On January 27, 2023, Ensolum personnel conducted a Site visit to evaluate the release extent based on information provided on the Form C-141 and visual observations. Nine assessment soil samples (SS01 through SS09) were collected within and around the observed release extent at a depth of approximately 0.5 feet bgs. Assessment soil samples SS01 through SS05 were collected within the release extent to assess the surficial soil within the release. Assessment soil samples SS06 through SS09 were collected around release extent to confirm the lateral extent of the release. The soil samples were field screened for volatile organic compounds (VOCs) utilizing a calibrated photoionization detector (PID) and chloride Hach[®] chloride QuanTab[®] test strips. The release extent and soil sample locations were mapped utilizing a handheld Global Positioning System (GPS) unit and are depicted on Figure 2. Photographic documentation was completed during the Site visit and a photographic log is included in Appendix A.

The soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported under strict chain-of-custody procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of the following constituents of concern (COCs): BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-gasoline range organics (GRO), TPH-diesel range organics (DRO), and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

Laboratory analytical results for assessment samples SS01 through SS05, collected within the release extent, indicated chloride concentrations exceeded the Site Closure Criteria. Laboratory analytical results for assessment soil samples SS06 through SS09, collected around the release extent, indicated all COC concentrations were compliant with the Site Closure Criteria and confirmed the lateral extent of the release. Based on the laboratory analytical results, additional assessment activities were warranted to delineate the vertical extent of impacted soil within the release extent.

DELINEATION ACTIVITIES AND LABORATORY ANALYTICAL RESULTS

On February 15, 2023, Ensolum personnel returned to the Site to assess the vertical extent of impacted soil within the release extent. Boreholes were advanced via hand auger to depths ranging from 2 feet to 4 feet bgs at the location of assessment samples SS01 through SS05. Soil from the boreholes was field screened at 1-foot intervals for VOCs and chloride. Final depth of the boreholes was determined by field screening results indicating compliance with the Site Closure Criteria or hand auger refusal (SS02). Field screening results and observations for the boreholes were logged on lithologic/soil sampling logs, which are included in Appendix B. Based on field screening results, two delineation soil samples were collected from each borehole; the sample with the highest field screening result and the sample from the final borehole depth.

The delineation soil samples were collected, handled and analyzed following the same procedures previously described. The delineation soil sample locations were mapped utilizing a handheld GPS unit and are depicted on Figure 2. Photographic documentation was completed during the Site visit and is included in Appendix A.

Laboratory analytical results for the delineation soil samples collected from boreholes SS01 through SS05 indicated chloride impacted soil was present within the release extent to depths ranging from 1-foot to 4 feet bgs. The laboratory analytical results area summarized in Table 1 and the complete laboratory analytical reports are included in Appendix C.

Based on visible staining in the release area, elevated field screening results, and laboratory analytical results for the delineation soil samples, additional remediation activities were warranted.

PROPOSED REMEDIATION WORK PLAN

Laboratory analytical results for the delineation soil samples indicate soil containing elevated chloride concentrations is present across the 8,929 square foot release area to depths ranging from 1-foot to 4 feet bgs. As such, COG proposes to complete the following remediation activities:

- Vertical delineation to below the Site Closure Criteria at the location of assessment sample SS02. Soil will be field screened at 1-foot intervals for VOCs and chloride. Soil samples with the highest field screening result and deepest depth will be submitted for laboratory analysis of BTEX, TPH, and chloride.
- Impacted soil will be excavated from the release area based on laboratory analytical results from the delineation activities. Excavation will proceed laterally and vertically until sidewall and floor samples are compliant with the Site Closure Criteria.
- Following excavation of impacted soil, 5-point composite confirmation samples will be collected at least every 200 square feet from the sidewalls and floor of the excavation. The 5-point composite samples will be collected by placing five equivalent aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. The excavation soil samples will be submitted for laboratory analysis of BTEX, TPH, and chloride.
- The impacted soil will be transferred to a New Mexico approved landfill facility for disposal. The excavation will be backfilled and recontoured to match pre-existing conditions. The disturbed pasture area will be re-seeded with an approved BLM seed mixture.
- Following the delineation and excavation activities, COG will provide NMOCD with a final report detailing the remediation activities and requesting closure.

COG will complete the delineation and excavation activities within 90 days of the date of approval of this *Revised Work Plan* by the NMOCD. COG believes the scope of work described above meets the requirements set forth in 19.15.29.13 NMAC and is protective of human health, the environment, and groundwater. As such, COG respectfully requests approval of this *Revised Work Plan* from NMOCD. The Final C-141 is included as Appendix E.

If you have any questions or comments, please contact Ms. Hadlie Green at (432) 557-8895 or hgreen@ensolum.com.

Sincerely, Ensolum, LLC

Cadrie Dreen

Hadlie Green Project Geologist

mée Cale

Aimee Cole Senior Managing Scientist

cc: Justin Carlile, COG Operating, LLC New Mexico Bureau of Land Management

Appendices:

- Figure 1 Site Location Map
- Figure 2 Delineation Soil Sample Locations
- Table 1Soil Sample Analytical Results
- Appendix A Photographic Log
- Appendix B Lithologic Soil Sampling Logs
- Appendix C Laboratory Analytical Reports & Chain-of-Custody Documentation
- Appendix D NMOCD Notifications
- Appendix E Final C-141

FIGURES

Received by OCD: 11/6/2023 8:46:48 AM

Released to Imaging: 2/26/2024 3:08:02 PM

TABLE

.

E N S O L U M

				Cabo Wabo F C	TABLE 1 LE ANALYTICA ederal Com 704H OG Operating, LL / County, New Me	, 705H & 706H -C				
Sample Designation	Date	Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table I	Closure Criteria ((NMAC 19.15.29)	10	50	NE	NE	NE	NE	100	600
				Deli	neation Soil Sam	ples				
SS01	01/27/2023	0.5	<0.00201	<0.00402	<49.9	<49.9	<49.9	<49.9	<49.9	2,350
SS01A	02/15/2023	1	<0.00199	<0.00398	<49.8	<49.8	<49.8	<49.8	<49.8	797
SS01B	02/15/2023	4	<0.00202	<0.00403	<49.8	<49.8	<49.8	<49.8	<49.8	599
SS02	01/27/2023	0.5	<0.00202	<0.00403	<49.9	<49.9	<49.9	<49.9	<49.9	2,620
SS02A	02/15/2023	1	<0.00201	<0.00402	<49.9	<49.9	<49.9	<49.9	<49.9	2,630
SS02B	02/15/2023	2	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	1,230
SS03	01/27/2023	0.5	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	2,100
SS03A	02/15/2023	1	<0.00200	<0.00401	<49.8	<49.8	<49.8	<49.8	<49.8	717
SS03B	02/15/2023	3	<0.00200	<0.00399	<50.0	<50.0	<50.0	<50.0	<50.0	374
SS04	01/27/2023	0.5	<0.00198	<0.00396	<49.9	<49.9	<49.9	<49.9	<49.9	3,640
SS04A	02/15/2023	1	<0.00200	<0.00399	<50.0	<50.0	<50.0	<50.0	<50.0	15.4
SS04B	02/15/2023	2	<0.00198	<0.00397	<49.9	<49.9	<49.9	<49.9	<49.9	240
SS05	01/27/2023	0.5	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	6,410
SS05A	02/15/2023	1	<0.00201	<0.00402	<50.0	<50.0	<50.0	<50.0	<50.0	45.7
SS05B	02/15/2023	2	<0.00200	<0.00400	<49.9	<49.9	<49.9	<49.9	<49.9	108
SS06	01/27/2023	0.5	<0.00200	<0.00399	<49.8	<49.8	<49.8	<49.8	<49.8	79.4
SS07	01/27/2023	0.5	<0.00201	<0.00402	<49.8	<49.8	<49.8	<49.8	<49.8	16.7
SS08	01/27/2023	0.5	<0.00200	<0.00401	<49.9	<49.9	<49.9	<49.9	<49.9	11.1
SS09	01/27/2023	0.5	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	<4.98

Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram

NMOCD: New Mexico Oil Conservation Division

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

GRO: Gasoline Range Organics

DRO: Diesel Range Organics

ORO: Oil Range Organics

TPH: Total Petroleum Hydrocarbon

Concentrations in **bold** exceed the NMOCD Table I Closure Criteria or reclamation standard where applicable.

APPENDIX A

Photographic Log

Released to Imaging: 2/26/2024 3:08:02 PM

APPENDIX B

Lithologic Soil Sampling Logs

								Sample Name: SS01	Date: 2/15/2023
		F	N	C	ΟΙ		М	Site Name: Cabo Wabo Federal Co	
								Incident Number: NAPP23013345	75
								Job Number: 03D2024145	
		LITHOL	OGI	C / SOIL S	SAMPLING	LOG		Logged By: Peter Van Patten	Method: Hand Auger
Coord	inates: 32	2.0966,-1	03.95	44				Hole Diameter: 4"	Total Depth: 4'
								PID for chloride and vapor, respec on factor is included in the reporte	
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic De	scriptions
					l	0			
No	8,534	0.8	No	SS01	0.5	-	SP-SM	SAND with silt and gravel: light br poorly graded, medium to fine gra	ained, trace small
No	1,181	1.7	No	SS01A	1	- - 1	SP-SM	subrounded gravel, no stain, no o Same as above (SAA)	
INU			NU	3301A	± _	±	38-3101	Same as above (SAA)	
No	1,590	1.8	No		-	_			
No	1,377	1.2	No		-	2	SP-SM	SAA	
					-	-			
					_	-			
No	1,181	1.5	No		-	3	SP-SM	SAA	
					-	-			
No	845	1.8	No	SS01B	4	4	SP-SM	SAA	
110	0+5	1.0	NO	33010		-	TD	Total depth (TD) at 4-feet below g	ground surface
					-	_			
						5			
					-	-			
					-	-			
					-	6			
					-	-			
					-	- 7			
					-	-			
					_	_			
					-	8			
					-	-			
					-	-			
					_	9			
					-	-			
					-	10			
						-			
					-	—			
						11			
					-	-			
						-			
						12			

								Sample Name: SS02	Date: 2/15/2023
				C				Site Name: Cabo Wabo Federal C	
				3	ΟΙ			Incident Number: NAPP23013345	
-								Job Number: 03D2024145	
		LITHOL	OGI		SAMPLING	LOG		Logged By: Peter Van Patten	Method: Hand Auger
Coord	inates: 32							Hole Diameter: 4"	Total Depth: 2'
					ith HACH Ch	loride Test S	Strips and	PID for chloride and vapor, respec	tively. Chloride test
								on factor is included in the reporte	
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic De	scriptions
					L	0		SAND with silt and gravel: light br	own to dark tan.
No	2,402	0.7	No	SS02	0.5	-	SP-SM	poorly graded, medium to fine gr	ained, trace small
No	3,421	1.3	No	SS02A	1	1	SP-SM	subrounded gravel, no stain, no o Same as above (SAA)	dor
				5502A	 -	 -	5. 5141		
No	1,960	1.4	No		-	_			
No	1,708	1.2	No	SS02B	2	2		SAA, hand auger refusal	
					-	-	TD	Total depth (TD) at 2-feet below §	ground surface
					-	-			
					-	3			
					-	-			
					-	4			
					_	- 4			
					_	_			
					-	5			
					-	-			
					_	_			
					_	6			
					-	-			
					-				
					_	_ 7			
					_	-			
					-	8			
					-	-			
					-	-			
						9			
					-	-			
						-			
					-	10			
						-			
					-	11			
					-	_			
					-	12			

								Sample Name: SS03	Date: 2/15/2023
			NI	C	ΟΙ			Site Name: Cabo Wabo Federal	Com 704H, 705H & 706H
				2				Incident Number: NAPP2301334	
								Job Number: 03D2024145	
		LITHOL	OGI	C / SOIL S	SAMPLING	LOG		Logged By: Peter Van Patten	Method: Hand Auger
Coordi	nates: 32	2.0961,-1	03.95	52				Hole Diameter: 4"	Total Depth: 3'
								PID for chloride and vapor, response on factor is included in the repor	
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic D	escriptions
					1	0			
No	2,755	0.7	No	SS03	0.5	-	SP-SM	SAND with silt and gravel: light to poorly graded, medium to fine a	
						•		subrounded gravel, no stain, no	
No	1,092	0.6	No	SS03A	1 -	_ 1	SP-SM	Same as above (SAA)	
						-			
No	515	0.5	No		-	2	SP-SM	SAA	
110	212	0.5	110		_		ועוכ- ייכ	רע וע	
					-	-			
No	459	1.3	No	SS03B	3	3	SP-SM	SAA	
					-	-	TD	Total depth (TD) at 3-feet below	v ground surface
					_	-			
					-	4			
					-	-			
					_	-			
					_	5			
					-	-			
						-			
					_	6			
					-	-			
					-	7			
					-	_ /			
					_	-			
					-	8			
						-			
					-	_			
					-	9			
					-	-			
					-	-			
						10			
					-	-			
						-			
					_	11			
					-	-			
						12			

								Sample Name: SS04	Date: 2/15/2023
				C	ΟΙ			Site Name: Cabo Wabo Federal C	
				3				Incident Number: NAPP23013345	575
								Job Number: 03D2024145	
		LITHOL	OGI		SAMPLING	LOG		Logged By: Peter Van Patten	Method: Hand Auger
Coordi	inates: 32							Hole Diameter: 4"	Total Depth: 2'
					ith HACH Ch	loride Test S	Strips and	PID for chloride and vapor, respec	tively. Chloride test
perfor	med with	n 1:4 dilut	tion fa	actor of soi	l to distilled	water. A 409	% correcti	on factor is included in the reporte	ed chloride concentrations.
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic De	scriptions
					L	0		SAND with silt and gravel: light br	own to dark tan.
No	7,291	0.7	No	SS04	0.5	-	SP-SM	poorly graded, medium to fine gr	ained, trace small
No	ND	1.3	No	SS04A	1	- 1	SP-SM	subrounded gravel, no stain, no c Same as above (SAA), ND = Non E	
									·····, -·
					_	-			
No	364	1.6	No	SS04B	2	2	SP-SM	SAA	
					-	-	TD	Total depth (TD) at 2-feet below	ground surface
						-			
					_	3			
					-	-			
					-	4			
					_	- 4			
					_	-			
					-	5			
					-	-			
					_	_			
					_	6			
					-	-			
					-				
					-	_ 7			
					-	-			
					-	8			
					-				
					-	-			
					-	9			
					-	-			
					-	10			
					-	-			
						- 11			
					-	11			
					-	-			
					-	12			

								Sample Name: SS05	Date: 2/15/2023
				C	ΟΙ			Site Name: Cabo Wabo Federal Co	
				3				Incident Number: NAPP23013345	
								Job Number: 03D2024145	
		LITHOL	OGI		SAMPLING	LOG		Logged By: Peter Van Patten	Method: Hand Auger
Coord		2.0955,-1						Hole Diameter: 4"	Total Depth: 2'
					ith HACH Ch	loride Test S	Strips and	PID for chloride and vapor, respec	tively. Chloride test
								on factor is included in the reporte	
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic De	scriptions
					L	0		SAND with silt and gravel: light br	own to dark tan.
No	5,728	1.4	No	SS05	0.5	-	SP-SM	poorly graded, medium to fine gra	ained, trace small
No	ND	1.3	No	SS05A	1	- 1	SP-SM	subrounded gravel, no stain, no o Same as above (SAA), ND = Non D	
		1.5		55557			51 5141		51551) -1/oppin
					_	-			
No	173	1.3	No	SS05B	2	2	SP-SM	SAA	
					-	-	TD	Total depth (TD) at 2-feet below g	ground surface
					_	_			
					_	3			
					-	-			
						-			
					-	_ 4			
					-	-			
					-	5			
					_				
					-	-			
					-	6			
					-	-			
					_	_			
					_	7			
					-	-			
					_				
					-	8			
					-	-			
					-	9			
					-	-			
					-	10			
					-	-			
						-			
					-	11			
					-	-			
						10			
						12			

APPENDIX C

Laboratory Analytical Reports & Chain of Custody Documentation

Received by OCD: 11/6/2023 8:46:48 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Kalei Jennings Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 2/10/2023 12:03:50 PM

JOB DESCRIPTION

Sprayberry Booster Pump SDG NUMBER 03D2024145

JOB NUMBER

890-3974-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information

Received by OCD: 11/6/2023 8:46:48 AM

Eurofins Carlsbad

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

RAMER

Generated 2/10/2023 12:03:50 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 21 of 111

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	10
QC Sample Results	11
	15
Lab Chronicle	17
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
	23

Duplicate Error Ratio (normalized absolute difference)

Decision Level Concentration (Radiochemistry)

EPA recommended "Maximum Contaminant Level"

Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry)

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Dilution Factor

Detection Limit (DoD/DOE)

Estimated Detection Limit (Dioxin)

Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE)

Method Detection Limit

Minimum Level (Dioxin) Most Probable Number

Method Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Not Calculated

Negative / Absent

Positive / Present Practical Quantitation Limit

Presumptive

Quality Control

DER

DL

DLC EDL

LOD

LOQ MCL

MDA

MDC MDL

ML

MPN MQL

NC

ND

NEG

POS

PQL PRES

QC

RER

RPD

TEF

TEQ

TNTC

RL

Dil Fac

DL, RA, RE, IN

	Definitions/Glossary	
Client: Ensolun	n Job ID: 890-3974-	1
Project/Site: Sp	orayberry Booster Pump SDG: 03D202414	5
Qualifiers		
GC VOA		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA		
Qualifier	Qualifier Description	
S1-	Surrogate recovery exceeds control limits, low biased.	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		- 4
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	1
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	

4

5

Job ID: 890-3974-1 SDG: 03D2024145

Job ID: 890-3974-1

Client: Ensolum

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-3974-1

Receipt

The samples were received on 1/27/2023 2:06 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.2°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: SS01 (890-3974-1), SS02 (890-3974-2), SS03 (890-3974-3), SS04 (890-3974-4) and SS05 (890-3974-5).

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-45703 and analytical batch 880-45833 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (890-3967-A-1-D MS) and (890-3967-A-1-E MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-45095 and analytical batch 880-45420 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Method: SW846 8021B - Volatile Organic Compounds (GC)

Result Qualifier

RL

Unit

D

Prepared

Page 24 of 111

Job ID: 890-3974-1 SDG: 03D2024145

Client Sample ID: SS01

Date Collected: 01/27/23 09:35 Date Received: 01/27/23 14:06

Sample Depth: 0.5'

Client: Ensolum

Analyte

Lab Sample ID: 890-3974-1

Analyzed

Matrix: Solid

5 Dil Fac 1 1 1 1 il Fac

Analyte	Result	Quanner		Unit		riepaieu	Analyzeu	Dirrac
Benzene	<0.00201	U	0.00201	mg/Kg		02/08/23 13:25	02/08/23 19:31	1
Toluene	<0.00201	U	0.00201	mg/Kg		02/08/23 13:25	02/08/23 19:31	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		02/08/23 13:25	02/08/23 19:31	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		02/08/23 13:25	02/08/23 19:31	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		02/08/23 13:25	02/08/23 19:31	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		02/08/23 13:25	02/08/23 19:31	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130			02/08/23 13:25	02/08/23 19:31	1
1,4-Difluorobenzene (Surr)	93		70 - 130			02/08/23 13:25	02/08/23 19:31	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			02/09/23 08:41	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			02/10/23 10:51	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		02/07/23 13:15	02/10/23 03:42	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		02/07/23 13:15	02/10/23 03:42	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		02/07/23 13:15	02/10/23 03:42	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	93		70 - 130			02/07/23 13:15	02/10/23 03:42	1
o-Terphenyl	105		70 - 130			02/07/23 13:15	02/10/23 03:42	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2350	F1	25.1	mg/Kg			02/03/23 21:46	5
Client Sample ID: SS02						Lab Sar	nple ID: 890-	3974-2
Date Collected: 01/27/23 09:40							-	x: Solid
Date Received: 01/27/23 14:06							inderi	a oonu
Sample Depth: 0.5'								

Method: SW846 8021B - Volati	ile Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		02/08/23 13:25	02/08/23 19:57	1
Toluene	<0.00202	U	0.00202	mg/Kg		02/08/23 13:25	02/08/23 19:57	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		02/08/23 13:25	02/08/23 19:57	1
m-Xylene & p-Xylene	<0.00403	U	0.00403	mg/Kg		02/08/23 13:25	02/08/23 19:57	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		02/08/23 13:25	02/08/23 19:57	1
Xylenes, Total	<0.00403	U	0.00403	mg/Kg		02/08/23 13:25	02/08/23 19:57	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	117		70 - 130			02/08/23 13:25	02/08/23 19:57	1

Eurofins Carlsbad

Client Sample Results

Job ID: 890-3974-1

Client Sample ID: SS02

Date Collected: 01/27/23 09:40 Date Received: 01/27/23 14:06

Sample Depth: 0.5'

Client: Ensolum

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continue	e

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1,4-Difluorobenzene (Surr)	100		70 - 130			02/08/23 13:25	02/08/23 19:57	
Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403	mg/Kg			02/09/23 08:41	
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			02/10/23 10:51	
Analyte			RL	Unit	D	Prepared	Analyzed	Dil Fa
Method: SW846 8015B NM - Dies		nics (DRO) Qualifier		Unit		Droporod	Analyzad	
Gasoline Range Organics	<49.9	0	49.9	mg/Kg		02/07/23 13:15	02/10/23 04:05	-
	<49.9	U	49.9	ma/Ka		02/07/23 13 15	02/10/23 04:05	
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		02/07/23 13:15	02/10/23 04:05	
Diesel Range Organics (Over C10-C28)	<49.9 <49.9		49.9 49.9	mg/Kg mg/Kg		02/07/23 13:15 02/07/23 13:15	02/10/23 04:05 02/10/23 04:05	
Diese Range Organics (Over C10-C28) DII Range Organics (Over C28-C36)		U						Dil Fac
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<49.9	U	49.9			02/07/23 13:15	02/10/23 04:05	Dil Fa

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2620	2	5.0	mg/Kg			02/03/23 22:00	5

Client Sample ID: SS03

Date Collected: 01/27/23 09:45 Date Received: 01/27/23 14:06 Sample Depth: 0.5'

Method: SW846 8021B - Volatile Organic Compounds (GC) Dil Fac Analyte Result Qualifier RL Unit D Prepared Analyzed Benzene <0.00199 U 0.00199 mg/Kg 02/08/23 13:25 02/08/23 20:24 Toluene <0.00199 U 0.00199 02/08/23 13:25 02/08/23 20:24 mg/Kg 1 Ethylbenzene <0.00199 U 0.00199 mg/Kg 02/08/23 13:25 02/08/23 20:24 1 0.00398 02/08/23 13:25 02/08/23 20:24 m-Xylene & p-Xylene <0.00398 U mg/Kg 1 o-Xylene <0.00199 U 0.00199 mg/Kg 02/08/23 13:25 02/08/23 20:24 1 Xylenes, Total <0.00398 U 0.00398 mg/Kg 02/08/23 13:25 02/08/23 20:24 1 %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed 122 70 - 130 02/08/23 13:25 02/08/23 20:24 4-Bromofluorobenzene (Surr) 1 1,4-Difluorobenzene (Surr) 96 70 - 130 02/08/23 13:25 02/08/23 20:24 1 Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier RL Unit D Dil Fac Prepared Analyzed Total BTEX <0.00398 U 0.00398 02/09/23 08:41 mg/Kg 1 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			02/10/23 10:51	1

Eurofins Carlsbad

SDG: 03D2024145 Lab Sample ID: 890-3974-2 Matrix: Solid

Lab Sample ID: 890-3974-3

Matrix: Solid

Job ID: 890-3974-1 SDG: 03D2024145

Analyzed

Lab Sample ID: 890-3974-4

Client Sample ID: SS03

Date Collected: 01/27/23 09:45 Date Received: 01/27/23 14:06

Sample Depth: 0.5'

Client: Ensolum

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)											
Analyte	Result	Qualifier	RL								
Gasoline Range Organics	<40.0	U	49.9								

Gasoline Range Organics	<49.9	U	49.9	mg/Kg	02/07/23 13:15	02/10/23 04:27	1
(GRO)-C6-C10							
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg	02/07/23 13:15	02/10/23 04:27	1
C10-C28)							
,	<49.9		49.9	m a ll a	02/07/23 13:15	02/10/23 04:27	1
Oll Range Organics (Over C28-C36)	~49.9	0	49.9	mg/Kg	02/07/23 13.15	02/10/23 04.27	I
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane	80		70 - 130		02/07/23 13:15	02/10/23 04:27	1
o-Terphenyl	92		70 - 130		02/07/23 13:15	02/10/23 04:27	1
	92		10 - 130		02/07/23 13.15	02/10/23 04.27	1

Unit

D

Prepared

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2100	25.3	mg/Kg			02/03/23 22:04	5

Client Sample ID: SS04

Date Collected: 01/27/23 09:50

Date Received: 01/27/23 14:06

Sample Depth: 0.5'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		02/08/23 13:25	02/08/23 20:50	1
Toluene	<0.00198	U	0.00198	mg/Kg		02/08/23 13:25	02/08/23 20:50	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		02/08/23 13:25	02/08/23 20:50	1
m-Xylene & p-Xylene	<0.00396	U	0.00396	mg/Kg		02/08/23 13:25	02/08/23 20:50	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		02/08/23 13:25	02/08/23 20:50	1
Xylenes, Total	<0.00396	U	0.00396	mg/Kg		02/08/23 13:25	02/08/23 20:50	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	126		70 - 130			02/08/23 13:25	02/08/23 20:50	1
1,4-Difluorobenzene (Surr)	87		70 - 130			02/08/23 13:25	02/08/23 20:50	1
Method: TAL SOP Total BTEX - T								
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396	mg/Kg			02/09/23 08:41	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			02/10/23 10:51	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		02/07/23 13:15	02/10/23 04:49	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		02/07/23 13:15	02/10/23 04:49	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		02/07/23 13:15	02/10/23 04:49	1
Surrogate	%Recoverv	0 ""	Limits			Prepared	Analvzed	Dil Fac

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 86 70 - 130 02/07/23 13:15 02/10/23 04:49 1 o-Terphenyl 99 70 - 130 02/07/23 13:15 02/10/23 04:49 1

Eurofins Carlsbad

Lab Sample ID: 890-3974-3 Matrix: Solid

		Clien	it Sample Re	sults				
Client: Ensolum			-				Job ID: 890	-3974-
Project/Site: Sprayberry Booster P	ump						SDG: 03D2	202414
Client Sample ID: SS04						Lab San	nple ID: 890-	3974-
Date Collected: 01/27/23 09:50							Matri	ix: Soli
Date Received: 01/27/23 14:06								
Sample Depth: 0.5'								
_ Method: EPA 300.0 - Anions, lor	n Chromatogra	hv - Solubi	e					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	3640		25.2	mg/Kg			02/03/23 22:09	
Client Sample ID: SS05						Lab Sar	nple ID: 890-	3974-
Date Collected: 01/27/23 09:55							-	ix: Soli
Date Received: 01/27/23 14:06							Math	
Sample Depth: 0.5'								
- Mothody SW946 9021P Volatila	Organia Comp	oundo (CC)						
Method: SW846 8021B - Volatile Analyte		Qualifier) RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199	mg/Kg		02/08/23 13:25	02/08/23 21:17	
Toluene	<0.00199	U	0.00199	mg/Kg		02/08/23 13:25	02/08/23 21:17	
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		02/08/23 13:25	02/08/23 21:17	
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		02/08/23 13:25	02/08/23 21:17	
o-Xylene	<0.00199	U	0.00199	mg/Kg		02/08/23 13:25	02/08/23 21:17	
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		02/08/23 13:25	02/08/23 21:17	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	115		70 - 130			02/08/23 13:25	02/08/23 21:17	
1,4-Difluorobenzene (Surr)	96		70 - 130			02/08/23 13:25	02/08/23 21:17	
- Method: TAL SOP Total BTEX - `	Total BTEX Cal	culation						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398	mg/Kg			02/09/23 08:41	
_ Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9	mg/Kg			02/10/23 10:51	
_ Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(60)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.9		49.9			02/07/23 13:15	02/10/23 05:11	
(GRO)-C6-C10				5.5				
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		02/07/23 13:15	02/10/23 05:11	
C10-C28)			40.0			00/07/00 10 1-		
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		02/07/23 13:15	02/10/23 05:11	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil F
1-Chlorooctane	81		70 - 130			02/07/23 13:15	02/10/23 05:11	
o-Terphenyl	94		70 - 130			02/07/23 13:15	02/10/23 05:11	
– Method: EPA 300.0 - Anions, lor	n Chromatograg	ohy - Solubl	e					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chlorido			<u></u>	malka			02/02/22 22:14	

Eurofins Carlsbad

02/03/23 22:14

Chloride

50.0

mg/Kg

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) BFB1 DFBZ1 Client Sample ID (70-130) (70-130) Lab Sample ID 890-3974-1 SS01 108 93 890-3974-1 MS SS01 112 106 890-3974-1 MSD SS01 107 100 SS02 890-3974-2 117 100 890-3974-3 SS03 122 96 SS04 890-3974-4 126 87 890-3974-5 SS05 115 96 LCS 880-45803/1-A 122 106 Lab Control Sample LCSD 880-45803/2-A Lab Control Sample Dup 109 93 MB 880-45803/5-A Method Blank 73 92 Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Ma	τr	IX:	201	Ia

				Percent S
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-3967-A-1-D MS	Matrix Spike	15 S1-	10 S1-	
890-3967-A-1-E MSD	Matrix Spike Duplicate	17 S1-	11 S1-	
890-3974-1	SS01	93	105	
890-3974-2	SS02	89	100	
890-3974-3	SS03	80	92	
890-3974-4	SS04	86	99	
890-3974-5	SS05	81	94	
LCS 880-45703/2-A	Lab Control Sample	102	114	
LCSD 880-45703/3-A	Lab Control Sample Dup	92	105	
MB 880-45703/1-A	Method Blank	126	146 S1+	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

6

Prep Type: Total/NA

Prep Type: Total/NA

QC Sample Results

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-45803/5-A Matrix: Solid Analysis Batch: 45810				
-	МВ	МВ		
Analyte	Result	Qualifier	RL	
Benzene	<0.00200	U	0.00200	

Benzene	<0.00200	U	0.00200	mg/Kg	02/08/23 13:25	02/08/23 19:04	1
Toluene	<0.00200	U	0.00200	mg/Kg	02/08/23 13:25	02/08/23 19:04	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg	02/08/23 13:25	02/08/23 19:04	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg	02/08/23 13:25	02/08/23 19:04	1
o-Xylene	<0.00200	U	0.00200	mg/Kg	02/08/23 13:25	02/08/23 19:04	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg	02/08/23 13:25	02/08/23 19:04	1
	MB	MB					
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	73		70 - 130		02/08/23 13:25	02/08/23 19:04	1
1,4-Difluorobenzene (Surr)	92		70 - 130		02/08/23 13:25	02/08/23 19:04	1

Unit

Lab Sample ID: LCS 880-45803/1-A Matrix: Solid

Analysis Batch: 45810

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1101		mg/Kg		110	70 - 130	
Toluene	0.100	0.1179		mg/Kg		118	70 - 130	
Ethylbenzene	0.100	0.1227		mg/Kg		123	70 - 130	
m-Xylene & p-Xylene	0.200	0.2408		mg/Kg		120	70 - 130	
o-Xylene	0.100	0.1216		mg/Kg		122	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	122		70 - 130
1,4-Difluorobenzene (Surr)	106		70 - 130

Lab Sample ID: LCSD 880-45803/2-A

Matrix: Solid

Analysis Batch: 45810							Prep	Batch:	45803
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09776		mg/Kg		98	70 - 130	12	35
Toluene	0.100	0.1031		mg/Kg		103	70 - 130	13	35
Ethylbenzene	0.100	0.1073		mg/Kg		107	70 - 130	13	35
m-Xylene & p-Xylene	0.200	0.2100		mg/Kg		105	70 - 130	14	35
o-Xylene	0.100	0.1043		mg/Kg		104	70 - 130	15	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	109		70 - 130
1,4-Difluorobenzene (Surr)	93		70 - 130

Lab Sample ID: 890-3974-1 MS Matrix: Solid

Analysis Potoby 45940

Analysis Batch: 45810									Prep	Batch: 45803
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U	0.100	0.09603		mg/Kg		96	70 - 130	
Toluene	<0.00201	U	0.100	0.09650		mg/Kg		96	70 - 130	

Eurofins Carlsbad

Client Sample ID: SS01

Prep Type: Total/NA

Dil Fac

SDG: 03D2024145

Prep Type: Total/NA Prep Batch: 45803

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 45803

Client Sample ID: Method Blank

Analyzed

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prepared

D

Job ID: 890-3974-1

QC Sample Results

MS MS

0.09588

0.1879

0.09333

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

Spike

Added

0.100

0.201

0.100

Limits 70 - 130

70 - 130

Client: Ensolum Project/Site: Sprayberry Booster Pump

Lab Sample ID: 890-3974-1 MS

Analysis Batch: 45810

4-Bromofluorobenzene (Surr)

Lab Sample ID: 890-3974-1 MSD

1,4-Difluorobenzene (Surr)

Matrix: Solid

Analyte

o-Xylene

Surrogate

Ethylbenzene

m-Xylene & p-Xylene

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Sample Sample

<0.00201

<0.00402 U

<0.00201 U

Result Qualifier

U

MS MS

%Recovery Qualifier

112

106

Client Sample ID: SS01

%Rec

Limits

70 - 130

70 - 130

70 - 130

%Rec

95

94

93

D

Prep Type: Total/NA

Prep Batch: 45803

Job ID: 890-3974-1 SDG: 03D2024145

Client Sample ID: SS01 I/NA 5803

Client Sample ID: Method Blank

02/09/23 20:17

Client Sample ID: Lab Control Sample

02/07/23 13:15

Prep Type: Total/NA

Prep Batch: 45703

	9

1

Matrix: Solid Analysis Batch: 45810										ype: To Batch:	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00201	U	0.0990	0.09419		mg/Kg		95	70 - 130	2	35
Toluene	<0.00201	U	0.0990	0.09220		mg/Kg		93	70 - 130	5	35
Ethylbenzene	<0.00201	U	0.0990	0.09481		mg/Kg		96	70 - 130	1	35
m-Xylene & p-Xylene	<0.00402	U	0.198	0.1872		mg/Kg		95	70 - 130	0	35
o-Xylene	<0.00201	U	0.0990	0.09527		mg/Kg		96	70 - 130	2	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	107		70 - 130								
1,4-Difluorobenzene (Surr)	100		70 - 130								

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-45703/1-A Matrix: Solid Analysis Batch: 45833

	MB	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		02/07/23 13:15	02/09/23 20:17	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		02/07/23 13:15	02/09/23 20:17	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		02/07/23 13:15	02/09/23 20:17	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	126		70 - 130			02/07/23 13:15	02/09/23 20:17	1

70 - 130

S1+

o-Terphenyl	146
Lab Sample ID: LCS 880-45703/2-A	

Matrix: Solid Analysis Ratch: 45922

Analysis Batch: 45833							Prep	Batch: 45703
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	810.1		mg/Kg		81	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	914.1		mg/Kg		91	70 - 130	
C10-C28)								

Eurofins Carlsbad

Prep Type: Total/NA

Released to Imaging: 2/26/2024 3:08:02 PM

QC Sample Results

Client: Ensolum Project/Site: Sprayberry Booster Pump

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Job ID: 890-3974-1 SDG: 03D2024145

Lab Sample ID: LCS 880-45	703/2-A						Client	Sample	ID: Lab Co	ontrol Sa	ampl
Matrix: Solid									Prep 1	Type: Tot	tal/N
Analysis Batch: 45833										Batch:	
	105	LCS									
Surrogate	%Recovery		Limits								
I-Chlorooctane		Quaimer	70 - 130								
	114		70 - 130 70 - 130								
p-Terphenyl	114		70 - 130								
Lab Sample ID: LCSD 880-4	45703/3-A					Clier	nt Sam	ple ID: I	Lab Contro	ol Sample	e Du
Matrix: Solid								•		· Type: Tot	
Analysis Batch: 45833										Batch:	
			Spike	LCSD	LCSD				%Rec		RF
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Lin
Gasoline Range Organics			1000	825.3		mg/Kg		83	70 - 130	2	
GRO)-C6-C10			1000	020.0				00	10-100	2	4
Diesel Range Organics (Over			1000	880.0		mg/Kg		88	70 - 130	4	:
:10-C28)						5. 5					
	1.000	LCSD									
			1								
Surrogate	%Recovery	Qualifier	Limits								
-Chlorooctane	92		70 - 130								
	105		70 - 130								
- Telphenyi											
	-1-D MS							Client	Sample ID	· Matrix	Snil
ab Sample ID: 890-3967-A	-1-D MS							Client	Sample ID		
_ab Sample ID: 890-3967-A Matrix: Solid	-1-D MS							Client	Prep 1	Type: Tot	tal/N
_ab Sample ID: 890-3967-A Matrix: Solid		Sample	Spike	ме	MG			Client	Prep 1 Prep		tal/N
ab Sample ID: 890-3967-A Aatrix: Solid Analysis Batch: 45833	Sample	Sample	Spike		MS	Unit	P		Prep 1 Prep %Rec	Type: Tot	tal/N
ab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833	Sample Result	Qualifier	Added	Result	MS Qualifier	Unit	<u>D</u>	%Rec	Prep 1 Prep %Rec Limits	Type: Tot	tal/N
Lab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833 Analyte Gasoline Range Organics	Sample	Qualifier	-			- <mark>Unit</mark> mg/Kg	D		Prep 1 Prep %Rec	Type: Tot	tal/N
Lab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833 Analyte Basoline Range Organics GRO)-C6-C10	Sample Result <50.0	Qualifier U	Added 998	Result 900.3		mg/Kg	<u>D</u>	%Rec 90	Prep 7 Prep %Rec Limits 70 - 130	Type: Tot	tal/N
Lab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	Sample Result	Qualifier U	Added	Result			D	%Rec	Prep 1 Prep %Rec Limits	Type: Tot	tal/N
Lab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	Sample Result <50.0 <50.0	Qualifier U	Added 998	Result 900.3		mg/Kg	<u>D</u>	%Rec 90	Prep 7 Prep %Rec Limits 70 - 130	Type: Tot	tal/N
Lab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Sample <u>Result</u> <50.0 <50.0 <i>MS</i>	Qualifier U U	Added	Result 900.3		mg/Kg	D	%Rec 90	Prep 7 Prep %Rec Limits 70 - 130	Type: Tot	tal/N
Lab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	Sample <u>Result</u> <50.0 <50.0 <i>MS</i> %Recovery	Qualifier U U MS Qualifier	Added 998 998 Limits	Result 900.3		mg/Kg	<u>D</u>	%Rec 90	Prep 7 Prep %Rec Limits 70 - 130	Type: Tot	tal/N
Lab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833 Analyte Basoline Range Organics GRO)-C6-C10 biesel Range Organics (Over 10-C28) Furrogate -Chlorooctane	Sample <u>Result</u> <50.0 <50.0 MS %Recovery 15	Qualifier U U MS Qualifier S1-	Added 998 998 <u>Limits</u> 70 - 130	Result 900.3		mg/Kg	<u> </u>	%Rec 90	Prep 7 Prep %Rec Limits 70 - 130	Type: Tot	tal/N
Aab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833 malyte Basoline Range Organics GRO)-C6-C10 Hiesel Range Organics (Over H0-C28) Currogate -Chlorooctane	Sample <u>Result</u> <50.0 <50.0 MS %Recovery 15	Qualifier U U MS Qualifier	Added 998 998 Limits	Result 900.3		mg/Kg	<u> </u>	%Rec 90	Prep 7 Prep %Rec Limits 70 - 130	Type: Tot	tal/N
Lab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over 210-C28) Surrogate -Chlorooctane -Terphenyl	Sample Result <50.0 <50.0 MS %Recovery 15 10	Qualifier U U MS Qualifier S1-	Added 998 998 <u>Limits</u> 70 - 130	Result 900.3		mg/Kg		%Rec 90 95	Prep 1 Prep %Rec Limits 70 - 130 70 - 130	Type: Tot Batch: /	tal/N 457
- Terphenyl Lab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 890-3967-A Matrix: Solid	Sample Result <50.0 <50.0 MS %Recovery 15 10	Qualifier U U MS Qualifier S1-	Added 998 998 <u>Limits</u> 70 - 130	Result 900.3		mg/Kg		%Rec 90 95	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: Tot Batch: /	tal/N 457(
Lab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 890-3967-A Matrix: Solid	Sample Result <50.0 <50.0 MS %Recovery 15 10	Qualifier U U MS Qualifier S1-	Added 998 998 <u>Limits</u> 70 - 130	Result 900.3		mg/Kg		%Rec 90 95	Prep 7 Prep % %Rec Limits 70 - 130 70 - 130 70 - 130	Type: Tot Batch: / Dike Dup Type: Tot	tal/N 457(
Lab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 890-3967-A Matrix: Solid	Sample Result <50.0 <50.0 MS %Recovery 15 10 -1-E MSD	Qualifier U MS Qualifier S1- S1-	Added 998 998 Limits 70 - 130 70 - 130	Result 900.3 962.8	Qualifier	mg/Kg		%Rec 90 95	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep 1 Prep	Type: Tot Batch: /	tal/N 457(blica tal/N 457(
Lab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate -Chlorooctane -Terphenyl Lab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833	Sample Result <50.0 <50.0 MS %Recovery 15 10 -1-E MSD Sample	Qualifier U MS Qualifier S1- S1- S1-	Added 998 998 <u>Limits</u> 70 - 130 70 - 130 Spike	Result 900.3 962.8 MSD	Qualifier	mg/Kg mg/Kg CI	ient Sa	90 95 95	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 9 70 - 190 70 -	Dike Dup Batch: /	blica tal/N 457(457(RF
Lab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over 210-C28) Surrogate -Chlorooctane -Terphenyl Lab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833	Sample Result <50.0 <50.0 MS %Recovery 15 10 -1-E MSD Sample Result	Qualifier U MS Qualifier S1- S1- S1- S1-	Added 998 998 <u>Limits</u> 70 - 130 70 - 130 70 - 130	Result 900.3 962.8 MSD Result	Qualifier	mg/Kg mg/Kg Cl		<u>%Rec</u> 90 95 ample ID	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 %Rec Limits	Dike Dup Batch: / Dike Dup Type: Tot Batch: / 	blica blica tal/N 457(Ri Lir
Lab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833 Analyte Basoline Range Organics	Sample Result <50.0 <50.0 MS %Recovery 15 10 -1-E MSD Sample	Qualifier U MS Qualifier S1- S1- S1- S1-	Added 998 998 <u>Limits</u> 70 - 130 70 - 130 Spike	Result 900.3 962.8 MSD	Qualifier	mg/Kg mg/Kg CI	ient Sa	90 95 95	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 9 70 - 190 70 -	Dike Dup Batch: /	blica blica tal/N 457(Ri Lir
Lab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833 Analyte Basoline Range Organics GRO)-C6-C10	Sample Result <50.0 <50.0 MS %Recovery 15 10 -1-E MSD Sample Result	Qualifier U MS Qualifier S1- S1- S1- S1- S1- U	Added 998 998 <u>Limits</u> 70 - 130 70 - 130 70 - 130	Result 900.3 962.8 MSD Result	Qualifier	mg/Kg mg/Kg Cl	ient Sa	<u>%Rec</u> 90 95 ample ID	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 %Rec Limits	Dike Dup Batch: / Dike Dup Type: Tot Batch: / 	blica tal/N 457(457(ki Lir
Lab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate -Chlorooctane -Terphenyl Lab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	Sample Result <50.0 <50.0 MS %Recovery 15 10 -1-E MSD -1-E MSD Sample Result <50.0	Qualifier U MS Qualifier S1- S1- S1- S1- S1- U	Added 998 998 <u>Limits</u> 70 - 130 70 - 130 70 - 130 997	Result 900.3 962.8 MSD Result 1066	Qualifier	mg/Kg mg/Kg Cl Unit mg/Kg	ient Sa	%Rec 90 95 ample ID %Rec 107	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep 1 Prep %Rec Limits 70 - 130	Dike Dup Fype: Tof Batch: 4 Dike Dup Type: Tof Batch: 4 RPD 17	blica tal/N 4570 tal/N 4570 Ri Lir
Lab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	Sample Result <50.0	Qualifier U MS Qualifier S1- S1- S1- Sample Qualifier U U	Added 998 998 <u>Limits</u> 70 - 130 70 - 130 70 - 130 997	Result 900.3 962.8 MSD Result 1066	Qualifier	mg/Kg mg/Kg Cl Unit mg/Kg	ient Sa	%Rec 90 95 ample ID %Rec 107	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep 1 Prep %Rec Limits 70 - 130	Dike Dup Fype: Tof Batch: 4 Dike Dup Type: Tof Batch: 4 RPD 17	blica tal/N 457(457(ki Lir
Lab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate -Chlorooctane -Terphenyl Lab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Sample Result <50.0 <50.0 <i>MS %Recovery</i> 15 10 -1-E MSD Sample Result <50.0 <50.0 <i>MSD</i>	Qualifier U MS Qualifier S1- S1- S1- Sample Qualifier U U	Added 998 998 <u>Limits</u> 70 - 130 70 - 130 70 - 130 997 997	Result 900.3 962.8 MSD Result 1066	Qualifier	mg/Kg mg/Kg Cl Unit mg/Kg	ient Sa	%Rec 90 95 ample ID %Rec 107	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep 1 Prep %Rec Limits 70 - 130	Dike Dup Fype: Tof Batch: 4 Dike Dup Type: Tof Batch: 4 RPD 17	blica tal/N 457(457(ki Lin
Lab Sample ID: 890-3967-A Matrix: Solid Analysis Batch: 45833 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 890-3967-A	Sample Result <50.0 <50.0 <i>MS %Recovery</i> 15 10 -1-E MSD Sample Result <50.0 <50.0 <i>%Recovery</i>	Qualifier U MS Qualifier S1- S1- S1- Sample Qualifier U U	Added 998 998 <u>Limits</u> 70 - 130 70 - 130 70 - 130 997	Result 900.3 962.8 MSD Result 1066	Qualifier	mg/Kg mg/Kg Cl Unit mg/Kg	ient Sa	%Rec 90 95 ample ID %Rec 107	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep 1 Prep %Rec Limits 70 - 130	Dike Dup Fype: Tof Batch: 4 Dike Dup Type: Tof Batch: 4 RPD 17	tal/N 457(blica tal/N

Client: Ensolum

QC Sample Results

Job ID: 890-3974-1 SDG: 03D2024145

Project/Site: Sprayberry Booster Pump

Method: 300.0 - Anions	, Ion Chromatography
------------------------	----------------------

Lab Sample ID: MB 880-45095/1-A Matrix: Solid Analysis Batch: 45420									Clier	it Sample Pi	ID: Methoo ep Type: \$	
Analysis Baton. 40420	МВ	MB										
Analyte	Result	Qualifier		RL		Unit		D	Prepare	d An	alyzed	Dil Fac
Chloride	<5.00	U		5.00		mg/K	g			02/03	3/23 21:32	1
Lab Sample ID: LCS 880-45095/2-A								Clie	nt Sam	ple ID: Lat		
Matrix: Solid										Pi	ep Type: S	Soluble
Analysis Batch: 45420			•							~ -		
Australia			Spike			LCS	1114	-	N 0/ D-	%Rec		
Analyte			Added 250		258.9	Qualifier	Unit	[) %Re 10			
Chioride			250	2	258.9		mg/Kg		10	4 90-11	0	
Lab Sample ID: LCSD 880-45095/3-A							Cli	ent Sa	imple II	D: Lab Cor	ntrol Same	ole Dup
Matrix: Solid											ep Type: S	-
Analysis Batch: 45420												
			Spike	L	.CSD	LCSD				%Rec		RPD
Analyte			Added	R	esult	Qualifier	Unit	0) %Re	c Limits	RPD	Limit
Chloride			250	2	248.1		mg/Kg		9	9 90 - 11	0 4	20
Lab Sample ID: 890-3974-1 MS											Sample ID	
Matrix: Solid										PI	ep Type: S	Soluble
Analysis Batch: 45420												
	ole Sam		Spike			MS				%Rec		
	ult Qua	lifier	Added		esult		Unit	[
Chloride 23	50 F1		1260		3823	F1	mg/Kg		11	7 90 - 11	0	
Lab Sample ID: 890-3974-1 MSD										Client	Sample ID): SS01
Matrix: Solid											ep Type: S	
Analysis Batch: 45420											10.10.00	
-	ole Sam	ple	Spike		MSD	MSD				%Rec		RPD
Analyte Res	ult Qua	lifior		-		0		_				
Analyte Kes	un Qua	inter	Added	R	esult	Qualifier	Unit) %Re	c Limits	RPD	Limit

QC Association Summary

Client: Ensolum Project/Site: Sprayberry Booster Pump

5

8 9

Job ID: 890-3974-1 SDG: 03D2024145

GC VOA

Prep Batch: 45803

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3974-1	SS01	Total/NA	Solid	5035	
890-3974-2	SS02	Total/NA	Solid	5035	
890-3974-3	SS03	Total/NA	Solid	5035	
890-3974-4	SS04	Total/NA	Solid	5035	
890-3974-5	SS05	Total/NA	Solid	5035	
MB 880-45803/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-45803/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-45803/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3974-1 MS	SS01	Total/NA	Solid	5035	
890-3974-1 MSD	SS01	Total/NA	Solid	5035	

Analysis Batch: 45810

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-3974-1	SS01	Total/NA	Solid	8021B	45803	
890-3974-2	SS02	Total/NA	Solid	8021B	45803	
890-3974-3	SS03	Total/NA	Solid	8021B	45803	
890-3974-4	SS04	Total/NA	Solid	8021B	45803	
890-3974-5	SS05	Total/NA	Solid	8021B	45803	
MB 880-45803/5-A	Method Blank	Total/NA	Solid	8021B	45803	
LCS 880-45803/1-A	Lab Control Sample	Total/NA	Solid	8021B	45803	
LCSD 880-45803/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	45803	
890-3974-1 MS	SS01	Total/NA	Solid	8021B	45803	
890-3974-1 MSD	SS01	Total/NA	Solid	8021B	45803	

Analysis Batch: 45844

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
SS01	Total/NA	Solid	Total BTEX	
SS02	Total/NA	Solid	Total BTEX	
SS03	Total/NA	Solid	Total BTEX	
SS04	Total/NA	Solid	Total BTEX	
SS05	Total/NA	Solid	Total BTEX	
	SS01 SS02 SS03 SS04	SS01 Total/NA SS02 Total/NA SS03 Total/NA SS04 Total/NA	SS01 Total/NA Solid SS02 Total/NA Solid SS03 Total/NA Solid SS04 Total/NA Solid	SS01 Total/NA Solid Total BTEX SS02 Total/NA Solid Total BTEX SS03 Total/NA Solid Total BTEX SS04 Total/NA Solid Total BTEX

GC Semi VOA

Prep Batch: 45703

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3974-1	SS01	Total/NA	Solid	8015NM Prep	
890-3974-2	SS02	Total/NA	Solid	8015NM Prep	
890-3974-3	SS03	Total/NA	Solid	8015NM Prep	
890-3974-4	SS04	Total/NA	Solid	8015NM Prep	
890-3974-5	SS05	Total/NA	Solid	8015NM Prep	
MB 880-45703/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-45703/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-45703/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3967-A-1-D MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-3967-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	
Analysis Batch: 45833					

Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch 890-3974-1 SS01 Total/NA 8015B NM Solid 45703 890-3974-2 SS02 Total/NA Solid 8015B NM 45703

Eurofins Carlsbad

Page 33 of 111

QC Association Summary

Client: Ensolum Project/Site: Sprayberry Booster Pump

GC Semi VOA (Continued)

Analysis Batch: 45833 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3974-3	SS03	Total/NA	Solid	8015B NM	45703
890-3974-4	SS04	Total/NA	Solid	8015B NM	45703
890-3974-5	SS05	Total/NA	Solid	8015B NM	45703
MB 880-45703/1-A	Method Blank	Total/NA	Solid	8015B NM	45703
LCS 880-45703/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	45703
LCSD 880-45703/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	45703
890-3967-A-1-D MS	Matrix Spike	Total/NA	Solid	8015B NM	45703
890-3967-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	45703

Analysis Batch: 45981

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3974-1	SS01	Total/NA	Solid	8015 NM	
890-3974-2	SS02	Total/NA	Solid	8015 NM	
890-3974-3	SS03	Total/NA	Solid	8015 NM	
890-3974-4	SS04	Total/NA	Solid	8015 NM	
890-3974-5	SS05	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 45095

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3974-1	SS01	Soluble	Solid	DI Leach	
890-3974-2	SS02	Soluble	Solid	DI Leach	
890-3974-3	SS03	Soluble	Solid	DI Leach	
890-3974-4	SS04	Soluble	Solid	DI Leach	
890-3974-5	SS05	Soluble	Solid	DI Leach	
MB 880-45095/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-45095/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-45095/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-3974-1 MS	SS01	Soluble	Solid	DI Leach	
890-3974-1 MSD	SS01	Soluble	Solid	DI Leach	

Analysis Batch: 45420

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3974-1	SS01	Soluble	Solid	300.0	45095
890-3974-2	SS02	Soluble	Solid	300.0	45095
890-3974-3	SS03	Soluble	Solid	300.0	45095
890-3974-4	SS04	Soluble	Solid	300.0	45095
890-3974-5	SS05	Soluble	Solid	300.0	45095
MB 880-45095/1-A	Method Blank	Soluble	Solid	300.0	45095
LCS 880-45095/2-A	Lab Control Sample	Soluble	Solid	300.0	45095
LCSD 880-45095/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	45095
890-3974-1 MS	SS01	Soluble	Solid	300.0	45095
890-3974-1 MSD	SS01	Soluble	Solid	300.0	45095

Job ID: 890-3974-1 SDG: 03D2024145

Job ID: 890-3974-1 SDG: 03D2024145

Lab Sample ID: 890-3974-1 Matrix: Solid

Lab Sample ID: 890-3974-2

Lab Sample ID: 890-3974-3

Lab Sample ID: 890-3974-4

Matrix: Solid

Matrix: Solid

Date Collected: 01/27/23 09:35 Date Received: 01/27/23 14:06

Client Sample ID: SS01

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	45803	02/08/23 13:25	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	45810	02/08/23 19:31	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			45844	02/09/23 08:41	MNR	EET MID
Total/NA	Analysis	8015 NM		1			45981	02/10/23 10:51	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	45703	02/07/23 13:15	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	45833	02/10/23 03:42	AJ	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	45095	01/30/23 16:15	KS	EET MID
Soluble	Analysis	300.0		5			45420	02/03/23 21:46	СН	EET MID

Client Sample ID: SS02

Date Collected: 01/27/23 09:40

Date Received: 01/27/23 14:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	45803	02/08/23 13:25	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	45810	02/08/23 19:57	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			45844	02/09/23 08:41	MNR	EET MID
Total/NA	Analysis	8015 NM		1			45981	02/10/23 10:51	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	45703	02/07/23 13:15	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	45833	02/10/23 04:05	AJ	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	45095	01/30/23 16:15	KS	EET MID
Soluble	Analysis	300.0		5			45420	02/03/23 22:00	СН	EET MID

Client Sample ID: SS03

Date Collected: 01/27/23 09:45

Date Received: 01/27/23 14:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	45803	02/08/23 13:25	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	45810	02/08/23 20:24	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			45844	02/09/23 08:41	MNR	EET MID
Total/NA	Analysis	8015 NM		1			45981	02/10/23 10:51	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	45703	02/07/23 13:15	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	45833	02/10/23 04:27	AJ	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	45095	01/30/23 16:15	KS	EET MID
Soluble	Analysis	300.0		5			45420	02/03/23 22:04	CH	EET MID

Client Sample ID: SS04 Date Collected: 01/27/23 09:50 Date Received: 01/27/23 14:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	45803	02/08/23 13:25	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	45810	02/08/23 20:50	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			45844	02/09/23 08:41	MNR	EET MID

Eurofins Carlsbad

1

5

9

Released to Imaging: 2/26/2024 3:08:02 PM

Matrix: Solid

Job ID: 890-3974-1 SDG: 03D2024145

Lab Sample ID: 890-3974-4

Lab Sample ID: 890-3974-5

Matrix: Solid

Date Collected: 01/27/23 09:50 Date Received: 01/27/23 14:06

Client Sample ID: SS04

Client: Ensolum

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	45703	02/07/23 13:15	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	45833	02/10/23 04:49	AJ	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	45095	01/30/23 16:15	KS	EET MID
Soluble	Analysis	300.0		5			45420	02/03/23 22:09	СН	EET MID

Client Sample ID: SS05 Date Collected: 01/27/23 09:55

Date Received: 01/27/23 14:06

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	45810	02/08/23 21:17	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			45844	02/09/23 08:41	MNR	EET MID
Total/NA	Analysis	8015 NM		1			45981	02/10/23 10:51	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	45703	02/07/23 13:15	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	45833	02/10/23 05:11	AJ	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	45095	01/30/23 16:15	KS	EET MID
Soluble	Analysis	300.0		10			45420	02/03/23 22:14	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Matrix: Solid

5 9
Accreditation/Certification Summary

		Accreditation/C	ertification Summary		
Client: Ensolum Project/Site: Sprayberry	y Booster Pump			Job ID: 890-3974-1 SDG: 03D2024145	2
Laboratory: Eurofi Unless otherwise noted, all a		ry were covered under each acc	reditation/certification below.		
Authority		Program	Identification Number	Expiration Date	
Texas	are included in this repo	NELAP	T104704400-22-25 ied by the governing authority. This list m	06-30-23	5
the agency does not of Analysis Method		Matrix	Analyte	-,	
8015 NM Total BTEX		Solid Solid	Total TPH Total BTEX		
					8
					9
					10
					13

Eurofins Carlsbad

Client: Ensolum

Job ID: 890-3974-1 SDG: 03D2024145

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
Protocol Refe	rences:		
ASTM = A	STM International		
EPA = US	Environmental Protection Agency		
SW846 = '	Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Ed	dition, November 1986 And Its Updates.	
TAL SOP =	= TestAmerica Laboratories, Standard Operating Procedure		

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Sample Summary

Client: Ensolum Project/Site: Sprayberry Booster Pump Job ID: 890-3974-1 SDG: 03D2024145

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
0-3974-1	SS01	Solid	01/27/23 09:35	01/27/23 14:06	0.5'	
90-3974-2	SS02	Solid	01/27/23 09:40	01/27/23 14:06	0.5'	
90-3974-3	SS03	Solid	01/27/23 09:45	01/27/23 14:06	0.5'	
90-3974-4	SS04	Solid	01/27/23 09:50	01/27/23 14:06	0.5'	
90-3974-5	SS05	Solid	01/27/23 09:55	01/27/23 14:06	0.5'	
						•
						i

				Hob	bs, NM	(575) 39	2-7550, (Carlsbad	Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	18-3199			×	www.xenco.com	o.com	Page	4	of 1
Project Manager:	Hadlie Green			Bill to: (if different)	ent)	Kalei	Kalei Jennings	<i>•</i> ,						Work	Order	Con	50	
	Ensolum, LLC			Company Name:	ne:	Ensolu	Ensolum, LLC				Prog	am: US	TIPST] PRP[Brow	Program: UST/PST 🗌 PRP 🔤 Brownfields 🔲 RRC 🗌		Superfund
	601 N Marienfeld St Suite	St Suite 400		Address:		601 N	Marient	eld St S	601 N Marienfeld St Suite 400		State	State of Project:	ect:					
e ZIP:	Midland, TX 79701			City, State ZIP:		Midlar	Midland, TX 79701	9701			Repo	rting: Le	vel II	Level II	Ps	Reporting: Level II CLevel III CPST/UST CTRRP		
	817.683.2503		Email:	kjennings@ensolum.com	nsolun	n.com					Delive	Deliverables: EDD	EDD		ADaPT		Other:	
Proiect Name:	Spravberry Booster Pump	oster Pump	Turn	Turn Around	-				P	ANALYSIS R	SIS REQUEST					Pres	ervativ	Preservative Codes
Project Number:	03D2024145	4145	Routine	Rush	Code						_					None: NO		DI Water: H ₂ O
Project Location:	Lea County, NM	ty, NM	Due Date:					_								Cool: Cool		MeOH: Me
Sampler's Name:	Conner Shore	hore	TAT starts the	TAT starts the day received by	~				_				_			HCL: HC		HNO3: HN
PO#)	the lab, if reo	the lab, if received by 4:30pm									-	-		H ₂ S0 ₄ : H ₂		NaOH: Na
SAMPLE RECEIPT	T Temp Blank:	C Kes No	Wet Ice:	des No	nete											H ₃ PO ₄ : HP	0	
Samples Received Intact:		_	ster ID:	Thur SO.	iran											NaHSO4: NABIS	NABIS	
Cooler Custody Seals:	Yes No	NIA Correction Factor:	Factor:	-0.2	Pa			_	890-3974 Chain							Na2S2U3: NASU3	NaSU3	
Sample Custody Seals:	Yes No	N/A Temperatu	Temperature Reading:	1.4	1	,		1)		Chain of Custody	siddy					ZII ACEIAIETINAON. ZII	ETINACH	. 41
Total Containers:		Corrected	Corrected Temperature:	4		015	des	(802				_	_	-				
Sample Identification		Matrix Date Sampled	Time Sampled	Depth Comp	p Cont	TPH (8	Chlorid	BTEX								Sam	nple Co	Sample Comments
SS01	S	1.27.23	935	0.5' G	1	×	×	×					\vdash					
SS02		1.27.23		0.5' G		×	×	×					-	-	-			
SS03	S	1.27.23	945	0.5 ¹ G		×	×	×					-	╞	F	Inc	Incident Number	lumber
SS04		1.27.23	950	0.5' G		×	×	×					-	-				
SS05	S	1.27.23	955	0.5' G		×	×	×					-	-	+			
			1.22					-					-	+	+			
		1	T												+			
	5	7																
	Cont										-		-	-	F			
Total 200.7 / 6010	0 200.8 / 6020:		8RCRA 13PPM	PM Texas 11	≥	Sb As	Ba Be	BCd	Ca Cr	Co Cu Fe F	Pb Mg M	Mg Mn Mo	Niks	Se Ag	Ag SiO ₂ Na	Sr TI	Sn U V	Zn
Circle Method(s) and Metal(s) to be analyzed	Metal(s) to be an	alyzed	TCLP / SI	TCLP / SPLP 6010: 8RCRA	RCRA	Sb A	s Ba	Be Cd	Sb As Ba Be Cd Cr Co Cu Pb	J Pb Mn M	Mn Mo Ni Se Ag TI U	Ag TI	C	Hg	: 1631	Hg: 1631 / 245.1 / 7470	470 / 7471	171
Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of service. Eurofins Xenco. A minimum charge of \$5.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiat	cument and relinquishn will be liable only for th num charge of \$85.00 wi	nent of samples cc e cost of samples II be applied to eac	onstitutes a valid p and shall not assu ch project and a cl	urchase order fro ime any responsil harge of \$5 for ea	om client bility for ch sampl	company any losse e submit	to Eurof to cape ted to Eurof	ins Xenci inses inc ofins Xe	, its affiliates ; urred by the cl uco, but not an	and subcontract ient If such loss alyzed. These te	contractors. It assigns standard terms and conditions ich losses are due to circumstances beyond the control These terms will be enforced unless previously negotiated	ns standa circumst	nd terms ances be	and cond yond the (viously n	itions :ontrol :gotiated			
Relinguished by: (Signature)	(Signature)	Received by:	red by: (Signature)	lure)	-	Date/Time	Time		Relinquished by	ned by: (Sigr	(Signature)		Received by: (Signature)	ed by: (Signatu	ıre)	Da	Date/Time
4	1		22	A.A.		レン	22-	108										
З			8	V				4										

5

13

eurofins

Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300

Page 40 of 111

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 3974 List Number: 1 Creator: Stutzman, Amanda

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Job Number: 890-3974-1 SDG Number: 03D2024145

List Source: Eurofins Carlsbad

Job Number: 890-3974-1 SDG Number: 03D2024145

List Source: Eurofins Midland

List Creation: 02/03/23 01:00 PM

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 3974 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 11/6/2023 8:46:48 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Hadlie Green Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 2/9/2023 9:18:24 AM

JOB DESCRIPTION

Sprayberry Booster Pump SDG NUMBER 03D2024145

JOB NUMBER

890-3975-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information

Received by OCD: 11/6/2023 8:46:48 AM

Eurofins Carlsbad

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

RAMER

Generated 2/9/2023 9:18:24 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 45 of 111

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
	5
	6
	10
	11
	15
Lab Chronicle	17
Certification Summary	19
-	20
Sample Summary	21
Chain of Custody	22
	23
-	

1			

Job ID: 890-3975-1 SDG: 03D2024145

Page 46 of 111

Qualifiers		3
GC VOA		4
Qualifier	Qualifier Description	4
-	Indicates the analyte was analyzed for but not detected.	E
GC Semi VOA		5
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	8
U	Indicates the analyte was analyzed for but not detected.	
Glossary		9
Abbreviation	These commonly used abbreviations may or may not be present in this report.	10
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	19
Dil Fac	Dilution Factor	13
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	

PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Job ID: 890-3975-1

SDG: 03D2024145

Job ID: 890-3975-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-3975-1

Receipt

The samples were received on 1/27/2023 2:06 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.2°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: SS06 (890-3975-1), SS07 (890-3975-2), SS08 (890-3975-3) and SS09 (890-3975-4).

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-45704 and analytical batch 880-45735 was outside the upper control limits.

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: (890-3975-A-1-D MS) and (890-3975-A-1-E MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-45704 and analytical batch 880-45735 were outside control limits for one or more analytes, see QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Method: SW846 8021B - Volatile Organic Compounds (GC)

Result Qualifier

Qualifier

<0.00200 U

<0.00200 U

<0.00200 U

<0.00399 U

<0.00200 U

<0.00399 U

80

95

%Recovery

RL

0.00200

0.00200

0.00200

0.00399

0.00200

0.00399

Limits

70 - 130 70 - 130

Page 48 of 111

Job ID: 890-3975-1 SDG: 03D2024145

Client Sample ID: SS06

Date Collected: 01/27/23 10:00 Date Received: 01/27/23 14:06

Sample Depth: 0.5'

Client: Ensolum

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Lab Sample ID: 890-3975-1

Analyzed

02/08/23 21:43

02/08/23 21:43

02/08/23 21:43

02/08/23 21:43

02/08/23 21:43

02/08/23 21:43

Analyzed

02/08/23 21:43

02/08/23 21:43

Matrix: Solid

Dil Fac

1

1

1

1

Dil Fac

5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			02/09/23 08:41	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8	mg/Kg			02/09/23 09:48	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U F1	49.8	mg/Kg		02/07/23 13:19	02/08/23 21:44	1
Diesel Range Organics (Over	<49.8	U F1	49.8	mg/Kg		02/07/23 13:19	02/08/23 21:44	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		02/07/23 13:19	02/08/23 21:44	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	100		70 - 130			02/07/23 13:19	02/08/23 21:44	1
o-Terphenyl	110		70 - 130			02/07/23 13:19	02/08/23 21:44	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	79.4		5.00	mg/Kg			02/03/23 22:28	1

Prepared

02/08/23 13:25

02/08/23 13:25

02/08/23 13:25

02/08/23 13:25

02/08/23 13:25

02/08/23 13:25

Prepared

02/08/23 13:25

02/08/23 13:25

D

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Client Sample ID: SS07 Date Collected: 01/27/23 10:05 Date Received: 01/27/23 14:06

Sample Depth: 0.5'

Method: SW846 8021B - Volat	ile Organic Comp	ounds (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		02/08/23 13:25	02/08/23 22:10	1
Toluene	<0.00201	U	0.00201	mg/Kg		02/08/23 13:25	02/08/23 22:10	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		02/08/23 13:25	02/08/23 22:10	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		02/08/23 13:25	02/08/23 22:10	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		02/08/23 13:25	02/08/23 22:10	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		02/08/23 13:25	02/08/23 22:10	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	122		70 - 130			02/08/23 13:25	02/08/23 22:10	1

Eurofins Carlsbad

Released to Imaging: 2/26/2024 3:08:02 PM

Client Sample Results

Job ID: 890-3975-1 SDG: 03D2024145

Matrix: Solid

Lab Sample ID: 890-3975-2

Client Sample ID: SS07

Date Collected: 01/27/23 10:05 Date Received: 01/27/23 14:06

Sample Depth: 0.5'

Client: Ensolum

Method: SW846 8021B	Volatilo	Organic	Compounds	(GC)	Conti

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1,4-Difluorobenzene (Surr)	100		70 - 130			02/08/23 13:25	02/08/23 22:10	
Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00402	U	0.00402	mg/Kg			02/09/23 08:41	
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.8	U	49.8	mg/Kg			02/09/23 09:48	
Analyte	Result <49.8	Qualifier		Unit	<u>D</u>	Prepared 02/07/23 13:19	Analyzed	Dil Fa
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Gasoline Range Organics (GRO)-C6-C10	<49.8	0	49.8	mg/Kg		02/07/23 13:19	02/08/23 22:50	
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8	mg/Kg		02/07/23 13:19	02/08/23 22:50	
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		02/07/23 13:19	02/08/23 22:50	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	95		70 - 130			02/07/23 13:19	02/08/23 22:50	
o-Terphenyl	105		70 - 130			02/07/23 13:19	02/08/23 22:50	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					

Analyte	Result	Quanner	INE .	Unit	 Tieparea	Analyzea	Dirrac	
Chloride	16.7		5.03	mg/Kg	 	02/03/23 22:32	1	

Client Sample ID: SS08

Date Collected: 01/27/23 10:10 Date Received: 01/27/23 14:06 Sample Depth: 0.5'

Lab Sample ID: 890-3975-3 Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/08/23 13:25	02/08/23 22:36	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/08/23 13:25	02/08/23 22:36	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/08/23 13:25	02/08/23 22:36	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		02/08/23 13:25	02/08/23 22:36	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/08/23 13:25	02/08/23 22:36	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		02/08/23 13:25	02/08/23 22:36	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130			02/08/23 13:25	02/08/23 22:36	1
1,4-Difluorobenzene (Surr)	95		70 - 130			02/08/23 13:25	02/08/23 22:36	1
- Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg			02/09/23 08:41	1
_ Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)					
A			,		_	- ·		

Analyte	Result Qualifie		Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9 U	49.9	mg/Kg			02/09/23 09:48	1

Eurofins Carlsbad

Released to Imaging: 2/26/2024 3:08:02 PM

Job ID: 890-3975-1 SDG: 03D2024145

Matrix: Solid

Lab Sample ID: 890-3975-3

Client Sample ID: SS08

Date Collected: 01/27/23 10:10 Date Received: 01/27/23 14:06

Sample Depth: 0.5'

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Di
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		02/07/23 13:19	02/08/23 23:13	
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		02/07/23 13:19	02/08/23 23:13	
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		02/07/23 13:19	02/08/23 23:13	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Di
1-Chlorooctane	116		70 - 130			02/07/23 13:19	02/08/23 23:13	
o-Terphenyl	122		70 - 130			02/07/23 13:19	02/08/23 23:13	

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	11.1	5.02	mg/Kg			02/03/23 22:37	1

Client Sample ID: SS09

Date Collected: 01/27/23 10:15

Date Received: 01/27/23 14:06 Sample Depth: 0.5'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		02/08/23 13:25	02/08/23 23:03	1
Toluene	<0.00199	U	0.00199	mg/Kg		02/08/23 13:25	02/08/23 23:03	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		02/08/23 13:25	02/08/23 23:03	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		02/08/23 13:25	02/08/23 23:03	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		02/08/23 13:25	02/08/23 23:03	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		02/08/23 13:25	02/08/23 23:03	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130			02/08/23 13:25	02/08/23 23:03	1
1,4-Difluorobenzene (Surr)	96		70 - 130			02/08/23 13:25	02/08/23 23:03	1

Analyte	Result Qualif	ier RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398 U	0.00398	mg/Kg			02/09/23 10:09	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			02/09/23 09:48	1
 Method: SW846 8015B NM - Diesel	Range Orga	nics (DRO)	(GC)					

Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		02/07/23 13:19	02/08/23 23:35	1
(GRO)-C6-C10	10.0		10.0					
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		02/07/23 13:19	02/08/23 23:35	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		02/07/23 13:19	02/08/23 23:35	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
v		Quanner				<u> </u>		Dirrac
1-Chlorooctane	89		70 - 130			02/07/23 13:19	02/08/23 23:35	1
o-Terphenyl	96		70 - 130			02/07/23 13:19	02/08/23 23:35	1

Eurofins Carlsbad

		Client	Sample Res	sults					1
Client: Ensolum Project/Site: Sprayberry Booster Pun	ıp						Job ID: 890 SDG: 03D2		2
Client Sample ID: SS09 Date Collected: 01/27/23 10:15						Lab Sa	mple ID: 890- Matri	-3975-4 ix: Solid	
Date Received: 01/27/23 14:06 Sample Depth: 0.5'									4
Method: EPA 300.0 - Anions, Ion C Analyte		<mark>hy - Soluble</mark> Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	5
Chloride	<4.98		4.98	mg/Kg			02/03/23 22:41	1	
									8
									9
									13

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
ab Sample ID	Client Sample ID	(70-130)	(70-130)	
90-3974-A-1-G MS	Matrix Spike	112	106	
390-3974-A-1-H MSD	Matrix Spike Duplicate	107	100	
390-3975-1	SS06	80	95	
390-3975-2	SS07	122	100	
390-3975-3	SS08	120	95	
390-3975-4	SS09	120	96	
CS 880-45803/1-A	Lab Control Sample	122	106	
_CSD 880-45803/2-A	Lab Control Sample Dup	109	93	
MB 880-45803/5-A	Method Blank	73	92	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		1CO1	OTPH1		1
_ab Sample ID	Client Sample ID	(70-130)	(70-130)		
90-3975-1	SS06	100	110		
390-3975-1 MS	SS06	191 S1+	194 S1+		
890-3975-1 MSD	SS06	207 S1+	204 S1+		
90-3975-2	SS07	95	105		
90-3975-3	SS08	116	122		
90-3975-4	SS09	89	96		
.CS 880-45704/2-A	Lab Control Sample	104	114		
.CSD 880-45704/3-A	Lab Control Sample Dup	100	110		
//B 880-45704/1-A	Method Blank	116	132 S1+		

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

5 6 7

Job ID: 890-3975-1 SDG: 03D2024145

Prep Type: Total/NA

Prep Type: Total/NA

QC Sample Results

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-45803/5-A Matrix: Solid Analysis Batch: 45810						Client Sa	mple ID: Metho Prep Type: 1 Prep Batch	Total/NA
Analyta	MB	MB Qualifier	RL	Unit	D	Broporod	Analyzad	Dil Fac
Analyte						Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/08/23 13:25	02/08/23 19:04	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/08/23 13:25	02/08/23 19:04	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/08/23 13:25	02/08/23 19:04	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		02/08/23 13:25	02/08/23 19:04	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/08/23 13:25	02/08/23 19:04	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		02/08/23 13:25	02/08/23 19:04	1
	МВ	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	73		70 - 130			02/08/23 13:25	02/08/23 19:04	1
1,4-Difluorobenzene (Surr)	92		70 - 130			02/08/23 13:25	02/08/23 19:04	1

Lab Sample ID: LCS 880-45803/1-A Matrix: Solid

Analysis Batch: 45810

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1101		mg/Kg		110	70 - 130	
Toluene	0.100	0.1179		mg/Kg		118	70 - 130	
Ethylbenzene	0.100	0.1227		mg/Kg		123	70 - 130	
m-Xylene & p-Xylene	0.200	0.2408		mg/Kg		120	70 - 130	
o-Xylene	0.100	0.1216		mg/Kg		122	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	122		70 - 130
1,4-Difluorobenzene (Surr)	106		70 - 130

Lab Sample ID: LCSD 880-45803/2-A

Matrix: Solid

Analysis Batch: 45810							Prep	Batch:	45803
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09776		mg/Kg		98	70 - 130	12	35
Toluene	0.100	0.1031		mg/Kg		103	70 - 130	13	35
Ethylbenzene	0.100	0.1073		mg/Kg		107	70 - 130	13	35
m-Xylene & p-Xylene	0.200	0.2100		mg/Kg		105	70 - 130	14	35
o-Xylene	0.100	0.1043		mg/Kg		104	70 - 130	15	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	109		70 - 130
1,4-Difluorobenzene (Surr)	93		70 - 130

Lab Sample ID: 890-3974-A-1-G MS

Matrix: Solid

I	Analysis Batch: 45810									Pre	p Batch: 45803	
		Sample	Sample	Spike	MS	MS				%Rec		
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
	Benzene	<0.00201	U	0.100	0.09603		mg/Kg		96	70 - 130		
	Toluene	<0.00201	U	0.100	0.09650		mg/Kg		96	70 - 130		

Eurofins Carlsbad

Prep Type: Total/NA

Job ID: 890-3975-1 SDG: 03D2024145

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 45803

Client Sample ID: Matrix Spike

QC Sample Results

MS MS

0.09588

0.1879

0.09333

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

Spike

Added

0.100

0.201

0.100

Limits

70 - 130

70 - 130

70 - 130

Client: Ensolum Project/Site: Sprayberry Booster Pump

Lab Sample ID: 890-3974-A-1-G MS

Matrix: Solid

Analyte

o-Xylene

Surrogate

Ethylbenzene

m-Xylene & p-Xylene

Analysis Batch: 45810

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Sample Sample

<0.00201

<0.00402 U

<0.00201 U

%Recovery

Result Qualifier

U

MS MS

112

106

100

132 S1+

Qualifier

Job ID: 890-3975-1 SDG: 03D2024145

Prep Type: Total/NA

Prep Batch: 45803

Client Sample ID: Matrix Spike

%Rec

Limits

70 - 130

70 - 130

70 - 130

%Rec

95

94

93

D

2 3 4 5 6 7 8 9 10 11

Client Sample ID:	Matrix Spike Duplicate
	Prep Type: Total/NA

Client Sample ID: Method Blank

02/08/23 20:37

Client Sample ID: Lab Control Sample

02/07/23 13:19

Prep Type: Total/NA Prep Batch: 45704

Matrix: Solid Analysis Batch: 45810

Lab Sample ID: 890-3974-A-1-H MSD

Analysis Batch: 45810									Prep	Batch:	45803
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00201	U	0.0990	0.09419		mg/Kg		95	70 - 130	2	35
Toluene	<0.00201	U	0.0990	0.09220		mg/Kg		93	70 - 130	5	35
Ethylbenzene	<0.00201	U	0.0990	0.09481		mg/Kg		96	70 - 130	1	35
m-Xylene & p-Xylene	<0.00402	U	0.198	0.1872		mg/Kg		95	70 - 130	0	35
o-Xylene	<0.00201	U	0.0990	0.09527		mg/Kg		96	70 - 130	2	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	107		70 _ 130								

Method: 8015B NM - Diese	Range Organics (DRO) (GC)
Welliou. OUISD WW - Diese	I Range Organics (DRO) (GC)

Lab Sample ID: MB 880-45704/1-A
Matrix: Solid
Analysis Batch: 45735

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		02/07/23 13:19	02/08/23 20:37	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		02/07/23 13:19	02/08/23 20:37	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		02/07/23 13:19	02/08/23 20:37	1
	MB	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	116		70 - 130			02/07/23 13:19	02/08/23 20:37	1

70 - 130

Lab Sample ID: LCS 880-45704/2-A
Matrix: Solid
Analysis Patch: 45725

o-Terphenyl

Analysis Batch: 45735							Prep I	Batch: 45704	٤.,
	Spike	LCS	LCS				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	1000	860.6		mg/Kg		86	70 _ 130		-
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	909.7		mg/Kg		91	70 - 130		
C10-C28)									

Eurofins Carlsbad

Prep Type: Total/NA

QC Sample Rest

Limits

70 - 130

70 - 130

Spike

Added

1000

1000

Limits

70 - 130 70 - 130 LCSD LCSD

917.2

932.0

Result Qualifier

Unit

mg/Kg

mg/Kg

Client: Ensolum Project/Site: Sprayberry Booster Pump

Lab Sample ID: LCS 880-45704/2-A

Lab Sample ID: LCSD 880-45704/3-A

Matrix: Solid

Surrogate

o-Terphenyl

Analyte

C10-C28)

Surrogate

o-Terphenyl

1-Chlorooctane

Matrix: Solid

1-Chlorooctane

Matrix: Solid

(GRO)-C6-C10

Analysis Batch: 45735

Analysis Batch: 45735

Gasoline Range Organics

Diesel Range Organics (Over

Lab Sample ID: 890-3975-1 MS

Analysis Batch: 45735

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continu

LCS LCS

LCSD LCSD

%Recovery Qualifier

100

110

%Recovery Qualifier

104

114

ults	1
Job ID: 890-3975-1 SDG: 03D2024145	2
ued)	3
Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 45704	4
Prep Batch. 45704	5
	6

						1		
				D: 890-3 : 03D202		2		
						3		
Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 45704								
			Prep	Batch:	45704	5		
						6		
Client S	am	nlo ID:	Lah Contro	l Samnl		7		
Client S	Sam	ple ID:		ype: Tot	al/NA	7 8		
Client S	Sam	ple ID:	Prep T		al/NA	7 8 9		
t	Sam	ple ID: %Rec	Prep T Prep	ype: Tot	tal/NA 45704	7 8 9		
Client S t Kg		-	Prep T Prep %Rec	ype: Tot Batch:	tal/NA 45704 RPD	7 8 9 10		
t		%Rec	Prep 1 Prep %Rec Limits	Batch:	tal/NA 45704 RPD Limit	7 8 9 10 11		
t Kg		%Rec 92	Prep 1 Prep %Rec Limits 70 - 130	Type: Tot Batch:	tal/NA 45704 RPD Limit 20	7 8 9 10 11 12		

Page 55 of 111

Client Sample ID: SS06
Prep Type: Total/NA
Prep Batch: 45704
0/ D

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics	<49.8	U F1	995	1634	F1	mg/Kg		164	70 - 130
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U F1	995	1867	F1	mg/Kg		188	70 - 130
C10-C28)									
	Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	AnalyteResultGasoline Range Organics<49.8	AnalyteResultQualifierGasoline Range Organics<49.8	AnalyteResultQualifierAddedGasoline Range Organics<49.8	AnalyteResultQualifierAddedResultGasoline Range Organics<49.8	AnalyteResultQualifierAddedResultQualifierGasoline Range Organics<49.8	AnalyteResultQualifierAddedResultQualifierUnitGasoline Range Organics<49.8	AnalyteResultQualifierAddedResultQualifierUnitDGasoline Range Organics<49.8	AnalyteResultQualifierAddedResultQualifierUnitD%RecGasoline Range Organics<49.8

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	191	S1+	70 - 130
o-Terphenyl	194	S1+	70 - 130

Lab Sample ID: 890-3975-1 MS Matrix: Solid Analysis Batch: 45735	D									nple ID: ype: To Batch:	tal/NA
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.8	U F1	999	1813	F1	mg/Kg		181	70 - 130	10	20
Diesel Range Organics (Over C10-C28)	<49.8	U F1	999	1990	F1	mg/Kg		199	70 - 130	6	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	207	S1+	70 - 130								

204 S1+ 70 - 130 o-Terphenyl

Eurofins Carlsbad

Released to Imaging: 2/26/2024 3:08:02 PM

Client: Ensolum

QC Sample Results

Job ID: 890-3975-1 SDG: 03D2024145

Project/Site: Sprayberry Booster Pump Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-45095/1-A										Client S	ample ID: N	lethod	Blank
Matrix: Solid											Prep 1	Type: S	oluble
Analysis Batch: 45420													
	N	IB MB											
Analyte	Res	ult Qualifier		RL		Unit		D	Pi	repared	Analyze	d	Dil Fa
Chloride	<5.	00 U		5.00		mg/K	9				02/03/23 2	1:32	
Lab Sample ID: LCS 880-45095/2-A								Cli	ent	Sample	ID: Lab Co	ntrol S	ample
Matrix: Solid											Prep 1	Type: S	olubl
Analysis Batch: 45420													
-			Spike	L	cs	LCS					%Rec		
Analyte			Added	Res	ult	Qualifier	Unit		D	%Rec	Limits		
Chloride			250	25	8.9		mg/Kg		_	104	90 _ 110		
Lab Sample ID: LCSD 880-45095/3-A							CI	ient S	am	ple ID: I	Lab Control	Samp	e Dur
Matrix: Solid												Type: S	
Analysis Batch: 45420												,,	
					sn i	LCSD					%Rec		RP
			Spike	LC	50								1.1
			Spike Added			Qualifier	Unit		D	%Rec	Limits	RPD	
Analyte				Res		Qualifier	Unit mg/Kg		D	%Rec 99	Limits 90 - 110	RPD 4	Lim
Analyte			Added	Res	ult	Qualifier			<u>D</u>	99	90 - 110	4	2
Analyte Chloride Lab Sample ID: 890-3976-A-2-E MS			Added	Res	ult	Qualifier			<u>D</u>	99	90 - 110 Sample ID:	4 Matrix	Lim 2 Spike
Analyte Chloride Lab Sample ID: 890-3976-A-2-E MS Matrix: Solid			Added	Res	ult	Qualifier			<u>D</u>	99	90 - 110 Sample ID:	4	Lim 2 Spike
Analyte Chloride Lab Sample ID: 890-3976-A-2-E MS Matrix: Solid Analysis Batch: 45420	ample S	ample	Added	24	sult 8.1	Qualifier			<u>D</u>	99	90 - 110 Sample ID:	4 Matrix	Lim 2 Spik
Analyte Chloride Lab Sample ID: 890-3976-A-2-E MS Matrix: Solid Analysis Batch: 45420	ample S Result Q		Added 250	24	MS				<u>D</u>	99	90 - 110 Sample ID: Prep 1	4 Matrix	Limi 2 Spike

QC Association Summary

Client: Ensolum Project/Site: Sprayberry Booster Pump

5

Job ID: 890-3975-1 SDG: 03D2024145

GC VOA

Prep Batch: 45803

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3975-1	SS06	Total/NA	Solid	5035	
890-3975-2	SS07	Total/NA	Solid	5035	
890-3975-3	SS08	Total/NA	Solid	5035	
890-3975-4	SS09	Total/NA	Solid	5035	
MB 880-45803/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-45803/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-45803/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3974-A-1-G MS	Matrix Spike	Total/NA	Solid	5035	
890-3974-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 45810

LCSD 880-45803/2-A	Lab Control Sample Dup	Iotal/NA	Solid	5035		
890-3974-A-1-G MS	Matrix Spike	Total/NA	Solid	5035		8
890-3974-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	5035		
Analysis Batch: 45810						9
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	10
890-3975-1	SS06	Total/NA	Solid	8021B	45803	
890-3975-2	SS07	Total/NA	Solid	8021B	45803	44
890-3975-3	SS08	Total/NA	Solid	8021B	45803	
890-3975-4	SS09	Total/NA	Solid	8021B	45803	12
MB 880-45803/5-A	Method Blank	Total/NA	Solid	8021B	45803	
LCS 880-45803/1-A	Lab Control Sample	Total/NA	Solid	8021B	45803	40
LCSD 880-45803/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	45803	13
890-3974-A-1-G MS	Matrix Spike	Total/NA	Solid	8021B	45803	
890-3974-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	45803	14

Analysis Batch: 45845

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3975-1	SS06	Total/NA	Solid	Total BTEX	
890-3975-2	SS07	Total/NA	Solid	Total BTEX	
890-3975-3	SS08	Total/NA	Solid	Total BTEX	
890-3975-4	SS09	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 45704

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3975-1	SS06	Total/NA	Solid	8015NM Prep	
890-3975-2	SS07	Total/NA	Solid	8015NM Prep	
890-3975-3	SS08	Total/NA	Solid	8015NM Prep	
890-3975-4	SS09	Total/NA	Solid	8015NM Prep	
MB 880-45704/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-45704/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-45704/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3975-1 MS	SS06	Total/NA	Solid	8015NM Prep	
890-3975-1 MSD	SS06	Total/NA	Solid	8015NM Prep	

Analysis Batch: 45735

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3975-1	SS06	Total/NA	Solid	8015B NM	45704
890-3975-2	SS07	Total/NA	Solid	8015B NM	45704
890-3975-3	SS08	Total/NA	Solid	8015B NM	45704
890-3975-4	SS09	Total/NA	Solid	8015B NM	45704
MB 880-45704/1-A	Method Blank	Total/NA	Solid	8015B NM	45704
LCS 880-45704/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	45704

Eurofins Carlsbad

QC Association Summary

Client: Ensolum Project/Site: Sprayberry Booster Pump

GC Semi VOA (Continued)

Analysis Batch: 45735 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
LCSD 880-45704/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	45704
890-3975-1 MS	SS06	Total/NA	Solid	8015B NM	45704
890-3975-1 MSD	SS06	Total/NA	Solid	8015B NM	45704
Analysis Batch: 45872					

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3975-1	SS06	Total/NA	Solid	8015 NM	
890-3975-2	SS07	Total/NA	Solid	8015 NM	
890-3975-3	SS08	Total/NA	Solid	8015 NM	
890-3975-4	SS09	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 45095

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3975-1	SS06	Soluble	Solid	DI Leach	
890-3975-2	SS07	Soluble	Solid	DI Leach	
890-3975-3	SS08	Soluble	Solid	DI Leach	
890-3975-4	SS09	Soluble	Solid	DI Leach	
MB 880-45095/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-45095/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-45095/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-3976-A-2-E MS	Matrix Spike	Soluble	Solid	DI Leach	
890-3976-A-2-E MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 45420

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3975-1	SS06	Soluble	Solid	300.0	45095
890-3975-2	SS07	Soluble	Solid	300.0	45095
890-3975-3	SS08	Soluble	Solid	300.0	45095
890-3975-4	SS09	Soluble	Solid	300.0	45095
MB 880-45095/1-A	Method Blank	Soluble	Solid	300.0	45095
LCS 880-45095/2-A	Lab Control Sample	Soluble	Solid	300.0	45095
LCSD 880-45095/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	45095
890-3976-A-2-E MS	Matrix Spike	Soluble	Solid	300.0	45095
890-3976-A-2-E MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	45095

5

Job ID: 890-3975-1 SDG: 03D2024145

Lab Sample ID: 890-3975-1 Matrix: Solid

Lab Sample ID: 890-3975-2

Lab Sample ID: 890-3975-3

Matrix: Solid

Matrix: Solid

Date Collected: 01/27/23 10:00 Date Received: 01/27/23 14:06

Client Sample ID: SS06

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	45803	02/08/23 13:25	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	45810	02/08/23 21:43	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			45845	02/09/23 08:41	MNR	EET MID
Total/NA	Analysis	8015 NM		1			45872	02/09/23 09:48	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	45704	02/07/23 13:19	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	45735	02/08/23 21:44	AJ	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	45095	01/30/23 16:15	KS	EET MID
Soluble	Analysis	300.0		1			45420	02/03/23 22:28	СН	EET MID

Client Sample ID: SS07

Date Collected: 01/27/23 10:05

Date Received: 01/27/23 14:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	45803	02/08/23 13:25	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	45810	02/08/23 22:10	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			45845	02/09/23 08:41	MNR	EET MID
Total/NA	Analysis	8015 NM		1			45872	02/09/23 09:48	SM	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	45704	02/07/23 13:19	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	45735	02/08/23 22:50	AJ	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	45095	01/30/23 16:15	KS	EET MID
Soluble	Analysis	300.0		1			45420	02/03/23 22:32	СН	EET MID

Client Sample ID: SS08

Date Collected: 01/27/23 10:10

Date Received: 01/27/23 14:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	45803	02/08/23 13:25	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	45810	02/08/23 22:36	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			45845	02/09/23 08:41	MNR	EET MID
Total/NA	Analysis	8015 NM		1			45872	02/09/23 09:48	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	45704	02/07/23 13:19	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	45735	02/08/23 23:13	AJ	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	45095	01/30/23 16:15	KS	EET MID
Soluble	Analysis	300.0		1			45420	02/03/23 22:37	СН	EET MID

Client Sample ID: SS09 Date Collected: 01/27/23 10:15 Date Received: 01/27/23 14:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	45803	02/08/23 13:25	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	45810	02/08/23 23:03	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			45845	02/09/23 10:09	MNR	EET MID

Eurofins Carlsbad

Matrix: Solid

5 9

Lab Sample ID: 890-3975-4

Job ID: 890-3975-1 SDG: 03D2024145

Matrix: Solid

Lab Sample ID: 890-3975-4

Client Sample ID: SS09 Date Collected: 01/27/23 10:15

Client: Ensolum

Date Received: 01/27/23 14:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			45872	02/09/23 09:48	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	45704	02/07/23 13:19	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	45735	02/08/23 23:35	AJ	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	45095	01/30/23 16:15	KS	EET MID
Soluble	Analysis	300.0		1			45420	02/03/23 22:41	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 2/26/2024 3:08:02 PM

Accreditation/Certification Summary

		Accreditation/C	ertification Summary		
Client: Ensolum Project/Site: Sprayberry	y Booster Pump			Job ID: 890-3975-1 SDG: 03D2024145	2
Laboratory: Eurofi Unless otherwise noted, all an		y were covered under each acc	reditation/certification below.		
Authority		Program	Identification Number	Expiration Date	
Texas The following analytes a	are included in this repor	NELAP rt, but the laboratory is not certifi	T104704400-22-25 ied by the governing authority. This list ma	06-30-23 ay include analytes for which	5
the agency does not off Analysis Method	fer certification. Prep Method	Matrix	Analyte		
8015 NM Total BTEX		Solid Solid	Total TPH Total BTEX		
					8
					9
					10
					12
					13

Eurofins Carlsbad

Client: Ensolum

Job ID: 890-3975-1 SDG: 03D2024145

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
Protocol Refe	rences:		
ASTM = A	STM International		
EPA = US	Environmental Protection Agency		

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Page 63 of 111

Job ID: 890-3975-1 SDG: 03D2024145

Client: Ensolum Project/Site: Sprayberry Booster Pump

ib Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
0-3975-1	SS06	Solid	01/27/23 10:00	01/27/23 14:06	0.5'	
0-3975-2	SS07	Solid	01/27/23 10:05	01/27/23 14:06	0.5'	
0-3975-3	SS08	Solid	01/27/23 10:10	01/27/23 14:06	0.5'	
0-3975-4	SS09	Solid	01/27/23 10:15	01/27/23 14:06	0.5'	

	X	Xenco		C	HC EL	Paso, TX bbs, NM	+32) / 04-34 (915) 585-3 (575) 392-76	550, Carlsba	Mildiand, TA (492) / 04-3440, Sen Anitoinio, TA (419) 503-5034 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199		www.xenco.com	.com Page	1 of 1
Project Manager:	Hadlie Green			E	Bill to: (if different)	rent)	Kalei Jennings	nings			Work O	Con	
	Ensolum, LLC			0	Company Name:	me:	Ensolum, LLC	LLC		Progra	Program: UST/PST] PRP Brownfields] RRC	Brownfields RR	C Superfund
	601 N Marienfeld St Suite 400	Id St Suite	400	7	Address:		601 N Ma	rienfeld St	601 N Marienfeld St Suite 400	State o	State of Project:		
le ZIP:	Midland, TX 79701	701		0	City, State ZIP:	Ģ	Midland, TX 79701	TX 79701		Reporti	Reporting: Level II CLevel III PST/UST TRRP	PST/UST TRF	
	817.683.2503			Email: k	Email: kiennings@ensolum.com	ensolun	1.com			Deliver	Deliverables: EDD	ADaPT D Other:	er:
Name:	Sprayberry Booster Pump	Booster Pi	dun	Turn	Turn Around	-			ANALYS	SIS REQUEST		Presen	Preservative Codes
Project Number:	03D2	03D2024145		Routine	Rush	Pres. Code						None: NO	DI Water: H ₂ O
Project Location:	Lea Co	Lea County, NM	D	Due Date:								Cool: Cool	MeOH: Me
Sampler's Name:	Conn	Conner Shore	-	AT starts the	day received	by						HCL: HC	HNO3: HN
PO#				he lab, if rece	the lab, if received by 4:30pm		_			-	-	H ₂ S0 ₄ : H ₂	NaOH: Na
SAMPLE RECEIPT	Temp Blank:	~	Yes) No	Wet Ice:	TYPS NO	nete	_					H ₃ PO ₄ : HP	
Samples Received Intact:			ter	<u>פ</u>	77-07	iran						NaHSO4: NABIS	BIS
Cooler Custody Seals:	Ye	NIA	Correction Factor:	tor:	eru.	Pa Pa						Na2S2O3: NaSO3	SO3
Sample Custody Seals:		NIA	Temperature Reading:	leading:	1.4)	890-3975 Chain	in of Custody		Zn Acetate+NaOH: Zn	VaOH: Zn
Total Containers:	-	Co	Corrected Temperature:	perature:	- j	<u>l'</u>	-					NaOH+ASCO	Naun+Ascoldic Acid. SAFC
Sample Identification	tification	Matrix Sa	Date Sampled		Depth Grab/ Comp	np Cont	TPH (80	BTEX (Sampl	Sample Comments
SS06	0,	S 1.2	1.27.23	1000	0.5' G	1	× ×						
SS07	7	S 1.2	1.27.23		0.5' G		××	×					
SS08	3		1.27.23		0.5' G		×××	×				Incid	Incident Number
60SS		S 1.2	1.27.23	1015 0	0.5' G	-	××	×					
			17.02			┼┼							
	A	X											
	0		-		_								
						Η							
Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed	10 200.8 / 6020: d Metal(s) to be an	020: e analyzed	8R(8RCRA 13PPM TCLP / SPLP	CRA 13PPM Texas 11 AI	11 AI BRCRA		a Be B o Ba Be Co	Sb As Ba Be B Cd Ca Cr Co Cu Sb As Ba Be Cd Cr Co Cu Pb M	u Fe Pb Mg Mn Mo Ni Mn Mo Ni Se Ag Ti U	K Se /	Ag SiO ₂ Na Sr Ti Sn L Hg: 1631/245.1/7470	U V Zn 0 / 7471
Notice: Signature of this document and relinquishment of samples constitutes a valid purchase or of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any res of Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5	ocument and relingu o will be liable only f mum charge of \$85.0	ishment of sa or the cost of 00 will be appl	amples constit samples and s lied to each pr	utes a valid pu shall not assun	rchase order fi ne any respons irge of \$5 for e	rom client sibility for a ach sampl	company to I any losses or a submitted t	Eurofins Xer expenses ir o Eurofins X	co, its affiliates and subco curred by the client if suct enco, but not analyzed. Th	ntractors. It assigns h losses are due to c ese terms will be enf	terms and c es beyond ss previous	ons ntrol otlated.	
Relinquished by: (Signature)	(Signature)		Received t	Received by: (Signature)	ıre)		Date/Time	le	Relinquished by:	/: (Signature)	Received by: (Signature)	gnature)	Date/Time
S J		Z	and	a A	the	· ·	27-23	: 14004	Ċ				
3					la			4	-				

Received by OCD: 11/6/2023 8:46:48 AM

2/9/2023

Chain of Custody

Page 64 of 111

Job Number: 890-3975-1 SDG Number: 03D2024145

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 3975 List Number: 1 Creator: Stutzman, Amanda

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Job Number: 890-3975-1 SDG Number: 03D2024145

List Source: Eurofins Midland

List Creation: 02/03/23 01:00 PM

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 3975 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 11/6/2023 8:46:48 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Kalei Jennings Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 2/22/2023 1:23:16 PM

JOB DESCRIPTION

Cabo Wabo Sprayberry Booster SDG NUMBER 03D2024145

JOB NUMBER

890-4115-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Received by OCD: 11/6/2023 8:46:48 AM

Eurofins Carlsbad

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

RAMER

Generated 2/22/2023 1:23:16 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-4115-1 SDG: 03D2024145

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	14
QC Sample Results	15
QC Association Summary	19
Lab Chronicle	22
Certification Summary	26
Method Summary	27
Sample Summary	28
	29
-	30
-	

Client: Ensolum Project/Site: Cabo Wabo Sprayberry Booster

Ovelifiere		
Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	
*+	LCS and/or LCSD is outside acceptance limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	5
GC Semi VOA		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	8
U	Indicates the analyte was analyzed for but not detected.	
Glossary		9
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	40
Dil Fac	Dilution Factor	R
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	

Limit of Detection (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML MPN Most Probable Number

LOD

- Method Quantitation Limit MQL NC Not Calculated ND
- Not Detected at the reporting limit (or MDL or EDL if shown)
- NEG Negative / Absent POS Positive / Present
- PQL
- Practical Quantitation Limit PRES Presumptive
- Quality Control QC
- RER Relative Error Ratio (Radiochemistry)
- RL Reporting Limit or Requested Limit (Radiochemistry)
- RPD Relative Percent Difference, a measure of the relative difference between two points
- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

Job ID: 890-4115-1

SDG: 03D2024145

Job ID: 890-4115-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-4115-1

Receipt

The samples were received on 2/15/2023 4:45 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.0°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: SS01A (890-4115-1), SS02A (890-4115-2), SS03A (890-4115-3), SS04A (890-4115-4), SS05A (890-4115-5), SS01B (890-4115-6), SS02B (890-4115-7), SS03B (890-4115-8), SS04B (890-4115-9) and SS05B (890-4115-10).

GC VOA

Method 8021B: The laboratory control sample (LCS) associated with preparation batch 880-46605 and analytical batch 880-46568 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-46595 and analytical batch 880-46617 were outside control limits for one or more analytes, see QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 890-4115-1 SDG: 03D2024145

4

Project/Site: Cabo Wabo Sprayberry Booster

Job ID: 890-4115-1 SDG: 03D2024145

Lab Sample ID: 890-4115-1

Client Sample ID: SS01A

Date Collected: 02/15/23 10:45 Date Received: 02/15/23 16:45

Sample Depth: 1

Client: Ensolum

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		02/17/23 14:29	02/18/23 05:59	
Toluene	<0.00199	U	0.00199	mg/Kg		02/17/23 14:29	02/18/23 05:59	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		02/17/23 14:29	02/18/23 05:59	1
m-Xylene & p-Xylene	<0.00398	U *+	0.00398	mg/Kg		02/17/23 14:29	02/18/23 05:59	1
o-Xylene	<0.00199	U *+	0.00199	mg/Kg		02/17/23 14:29	02/18/23 05:59	1
Xylenes, Total	<0.00398	U *+	0.00398	mg/Kg		02/17/23 14:29	02/18/23 05:59	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130			02/17/23 14:29	02/18/23 05:59	1
1,4-Difluorobenzene (Surr)	89		70 - 130			02/17/23 14:29	02/18/23 05:59	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			02/20/23 14:15	1
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)					
		i <mark>ics (DRO) (</mark> Qualifier	GC) RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH		Qualifier	· · · · · · · · · · · · · · · · · · ·	Unit mg/Kg	D	Prepared	Analyzed 02/20/23 15:20	Dil Fac
Analyte Total TPH	Result <49.8	Qualifier U	RL 49.8		<u>D</u>	Prepared		Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies	Result <49.8	Qualifier U	RL 49.8		<u>D</u> 	Prepared		Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	Result <49.8	Qualifier U anics (DRO) Qualifier	(GC)	mg/Kg			02/20/23 15:20	1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.8 sel Range Orga Result	Qualifier U anics (DRO) Qualifier U	RL 49.8 (GC) RL	mg/Kg Unit		Prepared	02/20/23 15:20 Analyzed	1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.8 sel Range Orga Result <49.8	Qualifier U Qualifier Qualifier U U	RL 49.8 (GC) RL 49.8	mg/Kg Unit mg/Kg		Prepared 02/17/23 10:54	02/20/23 15:20 Analyzed 02/18/23 15:56	1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10	Result <49.8 sel Range Orga Result <49.8 <49.8	Qualifier U Qualifier U Qualifier U U U	RL 49.8 (GC) RL 49.8 49.8	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/17/23 10:54 02/17/23 10:54	02/20/23 15:20 Analyzed 02/18/23 15:56 02/18/23 15:56	1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.8	Qualifier U Qualifier U Qualifier U U U	RL 49.8 (GC) RL 49.8 49.8 49.8 49.8	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/17/23 10:54 02/17/23 10:54 02/17/23 10:54	02/20/23 15:20 Analyzed 02/18/23 15:56 02/18/23 15:56 02/18/23 15:56	Dil Fac

Methou. LI A 300.0 - Anions, Ion of	nomatography - ooluble						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	797	25.2	mg/Kg			02/21/23 09:19	5

Client Sample ID: SS02A Date Collected: 02/15/23 10:55

Date Received: 02/15/23 16:45 Sample Depth: 1

Г

Method: SW846 8021B - Volati	ile Organic Comp	ounds (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00201	U	0.00201	mg/Kg		02/17/23 14:29	02/18/23 06:19	1
Toluene	<0.00201	U	0.00201	mg/Kg		02/17/23 14:29	02/18/23 06:19	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		02/17/23 14:29	02/18/23 06:19	1
m-Xylene & p-Xylene	<0.00402	U *+	0.00402	mg/Kg		02/17/23 14:29	02/18/23 06:19	1
o-Xylene	<0.00201	U *+	0.00201	mg/Kg		02/17/23 14:29	02/18/23 06:19	1
Xylenes, Total	<0.00402	U *+	0.00402	mg/Kg		02/17/23 14:29	02/18/23 06:19	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			02/17/23 14:29	02/18/23 06:19	1

Eurofins Carlsbad

Lab Sample ID: 890-4115-2

Matrix: Solid

Matrix: Solid

5

Released to Imaging: 2/26/2024 3:08:02 PM
Client Sample Results

Limits

70 - 130

RL

RL

49.9

0.00402

Unit

Unit

mg/Kg

mg/Kg

Job ID: 890-4115-1 SDG: 03D2024145

Analyzed

02/18/23 06:19

Analyzed

02/20/23 14:15

Analyzed

02/20/23 15:20

Client Sample ID: SS02A

Date Collected: 02/15/23 10:55 Date Received: 02/15/23 16:45

Sample Depth: 1

1,4-Difluorobenzene (Surr)

Client: Ensolum

Surrogate

Analyte

Analyte

Total TPH

Total BTEX

Lab	Sample	ID:	890-4115-2
			Matulas Callal

Prepared

02/17/23 14:29

Prepared

Prepared

D

D

Matrix: Solid

Dil Fac

Dil Fac

Dil Fac

1

1

1

	9
	3

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Method: TAL SOP Total BTEX - Total BTEX Calculation

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

%Recovery Qualifier

Result Qualifier

Result Qualifier

<49.9 U

80

<0.00402 U

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		02/17/23 10:54	02/18/23 16:18	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		02/17/23 10:54	02/18/23 16:18	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		02/17/23 10:54	02/18/23 16:18	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	102		70 - 130			02/17/23 10:54	02/18/23 16:18	1
o-Terphenyl	109		70 - 130			02/17/23 10:54	02/18/23 16:18	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
l	Chloride	2630		25.0	mg/Kg			02/21/23 09:38	5

Client Sample ID: SS03A

Date Collected: 02/15/23 12:15 Date Received: 02/15/23 16:45 Sample Depth: 1

Lab Sample ID: 890-4115-3 Matrix: Solid

Method: SW846 8021B - Volatile	Organic Comp	ounds (GC						
Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/17/23 14:29	02/18/23 06:40	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/17/23 14:29	02/18/23 06:40	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/17/23 14:29	02/18/23 06:40	1
m-Xylene & p-Xylene	<0.00401	U *+	0.00401	mg/Kg		02/17/23 14:29	02/18/23 06:40	1
o-Xylene	<0.00200	U *+	0.00200	mg/Kg		02/17/23 14:29	02/18/23 06:40	1
Xylenes, Total	<0.00401	U *+	0.00401	mg/Kg		02/17/23 14:29	02/18/23 06:40	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			02/17/23 14:29	02/18/23 06:40	1
1,4-Difluorobenzene (Surr)	77		70 - 130			02/17/23 14:29	02/18/23 06:40	1
 Method: TAL SOP Total BTEX - 1	otal BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg			02/20/23 14:15	1
 Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8	mg/Kg			02/20/23 15:20	1

Job ID: 890-4115-1 SDG: 03D2024145

Lab Sample ID: 890-4115-4

Matrix: Solid

Client Sample ID: SS03A

Date Collected: 02/15/23 12:15 Date Received: 02/15/23 16:45

Sam	ple	Depth:	: 1

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	
Gasoline Range Organics	<49.8	U	49.8	mg/Kg		02/17/23 10:54	02/18/23 16:40	
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg		02/17/23 10:54	02/18/23 16:40	
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		02/17/23 10:54	02/18/23 16:40	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Ľ
1-Chlorooctane	102		70 - 130			02/17/23 10:54	02/18/23 16:40	
o-Terphenyl	106		70 - 130			02/17/23 10:54	02/18/23 16:40	

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	717	5.00	mg/Kg			02/21/23 09:44	1

Client Sample ID: SS04A

Date Collected: 02/15/23 12:50 Date Received: 02/15/23 16:45

Sample Depth: 1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/17/23 14:29	02/18/23 07:00	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/17/23 14:29	02/18/23 07:00	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/17/23 14:29	02/18/23 07:00	1
m-Xylene & p-Xylene	<0.00399	U *+	0.00399	mg/Kg		02/17/23 14:29	02/18/23 07:00	1
o-Xylene	<0.00200	U *+	0.00200	mg/Kg		02/17/23 14:29	02/18/23 07:00	1
Xylenes, Total	<0.00399	U *+	0.00399	mg/Kg		02/17/23 14:29	02/18/23 07:00	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130			02/17/23 14:29	02/18/23 07:00	1
1,4-Difluorobenzene (Surr)	83		70 - 130			02/17/23 14:29	02/18/23 07:00	1
		culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX		Qualifier	RL	Unit mg/Kg	D	Prepared	Analyzed	Dil Fac
Analyte	Result <0.00399	Qualifier U	0.00399		<u>D</u>	Prepared		Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Die	Result <0.00399 esel Range Organ	Qualifier U	0.00399		<u>D</u> 	Prepared		Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Die	Result <0.00399 esel Range Organ	Qualifier U ics (DRO) (1 Qualifier	0.00399	mg/Kg		<u>.</u>	02/20/23 14:15	1
Analyte Total BTEX Method: SW846 8015 NM - Die Analyte	esel Range Organ Result Solution Solution Result Solution	Qualifier U ics (DRO) (Qualifier U	0.00399 GC) RL 50.0	mg/Kg Unit		<u>.</u>	02/20/23 14:15 Analyzed	1
Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH	esel Range Organ Result <pre> Result </pre> <pre> Result </pre> Result Solution Diesel Range Organ	Qualifier U ics (DRO) (Qualifier U	0.00399 GC) RL 50.0	mg/Kg Unit		<u>.</u>	02/20/23 14:15 Analyzed	1
Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH Method: SW846 8015B NM - D	esel Range Organ Result <pre> Result </pre> <pre> Result </pre> Result Solution Diesel Range Organ	Qualifier U ics (DRO) (Qualifier U nics (DRO) Qualifier	0.00399 GC) RL 50.0 (GC)	mg/Kg Unit mg/Kg	D	Prepared	02/20/23 14:15 Analyzed 02/20/23 15:20	1 Dil Fac 1

Diesel Range Organics (Over <50.0 U 50.0 02/17/23 10:54 02/18/23 17:02 mg/Kg 1 C10-C28) Oll Range Organics (Over C28-C36) <50.0 U 50.0 02/17/23 10:54 02/18/23 17:02 mg/Kg 1 Limits Dil Fac %Recovery Qualifier Prepared Analyzed Surrogate 70 - 130 02/17/23 10:54 02/18/23 17:02 1-Chlorooctane 100 1 o-Terphenyl 106 70 - 130 02/17/23 10:54 02/18/23 17:02 1

Job ID: 890-4115-1

SDG: 03D2024145

Matrix: Solid

5

Lab Sample ID: 890-4115-4

Client Sample Results

Client: Ensolum Project/Site: Cabo Wabo Sprayberry Booster

Project/Site: Cabo Wabo Sprayberry Bo

Client Sample ID: SS04A

Date Collected: 02/15/23 12:50 Date Received: 02/15/23 16:45 Sample Depth: 1 Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	15.4		5.03	mg/Kg			02/21/23 09:50	1
Client Sample ID: SS05A						Lab Sa	mple ID: 890-	4115-5
Date Collected: 02/15/23 13:00							Matri	ix: Solid
Date Received: 02/15/23 16:45								
Sample Depth: 1								

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		02/17/23 14:29	02/18/23 07:21	1
Toluene	<0.00201	U	0.00201	mg/Kg		02/17/23 14:29	02/18/23 07:21	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		02/17/23 14:29	02/18/23 07:21	1
m-Xylene & p-Xylene	<0.00402	U *+	0.00402	mg/Kg		02/17/23 14:29	02/18/23 07:21	1
o-Xylene	<0.00201	U *+	0.00201	mg/Kg		02/17/23 14:29	02/18/23 07:21	1
Xylenes, Total	<0.00402	U *+	0.00402	mg/Kg		02/17/23 14:29	02/18/23 07:21	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	116		70 - 130			02/17/23 14:29	02/18/23 07:21	1
1,4-Difluorobenzene (Surr)	77		70 - 130			02/17/23 14:29	02/18/23 07:21	1

Welliou. TAL SOF TOtal DTLA - Tot	al DILA Cal	Julation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			02/20/23 14:15	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			02/20/23 15:20	1

Method: SW846 8015B	NM - Diesel Range	Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		02/17/23 10:54	02/18/23 17:24	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		02/17/23 10:54	02/18/23 17:24	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		02/17/23 10:54	02/18/23 17:24	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130			02/17/23 10:54	02/18/23 17:24	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Chloride 45.7 5.02 mg/Kg D Prepared Analyzed Dil Fac

Method: SW846 8021B - Volatile Organic Compounds (GC)

Result Qualifier

<0.00202 U

<0.00202 U

<0.00202 U

<0.00403 U*+

<0.00202 U*+

<0.00403 U*+

RL

0.00202

0.00202

0.00202

0.00403

0.00202

0.00403

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

Prepared

02/17/23 14:29

02/17/23 14:29

02/17/23 14:29

02/17/23 14:29

02/17/23 14:29

02/17/23 14:29

Job ID: 890-4115-1 SDG: 03D2024145

Client Sample ID: SS01B

Date Collected: 02/15/23 12:10 Date Received: 02/15/23 16:45

Sample Depth: 4

Client: Ensolum

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

Lab Sample ID: 890-4115-6 Matrix: Solid

Analyzed

02/18/23 07:41

02/18/23 07:41

02/18/23 07:41

02/18/23 07:41

02/18/23 07:41

02/18/23 07:41

5 Dil Fac

1	
1	
1	
1	
1	
c	
с 1 1	
0	
1	

1

1

1

Dil Fac

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	115		70 - 130			02/17/23 14:29	02/18/23 07:41	
1,4-Difluorobenzene (Surr)	88		70 - 130			02/17/23 14:29	02/18/23 07:41	
Method: TAL SOP Total BTEX -	Total BTEX Calo	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00403	U	0.00403	mg/Kg			02/20/23 14:15	
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.8	U	49.8	mg/Kg			02/20/23 15:20	
Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8	mg/Kg		02/17/23 10:54	02/18/23 17:47	
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8	mg/Kg		02/17/23 10:54	02/18/23 17:47	
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		02/17/23 10:54	02/18/23 17:47	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil F
1-Chlorooctane	79		70 - 130			02/17/23 10:54	02/18/23 17:47	
o-Terphenyl	89		70 - 130			02/17/23 10:54	02/18/23 17:47	
Method: EPA 300.0 - Anions, lo	n Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	599		4.98	mg/Kg			02/21/23 10:02	
lient Sample ID: SS02B						Lab Sar	nple ID: 890-	4115-
Date Collected: 02/15/23 11:45							Matri	x: Soli
Date Received: 02/15/23 16:45								
ample Depth: 2								
Method: SW846 8021B - Volatile	organic Comp	ounds (GC))					
- Method: SW846 8021B - Volatile Analyte		ounds (GC) Qualifier) RL	Unit	D	Prepared	Analyzed	Dil Fa
		Qualifier		Unit mg/Kg	<u> </u>	Prepared 02/17/23 14:29	Analyzed 02/18/23 08:02	Dil F
Analyte	Result	Qualifier U	RL		<u>D</u>	•		Dil Fa
Analyte Benzene	Result <0.00199	Qualifier U U	RL 0.00199	mg/Kg	<u>D</u>	02/17/23 14:29	02/18/23 08:02	Dil Fa

o-Xylene <0.00199 U*+ 0.00199 02/17/23 14:29 mg/Kg Xylenes, Total <0.00398 U*+ 0.00398 02/17/23 14:29 mg/Kg Limits Prepared Surrogate %Recovery Qualifier 70 - 130 02/17/23 14:29 117

4-Bromofluorobenzene (Surr)

Page 10 of 31

Released to Imaging: 2/26/2024 3:08:02 PM

Eurofins Carlsbad

02/18/23 08:02

02/18/23 08:02

Analyzed

02/18/23 08:02

Job ID: 890-4115-1 SDG: 03D2024145

Matrix: Solid

5

Lab Sample ID: 890-4115-7

Client Sample ID: SS02B

Date Collected: 02/15/23 11:45 Date Received: 02/15/23 16:45

Sample Depth: 2

Client: Ensolum

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1,4-Difluorobenzene (Surr)	87		70 - 130			02/17/23 14:29	02/18/23 08:02	
Method: TAL SOP Total BTEX -	Total BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			02/20/23 14:15	
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			02/20/23 15:20	
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		02/17/23 10:54	02/18/23 18:08	
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		02/17/23 10:54	02/18/23 18:08	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		02/17/23 10:54	02/18/23 18:08	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	95		70 - 130			02/17/23 10:54	02/18/23 18:08	
o-Terphenyl	106		70 - 130			02/17/23 10:54	02/18/23 18:08	1
Method: EPA 300.0 - Anions, Ior	n Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1230		24.8	mg/Kg			02/21/23 10:09	Ę
lient Sample ID: SS03B						Lab Car	nple ID: 890-	

Sample Depth: 3

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/17/23 14:29	02/18/23 08:23	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/17/23 14:29	02/18/23 08:23	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/17/23 14:29	02/18/23 08:23	1
m-Xylene & p-Xylene	<0.00399	U *+	0.00399	mg/Kg		02/17/23 14:29	02/18/23 08:23	1
o-Xylene	<0.00200	U *+	0.00200	mg/Kg		02/17/23 14:29	02/18/23 08:23	1
Xylenes, Total	<0.00399	U *+	0.00399	mg/Kg		02/17/23 14:29	02/18/23 08:23	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	118		70 - 130			02/17/23 14:29	02/18/23 08:23	1
1,4-Difluorobenzene (Surr)	83		70 - 130			02/17/23 14:29	02/18/23 08:23	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			02/20/23 14:15	1
Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)					
					_			
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Job ID: 890-4115-1 SDG: 03D2024145

Lab Sample ID: 890-4115-8

Client Sample ID: SS03B

Date Collected: 02/15/23 12:25 Date Received: 02/15/23 16:45

Samp	le De	oth:	3

Client: Ensolum

—	
Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)	

Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
<50.0	U	50.0	mg/Kg		02/17/23 10:54	02/18/23 18:31	1
<50.0	U	50.0	mg/Kg		02/17/23 10:54	02/18/23 18:31	1
<50.0	U	50.0	mg/Kg		02/17/23 10:54	02/18/23 18:31	1
%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
97		70 - 130			02/17/23 10:54	02/18/23 18:31	1
102		70 - 130			02/17/23 10:54	02/18/23 18:31	1
	<50.0 <50.0 <50.0 <i>%Recovery</i> 97		<50.0	<50.0 U 50.0 mg/Kg <50.0	<50.0 U 50.0 mg/Kg <50.0	<50.0 U 50.0 mg/Kg 02/17/23 10:54 <50.0	<50.0 U 50.0 mg/Kg 02/17/23 10:54 02/18/23 18:31 <50.0

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	374	4.96	mg/Kg			02/21/23 10:27	1

Client Sample ID: SS04B

Date Collected: 02/15/23 12:55

Date Received: 02/15/23 16:45 Sample Depth: 2

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		02/17/23 14:29	02/18/23 08:43	1
Toluene	<0.00198	U	0.00198	mg/Kg		02/17/23 14:29	02/18/23 08:43	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		02/17/23 14:29	02/18/23 08:43	1
m-Xylene & p-Xylene	<0.00397	U *+	0.00397	mg/Kg		02/17/23 14:29	02/18/23 08:43	1
o-Xylene	<0.00198	U *+	0.00198	mg/Kg		02/17/23 14:29	02/18/23 08:43	1
Xylenes, Total	<0.00397	U *+	0.00397	mg/Kg		02/17/23 14:29	02/18/23 08:43	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130			02/17/23 14:29	02/18/23 08:43	1
1,4-Difluorobenzene (Surr)	93		70 - 130			02/17/23 14:29	02/18/23 08:43	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	U	0.00397	mg/Kg			02/20/23 14:15	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			02/20/23 15:20	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		02/17/23 10:54	02/18/23 18:54	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		02/17/23 10:54	02/18/23 18:54	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		02/17/23 10:54	02/18/23 18:54	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	104		70 - 130			02/17/23 10:54	02/18/23 18:54	1
o-Terphenyl	112		70 - 130			02/17/23 10:54	02/18/23 18:54	1

Matrix: Solid

Lab Sample ID: 890-4115-9

Client Sample Results

Client: Ensolum

Project/Site: Cabo Wabo Sprayberry Booster

Client Sample ID: SS04B

Date Collected: 02/15/23 12:55 Date Received: 02/15/23 16:45 Sample Depth: 2 Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	240	4.97	mg/Kg			02/21/23 10:33	1
Client Sample ID: SS05B					Lab San	nple ID: 890-4	115-10
Date Collected: 02/15/23 13:05						Matri	ix: Solid
Date Received: 02/15/23 16:45							

Sample Depth: 2

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/17/23 14:29	02/18/23 09:04	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/17/23 14:29	02/18/23 09:04	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/17/23 14:29	02/18/23 09:04	1
m-Xylene & p-Xylene	<0.00400	U *+	0.00400	mg/Kg		02/17/23 14:29	02/18/23 09:04	1
o-Xylene	<0.00200	U *+	0.00200	mg/Kg		02/17/23 14:29	02/18/23 09:04	1
Xylenes, Total	<0.00400	U *+	0.00400	mg/Kg		02/17/23 14:29	02/18/23 09:04	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130			02/17/23 14:29	02/18/23 09:04	1
1,4-Difluorobenzene (Surr)	88		70 - 130			02/17/23 14:29	02/18/23 09:04	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400	mg/Kg			02/20/23 14:15	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			02/20/23 15:20	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		02/17/23 10:54	02/18/23 19:16	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		02/17/23 10:54	02/18/23 19:16	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		02/17/23 10:54	02/18/23 19:16	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	97		70 - 130			02/17/23 10:54	02/18/23 19:16	1
o-Terphenyl	107		70 - 130			02/17/23 10:54	02/18/23 19:16	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Result Qualifier Dil Fac Analyte RL Unit D Prepared Analyzed 02/21/23 10:52 Chloride 108 5.03 mg/Kg 1

Eurofins Carlsbad

Job ID: 890-4115-1 SDG: 03D2024145

Job ID: 890-4115-1 SDG: 03D2024145

Prep Type: Total/NA

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

Client: Ensolum

		BFB1	DFBZ1		
.ab Sample ID	Client Sample ID	(70-130)	(70-130)		Ę
880-24885-A-1-D MS	Matrix Spike	110	106	·	
880-24885-A-1-E MSD	Matrix Spike Duplicate	104	103		(
390-4115-1	SS01A	105	89		
90-4115-2	SS02A	113	80		
90-4115-3	SS03A	115	77		
90-4115-4	SS04A	108	83		
90-4115-5	SS05A	116	77		
90-4115-6	SS01B	115	88		
90-4115-7	SS02B	117	87		
90-4115-8	SS03B	118	83		
90-4115-9	SS04B	95	93		
90-4115-10	SS05B	92	88		
CS 880-46605/1-A	Lab Control Sample	114	108		
CSD 880-46605/2-A	Lab Control Sample Dup	120	96		
/IB 880-46605/5-A	Method Blank	76	91		
Surrogate Legend					
BFB = 4-Bromofluoroben	nzene (Surr)				

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

Prep Type: Total/NA

				Percent Sur
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-24875-A-37-B MS	Matrix Spike	100	93	
880-24875-A-37-C MSD	Matrix Spike Duplicate	97	92	
890-4115-1	SS01A	102	110	
890-4115-2	SS02A	102	109	
890-4115-3	SS03A	102	106	
890-4115-4	SS04A	100	106	
890-4115-5	SS05A	109	116	
890-4115-6	SS01B	79	89	
890-4115-7	SS02B	95	106	
890-4115-8	SS03B	97	102	
890-4115-9	SS04B	104	112	
890-4115-10	SS05B	97	107	
LCS 880-46595/2-A	Lab Control Sample	108	118	
LCSD 880-46595/3-A	Lab Control Sample Dup	106	117	
MB 880-46595/1-A	Method Blank	97	118	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Lab Sample ID: MB 880-46605/5-A

QC Sample Results

Client: Ensolum Project/Site: Cabo Wabo Sprayberry Booster

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Analysis Batch: 46568							Prep Type: 1 Prep Batch	
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200	mg/Kg		02/17/23 14:29	02/18/23 01:10	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/17/23 14:29	02/18/23 01:10	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/17/23 14:29	02/18/23 01:10	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		02/17/23 14:29	02/18/23 01:10	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/17/23 14:29	02/18/23 01:10	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		02/17/23 14:29	02/18/23 01:10	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	76		70 - 130			02/17/23 14:29	02/18/23 01:10	1
1,4-Difluorobenzene (Surr)	91		70 - 130			02/17/23 14:29	02/18/23 01:10	1

Lab Sample ID: LCS 880-46605/1-A Matrix: Solid

Analysis Batch: 46568

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.100	0.1169		mg/Kg		117	70 - 130
Toluene	0.100	0.1137		mg/Kg		114	70 - 130
Ethylbenzene	0.100	0.1212		mg/Kg		121	70 - 130
m-Xylene & p-Xylene	0.200	0.2622	*+	mg/Kg		131	70 - 130
o-Xylene	0.100	0.1325	*+	mg/Kg		133	70 _ 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	114		70 - 130
1,4-Difluorobenzene (Surr)	108		70 - 130

Lab Sample ID: LCSD 880-46605/2-A

Matrix: Solid

Analysis Batch: 46568							Prep	Batch:	46605
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1157		mg/Kg		116	70 - 130	1	35
Toluene	0.100	0.1144		mg/Kg		114	70 - 130	1	35
Ethylbenzene	0.100	0.1190		mg/Kg		119	70 - 130	2	35
m-Xylene & p-Xylene	0.200	0.2570		mg/Kg		129	70 - 130	2	35
o-Xylene	0.100	0.1300		mg/Kg		130	70 - 130	2	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	120		70 - 130
1,4-Difluorobenzene (Surr)	96		70 - 130

Lab Sample ID: 880-24885-A-1-D MS

Matrix: Solid

Analysis Batch: 46568									Pre	o Batch: 46605
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00202	U	0.101	0.1040		mg/Kg		103	70 - 130	
Toluene	<0.00202	U	0.101	0.09838		mg/Kg		98	70 - 130	

Eurofins Carlsbad

Prep Type: Total/NA

Client Sample ID: Matrix Spike

13

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 46605

Released to Imaging	: 2/26/2024 3:08:02 PM	

QC Sample Results

Client: Ensolum Project/Site: Cabo Wabo Sprayberry Booster

Lab Sample ID: 880-24885-A Matrix: Solid Analysis Batch: 46568	-1-D MS							Client		: Matrix ype: To Batch:	tal/NA
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Ethylbenzene	<0.00202	U	0.101	0.1021		mg/Kg		101	70 - 130		
m-Xylene & p-Xylene	< 0.00403	U *+	0.202	0.2157		mg/Kg		107	70 - 130		
o-Xylene	<0.00202	U *+	0.101	0.1075		mg/Kg		107	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	110		70 - 130								
1,4-Difluorobenzene (Surr)	106		70 _ 130								
-											
 Lab Sample ID: 880-24885-A	-1-E MSD					CI	ient Sa	ample ID	: Matrix Sr	nike Dun	licate
Lab Sample ID: 880-24885-A Matrix: Solid	-1-E MSD					CI	ient Sa	ample ID	: Matrix Sp Prop T		
Matrix: Solid	-1-E MSD					CI	ient Sa	ample ID	Prep T	ype: To	tal/NA
		Sample	Spike	MSD	MSD	CI	ient Sa	ample ID	Prep T		tal/NA
Matrix: Solid	Sample	Sample Qualifier	Spike Added		MSD Qualifier	Cl	ient Sa D	ample ID %Rec	Prep T Prep	ype: To	tal/NA 46605
Matrix: Solid Analysis Batch: 46568	Sample	Qualifier	•						Prep T Prep %Rec	ype: To Batch:	tal/NA 46605 RPD
Matrix: Solid Analysis Batch: 46568 Analyte	Sample Result	Qualifier	Added	Result		Unit		%Rec	Prep T Prep %Rec Limits	Batch:	tal/NA 46605 RPD Limit
Matrix: Solid Analysis Batch: 46568 Analyte Benzene	Sample 	Qualifier U U	Added	Result 0.09782		_ <mark>Unit</mark> mg/Kg		%Rec 98	Prep T Prep %Rec Limits 70 - 130	Type: Tot Batch: RPD 6	tal/NA 46605 RPD Limit 35
Matrix: Solid Analysis Batch: 46568 Analyte Benzene Toluene	Sample Result <0.00202 <0.00202	Qualifier U U U	Added	Result 0.09782 0.09762		– <mark>Unit</mark> mg/Kg mg/Kg		%Rec 98 98	Prep 7 Prep %Rec Limits 70 - 130 70 - 130	ype: Tot Batch: 6 RPD 6 1	tal/NA 46605 RPD Limit 35 35
Matrix: Solid Analysis Batch: 46568 Analyte Benzene Toluene Ethylbenzene	Sample Result <0.00202 <0.00202 <0.00202	Qualifier U U U U	Added 0.0996 0.0996 0.0996	Result 0.09782 0.09762 0.09330		Unit mg/Kg mg/Kg mg/Kg		%Rec 98 98 94	Prep 7 Prep %Rec Limits 70 - 130 70 - 130 70 - 130	ype: Tot Batch: RPD 6 1 9	tal/NA 46605 RPD Limit 35 35 35
Matrix: Solid Analysis Batch: 46568 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Sample Result <0.00202 <0.00202 <0.00202 <0.00403 <0.00202	Qualifier U U U U *+ U *+	Added 0.0996 0.0996 0.0996 0.199	Result 0.09782 0.09762 0.09330 0.1931		Unit mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 98 98 94 97	Prep 7 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	ype: Tot Batch: <u>RPD</u> 6 1 9 11	tal/NA 46605 RPD Limit 35 35 35 35
Matrix: Solid Analysis Batch: 46568 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Sample Result <0.00202 <0.00202 <0.00202 <0.00403 <0.00202	Qualifier U U U U *+ U *+ MSD	Added 0.0996 0.0996 0.0996 0.199	Result 0.09782 0.09762 0.09330 0.1931		Unit mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 98 98 94 97	Prep 7 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	ype: Tot Batch: <u>RPD</u> 6 1 9 11	tal/NA 46605 RPD Limit 35 35 35 35
Matrix: Solid Analysis Batch: 46568 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Sample Result <0.00202 <0.00202 <0.00202 <0.00403 <0.00202 <i>MSD</i>	Qualifier U U U U *+ U *+ MSD	Added 0.0996 0.0996 0.0996 0.199 0.0996	Result 0.09782 0.09762 0.09330 0.1931		Unit mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 98 98 94 97	Prep 7 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	ype: Tot Batch: <u>RPD</u> 6 1 9 11	tal/NA 46605 RPD Limit 35 35 35 35

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-46595/1-4 Matrix: Solid	4					Client Sa	mple ID: Metho Prep Type: 1	
Analysis Batch: 46617							Prep Batch	ı: 46595
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		02/17/23 10:54	02/18/23 08:39	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		02/17/23 10:54	02/18/23 08:39	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		02/17/23 10:54	02/18/23 08:39	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	97		70 - 130			02/17/23 10:54	02/18/23 08:39	1
o-Terphenyl	118		70 - 130			02/17/23 10:54	02/18/23 08:39	1
 Lab Sample ID: LCS 880-46595/2-	A				c	lient Sample I	D: Lab Control	Sample
Matrix: Solid							Prep Type: 1	otal/NA

Analysis Batch: 46617 Prep Batch: 46595 Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits D 1000 907.8 91 70 - 130 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 937.0 mg/Kg 94 70 - 130 C10-C28)

Eurofins Carlsbad

Released to Imaging: 2/26/2024 3:08:02 PM

Lab Sample ID: LCS 880-46595/2-A

Matrix: Solid

Surrogate

o-Terphenyl

1-Chlorooctane

Analysis Batch: 46617

QC Sample Results

Limits

70 - 130

70 - 130

Client: Ensolum Project/Site: Cabo Wabo Sprayberry Booster

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

LCS LCS %Recovery Qualifier

108

118

Prep Type: Total/NA

Prep Batch: 46595

Client Sample ID: Lab Control Sample

95 PD nit 20 20

Client	Sample	ID:	Matrix	S	pike
	_	_	_		

rep I	ype:	lota	I/NA
Dron	Ratel	1· 16	505

Lab Sample ID: LCSD 880-4 Matrix: Solid									Lab Contro Pren 1	Гуре: То	
Analysis Batch: 46617			Sniko	1.060	LCSD				%Rec	Batch:	40090 RPE
Analista			Spike			l lució	-	0/ Dec		000	
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics			1000	935.8		mg/Kg		94	70 - 130	3	20
(GRO)-C6-C10 Diesel Range Organics (Over			1000	921.9		mg/Kg		92	70 - 130	2	2
C10-C28)			1000	321.3		iiig/itg		52	70 - 100	2	2
,	1000	LCSD									
Surrogate	%Recovery		Limits								
1-Chlorooctane		Quaimer	70 - 130								
o-Terphenyl	117		70 - 130								
Lab Sample ID: 880-24875-4	A-37-B MS							Client	Sample ID	: Matrix	Spike
Matrix: Solid										Гуре: То	
Analysis Batch: 46617										Batch:	
	Sample	Sample	Spike	MS	MS				%Rec	201011	
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	219	·	1000	1225		mg/Kg		101	70 - 130		
(GRO)-C6-C10											
Diesel Range Organics (Over	701	F1	1000	1326	F1	mg/Kg		63	70 - 130		
C10-C28)											
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	100		70 - 130								
o-Terphenyl	93		70 _ 130								
Lab Sample ID: 880-24875-4	A-37-C MSD					Cli	ient Sa	ample IC	D: Matrix Sp		
Matrix: Solid									Prep 1	Гуре: To	tal/NA
Analysis Batch: 46617									Prep	Batch:	4659
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics (GRO)-C6-C10	219		1000	1184		mg/Kg		97	70 - 130	3	20
Diesel Range Organics (Over	701	F1	1000	1281	F1	mg/Kg		58	70 - 130	3	20
C10-C28)											
	MSD	MSD									
Surrogate	%Recovery		l imits								

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	97		70 - 130
o-Terphenyl	92		70 - 130

QC Sample Results

Job ID: 890-4115-1 SDG: 03D2024145

Client: Ensolum Project/Site: Cabo Wabo Sprayberry Booster

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-46600/1-A										Client S	Sample ID:		
Matrix: Solid											Prep	Type: S	oluble
Analysis Batch: 46816													
	_	MB N						_	_	<u>.</u>			
Analyte		esult C	••••		RL		Jnit	D	PI	repared	Analy		Dil Fac
Chloride	<	:5.00 U	J		5.00	n	ng/Kg				02/21/23	08:24	1
Lab Sample ID: LCS 880-46600/2-4	\							Cli	ent	Sample	e ID: Lab C	ontrol S	ample
Matrix: Solid												Type: S	
Analysis Batch: 46816													
-				Spike	LCS	LCS					%Rec		
Analyte				Added	Resul	t Qualifi	ier Unit		D	%Rec	Limits		
Chloride				250	235.3	3	mg/Kg		_	94	90 - 110		
Lab Sample ID: LCSD 880-46600/3	- A						CI	ient S	am	ple ID:	Lab Contr	ol Samol	le Dup
Matrix: Solid												Type: S	
Analysis Batch: 46816												.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
,,													
				Spike	LCSI	LCSD					%Rec		RPD
Analyte				Spike Added) LCSD t Qualifi	ier Unit		D	%Rec	%Rec Limits	RPD	RPD Limit
				•		t Qualifi	ier <u>Unit</u> mg/Kg		<u>D</u>	%Rec 94		RPD	
Chloride				Added	Resul	t Qualifi			D	94	Limits 90 - 110	0	Limit 20
				Added	Resul	t Qualifi			<u>D</u>	94	Limits 90 - 110 Client San	o nple ID: S	Limit 20 SS02B
Chloride Lab Sample ID: 890-4115-7 MS Matrix: Solid				Added	Resul	t Qualifi			<u>D</u>	94	Limits 90 - 110 Client San	0	Limit 20 SS02B
Chloride Lab Sample ID: 890-4115-7 MS Matrix: Solid	Sample	Sample	e	Added	Resul 235.4	t Qualifi			<u>D</u>	94	Limits 90 - 110 Client San	o nple ID: S	Limit 20 SS02B
Chloride Lab Sample ID: 890-4115-7 MS		Sample Qualifi		Added 250	Resul 235.4 MS	Qualifi	mg/Kg		D	94	Limits 90 - 110 Client San Prep	o nple ID: S	Limit 20
Chloride Lab Sample ID: 890-4115-7 MS Matrix: Solid Analysis Batch: 46816 Analyte				Added 250 Spike	Resul 235.4 MS	Qualifi MS Qualifi	mg/Kg			94	Limits 90 - 110 Client San Prep %Rec	o nple ID: S	Limit 20 SS02B
Chloride Lab Sample ID: 890-4115-7 MS Matrix: Solid Analysis Batch: 46816 Analyte Chloride	Result			Added 250 Spike Added	Resul 235.4 M: Resul	Qualifi MS Qualifi	mg/Kg			94 % Rec 109	Limits 90 - 110 Client San Prep %Rec Limits 90 - 110	o Type: S	Limit 20 SS02B oluble
Chloride Lab Sample ID: 890-4115-7 MS Matrix: Solid Analysis Batch: 46816 Analyte	Result			Added 250 Spike Added	Resul 235.4 M: Resul	Qualifi MS Qualifi	mg/Kg			94 % Rec 109	Limits 90 - 110 Client San Prep %Rec Limits 90 - 110 Client San	nple ID: \$ Type: S	Limit 20 SS02B oluble
Chloride Lab Sample ID: 890-4115-7 MS Matrix: Solid Analysis Batch: 46816 Analyte Chloride Lab Sample ID: 890-4115-7 MSD Matrix: Solid	Result			Added 250 Spike Added	Resul 235.4 M: Resul	Qualifi MS Qualifi	mg/Kg			94 % Rec 109	Limits 90 - 110 Client San Prep %Rec Limits 90 - 110 Client San	o Type: S	Limit 20 SS02B oluble
Chloride Lab Sample ID: 890-4115-7 MS Matrix: Solid Analysis Batch: 46816 Analyte Chloride Lab Sample ID: 890-4115-7 MSD	Result	Qualifi	er	Added 250 Spike Added	Resul 235.4 M: Resul	t Qualifi MS t Qualifi	mg/Kg			94 % Rec 109	Limits 90 - 110 Client San Prep %Rec Limits 90 - 110 Client San	nple ID: \$ Type: S	Limit 20 SS02B oluble
Chloride Lab Sample ID: 890-4115-7 MS Matrix: Solid Analysis Batch: 46816 Analyte Chloride Lab Sample ID: 890-4115-7 MSD Matrix: Solid	Result 1230 Sample	Qualifi	er	Added 250 Spike Added 1240	Resul 235.4 MSI 2583	t Qualifi S MS t Qualifi	ier Unit mg/Kg			94 % Rec 109	Limits 90 - 110 Client San Prep %Rec Limits 90 - 110 Client San Prep	nple ID: \$ Type: S	Limit 20 SS02B oluble SS02B oluble

QC Association Summary

Client: Ensolum Project/Site: Cabo Wabo Sprayberry Booster

Analysis Batch: 46568

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-4115-1	SS01A	Total/NA	Solid	8021B	46605	
890-4115-2	SS02A	Total/NA	Solid	8021B	46605	5
890-4115-3	SS03A	Total/NA	Solid	8021B	46605	
890-4115-4	SS04A	Total/NA	Solid	8021B	46605	
890-4115-5	SS05A	Total/NA	Solid	8021B	46605	
890-4115-6	SS01B	Total/NA	Solid	8021B	46605	
890-4115-7	SS02B	Total/NA	Solid	8021B	46605	
890-4115-8	SS03B	Total/NA	Solid	8021B	46605	8
890-4115-9	SS04B	Total/NA	Solid	8021B	46605	
890-4115-10	SS05B	Total/NA	Solid	8021B	46605	9
MB 880-46605/5-A	Method Blank	Total/NA	Solid	8021B	46605	
LCS 880-46605/1-A	Lab Control Sample	Total/NA	Solid	8021B	46605	
LCSD 880-46605/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	46605	
880-24885-A-1-D MS	Matrix Spike	Total/NA	Solid	8021B	46605	
880-24885-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	46605	
Prep Batch: 46605						
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	4.9
890-4115-1	SS01A	Total/NA	Solid	5035		13
890-4115-2	SS02A	Total/NA	Solid	5035		
890-4115-3	SS03A	Total/NA	Solid	5035		

Prep Batch: 46605

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4115-1	SS01A	Total/NA	Solid	5035	
890-4115-2	SS02A	Total/NA	Solid	5035	
890-4115-3	SS03A	Total/NA	Solid	5035	
890-4115-4	SS04A	Total/NA	Solid	5035	
890-4115-5	SS05A	Total/NA	Solid	5035	
890-4115-6	SS01B	Total/NA	Solid	5035	
890-4115-7	SS02B	Total/NA	Solid	5035	
890-4115-8	SS03B	Total/NA	Solid	5035	
890-4115-9	SS04B	Total/NA	Solid	5035	
890-4115-10	SS05B	Total/NA	Solid	5035	
MB 880-46605/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-46605/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-46605/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-24885-A-1-D MS	Matrix Spike	Total/NA	Solid	5035	
880-24885-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 46749

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4115-1	SS01A	Total/NA	Solid	Total BTEX	
890-4115-2	SS02A	Total/NA	Solid	Total BTEX	
890-4115-3	SS03A	Total/NA	Solid	Total BTEX	
890-4115-4	SS04A	Total/NA	Solid	Total BTEX	
890-4115-5	SS05A	Total/NA	Solid	Total BTEX	
890-4115-6	SS01B	Total/NA	Solid	Total BTEX	
890-4115-7	SS02B	Total/NA	Solid	Total BTEX	
890-4115-8	SS03B	Total/NA	Solid	Total BTEX	
890-4115-9	SS04B	Total/NA	Solid	Total BTEX	
890-4115-10	SS05B	Total/NA	Solid	Total BTEX	

Page 85 of 111

Job ID: 890-4115-1 SDG: 03D2024145

QC Association Summary

Client: Ensolum Project/Site: Cabo Wabo Sprayberry Booster

GC Semi VOA

Prep Batch: 46595

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4115-1	SS01A	Total/NA	Solid	8015NM Prep	
890-4115-2	SS02A	Total/NA	Solid	8015NM Prep	
890-4115-3	SS03A	Total/NA	Solid	8015NM Prep	
890-4115-4	SS04A	Total/NA	Solid	8015NM Prep	
890-4115-5	SS05A	Total/NA	Solid	8015NM Prep	
890-4115-6	SS01B	Total/NA	Solid	8015NM Prep	
890-4115-7	SS02B	Total/NA	Solid	8015NM Prep	
890-4115-8	SS03B	Total/NA	Solid	8015NM Prep	
890-4115-9	SS04B	Total/NA	Solid	8015NM Prep	
890-4115-10	SS05B	Total/NA	Solid	8015NM Prep	
MB 880-46595/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-46595/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-46595/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-24875-A-37-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-24875-A-37-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 46617

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4115-1	SS01A	Total/NA	Solid	8015B NM	46595
890-4115-2	SS02A	Total/NA	Solid	8015B NM	46595
890-4115-3	SS03A	Total/NA	Solid	8015B NM	46595
890-4115-4	SS04A	Total/NA	Solid	8015B NM	46595
890-4115-5	SS05A	Total/NA	Solid	8015B NM	46595
890-4115-6	SS01B	Total/NA	Solid	8015B NM	46595
890-4115-7	SS02B	Total/NA	Solid	8015B NM	46595
890-4115-8	SS03B	Total/NA	Solid	8015B NM	46595
890-4115-9	SS04B	Total/NA	Solid	8015B NM	46595
890-4115-10	SS05B	Total/NA	Solid	8015B NM	46595
MB 880-46595/1-A	Method Blank	Total/NA	Solid	8015B NM	46595
LCS 880-46595/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	46595
LCSD 880-46595/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	46595
880-24875-A-37-B MS	Matrix Spike	Total/NA	Solid	8015B NM	46595
880-24875-A-37-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	46595

Analysis Batch: 46795

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4115-1	SS01A	Total/NA	Solid	8015 NM	
890-4115-2	SS02A	Total/NA	Solid	8015 NM	
890-4115-3	SS03A	Total/NA	Solid	8015 NM	
890-4115-4	SS04A	Total/NA	Solid	8015 NM	
890-4115-5	SS05A	Total/NA	Solid	8015 NM	
890-4115-6	SS01B	Total/NA	Solid	8015 NM	
890-4115-7	SS02B	Total/NA	Solid	8015 NM	
890-4115-8	SS03B	Total/NA	Solid	8015 NM	
890-4115-9	SS04B	Total/NA	Solid	8015 NM	
890-4115-10	SS05B	Total/NA	Solid	8015 NM	

Job ID: 890-4115-1

Page 86 of 111

QC Association Summary

Client: Ensolum Project/Site: Cabo Wabo Sprayberry Booster

HPLC/IC

Leach Batch: 46600

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4115-1	SS01A	Soluble	Solid	DI Leach	
890-4115-2	SS02A	Soluble	Solid	DI Leach	
890-4115-3	SS03A	Soluble	Solid	DI Leach	
890-4115-4	SS04A	Soluble	Solid	DI Leach	
890-4115-5	SS05A	Soluble	Solid	DI Leach	
890-4115-6	SS01B	Soluble	Solid	DI Leach	
890-4115-7	SS02B	Soluble	Solid	DI Leach	
890-4115-8	SS03B	Soluble	Solid	DI Leach	
890-4115-9	SS04B	Soluble	Solid	DI Leach	
890-4115-10	SS05B	Soluble	Solid	DI Leach	
MB 880-46600/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-46600/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-46600/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-4115-7 MS	SS02B	Soluble	Solid	DI Leach	
890-4115-7 MSD	SS02B	Soluble	Solid	DI Leach	

Analysis Batch: 46816

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4115-1	SS01A	Soluble	Solid	300.0	46600
890-4115-2	SS02A	Soluble	Solid	300.0	46600
890-4115-3	SS03A	Soluble	Solid	300.0	46600
890-4115-4	SS04A	Soluble	Solid	300.0	46600
890-4115-5	SS05A	Soluble	Solid	300.0	46600
890-4115-6	SS01B	Soluble	Solid	300.0	46600
890-4115-7	SS02B	Soluble	Solid	300.0	46600
890-4115-8	SS03B	Soluble	Solid	300.0	46600
890-4115-9	SS04B	Soluble	Solid	300.0	46600
890-4115-10	SS05B	Soluble	Solid	300.0	46600
MB 880-46600/1-A	Method Blank	Soluble	Solid	300.0	46600
LCS 880-46600/2-A	Lab Control Sample	Soluble	Solid	300.0	46600
LCSD 880-46600/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	46600
890-4115-7 MS	SS02B	Soluble	Solid	300.0	46600
890-4115-7 MSD	SS02B	Soluble	Solid	300.0	46600

Page 87 of 111

Job ID: 890-4115-1 SDG: 03D2024145

5

9

Job ID: 890-4115-1 SDG: 03D2024145

Lab Sample ID: 890-4115-1 Matrix: Solid

Lab Sample ID: 890-4115-2

Matrix: Solid

Matrix: Solid

Date Collected: 02/15/23 10:45 Date Received: 02/15/23 16:45

Client Sample ID: SS01A

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	46605	02/17/23 14:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	46568	02/18/23 05:59	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			46749	02/20/23 14:15	AJ	EET MID
Total/NA	Analysis	8015 NM		1			46795	02/20/23 15:20	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	46595	02/17/23 10:54	SM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	46617	02/18/23 15:56	AJ	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	46600	02/17/23 12:49	KS	EET MID
Soluble	Analysis	300.0		5			46816	02/21/23 09:19	СН	EET MID

Client Sample ID: SS02A

Date Collected: 02/15/23 10:55

Date Received: 02/15/23 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	46605	02/17/23 14:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	46568	02/18/23 06:19	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			46749	02/20/23 14:15	AJ	EET MID
Total/NA	Analysis	8015 NM		1			46795	02/20/23 15:20	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	46595	02/17/23 10:54	SM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	46617	02/18/23 16:18	AJ	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	46600	02/17/23 12:49	KS	EET MID
Soluble	Analysis	300.0		5			46816	02/21/23 09:38	СН	EET MID

Client Sample ID: SS03A

Date Collected: 02/15/23 12:15

Date Received: 02/15/23 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	46605	02/17/23 14:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	46568	02/18/23 06:40	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			46749	02/20/23 14:15	AJ	EET MID
Total/NA	Analysis	8015 NM		1			46795	02/20/23 15:20	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	46595	02/17/23 10:54	SM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	46617	02/18/23 16:40	AJ	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	46600	02/17/23 12:49	KS	EET MID
Soluble	Analysis	300.0		1			46816	02/21/23 09:44	CH	EET MID

Client Sample ID: SS04A Date Collected: 02/15/23 12:50 Date Received: 02/15/23 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	46605	02/17/23 14:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	46568	02/18/23 07:00	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			46749	02/20/23 14:15	AJ	EET MID

Eurofins Carlsbad

Lab Sample ID: 890-4115-4

Lab Sample ID: 890-4115-3

Released to Imaging: 2/26/2024 3:08:02 PM

Matrix: Solid

Job ID: 890-4115-1 SDG: 03D2024145

Lab Sample ID: 890-4115-4 Matrix: Solid

Lab Sample ID: 890-4115-5

Date Collected: 02/15/23 12:50 Date Received: 02/15/23 16:45

Client Sample ID: SS04A

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			46795	02/20/23 15:20	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	46595	02/17/23 10:54	SM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	46617	02/18/23 17:02	AJ	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	46600	02/17/23 12:49	KS	EET MID
Soluble	Analysis	300.0		1			46816	02/21/23 09:50	СН	EET MID

Client Sample ID: SS05A

Date Collected: 02/15/23 13:00 Date Received: 02/15/23 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	46605	02/17/23 14:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	46568	02/18/23 07:21	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			46749	02/20/23 14:15	AJ	EET MID
Total/NA	Analysis	8015 NM		1			46795	02/20/23 15:20	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	46595	02/17/23 10:54	SM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	46617	02/18/23 17:24	AJ	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	46600	02/17/23 12:49	KS	EET MID
Soluble	Analysis	300.0		1			46816	02/21/23 09:56	СН	EET MID

Client Sample ID: SS01B

Date Collected: 02/15/23 12:10 Date Received: 02/15/23 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	46605	02/17/23 14:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	46568	02/18/23 07:41	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			46749	02/20/23 14:15	AJ	EET MID
Total/NA	Analysis	8015 NM		1			46795	02/20/23 15:20	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	46595	02/17/23 10:54	SM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	46617	02/18/23 17:47	AJ	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	46600	02/17/23 12:49	KS	EET MID
Soluble	Analysis	300.0		1			46816	02/21/23 10:02	CH	EET MID

Client Sample ID: SS02B

Date Collected: 02/15/23 11:45 Date Received: 02/15/23 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	46605	02/17/23 14:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	46568	02/18/23 08:02	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			46749	02/20/23 14:15	AJ	EET MID
Total/NA	Analysis	8015 NM		1			46795	02/20/23 15:20	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	46595	02/17/23 10:54	SM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	46617	02/18/23 18:08	AJ	EET MID

Eurofins Carlsbad

Lab Sample ID: 890-4115-6

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-4115-7 Matrix: Solid

Lab Chronicle

Job ID: 890-4115-1 SDG: 03D2024145

Lab Sample ID: 890-4115-7

Lab Sample ID: 890-4115-8

Lab Sample ID: 890-4115-9

Client Sample ID: SS02B Date Collected: 02/15/23 11:45

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.04 g	50 mL	46600	02/17/23 12:49	KS	EET MID
Soluble	Analysis	300.0		5			46816	02/21/23 10:09	CH	EET MID

Client Sample ID: SS03B

Date Collected: 02/15/23 12:25 Date Received: 02/15/23 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	46605	02/17/23 14:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	46568	02/18/23 08:23	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			46749	02/20/23 14:15	AJ	EET MID
Total/NA	Analysis	8015 NM		1			46795	02/20/23 15:20	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	46595	02/17/23 10:54	SM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	46617	02/18/23 18:31	AJ	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	46600	02/17/23 12:49	KS	EET MID
Soluble	Analysis	300.0		1			46816	02/21/23 10:27	СН	EET MID

Client Sample ID: SS04B Date Collected: 02/15/23 12:55 Date Received: 02/15/23 16:45

Batch Dil Final Batch Initial Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 5035 5.04 g 5 mL 46605 02/17/23 14:29 EL EET MID Total/NA 8021B 5 mL 5 mL 46568 02/18/23 08:43 EET MID Analysis 1 AJ Total/NA Analysis Total BTEX 1 46749 02/20/23 14:15 AJ EET MID Total/NA Analysis 8015 NM 1 46795 02/20/23 15:20 AJ EET MID Total/NA Prep 8015NM Prep 10.03 g 10 mL 46595 02/17/23 10:54 SM EET MID Total/NA Analysis EET MID 8015B NM 1 1 uL 1 uL 46617 02/18/23 18:54 AJ Soluble Leach DI Leach 5.03 g 50 mL 46600 02/17/23 12:49 KS EET MID Soluble Analysis 300.0 1 46816 02/21/23 10:33 СН EET MID

Client Sample ID: SS05B Date Collected: 02/15/23 13:05

Date Received: 02/15/23 16:45

Lab Sample ID: 890-4115-10

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	46605	02/17/23 14:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	46568	02/18/23 09:04	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			46749	02/20/23 14:15	AJ	EET MID
Total/NA	Analysis	8015 NM		1			46795	02/20/23 15:20	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	46595	02/17/23 10:54	SM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	46617	02/18/23 19:16	AJ	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	46600	02/17/23 12:49	KS	EET MID
Soluble	Analysis	300.0		1			46816	02/21/23 10:52	СН	EET MID

Eurofins Carlsbad

Matrix: Solid

Matrix: Solid

Received by OCD: 11/6/2023 8:46:48 AM

Lab Chronicle

Client: Ensolum Project/Site: Cabo Wabo Sprayberry Booster

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 890-4115-1 SDG: 03D2024145

Accreditation/Certification Summary

Page 92 of 111

		Accreditation/C	ertification Summary		
Client: Ensolum Project/Site: Cabo Wab	oo Sprayberry Boos	ter		Job ID: 890-4115-1 SDG: 03D2024145	2
Laboratory: Eurofi Unless otherwise noted, all a		y were covered under each acc	reditation/certification below.		
Authority		Program	Identification Number	Expiration Date	
Texas The following analytes	are included in this repo	NELAP rt, but the laboratory is not certif	T104704400-22-25 ied by the governing authority. This list ma	06-30-23 ay include analytes for which	5
the agency does not of Analysis Method	fer certification. Prep Method	Matrix	Analyte		
8015 NM Total BTEX		Solid Solid	Total TPH Total BTEX		
					8
					9
					10
					13

Client: Ensolum

Job ID: 890-4115-1 SDG: 03D2024145

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
Protocol Refe	rences:		
ASTM = A	STM International		
EPA = US	Environmental Protection Agency		

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Ensolum Project/Site: Cabo Wabo Sprayberry Booster

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-4115-1	SS01A	Solid	02/15/23 10:45	02/15/23 16:45	1
890-4115-2	SS02A	Solid	02/15/23 10:55	02/15/23 16:45	1
890-4115-3	SS03A	Solid	02/15/23 12:15	02/15/23 16:45	1
890-4115-4	SS04A	Solid	02/15/23 12:50	02/15/23 16:45	1
890-4115-5	SS05A	Solid	02/15/23 13:00	02/15/23 16:45	1
890-4115-6	SS01B	Solid	02/15/23 12:10	02/15/23 16:45	4
890-4115-7	SS02B	Solid	02/15/23 11:45	02/15/23 16:45	2
890-4115-8	SS03B	Solid	02/15/23 12:25	02/15/23 16:45	3
890-4115-9	SS04B	Solid	02/15/23 12:55	02/15/23 16:45	2
890-4115-10	SS05B	Solid	02/15/23 13:05	02/15/23 16:45	2

Page 94 of 111

Job ID: 890-4115-1 SDG: 03D2024145

0		Environment Testing Xenco	esting	Hou Midlan EL P Hobt	on, TX TX (4: 50, TX (4:	281) 240 () 704-54 15) 585-; 5) 392-7;	4200, Da 40, San A 9443, Lubl 550, Carls	ntonio, TX pock, TX (bad, NM (14) 902-0 (210) 509 806) 794- 575) 988-	300 9-3334 1296 3199			×	work Oi	Work Order No:
Project Manager: Ha	Hadlie Green			Bill to: (if different)		Kalei Jennings	ninas							Worl	Work Order Comments
	Ensolum, LLC			Company Name:		Ensolum, LLC	LLC				2	ogram:	JST/PS		Program: UST/PST 🗌 PRP 🔤 Brownfields 🔲 RRC 🔲 Superfund 🗌
	601 N Marienfeld St Suite 400	t Suite 400		Address:		01 N Ma	rienfeld	601 N Marienfeld St Suite 400	8		st	State of Project:	oject:		
e ZIP:	Midland, TX 79701			City, State ZIP:	3	lidland,	Midland, TX 79701				Re	porting:	Level II		Reporting: Level II _ Level III _ PST/UST] TRRP
	432-557-8895		Email:		nsolum.c	om, hg	reen@e	nsolum.	com			Deliverables:	s: EDD		ADaPT
Name:	Cabo Wabo Sprayberry Booster	/berry Boostei		Turn Around					ANAL	ALYSIS	YSIS REQUEST	ST			
э́г.	03D2024145	4145	Rout	🗆 Rush	Pres. Code	<u> </u>	-		-			+		╞	\vdash
Project Location:	32.0963,-103.9541)3.9541	Due Date:												
Sampler's Name:	Peter Van Patten	Patten	TAT starts the	TAT starts the day received by									_	_	
PO #:		>	the lab, if rec	the lab, if received by 4:30pm	ers		_		_						
SAMPLE RECEIPT	Temp Blank:	: (Yes No	Wet Ice:	Vyas No	nete).0)									
Samples Received Intact:	-	Therm	ter ID: / h	FOOM		300									
Cooler Custody Seals:	Yes NO (NIA	Correction Factor:	Factor:	· 0.2		PA									
Sample Custody Seals:	Yes No VI	VNIA Temperatu	Temperature Reading:	5.2					000	890-4115	4115 Chain of Custody	Custody			1
Sample Identification	instion Matrix	_		Denth Grab/	# of	H (80	EX (8								
SS01A		2/15/2023	3 1045	1 Comp	1		-								-
SS02A	Soil			1' Comp	-										
SS03A	Soil	-		1' Comp	-	××	×					-		-	\vdash
SS04A	Soil		3 1250	1' Comp	-1	××	×		-						-
SS05A	Soil			1' Comp	-1	××	×		-		L	+	Ē	\vdash	┝
SS01B	Soil	1 2/15/2023	3 1210	4' Comp		××	×		-	-		┢		-	-
SS02B	Soil				-1	××	×		╞	F		-		-	+-
SS03B	Soil	2/15/2023	3 1225	3' Comp		*	×		-						+
SS04B	Soil	2/15/2023	3 1255	2' Comp	-1	××	×		-						-
SS05B	Soil	2/15/2023	1305	2' Comp	1	×××	×								
Total 200.7 / 6010	200.8 / 6		8RCRA 13PPM	PM Texas 11	AI Sb	Sb As Ba	Ba Be B	Cd Ca	Cr Co		Pb Mg	Mg Mn Mo Ni	지	Se Ag	SiO ₂ Na
Circle Method(s) and Metal(s) to be analyzed	Metal(s) to be an:	alyzed	TCLP / S	TCLP / SPLP 6010: 8RCRA Sb As Ba Be Cd Cr Co Cu Pb	RCRA S	b As	Ba Be	Cd Cr C	ю Си	Pb Mn	Mn Mo Ni Se Ag Ti U	Se Ag	C	н	Hg: 1631 / 245.1 / 7470 / 7471
Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and share a the control of service. Eurofins Xenco will be liable only for the cost of samples and share a to for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of service. Eurofins Xenco will be liable only for the cost of samples and scheme at the formation of the cost of samples and scheme at the formation of the formation of the cost of samples and scheme at the formation of the formati	ument and relinquishm vill be liable only for the	ent of samples co	nstitutes a valid pund shall not assur	rchase order from ne any responsibili	client comp ity for any id	pany to El	arofins Xer Apenses h	co, its affil ncurred by	iates and the client	ubcontrac f such los	tors. It ass ses are due	igns stand to circum:	ard terms tances be	and cond yond the v	itions ontrol
Relinquished by: (Signature)	Signature)	Received by:	ed by: (Signature)	ure)		Date/Time	1e	Reli	nguishe	d by: (S	Relinguished by: (Signature)	-	Rece	/ed by:	Received by: (Signature)
town a letter		Lap (u)) , ,		e T	3	1645	6							
4								4							

5

Job Number: 890-4115-1 SDG Number: 03D2024145

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 4115 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Job Number: 890-4115-1 SDG Number: 03D2024145

List Source: Eurofins Midland

List Creation: 02/17/23 11:14 AM

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 4115 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

APPENDIX D

NMOCD Notifications

Released to Imaging: 2/26/2024 3:08:02 PM

From:	Hadlie Green
To:	Bratcher, Michael, EMNRD
Cc:	Carlile, Justin
Subject:	FW: COG - Denial - Remediation Work Plan - Cabo Wabo Federal Com 704H, 705H & 706H (Incident Number NAPP2301334575)
Date:	Monday, September 11, 2023 8:24:00 AM
Attachments:	image002.png image003.png image004.png image005.png image006.png

Good morning Mr. Bratcher,

I'm looking to have a conversation about a recent Remediation Work Plan denial. Below, you will find the corresponding email chain requesting reconsideration of approval of the Remediation Work Plan with Conditions of Approval (COAs).

I appreciate your help in advance and look forward to talking with you. Please feel free to call me directly at 432-557-8895 or if you would like to present a time to talk through Microsoft Teams, I would be happy to do that as well.

Thank you,

Hadlie Green Project Geologist 432-557-8895 hgreen@ensolum.com Ensolum, LLC in f ♥

From: Hadlie Green
Sent: Wednesday, September 6, 2023 7:38 AM
To: Robert.Hamlet@state.nm.us
Cc: Carlile, Justin <Justin.Carlile@conocophillips.com>
Subject: RE: COG - Denial - Remediation Work Plan - Cabo Wabo Federal Com 704H, 705H & 706H (Incident Number NAPP2301334575)

Good afternoon Mr. Hamlet,

I just wanted to circle back on my email below regarding a recent denial. I look forward to hearing from you.

Thank you,

Hadlie Green Project Geologist 432-557-8895 hgreen@ensolum.com

From: Hadlie Green
Sent: Thursday, August 24, 2023 2:31 PM
To: Robert.Hamlet@state.nm.us
Cc: Carlile, Justin <<u>Justin.Carlile@conocophillips.com</u>>
Subject: COG - Denial - Remediation Work Plan - Cabo Wabo Federal Com 704H, 705H & 706H
(Incident Number NAPP2301334575)

Hello Mr. Hamlet,

COG Operating, LLC has given me permission to talk with you regarding their active Incident Number NAPP2301334575 – Cabo Wabo Federal Com 704H, 705H & 706H. COG submitted a Remediation Work Plan (attached) to NMOCD on April 4, 2023 detailing site assessment activities and proposing excavation of impacted soil to the site-specific Closure Criteria, which is the strictest based on flood potential. You reviewed the Remediation Work Plan and denied it on August 18, 2023 with the following reasons:

 The Remediation Plan is Denied. Limited soil removal around subsurface pipelines is denied. Contaminated soil should be removed safely with alternative methods. Due to the sensitive nature of the release location, the variance for 500 ft2 confirmation samples is denied. Please collect confirmation samples, representing no more than 200 ft2. Off-pad, all horizontal delineation samples must come from the sidewalls of the excavation. All samples must be analyzed for all constituents listed in Table I of 19.15.29.12 NMAC. All off pad areas must meet reclamation standards set forth in the OCD Spill Rule. The work will need to occur in 90 days after the work plan has been reviewed.

The subsurface pipeline referred to in the Remediation Work Plan is a high-pressure gas line owned and operated by Kinder Morgan (see photo below). This pipeline is estimated to be 10-15 feet to the east of our release extent (orange) and we do not believe that this will be in conflict with excavation activities. The surface polylines in the photo below have been removed. We will spot this pipeline via hydrovac and remove all impacted soil within our release extent. Confirmation samples will be collected from the floor and sidewalls of the excavation every 200 square feet and all samples will meet the strictest Table I Closure Criteria.

I would like to talk through this with you if you have some time in the next few days and request that you reconsider approval of the Remediation Work Plan with Conditions of Approval (COAs).

I appreciate your help in advance and look forward to talking with you. Please feel free to call me directly at 432-557-8895 or if you would like to present a time to talk through Microsoft Teams, I would be happy to do that as well.

Thank you,

Hadlie Green Project Geologist 432-557-8895 hgreen@ensolum.com Ensolum, LLC in f

APPENDIX E

Final C-141

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Page 104 of 111

Incident ID	NAPP2301334575
District RP	
Facility ID	fAPP2203847910
Application ID	

Release Notification

Responsible Party

Responsible Party	COG Operating, LLC	OGRID	229137		
Contact Name	Justin Carlile	Contact Telephone	(432) 202-4112		
Contact email	Justin.Carlile@ConocoPhillips.com	Incident # (assigned by OCD)	NAPP2301334575		
Contact mailing address	600 West Illinois Avenue, Midland, Texas 79701				

Location of Release Source

Latitude 32.0963

-103.9541

Longitude _____ (NAD 83 in decimal degrees to 5 decimal places)

Site Name	Name Cabo Wabo Federal Com 704H, 705H & 706H				Site Type	Flowline
Date Release Discovered December 30, 2022			API# (if applicable)			
Unit Letter	Section	Township	Range		County	
0	26	25S	29E	Eddy		

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material	Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)					
Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)				
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)				
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No				
Condensate	Volume Released (bbls)	Volume Recovered (bbls)				
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)				
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)				
Treated Produced Water	14.8 bbls	14 bbls				

Cause of Release

The release was caused by a leak in the pump housing.

The release was off the pad. A vacuum truck was dispatched to remove all freestanding fluids. Evaluation will be made of the site to determine if we may commence remediation immediately or delineate any possible impact from the release and we will present a remediation work plan to the NMOCD for approval prior to any significant remediation activities.

Page	2
1 age	~

Oil Conservation Division

Incident ID	NAPP2301334575
District RP	
Facility ID	fAPP2203847910
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
🗌 Yes 🔳 No	
If YES, was immediate no	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have <u>not</u> been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name Brittany N. Esparza	Environmental Technician
Printed Name Brittany N. Esparza Signature:	Date: 1/12/2023
email: Brittany.Esparza@ConocoPhillips.com	Telephone: (432) 221-0398
OCD Only Jocelyn Harimon	01/13/2023
Received by:	Date:

L48 Spill Volume Estimate Form

Seceived by OCD: 1/13/2023 Ry48:26 AM mber:			cabo booser pump	2	NAPP2301334575				
8:0 Asset Area:			china draw					8	
2 P	Releas	e Disco	very Date & Time:	12/29/2022					M
7			Release Type:	Produced Water					
Provide a	ny know	n detail	s about the event:	valve break at boos	ster				
					Spil	I Calculation	- On Pad Surface	Pool Spill	
Convert Irregular shape into a series of rectangles	Length (ft.)	Width (ft.)	Deepest point in each of the areas (in.)	No. of boundaries of "shore" in each area	Estimated <u>Pool</u> Area (sq. ft.)	Estimated Average Depth (ft.)	Estimated volume of each pool area (bbl.)	Penetration allowance (ft.)	Total Estimated Volume of Spill (bbl.)
Rectangle A	6.0	800.0	0.25	4	4800.000	0.005	4.450	0.000	4.451
Rectangle B	18.0	20.0	0.25	4	360.000	0.005	0.334	0.000	0.334
Rectangle C	18.0	600.0	0.25	4	10800.000	0.005	10.013	0.000	10.015
Rectangle D		l.	<u>i</u> (0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle E		l.	li ii		0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle F	[l.	li ii		0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle G	[I.	l i		0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle H		I	l li		0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle I		l	l li		0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Refeased to Imag	ing: 1/	13/202	3 10:11:55 AM		0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0							Total Volume Release:	14.800

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator: COG OPERATING LLC	OGRID: 229137
600 W Illinois Ave Midland, TX 79701	Action Number: 175847
	Action Type: [C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
jharimon	None	1/13/2023

PageH07eof 111

Action 175847

Received by OCD: 11/6/2023 8:46:48 AM Form C-141 State of New Mexico

Oil Conservation Division

	Page 108 0J 11	1
Incident ID	NAPP2301334575	
District RP		
Facility ID	fAPP2203847910	
Application ID		

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>> 100 (ft bgs)</u>
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗙 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🛛 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🛛 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🛛 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data

Page 3

- Data table of soil contaminant concentration data
- Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 11/6/20	23 8:46:48 AM State of New Mexi			Page 109 of 111
Form C-141			Incident ID	NAPP2301334575
Page 4	Oil Conservation Div	ision	District RP	
			Facility ID	fAPP2203847910
			Application ID	
regulations all operators are public health or the environ failed to adequately investig		ease notifications and perform co by the OCD does not relieve the se a threat to groundwater, surfa	prrective actions for relieve operator of liability share water, human healt liance with any other from the state of the s	leases which may endanger hould their operations have h or the environment. In ederal, state, or local laws
OCD Only Received by: <u>Shelly W</u>	ells	Date: <u>11/6/</u>	/2023	

Received by OCD: 11/6/2023 8:46:48 AM Form C-141 State of New Mexico Oil Conservation Division

	Page 110 of 111
Incident ID	NAPP2301334575
District RP	

fAPP2203847910

District Facility ID

Application ID

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan.

Detailed description of proposed remediation technique

 \mathbf{X} Scaled sitemap with GPS coordinates showing delineation points

Estimated volume of material to be remediated

Released to Imaging: 2/26/2024 3:08:02 PM

Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC

Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)

Defermed Desmante Only Each of the following items must be south	Gun ad an and of any upper out for defensed of your adjustices	
<u>Deferral Requests Only</u> : Each of the following items must be conf	irmea as part of any request for deferral of remealation.	
Contamination must be in areas immediately under or around prodeconstruction.	duction equipment where remediation could cause a major facility	
Extents of contamination must be fully delineated.		
Contamination does not cause an imminent risk to human health,	the environment, or groundwater.	
I hereby certify that the information given above is true and complete rules and regulations all operators are required to report and/or file ce which may endanger public health or the environment. The acceptan liability should their operations have failed to adequately investigate surface water, human health or the environment. In addition, OCD are responsibility for compliance with any other federal, state, or local la	ertain release notifications and perform corrective actions for releases ce of a C-141 report by the OCD does not relieve the operator of and remediate contamination that pose a threat to groundwater, cceptance of a C-141 report does not relieve the operator of	
Printed Name: Justin Carlile	Title: Sr. Environmental Engineer	
Printed Name: Justin Carlile Signature: Justin Carlile	Date: 10/23/2023	
email: Justin.Carlile@ConocoPhillips.com	Telephone: (432) 202-4112	
OCD Only		
Received by: <u>Shelly Wells</u>	Date: <u>11/6/2023</u>	
Approved Approved with Attached Conditions of A	Approval Denied Deferral Approved	
<u>Signature:</u> Scott Rodgers	Date: 02/26/2024	

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	282823
	Action Type:
	[C-141] Release Corrective Action (C-141)
	·

CONDITIONS		
Created By	Condition	Condition Date
scott.rodgers	The Remediation Plan is Conditionally Approved. Floor confirmation samples should be delineated/excavated to meet closure criteria standards from Table 1 of the OCD Spill Rule for site assessment/characterization/proven depth to water determination. All samples must be analyzed for all constituents listed in Table I of 19.15.29.12 NMAC. Sidewall/Edge samples should be delineated/excavated to 600 mg/kg for chlorides and 100 mg/kg for TPH to define the edge of the release. All sidewall samples should be taken from the sidewall of the excavation. Please make sure that the edge of the release extent is accurately defined. All off-pad areas must meet reclamation standards set forth in the OCD Spill Rule. The work will need to occur in 90 days after the report has been reviewed.	2/26/2024

CONDITIONS

Page 111 of 111

Action 282823