E N S O L U M

December 1, 2023

New Mexico Oil Conservation Division New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Closure Request SEMU Permian #37 Incident Number NAPP2305453661 Lea County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum), on behalf of Maverick Permian, LLC (Maverick), has prepared this *Closure Request* to document assessment, excavation, and soil sampling activities performed at the Semu Permian #37 (Site). The purpose of the assessment, excavation, and soil sampling activities was to address impacts to soil resulting from a release of crude oil and produced water at the Site. Based on the excavation activities and laboratory analytical results for the soil sampling events, Maverick is submitting this *Closure Request*, describing remediation that has occurred and requesting closure for Incident Number NAPP2305453661.

SITE DESCRIPTION AND RELEASE SUMMARY

The Site is located in Unit L, Section 19, Township 20 South, Range 38 East, in Lea County, New Mexico (32.5566346°, -103.1960617°) and is associated with oil and gas exploration and production operations on Private Land.

On February 7, 2023, a surface flowline ruptured, resulting in the release of approximately 3 barrels (bbls) of crude oil and 15 bbls of produced water onto the surrounding pasture. No released fluids were recovered. Maverick reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Release Notification Form C-141 (Form C-141) on February 17, 2023. The release was assigned Incident Number NAPP2305453661.

SITE CHARACTERIZATION AND CLOSURE CRITERIA

The Site was characterized to assess the applicability of Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29 (19.15.29) of the New Mexico Administrative Code (NMAC). Results from the characterization desktop review are presented on page 3 of the Form C-141, Site Assessment/Characterization. Potential Site receptors are identified on Figure 1.

Depth to groundwater at the Site is estimated to be between 51 and 100 feet below ground surface (bgs) based on the nearest available groundwater well data. The closest permitted groundwater well with depth to groundwater data is United States Geological Survey (USGS) well 323307103113601 located 0.34 miles southeast of the Site. The groundwater well has reported depth to groundwater of 82.73 feet

bgs. Several other wells within a 1.5 mile radius of the site indicate regional depth to groundwater between 51 and 100 feet bgs. The most recent well is New Mexico Office of the State Engineer (NMOSE) well L-15414-POD1, located 1.0 mile east of the Site. The groundwater well was drilled during November 2022 to a depth of 103 feet bgs and no groundwater was encountered. All wells used for depth to groundwater determination are presented on Figure 1. The referenced well records are included in Appendix A.

The closest continuously flowing or significant watercourse to the Site is Monument Draw, a dry wash, located approximately 2.5 miles south of the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet from a spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is not underlain by unstable geology (low potential karst designation area). Site receptors are identified on Figure 1.

Based on the results of the Site Characterization, the following NMOCD Table I Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH)-gasoline range organics (GRO) and TPH-diesel range organics (DRO): 1,000 mg/kg
- TPH: 2,500 mg/kg
- Chloride: 10,000 mg/kg

A reclamation requirement of 600 mg/kg chloride and 100 mg/kg TPH applies to the top 4 feet of the pasture area that was impacted by the release, per NMAC 19.15.29.13.D (1) for the top 4 feet of areas that will be reclaimed following remediation.

SITE ASSESSMENT ACTIVITIES

On February 16, 2023, Ensolum personnel were at the Site to evaluate the release extent based on information provided on the Form C-141 and visible surface staining observed in the pasture release area. Three initial assessment soil samples (SS01 through SS03) were collected within the release extent from a depth of 0.5 feet bgs to assess the surficial soil within the release. The release extent and soil sample locations were mapped utilizing a handheld Global Positioning System (GPS) unit and are depicted on Figure 2. Photographic documentation was completed during the Site visit and a photographic log is included in Appendix B.

The soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported under strict chain-of-custody procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of the following chemicals of concern (COCs): BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-GRO, TPH-DRO, and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

Laboratory analytical results for assessment soil samples SS01 through SS03 indicated TPH-GRO/TPH-DRO and total TPH concentrations exceeded the Site Closure Criteria. The laboratory analytical results are summarized in Table 1.

On March 20, 2023, Ensolum personnel returned to the site to complete additional assessment activities to delineate the vertical extent of the release. Five boreholes (BH01 through BH05) were advanced via hand auger within the release extent to a depth of 5 feet bgs. Soil from the boreholes was field screened at 1-foot intervals for volatile organic compounds (VOCs) utilizing a calibrated photoionization detector (PID) and chloride using Hach[®] chloride QuanTab[®] test strips. Field screening results and observations for the boreholes were logged on lithologic soil sampling logs, which are included in Appendix C. Delineation samples were collected from each borehole at depths of 1-foot and 5 feet bgs. The soil samples were collected, handled, and analyzed as described above.

Laboratory analytical results for the delineation samples collected from boreholes BH01, BH03, and BH04 indicated all COC concentrations were compliant with the Site Closure Criteria and reclamation requirements, where applicable. Laboratory analytical results for the delineation samples collected boreholes BH02 and BH05 indicated that the 1-foot bgs samples exceeded the Site Closure Criteria and/or reclamation requirements for TPH and chloride. The soil samples collected at 5 feet bgs from boreholes BH02 and BH05 were compliant with the Site Closure Criteria, and defined the vertical extent of the release. Laboratory analytical results are summarized in Table 1 and the complete laboratory analytical reports are included as Appendix D.

EXCAVATION AND DELINEATION ACTIVITIES

Between November 1, 2023, and November 14, 2023, Ensolum personnel were at the Site to oversee excavation of impacted soil resulting from the February 7, 2023, crude oil and produced water release. To direct excavation activities, soil was field screened for VOCs and chloride. Excavation activities were performed utilizing a track-mounted backhoe and transport vehicles. The excavation was completed to depths ranging from 1-foot to 14 feet bgs.

Following removal of impacted soil, 5-point composite soil samples were collected every 200 square feet from the floor and sidewalls of the excavation. The 5-point composite samples were collected by placing five equivalent aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. Composite soil samples FS01 through FS20, FS02A, and FS04A were collected from the floor of the excavation at depths ranging from 1-foot to 14 feet bgs. Composite soil samples SW01 through SW14 were collected from the sidewalls of the excavation at depths ranging from the ground surface to 14 feet bgs. The excavation soil samples were handled and analyzed following the same procedures as described above. The excavation extent and excavation soil sample locations were mapped utilizing a handheld GPS and are presented on Figure 3. Photographic documentation was completed during the Site visits and a photographic log is included in Appendix B.

Potholes PH01 and PH02 were advanced within the open excavation to depths of 12 feet and 16 feet bgs, respectively, and boreholes BH02 and BH05 were deepened to a depth of 6 feet bgs. Final depth of the potholes and boreholes was determined by field screening results indicating compliance with the most stringent Table I Closure Criteria. Soil from the potholes and boreholes was field screened at 1-foot intervals for VOCs and chloride. Field screening results and observations for the potholes and boreholes were logged on lithologic soil sampling logs, which are included in Appendix C. Discrete delineation samples collected from the potholes and boreholes at depths ranging from 6 feet to 16 feet bgs. Additionally, lateral delineation samples SS01 through SS06 were collected around the excavation extent to confirm the lateral extent of the surface release. The delineation soil sample locations are presented on Figure 2. The excavation and delineation soil samples were handled following the same procedures as described above and submitted to Cardinal Laboratories for analysis of BTEX, TPH, and chloride.

Laboratory analytical results for excavation floor samples FS01, FS02A, FS03, FS04A, and FS05 through FS20 and excavation sidewall samples SW01 through SW14, collected from the final excavation

extent, indicated all COC concentrations were compliant with the Site Closure Criteria and reclamation requirements for samples collected in the top four feet. Laboratory analytical results for excavation floor samples FS02 and FS04 initially exceeded the Site Closure Criteria for TPH-GRO/TPH-DRO; additional soil was removed from these areas and subsequent floor samples FS02A and FS04A were compliant.

Laboratory analytical results for the delineation samples collected from the potholes and boreholes indicated all COC concentrations were compliant with the Site Closure Criteria. Additionally, the final depth delineation samples from potholes PH01 and PH02 and boreholes BH01 through BH05, collected at depths ranging from 5 feet to 16 feet bgs, were compliant with the most stringent Table I Closure Criteria and provided vertical delineation of the release. Laboratory analytical results for lateral assessment samples SS01 through SS06 indicated all COC concentrations were compliant with the most stringent Table I Closure Criteria and provided lateral delineation of the surface release. Laboratory analytical reports are included as Appendix D.

The excavation measured approximately 3,925 square feet in areal extent. A total of approximately 1,600 cubic yards of impacted soil was removed during the excavation activities. The impacted soil was transported and properly disposed of at the Sundance Disposal Facility located in Eunice, New Mexico.

CLOSURE REQUEST

Site assessment and excavation activities were conducted at the Site to address the February 7, 2023, release of crude oil and produced water. Laboratory analytical results for the excavation soil samples, collected from the final excavation extent, indicated all COC concentrations were compliant with the Site Closure Criteria and reclamation requirements, where applicable. Additionally, the release was laterally and vertically delineated to below the most stringent Table I Closure Criteria. Based on the laboratory analytical results, no further remediation is required. The excavation was backfilled with material purchased locally and recontoured to match pre-existing conditions. The disturbed area was seeded with a landowner approved seed mix.

Delineation and excavation of impacted soil have mitigated impacts at this Site. Depth to groundwater has been determined to be greater than 51 feet bgs and no sensitive receptors were identified near the release extent. Maverick believes the remedial actions completed are protective of human health, the environment, and groundwater and respectfully requests closure for Incident NAPP2305453661. NMOCD notifications are included in Appendix E and the final Form C-141 is included in Appendix F.

If you have any questions or comments, please contact Ms. Aimee Cole at (720) 384-7365 or acole@ensolum.com.

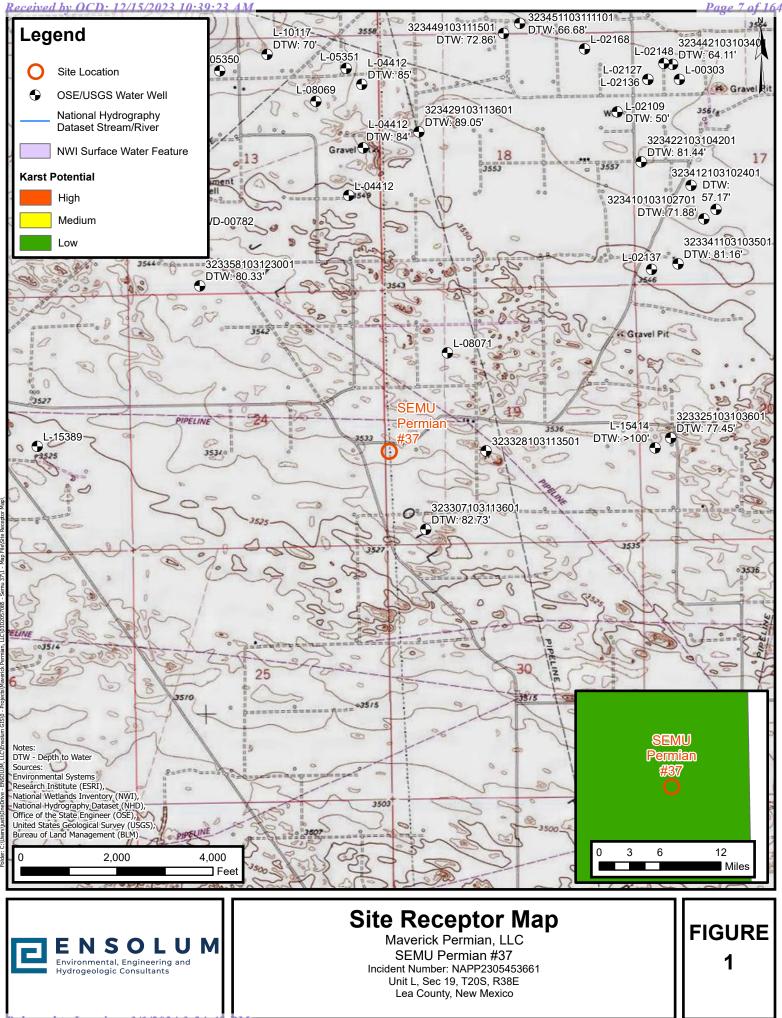
Sincerely, **Ensolum, LLC**

Julianna Falcomata Staff Geologist

Sinée Cole

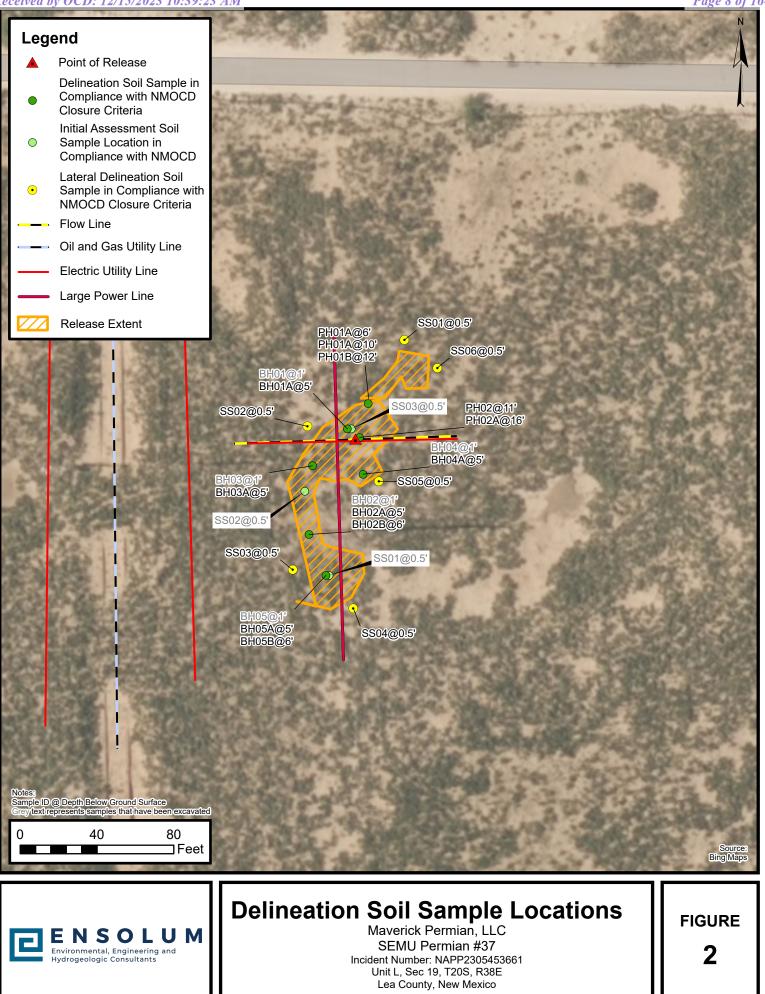
Aimee Cole Senior Managing Scientist

cc: Bryce Wagoner, Maverick Natural Resources

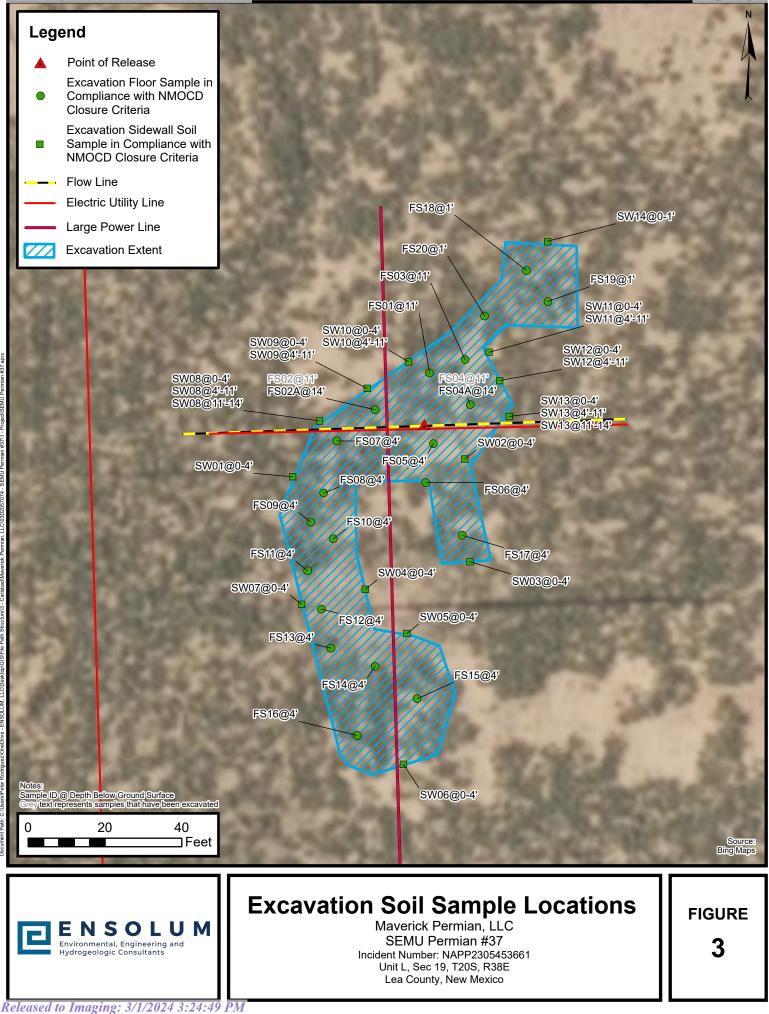


Appendices:

- Figure 1 Site Receptor Map
- Figure 2 Delineation Soil Sample Locations
- Figure 3 Excavation Soil Sample Locations
- Table 1Soil Sample Analytical Results
- Appendix A Referenced Well Records
- Appendix B Photographic Log
- Appendix C Lithologic Soil Sampling Logs
- Appendix D Laboratory Analytical Reports & Chain of Custody Documentation
- Appendix E NMOCD Notifications
- Appendix F Final C-141



FIGURES


Released to Imaging: 3/1/2024 3:24:49 PM

Received by OCD: 12/15/2023 10:39:23 AM

Released to Imaging: 3/1/2024 3:24:49 PM

Received by OCD: 12/15/2023 10:39:23 AM

TABLES

	TABLE 1 SOIL SAMPLE ANALYTICAL RESULTS SEMU Permian #37 Maverick Permian, LLC Lea County, New Mexico												
Sample Designation	Date	Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)			
NMOCD Table 1	Closure Criteria	(NMAC 19.15.29)	10	50	NE	NE	NE	1,000	2,500	600 / 10,000			
				Initia	al Assessment S	oil Samples							
SS01	02/16/2023	0.5'	0.262	33.1	2,480	17,500	<997	19,980	20,000	571			
SS02	02/16/2023	0.5'	<0.198	47	2,600	12,200	<999	14,800	14,800	688			
SS03	02/16/2023	0.5'	0.524	110	3,800	11,900	<998	15,700	15,700	702			
				Deli	neation Soil Sam	ples							
BH01*	03/20/2023	1'	<0.00201	<0.00402	<49.9	<49.9	<49.9	<49.9	<49.9	73.2			
BH01A	03/20/2023	5'	<0.0398	<0.0797	<50.0	<50.0	<50.0	<50.0	<50.0	83.9			
BH02*	03/20/2023	1'	0.108	20.6	782	3010	<249	3,792	3,790	948			
BH02A	03/20/2023	5'	<0.0402	<0.0805	<50.0	<50.0	<50.0	<50.0	<50.0	1,350			
BH02B	11/3/2023	6'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	32.0			
BH03*	03/20/2023	1'	<0.0403	<0.0806	<50.0	54.3	<50.0	54	54.3	180			
BH03A	03/20/2023	5'	<0.0398	<0.0797	<49.9	260	<49.9	260	260	372			
BH04*	03/20/2023	1'	<0.0398	<0.0795	<49.9	<49.9	<49.9	<49.9	<49.9	49.4			
BH04A	03/20/2023	5'	<0.0399	<0.0798	<49.8	<49.8	<49.8	<49.8	<49.8	89.2			
BH05*	03/20/2023	1'	<0.100	15.2	1030	7680	<498	8,710	8,710	626			
BH05A	03/20/2023	5'	<0.0398	0.117	<50.0	255	<50.0	255	255	1,950			
BH05B	11/3/2023	6'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	16.0			
PH01A	11/1/2023	6'	<0.050	<0.300	<10.0	33.9	<10.0	33.9	33.9	320			
PH01B	11/1/2023	10'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	16.0			
PH01C	11/1/2023	12'	<0.050	<0.300	<10.0	<0.050	<0.300	<10.0	10	<16.0			
PH02	11/8/2023	11'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	1,380			
PH02A	11/8/2023	16'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	32			

•

				s Ma'	TABLE 1 LE ANALYTICA SEMU Permian #3 verick Permian, I County, New Me	37 _LC				
Sample Designation	Date	Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table 1	Closure Criteria	(NMAC 19.15.29)	10	50	NE	NE	NE	1,000	2,500	600 / 10,000
				Lateral	Delineation Soil S	Samples				
SS01	11/2/2023	0.5'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	<16.0
SS02	11/2/2023	0.5'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	<16.0
SS03	11/2/2023	0.5'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	<16.0
SS04	11/2/2023	0.5'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	<16.0
SS05	11/2/2023	0.5'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	<16.0
SS06	11/2/2023	0.5'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	<16.0
				Excava	ation Floor Soil S	amples				
FS01	11/2/2023	11'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	2,560
FS02	11/2/2023	11'	<0.050	<0.300	20	1,760	397	1,780	2,177	224
FS02A	11/9/2023	14'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	1,640
FS03	11/2/2023	11'	<0.050	<0.300	<10.0	12.3	<10.0	12.3	12.3	2,480
FS04	11/2/2023	11'	<0.050	<0.300	17.0	1,620	367	1,637	2,004	208
FS04A	11/9/2023	14'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	1,640
FS05	11/1/2023	4'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	<16.0
FS06	11/1/2023	4'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	<16.0
FS07	11/2/2023	4'	<0.050	<0.300	<10.0	12.4	<10.0	12.4	12.4	384
FS08	11/2/2023	4'	<0.050	<0.300	<10.0	36.4	<10.0	36.4	36.4	48.0
FS09	11/2/2023	4'	<0.050	<0.300	<10.0	17.9	<10.0	17.9	17.9	416
FS10	11/2/2023	4'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	2,080
FS11	11/2/2023	4'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	352
FS12	11/2/2023	4'	<0.050	<0.300	<10.0	11.0	<10.0	11.0	11.0	368
FS13	11/2/2023	4'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	2,120

				S Mav	TABLE 1 LE ANALYTICA SEMU Permian #3 verick Permian, I County, New Me	37 LLC				
Sample Designation	Date	Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table 1	Closure Criteria	(NMAC 19.15.29)	10	50	NE	NE	NE	1,000	2,500	600 / 10,000
FS14	11/3/2023	4'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	32.0
FS15	11/3/2023	4'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	32.0
FS16	11/3/2023	4'	<0.050	<0.300	<10.0	197	24.0	197	221	864
FS17	11/3/2023	4'	<0.050	<0.300	<10.0	214	29.6	214	244	880
FS18*	11/8/2023	1'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	<16.0
FS19*	11/8/2023	1'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	<16.0
FS20*	11/8/2023	1'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	<16.0
				Excavati	on Sidewall Soil	Samples				
SW01*	11/1/2023	0-4'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	<16.0
SW02*	11/1/2023	0-4'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	<16.0
SW03*	11/3/2023	0-4'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	32.0
SW04*	11/3/2023	0-4'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	32.0
SW05*	11/3/2023	0-4'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	16.0
SW06*	11/3/2023	0-4'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	<16.0
SW07*	11/3/2023	0-4'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	32.0
SW08*	11/3/2023	0-4'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	16.0
SW08	11/3/2023	4-11'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	32.0
SW08	11/14/2023	11-14	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	32.0
SW09*	11/3/2023	0-4'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	32.0
SW09	11/3/2023	4-11'	<0.050	<0.300	<10.0	56.9	<10.0	56.9	56.9	32.0
SW10*	11/3/2023	0-4'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	<16.0
SW10	11/3/2023	4-11'	<0.050	<0.300	<10.0	24.8	34.2	24.8	59	32.0

Page 14 of 164
ENSOLUM Page 14 of 164

	TABLE 1 SOIL SAMPLE ANALYTICAL RESULTS SEMU Permian #37 Maverick Permian, LLC Lea County, New Mexico											
Sample DesignationDateDepth (feet bgs)Benzene (mg/kg)Total BTEX (mg/kg)TPH GRO (mg/kg)TPH DRO (mg/kg)TPH ORO (mg/kg)GRO+DRO (mg/kg)Total TPH (mg/kg)Color (mg/kg)Color (mg/kg)Total TPH (mg/kg)Color 												
NMOCD Table 1	Closure Criteria	(NMAC 19.15.29)	10	50	NE	NE	NE	1,000	2,500	600 / 10,000		
SW11*	11/3/2023	0-4'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	16.0		
SW11	11/3/2023	4-11'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	16.0		
SW12*	11/3/2023	0-4'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	32.0		
SW12	11/3/2023	4-11'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	32.0		
SW13*	11/3/2023	0-4'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	16.0		
SW13	11/3/2023	4-11'	<0.050	<0.300	<10.0	37.3	<10.0	37.3	37.3	32.0		
SW13	11/14/2023	11-14	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	32.0		
SW14*	11/8/2023	0-1'	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	<16.0		

Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram

NMOCD: New Mexico Oil Conservation Division

NMAC: New Mexico Administrative Code

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

Concentrations in **bold** exceed the NMOCD Table 1 Closure Criteria or reclamation standard where applicable. GRO: Gasoline Range Organics

DRO: Diesel Range Organics

ORO: Oil Range Organics

TPH: Total Petroleum Hydrocarbon

Grey text represents samples that have been excavated

* indicates sample was collected in area to be reclaimed after remediation is complete; reclamation standard in the top 4 feet is 600 mg/kg for chloride and 100 mg/kg for TPH.

APPENDIX A

Referenced Well Records

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

OSE DII DEC 21 2022 PM3:14

PAGE 1 OF 2

WELL TAG ID NO.

NO	ose pod no. L-15414-PC		.)		WELL TAG ID NO.			OSE FIL		5).			
OCATI	WELL OWNER MAVRICK		AL RESOURCES					PHONE 928-24		,			
WELLL	WELL OWNER 1410 NW C							CITY HOBBS	S		state NM	88240	ZIP
GENERAL AND WELL LOCATION	WELL LOCATION (FROM GPS	5)	TITUDE	GREES 32 -103	MINUTES 33 10	SECON 23.4 41.5	6 _N			REQUIRED: ONE TENT QUIRED: WGS 84	TH OF A S	SECOND	
1. GENE		N RELATIN	NGITUDE					S (SECTIO	ON, TO	WNSHJIP, RANGE) WH	ERE AVA	ILABLE	
	LICENSE NO. WD-1		NAME OF LICENSED		ELL SOUTHERL	AND				NAME OF WELL DRI WEST TEXAS			RVICE
	DRILLING ST 11/10/2		DRILLING ENDED 11/10/2022	DEPTH OF CO	MPLETED WELL (FT 103	<u>ז</u>	BORE HO	LE DEPTH	(FT)	DEPTH WATER FIRS	ST ENCO	UNTERED (FT)	
Z	COMPLETED	WELL IS:	ARTESIAN	DRY HOI	LE SHALLO	W (UNCO)	IFINED)			STATIC WATER LEV	EL IN CO N/A		LL (FT)
TIO	DRILLING FL	UID:	✓ AIR	MUD	ADDITIVI	ES – SPEC	IFY:						
RMA	DRILLING MI	ETHOD:	✓ ROTARY	HAMME	CABLE TO	DOL	OTHE	R – SPECII	FY:				
2. DRILLING & CASING INFORMATION	DEPTH (fact hal)		BORE HOLE DIAM (inches)	CASING MATERIAL AND/OR GRADE (include each casing string, and note sections of screen)			CON	ASING NECTION TYPE ling diame		CASING INSIDE DIAM. (inches)	CASING WALL THICKNESS (inches)		SLOT SIZE (inches)
G&				NOC	ASING IN HOLE								
TLIN			_										
DRII													
2.													
1													
	DEPTH (feet bgl)	BORE HOLE	LI	ST ANNULAR SE	AL MAT	TERIAL A	AND		AMOUNT		METHO	D OF
IAL	FROM	то	DIAM. (inches)	GRA	VEL PACK SIZE-	RANGE	BY INTE	ERVAL		(cubic feet)		PLACEN	IENT
ANNULAR MATERIAL													
MA					N	J/A							
LAR								×					
NNN													
3. A)		Ĭ											
FOR	OSE INTERI	NAL USE							WR-2	0 WELL RECORD	& LOG (Version 04/3	0/19)
FILI	E NO.				POD NO				TRN N	NO.			

LOCATION

_	DEPTH (Fact hal)				Sector Parks					ESTIMATED
	FROM	TO	THICKNESS (feet)	INCLUDE WATE	D TYPE OF MATERIAL El R-BEARING CAVITIES Ol plemental sheets to fully de	R FRAC	TURE ZONES	5	WAT BEAR (YES /	ING?	YIELD FOR WATER- BEARING ZONES (gpm)
	0	1			CALICHIE PAD				Y	✔ N	(8F)
	1	20			DAMP SAND				Y	✓ N	
	20	25			SANDY CALICHIE				Y	• N	
	25	40	2		TAN, WHITE SAND				Y	✓ N	
	40	60			SAND, SANDSTONE STRE	AKS			Y	✓ N	
	60	103			RED SAND				Y	✓ N	
4. HYDROGEOLOGIC LOG OF WELL	00	105							Y	N	
F W									Y	N	
0 9									Y	N	
CLO									Y	N	
OGIO									Y	N	
OLO									Y	N	
OGE									Y		
DR										N	
4. H)									Y	N	
									Y	N	
	#3:T¢	• 7207 T	RE DIL DEC 1	<u> </u>	,				Y	N	
			and the second sec						Y	N	
									Y	N	
									Y	N	
					1				Y	N	
									Y	N	
	METHOD U			OF WATER-BEARING	3 STRATA: HER – SPECIFY:DRY HC	DLE			L ESTIM L YIELD		0.00
NOIS	WELL TES	T TEST	RESULTS - ATTA I TIME, END TIM	ACH A COPY OF DAT ME, AND A TABLE SH	A COLLECTED DURING ' IOWING DISCHARGE AN	WELL 1 D DRA	TESTING, INC WDOWN OVE	LUDIN ER THE	IG DISCI TESTIN	HARGE I G PERIC	METHOD, DD.
TEST; RIG SUPERVISI	MISCELLA	NEOUS INF	FORMATION:								
EST	PRINT NAM	IE(S) OF DI	RILL RIG SUPER	VISOR(S) THAT PRO	VIDED ONSITE SUPERVIS	SION O	F WELL CONS	STRUC	TION O	THER TH	IAN LICENSEE:
5. T	RUSSELL	. ,									
6. SIGNATURE	BY SIGNIN RECORD O WELL REC	F THE ABO	VE DESCRIBED ALSO BE FILED	WELL LALSO CERT WITH THE PERMIT H RUSSEL	F MY KNOWLEDGE ANI IFY THAT THE WELL TAU IOLDER WITHIN 30 DAYS L SOUTHERLAND	D BELI G, IF RE AFTER	EF, THE FOR EQUIRED, HA & THE COMPL	EGOIN S BEEN ETION	N INSTA OF WEI	TRUE A LLED AN LL DRILI	ND CORRECT ND THAT THIS LING.
	1	SIGNAT	URE OF DRILLE	R / PRINT SIGNEE	NAME					DATE	
FO	R OSE INTER	NALUSE					WR-20 WEI	LREC	ORD &	LOG (Ve	rsion 04/30/2019)
	E NO.				POD NO.		TRN NO.		Side W		
LO	CATION					WELL	, TAG ID NO.				PAGE 2 OF 2

National Water Information System: Web Interface

USGS Water Resources

Released to Imaging: 3/1/2024 3:24:49

PM

Data Category: Groundwater

United States

Geographic Area:

USGS Home Contact USGS Search USGS

Click to hideNews Bulletins

- Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

Groundwater levels for the Nation

Important: Next Generation Monitoring Location Page

Search Results -- 1 sites found

Agency code = usqs

site no list =

• 323307103113601

Minimum number of levels = 1Save file of selected sites to local disk for future upload

USGS 323307103113601 20S.38E.19.312141

Lea County, New Mexico Latitude 32°33'07", Longitude 103°11'36" NAD27 Land-surface elevation 3,534 feet above NAVD88 The depth of the well is 115 feet below land surface. This well is completed in the High Plains aquifer (N100HGHPLN) national aquifer. This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer.

Output formats

Table of data

Tab-separated data

Graph of data

Reselect period

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Water- level approval status
1954-04-02	2	D	62610		3454.12	NGVD29	1	Z			A
1954-04-02	2	D	62611		3455.23	NAVD88	1	Z			A
1954-04-02	2	D	72019	78.77			1	Z			А
1961-02-28	3	D	62610		3453.28	NGVD29	1	Z			A
1961-02-28	3	D	62611		3454.39	NAVD88	1	Z			А
1961-02-28	3	D	72019	79.61			1	Z			A
1966-03-08	3	D	62610		3446.84	NGVD29	1	Z			A
1966-03-08	3	D	62611		3447.95	NAVD88	1	Z			A
1966-03-08	3	D	72019	86.05			1	Z			А
1968-04-08	3	D	62610		3451.86	NGVD29	1	Z			A
1968-04-08	3	D	62611		3452.97	NAVD88	1	Z			А
1968-04-08	8	D	72019	81.03			1	Z			A
1971-01-28	3	D	62610		3451.34	NGVD29	1	Z			А
1971-01-28	3	D	62611		3452.45	NAVD88	1	Z			A
1971-01-28		D	72019	81.55			1	_			A
1976-01-29		D	62610		3450.16	NGVD29	1				A
1976-01-29		D	62611		3451.27	NAVD88	1	_			A
1976-01-29)	D	72019	82.73			1	Z			A

	Explanation									
Section	Code	Description								
Water-level date-time accuracy	D	Date is accurate to the Day								
Parameter code	62610	Groundwater level above NGVD 1929, feet								
Parameter code	62611	Groundwater level above NAVD 1988, feet								
Parameter code	72019	Depth to water level, feet below land surface								
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988								
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929								
Status	1	Static								
Method of measurement	Z	Other.								

Section	Code	Description
Measuring agency		Not determined
Source of measurement		Not determined
Water-level approval status	А	Approved for publication Processing and review completed.
<u>Questions or Comments</u> <u>Automated retrievals</u> <u>Help</u> <u>Data Tips</u>		
Explanation of terms		

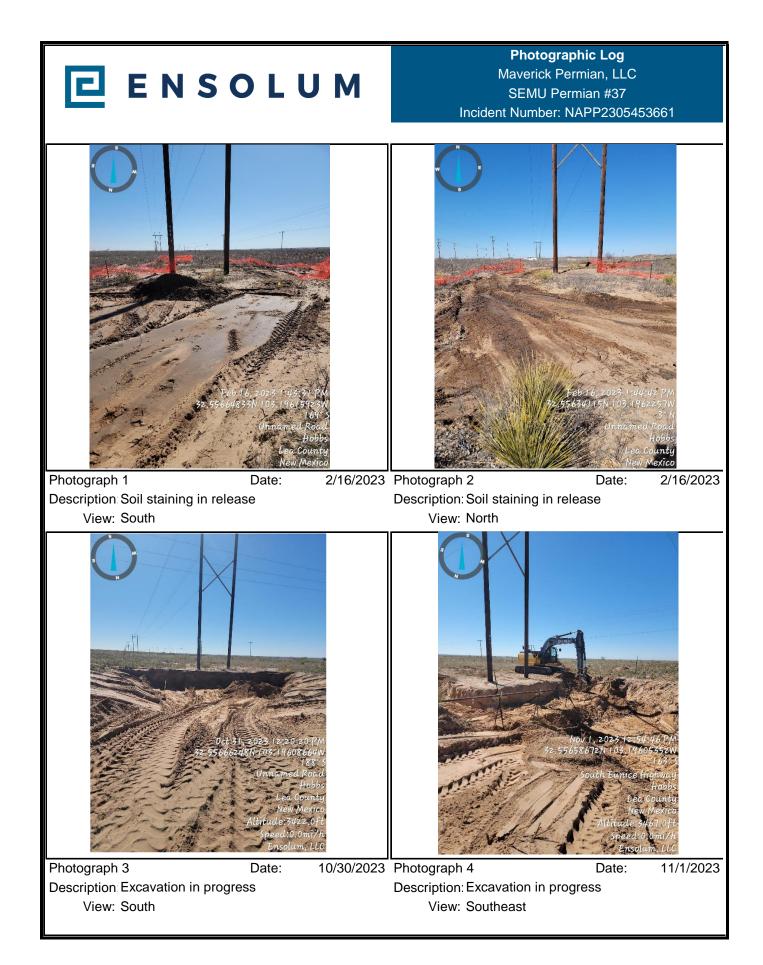
News

Accessibility FOIA Privacy Policies and Notices

Subscribe for system changes

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for USA: Water Levels URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2023-08-07 11:32:11 EDT 0.29 0.26 nadww01



APPENDIX B

Photographic Log

Released to Imaging: 3/1/2024 3:24:49 PM

APPENDIX C

Lithologic Soil Sampling Logs

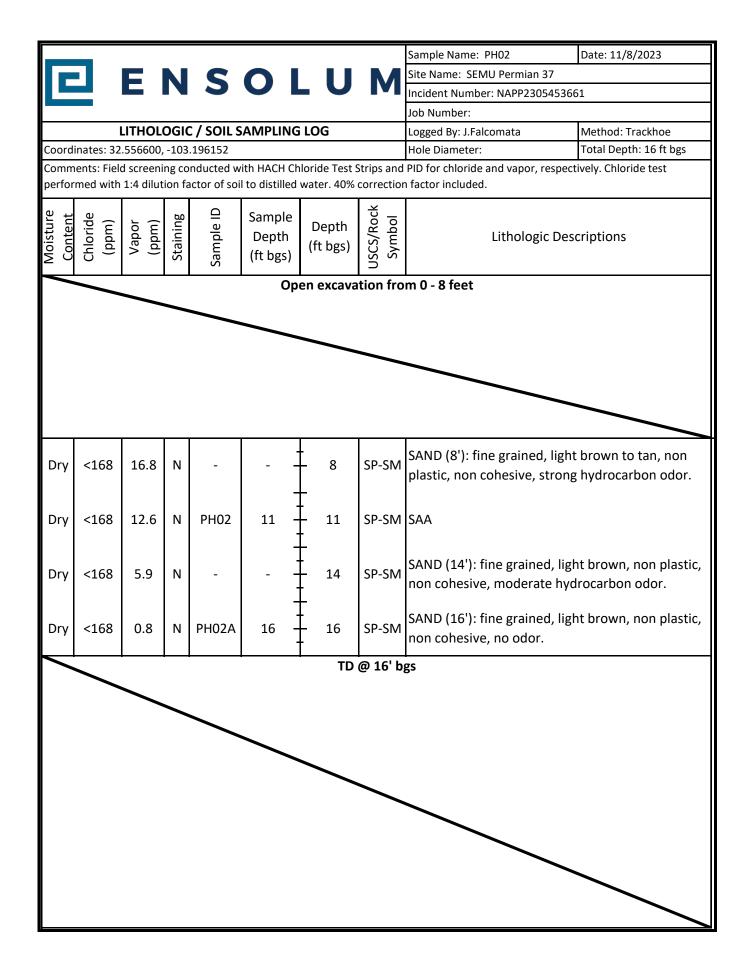
•

								Sample Name: BH01	Date: 03/20/23				
			N	C		LU	NA	Site Name: SEMU Permian 37					
								Incident Number: nAPP2305453	366				
								Job Number: 03D2057074					
		LITHOL	OGI	C / SOIL S	SAMPLING	G LOG		Logged By: Dmitry Nikanorov	Method: Hand auger				
Coord	linates: 32	2.556613	, -103	3.196176				Hole Diameter:~4"	Total Depth:5 ft bgs				
			-					PID for chloride and vapor, respension factor included.	ectively. Chloride test				
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic D	escriptions				
N	<173	ne, yellow											
N	<173	0.8	N	BH01B	2	2	SP	color, no stain, no odor SAA					
N	N <173 0.7 N BH01C 3 3 SP							SAA					
N	<173	0.8	Ν	BH01D	4	4	SP	SAA					
N	<173	0.3	N	BH01E	5	5	SP	SAA					
					_	<u>L_</u>							
	N <173 0.3 N BH01E 5 5 5 SP SAA TD at 5 ft bgs												

							Sample Name: BH02	Date: 11/3/23	
	-		~				Site Name: SEMU Permian 37	Date: 11/3/25	
	EI	N	5	OL	. U	Μ	Incident Number: NAPP230545	53661	
							Job Number: 03C2057074		
	LITHOLO	GIC	/ SOIL SA	AMPLING	LOG		Logged By: J.Falcomata	Method: Trackhoe	
Coordinates: 32			-				Hole Diameter: ~3'	Total Depth: 6 ft bgs	
Comments: Fiel	d screening	; cond	ducted with				D for chloride and vapor, respe actor included.	ctively. Chloride test	
Moisture <u>Content</u> Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic D	Descriptions	
Dry 1,325	Dry 1,325 1057.0 Y 1 1 0-1 SP amounts of silt, light brown, heavy odor, non cohesive, non plastic.								
Dry 1,508	1034.0	Y		2 -	- 2	SP	SAA		
Dry 1,478 1,049 Y 3 4 3 SP SAA									
Dry 1,928	927	Y		4 -	- 4	SP	SAA		
Dry 274	120.7	N	BH02A	- 5 - -	- - 5 -	SP	SAND (5'): fine grained, p amounts of silt, light brow cohesive, non plastic.		
Dry <168	4.7	N	BH02B	6 -	- 6	SP	SAA		
\leq					TD reac	hed @ 6	' bgs		

•

								Sample Name: BH03	Date: 03/20/23
				C	ΟΙ			Site Name: SEMU Permian 37	• • •
				3				Incident Number: nAPP23054536	56
								Job Number: 03D2057074	
		LITHOL	OGI	C / SOIL S	AMPLING	LOG		Logged By: Dmitry Nikanorov	Method: Hand auger
Coord	inates: 32	2.556561,	-103	.196234				Hole Diameter:~4"	Total Depth:5 ft bgs
Comments: Field screening conducted with HACH Chloride Test Strips and performed with 1:4 dilution factor of soil to distilled water. 40% correction									tively. Chloride test
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic De	escriptions
N	<173	33.5	Y	вноза	1		SP	Poorly graded fine sand, lig stained, some odor, light b	
N	173	247.0	Y	BH03B	2	2	SP	SAA	
N	<173	118.7	Y	BH03C	3	3	SP	SAA	
N	<173	15.7	Y	BH03D	4	4	SP	SAA	
N	<173	21.2	Y	BH03E	5_	5	SP	SAA	
						_		TD at 5 ft bgs	


•

							Sample Name: BH04	Date: 03/20/23
		N	C	ΟΙ		NЛ	Site Name: SEMU Permian 37	
			3				Incident Number: nAPP2305453	66
							Job Number: 03D2057074	
	LITHOL	OGIO	C / SOIL S	AMPLING	LOG		Logged By: Dmitry Nikanorov	Method: Hand auger
Coordinates: 3							Hole Diameter:~4"	Total Depth:5 ft bgs
							PID for chloride and vapor, respective for the second second second second second second second second second s	ctively. Chloride test
Moisture Content Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic D	escriptions
N <173	3.7	Ν	BH04	1 - 1 -	0 	SP	Poorly graded fine sand, li brown color, no stain, little	
N <173	2.4	N	BH04	2	2	SP	SAA	
N <173	4.0	N	BH04	3	3	SP	SAA	
N <173	6.4	N	BH04	4	4	SP	SAA	
N <173	1.1	N	BH04	5	5	SP	SAA	
					-		TD at 5 ft bgs	

						Sample Name: BH05	Date: 11/3/23		
.		~				•	Date: 11/3/23		
EI		2	ΟL	. U	M		3661		
	הור			106					
		-		100			Total Depth: 6 ft bgs		
				orido Tost St	rins and F				
	-				•		chively. Chionae test		
Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic De			
627.3	Y		1 -	- 0-1 -	SP	SAND (1'): fine grained, po amounts of silt, light brow cohesive, non plastic.			
574.7	Y		2 -	- - 2 -	SP	SAA			
431.2	Y		3 -	- - 3 -	SP	SAA			
178.4	Y		4 -	- - 4 -	SP	SAA			
62.1	N	BH05A	- 5 - -	- - 5 -	SP	SAND (5'): fine grained, pc amounts of silt, light brow cohesive, non plastic.			
8.6	N	BH05B	6 -	- 6	SP	SAA			
				TD reac	hed @ 6	o' bgs			
	LITHOLC 2.5564042, eld screenin h 1:4 dilution 627.3 574.7 431.2 178.4 62.1	LITHOLOGIC 2.5564042, -103 eld screening con h 1:4 dilution fac 627.3 Y 574.7 Y 431.2 Y 178.4 Y 62.1 N	LITHOLOGIC / SOIL SA 2.5564042, -103.1962140 Id screening conducted with h 1:4 dilution factor of soil 1	LITHOLOGIC / SOIL SAMPLING 2.5564042, -103.1962140 Id screening conducted with HACH Chick h 1:4 dilution factor of soil to distilled with i i i	LITHOLOGIC / SOIL SAMPLING LOG 2.5564042, -103.1962140 Id screening conducted with HACH Chloride Test Sth 1 4 dilution factor of soil to distilled water. 40% c Image: Solid Colspan="3">Sample Depth (ft bgs) Image: Solid Colspan="3">Sample Depth (ft bgs) 627.3 Y 1 0-1 574.7 Y 2 2 431.2 Y 3 3 178.4 Y 4 4 62.1 N BH05A 5 5 8.6 N BH05B 6 6	2.5564042, -103.1962140 Id screening conducted with HACH Chloride Test Strips and F h 1:4 dilution factor of soil to distilled water. 40% correction Y Sample Depth Depth Depth G27.3 Y 1 627.3 Y 2 2 574.7 Y 2 2 SP 431.2 Y 3 3 SP 178.4 Y 4 4 SP 62.1 N BH05A 5 5 SP 8.6 N BH05B 6 6 SP	Job Number: 03C2057074 Job Number: 03C2057074 LitHOLOGIC / SOIL SAMPLING LOG Logged By: J.Falcomata 2.5564042, -103.1962140 Hole Diameter: ~3' eld screening conducted with HACH Chloride Test Strips and PID for chloride and vapor, respected h 1:4 dilution factor of soil to distilled water. 40% correction factor included. Lithologic Detected h 1:4 dilution factor of soil to distilled water. 40% correction factor included. Image: Colspan="2">Image: Colspan="2">Openting Conducted with HACH Chloride Test Strips and PID for chloride and vapor, respected h 1:4 dilution factor of soil to distilled water. 40% correction factor included. Image: Colspan="2">Image: Colspan="2">Openting Conducted with HACH Chloride Test Strips and PID for chloride and vapor, respected h 1:4 dilution factor of soil to distilled water. 40% correction factor included. Image: Colspan="2">Image: Colspan="2">Openting Conducted with HACH Chloride Test Strips and PID for chloride and vapor, respected h 1:4 dilution factor of soil to distilled water. 40% correction factor included. Image: Colspan="2">Image: Colspan="2">Openting Conducted with HACH Chloride Test Strips and PID for chloride and vapor, respected h 1:4 dilution factor of soil to distilled water. 40% correction factor included. Image: Colspan="2">Image: Colspan="2">Openting Conducted with HACH Chloride Test Strips and PID for chloride and vapor, respected h 1:4 dilution factor of soil to distilled water. 40% correction factor included. Image: Colspan="2">Image: Colspan="2">Openting Conducted water. Image: Colspan="2">Image		

•

Sample Name: PH01 Date: 11/1/23 Site Name: SENU Permian 37 Incident Number: NAPP2305453661 Job Number: 03C2057074 Job Number: 03C2057074 LITHOLOGIC / SOIL SAMPLING LOG Logged By: J.Falcomata Method: Trackhoe Coordinates: 32.5566690, -103.1961149 Hole Diameter: ~3' Total Depth: 12 ft Comments: Field screening conducted with HACH Chloride Test Strips and PID for chloride and vapor, respectively. Chloride test performed with 1:4 dilution factor of soil to distilled water. 40% correction factor included. antigord angle Depth Depth Yo Oge yo angle Depth Ope performed with 1:4 dilution factor of soil to distilled water. 40% correction factor included. Lithologic Descriptions Open excavation from 0-5' Open excavation from 0-5' Open excavation from 0-5'	
Job Number: 03C2057074 LITHOLOGIC / SOIL SAMPLING LOG Logged By: J.Falcomata Method: Trackhoe Coordinates: 32.5566690, -103.1961149 Hole Diameter: ~3' Total Depth: 12 ft Comments: Field screening conducted with HACH Chloride Test Strips and PID for chloride and vapor, respectively. Chloride test performed with 1:4 dilution factor of soil to distilled water. 40% correction factor included. Ithologic Descriptions Image: Stripping of the stripping	
Job Number: 03C2057074 LITHOLOGIC / SOIL SAMPLING LOG Logged By: J.Falcomata Method: Trackhoe Coordinates: 32.5566690, -103.1961149 Hole Diameter: ~3' Total Depth: 12 ft Comments: Field screening conducted with HACH Chloride Test Strips and PID for chloride and vapor, respectively. Chloride test performed with 1:4 dilution factor of soil to distilled water. 40% correction factor included. Ithologic Descriptions Image: Stripping of the stripping	
LITHOLOGIC / SOIL SAMPLING LOG Logged By: J.Falcomata Method: Trackhoe Coordinates: 32.5566690, -103.1961149 Hole Diameter: ~3' Total Depth: 12 ft Comments: Field screening conducted with HACH Chloride Test Strips and PID for chloride and vapor, respectively. Chloride test performed with 1:4 dilution factor of soil to distilled water. 40% correction factor included. Item better test performed with 1:4 dilution factor of soil to distilled water. 40% correction factor included. Image: Depth or test performed with test performed withet performed withet performed with test pe	
Coordinates: 32.5566690, -103.1961149 Hole Diameter: ~3' Total Depth: 12 ft Comments: Field screening conducted with HACH Chloride Test Strips and PID for chloride and vapor, respectively. Chloride test performed with 1:4 dilution factor of soil to distilled water. 40% correction factor included. Total Depth: 12 ft entropy entropy entropy entropy entropy entropy entropy entropy entropy entropy entropy entropy entropy entropy entropy entropy entropy entropy entropy entropy entropy entropy entropy entropy entropy entropy <th></th>	
Comments: Field screening conducted with HACH Chloride Test Strips and PID for chloride and vapor, respectively. Chloride test performed with 1:4 dilution factor of soil to distilled water. 40% correction factor included.	
performed with 1:4 dilution factor of soil to distilled water. 40% correction factor included. Woistney	
Open excavation from 0-5'	
SAND (6'): fine grained, poorly graded, trace	
Dry 274 120.7 N PH01A 6 + 6 SP amounts of silt, light brown, no odor, non	
cohesive, non plastic.	
$\blacksquare \downarrow \downarrow \downarrow $	
<168 24.8 - 9	
$\blacksquare \perp \perp $	
SAND (10'): fine grained, poorly graded, tra	e
Dry <168 6.7 N PH01B 10 + 10 SP amounts of silt, light brown, no odor, non	
cohesive, non plastic.	
SAND (12'): fine grained, poorly graded, tra	è
Dry <168 0.3 N PH01C 12 $+$ 12 SP amounts of silt, medium brown, no odor, no	
\square DIVINITION 100 10.0 1 N FRUTCI TZ $-T$ TZ 1 3P landunus of sing measurements from 10 0001, in	
cohesive, non plastic.	

APPENDIX D

Laboratory Analytical Reports & Chain of Custody Documentation

November 15, 2023

AIMEE COLE ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD, NM 88220

RE: SEMU PERMIAN 37

Enclosed are the results of analyses for samples received by the laboratory on 11/14/23 11:40.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

Analytical Results For:

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/14/2023	Sampling Date:	11/08/2023
Reported:	11/15/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK 32.5566346, -103.1960617		

Sample ID: PH 02 @ 11' (H236218-01)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/14/2023	ND	1.85	92.5	2.00	7.65	
Toluene*	<0.050	0.050	11/14/2023	ND	1.96	98.1	2.00	10.3	
Ethylbenzene*	<0.050	0.050	11/14/2023	ND	1.98	98.8	2.00	12.2	
Total Xylenes*	<0.150	0.150	11/14/2023	ND	6.02	100	6.00	13.5	
Total BTEX	<0.300	0.300	11/14/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1380	16.0	11/14/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/15/2023	ND	200	99.8	200	3.63	
DRO >C10-C28*	<10.0	10.0	11/15/2023	ND	203	101	200	2.06	
EXT DRO >C28-C36	<10.0	10.0	11/15/2023	ND					
Surrogate: 1-Chlorooctane	84.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	82.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whother is subsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/14/2023	Sampling Date:	11/08/2023
Reported:	11/15/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK 32.5566346, -103.1960617		

Sample ID: PH 02 @ 16' (H236218-02)

BTEX 8021B	mg/kg		Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/14/2023	ND	1.85	92.5	2.00	7.65	
Toluene*	<0.050	0.050	11/14/2023	ND	1.96	98.1	2.00	10.3	
Ethylbenzene*	<0.050	0.050	11/14/2023	ND	1.98	98.8	2.00	12.2	
Total Xylenes*	<0.150	0.150	11/14/2023	ND	6.02	100	6.00	13.5	
Total BTEX	<0.300	0.300	11/14/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	129	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	11/14/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/15/2023	ND	200	99.8	200	3.63	
DRO >C10-C28*	<10.0	10.0	11/15/2023	ND	203	101	200	2.06	
EXT DRO >C28-C36	<10.0	10.0	11/15/2023	ND					
Surrogate: 1-Chlorooctane	95.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother bits ubsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/14/2023	Sampling Date:	11/14/2023
Reported:	11/15/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK 32.5566346, -103.1960617		

Sample ID: SW 08 @ 11-14' (H236218-03)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/14/2023	ND	1.85	92.5	2.00	7.65	
Toluene*	<0.050	0.050	11/14/2023	ND	1.96	98.1	2.00	10.3	
Ethylbenzene*	<0.050	0.050	11/14/2023	ND	1.98	98.8	2.00	12.2	
Total Xylenes*	<0.150	0.150	11/14/2023	ND	6.02	100	6.00	13.5	
Total BTEX	<0.300	0.300	11/14/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	118 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	11/14/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/15/2023	ND	200	99.8	200	3.63	
DRO >C10-C28*	<10.0	10.0	11/15/2023	ND	203	101	200	2.06	
EXT DRO >C28-C36	<10.0	10.0	11/15/2023	ND					
Surrogate: 1-Chlorooctane	81.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	81.0	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother bits ubsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/14/2023	Sampling Date:	11/14/2023
Reported:	11/15/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK 32.5566346, -103.1960617		

Sample ID: SW 13 @ 11-14' (H236218-04)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/14/2023	ND	1.85	92.5	2.00	7.65	
Toluene*	<0.050	0.050	11/14/2023	ND	1.96	98.1	2.00	10.3	
Ethylbenzene*	<0.050	0.050	11/14/2023	ND	1.98	98.8	2.00	12.2	
Total Xylenes*	<0.150	0.150	11/14/2023	ND	6.02	100	6.00	13.5	
Total BTEX	<0.300	0.300	11/14/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	11/14/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/15/2023	ND	200	99.8	200	3.63	
DRO >C10-C28*	<10.0	10.0	11/15/2023	ND	203	101	200	2.06	
EXT DRO >C28-C36	<10.0	10.0	11/15/2023	ND					
Surrogate: 1-Chlorooctane	83.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	80.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keene, Lab Director/Quality Manager

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

FORM-0	Delivered By: (Circle One) Sampler - UPS - Bus - Ot	Reinquished By	PLEASE NOTE: Liability analysis, Al claims inclu	Lab I.D. H236218 1 2 4
ORM-000 N 3.4 07/11/23	Delivered By: (Circle One) Sampler - UPS - Bus - Other:	at Cardinal be liable for indedential or consequential damages, including without a strain is based arriving out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based arriving out of or related to the performance of the per	PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising whether based in contract or tord, shall be limited to the amount paid by the client for the pplicable prevent of the amount paid by the client for the applicable including those for negligence and any other cause whatsoever wathout limited on, using whether based in contract or tord, shall be limited to the amount paid by the client for the applicable analysis. All claims including those for negligence and any other cause whatsoever wathout limited on, using the client limited on the applicable analysis. All claims including those for negligence and any other cause whatsoever wathout limited on.	Sunoz () 11-14
† Cardina	Observed Temp. °C Corrected Temp. °C	Date:	nd client's exclusive remedy for an other cause whatsoever is hard to be the remedy for an other cause whatsoever is hard to be	
I cannot accep	ノ・ジ Cool マイ	Received By:	y claim arising whether b learned waved unless ma whout imration. Busines	GRABOR (C) C C C C C C C C C C C C C C C C C C C
t verbal change	Sample Condition Cool Intact Yes P Yes No No No	her such claim is base, in the such claim is bas	sed in contract of tort, she de in writing and received s Interruptions, loss of use	OIL SLUDGE OTHER : ACID/BASE:
s. Please emai	CHECKED BY: (Initials)	non any of the above state	li be limited to the amount by Cardinal within 30 days or loss of profits incurred	
Cardinal cannot accept verbal changes. Please email changes to construction	Turnaround Time: Thermometer ID #140 Correction Factor 0°C	All Results are All Results are All Results are All All All All All All All All All All	paid by the client for the after completion of the appli by client, its subsidiarities,	TIME 1000 X 1010 X
oy.noono@	me: Standard #140 Rush or 0°C 241	emailed. Please pro	Cable	EX THE
	ard Bac Coo	Add'I Pi		

Date:	1Demages. Cardinal's liability and client's exclusive remedy for any claim arising whether based in outract or fort, shall be limited to the aniouri, your or or other shall be directed by Cardinal within 30 days after completion of the applicable g those for negligence and any other cause whatsoever shall be directed whether directed by Cardinal within 30 days after completion of the applicable of indicated in a consequential damages, including without fination, business interruptions, loss of use, or loss of profile incurred by client, its subsidiaries, ing out of or related with the parformance of services heraundic by Cardinal, regardless of whether such claim is base, including the above stated reasons or otherwise. I go ut of or related with the parformance of services heraundic by Cardinal, regardless of whether such claim is base, including the above stated reasons or otherwise. I go ut of or related with the parformance of services the target by Cardinal, regardless of whether such claim is base, including the above stated reasons or otherwise. I go ut of or related with the parformance of services the target by Cardinal, regardless of whether such claim is base, including the above stated reasons or otherwise. I go ut of or related with the parformance of services the target by Cardinal, regardless of whether such claim is base, including the above stated reasons or otherwise. I go ut of or related with the parformance of services the target by Cardinal, regardless of whether such claim is base. I go ut of or related with the parformance of services the target by Cardinal, regardless of whether such claim is base. I go ut of or related with the parformance of services the target by Cardinal, regardless of whether such claim is base. I go ut of or related with the parformance of services the target by Cardinal, regardless of whether such claim is base. I go ut of or related with the parformance of services the target by Cardinal, regardless of whether such claim is base. I go ut of or related with		PHO2 (2) 11-14'	Sample I.D.	all a decision	INNANA CALAMO	10 55 do 341/0 -103.	inni Dinniau 37	Project Owner:	ţ	State://// Z	HIME HOUSE HIS
Received By:	any claim straing whether based in core or deemed waived unless made in writit og without limitation. Lusianess interrupt Cardinal, regardless of whether such Received By:			GRAB OR (C)OMP. CONTAINERS GROUNDWATER WASTEWATER SOIL OIL SLUDGE	MATRIX	S	19606M)	2	Mewerich	0	Zip: Schold	11/
I UKUNG YK	rigad or tork, shall be limited to the aninum year or and received by cardinal within 20 days after toons, loss of use, or loss of profits incurred by c claim is base,rron any of the above stated re claim is base,			OTHER : ACID/BASE: CE / COOL OTHER :	PRESERV. SAMPLING	1	Phone #:	State: Zip:	City:	Address:	Attn:	Company:
REMARKS:	Tronpletion of the applicable recompletion of the applicable agons or otherwise. Werbal Result: Ves Y No Add'I Phone #: All Results are emailed. Please provide Email address:	by the client for the	1010 0900 1 4 4 4	TIME X BTE X TPT X CN	H Cr	1	la	5				
366	o Add'I Phone #: ovide Email address:											
Bacteria (only) Sample Condition Cool Intact Observed Temp. °C	comatala						-			/		

Sampler Name: Project Location: FOR LAB USE ONLY F

Received by OCD: 12/15/2023 10:39:23 AM

Cool Intact

Corrected Temp. °C

Į

Ē

ratories

.

City:

Address:

5

Phone #: Project #:

Project Name:

Project Manager: Company Name:

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

(

P.O. #:

BILL

10 5

ANALYSIS REQUEST

Page 7 of 7

November 15, 2023

AIMEE COLE

ENSOLUM

3122 NATIONAL PARKS HWY

CARLSBAD, NM 88220

RE: SEMU PERMIAN 37

Enclosed are the results of analyses for samples received by the laboratory on 11/10/23 9:35.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Total Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Cardinal Laboratories is accredited through the State of New Mexico Environment Department for:

Method SM 9223-B	Total Coliform and E. coli (Colilert MMO-MUG)
Method EPA 524.2	Regulated VOCs and Total Trihalomethanes (TTHM)
Method EPA 552.2	Total Haloacetic Acids (HAA-5)

Accreditation applies to public drinking water matrices for State of Colorado and New Mexico.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220		Project: SEMU roject Number: 03D2r oject Manager: AIME Fax To:	057074 (32.5566346,-103.	Reported: 15-Nov-23 09:48
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FS 02 A @ 14'	H236167-01	Soil	09-Nov-23 09:50	10-Nov-23 09:35
FS 04 A @ 14'	H236167-02	Soil	09-Nov-23 09:55	10-Nov-23 09:35

11/15/23 - Client changed the sample ID on -01 (see COC). This is the revised report and will replace the one sent on 11/13/23.

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220	Project: SEMU PERMIAN 37 Project Number: 03D2057074 (32.5566346,-103. Project Manager: AIMEE COLE Fax To:							Reported: 15-Nov-23 09:48			
				2 A @ 1 167-01 (Se							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	tories						
Inorganic Compounds											
Chloride	1640		16.0	mg/kg	4	3111015	AC	10-Nov-23	4500-Cl-B		
Volatile Organic Compounds by	EPA Method	8021									
Benzene*	< 0.050		0.050	mg/kg	50	3111008	ЛН	10-Nov-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3111008	ЛН	10-Nov-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3111008	JH	10-Nov-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3111008	ЛН	10-Nov-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3111008	JH	10-Nov-23	8021B		
Surrogate: 4-Bromofluorobenzene (PID)			103 %	71.5	-134	3111008	JH	10-Nov-23	8021B		
Petroleum Hydrocarbons by GC	FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3111006	MS	10-Nov-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3111006	MS	10-Nov-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3111006	MS	10-Nov-23	8015B		
Surrogate: 1-Chlorooctane			117 %	48.2	-134	3111006	MS	10-Nov-23	8015B		
Surrogate: 1-Chlorooctadecane			113 %	49.1	-148	3111006	MS	10-Nov-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220	Project: SEMU PERMIAN 37 Project Number: 03D2057074 (32.5566346,-103 Project Manager: AIMEE COLE Fax To:							Reported: 15-Nov-23 09:48			
				4 A @ 1 167-02 (Se							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	tories						
Inorganic Compounds											
Chloride	1760		16.0	mg/kg	4	3111022	HM	10-Nov-23	4500-Cl-B		
Volatile Organic Compounds by	EPA Method	8021									
Benzene*	< 0.050		0.050	mg/kg	50	3111008	ЛН	10-Nov-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3111008	JH	10-Nov-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3111008	JH	10-Nov-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3111008	JH	10-Nov-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3111008	ЛН	10-Nov-23	8021B		
Surrogate: 4-Bromofluorobenzene (PID)			107 %	71.5	-134	3111008	ЛН	10-Nov-23	8021B		
Petroleum Hydrocarbons by GC	FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3111006	MS	10-Nov-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3111006	MS	10-Nov-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3111006	MS	10-Nov-23	8015B		
Surrogate: 1-Chlorooctane			117 %	48.2	-134	3111006	MS	10-Nov-23	8015B		
Surrogate: 1-Chlorooctadecane			113 %	49.1	-148	3111006	MS	10-Nov-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220	Project: SEMU PERMIAN 37 Project Number: 03D2057074 (32.5566346,-103 Project Manager: AIMEE COLE Fax To:	Reported: . 15-Nov-23 09:48
--	---	--------------------------------

Inorganic Compounds - Quality Control Cardinal Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3111015 - 1:4 DI Water										
Blank (3111015-BLK1)				Prepared &	Analyzed:	10-Nov-23				
Chloride	ND	16.0	mg/kg							
LCS (3111015-BS1)				Prepared &	Analyzed:	10-Nov-23				
Chloride	400	16.0	mg/kg	400		100	80-120			
LCS Dup (3111015-BSD1)				Prepared &	Analyzed:	10-Nov-23				
Chloride	416	16.0	mg/kg	400		104	80-120	3.92	20	
Batch 3111022 - 1:4 DI Water										
Blank (3111022-BLK1)				Prepared &	Analyzed:	10-Nov-23				
Chloride	ND	16.0	mg/kg							
LCS (3111022-BS1)				Prepared &	Analyzed:	10-Nov-23				
Chloride	432	16.0	mg/kg	400		108	80-120			
LCS Dup (3111022-BSD1)				Prepared &	Analyzed:	10-Nov-23				
Chloride	416	16.0	mg/kg	400		104	80-120	3.77	20	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220	Project: SEMU PERMIAN 37 Project Number: 03D2057074 (32.5566346,-103. Project Manager: AIMEE COLE Fax To:	Reported: 15-Nov-23 09:48
--	--	------------------------------

Volatile Organic Compounds by EPA Method 8021 - Quality Control

Cardinal	Labo	ratories

Analyte Batch 3111008 - Volatiles	Result	Limit								
Batch 3111008 - Volatiles			Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (3111008-BLK1)				Prepared &	Analyzed:	10-Nov-23	;			
Benzene	ND	0.050	mg/kg							
Toluene	ND	0.050	mg/kg							
Ethylbenzene	ND	0.050	mg/kg							
Total Xylenes	ND	0.150	mg/kg							
Total BTEX	ND	0.300	mg/kg							
Surrogate: 4-Bromofluorobenzene (PID)	0.0559		mg/kg	0.0500		112	71.5-134			
LCS (3111008-BS1)				Prepared: 1	0-Nov-23 A	Analyzed: 1	3-Nov-23			
Benzene	1.78	0.050	mg/kg	2.00		89.1	82.8-130			
Toluene	1.76	0.050	mg/kg	2.00		87.9	86-128			
Ethylbenzene	1.90	0.050	mg/kg	2.00		95.0	85.9-128			
m,p-Xylene	3.82	0.100	mg/kg	4.00		95.5	89-129			
o-Xylene	1.88	0.050	mg/kg	2.00		94.1	86.1-125			
Total Xylenes	5.70	0.150	mg/kg	6.00		95.1	88.2-128			
Surrogate: 4-Bromofluorobenzene (PID)	0.0542		mg/kg	0.0500		108	71.5-134			
LCS Dup (3111008-BSD1)				Prepared &	Analyzed:	10-Nov-23	ł			
Benzene	2.16	0.050	mg/kg	2.00		108	82.8-130	19.1	15.8	QR-04
Toluene	2.04	0.050	mg/kg	2.00		102	86-128	14.9	15.9	
Ethylbenzene	2.14	0.050	mg/kg	2.00		107	85.9-128	11.8	16	
m,p-Xylene	4.19	0.100	mg/kg	4.00		105	89-129	9.30	16.2	
o-Xylene	2.08	0.050	mg/kg	2.00		104	86.1-125	9.81	16.7	
Total Xylenes	6.27	0.150	mg/kg	6.00		105	88.2-128	9.47	16.3	
Surrogate: 4-Bromofluorobenzene (PID)	0.0502		mg/kg	0.0500		100	71.5-134			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220	•	SEMU PERMIAN 37 03D2057074 (32.5566346,-103. AIMEE COLE	Reported: 15-Nov-23 09:48
--	---	---	------------------------------

Petroleum Hydrocarbons by GC FID - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3111006 - General Prep - Organics										
Blank (3111006-BLK1)				Prepared &	Analyzed:	10-Nov-23	3			
GRO C6-C10	ND	10.0	mg/kg							
DRO >C10-C28	ND	10.0	mg/kg							
EXT DRO >C28-C36	ND	10.0	mg/kg							
Surrogate: 1-Chlorooctane	53.2		mg/kg	50.0		106	48.2-134			
Surrogate: 1-Chlorooctadecane	51.5		mg/kg	50.0		103	49.1-148			
LCS (3111006-BS1)				Prepared &	Analyzed:	10-Nov-22	3			
GRO C6-C10	188	10.0	mg/kg	200		93.9	66.4-123			
DRO >C10-C28	173	10.0	mg/kg	200		86.5	66.5-118			
Total TPH C6-C28	361	10.0	mg/kg	400		90.2	77.6-123			
Surrogate: 1-Chlorooctane	61.7		mg/kg	50.0		123	48.2-134			
Surrogate: 1-Chlorooctadecane	62.2		mg/kg	50.0		124	49.1-148			
LCS Dup (3111006-BSD1)				Prepared &	Analyzed:	10-Nov-23	3			
GRO C6-C10	190	10.0	mg/kg	200		95.0	66.4-123	1.18	17.7	
DRO >C10-C28	171	10.0	mg/kg	200		85.4	66.5-118	1.19	21	
Total TPH C6-C28	361	10.0	mg/kg	400		90.2	77.6-123	0.0504	18.5	
Surrogate: 1-Chlorooctane	59.4		mg/kg	50.0		119	48.2-134			
Surrogate: 1-Chlorooctadecane	60.5		mg/kg	50.0		121	49.1-148			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QR-04	The RPD for the BS/BSD was outside of historical limits.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

PLEASE A analyses. Ir service. Ir affiliates o Relino Relin H23 Samp Lab Deliv

Received by OCD: 12/15/2023 10:39:23 AM

Delivered By:-(Circle One) Sampler - UPS - Bus - Other:	Relinquished By:	PLEASE NOTE: Liability and Damages. Cardinal's liability an analyses. All claims including those for negligence and any o service. In no event shall Cardinal be liable for incidental or service.	2 FSULA A	Lab I.D. Sample I.D.	FOR LAB USE ONLY	Sampler Name: WMMM MOR	Project Name: Strill Heli	Project #: 0602057074	Phone #: 720 -564 - 766	Address: Olle Mart +1	Project Manager:	Company Name: COSCUM	(575) 393-2326 F
Observed Temp. °C _ 5.4 Sample Condition Corrected Temp. °C Cool / Intact No No	Received By:	PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising whether based in contract or tort, shall be limited to the amount paid by the client for the analyses. All claims including those for negligence and any other cause whatsoever shall be demend waived unless made in writing and received by Cardinal within 30 days after completion of the applicable analyses. All claims including those for negligence and any other cause whatsoever shall be demend waived unless made in writing and received by Cardinal within 30 days after completion of the applicable analyses. All claims including those for negligence and any other cause whatsoever shall be demend waived unless made in writing and received by Cardinal whithin 30 days after completion of the applicable analyses. All claims including those for negligence and any other cause whatsoever, including without limitation, business interruptions, loss of profits incurred by client, its subsidiaries, service. In one event shall Cardinal be hardformation of services, "writing the applicable service of whether such claim is based upon any of the above stated reasons or otherwise.	¥ H	(G)RAB OR (C)OM # CONTAINERS GROUNDWATER WASTEWATER SOIL OIL SLUDGE		Fritomologica e	1 ~ 102.10/.in/all	Project Owner:	0	State: NIM Zip: K7 7	ANK HINN		(575) 393-2326 FAX (575) 393-2476
(Initials)	Maple	ntract or tort, shall be limited to the amount paid by the client to ng and received by Cardinal within 30 days after completion of t doors, loss of uses, or loss of profits incurred by client, its subsidie claim is based upon any of the above stated reasons or otherw	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OTHER : ACID/BASE: ICE / COOL OTHER : DATE	PRESERV. SAMPLING		Phone #:		Address:	Attn:	Company:	P.O. #	
ID #140 AUSh	DUNSOLUM JUST	pplicable	- + X - + X 	BTI	ER H Dric	le	6						ANALYSIS REQUEST
Observed Temp. °C Corrected Temp. °C	address: Lalon Ada Chause Late 1 TD chause To 1/13/23 Bacteria (only) Sample Condition												JEST

Page 48 of 164

ati

ories

Page 9 of 9

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Released to Imaging: 3/1/2024 3:24:49 PM

November 06, 2023

AIMEE COLE ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD, NM 88220

RE: SEMU PERMIAN 37

Enclosed are the results of analyses for samples received by the laboratory on 11/01/23 14:10.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/01/2023	Sampling Date:	11/01/2023
Reported:	11/06/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK 32.5566346,-103.1960617		

Sample ID: FS 05 @ 4' (H235991-01)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/04/2023	ND	1.92	95.9	2.00	1.00	
Toluene*	<0.050	0.050	11/04/2023	ND	2.03	102	2.00	0.342	
Ethylbenzene*	<0.050	0.050	11/04/2023	ND	2.03	102	2.00	0.975	
Total Xylenes*	<0.150	0.150	11/04/2023	ND	6.17	103	6.00	0.640	
Total BTEX	<0.300	0.300	11/04/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/06/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/03/2023	ND	210	105	200	2.75	
DRO >C10-C28*	<10.0	10.0	11/03/2023	ND	217	108	200	1.37	
EXT DRO >C28-C36	<10.0	10.0	11/03/2023	ND					
Surrogate: 1-Chlorooctane	87.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	104	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/01/2023	Sampling Date:	11/01/2023
Reported:	11/06/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK 32.5566346,-103.1960617		

Sample ID: FS 06 @ 4' (H235991-02)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/04/2023	ND	1.92	95.9	2.00	1.00	
Toluene*	<0.050 0.050		11/04/2023	ND	2.03	102	2.00	0.342	
Ethylbenzene*	<0.050	0.050	11/04/2023	ND	2.03	102	2.00	0.975	
Total Xylenes*	<0.150	0.150	11/04/2023	ND	6.17	103	6.00	0.640	
Total BTEX	<0.300	0.300	11/04/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result Reporting Limit		Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0 16.0		11/06/2023 ND		416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/03/2023	ND	210	105	200	2.75	
DRO >C10-C28*	<10.0	10.0	11/03/2023	ND	217	108	200	1.37	
EXT DRO >C28-C36	<10.0	10.0	11/03/2023	ND					
Surrogate: 1-Chlorooctane	114 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	136	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/01/2023	Sampling Date:	11/01/2023
Reported:	11/06/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK 32.5566346,-103.1960617		

Sample ID: PH 01 A @ 6' (H235991-03)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/04/2023	ND	1.92	95.9	2.00	1.00	
Toluene*	<0.050 0.050		11/04/2023	ND	2.03	102	2.00	0.342	
Ethylbenzene*	<0.050	0.050	11/04/2023	ND	2.03	102	2.00	0.975	
Total Xylenes*	<0.150	0.150	11/04/2023	ND	6.17	103	6.00	0.640	
Total BTEX	<0.300	0.300	11/04/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	320	16.0	11/06/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/03/2023	ND	210	105	200	2.75	
DRO >C10-C28*	33.9	10.0	11/03/2023	ND	217	108	200	1.37	
EXT DRO >C28-C36	<10.0	10.0	11/03/2023	ND					
Surrogate: 1-Chlorooctane	91.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	110 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/01/2023	Sampling Date:	11/01/2023
Reported:	11/06/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK 32.5566346,-103.1960617		

Sample ID: PH 01 C @ 12' (H235991-04)

BTEX 8021B	mg/	'kg	Analyze	d By: JH/					
Analyte	Result Reporting Limit		Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/04/2023	ND	1.92	95.9	2.00	1.00	
Toluene*	<0.050	0.050	11/04/2023	ND	2.03	102	2.00	0.342	
Ethylbenzene*	<0.050	0.050	11/04/2023	ND	2.03	102	2.00	0.975	
Total Xylenes*	<0.150	0.150	11/04/2023	ND	6.17	103	6.00	0.640	
Total BTEX	<0.300	0.300	11/04/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/06/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/03/2023	ND	210	105	200	2.75	
DRO >C10-C28*	<10.0	10.0	11/03/2023	ND	217	108	200	1.37	
EXT DRO >C28-C36	<10.0	10.0	11/03/2023	ND					
Surrogate: 1-Chlorooctane	99.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	119 9	49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/01/2023	Sampling Date:	11/01/2023
Reported:	11/06/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK 32.5566346,-103.1960617		

Sample ID: SW 01 @ 0-4' (H235991-05)

BTEX 8021B	mg/	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/04/2023	ND	1.92	95.9	2.00	1.00	
Toluene*	<0.050	0.050	11/04/2023	ND	2.03	102	2.00	0.342	
Ethylbenzene*	<0.050	0.050	11/04/2023	ND	2.03	102	2.00	0.975	
Total Xylenes*	<0.150	0.150	11/04/2023	ND	6.17	103	6.00	0.640	
Total BTEX	<0.300	0.300	11/04/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/06/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/03/2023	ND	210	105	200	2.75	
DRO >C10-C28*	<10.0	10.0	11/03/2023	ND	217	108	200	1.37	
EXT DRO >C28-C36	<10.0	10.0	11/03/2023	ND					
Surrogate: 1-Chlorooctane	95.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	114 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/01/2023	Sampling Date:	11/01/2023
Reported:	11/06/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK 32.5566346,-103.1960617		

Sample ID: SW 02 @ 0-4' (H235991-06)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/04/2023	ND	1.92	95.9	2.00	1.00	
Toluene*	<0.050 0.050		11/04/2023	ND	2.03	102	2.00	0.342	
Ethylbenzene*	<0.050	0.050	11/04/2023	ND	2.03	102	2.00	0.975	
Total Xylenes*	<0.150	0.150	11/04/2023	ND	6.17	103	6.00	0.640	
Total BTEX	<0.300	0.300	11/04/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0 16.0		11/06/2023 ND		416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/03/2023	ND	210	105	200	2.75	
DRO >C10-C28*	<10.0	10.0	11/03/2023	ND	217	108	200	1.37	
EXT DRO >C28-C36	<10.0	10.0	11/03/2023	ND					
Surrogate: 1-Chlorooctane	92.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	113 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Ĩ.	~
	¥
	$\overline{\mathbf{A}}$
	Z
	T
	¥
	Ä
	2
	S
	H
	2
	¥
	Þ
	ź
1	J
	Þ
	Z
	₽
	' ≺
	0
	S
	R
	5
	ٵ
	S

Released to Imaging: 3/1/2024 3:24:49 PM

Sampler - UPS - Bus - Unier. University former - UPS - Bus - Unier	ô	Time:	Refinquished By: Date: 1	Rein ruished By: Date: / 2005/001 / 100 /	PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising whether based in contract or fort. Shall be limited to the amount paid by the curve una una policab analyses. All claims including those for negligence and any other cause whatsoever shall be denied waived unless made in writing and received by Cardinal within 30 days after completion of the applicab service. In no event shall Cardinal be for incidental or consequental damages, including without limitation, business interruptions, loss of profits incurred by client, its subsidiaries, service. In no event shall Cardinal be included for incidental or consequental damages, including without limitation, business interruptions, loss of upon any of the above stated reasons or otherwise.		< SW02 (00 0-4)	S SWOT @ 0-4'	A DAULU O 12, A DAULU C	2 1506 204	1 1 CO 2057 1	493(90)	Lab I.D. Sample I.J.		DMP.		Minuna Minina	on: (21<5/2/24/6 -103.	ame: SIMI Armun	INNA I	10 #: (10) 284-13/05 F	In the work	Address: GI72 Notil Parks Husu	5	Company Name: (J MK N II M) (()
anges. Please email ch	Cool Inflact (Initials)		Received By:	in Mall	nt's exclusive remedy for any claim arising whether based in contract q tort, shall be imited to the mount pad by two currur or un surve whatsoever shall be deemed waived unless made in writing and received by Cardinal within 30 days after completion of the quental damages, including without limitation, business interruptions, loss of tuse, or loss of profits incurred by cleric, its subsidiarie of sencices hereunder by Cardinal, regardless of whether such ', wim is based upon any of the above stated reasons or otherwise	· · · · · · · · · · · · · · · · · · ·						# CO GRO WAS SOIL OIL SLUI OTH ACIE	DGE	NERS WATE ATER	R	MATRIX PRESERV. SAMPLING	Fax #:	960677) Phone #:	State: Zip:	awerick city:	Address:	p: \$6220 Attn:	Company:	P.O. #:	BILL IU
NO	Rush Cool Intact	Standard A Bacteria (only) Sa	and Rothur round Adaman and a primitive	are emailed. Please provide	pplicable		e						6	8t 1P 110			5								

n

Ú

Page 57 of 164

November 08, 2023

AIMEE COLE ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD, NM 88220

RE: SEMU PERMIAN 37

Enclosed are the results of analyses for samples received by the laboratory on 11/02/23 14:47.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/02/2023	Sampling Date:	11/02/2023
Reported:	11/08/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.5566346, -103.1960617		

Sample ID: FS 07 @ 4' (H236036-01)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	11/05/2023	ND	1.93	96.6	2.00	10.2	
Toluene*	<0.050	0.050	11/05/2023	ND	1.92	96.0	2.00	10.8	
Ethylbenzene*	<0.050	0.050	11/05/2023	ND	1.90	95.1	2.00	11.2	
Total Xylenes*	<0.150	0.150	11/05/2023	ND	5.96	99.3	6.00	10.1	
Total BTEX	<0.300	0.300	11/05/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	384	16.0	11/06/2023	ND	448	112	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
GRO C6-C10*	<10.0	10.0	11/05/2023	ND	203	101	200	2.28	
DRO >C10-C28*	12.4	10.0	11/05/2023	ND	184	92.1	200	1.66	
EXT DRO >C28-C36	<10.0	10.0	11/05/2023	ND					
Surrogate: 1-Chlorooctane	88.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	81.5	% 49.1-14	0						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/02/2023	Sampling Date:	11/02/2023
Reported:	11/08/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.5566346, -103.1960617		

Sample ID: FS 08 @ 4' (H236036-02)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/05/2023	ND	1.93	96.6	2.00	10.2	
Toluene*	<0.050	0.050	11/05/2023	ND	1.92	96.0	2.00	10.8	
Ethylbenzene*	<0.050	0.050	11/05/2023	ND	1.90	95.1	2.00	11.2	
Total Xylenes*	<0.150	0.150	11/05/2023	ND	5.96	99.3	6.00	10.1	
Total BTEX	<0.300	0.300	11/05/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	11/06/2023	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/05/2023	ND	203	101	200	2.28	
DRO >C10-C28*	36.4	10.0	11/05/2023	ND	184	92.1	200	1.66	
EXT DRO >C28-C36	<10.0	10.0	11/05/2023	ND					
Surrogate: 1-Chlorooctane	86.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	80.0	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/02/2023	Sampling Date:	11/02/2023
Reported:	11/08/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.5566346, -103.1960617		

Sample ID: FS 09 @ 4' (H236036-03)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/05/2023	ND	1.90	95.2	2.00	11.6	
Toluene*	<0.050	0.050	11/05/2023	ND	1.90	94.9	2.00	11.6	
Ethylbenzene*	<0.050	0.050	11/05/2023	ND	1.88	93.9	2.00	12.2	
Total Xylenes*	<0.150	0.150	11/05/2023	ND	5.86	97.7	6.00	11.4	
Total BTEX	<0.300	0.300	11/05/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	416	16.0	11/06/2023	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/05/2023	ND	203	101	200	2.28	
DRO >C10-C28*	17.9	10.0	11/05/2023	ND	184	92.1	200	1.66	
EXT DRO >C28-C36	<10.0	10.0	11/05/2023	ND					
Surrogate: 1-Chlorooctane	99.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	89.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/02/2023	Sampling Date:	11/02/2023
Reported:	11/08/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.5566346, -103.1960617		

Sample ID: FS 10 @ 4' (H236036-04)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/05/2023	ND	1.90	95.2	2.00	11.6	
Toluene*	<0.050	0.050	11/05/2023	ND	1.90	94.9	2.00	11.6	
Ethylbenzene*	<0.050	0.050	11/05/2023	ND	1.88	93.9	2.00	12.2	
Total Xylenes*	<0.150	0.150	11/05/2023	ND	5.86	97.7	6.00	11.4	
Total BTEX	<0.300	0.300	11/05/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2080	16.0	11/06/2023	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/05/2023	ND	203	101	200	2.28	
DRO >C10-C28*	<10.0	10.0	11/05/2023	ND	184	92.1	200	1.66	
EXT DRO >C28-C36	<10.0	10.0	11/05/2023	ND					
Surrogate: 1-Chlorooctane	93.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	83.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/02/2023	Sampling Date:	11/02/2023
Reported:	11/08/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.5566346, -103.1960617		

Sample ID: FS 11 @ 4' (H236036-05)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/05/2023	ND	1.90	95.2	2.00	11.6	
Toluene*	<0.050	0.050	11/05/2023	ND	1.90	94.9	2.00	11.6	
Ethylbenzene*	<0.050	0.050	11/05/2023	ND	1.88	93.9	2.00	12.2	
Total Xylenes*	<0.150	0.150	11/05/2023	ND	5.86	97.7	6.00	11.4	
Total BTEX	<0.300	0.300	11/05/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 71.5-13	4						
Chloride, SM4500CI-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	352	16.0	11/06/2023	ND	432	108	400	3.64	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/06/2023	ND	210	105	200	1.60	
DRO >C10-C28*	<10.0	10.0	11/06/2023	ND	201	100	200	4.80	
EXT DRO >C28-C36	<10.0	10.0	11/06/2023	ND					
Surrogate: 1-Chlorooctane	74.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	83.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/02/2023	Sampling Date:	11/02/2023
Reported:	11/08/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.5566346, -103.1960617		

Sample ID: FS 12 @ 4' (H236036-06)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/05/2023	ND	1.90	95.2	2.00	11.6	
Toluene*	<0.050	0.050	11/05/2023	ND	1.90	94.9	2.00	11.6	
Ethylbenzene*	<0.050	0.050	11/05/2023	ND	1.88	93.9	2.00	12.2	
Total Xylenes*	<0.150	0.150	11/05/2023	ND	5.86	97.7	6.00	11.4	
Total BTEX	<0.300	0.300	11/05/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	368	16.0	11/06/2023	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/06/2023	ND	210	105	200	1.60	
DRO >C10-C28*	11.0	10.0	11/06/2023	ND	201	100	200	4.80	
EXT DRO >C28-C36	<10.0	10.0	11/06/2023	ND					
Surrogate: 1-Chlorooctane	76.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	84.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/02/2023	Sampling Date:	11/02/2023
Reported:	11/08/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.5566346, -103.1960617		

Sample ID: FS 13 @ 4' (H236036-07)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/05/2023	ND	1.90	95.2	2.00	11.6	
Toluene*	<0.050	0.050	11/05/2023	ND	1.90	94.9	2.00	11.6	
Ethylbenzene*	<0.050	0.050	11/05/2023	ND	1.88	93.9	2.00	12.2	
Total Xylenes*	<0.150	0.150	11/05/2023	ND	5.86	97.7	6.00	11.4	
Total BTEX	<0.300	0.300	11/05/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2120	16.0	11/06/2023	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/06/2023	ND	210	105	200	1.60	
DRO >C10-C28*	<10.0	10.0	11/06/2023	ND	201	100	200	4.80	
EXT DRO >C28-C36	<10.0	10.0	11/06/2023	ND					
Surrogate: 1-Chlorooctane	82.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	94.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/02/2023	Sampling Date:	11/02/2023
Reported:	11/08/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.5566346, -103.1960617		

Sample ID: SS 01 @ .5' (H236036-08)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/05/2023	ND	1.90	95.2	2.00	11.6	
Toluene*	<0.050	0.050	11/05/2023	ND	1.90	94.9	2.00	11.6	
Ethylbenzene*	<0.050	0.050	11/05/2023	ND	1.88	93.9	2.00	12.2	
Total Xylenes*	<0.150	0.150	11/05/2023	ND	5.86	97.7	6.00	11.4	
Total BTEX	<0.300	0.300	11/05/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/06/2023	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/06/2023	ND	210	105	200	1.60	
DRO >C10-C28*	<10.0	10.0	11/06/2023	ND	201	100	200	4.80	
EXT DRO >C28-C36	<10.0	10.0	11/06/2023	ND					
Surrogate: 1-Chlorooctane	75.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	82.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/02/2023	Sampling Date:	11/02/2023
Reported:	11/08/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.5566346, -103.1960617		

Sample ID: SS 02 @ .5' (H236036-09)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/05/2023	ND	1.90	95.2	2.00	11.6	
Toluene*	<0.050	0.050	11/05/2023	ND	1.90	94.9	2.00	11.6	
Ethylbenzene*	<0.050	0.050	11/05/2023	ND	1.88	93.9	2.00	12.2	
Total Xylenes*	<0.150	0.150	11/05/2023	ND	5.86	97.7	6.00	11.4	
Total BTEX	<0.300	0.300	11/05/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/06/2023	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/06/2023	ND	210	105	200	1.60	
DRO >C10-C28*	<10.0	10.0	11/06/2023	ND	201	100	200	4.80	
EXT DRO >C28-C36	<10.0	10.0	11/06/2023	ND					
Surrogate: 1-Chlorooctane	68.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	76.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/02/2023	Sampling Date:	11/02/2023
Reported:	11/08/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.5566346, -103.1960617		

Sample ID: SS 03 @ .5' (H236036-10)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/05/2023	ND	1.90	95.2	2.00	11.6	
Toluene*	<0.050	0.050	11/05/2023	ND	1.90	94.9	2.00	11.6	
Ethylbenzene*	<0.050	0.050	11/05/2023	ND	1.88	93.9	2.00	12.2	
Total Xylenes*	<0.150	0.150	11/05/2023	ND	5.86	97.7	6.00	11.4	
Total BTEX	<0.300	0.300	11/05/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	% 71.5-13	4						
Chloride, SM4500CI-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/06/2023	ND	432	108	400	3.64	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/06/2023	ND	210	105	200	1.60	
DRO >C10-C28*	<10.0	10.0	11/06/2023	ND	201	100	200	4.80	
EXT DRO >C28-C36	<10.0	10.0	11/06/2023	ND					
Surrogate: 1-Chlorooctane	77.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	87.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/02/2023	Sampling Date:	11/02/2023
Reported:	11/08/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.5566346, -103.1960617		

Sample ID: SS 04 @ .5' (H236036-11)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/05/2023	ND	1.90	95.2	2.00	11.6	
Toluene*	<0.050	0.050	11/05/2023	ND	1.90	94.9	2.00	11.6	
Ethylbenzene*	<0.050	0.050	11/05/2023	ND	1.88	93.9	2.00	12.2	
Total Xylenes*	<0.150	0.150	11/05/2023	ND	5.86	97.7	6.00	11.4	
Total BTEX	<0.300	0.300	11/05/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/06/2023	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/06/2023	ND	210	105	200	1.60	
DRO >C10-C28*	<10.0	10.0	11/06/2023	ND	201	100	200	4.80	
EXT DRO >C28-C36	<10.0	10.0	11/06/2023	ND					
Surrogate: 1-Chlorooctane	79.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	91.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/02/2023	Sampling Date:	11/02/2023
Reported:	11/08/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.5566346, -103.1960617		

Sample ID: SS 05 @ .5' (H236036-12)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/05/2023	ND	1.90	95.2	2.00	11.6	
Toluene*	<0.050	0.050	11/05/2023	ND	1.90	94.9	2.00	11.6	
Ethylbenzene*	<0.050	0.050	11/05/2023	ND	1.88	93.9	2.00	12.2	
Total Xylenes*	<0.150	0.150	11/05/2023	ND	5.86	97.7	6.00	11.4	
Total BTEX	<0.300	0.300	11/05/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/06/2023	ND	432	108	400	3.64	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/07/2023	ND	210	105	200	1.60	
DRO >C10-C28*	<10.0	10.0	11/07/2023	ND	201	100	200	4.80	
EXT DRO >C28-C36	<10.0	10.0	11/07/2023	ND					
Surrogate: 1-Chlorooctane	78.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	89.1	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/02/2023	Sampling Date:	11/02/2023
Reported:	11/08/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.5566346, -103.1960617		

Sample ID: SS 06 @ .5' (H236036-13)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/05/2023	ND	1.90	95.2	2.00	11.6	
Toluene*	<0.050	0.050	11/05/2023	ND	1.90	94.9	2.00	11.6	
Ethylbenzene*	<0.050	0.050	11/05/2023	ND	1.88	93.9	2.00	12.2	
Total Xylenes*	<0.150	0.150	11/05/2023	ND	5.86	97.7	6.00	11.4	
Total BTEX	<0.300	0.300	11/05/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/06/2023	ND	432	108	400	3.64	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/07/2023	ND	210	105	200	1.60	
DRO >C10-C28*	<10.0	10.0	11/07/2023	ND	201	100	200	4.80	
EXT DRO >C28-C36	<10.0	10.0	11/07/2023	ND					
Surrogate: 1-Chlorooctane	81.6 % 48.2-13		4						
Surrogate: 1-Chlorooctadecane	91.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/02/2023	Sampling Date:	11/02/2023
Reported:	11/08/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.5566346, -103.1960617		

Sample ID: FS 01 @ 11' (H236036-14)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/05/2023	ND	1.90	95.2	2.00	11.6	
Toluene*	<0.050	0.050	11/05/2023	ND	1.90	94.9	2.00	11.6	
Ethylbenzene*	<0.050	0.050	11/05/2023	ND	1.88	93.9	2.00	12.2	
Total Xylenes*	<0.150	0.150	11/05/2023	ND	5.86	97.7	6.00	11.4	
Total BTEX	<0.300	0.300	11/05/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2560	16.0	11/06/2023	ND	432	108	400	3.64	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/07/2023	ND	210	105	200	1.60	
DRO >C10-C28*	<10.0	10.0	11/07/2023	ND	201	100	200	4.80	
EXT DRO >C28-C36	<10.0	10.0	11/07/2023	ND					
Surrogate: 1-Chlorooctane	76.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	87.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/02/2023	Sampling Date:	11/02/2023
Reported:	11/08/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.5566346, -103.1960617		

Sample ID: FS 02 @ 11' (H236036-15)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/05/2023	ND	1.90	95.2	2.00	11.6	
Toluene*	<0.050	0.050	11/05/2023	ND	1.90	94.9	2.00	11.6	
Ethylbenzene*	<0.050	0.050	11/05/2023	ND	1.88	93.9	2.00	12.2	
Total Xylenes*	<0.150	0.150	11/05/2023	ND	5.86	97.7	6.00	11.4	
Total BTEX	<0.300	0.300	11/05/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	224	16.0	11/06/2023	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	20.0	10.0	11/07/2023	ND	210	105	200	1.60	
DRO >C10-C28*	1760	10.0	11/07/2023	ND	201	100	200	4.80	
EXT DRO >C28-C36	397	10.0	11/07/2023	ND					
Surrogate: 1-Chlorooctane	99.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	120	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother bits ubsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/02/2023	Sampling Date:	11/02/2023
Reported:	11/08/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.5566346, -103.1960617		

Sample ID: FS 03 @ 11' (H236036-16)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/05/2023	ND	1.90	95.2	2.00	11.6	
Toluene*	<0.050	0.050	11/05/2023	ND	1.90	94.9	2.00	11.6	
Ethylbenzene*	<0.050	0.050	11/05/2023	ND	1.88	93.9	2.00	12.2	
Total Xylenes*	<0.150	0.150	11/05/2023	ND	5.86	97.7	6.00	11.4	
Total BTEX	<0.300	0.300	11/05/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2480	16.0	11/06/2023	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/07/2023	ND	210	105	200	1.60	
DRO >C10-C28*	12.3	10.0	11/07/2023	ND	201	100	200	4.80	
EXT DRO >C28-C36	<10.0	10.0	11/07/2023	ND					
Surrogate: 1-Chlorooctane	91.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	106 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/02/2023	Sampling Date:	11/02/2023
Reported:	11/08/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.5566346, -103.1960617		

Sample ID: FS 04 @ 11' (H236036-17)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/05/2023	ND	1.90	95.2	2.00	11.6	
Toluene*	<0.050	0.050	11/05/2023	ND	1.90	94.9	2.00	11.6	
Ethylbenzene*	<0.050	0.050	11/05/2023	ND	1.88	93.9	2.00	12.2	
Total Xylenes*	<0.150	0.150	11/05/2023	ND	5.86	97.7	6.00	11.4	
Total BTEX	<0.300	0.300	11/05/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	208	16.0	11/06/2023	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	17.0	10.0	11/07/2023	ND	210	105	200	1.60	
DRO >C10-C28*	1620	10.0	11/07/2023	ND	201	100	200	4.80	
EXT DRO >C28-C36	367	10.0	11/07/2023	ND					
Surrogate: 1-Chlorooctane	95.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	106 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother bits ubsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

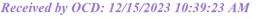
Celez D. Keine

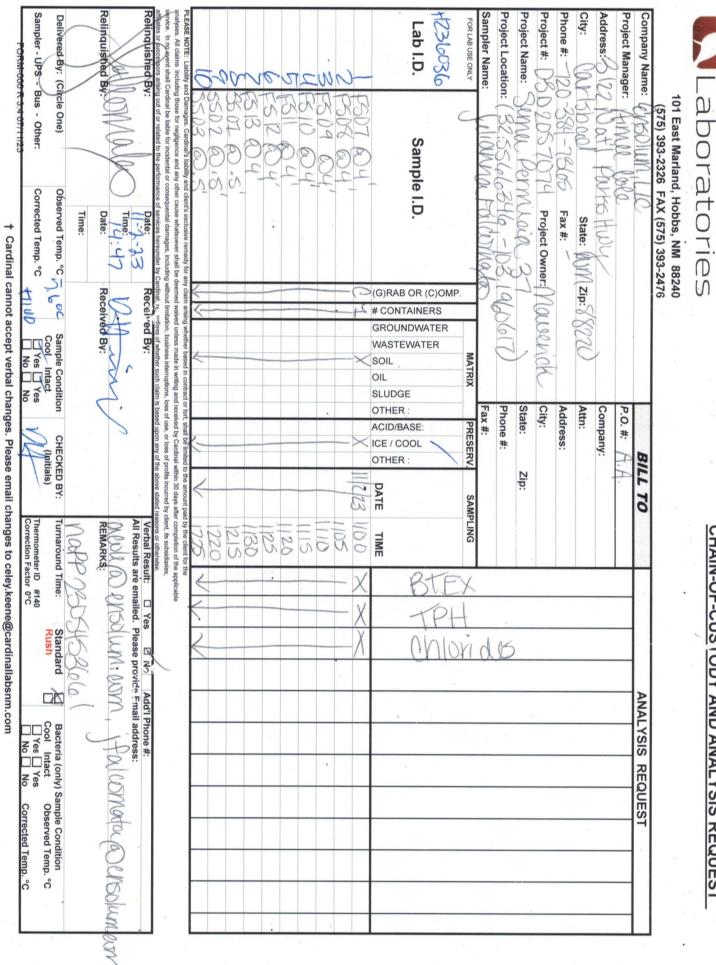
Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report


Cardinal Laboratories


*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whother is subsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page 77 of 164

ž

ved by OCD: 12/15/2023 10:39:23 AM		Page 7
PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising whethe analyses. All claims including those for negligence and any other cause whatsoever shall be deemed waved unless service. It is processor arising out of or related to the perfory. "So of services herewarder by Cardinal, regardless of the perfory. "So of services herewarder by Cardinal, regardless of the perfory. "So of services herewarder by Cardinal, regardless of the perfory. "So of services herewarder by Cardinal, regardless of the perfory. "So of services herewarder by Cardinal, regardless of the perfory. "So of services herewarder by Cardinal, regardless of the perfory. "So of services herewarder by Cardinal, regardless of the perfory. "So of services herewarder by Cardinal, regardless of the perfory. "So of services herewarder by Cardinal, regardless of the perfory. "So of services herewarder by Cardinal, regardless of the perfory." The performance of the perfory. "So of services herewarder by Cardinal, regardless of the perfory." The performance of the perfory. "So of services herewarder by Cardinal, regardless of the perfory." The performance of the perfory. "So of services herewarder by Cardinal, regardless of the perfory." The performance of the perfory. "Control to the perfory." The performance of the perfory. "Control to the perfory." The performance of the perfory. "Control to the perfory." The performance of the perfory. "Control to the perfory." The performance of the perfory.	(575) 393-2326 FAX (575) 393-2476	101 East Marland, Hobbs, NM 88240
remedy for any claim arisis ver shall be deen dealw resunder by Cardinal, rega resunder by Cardinal, rega resunder by Cardinal, rega P-2,3 Receiv Receiv Receiv Receiv Receiv Receiv	C (G)RAB OR (C)OMP.	1PS
NC NC	GROUNDWATER WASTEWATER SOIL OIL SLUDGE	
d in contract or fort, shall be limited to the in writing and received by Cardinal within iterruptions, loss of use, or loss of profils in terruptions, loss of use, or loss of profils in terruptions, loss of use, or loss of profils terruptions, loss of use, or loss of terruptions, loss of terr	SLUDGE OTHER: ACID/BASE: Phone #: ICE / COOL OTHER: OTHER:	
CHECKED BY: (Initials) CheckED BY: (Initials) CheckED BY: (Initials) Correction Fac		•
traid by the client for the rafter completion of the app by client, its subsidiates, dreasons,therwise Veropel Result: all Result: are NCAC REMARKS: REMARKS:	TO SAMPLING SAMPLING 1310 1310	E L
dy the cleant for the compeleon of the applicable fear. Its subsidiaries, asors,pheneke. Ver.or-pheneke All Result:	K Blex	AIN-OF
eabe	< X Oppielo	
	Ą	
Add"I Phone #: e Email address: e Email e Em		CHAIN-UF-CUSIODY AND ANALYSIS REQUEST
a l		ALYSI
Market Temp. °C		SREQ
		UEST
M.		

November 02, 2023

AIMEE COLE ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD, NM 88220

RE: SEMU PERMIAN 37

Enclosed are the results of analyses for samples received by the laboratory on 11/01/23 14:10.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Whe Singh

Mike Snyder For Celey D. Keene Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	11/01/2023	Sampling Date:	11/01/2023
Reported:	11/02/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 37	Sampling Condition:	Cool & Intact
Project Number:	03D2057074	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK 32.55793,-103.19143		

Sample ID: PH 01 B @ 10' (H235990-01)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/01/2023	ND	2.01	101	2.00	2.73	
Toluene*	<0.050	0.050	11/01/2023	ND	2.06	103	2.00	5.24	
Ethylbenzene*	<0.050	0.050	11/01/2023	ND	2.22	111	2.00	6.71	
Total Xylenes*	<0.150	0.150	11/01/2023	ND	6.69	112	6.00	7.74	
Total BTEX	<0.300	0.300	11/01/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.1	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	11/02/2023	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/02/2023	ND	198	99.0	200	7.07	
DRO >C10-C28*	<10.0	10.0	11/02/2023	ND	207	103	200	3.45	
EXT DRO >C28-C36	<10.0	10.0	11/02/2023	ND					
Surrogate: 1-Chlorooctane	88.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	105	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims is based in the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476 Company Name: CMCN/IJMM . / J /O	NM 88240) 393-2476 BILL	70	ANALYSIS REOLIEST
Part	BHWU Company:		
10 #(1720) 584 - 7865 ct #: 0502057074 ct #: 0502057074	2 Int. MULLUNCK		
niternor Forler	Fay		
I.D.	G)RAB OR (C)OMP. CONTAINERS GROUNDWATER WASTEWATER SOIL OIL SLUDGE OTHER : ACID/BASE: CCE / COOL OTHER : CCE / COOL COTHER : CCE / COOL CC	BTEX	
PHOIB Q10	×	1/23 10.55 × × ×	
ASE NOTE: Liability and Damages: Cardinal's liability and client's exclusive	PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising whether based in contract or how shall be limited to the amount sold by the diset for the		
Amilates or successors ansing out of or related to the p. formation of services have a successor ansing out of or related to the p. formation of services have a successor of service have a successor of the p. formation of the	minutes or successors arising out of or related to the p. formance of services the reundary functional instantional instantiona instantiona instantional instantional instanti	All Result: Ves Z No Add'I Phone #: All Result: Yes Z No Add'I Phone #: All Result: Ves Z No Add'I Phone #: All Result: Ves Z No Add'I Phone #: All Result: All Yes Z No Add'I Phone #: All Result: Ves Z No Add'I Phone #: Add'I Phone #: All Result: Ves Z No Add'I Phone #: Add Phone #: Add'I	Add"I Phone #: ide Email address: 1, 'folwmoda & ensolwn. wn
Time: Delivered By: (Circle One) Observed Te	Time: Observed Temp. °C 4, 9 Sample Condition CHECKED BY: Cool Intact (Initials)	NARP BUSUSUSU (1) Turnaround Time: Standard Rush	Bacteria (only) Sample Condition Cool Intact Observed Temp. °C

Page 82 of 164

Received by OCD: 12/15/2023 10:39:23 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Josh Adams Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 2/24/2023 2:03:25 PM

JOB DESCRIPTION

SEMU Permian 37 SDG NUMBER 03D2057074

JOB NUMBER

890-4122-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Received by OCD: 12/15/2023 10:39:23 AM

Eurofins Carlsbad

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

RAMER

Generated 2/24/2023 2:03:25 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

1

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-4122-1

SDG: 03D2057074

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	14
Lab Chronicle	16
Certification Summary	17
Method Summary	18
Sample Summary	19
Chain of Custody	20
Receipt Checklists	21

2

Page 86 of 164

	Definitions/Glossary		
Client: Ensolum Project/Site: SE	n EMU Permian 37	Job ID: 890-4122-1 SDG: 03D2057074	2
Qualifiers			3
GC VOA		,	
Qualifier	Qualifier Description		
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		5
GC Semi VOA		,	
Qualifier	Qualifier Description	7	
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC		7	
Qualifier	Qualifier Description		8
U	Indicates the analyte was analyzed for but not detected.		
Glossary			9
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)	7	4
Dil Fac	Dilution Factor	7	
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry)		
MDL	Method Detection Limit		
ML	Minimum Level (Dioxin)		
MPN	Most Probable Number		
MQL	Method Quantitation Limit		
NC ND	Not Calculated		
ND NEG	Not Detected at the reporting limit (or MDL or EDL if shown) Negative / Absent		
POS	Negative / Absent Positive / Present		
POS	Prostive / Present Practical Quantitation Limit		
PQL PRES	Practical Quantitation Limit Presumptive		
QC	Presumptive Quality Control		
RER	Relative Error Ratio (Radiochemistry)		
RER	Relative Effor Ratio (Ratio (Ratio Efficientisty)		

RERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

4

5

Job ID: 890-4122-1 SDG: 03D2057074

Job ID: 890-4122-1

Client: Ensolum

Laboratory: Eurofins Carlsbad

Project/Site: SEMU Permian 37

Narrative

Job Narrative 890-4122-1

Receipt

The samples were received on 2/17/2023 8:18 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.2°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: SS01 (890-4122-1), SS02 (890-4122-2) and SS03 (890-4122-3).

GC VOA

Method 8021B: The following sample was diluted due to the nature of the sample matrix: SS02 (890-4122-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: SS01 (890-4122-1), SS02 (890-4122-2) and SS03 (890-4122-3). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Page 88 of 164

Job ID: 890-4122-1 SDG: 03D2057074

Matrix: Solid

5

Lab Sample ID: 890-4122-1

Client Sample ID: SS01

Project/Site: SEMU Permian 37

Date Collected: 02/16/23 14:00 Date Received: 02/17/23 08:18

Sample Depth: 0.5

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.262		0.201	mg/Kg		02/23/23 09:25	02/24/23 02:10	100
Toluene	2.40		0.201	mg/Kg		02/23/23 09:25	02/24/23 02:10	100
Ethylbenzene	4.54		0.201	mg/Kg		02/23/23 09:25	02/24/23 02:10	100
m-Xylene & p-Xylene	15.9		0.402	mg/Kg		02/23/23 09:25	02/24/23 02:10	100
o-Xylene	9.96		0.201	mg/Kg		02/23/23 09:25	02/24/23 02:10	100
Xylenes, Total	25.9		0.402	mg/Kg		02/23/23 09:25	02/24/23 02:10	100
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	179	S1+	70 - 130			02/23/23 09:25	02/24/23 02:10	100
1,4-Difluorobenzene (Surr)	98		70 - 130			02/23/23 09:25	02/24/23 02:10	100
Method: TAL SOP Total BTEX - To	tal BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	33.1		0.402	mg/Kg			02/24/23 14:46	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	20000		997	mg/Kg			02/23/23 11:59	1
- Method: SW846 8015B NM - Diese	I Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	2480		997	mg/Kg		02/22/23 16:36	02/23/23 05:15	20
Diesel Range Organics (Over C10-C28)	17500		997	mg/Kg		02/22/23 16:36	02/23/23 05:15	20
Oll Range Organics (Over C28-C36)	<997	U	997	mg/Kg		02/22/23 16:36	02/23/23 05:15	20
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	396	S1+	70 - 130			02/22/23 16:36	02/23/23 05:15	20
o-Terphenyl	542	S1+	70 - 130			02/22/23 16:36	02/23/23 05:15	20
Method: EPA 300.0 - Anions, Ion C	hromatograp	ohy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	571		4.96	mg/Kg			02/21/23 18:03	1
Client Sample ID: SS02						Lab Sar	nple ID: 890-	4122-2
Date Collected: 02/16/23 14:05							Matri	x: Solid
Date Received: 02/17/23 08:18								
ample Depth: 0.5								
Method: SW846 8021B - Volatile O	rganic Comp	ounds (GC)	l.					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.198	U	0.198	mg/Kg		02/23/23 09:25	02/24/23 02:31	100
Toluene	4.86		0.198	mg/Kg		02/23/23 09:25	02/24/23 02:31	100
Ethylbenzene	5.59		0.198	mg/Kg		02/23/23 09:25	02/24/23 02:31	100
m-Xylene & p-Xylene	24.8		0.396	mg/Kg		02/23/23 09:25	02/24/23 02:31	100
o-Xylene	11.7		0.198	mg/Kg		02/23/23 09:25	02/24/23 02:31	100
Xylenes, Total	36.5		0.396	mg/Kg		02/23/23 09:25	02/24/23 02:31	100
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
			70 120			00/00/00 00:05	00/04/02 00:24	

Eurofins Carlsbad

02/24/23 02:31

02/23/23 09:25

70 - 130

200 S1+

100

Client Sample Results

Job ID: 890-4122-1 SDG: 03D2057074

Matrix: Solid

5

Lab Sample ID: 890-4122-2

Client Sample ID: SS02

Project/Site: SEMU Permian 37

Date Collected: 02/16/23 14:05 Date Received: 02/17/23 08:18

Client: Ensolum

Method: SW846 8021B - Volatile Orga	nic Comp	ounds (GC)) (Continued)					
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	99		70 - 130			02/23/23 09:25	02/24/23 02:31	100
_ Method: TAL SOP Total BTEX - Total I	STEX Cal	culation						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	47.0		0.396	mg/Kg			02/24/23 14:46	1
_ Method: SW846 8015 NM - Diesel Ran	ge Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	14800		999	mg/Kg			02/23/23 11:59	1
_ Method: SW846 8015B NM - Diesel Ra	inge Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	2600		999	mg/Kg		02/22/23 16:36	02/23/23 05:36	20
(GRO)-C6-C10								
Diesel Range Organics (Over	12200		999	mg/Kg		02/22/23 16:36	02/23/23 05:36	20
C10-C28) Oll Range Organics (Over C28-C36)	<999	U	999	mg/Kg		02/22/23 16:36	02/23/23 05:36	20
Surrounde	9/ D a a a vami	Qualifier	Limits			Duanawad	Analyzad	Dil Fac
Surrogate	%Recovery 282	S1+				Prepared 02/22/23 16:36	Analyzed 02/23/23 05:36	20
o-Terphenyl		S1+	70 - 130 70 - 130			02/22/23 16:36	02/23/23 05:36	20
Method: EPA 300.0 - Anions, Ion Chro		-		11-14	_	Description	A	D!!
Analyte		Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed 02/21/23 18:09	Dil Fac
Chloride	688		4.98	mg/Kg			02/21/23 18:09	1
Client Sample ID: SS03						Lab San	nple ID: 890-	4122-3
Date Collected: 02/16/23 14:10							Matri	ix: Solid
Date Received: 02/17/23 08:18								
Sample Depth: 0.5								
_ Method: SW846 8021B - Volatile Orga	nic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.524		0.200	mg/Kg		02/23/23 09:25	02/24/23 02:51	100
			0.200	mg/Kg		02/23/23 09:25	02/24/23 02:51	100

Ethylbenzene

Xylenes, Total

o-Xylene

Surrogate

Analyte

Analyte

Total TPH

Total BTEX

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Eurofins Carlsbad

Method: TAL SOP Total BTEX - Total BTEX Calculation

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

0.200

0.399

0.200

0.399

RL

RL

998

0.399

Limits

70 - 130

70 - 130

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Unit

Unit

mg/Kg

mg/Kg

02/23/23 09:25

02/23/23 09:25

02/23/23 09:25

02/23/23 09:25

Prepared

02/23/23 09:25

02/23/23 09:25

Prepared

Prepared

D

D

02/24/23 02:51

02/24/23 02:51

02/24/23 02:51

02/24/23 02:51

Analyzed

02/24/23 02:51

02/24/23 02:51

Analyzed

02/24/23 14:46

Analyzed

02/23/23 11:59

100

100

100

100

100

100

Dil Fac

Dil Fac

Dil Fac

1

1

22.1

43.8

23.8

67.6

267 S1+

102

110

15700

Result Qualifier

Result Qualifier

Qualifier

%Recovery

Client Sample Results

Job ID: 890-4122-1 SDG: 03D2057074

Matrix: Solid

5

Lab Sample ID: 890-4122-3

Client Sample ID: SS03

Project/Site: SEMU Permian 37

Date Collected: 02/16/23 14:10 Date Received: 02/17/23 08:18

Sample Depth: 0.5

Client: Ensolum

_ Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	3800		998	mg/Kg		02/22/23 16:36	02/23/23 05:58	20
Diesel Range Organics (Over C10-C28)	11900		998	mg/Kg		02/22/23 16:36	02/23/23 05:58	20
Oll Range Organics (Over C28-C36)	<998	U	998	mg/Kg		02/22/23 16:36	02/23/23 05:58	20
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	309	S1+	70 - 130			02/22/23 16:36	02/23/23 05:58	20
o-Terphenyl	398	S1+	70 - 130			02/22/23 16:36	02/23/23 05:58	20
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	702		4.99	mg/Kg			02/21/23 18:15	1

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) BFB1 DFBZ1 Lab Sample ID **Client Sample ID** (70-130) (70-130) 880-24920-A-1-D MS Matrix Spike 118 105 880-24920-A-1-E MSD Matrix Spike Duplicate 115 96 890-4122-1 SS01 179 S1+ 98 890-4122-2 SS02 200 S1+ 99 890-4122-3 SS03 267 S1+ 102 Lab Control Sample LCS 880-47007/1-A 122 100 LCSD 880-47007/2-A Lab Control Sample Dup 110 104 MB 880-47001/5-A Method Blank 76 87 MB 880-47007/5-A Method Blank 78 94

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

Γ				Percent Surrogate Recovery (Acceptance Limits)	
		1CO1	OTPH1		- 7
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
890-4122-1	SS01	396 S1+	542 S1+		-
890-4122-2	SS02	282 S1+	395 S1+		
890-4122-3	SS03	309 S1+	398 S1+		
890-4153-A-1-G MS	Matrix Spike	117	104		
890-4153-A-1-H MSD	Matrix Spike Duplicate	98	89		
LCS 880-46977/2-A	Lab Control Sample	98	88		
LCSD 880-46977/3-A	Lab Control Sample Dup	100	91		
MB 880-46977/1-A	Method Blank	126	127		

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

SDG: 03D2057074

Job ID: 890-4122-1

Page 91 of 164

Prep Type: Total/NA

Prep Type: Total/NA

Project/Site: SEMU Permian 37

Client: Ensolum

QC Sample Results

Job ID: 890-4122-1 SDG: 03D2057074

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-47001/5-A									(Client Sa	mple ID: Meth	od Blan
Matrix: Solid											Prep Type:	Total/N
Analysis Batch: 47000											Prep Bato	h: 4700
		MB	МВ									
Analyte	Re	sult	Qualifier	RL		Unit		D	Pr	epared	Analyzed	Dil Fa
Benzene	<0.00)200	U	0.00200		mg/K	g	_	02/23	8/23 08:38	02/23/23 11:47	
Toluene	<0.00	0200	U	0.00200		mg/K	g		02/23	8/23 08:38	02/23/23 11:47	
Ethylbenzene	<0.00	0200	U	0.00200		mg/K	g		02/23	8/23 08:38	02/23/23 11:47	
m-Xylene & p-Xylene	<0.00	0400	U	0.00400		mg/K	g		02/23	8/23 08:38	02/23/23 11:47	
o-Xylene	<0.00)200	U	0.00200		mg/K	g		02/23	8/23 08:38	02/23/23 11:47	
Xylenes, Total	<0.00	0400	U	0.00400		mg/K	g		02/23	8/23 08:38	02/23/23 11:47	
		мв	МВ									
Surrogate	%Reco			Limits					Pr	epared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)		76		70 - 130					-	3/23 08:38	02/23/23 11:47	
1,4-Difluorobenzene (Surr)		87		70 - 130					02/23	3/23 08:38	02/23/23 11:47	
Lab Sample ID: MB 880-47007/5-A										Client Se	male ID: Meth	od Blon
Matrix: Solid										chefit 3a	mple ID: Mether Prep Type:	
Analysis Batch: 47000		мр	мв								Prep Batc	n: 4700
A						11		_	D		A	D
Analyte	<0.00		Qualifier	RL		Unit	~	D		epared 3/23 09:25	Analyzed 02/23/23 23:25	Dil Fa
				0.00200		mg/K	-					
Toluene	<0.00			0.00200		mg/K	-			3/23 09:25	02/23/23 23:25	
Ethylbenzene	<0.00			0.00200		mg/K				3/23 09:25	02/23/23 23:25	
m-Xylene & p-Xylene	<0.00			0.00400		mg/K	-			3/23 09:25	02/23/23 23:25	
o-Xylene	<0.00			0.00200		mg/K	-			8/23 09:25	02/23/23 23:25	
Xylenes, Total	<0.00)400	U	0.00400		mg/K	g		02/23	3/23 09:25	02/23/23 23:25	
		ΜВ	МВ									
Surrogate	%Reco	very	Qualifier	Limits					Pr	epared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	-	78		70 - 130					02/23	3/23 09:25	02/23/23 23:25	
1,4-Difluorobenzene (Surr)		94		70 - 130					02/23	3/23 09:25	02/23/23 23:25	
Lab Sample ID: LCS 880-47007/1-A								~	liont	Sampla	D: Lab Contro	Sampl
Matrix: Solid								C	ment	Sample	ID: Lab Contro Prep Type:	
Analysis Batch: 47000				Spike	1.05	LCS					Prep Batc %Rec	11. 4700
Analyta							Unit		п	% Boc		
Analyte				Added 0.100	0.09393	Qualifier			_ <u>D</u> _	%Rec 	Limits	
							mg/Kg					
Toluene				0.100	0.09350		mg/Kg			93	70 - 130	
Ethylbenzene				0.100	0.1024		mg/Kg			102	70 - 130	
m-Xylene & p-Xylene				0.200	0.2149		mg/Kg			107	70 - 130	
o-Xylene				0.100	0.1176		mg/Kg			118	70 - 130	
		LCS		Limits								
Surrogata		^	lifior									
	Recovery	Qua	lifier									
4-Bromofluorobenzene (Surr)	Recovery 122	Qua	lifier	70 - 130								
4-Bromofluorobenzene (Surr)	Recovery	Qua	lifier									
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-47007/2-	Recovery 122 100	Qua	lifier	70 - 130			Cli	ent	Sam	ple ID: La	ab Control San	-
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-47007/2- Matrix: Solid	Recovery 122 100	Qua	lifier	70 - 130			Cli	ent	Sam	ple ID: La	Prep Type:	Total/N
	Recovery 122 100	Qua	lifier	70 - 130 70 - 130			Cli	ent	Sam	ple ID: La	Prep Type: Prep Batc	Total/N h: 4700
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-47007/2- Matrix: Solid	Recovery 122 100	Qua	lifier	70 - 130		LCSD Qualifier	Cli Unit	ent	Sam	ple ID: La %Rec	Prep Type:	Total/N h: 4700 RP

QC Sample Results

Client: Ensolum Project/Site: SEMU Permian 37 Job ID: 890-4122-1 SDG: 03D2057074

Page 93 of 164

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Martine Called	47007/2-A					Clie	nt Sam	ple ID: I	Lab Contro		
Matrix: Solid										Type: To	
Analysis Batch: 47000										Batch:	
			Spike		LCSD		_		%Rec		RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Toluene			0.100	0.08564		mg/Kg		86	70 - 130	9	3
Ethylbenzene			0.100	0.09059		mg/Kg		91	70 - 130	12	35
m-Xylene & p-Xylene			0.200	0.1900		mg/Kg		95	70 - 130	12	35
o-Xylene			0.100	0.09988		mg/Kg		100	70 - 130	16	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)			70 - 130								
1,4-Difluorobenzene (Surr)	104		70 - 130								
Matrix: Solid										Type: To	tal/N/
Matrix: Solid									Prep T Prep		tal/NA
Matrix: Solid Analysis Batch: 47000	Sample	Sample	Spike		MS		_		Prep T Prep %Rec	Type: To	tal/NA
Lab Sample ID: 880-24920-/ Matrix: Solid Analysis Batch: 47000	Sample Result	Qualifier	Added	Result	MS Qualifier	Unit	D	%Rec	Prep T Prep %Rec Limits	Type: To	tal/NA
Matrix: Solid Analysis Batch: 47000 Analyte Benzene	Sample 	Qualifier	Added	Result 0.09590		mg/Kg	D	%Rec 96	Prep T Prep %Rec Limits 70 - 130	Type: To	tal/NA
Matrix: Solid Analysis Batch: 47000 Analyte Benzene Toluene	Sample Result <0.00200 <0.00200	Qualifier	Added 0.100 0.100	Result 0.09590 0.09571		mg/Kg mg/Kg	D	%Rec 96 94	Prep 7 Prep %Rec Limits 70 - 130 70 - 130	Type: To	tal/NA
Matrix: Solid Analysis Batch: 47000 Analyte Benzene Toluene Ethylbenzene	Sample Result <0.00200 <0.00200 <0.00200	Qualifier U U U	Added 0.100 0.100 0.100	Result 0.09590 0.09571 0.1007		mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 96 94 99	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To	tal/NA
Matrix: Solid Analysis Batch: 47000 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Sample Result <0.00200 <0.00200 <0.00200 <0.00399	Qualifier U U U U U	Added 0.100 0.100 0.100 0.201	Result 0.09590 0.09571 0.1007 0.2081		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 96 94 99 102	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To	tal/NA
Matrix: Solid Analysis Batch: 47000 Analyte Benzene Toluene Ethylbenzene	Sample Result <0.00200 <0.00200 <0.00200	Qualifier U U U U U	Added 0.100 0.100 0.100	Result 0.09590 0.09571 0.1007		mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 96 94 99	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To	tal/NA
Matrix: Solid Analysis Batch: 47000 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Sample Result <0.00200 <0.00200 <0.00200 <0.00399 <0.00200	Qualifier U U U U U U	Added 0.100 0.100 0.100 0.201	Result 0.09590 0.09571 0.1007 0.2081		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 96 94 99 102	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To	tal/NA
Matrix: Solid Analysis Batch: 47000 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Sample Result <0.00200 <0.00200 <0.00200 <0.00399 <0.00200	Qualifier U U U U U U MS	Added 0.100 0.100 0.100 0.201	Result 0.09590 0.09571 0.1007 0.2081		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 96 94 99 102	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To	tal/NA
Matrix: Solid Analysis Batch: 47000 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Sample Result <0.00200 <0.00200 <0.00200 <0.00399 <0.00200 MS	Qualifier U U U U U U MS	Added 0.100 0.100 0.100 0.201 0.100	Result 0.09590 0.09571 0.1007 0.2081		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 96 94 99 102	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To	tal/NA
Matrix: Solid Analysis Batch: 47000 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate	Sample Result <0.00200 <0.00200 <0.00200 <0.00399 <0.00200 MS %Recovery	Qualifier U U U U U U MS	Added 0.100 0.100 0.201 0.100 Limits	Result 0.09590 0.09571 0.1007 0.2081		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 96 94 99 102	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To	tal/NA
Matrix: Solid Analysis Batch: 47000 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr)	Sample Result <0.00200	Qualifier U U U U U U MS	Added 0.100 0.100 0.100 0.100 0.100 0.100 0.201 0.100 0.100 0.201 0.100	Result 0.09590 0.09571 0.1007 0.2081		mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 96 94 99 102 105	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To Batch:	tal/N/ 47007

Matrix: Solid Analysis Batch: 47000

1,4-Difluorobenzene (Surr)

Analysis Batch: 47000									Prep	Batch:	47007
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U	0.0990	0.08695		mg/Kg		88	70 - 130	10	35
Toluene	<0.00200	U	0.0990	0.08891		mg/Kg		89	70 - 130	7	35
Ethylbenzene	<0.00200	U	0.0990	0.09431		mg/Kg		94	70 - 130	7	35
m-Xylene & p-Xylene	<0.00399	U	0.198	0.1968		mg/Kg		98	70 - 130	6	35
o-Xylene	<0.00200	U	0.0990	0.09940		mg/Kg		99	70 - 130	7	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	115		70 - 130								

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

96

Lab Sample ID: MB 880-46977/1-A Matrix: Solid Analysis Batch: 46917		мв				Client Sa	mple ID: Metho Prep Type: ⁻ Prep Batcl	Total/NA
Analyte	Result	Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		02/22/23 16:36	02/22/23 21:03	1
(GRO)-C6-C10								

70 - 130

Eurofins Carlsbad

QC Sample Results

Client: Ensolum Project/Site: SEMU Permian 37

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-46977	//1-A									Client Sa	mple ID:	Methoo	l Blank
Matrix: Solid											Prep T	ype: To	otal/NA
Analysis Batch: 46917											Prep	Batch	: 46977
		MB	MB										
Analyte	R	esult	Qualifier	RL		Uni	t	D	Р	repared	Analyz	ed	Dil Fac
Diesel Range Organics (Over	<	<50.0	U	50.0		mg/	'Kg		02/2	2/23 16:36	02/22/23	21:03	1
C10-C28)													
Oll Range Organics (Over C28-C36)	<	<50.0	U	50.0		mg/	Кg		02/2	2/23 16:36	02/22/23	21:03	1
		ΜВ	МВ										
Summe mete	% Deee			Limits						ware a ward	Amalum		Dil Fac
Surrogate 1-Chlorooctane	%Reco	126	Quanner					-		repared 2/23 16:36	Analyz 02/22/23		DII Fac 1
		120		70 - 130 70 - 130									1
o-Terphenyl 		127		70 - 130					02/2	2/23 16:36	02/22/23	21.03	1
Lab Sample ID: LCS 880-4697	7/2-4							CI	iont	Sample	ID: Lab Co	ontrol S	Samnlo
Matrix: Solid										oumpio			otal/NA
Analysis Batch: 46917													: 46977
Analysis Daton. 40317				Spike	LCS	LCS					%Rec	Daton	. 40011
Analyte				Added		Qualifier	Unit		D	%Rec	Limits		
Gasoline Range Organics				1000	832.8	audiner	mg/Kg		_	83	70 - 130		
(GRO)-C6-C10				1000	032.0		my/rxy			03	10 - 130		
Diesel Range Organics (Over				1000	815.4		mg/Kg			82	70 - 130		
C10-C28)				1000	01011					02	10 - 100		
,													
	LCS												
Surrogate	%Recovery	Qua	lifier	Limits									
1-Chlorooctane	98			70 - 130									
o-Terphenyl	88			70 - 130									
_ 	77/0 4								•		- h- O (
Lab Sample ID: LCSD 880-469	977/3-A						U	ient	Sam		ab Contro	-	
Matrix: Solid													otal/NA
Analysis Batch: 46917												Batch	: 46977
				Spike		LCSD			_		%Rec		RPD
Analyte				Added		Qualifier	Unit		<u>D</u>	%Rec	Limits	RPD	Limit
Gasoline Range Organics				1000	878.3		mg/Kg			88	70 - 130	5	20
(GRO)-C6-C10 Diesel Range Organics (Over				1000	000.0		malla			00	70 120	2	20
C10-C28)				1000	830.0		mg/Kg			83	70 - 130	2	20
010-028)													
	LCSD	LCS	D										
Surrogate	%Recovery	Qua	lifier	Limits									
1-Chlorooctane	100			70 - 130									
o-Terphenyl	91			70 - 130									
_													
Lab Sample ID: 890-4153-A-1-	G MS									Client S	Sample ID		
Matrix: Solid											Prep T	ype: To	otal/NA
Analysis Batch: 46917											Prep	Batch	: 46977
	Sample	Sam	ple	Spike	MS	MS					%Rec		
Analyte	Result	Qual	lifier	Added	Result	Qualifier	Unit		D	%Rec	Limits		
Gasoline Range Organics	<50.0	U		998	860.3		mg/Kg			84	70 - 130		
(GRO)-C6-C10													
Diesel Range Organics (Over	59.4			998	1043		mg/Kg			99	70 - 130		
C10-C28)													
		MS											
			lifier	Limits									

Job ID: 890-4122-1

SDG: 03D2057074

Released to Imaging: 3/1/2024 3:24:49 PM

117

104

1-Chlorooctane

o-Terphenyl

70 - 130

70 - 130

QC Sample Results

Client: Ensolum Project/Site: SEMU Permian 37 Page 95 of 164

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

	1-H MSD						chen	n 38	imple IL): Matrix S		
Matrix: Solid											Type: To	
Analysis Batch: 46917										Prep	Batch:	46977
	Sample	Sample	Spike	MSD	MSD					%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	997	988.5		mg/Kg		_	97	70 - 130	14	20
Diesel Range Organics (Over C10-C28)	59.4		997	883.4		mg/Kg			83	70 - 130	17	20
	MSD	MSD										
Surrogate	%Recovery	Qualifier	Limits									
1-Chlorooctane	98		70 - 130									
o-Terphenyl	89		70 - 130									
lethod: 300.0 - Anions, l Lab Sample ID: MB 880-4682 Matrix: Solid		ography							Client S	Sample ID:	Method Type: So	
Analysis Batch: 46871										Fieh	Type. So	UIUDI
-		MB MB										
Analyte	R	esult Qualifier		RL	Unit		D	Pi	epared	Analy	zed	Dil Fac
Chloride		<5.00 U		5.00	mg/K	g				02/21/23	15:17	
Matrix: Solid										Dron	Type: So	alubl
			Spike	LCS	LCS						Type. Of	
Analysis Batch: 46871			Spike Added		LCS Qualifier	Unit		D	%Rec	%Rec Limits	Type. of	UIUDIŧ
Analysis Batch: 46871 Analyte						Unit mg/Kg		D	%Rec 95	%Rec		
Analysis Batch: 46871 Analyte Chloride			Added	Result		mg/Kg	ient S	_	95	%Rec Limits 90 - 110		
Analysis Batch: 46871 Analyte Chloride Lab Sample ID: LCSD 880-40	- 6828/3-A		Added	Result		mg/Kg	ient S	_	95	%Rec Limits 90 - 110		e Dup
Analysis Batch: 46871 Analyte Chloride Lab Sample ID: LCSD 880-44 Matrix: Solid	- 6828/3-A		Added 250	Result 236.5	Qualifier	mg/Kg	ient S	_	95	%Rec Limits 90 - 110 Lab Contro Prep		e Dup oluble
Analysis Batch: 46871 Analyte Chloride Lab Sample ID: LCSD 880-40 Matrix: Solid Analysis Batch: 46871	- 6828/3-A		Added 250 Spike	Result 236.5 LCSD	Qualifier	mg/Kg	ient S	_ Sam	95 ple ID: I	%Rec Limits 90 - 110 Lab Contro Prep %Rec	ol Sample Type: Se	e Dup oluble RPC
Analysis Batch: 46871 Analyte Chloride Lab Sample ID: LCSD 880-44 Matrix: Solid Analysis Batch: 46871 Analyte	- 6828/3-A		Added 250 Spike Added	Result 236.5 LCSD Result	Qualifier	mg/Kg Cli	ient S	_	95 ple ID: I %Rec	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits	ol Sample Type: Se RPD	e Dup oluble RPC Limi
Analysis Batch: 46871 Analyte Chloride Lab Sample ID: LCSD 880-44 Matrix: Solid Analysis Batch: 46871 Analyte	 6828/3-A 		Added 250 Spike	Result 236.5 LCSD	Qualifier	mg/Kg	ient S	_ Sam	95 ple ID: I	%Rec Limits 90 - 110 Lab Contro Prep %Rec	ol Sample Type: Se	e Dup oluble RPE Limi
Analysis Batch: 46871 Analyte Chloride Lab Sample ID: LCSD 880-44 Matrix: Solid Analysis Batch: 46871 Analyte Chloride Lab Sample ID: 890-4120-A-			Added 250 Spike Added	Result 236.5 LCSD Result	Qualifier	mg/Kg Cli	ient S	_ Sam	95 ple ID: I %Rec 98	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID	DI Sample Type: So <u>RPD</u> 3 D: Matrix	e Dup oluble RPI Limi 20 Spike
Analysis Batch: 46871 Analyte Chloride Lab Sample ID: LCSD 880-44 Matrix: Solid Analysis Batch: 46871 Analyte Chloride Lab Sample ID: 890-4120-A- Matrix: Solid			Added 250 Spike Added	Result 236.5 LCSD Result	Qualifier	mg/Kg Cli	ient S	_ Sam	95 ple ID: I %Rec 98	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID	DI Sample Type: So <u>RPD</u> 3	e Dup oluble RPC Limi 20 Spike
Analysis Batch: 46871 Analyte Chloride Lab Sample ID: LCSD 880-44 Matrix: Solid Analysis Batch: 46871 Analyte Chloride Lab Sample ID: 890-4120-A- Matrix: Solid	 1-B MS		Added 250 Spike Added 250	Result 236.5 LCSD Result 243.9	Qualifier LCSD Qualifier	mg/Kg Cli	ient \$	_ Sam	95 ple ID: I %Rec 98	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep	DI Sample Type: So <u>RPD</u> 3 D: Matrix	e Dup oluble RPC Limi 20 Spike
Analysis Batch: 46871 Analyte Chloride Lab Sample ID: LCSD 880-40 Matrix: Solid Analysis Batch: 46871 Analyte Chloride Lab Sample ID: 890-4120-A- Matrix: Solid Analysis Batch: 46871	- 1-B MS Sample		Added 250 Spike Added 250 Spike	Result 236.5 LCSD Result 243.9	Qualifier LCSD Qualifier MS	Unit mg/Kg		_ Sam	95 ple ID: I %Rec 98 Client	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec	DI Sample Type: So <u>RPD</u> 3 D: Matrix	e Dup oluble RPC Limi 20 Spike
Analysis Batch: 46871 Analyte Chloride Lab Sample ID: LCSD 880-40 Matrix: Solid Analysis Batch: 46871 Analyte Chloride Lab Sample ID: 890-4120-A- Matrix: Solid Analysis Batch: 46871 Analyte	- 1-B MS Sample Result	Qualifier	Added 250 Spike Added 250 Spike Added	Result 236.5 LCSD Result 243.9 MS Result	Qualifier LCSD Qualifier MS	Unit Unit Unit		_ Sam	95 ple ID: I %Rec 98 Client	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits	DI Sample Type: So <u>RPD</u> 3 D: Matrix	e Dup oluble RPE Limi 20 Spike
Analysis Batch: 46871 Analyte Chloride Lab Sample ID: LCSD 880-40 Matrix: Solid Analysis Batch: 46871 Analyte Chloride Lab Sample ID: 890-4120-A- Matrix: Solid Analysis Batch: 46871 Analyte Chloride	- 1-B MS Sample	Qualifier	Added 250 Spike Added 250 Spike	Result 236.5 LCSD Result 243.9 MS	Qualifier LCSD Qualifier MS	Unit mg/Kg		_ Sam	95 ple ID: I %Rec 98 Client	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec	DI Sample Type: So <u>RPD</u> 3 D: Matrix	e Dup oluble RPD Limit 20 Spike
Analysis Batch: 46871 Analyte Chloride Lab Sample ID: LCSD 880-44 Matrix: Solid Analysis Batch: 46871 Analyte Chloride Lab Sample ID: 890-4120-A- Matrix: Solid Analysis Batch: 46871 Analyte Chloride Lab Sample ID: 890-4120-A-	1-B MS Sample Result <4.97	Qualifier	Added 250 Spike Added 250 Spike Added	Result 236.5 LCSD Result 243.9 MS Result	Qualifier LCSD Qualifier MS	Unit Unit mg/Kg		 D	95 ple ID: I %Rec 98 Client %Rec 95	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	ol Sample Type: So <u>RPD</u> 3 D: Matrix Type: So pike Dup	e Dup oluble RPE Limi 20 Spike oluble
Analysis Batch: 46871 Analyte Chloride Lab Sample ID: LCSD 880-44 Matrix: Solid Analysis Batch: 46871 Analyte Chloride Lab Sample ID: 890-4120-A- Matrix: Solid Analyte Chloride Lab Sample ID: 890-4120-A- Matrix: Solid	1-B MS Sample Result <4.97	Qualifier	Added 250 Spike Added 250 Spike Added	Result 236.5 LCSD Result 243.9 MS Result	Qualifier LCSD Qualifier MS	Unit Unit mg/Kg		 D	95 ple ID: I %Rec 98 Client %Rec 95	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	ol Sample Type: So <u>RPD</u> 3 0: Matrix Type: So	e Dup oluble RPE Limi 20 Spike oluble
Analysis Batch: 46871 Analyte Chloride Lab Sample ID: LCSD 880-44 Matrix: Solid Analysis Batch: 46871 Analyte Chloride Lab Sample ID: 890-4120-A- Matrix: Solid Analyte Chloride Lab Sample ID: 890-4120-A- Matrix: Solid	1-B MS Sample <u>Result</u> <4.97	Qualifier	Added 250 Spike Added 250 Spike Added 249	Result 236.5 LCSD Result 243.9 MS Result 240.7	Qualifier LCSD Qualifier MS	Unit Unit mg/Kg		 D	95 ple ID: I %Rec 98 Client %Rec 95	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	ol Sample Type: So <u>RPD</u> 3 D: Matrix Type: So pike Dup	e Dup oluble RPD Limit 20 Spike oluble
Analysis Batch: 46871 Analyte Chloride Lab Sample ID: LCSD 880-40 Matrix: Solid Analysis Batch: 46871 Analyte Chloride Lab Sample ID: 890-4120-A- Matrix: Solid Analysis Batch: 46871 Analyte	1-B MS Sample <u>Result</u> <4.97 1-C MSD Sample	Qualifier	Added 250 Spike Added 250 Spike Added	Result 236.5 LCSD Result 243.9 MS Result 240.7	Qualifier LCSD Qualifier MS Qualifier	Unit Unit mg/Kg		 D	95 ple ID: I %Rec 98 Client %Rec 95	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110 0: Matrix S Prep	ol Sample Type: So <u>RPD</u> 3 D: Matrix Type: So pike Dup	e Dup oluble RPC Limit 20 Spike oluble

Eurofins Carlsbad

Released to Imaging: 3/1/2024 3:24:49 PM

QC Association Summary

Client: Ensolum Project/Site: SEMU Permian 37

5

Job ID: 890-4122-1 SDG: 03D2057074

GC VOA

Analysis Batch: 47000

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4122-1	SS01	Total/NA	Solid	8021B	47007
890-4122-2	SS02	Total/NA	Solid	8021B	47007
890-4122-3	SS03	Total/NA	Solid	8021B	47007
MB 880-47001/5-A	Method Blank	Total/NA	Solid	8021B	47001
MB 880-47007/5-A	Method Blank	Total/NA	Solid	8021B	47007
LCS 880-47007/1-A	Lab Control Sample	Total/NA	Solid	8021B	47007
LCSD 880-47007/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	47007
880-24920-A-1-D MS	Matrix Spike	Total/NA	Solid	8021B	47007
880-24920-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	47007

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-47001/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 47007

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-4122-1	SS01	Total/NA	Solid	5035		
890-4122-2	SS02	Total/NA	Solid	5035		
890-4122-3	SS03	Total/NA	Solid	5035		
MB 880-47007/5-A	Method Blank	Total/NA	Solid	5035		
LCS 880-47007/1-A	Lab Control Sample	Total/NA	Solid	5035		
LCSD 880-47007/2-A	Lab Control Sample Dup	Total/NA	Solid	5035		
880-24920-A-1-D MS	Matrix Spike	Total/NA	Solid	5035		
880-24920-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035		
<u> </u>						

Analysis Batch: 47193

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4122-1	SS01	Total/NA	Solid	Total BTEX	
890-4122-2	SS02	Total/NA	Solid	Total BTEX	
890-4122-3	SS03	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 46917

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4122-1	SS01	Total/NA	Solid	8015B NM	46977
890-4122-2	SS02	Total/NA	Solid	8015B NM	46977
890-4122-3	SS03	Total/NA	Solid	8015B NM	46977
MB 880-46977/1-A	Method Blank	Total/NA	Solid	8015B NM	46977
LCS 880-46977/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	46977
LCSD 880-46977/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	46977
890-4153-A-1-G MS	Matrix Spike	Total/NA	Solid	8015B NM	46977
890-4153-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	46977

Prep Batch: 46977

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4122-1	SS01	Total/NA	Solid	8015NM Prep	
890-4122-2	SS02	Total/NA	Solid	8015NM Prep	
890-4122-3	SS03	Total/NA	Solid	8015NM Prep	
MB 880-46977/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-46977/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	

Eurofins Carlsbad

QC Association Summary

Client: Ensolum Project/Site: SEMU Permian 37

GC Semi VOA (Continued)

Prep Batch: 46977 (Continued)

Lab Sample ID LCSD 880-46977/3-A	Client Sample ID Lab Control Sample Dup	Prep Type Total/NA	Matrix Solid	Method 8015NM Prep	Prep Batch
890-4153-A-1-G MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-4153-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	
Analysis Batch: 47032					
Lab Sample ID	Client Sample ID	Bron Type	Motrix	Mathad	Bron Botob

Lab Sample ID 890-4122-1	Client Sample ID SS01	Prep Type Total/NA	Matrix Solid	Method 8015 NM	Prep Batch
890-4122-2	SS02	Total/NA	Solid	8015 NM	
890-4122-3	SS03	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 46828

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4122-1	SS01	Soluble	Solid	DI Leach	
890-4122-2	SS02	Soluble	Solid	DI Leach	
890-4122-3	SS03	Soluble	Solid	DI Leach	
MB 880-46828/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-46828/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-46828/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-4120-A-1-B MS	Matrix Spike	Soluble	Solid	DI Leach	
890-4120-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 46871

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4122-1	SS01	Soluble	Solid	300.0	46828
890-4122-2	SS02	Soluble	Solid	300.0	46828
890-4122-3	SS03	Soluble	Solid	300.0	46828
MB 880-46828/1-A	Method Blank	Soluble	Solid	300.0	46828
LCS 880-46828/2-A	Lab Control Sample	Soluble	Solid	300.0	46828
LCSD 880-46828/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	46828
890-4120-A-1-B MS	Matrix Spike	Soluble	Solid	300.0	46828
890-4120-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	46828

Page 97 of 164

Job ID: 890-4122-1 SDG: 03D2057074

5 8

Job ID: 890-4122-1 SDG: 03D2057074

Lab Sample ID: 890-4122-1 Matrix: Solid

Lab Sample ID: 890-4122-2

Lab Sample ID: 890-4122-3

Matrix: Solid

Matrix: Solid

Date Collected: 02/16/23 14:00 Date Received: 02/17/23 08:18

Client Sample ID: SS01

Project/Site: SEMU Permian 37

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	47007	02/23/23 09:25	MNR	EET MID
Total/NA	Analysis	8021B		100	5 mL	5 mL	47000	02/24/23 02:10	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			47193	02/24/23 14:46	AJ	EET MID
Total/NA	Analysis	8015 NM		1			47032	02/23/23 11:59	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	46977	02/22/23 16:36	AJ	EET MID
Total/NA	Analysis	8015B NM		20	1 uL	1 uL	46917	02/23/23 05:15	AJ	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	46828	02/21/23 09:25	KS	EET MID
Soluble	Analysis	300.0		1			46871	02/21/23 18:03	СН	EET MID

Client Sample ID: SS02

Date Collected: 02/16/23 14:05

Date Received: 02/17/23 08:18

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	47007	02/23/23 09:25	MNR	EET MID
Total/NA	Analysis	8021B		100	5 mL	5 mL	47000	02/24/23 02:31	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			47193	02/24/23 14:46	AJ	EET MID
Total/NA	Analysis	8015 NM		1			47032	02/23/23 11:59	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	46977	02/22/23 16:36	AJ	EET MID
Total/NA	Analysis	8015B NM		20	1 uL	1 uL	46917	02/23/23 05:36	AJ	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	46828	02/21/23 09:25	KS	EET MID
Soluble	Analysis	300.0		1			46871	02/21/23 18:09	СН	EET MID

Client Sample ID: SS03 Date Collected: 02/16/23 14:10

Date Received: 02/17/23 08:18

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	47007	02/23/23 09:25	MNR	EET MID
Total/NA	Analysis	8021B		100	5 mL	5 mL	47000	02/24/23 02:51	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			47193	02/24/23 14:46	AJ	EET MID
Total/NA	Analysis	8015 NM		1			47032	02/23/23 11:59	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	46977	02/22/23 16:36	AJ	EET MID
Total/NA	Analysis	8015B NM		20	1 uL	1 uL	46917	02/23/23 05:58	AJ	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	46828	02/21/23 09:25	KS	EET MID
Soluble	Analysis	300.0		1			46871	02/21/23 18:15	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Page 98 of 164

5

9

Accreditation/Certification Summary

Client: Ensolum Project/Site: SEMU Permian 37

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		rogram	Identification Number	Expiration Date
xas	N	ELAP	T104704400-22-25	06-30-23
• ,		ut the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for
the agency does not of Analysis Method		Matrix	Analvte	
the agency does not of Analysis Method 8015 NM	ffer certification . Prep Method	Matrix Solid	Analyte Total TPH	

Job ID: 890-4122-1 SDG: 03D2057074

Page 99 of 164

10

Eurofins Carlsbad

Method Summary

Client: Ensolum Project/Site: SEMU Permian 37 Job ID: 890-4122-1 SDG: 03D2057074

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
Protocol Refe	erences:		
ASTM = A	STM International		
EPA = US	Environmental Protection Agency		
SW846 =	"Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edi	ion, November 1986 And Its Updates.	
TAL SOP	= TestAmerica Laboratories, Standard Operating Procedure		
Laboratory R	eferences:		
EET MID	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Laboratory References:

Eurofins Carlsbad

Released to Imaging: 3/1/2024 3:24:49 PM

Client: Ensolum Project/Site: SEMU Permian 37 Job ID: 890-4122-1 SDG: 03D2057074

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-4122-1	SS01	Solid	02/16/23 14:00	02/17/23 08:18	0.5
890-4122-2	SS02	Solid	02/16/23 14:05	02/17/23 08:18	0.5
890-4122-3	SS03	Solid	02/16/23 14:10	02/17/23 08:18	0.5

	Xe	Xenco		EL Pasc Hobbs,	Mildalia, TX (932) 00-340, 381 741007, TX (410) 000-000 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	ck, TX (806) 794-1296 id, NM (575) 988-3199	www.xenco.com	www.xenco.com Page	of
Project Manager:	Josh Adams		B	Bill to: (if different)	Kalei Jennings		Wo	Work Order Comments	
	Ensolum, LLC		0	Company Name:	Ensolum, LLC		Program: UST/PST PRP Brownfields	Brownfields	
	3122 Nat'l Parks Highway	s Highway	A	Address:	3122 Nat'l Parks Highway	ghway	State of Project: NM		
e ZIP:	Carlsbad, NM 88220	8220	0	City, State ZIP:	Carlsbad, NM 88220	0	Reporting Level III Level III PST/UST T TRRP		
	303-517-8437		Email: ja	dams@ensolu	Email: jadams@ensolum.com, kjennings@ensolum.com	solum.com	Deliverables: EDD	ADaPT LJ Other:	
Project Name:	SAMIDEDWI	NMIAN	Turn Around	round		ANALYSIS REC	S REQUEST	Preserva	Preservative Codes
Project Number:	NSD2IF71	7074	Routine	Rush	Pres.			None: NO	DI Water: H ₂ O
Project Location:	32.5510124	10, -105:	19100 Date:					Cool: Cool	MeOH: Me
Sampler's Name:		alcomata	TAT starts the day received by	fay received by				HCL: HC	HNO3: HN
PO井)	the lab, if received by 4:30pm	L		_		H ₂ S0 ₄ : H ₂	NaOH: Na
SAMPLE RECEIPT	PT Temp Blank:	lank: (Yes)No	Wet Ice:	Yes No	nete			H ₃ PO ₄ ; HP	
Samples Received Intact:	Kes	No Thermometer ID:	M	300-	araı			Nahout Nabio	
Cooler Custody Seals:	Yes	NIA	n Factor:	=e	F			Zn Acetate+NaOH: Zn	ł: Zn
Total Containers:	100 110	Corrected	Corrected Temperature:		DES	890-4122 Chain	Chain of Custody	NaOH+Ascorbic Acid: SAPC	Acid: SAPC
Sample Identification		Matrix Date Sampled		Depth Grab/ #	BTEX TPH CHLOF			Sample	Sample Comments
3601		5 2-1633	0011	5					
5613		5 2-10-23	410	50					
Total 200.7 / 6010	010 200.8 / 6020:	020:	8RCRA 13P	13PPM Texas 11	Al Sb As Ba Be B	Cd Ca Cr Co Cu Fe	Pb Mg Mn Mo Ni K Se /	Ag SiO ₂ Na Sr TI Sn U	J V Zn
	nd Metal(s) to be	analyzed	TCLP / SPI		VA Sb As Ba Be C	Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag	TI U	Hg: 1631 / 245.1 / 7470 / 7471	7471
Notice: Signature of this (of service. Eurofins Xenc	document and relinqu co will be liable only fo	ishment of samples contract of samples	onstitutes a valid pur	chase order from cli e any responsibility	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcor of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such of service.	ico, its affiliates and subcontractors icurred by the client if such losses - teaco but not analyzed. These term	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of service. Eurofins Xenco hit not analyzed These terms will be enforced unless previously negotiated.	nditions e control / negotlated.	
Relinglished by	r (Sinhahira)	Recei	Received by: (Signature)	re)	Date/Time	Relinguished by: (Signature)	ture) Received by: (Signature)	(Signature)	Date/Time
- XANNANA	ANNA ANNA	mean	na.		50	preary	0	1.8	1.93818
5/ X Y (6			
Ć				-				Revise	Revised Date: 08/25/2020 Rev. 2020.2

5 6

12 13

Chain of Custody

14

Job Number: 890-4122-1 SDG Number: 03D2057074

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 4122 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

14

Job Number: 890-4122-1 SDG Number: 03D2057074

List Source: Eurofins Midland

List Creation: 02/21/23 08:18 AM

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 4122 List Number: 2 Creator: Teel, Brianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 12/15/2023 10:39:23 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Kalei Jennings Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 4/3/2023 3:08:47 PM

JOB DESCRIPTION

SEMU Permian 37 (Maverick) SDG NUMBER Lea County NM

JOB NUMBER

890-4371-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information

Received by OCD: 12/15/2023 10:39:23 AM

Eurofins Carlsbad

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

RAMER

Generated 4/3/2023 3:08:47 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-4371-1 SDG: Lea County NM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	14
QC Sample Results	15
QC Association Summary	20
Lab Chronicle	23
Certification Summary	27
Method Summary	28
Sample Summary	29
Chain of Custody	30
Receipt Checklists	31

	Definitions/Glossary	
Client: Ensolum	· · · · · · · · · · · · · · · · · · ·	
	EMU Permian 37 (Maverick) SDG: Lea County NM	
Qualifiers		- 3
GC VOA		
Qualifier	Qualifier Description	4
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	5
GC Semi VOA		
Qualifier	Qualifier Description	6
F2	MS/MSD RPD exceeds control limits	
S1-	Surrogate recovery exceeds control limits, low biased.	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	8
HPLC/IC		
Qualifier	Qualifier Description	9
U	Indicates the analyte was analyzed for but not detected.	
Glossary		10
Abbreviation	These commonly used abbreviations may or may not be present in this report.	11
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	· •
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	10
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Client: Ensolum Project/Site: SEMU Permian 37 (Maverick) Job ID: 890-4371-1 SDG: Lea County NM

Job ID: 890-4371-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-4371-1

Receipt

The samples were received on 3/21/2023 8:15 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.0°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: BH01 (890-4371-1), BH01A (890-4371-2), BH02 (890-4371-3), BH02A (890-4371-4), BH03 (890-4371-5), BH03A (890-4371-6), BH04 (890-4371-7), BH04A (890-4371-8), BH05 (890-4371-9) and BH05A (890-4371-10).

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: BH02 (890-4371-3), BH02A (890-4371-4), BH05 (890-4371-9) and BH05A (890-4371-10). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The following samples were diluted due to the nature of the sample matrix: BH01A (890-4371-2), BH02A (890-4371-4), BH03 (890-4371-5), BH03A (890-4371-6), BH04 (890-4371-7), BH04A (890-4371-8) and BH05A (890-4371-10). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: BH01 (890-4371-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: BH05 (890-4371-9). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) precision for preparation batch 880-49652 and analytical batch 880-49691 was outside control limits. Sample non-homogeneity is suspected.

Method 8015MOD_NM: The method blank for preparation batch 880-49652 and analytical batch 880-49691 contained Gasoline Range Organics (GRO)-C6-C10 above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Matrix: Solid

Job ID: 890-4371-1 SDG: Lea County NM

Lab Sample ID: 890-4371-1

Client Sample ID: BH01

Date Collected: 03/20/23 13:20 Date Received: 03/21/23 08:15

Sample Depth: 1'

Client: Ensolum

1'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U	0.00201	mg/Kg		03/27/23 16:06	03/31/23 22:20	
Toluene	<0.00201	U	0.00201	mg/Kg		03/27/23 16:06	03/31/23 22:20	
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		03/27/23 16:06	03/31/23 22:20	
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		03/27/23 16:06	03/31/23 22:20	
o-Xylene	<0.00201	U	0.00201	mg/Kg		03/27/23 16:06	03/31/23 22:20	
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		03/27/23 16:06	03/31/23 22:20	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	106		70 - 130			03/27/23 16:06	03/31/23 22:20	
1,4-Difluorobenzene (Surr)	87		70 - 130			03/27/23 16:06	03/31/23 22:20	
Method: TAL SOP Total BTEX - 1								
Analyte		Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00402	U	0.00402	mg/Kg			04/03/23 15:53	
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					
Analyte		Qualifier U	RL 49.9	<mark>Unit</mark> mg/Kg	D	Prepared	Analyzed 03/29/23 12:10	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies	Result <49.9	U Inics (DRO)	49.9 (GC)	mg/Kg			03/29/23 12:10	
Analyte ^{Total TPH} Method: SW846 8015B NM - Dies Analyte	Result <49.9 sel Range Orga Result	U Inics (DRO) Qualifier	49.9 (GC) RL	mg/Kg Unit	D	Prepared	03/29/23 12:10 Analyzed	
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	Result <49.9	U Inics (DRO) Qualifier	49.9 (GC)	mg/Kg			03/29/23 12:10	
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9 sel Range Orga Result	U nnics (DRO) Qualifier U F2	49.9 (GC) RL	mg/Kg Unit		Prepared	03/29/23 12:10 Analyzed	
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9 sel Range Orga Result <49.9	U nics (DRO) Qualifier U F2 U	49.9 (GC) RL 49.9	Unit mg/Kg		Prepared 03/27/23 14:32	03/29/23 12:10 Analyzed 03/28/23 22:47	
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9	U Qualifier U F2 U U	49.9 (GC) RL 49.9 49.9	mg/Kg Unit mg/Kg mg/Kg		Prepared 03/27/23 14:32 03/27/23 14:32	03/29/23 12:10 Analyzed 03/28/23 22:47 03/28/23 22:47	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <49.9	U nics (DRO) Qualifier U F2 U U Qualifier	49.9 (GC) RL 49.9 49.9 49.9	mg/Kg Unit mg/Kg mg/Kg		Prepared 03/27/23 14:32 03/27/23 14:32 03/27/23 14:32	O3/29/23 12:10 Analyzed 03/28/23 22:47 03/28/23 22:47 03/28/23 22:47	Dil Fa
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <49.9	U unics (DRO) Qualifier U F2 U U U U Qualifier S1-	49.9 (GC) <u>RL</u> 49.9 49.9 49.9 Limits	mg/Kg Unit mg/Kg mg/Kg		Prepared 03/27/23 14:32 03/27/23 14:32 03/27/23 14:32 03/27/23 14:32 Prepared	03/29/23 12:10 Analyzed 03/28/23 22:47 03/28/23 22:47 03/28/23 22:47 Analyzed	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion	Result <49.9	U unics (DRO) Qualifier U F2 U U U Qualifier S1- S1- S1- S1- S1-	(GC) <u>RL</u> 49.9 49.9 49.9 <u>Limits</u> 70 - 130 70 - 130 E	mg/Kg Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 03/27/23 14:32 03/27/23 14:32 03/27/23 14:32 Prepared 03/27/23 14:32 03/27/23 14:32	03/29/23 12:10 Analyzed 03/28/23 22:47 03/28/23 22:47 03/28/23 22:47 03/28/23 22:47 03/28/23 22:47	Dil Fa Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.9	U unics (DRO) Qualifier U F2 U U U Qualifier S1- S1-	49.9 (GC) RL 49.9 49.9 49.9 <u>Limits</u> 70 - 130 70 - 130 70 - 130 e RL	mg/Kg Unit mg/Kg mg/Kg		Prepared 03/27/23 14:32 03/27/23 14:32 03/27/23 14:32 Prepared 03/27/23 14:32	03/29/23 12:10 Analyzed 03/28/23 22:47 03/28/23 22:47 03/28/23 22:47 Analyzed Analyzed	Dil Fa Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane p-Terphenyl Method: EPA 300.0 - Anions, Ion	Result <49.9	U unics (DRO) Qualifier U F2 U U U Qualifier S1- S1- S1- S1- S1-	(GC) <u>RL</u> 49.9 49.9 49.9 <u>Limits</u> 70 - 130 70 - 130 E	mg/Kg Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 03/27/23 14:32 03/27/23 14:32 03/27/23 14:32 Prepared 03/27/23 14:32 03/27/23 14:32	03/29/23 12:10 Analyzed 03/28/23 22:47 03/28/23 22:47 03/28/23 22:47 03/28/23 22:47 03/28/23 22:47	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane p-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte	Result <49.9 sel Range Orga Result <49.9 <49.9 <49.9 <49.9 <49.9 %Recovery 0.2 0.07 Chromatograp Result	U unics (DRO) Qualifier U F2 U U U Qualifier S1- S1- S1- S1- S1-	49.9 (GC) RL 49.9 49.9 49.9 <u>Limits</u> 70 - 130 70 - 130 70 - 130 e RL	mg/Kg Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 03/27/23 14:32 03/27/23 14:32 03/27/23 14:32 03/27/23 14:32 03/27/23 14:32 03/27/23 14:32 Prepared	03/29/23 12:10 Analyzed 03/28/23 22:47 03/28/23 22:47 03/28/23 22:47 Analyzed Analyzed	Dil Fa Dil Fa

Method: SW846 8021B - Volati	ile Organic Compo	unds (GC)						
Analyte	Result (Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0398	U	0.0398	mg/Kg		03/27/23 16:06	03/31/23 22:40	20
Toluene	<0.0398 l	U	0.0398	mg/Kg		03/27/23 16:06	03/31/23 22:40	20
Ethylbenzene	<0.0398 l	U	0.0398	mg/Kg		03/27/23 16:06	03/31/23 22:40	20
m-Xylene & p-Xylene	<0.0797 l	U	0.0797	mg/Kg		03/27/23 16:06	03/31/23 22:40	20
o-Xylene	<0.0398 l	U	0.0398	mg/Kg		03/27/23 16:06	03/31/23 22:40	20
Xylenes, Total	<0.0797 l	U	0.0797	mg/Kg		03/27/23 16:06	03/31/23 22:40	20
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	81		70 - 130			03/27/23 16:06	03/31/23 22:40	20

Eurofins Carlsbad

Released to Imaging: 3/1/2024 3:24:49 PM

Γ.

Client Sample Results

Job ID: 890-4371-1 SDG: Lea County NM

Client Sample ID: BH01A

Date Collected: 03/20/23 13:40 Date Received: 03/21/23 08:15

Sample Depth: 5'

Client: Ensolum

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	100		70 - 130			03/27/23 16:06	03/31/23 22:40	20
Method: TAL SOP Total BTEX - 1 Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX			0.0797	mg/Kg		Flepaleu	04/03/23 15:53	1
	-0.0131	0	0.0757	ilig/itg			04/03/23 13:33	
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			03/29/23 12:10	1
Method: SW846 8015B NM - Dies	ol Pango Orga		(60)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0		50.0	mg/Kg		03/27/23 14:32	03/28/23 23:52	1
(GRO)-C6-C10				0 0				
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		03/27/23 14:32	03/28/23 23:52	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/27/23 14:32	03/28/23 23:52	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	81		70 - 130			03/27/23 14:32	03/28/23 23:52	1
o-Terphenyl	77		70 - 130			03/27/23 14:32	03/28/23 23:52	1
Method: EPA 300.0 - Anions, Ion	Chromatogram	hy - Solubl	e					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	83.9		5.02	mg/Kg			03/31/23 00:11	1
lient Sample ID: BH02						Lab Sar	nple ID: 890-	4371-3
· · · · · · · · · · · · · · · · · · ·								x: Solid
ate Collected: 03/20/23 14:00							math	x. 00110
ate Received: 03/21/23 08:15								
ate Received: 03/21/23 08:15 ample Depth: 1'								
ate Received: 03/21/23 08:15 ample Depth: 1' Method: SW846 8021B - Volatile								
ate Received: 03/21/23 08:15 ample Depth: 1' Method: SW846 8021B - Volatile Analyte	Result	ounds (GC Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Date Collected: 03/20/23 14:00 Date Received: 03/21/23 08:15 Dample Depth: 1' Method: SW846 8021B - Volatile Analyte Benzene Toluene				Unit mg/Kg mg/Kg	<u>D</u>	Prepared 03/27/23 16:06 03/27/23 16:06	Analyzed 03/31/23 23:01 03/31/23 23:01	Dil Fac 50

Eurofins Carlsbad

03/27/23 16:06

03/27/23 16:06

03/27/23 16:06

03/27/23 16:06

Prepared

03/27/23 16:06

03/27/23 16:06

Prepared

Prepared

D

D

03/31/23 23:01

03/31/23 23:01

03/31/23 23:01

03/31/23 23:01

Analyzed

03/31/23 23:01

03/31/23 23:01

Analyzed

04/03/23 15:53

Analyzed

03/29/23 12:10

Method: TAL SOP Total BTEX - Total BTEX Calculation

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Ethylbenzene

Xylenes, Total

o-Xylene

Surrogate

Analyte

Analyte

Total TPH

Total BTEX

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

0.0994

0.199

0.0994

0.199

RL

RL

249

0.199

Limits

70 - 130

70 - 130

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Unit

Unit

mg/Kg

mg/Kg

1.83

10.1

8.05

18.2

273 S1+

Result Qualifier

Result Qualifier

92

20.6

3790

Qualifier

%Recovery

4/3/2023

50 50

50

50

50

50

1

1

Dil Fac

Dil Fac

Dil Fac

Lab Sample ID: 890-4371-2 Matrix: Solid

5

Client Sample Results

Job ID: 890-4371-1 SDG: Lea County NM

Lab Sample ID: 890-4371-3

Client Sample ID: BH02

Date Collected: 03/20/23 14:00 Date Received: 03/21/23 08:15

Sample Depth: 1'

Client: Ensolum

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	782		249	mg/Kg		03/27/23 14:32	03/29/23 04:54	5
Diesel Range Organics (Over C10-C28)	3010		249	mg/Kg		03/27/23 14:32	03/29/23 04:54	5
Oll Range Organics (Over C28-C36)	<249	U	249	mg/Kg		03/27/23 14:32	03/29/23 04:54	5
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	99		70 - 130			03/27/23 14:32	03/29/23 04:54	5
o-Terphenyl	100		70 - 130			03/27/23 14:32	03/29/23 04:54	5

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	948	4.98	mg/Kg			03/31/23 00:25	1

Client Sample ID: BH02A

Date Collected: 03/20/23 14:20 Date Received: 03/21/23 08:15

Sample Depth: 5'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0402	U	0.0402	mg/Kg		03/27/23 16:06	03/31/23 23:21	20
Toluene	<0.0402	U	0.0402	mg/Kg		03/27/23 16:06	03/31/23 23:21	20
Ethylbenzene	<0.0402	U	0.0402	mg/Kg		03/27/23 16:06	03/31/23 23:21	20
m-Xylene & p-Xylene	<0.0805	U	0.0805	mg/Kg		03/27/23 16:06	03/31/23 23:21	20
o-Xylene	<0.0402	U	0.0402	mg/Kg		03/27/23 16:06	03/31/23 23:21	20
Xylenes, Total	<0.0805	U	0.0805	mg/Kg		03/27/23 16:06	03/31/23 23:21	20
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)		S1+	70 - 130			03/27/23 16:06	03/31/23 23:21	20
1,4-Difluorobenzene (Surr)	95		70 - 130			03/27/23 16:06	03/31/23 23:21	20
Method: TAL SOP Total BTEX -	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Diese	el Range Organ	Qualifier U ics (DRO) (0.0805	mg/Kg		<u>.</u>	04/03/23 15:53	1
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte	el Range Organ Result	Qualifier U ics (DRO) (Qualifier	0.0805 GC) RL	mg/Kg Unit	D	Prepared Prepared	04/03/23 15:53 Analyzed	Dil Fac 1 Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte	el Range Organ	Qualifier U ics (DRO) (Qualifier	0.0805	mg/Kg		<u>.</u>	04/03/23 15:53	1
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH	el Range Organ Result el Range Organ Result <50.0	Qualifier U ics (DRO) (1 Qualifier U	0.0805 GC) RL 50.0	mg/Kg Unit		<u>.</u>	04/03/23 15:53 Analyzed	1 Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Die	el Range Organ Result Constant Result Constant C	Qualifier U ics (DRO) (1 Qualifier U	0.0805 GC) RL 50.0	mg/Kg Unit		<u>.</u>	04/03/23 15:53 Analyzed	Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics	el Range Organ Result Constant Result Constant C	Qualifier U ics (DRO) (Qualifier U enrics (DRO) Qualifier	0.0805 GC) RL 50.0 (GC)	mg/Kg Unit mg/Kg	D	Prepared	04/03/23 15:53 Analyzed 03/29/23 12:10	Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Diese	el Range Organ Result <0.0805 el Range Organ 	Qualifier U ics (DRO) (Qualifier U unics (DRO) Qualifier U	0.0805 GC) RL 50.0 (GC) RL	mg/Kg Unit mg/Kg Unit	D	Prepared	04/03/23 15:53 Analyzed 03/29/23 12:10 Analyzed	1 Dil Fac

Dil Fac %Recovery Qualifier Limits Surrogate Prepared Analyzed 70 - 130 03/27/23 14:32 03/29/23 06:44 1-Chlorooctane 85 1 o-Terphenyl 86 70 - 130 03/27/23 14:32 03/29/23 06:44 1

Eurofins Carlsbad

5

		Clien	t Sample Re	sults				
Client: Ensolum	veriek)		-				Job ID: 890	
Project/Site: SEMU Permian 37 (Ma	аvепск)						SDG: Lea Co	
Client Sample ID: BH02A Date Collected: 03/20/23 14:20 Date Received: 03/21/23 08:15 Sample Depth: 5'						Lab Sar	nple ID: 890- Matri	4371-4 x: Solic
_ Method: EPA 300.0 - Anions, Ion	Chromatogram	hy - Soluble						
Analyte	• •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1350		4.97	mg/Kg			03/31/23 00:30	,
Client Sample ID: BH03						Lab Sar	nple ID: 890-	4371-5
Date Collected: 03/20/23 14:40 Date Received: 03/21/23 08:15 Sample Depth: 1'								x: Solic
 Method: SW846 8021B - Volatile								
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	< 0.0403		0.0403	mg/Kg		03/27/23 16:06	03/31/23 23:41	20
Toluene	<0.0403		0.0403	mg/Kg		03/27/23 16:06	03/31/23 23:41	20
Ethylbenzene	<0.0403		0.0403	mg/Kg		03/27/23 16:06	03/31/23 23:41	20
m-Xylene & p-Xylene	<0.0806		0.0806	mg/Kg		03/27/23 16:06	03/31/23 23:41	20
o-Xylene	<0.0403	U	0.0403	mg/Kg		03/27/23 16:06	03/31/23 23:41	20
Xylenes, Total	<0.0806	U	0.0806	mg/Kg		03/27/23 16:06	03/31/23 23:41	20
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	110		70 - 130			03/27/23 16:06	03/31/23 23:41	20
1,4-Difluorobenzene (Surr) 	89		70 - 130			03/27/23 16:06	03/31/23 23:41	20
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.0806	U	0.0806	mg/Kg			04/03/23 15:53	
 Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (C	GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	54.3		50.0	mg/Kg			03/29/23 12:10	
	el Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		03/27/23 14:32	03/29/23 06:21	
Diesel Range Organics (Over C10-C28)	54.3		50.0	mg/Kg		03/27/23 14:32	03/29/23 06:21	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/27/23 14:32	03/29/23 06:21	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	84		70 - 130			03/27/23 14:32	03/29/23 06:21	

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier Unit Analyzed Dil Fac RL D Prepared 03/31/23 00:35 4.99 Chloride 180 mg/Kg

Eurofins Carlsbad

1

Matrix: Solid

5

Job ID: 890-4371-1 SDG: Lea County NM

Client Sample ID: BH03A

Date Collected: 03/20/23 15:00 Date Received: 03/21/23 08:15

Sample Depth: 5'

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0398	U	0.0398	mg/Kg		03/27/23 16:06	04/01/23 00:02	20
Toluene	<0.0398	U	0.0398	mg/Kg		03/27/23 16:06	04/01/23 00:02	2
Ethylbenzene	<0.0398	U	0.0398	mg/Kg		03/27/23 16:06	04/01/23 00:02	2
m-Xylene & p-Xylene	<0.0797	U	0.0797	mg/Kg		03/27/23 16:06	04/01/23 00:02	2
o-Xylene	<0.0398	U	0.0398	mg/Kg		03/27/23 16:06	04/01/23 00:02	2
Xylenes, Total	<0.0797	U	0.0797	mg/Kg		03/27/23 16:06	04/01/23 00:02	2
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	130		70 - 130			03/27/23 16:06	04/01/23 00:02	2
1,4-Difluorobenzene (Surr)	72		70 - 130			03/27/23 16:06	04/01/23 00:02	2
Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.0797	U	0.0797	mg/Kg			04/03/23 15:53	
Method: SW846 8015 NM - Diese	Range Organi		30)					
			~~,					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
•	Result 260	Qualifier		Unit mg/Kg	<u>D</u>	Prepared	Analyzed 03/29/23 12:10	
Analyte Total TPH Method: SW846 8015B NM - Dies	260		RL 49.9		<u>D</u>	Prepared		-
Total TPH Method: SW846 8015B NM - Dies	260 sel Range Orga		RL 49.9		<u>D</u>	Prepared		1
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	260 sel Range Orga	nics (DRO) Qualifier	(GC)	mg/Kg			03/29/23 12:10	Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	260 sel Range Orga Result	nics (DRO) Qualifier	(GC) RL	mg/Kg Unit		Prepared	03/29/23 12:10 Analyzed	Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	260 sel Range Orga Result <49.9	<mark>Qualifier</mark> U	RL 49.9 (GC) RL 49.9	Unit mg/Kg		Prepared 03/27/23 14:32	03/29/23 12:10 Analyzed 03/29/23 06:00	Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics GRO)-C6-C10	260 sel Range Orga Result <49.9 260	Qualifier U	RL 49.9 (GC) RL 49.9 49.9	mg/Kg Unit mg/Kg mg/Kg		Prepared 03/27/23 14:32 03/27/23 14:32	03/29/23 12:10 Analyzed 03/29/23 06:00 03/29/23 06:00	1
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36)	260 sel Range Orga Result <49.9 260 <49.9	Qualifier U	RL 49.9 (GC) RL 49.9 49.9 49.9 49.9	mg/Kg Unit mg/Kg mg/Kg		Prepared 03/27/23 14:32 03/27/23 14:32 03/27/23 14:32	O3/29/23 12:10 Analyzed 03/29/23 06:00 03/29/23 06:00 03/29/23 06:00 03/29/23 06:00 03/29/23 06:00	Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate	260 Sel Range Orga Result <49.9 260 <49.9 %Recovery	Qualifier U	RL 49.9 (GC) RL 49.9 49.9 49.9 Limits	mg/Kg Unit mg/Kg mg/Kg		Prepared 03/27/23 14:32 03/27/23 14:32 03/27/23 14:32 Prepared	O3/29/23 12:10 Analyzed 03/29/23 06:00 03/29/23 06:00 03/29/23 06:00 03/29/23 06:00 03/29/23 06:00 03/29/23 06:00 03/29/23 06:00	Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Dil Range Organics (Over C28-C36) Surrogate I-Chlorooctane	260 Sel Range Orga Result <49.9 260 <49.9 %Recovery 101 101	unics (DRO) Qualifier U Qualifier	RL 49.9 (GC) RL 49.9 49.9 49.9 49.9 49.9 70.130 70.130 70.130	mg/Kg Unit mg/Kg mg/Kg		Prepared 03/27/23 14:32 03/27/23 14:32 03/27/23 14:32 Prepared 03/27/23 14:32	O3/29/23 12:10 Analyzed 03/29/23 06:00 03/29/23 06:00 03/29/23 06:00 03/29/23 06:00 03/29/23 06:00 03/29/23 06:00 03/29/23 06:00	Dil Fac
Total TPH Aethod: SW846 8015B NM - Dies Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Dil Range Organics (Over C28-C36) Surrogate -Chlorooctane -Terphenyl	260 Sel Range Orga Result <49.9 260 <49.9 %Recovery 101 101 Chromatograp	unics (DRO) Qualifier U Qualifier	RL 49.9 (GC) RL 49.9 49.9 49.9 49.9 49.9 70.130 70.130 70.130	mg/Kg Unit mg/Kg mg/Kg		Prepared 03/27/23 14:32 03/27/23 14:32 03/27/23 14:32 Prepared 03/27/23 14:32	O3/29/23 12:10 Analyzed 03/29/23 06:00 03/29/23 06:00 03/29/23 06:00 03/29/23 06:00 03/29/23 06:00 03/29/23 06:00 03/29/23 06:00	Dil Fau Dil Fau

Client Sample ID: BH04 Date Collected: 03/20/23 15:20

Date Received: 03/21/23 08:15

Sample Depth: 1'

Method: SW846 8021B - Volat	ile Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0398	U	0.0398	mg/Kg		03/27/23 16:06	04/01/23 00:22	20
Toluene	<0.0398	U	0.0398	mg/Kg		03/27/23 16:06	04/01/23 00:22	20
Ethylbenzene	<0.0398	U	0.0398	mg/Kg		03/27/23 16:06	04/01/23 00:22	20
m-Xylene & p-Xylene	<0.0795	U	0.0795	mg/Kg		03/27/23 16:06	04/01/23 00:22	20
o-Xylene	<0.0398	U	0.0398	mg/Kg		03/27/23 16:06	04/01/23 00:22	20
Xylenes, Total	<0.0795	U	0.0795	mg/Kg		03/27/23 16:06	04/01/23 00:22	20
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	71		70 - 130			03/27/23 16:06	04/01/23 00:22	20

Eurofins Carlsbad

Matrix: Solid

Lab Sample ID: 890-4371-6

Matrix: Solid

5

Client Sample Results

Job ID: 890-4371-1 SDG: Lea County NM

Lab Sample ID: 890-4371-7

Client Sample ID: BH04

Date Collected: 03/20/23 15:20 Date Received: 03/21/23 08:15

Sample Depth: 1'

Client: Ensolum

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	98		70 - 130			03/27/23 16:06	04/01/23 00:22	20
Method: TAL SOP Total BTEX - 1	otal BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.0795	U	0.0795	mg/Kg			04/03/23 15:53	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			03/29/23 12:10	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		03/27/23 14:32	03/29/23 00:14	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		03/27/23 14:32	03/29/23 00:14	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		03/27/23 14:32	03/29/23 00:14	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	84		70 - 130			03/27/23 14:32	03/29/23 00:14	1
o-Terphenyl	83		70 - 130			03/27/23 14:32	03/29/23 00:14	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	49.4		4.95	mg/Kg			03/31/23 00:44	1
lient Sample ID: BH04A						Lab Sar	nple ID: 890-4	4274 0

Sample Depth: 5'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0399	U	0.0399	mg/Kg		03/27/23 16:06	04/01/23 00:43	20
Toluene	<0.0399	U	0.0399	mg/Kg		03/27/23 16:06	04/01/23 00:43	20
Ethylbenzene	<0.0399	U	0.0399	mg/Kg		03/27/23 16:06	04/01/23 00:43	20
m-Xylene & p-Xylene	<0.0798	U	0.0798	mg/Kg		03/27/23 16:06	04/01/23 00:43	20
o-Xylene	<0.0399	U	0.0399	mg/Kg		03/27/23 16:06	04/01/23 00:43	20
Xylenes, Total	<0.0798	U	0.0798	mg/Kg		03/27/23 16:06	04/01/23 00:43	20
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	77		70 - 130			03/27/23 16:06	04/01/23 00:43	20
1,4-Difluorobenzene (Surr)	94		70 - 130			03/27/23 16:06	04/01/23 00:43	20
- Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.0798	U	0.0798	mg/Kg			04/03/23 15:53	1
- Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
· ·····								

Eurofins Carlsbad

Matrix: Solid

Job ID: 890-4371-1 SDG: Lea County NM

Lab Sample ID: 890-4371-8

Lab Sample ID: 890-4371-9

Matrix: Solid

Client Sample ID: BH04A

Date Collected: 03/20/23 15:40 Date Received: 03/21/23 08:15

Client: Ensolum

	Date ite	cerveu.	05/21/25	00
-	Sample	Depth:	5'	

Mathada OM/040 00455 NM Disast Danse Organiza (DDO) (OO)	
Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)	

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8	mg/Kg		03/27/23 14:32	03/29/23 00:35	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg		03/27/23 14:32	03/29/23 00:35	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		03/27/23 14:32	03/29/23 00:35	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	99		70 - 130			03/27/23 14:32	03/29/23 00:35	1
o-Terphenyl	92		70 - 130			03/27/23 14:32	03/29/23 00:35	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	89.2	4.98	mg/Kg			03/31/23 20:05	1

Client Sample ID: BH05

Date Collected: 03/20/23 16:00 Date Received: 03/21/23 08:15

Sample Depth: 1'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.100	U	0.100	mg/Kg		03/27/23 16:06	04/01/23 01:03	50
Toluene	0.150		0.100	mg/Kg		03/27/23 16:06	04/01/23 01:03	50
Ethylbenzene	1.76		0.100	mg/Kg		03/27/23 16:06	04/01/23 01:03	50
m-Xylene & p-Xylene	3.18		0.200	mg/Kg		03/27/23 16:06	04/01/23 01:03	50
o-Xylene	10.1		0.100	mg/Kg		03/27/23 16:06	04/01/23 01:03	5
Xylenes, Total	13.3		0.200	mg/Kg		03/27/23 16:06	04/01/23 01:03	5
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	280	S1+	70 - 130			03/27/23 16:06	04/01/23 01:03	5
1,4-Difluorobenzene (Surr)	97		70 - 130			03/27/23 16:06	04/01/23 01:03	50
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX Method: SW846 8015 NM - Diese	15.2 I Range Organ	ics (DRO) (0.200 GC)	mg/Kg		<u>·</u>	04/03/23 15:53	Dil Fac
Total BTEX	15.2 I Range Organ		0.200		<u>D</u>	Prepared Prepared		
Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	I Range Organ Result 8710 sel Range Orga	<mark>ics (DRO) (</mark> Qualifier	0.200 GC) RL 498	mg/Kg Unit		<u>·</u>	04/03/23 15:53 Analyzed	Dil Fa
Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte	I Range Organ Result 8710 sel Range Orga Result	ics (DRO) ((Qualifier nics (DRO)	0.200 GC) RL 498 (GC) RL	Unit mg/Kg mg/Kg Unit	D	Prepared	04/03/23 15:53 Analyzed 03/29/23 12:10 Analyzed	Dil Fa Dil Fa Dil Fa 1

%Recovery Qualifier Limits Dil Fac Prepared Analyzed Surrogate 70 - 130 03/27/23 14:32 1-Chlorooctane 162 S1+ 03/29/23 05:16 10 o-Terphenyl 241 S1+ 70 - 130 03/27/23 14:32 03/29/23 05:16 10

Eurofins Carlsbad

5

		Clien	t Sample Res	sults				
Client: Ensolum			•				Job ID: 890	-4371-
Project/Site: SEMU Permian 37 (Ma	averick)						SDG: Lea Co	unty NM
Client Sample ID: BH05						Lab San	nple ID: 890-	4371-
Date Collected: 03/20/23 16:00							-	x: Soli
Date Received: 03/21/23 08:15								
Sample Depth: 1'								
_ Method: EPA 300.0 - Anions, Ion	Chromatogran	hy - Solubl	•					
Analyte	· · ·	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	626		5.03	mg/Kg			03/31/23 20:19	
lient Sample ID: BH05A						Lab Sam	ple ID: 890-4	371-1
Date Collected: 03/20/23 16:20								x: Soli
Date Received: 03/21/23 08:15								
Sample Depth: 5'								
_ Method: SW846 8021B - Volatile	Organia Comp	ounds (CC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.0398	U	0.0398	mg/Kg		03/27/23 16:06	04/01/23 01:24	2
Toluene	0.117		0.0398	mg/Kg		03/27/23 16:06	04/01/23 01:24	2
Ethylbenzene	< 0.0398	U	0.0398	mg/Kg		03/27/23 16:06	04/01/23 01:24	:
m-Xylene & p-Xylene	<0.0797	U	0.0797	mg/Kg		03/27/23 16:06	04/01/23 01:24	
o-Xylene	<0.0398	U	0.0398	mg/Kg		03/27/23 16:06	04/01/23 01:24	:
Xylenes, Total	<0.0797	U	0.0797	mg/Kg		03/27/23 16:06	04/01/23 01:24	2
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	90		70 - 130			03/27/23 16:06	04/01/23 01:24	2
1,4-Difluorobenzene (Surr)	108		70 - 130			03/27/23 16:06	04/01/23 01:24	2
Method: TAL SOP Total BTEX - 1	otal BTEX Calo	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	0.117		0.0797	mg/Kg			04/03/23 15:53	
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	255		50.0	mg/Kg			03/29/23 12:10	
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		03/27/23 14:32	03/29/23 05:38	
Diesel Range Organics (Over	255		50.0	mg/Kg		03/27/23 14:32	03/29/23 05:38	
C10-C28)				0.0				
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/27/23 14:32	03/29/23 05:38	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil F
1-Chlorooctane	99		70 - 130			03/27/23 14:32	03/29/23 05:38	
o-Terphenyl	99							

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL Unit D Prepared Analyzed Chloride 1950 25.1 mg/Kg 03/31/23 20:24

Eurofins Carlsbad

Dil Fac

5

Client: Ensolum Project/Site: SEMU Permian 37 (Maverick)

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
890-4371-1	BH01	106	87	·	
890-4371-1 MS	BH01	125	109		6
890-4371-1 MSD	BH01	115	107		
890-4371-2	BH01A	81	100		
890-4371-3	BH02	273 S1+	92		
890-4371-4	BH02A	144 S1+	95		\$
890-4371-5	BH03	110	89		
890-4371-6	BH03A	130	72		6
890-4371-7	BH04	71	98		
890-4371-8	BH04A	77	94		
890-4371-9	BH05	280 S1+	97		
890-4371-10	BH05A	90	108		
LCS 880-49657/1-A	Lab Control Sample	116	107		
LCSD 880-49657/2-A	Lab Control Sample Dup	120	105		
MB 880-49654/5-A	Method Blank	74	81		
MB 880-49657/5-A	Method Blank	85	89		
0					
Surrogate Legend					
BFB = 4-Bromofluorober					

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) 1CO1 OTPH1 Lab Sample ID **Client Sample ID** (70-130) (70-130) 890-4371-1 BH01 0.2 S1-0.07 S1-890-4371-1 MS BH01 88 80 890-4371-1 MSD BH01 103 91 890-4371-2 BH01A 81 77 890-4371-3 BH02 99 100 890-4371-4 BH02A 85 86 890-4371-5 BH03 84 86 890-4371-6 BH03A 101 101 890-4371-7 BH04 84 83 890-4371-8 BH04A 99 92 BH05 241 S1+ 890-4371-9 162 S1+ 890-4371-10 BH05A 99 99 LCS 880-49652/2-A 103 Lab Control Sample 103 LCSD 880-49652/3-A Lab Control Sample Dup 106 102 MB 880-49652/1-A Method Blank 124 124

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Prep Type: Total/NA

Prep Type: Total/NA

Client: Ensolum Project/Site: SEMU Permian 37 (Maverick)

Method: 8021B - Volatile Organic Compounds (GC)

 Lab Sample ID: MB 880-49654/5-/	A								Client Sa	mple ID: Meth	nod Blank
Matrix: Solid										Prep Type	: Total/NA
Analysis Batch: 49999										Prep Bat	ch: 49654
	M	В МВ									
Analyte	Resu	t Qualifier	RL	-	Unit		D	Р	repared	Analyzed	Dil Fac
Benzene	<0.0020	D U	0.00200)	mg/K	g	_	03/2	7/23 15:25	03/31/23 11:23	1
Toluene	<0.0020	D U	0.00200)	mg/K	g		03/2	7/23 15:25	03/31/23 11:23	1
Ethylbenzene	<0.0020	D U	0.00200)	mg/K	g		03/2	7/23 15:25	03/31/23 11:23	1
m-Xylene & p-Xylene	<0.0040	0 U	0.00400		mg/K			03/2	7/23 15:25	03/31/23 11:23	1
o-Xylene	<0.0020		0.00200		mg/K	-			7/23 15:25	03/31/23 11:23	1
Xylenes, Total	<0.0040		0.00400		mg/K	-			7/23 15:25	03/31/23 11:23	1
	0.0010		0.00100		mg/rt	9		00/2		00/01/2011/20	
	M	B MB									
Surrogate	%Recover	y Qualifier	Limits					P	repared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	7	4	70 - 130	-				03/2	27/23 15:25	03/31/23 11:23	1
1,4-Difluorobenzene (Surr)	8	1	70 - 130					03/2	27/23 15:25	03/31/23 11:23	1
Lab Sample ID: MB 880-49657/5-	Α								Client Sa	mple ID: Meth	od Blank
Matrix: Solid										Prep Type	: Total/NA
Analysis Batch: 49999										Prep Bat	ch: 49657
-	M	З МВ									
Analyte	Resu	t Qualifier	RL		Unit		D	Р	repared	Analyzed	Dil Fac
Benzene	<0.0020	D U	0.00200)	mg/K	q	_		7/23 16:06	03/31/23 21:58	1
Toluene	<0.0020		0.00200		mg/K	-			7/23 16:06	03/31/23 21:58	
Ethylbenzene	< 0.0020		0.00200		mg/K	-			7/23 16:06	03/31/23 21:58	1
m-Xylene & p-Xylene	<0.0040		0.00400		mg/K				27/23 16:06	03/31/23 21:58	
o-Xylene	<0.0020		0.00200		mg/K	-			27/23 16:06	03/31/23 21:58	
-	<0.0020		0.00200		-	-			27/23 16:06	03/31/23 21:58	1
Xylenes, Total	<0.0040	5 0	0.00400	,	mg/K	y		03/2	1/23 10:00	03/31/23 21:50	1
	М	3 <i>MB</i>									
Surrogate	%Recover	y Qualifier	Limits					P	repared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	8	5	70 - 130	-				03/2	27/23 16:06	03/31/23 21:58	1
1,4-Difluorobenzene (Surr)	8	9	70 - 130					03/2	27/23 16:06	03/31/23 21:58	1
Lab Sample ID: LCS 880-49657/1	- A						С	lient	Sample	ID: Lab Contro	ol Sample
Matrix: Solid										Prep Type	: Total/NA
Analysis Batch: 49999											ch: 49657
			Spike	LCS	LCS					• %Rec	
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	
Benzene			0.100	0.09066		mg/Kg			91	70 - 130	
Toluene			0.100	0.09152		mg/Kg			92	70 - 130	
Ethylbenzene			0.100	0.09701		mg/Kg			97	70 - 130	
m-Xylene & p-Xylene			0.200	0.2066		mg/Kg			103	70 - 130	
			0.200	0.1130					103	70 - 130	
o-Xylene			0.100	0.1150		mg/Kg			115	70 - 130	
	LCS LC	s									
Surrogate	%Recovery Qu	alifier	Limits								
4-Bromofluorobenzene (Surr)	116		70 - 130								
1,4-Difluorobenzene (Surr)	107		70 - 130								
Lab Sample ID: LCSD 880-49657	/2-A					Cli	ent	Sam	ple ID: L	ab Control Sa	mple Dup
Matrix: Solid									-	Prep Type	
Analysis Batch: 49999											ch: 49657
			Spike	LCSD	LCSD					%Rec	RPD
Analyte			Added		Qualifier	Unit		D	%Rec		PD Limit

5

7

Job ID: 890-4371-1 SDG: Lea County NM

Eurofins Carlsbad

0

70 - 130

91

mg/Kg

Benzene

0.09100

0.100

35

Client: Ensolum Project/Site: SEMU Permian 37 (Maverick) Page 120 of 164

Job ID: 890-4371-1 SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-4	9657/2-A					Clier	nt Sam	ple ID:	Lab Contro		
Matrix: Solid										ype: To	
Analysis Batch: 49999									Prep	Batch:	4965
			Spike	LCSD	LCSD				%Rec		RP
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Toluene			0.100	0.09094		mg/Kg		91	70 - 130	1	3
Ethylbenzene			0.100	0.09972		mg/Kg		100	70 - 130	3	3
m-Xylene & p-Xylene			0.200	0.2134		mg/Kg		107	70 - 130	3	3
o-Xylene			0.100	0.1143		mg/Kg		114	70 - 130	1	3
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)			70 - 130								
1,4-Difluorobenzene (Surr)	105		70 - 130								
Lab Sample ID: 890-4371-1	MS								Client Sar		
Matrix: Solid										ype: To	
Analysis Batch: 49999	•	. .	• "							Batch:	4965
	Sample	•	Spike		MS		_		%Rec		
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Benzene	<0.00201		0.0998	0.08943		mg/Kg		90	70 - 130		
Toluene	<0.00201		0.0998	0.09016		mg/Kg		90	70 - 130		
Ethylbenzene	<0.00201		0.0998	0.09631		mg/Kg		96	70 - 130		
m-Xylene & p-Xylene	<0.00402	U	0.200	0.2037		mg/Kg		102	70 - 130		
o-Xylene	<0.00201	U	0.0998	0.1082		mg/Kg		108	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	125		70 - 130								
1,4-Difluorobenzene (Surr)	109		70 - 130								
Lab Sample ID: 890-4371-1	MSD								Client Sar	nple ID:	BH0
Matrix: Solid										· ype: To	
Analysis Batch: 49999										Batch:	
	Sample	Sample	Spike	MSD	MSD				%Rec		RP
Analysis Daten. 43333		•	•		Qualifier	Unit	D	%Rec	Limits	RPD	Lim
	Result	Qualifier	Added					93	70 - 130	3	3
Analyte	Result		Added			ma/Ka					
Analyte Benzene	<0.00201	U	0.0990	0.09214		mg/Kg mg/Kg				2	3
Analyte Benzene Toluene	<0.00201 <0.00201	U U	0.0990	0.09214 0.08867		mg/Kg		90	70 - 130	2	
Analyte Benzene Toluene Ethylbenzene	<0.00201 <0.00201 <0.00201	บ บ บ	0.0990 0.0990 0.0990	0.09214 0.08867 0.09360		mg/Kg mg/Kg		90 95	70 - 130 70 - 130	3	3
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	<0.00201 <0.00201 <0.00201 <0.00402	U U U U	0.0990 0.0990 0.0990 0.198	0.09214 0.08867 0.09360 0.1992		mg/Kg mg/Kg mg/Kg		90 95 101	70 - 130 70 - 130 70 - 130	3 2	3
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	<0.00201 <0.00201 <0.00201 <0.00402 <0.00201	U U U U U	0.0990 0.0990 0.0990	0.09214 0.08867 0.09360		mg/Kg mg/Kg		90 95	70 - 130 70 - 130	3	3
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	<0.00201 <0.00201 <0.00201 <0.00402 <0.00201 <i>MSD</i>	U U U U U MSD	0.0990 0.0990 0.0990 0.198 0.0990	0.09214 0.08867 0.09360 0.1992		mg/Kg mg/Kg mg/Kg		90 95 101	70 - 130 70 - 130 70 - 130	3 2	3
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate	<0.00201 <0.00201 <0.00201 <0.00402 <0.00201 <i>MSD</i> %Recovery	U U U U U MSD	0.0990 0.0990 0.198 0.0990 <i>Limits</i>	0.09214 0.08867 0.09360 0.1992		mg/Kg mg/Kg mg/Kg		90 95 101	70 - 130 70 - 130 70 - 130	3 2	3
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	<0.00201 <0.00201 <0.00201 <0.00402 <0.00201 <i>MSD</i>	U U U U U MSD	0.0990 0.0990 0.0990 0.198 0.0990	0.09214 0.08867 0.09360 0.1992		mg/Kg mg/Kg mg/Kg		90 95 101	70 - 130 70 - 130 70 - 130	3 2	3 3 3 3

Lab Sample ID: MB 880-49652/1-A Matrix: Solid	ι.					Client Sa	mple ID: Metho Prep Type: ⁻	Total/NA
Analysis Batch: 49691	МВ	МВ					Prep Batcl	n: 49652
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		03/27/23 14:32	03/28/23 21:43	1
(GRO)-C6-C10								

Eurofins Carlsbad

Client: Ensolum Project/Site: SEMU Permian 37 (Maverick)

Lab Sample ID: MB 880-49652/1-A

Matrix: Solid

Analyte

C10-C28)

Surrogate 1-Chlorooctane

o-Terphenyl

Analyte

C10-C28)

Matrix: Solid

Analysis Batch: 49691

Gasoline Range Organics (GRO)-C6-C10

Diesel Range Organics (Over

Analysis Batch: 49691

Diesel Range Organics (Over

Oll Range Organics (Over C28-C36)

Lab Sample ID: LCS 880-49652/2-A

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

MB MB

<50.0 U

<50.0 U MB MB %Recovery Qualifier

124

124

Result Qualifier

Sam	ple Resi	ults							1
							Job ID: 89	0-4371-1	
							SDG: Lea Co	ounty NM	2
)) (GC)	(Continu	ued)							3
						Client S	ample ID: Meth	od Blank	
							Prep Type:	Total/NA	4
							Prep Batc	h: 49652	
									5
	RL	Unit		D	Р	repared	Analyzed	Dil Fac	
	50.0	mg/K	g		03/2	7/23 14:32	2 03/28/23 21:43	1	6
	50.0	mg/K	g		03/2	7/23 14:32	2 03/28/23 21:43	1	7
Lim	its				P	repared	Analyzed	Dil Fac	8
70 -	130				03/2	7/23 14:32	2 03/28/23 21:43	1	
70 -	130				03/2	7/23 14:32	2 03/28/23 21:43	1	9
				С	lient	Sample	ID: Lab Contro	I Sample	40
							Prep Type:	Total/NA	10
							Prep Batc	h: 49652	
Spike	LC	S LCS					%Rec		11
Added	Resu	It Qualifier	Unit		D	%Rec	Limits		
1000	869.	0	mg/Kg		_	87	70 - 130		12
1000	875.	2	mg/Kg			88	70 - 130		13

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	103		70 - 130
o-Terphenyl	103		70 - 130

Lab Sample ID: LCSD 880-49652/3-A	Clier	nt Sam	ple ID:	Lab Contro	I Sampl	e Dup			
Matrix: Solid							Prep 1	Type: To	tal/NA
Analysis Batch: 49691							Prep	Batch:	49652
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	1000	972.5		mg/Kg		97	70 - 130	11	20
Diesel Range Organics (Over C10-C28)	1000	912.9		mg/Kg		91	70 - 130	4	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	102		70 - 130
o-Terphenyl	106		70 - 130

Lab Sample ID: 890-4371-1 MS Matrix: Solid

Analysis Batch: 49691									Prep	o Batch: 496	652
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<49.9	U F2	997	862.1		mg/Kg		86	70 - 130		
(GRO)-C6-C10	<49.9		997	895.2		ma/Ka		90	70 - 130		
Diesel Range Organics (Over C10-C28)	<49.9	U	997	695.Z		mg/Kg		90	70 - 130		

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	88		70 _ 130
o-Terphenyl	80		70 - 130

Eurofins Carlsbad

Client Sample ID: BH01

Prep Type: Total/NA

Page 121 of 164

Job ID: 890-4371-1 SDG: Lea County NM

Client: Ensolum Project/Site: SEMU Permian 37 (Maverick)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-4371-1 M	NSD									Client Sar		
Matrix: Solid											Type: To	
Analysis Batch: 49691										Prep	Batch:	4965
	Sample	Sample	Spike	MSD	MSD					%Rec		RPI
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limi
Gasoline Range Organics (GRO)-C6-C10	<49.9	U F2	999	1185	F2	mg/Kg		_	119	70 - 130	32	2
Diesel Range Organics (Over C10-C28)	<49.9	U	999	1014		mg/Kg			102	70 - 130	12	2
	MSD	MSD										
Surrogate	%Recovery	Qualifier	Limits									
1-Chlorooctane	103		70 - 130									
o-Terphenyl	91		70 - 130									
lethod: 300.0 - Anions, I Lab Sample ID: MB 880-4988 Matrix: Solid Analysis Batch: 50034		ography							Client S	ample ID: Prep	Method Type: S	
		MB MB										
Analyte	R	esult Qualifier		RL	Unit		D	Pr	epared	Analyz	ed	Dil Fa
Chloride	<	<5.00 U		5.00	mg/K	g				03/30/23	22:29	
Lab Sample ID: LCS 880-498	384/2-A						Cli	ient	Sample	ID: Lab Co	ontrol S	ampl
Matrix: Solid										Prep	Type: S	olubl
Analysis Batch: 50034												
· ····· , · · · · · · · · · · · · · · · · · · ·			Spike	LCS	LCS					%Rec		
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits		
Chloride			250	261.5		mg/Kg			105	90 - 110		
Lab Sample ID: LCSD 880-49 Matrix: Solid	9884/3-A					Cli	ent S	Sam	ple ID: I	Lab Contro Prep	l Sampl Type: S	
Analysis Batch: 50034			Spike	LCSD	LCSD					%Rec		RP
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Lim
				261.8		mg/Kg		_	105	90 - 110	0	2
Chloride			250	201.0								
Lab Sample ID: 890-4370-A-2	24-E MS		250	201.0					Client	Sample ID Prep	: Matrix Type: S	
Lab Sample ID: 890-4370-A-/ Matrix: Solid	24-E MS		250	201.0					Client			
Chloride Lab Sample ID: 890-4370-A-2 Matrix: Solid Analysis Batch: 50034		Sample	250 Spike		MS				Client			
Lab Sample ID: 890-4370-A- Matrix: Solid Analysis Batch: 50034	Sample	Sample Qualifier		MS	MS Qualifier	Unit		D	Client %Rec	Prep		
Lab Sample ID: 890-4370-A-2 Matrix: Solid Analysis Batch: 50034 Analyte	Sample	•	Spike	MS				<u>D</u>		Prep %Rec		
Lab Sample ID: 890-4370-A-/ Matrix: Solid	Sample Result 1520 24-F MSD	Qualifier	Spike Added 2520	MS Result 4138	Qualifier	Unit mg/Kg	Clien		%Rec 104	Prep %Rec Limits 90 - 110 D: Matrix Sp Prep	Type: S	olubl
Lab Sample ID: 890-4370-A-2 Matrix: Solid Analysis Batch: 50034 Analyte Chloride Lab Sample ID: 890-4370-A-2 Matrix: Solid	Sample Result 1520 24-F MSD	•	Spike Added	MS Result 4138		Unit mg/Kg	Clien		%Rec 104	Prep %Rec Limits 90 - 110 D: Matrix Sp	Type: S 	olubl

Client: Ensolum Project/Site: SEMU Permian 37 (Maverick) Job ID: 890-4371-1 SDG: Lea County NM

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: MB 880-49876/1-A									Client S	Sample ID:		
Matrix: Solid										Prep	Type: S	oluble
Analysis Batch: 50035												
	_	MB MB					_	_				
Analyte		esult Qualifier		RL	Unit		D	Pr	repared	Analy		Dil Fac
Chloride	<	<5.00 U		5.00	mg/K	g				03/31/23	19:50	1
Lab Sample ID: LCS 880-49876/2-/	A						Cli	ent	Sample	e ID: Lab C	ontrol S	ample
Matrix: Solid										Prep	Type: S	oluble
Analysis Batch: 50035												
			Spike	LCS	LCS					%Rec		
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits		
Chloride			250	256.8		mg/Kg			103	90 - 110		
Lab Sample ID: LCSD 880-49876/3	3-A					CI	ient S	Sam	ple ID:	Lab Contro	ol Sampl	e Dup
Matrix: Solid									·		Type: S	
Analysis Batch: 50035												
			Spike	LCSD	LCSD					%Rec		RPD
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Chloride			250	257.2		mg/Kg			103	90 - 110	0	20
Lab Sample ID: 890-4371-8 MS										Client Sam	ple ID: E	3H04A
Matrix: Solid										Prep	Type: S	oluble
Analysis Batch: 50035												
	Sample	Sample	Spike	MS	MS					%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit		D	%Rec	Limits		
Chloride	89.2		249	336.9		mg/Kg		_	99	90 - 110		
Lab Sample ID: 890-4371-8 MSD										Client Sam	ple ID: E	3H04A
Matrix: Solid											Type: S	
Analysis Batch: 50035												
-	Sample	Sample	Spike	MSD	MSD					%Rec		RPD
	oumpic											
Analyte		Qualifier	Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limit

Eurofins Carlsbad

QC Association Summary

Client: Ensolum Project/Site: SEMU Permian 37 (Maverick)

BH02A

BH03

BH03A

BH04

BH04A

BH05

BH05A

BH01

BH01

Method Blank

Lab Control Sample

Lab Control Sample Dup

Job ID: 890-4371-1 SDG: Lea County NM

5035

5035

5035

5035

5035

5035

5035

5035

5035 5035

5035

5035

GC VOA

890-4371-4

890-4371-5

890-4371-6

890-4371-7

890-4371-8

890-4371-9

890-4371-10

MB 880-49657/5-A

LCS 880-49657/1-A

890-4371-1 MS

890-4371-1 MSD

LCSD 880-49657/2-A

Prep Batch: 49654

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
MB 880-49654/5-A	Method Blank	Total/NA	Solid	5035	
rep Batch: 49657					
	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
Lab Sample ID	Client Sample ID BH01	Prep Type Total/NA	Matrix Solid	Method 5035	Prep Batch
Lab Sample ID 890-4371-1 890-4371-2	·				Prep Batch

Total/NA

Solid

Analysis Batch: 49999

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4371-1	BH01	Total/NA	Solid	8021B	49657
890-4371-2	BH01A	Total/NA	Solid	8021B	49657
890-4371-3	BH02	Total/NA	Solid	8021B	49657
890-4371-4	BH02A	Total/NA	Solid	8021B	49657
890-4371-5	BH03	Total/NA	Solid	8021B	49657
890-4371-6	BH03A	Total/NA	Solid	8021B	49657
890-4371-7	BH04	Total/NA	Solid	8021B	49657
890-4371-8	BH04A	Total/NA	Solid	8021B	49657
890-4371-9	BH05	Total/NA	Solid	8021B	49657
890-4371-10	BH05A	Total/NA	Solid	8021B	49657
MB 880-49654/5-A	Method Blank	Total/NA	Solid	8021B	49654
MB 880-49657/5-A	Method Blank	Total/NA	Solid	8021B	49657
LCS 880-49657/1-A	Lab Control Sample	Total/NA	Solid	8021B	49657
LCSD 880-49657/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	49657
890-4371-1 MS	BH01	Total/NA	Solid	8021B	49657
890-4371-1 MSD	BH01	Total/NA	Solid	8021B	49657

Analysis Batch: 50240

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4371-1	BH01	Total/NA	Solid	Total BTEX	
890-4371-2	BH01A	Total/NA	Solid	Total BTEX	
890-4371-3	BH02	Total/NA	Solid	Total BTEX	
890-4371-4	BH02A	Total/NA	Solid	Total BTEX	
890-4371-5	BH03	Total/NA	Solid	Total BTEX	
890-4371-6	BH03A	Total/NA	Solid	Total BTEX	
890-4371-7	BH04	Total/NA	Solid	Total BTEX	
890-4371-8	BH04A	Total/NA	Solid	Total BTEX	
890-4371-9	BH05	Total/NA	Solid	Total BTEX	
890-4371-10	BH05A	Total/NA	Solid	Total BTEX	

Eurofins Carlsbad

Page 124 of 164

5

8

Released to Imaging: 3/1/2024 3:24:49 PM

QC Association Summary

Client: Ensolum Project/Site: SEMU Permian 37 (Maverick)

Prep Batch: 49652

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4371-1	BH01	Total/NA	Solid	8015NM Prep	
890-4371-2	BH01A	Total/NA	Solid	8015NM Prep	
890-4371-3	BH02	Total/NA	Solid	8015NM Prep	
890-4371-4	BH02A	Total/NA	Solid	8015NM Prep	
890-4371-5	BH03	Total/NA	Solid	8015NM Prep	
890-4371-6	BH03A	Total/NA	Solid	8015NM Prep	
890-4371-7	BH04	Total/NA	Solid	8015NM Prep	
890-4371-8	BH04A	Total/NA	Solid	8015NM Prep	
890-4371-9	BH05	Total/NA	Solid	8015NM Prep	
890-4371-10	BH05A	Total/NA	Solid	8015NM Prep	
MB 880-49652/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-49652/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-49652/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-4371-1 MS	BH01	Total/NA	Solid	8015NM Prep	
890-4371-1 MSD	BH01	Total/NA	Solid	8015NM Prep	

Analysis Batch: 49691

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4371-1	BH01	Total/NA	Solid	8015B NM	49652
890-4371-2	BH01A	Total/NA	Solid	8015B NM	49652
890-4371-3	BH02	Total/NA	Solid	8015B NM	49652
890-4371-4	BH02A	Total/NA	Solid	8015B NM	49652
890-4371-5	BH03	Total/NA	Solid	8015B NM	49652
890-4371-6	BH03A	Total/NA	Solid	8015B NM	49652
890-4371-7	BH04	Total/NA	Solid	8015B NM	49652
890-4371-8	BH04A	Total/NA	Solid	8015B NM	49652
890-4371-9	BH05	Total/NA	Solid	8015B NM	49652
890-4371-10	BH05A	Total/NA	Solid	8015B NM	49652
MB 880-49652/1-A	Method Blank	Total/NA	Solid	8015B NM	49652
LCS 880-49652/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	49652
LCSD 880-49652/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	49652
890-4371-1 MS	BH01	Total/NA	Solid	8015B NM	49652
890-4371-1 MSD	BH01	Total/NA	Solid	8015B NM	49652

Analysis Batch: 49831

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4371-1	BH01	Total/NA	Solid	8015 NM	
890-4371-2	BH01A	Total/NA	Solid	8015 NM	
890-4371-3	BH02	Total/NA	Solid	8015 NM	
890-4371-4	BH02A	Total/NA	Solid	8015 NM	
890-4371-5	BH03	Total/NA	Solid	8015 NM	
890-4371-6	BH03A	Total/NA	Solid	8015 NM	
890-4371-7	BH04	Total/NA	Solid	8015 NM	
890-4371-8	BH04A	Total/NA	Solid	8015 NM	
890-4371-9	BH05	Total/NA	Solid	8015 NM	
890-4371-10	BH05A	Total/NA	Solid	8015 NM	

Page 125 of 164

QC Association Summary

Client: Ensolum Project/Site: SEMU Permian 37 (Maverick)

Client Sample ID

BH04A

BH05

BH05A

BH04A

BH04A

BH01

BH01A

BH02

BH02A

BH03 BH03A

BH04

Method Blank

Matrix Spike

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

Method Blank

Lab Control Sample

Client Sample ID

Lab Control Sample Dup

HPLC/IC

Leach Batch: 49876

Lab Sample ID

890-4371-8

890-4371-9

890-4371-10

MB 880-49876/1-A

LCS 880-49876/2-A

890-4371-8 MS

Lab Sample ID

890-4371-1

890-4371-2

890-4371-3

890-4371-4

890-4371-5

890-4371-6 890-4371-7

MB 880-49884/1-A

LCS 880-49884/2-A

LCSD 880-49884/3-A

890-4370-A-24-E MS

890-4370-A-24-F MSD

890-4371-8 MSD

LCSD 880-49876/3-A

Leach Batch: 49884

Page 126 of 164

Job ID: 890-4371-1 SDG: Lea County NM

Ргер Туре	Matrix	Method	Prep Batch	
Soluble	Solid	DI Leach		
Soluble	Solid	DI Leach		5
Soluble	Solid	DI Leach		
Soluble	Solid	DI Leach		
Soluble	Solid	DI Leach		
Soluble	Solid	DI Leach		
Soluble	Solid	DI Leach		
Soluble	Solid	DI Leach		8
				0
Prep Type	Matrix	Method	Prep Batch	3
Soluble	Solid	DI Leach		
Soluble	Solid	DI Leach		
Soluble	Solid	DI Leach		
Soluble	Solid	DI Leach		
Soluble	Solid	DI Leach		
Soluble	Solid	DI Leach		
Soluble	Solid	DI Leach		4.9
Soluble	Solid	DI Leach		13
Soluble	Solid	DI Leach		

DI Leach

DI Leach

DI Leach

Solid

Solid

Solid

Analysis Batch: 50034

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4371-1	BH01	Soluble	Solid	300.0	49884
890-4371-2	BH01A	Soluble	Solid	300.0	49884
890-4371-3	BH02	Soluble	Solid	300.0	49884
890-4371-4	BH02A	Soluble	Solid	300.0	49884
890-4371-5	BH03	Soluble	Solid	300.0	49884
890-4371-6	BH03A	Soluble	Solid	300.0	49884
890-4371-7	BH04	Soluble	Solid	300.0	49884
MB 880-49884/1-A	Method Blank	Soluble	Solid	300.0	49884
LCS 880-49884/2-A	Lab Control Sample	Soluble	Solid	300.0	49884
LCSD 880-49884/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	49884
890-4370-A-24-E MS	Matrix Spike	Soluble	Solid	300.0	49884
890-4370-A-24-F MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	49884

Soluble

Soluble

Soluble

Analysis Batch: 50035

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4371-8	BH04A	Soluble	Solid	300.0	49876
890-4371-9	BH05	Soluble	Solid	300.0	49876
890-4371-10	BH05A	Soluble	Solid	300.0	49876
MB 880-49876/1-A	Method Blank	Soluble	Solid	300.0	49876
LCS 880-49876/2-A	Lab Control Sample	Soluble	Solid	300.0	49876
LCSD 880-49876/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	49876
890-4371-8 MS	BH04A	Soluble	Solid	300.0	49876
890-4371-8 MSD	BH04A	Soluble	Solid	300.0	49876

Eurofins Carlsbad

Released to Imaging: 3/1/2024 3:24:49 PM

5

9

Job ID: 890-4371-1 SDG: Lea County NM

Lab Sample ID: 890-4371-1 Matrix: Solid

Lab Sample ID: 890-4371-2

Matrix: Solid

Date Collected: 03/20/23 13:20 Date Received: 03/21/23 08:15

Client Sample ID: BH01

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	49657	03/27/23 16:06	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	49999	03/31/23 22:20	SM	EET MID
Total/NA	Analysis	Total BTEX		1			50240	04/03/23 15:53	SM	EET MID
Total/NA	Analysis	8015 NM		1			49831	03/29/23 12:10	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	49652	03/27/23 14:32	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	49691	03/28/23 22:47	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	49884	03/29/23 16:21	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	50034	03/31/23 00:06	SMC	EET MID

Client Sample ID: BH01A

Date Collected: 03/20/23 13:40

Date Received: 03/21/23 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	49657	03/27/23 16:06	MNR	EET MID
Total/NA	Analysis	8021B		20	5 mL	5 mL	49999	03/31/23 22:40	SM	EET MID
Total/NA	Analysis	Total BTEX		1			50240	04/03/23 15:53	SM	EET MID
Total/NA	Analysis	8015 NM		1			49831	03/29/23 12:10	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	49652	03/27/23 14:32	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	49691	03/28/23 23:52	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	49884	03/29/23 16:21	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	50034	03/31/23 00:11	SMC	EET MID

Client Sample ID: BH02

Date Collected: 03/20/23 14:00

Date Received: 03/21/23 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	49657	03/27/23 16:06	MNR	EET MID
Total/NA	Analysis	8021B		50	5 mL	5 mL	49999	03/31/23 23:01	SM	EET MID
Total/NA	Analysis	Total BTEX		1			50240	04/03/23 15:53	SM	EET MID
Total/NA	Analysis	8015 NM		1			49831	03/29/23 12:10	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	49652	03/27/23 14:32	AJ	EET MID
Total/NA	Analysis	8015B NM		5	1 uL	1 uL	49691	03/29/23 04:54	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	49884	03/29/23 16:21	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	50034	03/31/23 00:25	SMC	EET MID

Client Sample ID: BH02A Date Collected: 03/20/23 14:20 Date Received: 03/21/23 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	49657	03/27/23 16:06	MNR	EET MID
Total/NA	Analysis	8021B		20	5 mL	5 mL	49999	03/31/23 23:21	SM	EET MID
Total/NA	Analysis	Total BTEX		1			50240	04/03/23 15:53	SM	EET MID

Eurofins Carlsbad

Matrix: Solid

Lab Sample ID: 890-4371-3 Matrix: Solid

Lab Sample ID: 890-4371-4

Job ID: 890-4371-1 SDG: Lea County NM

Lab Sample ID: 890-4371-4 Matrix: Solid

Lab Sample ID: 890-4371-5

Date Collected: 03/20/23 14:20 Date Received: 03/21/23 08:15

Client Sample ID: BH02A

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			49831	03/29/23 12:10	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	49652	03/27/23 14:32	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	49691	03/29/23 06:44	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	49884	03/29/23 16:21	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	50034	03/31/23 00:30	SMC	EET MID

Client Sample ID: BH03

Date Collected: 03/20/23 14:40 Date Received: 03/21/23 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	49657	03/27/23 16:06	MNR	EET MID
Total/NA	Analysis	8021B		20	5 mL	5 mL	49999	03/31/23 23:41	SM	EET MID
Total/NA	Analysis	Total BTEX		1			50240	04/03/23 15:53	SM	EET MID
Total/NA	Analysis	8015 NM		1			49831	03/29/23 12:10	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	49652	03/27/23 14:32	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	49691	03/29/23 06:21	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	49884	03/29/23 16:21	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	50034	03/31/23 00:35	SMC	EET MID

Client Sample ID: BH03A

Date Collected: 03/20/23 15:00 Date Received: 03/21/23 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	49657	03/27/23 16:06	MNR	EET MID
Total/NA	Analysis	8021B		20	5 mL	5 mL	49999	04/01/23 00:02	SM	EET MID
Total/NA	Analysis	Total BTEX		1			50240	04/03/23 15:53	SM	EET MID
Total/NA	Analysis	8015 NM		1			49831	03/29/23 12:10	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	49652	03/27/23 14:32	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	49691	03/29/23 06:00	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	49884	03/29/23 16:21	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	50034	03/31/23 00:40	SMC	EET MID

Client Sample ID: BH04

Date Collected: 03/20/23 15:20 Date Received: 03/21/23 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	49657	03/27/23 16:06	MNR	EET MID
Total/NA	Analysis	8021B		20	5 mL	5 mL	49999	04/01/23 00:22	SM	EET MID
Total/NA	Analysis	Total BTEX		1			50240	04/03/23 15:53	SM	EET MID
Total/NA	Analysis	8015 NM		1			49831	03/29/23 12:10	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	49652	03/27/23 14:32	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	49691	03/29/23 00:14	SM	EET MID

Eurofins Carlsbad

Matrix: Solid

Lab Sample ID: 890-4371-6

Lab Sample ID: 890-4371-7

Matrix: Solid

Matrix: Solid

Lab Chronicle

Job ID: 890-4371-1 SDG: Lea County NM

Client Sample ID: BH04 Date Collected: 03/20/23 15:20

Client: Ensolum

Date Received: 03/21/23 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.05 g	50 mL	49884	03/29/23 16:21	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	50034	03/31/23 00:44	SMC	EET MID

Client Sample ID: BH04A

Date Collected: 03/20/23 15:40 Date Received: 03/21/23 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	49657	03/27/23 16:06	MNR	EET MID
Total/NA	Analysis	8021B		20	5 mL	5 mL	49999	04/01/23 00:43	SM	EET MID
Total/NA	Analysis	Total BTEX		1			50240	04/03/23 15:53	SM	EET MID
Total/NA	Analysis	8015 NM		1			49831	03/29/23 12:10	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	49652	03/27/23 14:32	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	49691	03/29/23 00:35	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	49876	03/29/23 16:13	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	50035	03/31/23 20:05	SMC	EET MID

Client Sample ID: BH05 Date Collected: 03/20/23 16:00

Date Received: 03/21/23 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	49657	03/27/23 16:06	MNR	EET MID
Total/NA	Analysis	8021B		50	5 mL	5 mL	49999	04/01/23 01:03	SM	EET MID
Total/NA	Analysis	Total BTEX		1			50240	04/03/23 15:53	SM	EET MID
Total/NA	Analysis	8015 NM		1			49831	03/29/23 12:10	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	49652	03/27/23 14:32	AJ	EET MID
Total/NA	Analysis	8015B NM		10	1 uL	1 uL	49691	03/29/23 05:16	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	49876	03/29/23 16:13	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	50035	03/31/23 20:19	SMC	EET MID

Client Sample ID: BH05A Date Collected: 03/20/23 16:20

Date Received: 03/21/23 08:15

Lab Sample ID: 890-4371-10

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	49657	03/27/23 16:06	MNR	EET MID
Total/NA	Analysis	8021B		20	5 mL	5 mL	49999	04/01/23 01:24	SM	EET MID
Total/NA	Analysis	Total BTEX		1			50240	04/03/23 15:53	SM	EET MID
Total/NA	Analysis	8015 NM		1			49831	03/29/23 12:10	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	49652	03/27/23 14:32	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	49691	03/29/23 05:38	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	49876	03/29/23 16:13	KS	EET MID
Soluble	Analysis	300.0		5	50 mL	50 mL	50035	03/31/23 20:24	SMC	EET MID

Eurofins Carlsbad

Matrix: Solid

Matrix: Solid

9

Lab Sample ID: 890-4371-7 Matrix: Solid

Lab Sample ID: 890-4371-8

Lab Sample ID: 890-4371-9

Received by OCD: 12/15/2023 10:39:23 AM

Lab Chronicle

Client: Ensolum Project/Site: SEMU Permian 37 (Maverick)

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 890-4371-1 SDG: Lea County NM

Eurofins Carlsbad

		Accreditation/C	ertification Summary		
Client: Ensolum Project/Site: SEMU Pe	ermian 37 (Maverick))		Job ID: 890-4371- SDG: Lea County NM	
Laboratory: Eurof	ins Midland				-
Unless otherwise noted, all a	analytes for this laborator	y were covered under each acc	reditation/certification below.		
Authority		Program	Identification Number	Expiration Date	
Texas		NELAP	T104704400-22-25	06-30-23	
The following analytes	are included in this repor	rt, but the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for which	5
the agency does not of		, ,			
Analysis Method	Prep Method	Matrix	Analyte		
8015 NM		Solid	Total TPH		
Total BTEX		Solid	Total BTEX		
					8
					9
					10
					13

Eurofins Carlsbad

.

Method Summary

Client: Ensolum Project/Site: SEMU Permian 37 (Maverick)

Job ID: 890-4371-1 SDG: Lea County NM

Method	Method Description	Protocol	Laboratory
3021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
EPA = US	STM International Environmental Protection Agency 'Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edi	ition. November 1986 And Its Updates.	
	= TestAmerica Laboratories, Standard Operating Procedure		
Laboratory R			
EET MID:	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Laboratory References:

Eurofins Carlsbad

Sample Summary

Job ID: 890-4371-1	
SDG: Lea County NM	I

890-4371-1 BH01 Solid 03/20/23 13:20 03/21/23 08:15 1 890-4371-2 BH01A Solid 03/20/23 13:40 03/21/23 08:15 5' 890-4371-3 BH02 Solid 03/20/23 14:00 03/21/23 08:15 1' 890-4371-4 BH02A Solid 03/20/23 14:00 03/21/23 08:15 5' 890-4371-5 BH03A Solid 03/20/23 14:00 03/21/23 08:15 5' 890-4371-6 BH03A Solid 03/20/23 15:00 03/21/23 08:15 5' 890-4371-7 BH04 Solid 03/20/23 15:00 03/21/23 08:15 5' 890-4371-8 BH04A Solid 03/20/23 15:00 03/21/23 08:15 5' 890-4371-8 BH04A Solid 03/20/23 15:00 03/21/23 08:15 5' 890-4371-9 BH05 Solid 03/20/23 16:00 03/21/23 08:15 5' 890-4371-9 BH05A Solid 03/20/23 16:20 03/21/23 08:15 5' 890-4371-10 BH05A Solid 03/20/	.ab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-4371-3BH02Solid03/20/23 14:0003/21/23 08:151'990-4371-4BH02ASolid03/20/23 14:2003/21/23 08:155'990-4371-5BH03Solid03/20/23 14:4003/21/23 08:151'990-4371-6BH03ASolid03/20/23 15:0003/21/23 08:155'990-4371-7BH04Solid03/20/23 15:2003/21/23 08:151'990-4371-8BH04ASolid03/20/23 15:4003/21/23 08:155'990-4371-9BH05Solid03/20/23 15:4003/21/23 08:151'	390-4371-1	BH01	Solid	03/20/23 13:20	03/21/23 08:15	1'
90-4371-4BH02ASolid03/20/23 14:2003/21/23 08:155'90-4371-5BH03Solid03/20/23 14:4003/21/23 08:151'90-4371-6BH03ASolid03/20/23 15:0003/21/23 08:155'90-4371-7BH04Solid03/20/23 15:2003/21/23 08:151'90-4371-8BH04ASolid03/20/23 15:4003/21/23 08:155'90-4371-9BH05Solid03/20/23 16:0003/21/23 08:151'	90-4371-2	BH01A	Solid	03/20/23 13:40	03/21/23 08:15	5'
90-4371-5BH03Solid03/20/23 14:4003/21/23 08:151'90-4371-6BH03ASolid03/20/23 15:0003/21/23 08:155'90-4371-7BH04Solid03/20/23 15:2003/21/23 08:151'90-4371-8BH04ASolid03/20/23 15:4003/21/23 08:155'90-4371-9BH05Solid03/20/23 16:0003/21/23 08:151'	90-4371-3	BH02	Solid	03/20/23 14:00	03/21/23 08:15	1'
90-4371-6BH03ASolid03/20/23 15:0003/21/23 08:155'90-4371-7BH04Solid03/20/23 15:2003/21/23 08:151'90-4371-8BH04ASolid03/20/23 15:4003/21/23 08:155'90-4371-9BH05Solid03/20/23 16:0003/21/23 08:151'	90-4371-4	BH02A	Solid	03/20/23 14:20	03/21/23 08:15	5'
90-4371-7 BH04 Solid 03/20/23 15:20 03/21/23 08:15 1' 90-4371-8 BH04A Solid 03/20/23 15:40 03/21/23 08:15 5' 90-4371-9 BH05 Solid 03/20/23 16:00 03/21/23 08:15 1'	90-4371-5	BH03	Solid	03/20/23 14:40	03/21/23 08:15	1'
90-4371-8 BH04A Solid 03/20/23 15:40 03/21/23 08:15 5' 90-4371-9 BH05 Solid 03/20/23 16:00 03/21/23 08:15 1'	90-4371-6	BH03A	Solid	03/20/23 15:00	03/21/23 08:15	5'
90-4371-9 BH05 Solid 03/20/23 16:00 03/21/23 08:15 1'	90-4371-7	BH04	Solid	03/20/23 15:20	03/21/23 08:15	1'
	90-4371-8	BH04A	Solid	03/20/23 15:40	03/21/23 08:15	5'
90-4371-10 BH05A Solid 03/20/23 16:20 03/21/23 08:15 5'						
	90-4371-10	BH05A	Solid	03/20/23 16:20	03/21/23 08:15	5'

Firs Environment Testing Chain of Custody Kalei Jennings Nation, TX (28) 240-220, Datas. TX (214) 902-3200 Kalei Jennings El Paso, TX (32) 704-540, San Antonio, TX (210) 506-3334 Ensolum, LLC Company Name: 601 N. Marienfield St Suite 400 Address: 03D2057074 Company Name: 1-683-2503 Ensolum, LLC SEMU Permian 37 (Maverick) Turn Around Ves No. Thermonick ID Interviewed by Aspendent IX 79701 Lea Countly, NM Due Date: Dmitry Nikanorov TAT starts the day received by Aspendent ID: Ves No. Ves No. Corrected Temperature Company Correction Factor: Ves No. Ves No. Corrected Temperature Comp Cont Ves Sampled Sampled Sampled Sign 202022 13:20 NA Sign 202022 NA Sign 202022 NA Sign 202022 Sampled Sampled Sign 2020222 Sign 202 Sign	Chain of Custody Houston, TX (281) 240-4200, Daltas, TX (214) 902-0300 Midland, TX (432) 704-5400, San Antonio, TX (210) 509-3334 EL Pase, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Houston, TX (215) 585-3443, Lubbock, TX (806) 794-1296 Houston, TX (215) 585-3443, Lubbock, TX (806) 794-1296 Houston, TX (216) 598-3199 Midland, TX (7970) Address: GO1 N Marienfield SI Suite 400 AnALYSIS REO Address: Gone Address: Company Name: Ensolum, LLC Address: Gone Address: Midland, TX 79701 ANALYSIS REO ANALYSIS REO ANALYSIS REO ANALYSIS REO ANALYSIS REO ANALYSIS REO Address Address Address Address Address <	Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 9 Midland, TX (432) 704 5440, San Antonio, TX (210 EL Paso, TX (915) 585-3443, Lubbock, TX (806) Houbbs, NM (575) 382-7550, Carlsbad, NM (575) Bill to: (if different) Kalei Jennings Bill to: (if different) Kalei Jennings Company Name: 601 N Marienfeld St Suite 400 Address: 601 N Marienfeld St Suite 400 Address: Midland, TX 79701 Email: Kjennings@ensolum.com, dnikanorov@ensolum No/ Wet Ice: Rush Pres. No/ Wet Ice: Crede Parameters Moder Grab Parameters Bille Science No/ Wet Ice: Crede Parameters No/ Wet Ice: Crede Parameters No/ Figure Bill to Grab Parameters No/ Figure Bill to Grab Parameters No/ Wet Ice: Grab Parameters Bill to: Grab 1 X X Bill to: Grab 1 X X <		
Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 9 Midland, TX (432) 704 5440, San Antonio, TX (210 EL Paso, TX (915) 585-3443, Lubbock, TX (806) Houston, TX (210) EL Paso, TX (915) 585-3443, Lubbock, TX (806) Houston, TX (210) EL Paso, TX (915) 585-3443, Lubbock, TX (806) Houston, TX (210) EL Paso, TX (915) 585-3443, Lubbock, TX (806) Houston, TX (210) Ell Ito: (If different) Kalei Jennings Bill to: (If different) Kalei Jennings Company Name: Ensolum, LLC Address: 601 N Marienteld St Suite 400 City, State ZIP: Midland, TX 79701 Email: Kjennings@ensolum.com, dnikanorov@ensolum Due Date: Routine Routine Routine Rush Prest. Code No Parameters No Wet ice: Grab Parameters A Temperature: U.U. Parameters 890- Battex (8021 Bago.t 890- Battex (8021 Bago.t 890-	Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Houston, TX (215) 585-3443, Lubbock, TX (806) 794-1296 Houbbs, NM (575) 392-7550, Carlsbad, NM (575) 986-3199 Address: 601 N Marienfeld St Suite 400 AnALYSIS REO ANALYSIS REO ANALYSIS REO ANALYSIS REO Midland, TX 79701 ANALYSIS REO	Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Houston, TX (215) 585-3443, Lubbock, TX (806) 794-1296 Houbbs, NM (575) 392-7550, Carlsbad, NM (575) 986-3199 Address: 601 N Marienfeld St Suite 400 AnALYSIS REO ANALYSIS REO ANALYSIS REO ANALYSIS REO Midland, TX 79701 ANALYSIS REO		
Chain of Custody Houston, TX (281) 240-4200, Daltas, TX (214) 9 Midland, TX (432) 704-5440, San Antonio, TX (210 EL Paso, TX (915) 585-343, Lubbock, TX (806) Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 392-7550, C	Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (423) 704-5440, San Antonio, TX (214) 902-0304 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Houston, TX (423) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Houbs, NM (575) 392-7550, Carlsbad, NM (575) 986-3199 Midland, TX 79701 Analy received by Address: Analy received by ab, if received by 4:30pm Analy received by Bill to: (f orable Analy received by Bin of Cus <td col<="" td=""><td>Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (423) 704-5440, San Antonio, TX (214) 902-0304 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Houston, TX (423) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Houbs, NM (575) 392-7550, Carlsbad, NM (575) 986-3199 Midland, TX 79701 Analy received by Address: Analy received by ab, if received by 4:30pm Analy received by Bill to: (f orable Analy received by Bin of Cus <td col<="" td=""></td></td></td>	<td>Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (423) 704-5440, San Antonio, TX (214) 902-0304 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Houston, TX (423) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Houbs, NM (575) 392-7550, Carlsbad, NM (575) 986-3199 Midland, TX 79701 Analy received by Address: Analy received by ab, if received by 4:30pm Analy received by Bill to: (f orable Analy received by Bin of Cus <td col<="" td=""></td></td>	Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (423) 704-5440, San Antonio, TX (214) 902-0304 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Houston, TX (423) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Houbs, NM (575) 392-7550, Carlsbad, NM (575) 986-3199 Midland, TX 79701 Analy received by Address: Analy received by ab, if received by 4:30pm Analy received by Bill to: (f orable Analy received by Bin of Cus <td col<="" td=""></td>	
Chain of Custody d. TX (281) 240-4200, Dallas, TX (214) 9 aso. TX (915) 585-3443, Lubbock, TX (214) 9 aso. TX (915) 585-3443, Lubbock, TX (216) e: Ensolum, LLC 601 N Marienfeld St Suite 400 Midland, TX 79701 Midland, TX 79701 TPH (8015) BTEX (8021	Chain of Custody ston, TX (281) 240-4200, Dallas, TX (214) 902-0300 d, TX (432) 704-5440, San Antonio, TX (214) 902-0300 aso, TX (915) 585-3443, Lubbock, TX (216) 509-3334 aso, TX (915) 585-3443, Lubbock, TX (216) 509-3334 In (575) 92-7550, Carlsbad, NM (575) 986-3199 Midiand, TX 79701 Midland, TX 79701 ANALYSIS REO ANALYSIS REO ANALYSIS REO ANALYSIS REO ANALYSIS REO	Chain of Custody ston, TX (281) 240-4200, Dallas, TX (214) 902-0300 d, TX (432) 704-5440, San Antonio, TX (214) 902-0300 aso, TX (915) 585-3443, Lubbock, TX (216) 509-3334 aso, TX (915) 585-3443, Lubbock, TX (216) 509-3334 In (575) 92-7550, Carlsbad, NM (575) 986-3199 Midiand, TX 79701 Midland, TX 79701 ANALYSIS REO ANALYSIS REO ANALYSIS REO ANALYSIS REO ANALYSIS REO		
Chain of Custody c, TX (32) 704-540, San Antonio, TX (214) 9 aso. TX (915) 585-3443, Lubbock, TX (214) 9 aso. TX (915) 585-3443, Lubbock, TX (806) aso. TX (915) 585-3443, Lubbock, TX (806) aso. TX (915) 585-3443, Lubbock, TX (806) re: Ensolum, LLC 601 N Marienfield St Suite 400 Midland, TX 79701 TPH (8015) BTEX (8021	Chain of Custody ston, TX (281) 240-4200, Dallas, TX (214) 902-0300 d, TX (432) 704-5440, San Antonio, TX (214) 902-0300 aso, TX (915) 585-3443, Lubbock, TX (216) 509-3334 se: Ensolum, LLC 601 N Marienfeld St Suite 400 Midland, TX 79701 Midland, TX 79701 Press Code Code Code ANALYSIS REQ ANALYSIS REQ ANALYSIS REQ BTEX (8021	Chain of Custody ston, TX (281) 240-4200, Dallas, TX (214) 902-0300 d, TX (432) 704-5440, San Antonio, TX (214) 902-0300 aso, TX (915) 585-3443, Lubbock, TX (216) 509-3334 se: Ensolum, LLC 601 N Marienfeld St Suite 400 Midland, TX 79701 Midland, TX 79701 Press Code Code Code ANALYSIS REQ ANALYSIS REQ ANALYSIS REQ BTEX (8021		
hain of Custody (281) 240-4200, Dalas, TX (214) 902-0300 (32) 704-5440, San Antonio, TX (214) 902-0304 (915) 585-3443, Lubbock, TX (806) 794-1296 575) 392-7550, Cantsbad, NM (575) 988-3199 Katei Jennings Ensolum, LLC 601 N Marienfield St Suite 400 Midland, TX 79701 n.com, dnikanorov@ensolum.com ANALYSIS REC X X X X	Chain of Cus	Chain of Cus		
Sec. Dallas, TX (214) 902-0300 1, San Antonio, TX (214) 902-0300 0, Carlsbad, NM (575) 980-3334 1.C I.C I.C I.C I.C I.C I.C I.C I	Chain of Cus	Chain of Cus		
Stody 5. TX (214) 902-0300 nio. TX (210) 509-3334 4. NM (575) 988-3199 2. Inte 400 ANALYSIS REC ANALYSIS REC 8. JUITE 400 ANALYSIS REC	Chain of Cus	Chain of Cus		
	Program: US State of Proje Reporting: Le Deliverables: Stody	Work Order No: www.xenco.com Pa www.xenco.com Pa Work Order Comm Program: UST/PST PRP Brownfields State of Project: Reporting: Level II CLevel III PST/UST Deliverables: EDD ADaPT COMP HCL: Stody ADaPT ADAPT ADAPT None Cool: HCL: Nap: Stody ADAPT ADAPT Nap: Stody ADAPT		

12 13

5

4/3/2023

Job Number: 890-4371-1 SDG Number: Lea County NM

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 4371 List Number: 1 Creator: Stutzman, Amanda

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Job Number: 890-4371-1 SDG Number: Lea County NM

List Source: Eurofins Midland

List Creation: 03/22/23 11:06 AM

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 4371 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

APPENDIX E

NMOCD Notifications

Released to Imaging: 3/1/2024 3:24:49 PM

From:	OCDOnline@state.nm.us
То:	Aimee Cole
Subject:	The Oil Conservation Division (OCD) has approved the application, Application ID: 250698
Date:	Friday, November 17, 2023 7:55:45 AM

EXTERNAL EMAIL]

To whom it may concern (c/o Aimee Cole for Maverick Permian LLC),

The OCD has approved the submitted *Application for administrative approval of a release notification and corrective action* (C-141), for incident ID (n#) nAPP2305453661, with the following conditions:

• Remediation plan approved as written. Maverick Permian has 90-days (February 15. 2024) to submit it appropriate or final closure report.

The signed C-141 can be found in the OCD Online: Imaging under the incident ID (n#).

If you have any questions regarding this application, please contact me.

Thank you, Nelson Velez Environmental Specialist - Advanced 505-469-6146 Nelson.Velez@emnrd.nm.gov

New Mexico Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, NM 87505

Julianna Falcomata

From:	Wells, Shelly, EMNRD <shelly.wells@emnrd.nm.gov></shelly.wells@emnrd.nm.gov>
Sent:	Wednesday, October 25, 2023 1:03 PM
То:	Aimee Cole
Cc:	Velez, Nelson, EMNRD; Bratcher, Michael, EMNRD
Subject:	RE: [EXTERNAL] Maverick - Sampling Notification (Week of 10/30/2023)

[**EXTERNAL EMAIL**]

Good afternoon Aimee,

The OCD has received your notification. Include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thank you,

Shelly

Shelly Wells * Environmental Specialist-Advanced Environmental Bureau EMNRD-Oil Conservation Division 1220 S. St. Francis Drive|Santa Fe, NM 87505 (505)469-7520<u>|Shelly.Wells@emnrd.nm.gov</u> http://www.emnrd.state.nm.us/OCD/

From: Aimee Cole <acole@ensolum.com>
Sent: Wednesday, October 25, 2023 12:21 PM
To: Enviro, OCD, EMNRD <OCD.Enviro@emnrd.nm.gov>
Subject: [EXTERNAL] Maverick - Sampling Notification (Week of 10/30/2023)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Maverick Permian, LLC plans to complete sampling activities at the following site the week of October 30, 2023.

- SEMU Permian #37 / NAPP2305453661

Sampling Dates: 11/1/2023 – 11/3/2023

Thank you,

Received by OCD: 12/15/2023 10:39:23 AM

•

Julianna Falcomata

From:	Wells, Shelly, EMNRD <shelly.wells@emnrd.nm.gov></shelly.wells@emnrd.nm.gov>
Sent:	Wednesday, November 1, 2023 3:29 PM
То:	Aimee Cole
Cc:	Bratcher, Michael, EMNRD; Velez, Nelson, EMNRD
Subject:	RE: [EXTERNAL] Maverick Permian, LLC - Sampling Notification (Week of 11/6/2023)

[**EXTERNAL EMAIL**]

Good afternoon Aimee,

The OCD has received your notification. In the future, please also provide the anticipated time sampling will begin when you email OCD. Include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thank you,

Shelly

Shelly Wells * Environmental Specialist-Advanced Environmental Bureau EMNRD-Oil Conservation Division 1220 S. St. Francis Drive | Santa Fe, NM 87505 (505)469-7520 | Shelly.Wells@emnrd.nm.gov http://www.emnrd.state.nm.us/OCD/

From: Aimee Cole <acole@ensolum.com>
Sent: Wednesday, November 1, 2023 3:07 PM
To: Enviro, OCD, EMNRD <OCD.Enviro@emnrd.nm.gov>
Subject: [EXTERNAL] Maverick Permian, LLC - Sampling Notification (Week of 11/6/2023)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Maverick Permian, LLC plans to complete sampling activities at the following site the week of November 6, 2023.

SEMU Permian #37 / NAPP2305453661

• Sampling Dates: 11/6/2023 – 11/8/2023

Thank you,

_

Aimee Cole Senior Managing Scientist 720-384-7365 Ensolum, LLC in f Received by OCD: 12/15/2023 10:39:23 AM

•

Julianna Falcomata

From:	Wells, Shelly, EMNRD <shelly.wells@emnrd.nm.gov></shelly.wells@emnrd.nm.gov>
Sent:	Wednesday, November 8, 2023 3:51 PM
То:	Aimee Cole
Cc:	Velez, Nelson, EMNRD; Bratcher, Michael, EMNRD
Subject:	RE: [EXTERNAL] Maverick Permian, LLC - Sampling Notification (Week of 11/13/2023)

[**EXTERNAL EMAIL**]

Good afternoon Aimee,

The OCD has received your notification. Next time notification is sent to OCD, please include the time sampling is anticipated to start at each location. Include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thank you,

Shelly

Shelly Wells * Environmental Specialist-Advanced Environmental Bureau EMNRD-Oil Conservation Division 1220 S. St. Francis Drive | Santa Fe, NM 87505 (505)469-7520 | Shelly.Wells@emnrd.nm.gov http://www.emnrd.state.nm.us/OCD/

From: Aimee Cole <acole@ensolum.com>
Sent: Wednesday, November 8, 2023 3:41 PM
To: Enviro, OCD, EMNRD <OCD.Enviro@emnrd.nm.gov>
Subject: [EXTERNAL] Maverick Permian, LLC - Sampling Notification (Week of 11/13/2023)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Maverick Permian, LLC plans to complete sampling activities at the following site the week of November 13, 2023.

- SEMU Permian #37 / NAPP2305453661
 - Sampling Dates: 11/13/2023 11/14/2023
- EVGSAU Sat 6 Mobile Tester / NAPP2304744550
 - Sampling Dates: 11/15/2023 11/17/2023

Thank you,

.

Julianna Falcomata

From:	Enviro, OCD, EMNRD <ocd.enviro@emnrd.nm.gov></ocd.enviro@emnrd.nm.gov>
Sent:	Thursday, March 16, 2023 9:17 AM
То:	Kalei Jennings
Cc:	Bratcher, Michael, EMNRD; Nobui, Jennifer, EMNRD
Subject:	RE: [EXTERNAL] Maverick Permian - Sampling Notification (Week of 3/20/2023)

[**EXTERNAL EMAIL**]

Kalei,

Kalei,

Thank you for the notification. The notification requirement is two full business days which for sampling on Monday would be at the lates at the end of the workday on Wednesday. If you can please provide specific times and dates of sampling in all future communications also, please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thank you for your cooperation.

JH

Jocelyn Harimon • Environmental Specialist Environmental Bureau EMNRD - Oil Conservation Division 1220 South St. Francis Drive | Santa Fe, NM 87505 (505)469-2821 | Jocelyn.Harimon@emnrd.nm.gov http:// www.emnrd.nm.gov

From: Kalei Jennings <kjennings@ensolum.com>
Sent: Thursday, March 16, 2023 7:29 AM
To: Enviro, OCD, EMNRD <OCD.Enviro@emnrd.nm.gov>
Subject: [EXTERNAL] Maverick Permian - Sampling Notification (Week of 3/20/2023)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

Maverick Permian, LLC (Maverick) plans to complete sampling activities at the following sites the week of March 20, 2023.

- SEMU Permian 37 / NAPP2305453661
- EVGSAU 2963-001/ NAPP2235371799

.

- Grayburg Eumont Straw Battery/ NAPP2302036818
- MCA 351/ NAPP2302034681
- MCA 254/ NAPP2302035947
- MCA 400/NAPP2305455050

Thank you,

Kalei Jennings Senior Scientist 817-683-2503 Ensolum, LLC in f

Julianna Falcomata

From:	Nobui, Jennifer, EMNRD <jennifer.nobui@emnrd.nm.gov></jennifer.nobui@emnrd.nm.gov>
Sent:	Monday, May 8, 2023 3:44 PM
То:	Kalei Jennings
Cc:	Bratcher, Michael, EMNRD; Hamlet, Robert, EMNRD; Harimon, Jocelyn, EMNRD
Subject:	FW: [EXTERNAL] Maverick Permian- Extension Request- SEMU Permian #37 (Incident Number NAPP2305453661)

[**EXTERNAL EMAIL**]

Hello Kalei

OCD approves your 90-day extension request to August 7, 2023 to submit a remediation plan or closure report. Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thanks, Jennifer Nobui

From: Kalei Jennings <<u>kjennings@ensolum.com</u>>
Sent: Monday, May 8, 2023 11:49 AM
To: Enviro, OCD, EMNRD <<u>OCD.Enviro@emnrd.nm.gov</u>>
Subject: [EXTERNAL] Maverick Permian- Extension Request- SEMU Permian #37 (Incident Number NAPP2305453661)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

To Whom It May Concern,

SEMU Permian #37 (Incident Number NAPP2305453661)

Maverick Permian, LLC (Maverick) is requesting an extension for the current deadline of May 8, 2023, for submitting a report required in 19.15.29.12.B.(1) NMAC detailing remedial actions at the SEMU Permian #37 (Incident Number NAPP2305453661). On February 7, 2023, a flowline ruptured which caused a produced water and crude oil release onto the surrounding pasture at the Site. Initial site assessment and delineation activities have been completed. Based on laboratory analytical results, additional remediation efforts are warranted. To complete additional remediation activities and submit a remediation work plan or closure report, Maverick requests a 90-day extension of this deadline until August 7, 2023.

Thank you,

From:	Enviro, OCD, EMNRD	
То:	Kalei Jennings	
Cc:	Bratcher, Michael, EMNRD; Nobui, Jennifer, EMNRD	
Subject:	RE: [EXTERNAL] Maverick Permian - Sampling Notification (Week of 3/20/2023)	
Date:	Thursday, March 16, 2023 8:16:44 AM	
Attachments: image005.ipg		
	image006.png	
	image007.png	
	image008.png	
	image009.png	

[**EXTERNAL EMAIL**]

Kalei,

Kalei,

Thank you for the notification. The notification requirement is two full business days which for sampling on Monday would be at the lates at the end of the workday on Wednesday. If you can please provide specific times and dates of sampling in all future communications also, please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thank you for your cooperation.

JΗ

Jocelyn Harimon • Environmental Specialist Environmental Bureau EMNRD - Oil Conservation Division 1220 South St. Francis Drive | Santa Fe, NM 87505 (505)469-2821 | Jocelyn.Harimon@emnrd.nm.gov http:// www.emnrd.nm.gov

From: Kalei Jennings <kjennings@ensolum.com>
Sent: Thursday, March 16, 2023 7:29 AM
To: Enviro, OCD, EMNRD <OCD.Enviro@emnrd.nm.gov>
Subject: [EXTERNAL] Maverick Permian - Sampling Notification (Week of 3/20/2023)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

Maverick Permian, LLC (Maverick) plans to complete sampling activities at the following sites the week of March 20, 2023.

- SEMU Permian 37 / NAPP2305453661
- EVGSAU 2963-001/ NAPP2235371799
- Grayburg Eumont Straw Battery/ NAPP2302036818
- MCA 351/ NAPP2302034681
- MCA 254/ NAPP2302035947
- MCA 400/NAPP2305455050

Thank you,

Kalei Jennings Senior Scientist 817-683-2503 Ensolum, LLC

APPENDIX F

FINAL C-141

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Page 151 of 164

Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	NAPP2305453661
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party: Maverick Permian, LLC	OGRID: 331199
Contact Name: Bryce Wagoner	Contact Telephone: 928-241-1862
Contact email: Bryce.Wagoner@mavresources.com	Incident # (assigned by OCD) NAPP230545366
Contact mailing address: 1410 NW County Road Hobbs, NM 88240	

Location of Release Source

Latitude 32.5566346_

(NAD 83 in decimal degrees to 5 decimal places)

Site Name SEMU Permian #37	Site Type Flowline
Date Release Discovered February 7, 2023	API# (if applicable) 30-025-06252

Unit Letter	Section	Township	Range	County
LL	19	20S	38E	Lea

Surface Owner: State Federal Tribal X Private (Name:

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls) 3 bbls	Volume Recovered (bbls) 0 bbls
Produced Water	Volume Released (bbls) 15 bbls	Volume Recovered (bbls) 0 bbls
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	☐ Yes ⊠ No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
		- ·

Cause of Release

The release was caused by a flowline rupture. The release occurred in the pasture. The source of the release has been stopped and the impacted area has been secured. A remediation crew scrapped visually impacted surface soils and staged them for disposal.

Incident ID	NAPP2305453661
District RP	
Facility ID	
Application ID	

Was this a major	If YES, for what reason(s) does the responsible party consider this a major release?
release as defined by	
19.15.29.7(A) NMAC?	
🗌 Yes 🖾 No	
If YES, was immediate ne	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:Bryce Wagoner	Title:Permian HSE Specialist II
Signature:	Date:2/17/2023
email:Bryce.Wagoner@mavresources.com	Telephone:928-241-1862
OCD Only	
Received by:	Date:

Page 2

Page 153 of 164

	•			Pooled F	luids on the S	urface				
	Length (ft.)	Width (ft.)	Depth (in)	# of Boundaries *edges of pool where depth is 0 . don't count shared boundaries	Oil-Water Ratio (%)	Pooled Area (ft ²)	Estimated Average Depth (ft.)	Pooled Volume (bbl.)	Volume of Oil in Subsurface (bbl.)	Volume of Water in Subsurface (bbl.)
Rectangle A	20.0	25.0	2.0	4.0	0.20	500.0	0.0	3.7	0.74	2.97
Rectangle B	15.0	25.0	2.0	3.0	0.20	375.0	0.1	3.7	0.74	2.97
Rectangle C	10.0	15.0	2.00	3.00	0.20	150.000	0.056	1.483	0.08	1.19
Rectangle D						0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle E						0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Total Volume (bbls): 8.90 1.57 7.12							7.12		

				Sul	osurface Fluids	6				
	Length (ft.)	Width (ft.)	Depth (in.)	Saturation (%) *10% in consolidated sediments after rain to 50% in sand with no precipitation	Oil-Water Ratio (%)	Area (ft²)	Volume (bbl.)	Estimated Volume in Subsurface (bbl.)	Volume of Oil in Subsurface (bbl.)	Volume of Water in Subsurface (bbl.)
Rectangle A	20.0	25.0	6.0	0.1	0.20	500.0	44.5	4.5	0.89	3.6
Rectangle B	15.0	25.0	6.0	0.1	0.20	375.0	33.4	3.3	0.67	2.7
Rectangle C	10.0	15.0	6.0	0.1	0.20	150.0	13.4	1.3	0.27	1.1
Rectangle D						0.0	0.0	0.0	0.00	0.0
Rectangle E						0.0	0.0	0.0	0.00	0.0
Rectangle F						0.0	0.0	0.0	0.00	0.0
Rectangle G						0.0	0.0	0.0	0.00	0.0
Rectangle H						0.0	0.0	0.0	0.00	0.0
Rectangle I						0.0	0.0	0.0	0.00	0.0
Rectangle J						0.0	0.0	0.0	0.00	0.0
	Total Volume (bbls): 9.12 1.82 7.30						7.30			

TOTAL RELEASE VOLUME (bbls): 18.0

Released to Imaging: 3/1/2024 3:24:49 PM

Received by OCD: 12/15/2023 10:39:23 AM Form C-141 State of New Mexico

Page 3

Oil Conservation Division

	Page 154 of 164
Incident ID	NAPP2305453661
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>51-100 (f</u> eet bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗴 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- \boxtimes Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- \boxtimes Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 12/15/2023 10:39 Form C-141	:23 AM of New Marian		Page 155 of 164
		Incident ID	NAPP2305453661
Page 4	Oil Conservation Division	District RP	
		Facility ID	
		Application ID	
regulations all operators are required to public health or the environment. The a failed to adequately investigate and rem addition, OCD acceptance of a C-141 re and/or regulations. Printed Name: <u>Bryce Wagoner</u> Signature: <u>Bryce Wagoner</u> email: <u>bryce.wagoner@mavresour</u>		form corrective actions for rele ieve the operator of liability sho er, surface water, human health	ases which may endanger ould their operations have or the environment. In
OCD Only			
Received by:	Date:		

Page 6

Oil Conservation Division

Incident ID	NAPP2305453661
District RP	
Facility ID	
Application ID	

Page 156 of 164

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u>: Each of the following items must be included in the closure report.

 \overline{X} A scaled site and sampling diagram as described in 19.15.29.11 NMAC

 \overline{X} Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

X Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

X Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name:Bryce Wagoner	Title:Permian HSE Specialist II
Signature:	Date: <u>12/1/2023</u>
email: <u>Bryce:Wagoner@mavresources.com</u>	Telephone: <u>928-241-1862</u>
OCD Only	
Received by:	Date:
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations.
Closure Approved by:	Date:
Printed Name:	

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 291971

QUESTIONS			
Operator:	OGRID:		
Maverick Permian LLC	331199		
1000 Main Street, Suite 2900	Action Number:		
Houston, TX 77002	291971		
	Action Type:		
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)		

QUESTIONS Droroguioitoo

Prerequisites	
Incident ID (n#)	nAPP2305453661
Incident Name	NAPP2305453661 SEMU PERMIAN #37 @ 30-025-06252
Incident Type	Other
Incident Status	Remediation Closure Report Received
Incident Well	[30-025-06252] SEMU PERMIAN #037

Location of Release Source

Please answer all the questions in this group.			
Site Name	SEMU PERMIAN #37		
Date Release Discovered	02/07/2023		
Surface Owner	Federal		

Incident Details

Please answer all the questions in this group.				
Incident Type	Produced Water Release			
Did this release result in a fire or is the result of a fire	No			
Did this release result in any injuries	No			
Has this release reached or does it have a reasonable probability of reaching a watercourse	Νο			
Has this release endangered or does it have a reasonable probability of endangering public health	Νο			
Has this release substantially damaged or will it substantially damage property or the environment	No			
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No			

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission. Cause: Corrosion | Flow Line - Production | Crude Oil | Released: 3 BBL | Recovered: 0 BBL | Crude Oil Released (bbls) Details Lost: 3 BBL Cause: Corrosion | Flow Line - Production | Produced Water | Released: 15 BBL | Recovered: Produced Water Released (bbls) Details 0 BBL | Lost: 15 BBL Is the concentration of chloride in the produced water >10,000 mg/l No Condensate Released (bbls) Details Not answered. Natural Gas Vented (Mcf) Details Not answered. Natural Gas Flared (Mcf) Details Not answered. Other Released Details Not answered. Are there additional details for the questions above (i.e. any answer containing No additional details Other, Specify, Unknown, and/or Fire, or any negative lost amounts)

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 291971

QUESTIONS (continued)

Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	291971
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Initial Response

Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No
Reasons why this would be considered a submission for a notification of a major release	Unavailable.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.	

The responsible party must undertake the following actions immediately unless they could create a s	safety hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	iation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative ol ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of vvaluation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for releat the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or

	Name: Aimee Cole
I hereby agree and sign off to the above statement	Email: acole@ensolum.com
	Date: 12/15/2023

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505

Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 159 of 164

QUESTIONS, Page 3

Action 291971

QUESTIONS (continued)

Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	291971
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 75 and 100 (ft.)
What method was used to determine the depth to ground water	U.S. Geological Survey
Did this release impact groundwater or surface water	Yes
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:	
A continuously flowing watercourse or any other significant watercourse	Between 1 and 5 (mi.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between 1 and 5 (mi.)
An occupied permanent residence, school, hospital, institution, or church	Between 1 and 5 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between ½ and 1 (mi.)
Any other fresh water well or spring	Between ½ and 1 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Between 1 and 5 (mi.)
A subsurface mine	Between 1 and 5 (mi.)
An (non-karst) unstable area	Greater than 5 (mi.)
Categorize the risk of this well / site being in a karst geology	Low
A 100-year floodplain	Greater than 5 (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	Yes

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date. Requesting a remediation plan approval with this submission Yes Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC. Have the lateral and vertical extents of contamination been fully delineated Yes Was this release entirely contained within a lined containment area No Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.) Chloride (EPA 300.0 or SM4500 CI B) 2560 TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M) 20000 GRO+DRO (EPA SW-846 Method 8015M) 19980 BTEX (EPA SW-846 Method 8021B or 8260B) 110 (EPA SW-846 Method 8021B or 8260B) Benzene 0.5 Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation. On what estimated date will the remediation commence 11/01/2023 On what date will (or did) the final sampling or liner inspection occur 11/14/2023 On what date will (or was) the remediation complete(d) 11/14/2023 What is the estimated surface area (in square feet) that will be reclaimed 3925 What is the estimated volume (in cubic yards) that will be reclaimed 580 What is the estimated surface area (in square feet) that will be remediated 3925 What is the estimated volume (in cubic yards) that will be remediated 1600 These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed. The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 291971

 QUESTIONS (continued)

 Operator:
 OGRID:

 Maverick Permian LLC
 331199

 1000 Main Street, Suite 2900
 Action Number:

 Houston, TX 77002
 291971

 Action Type:
 [C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Remediation Plan (continued)

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants: (Select all answers below that apply.) (Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.) Yes Which OCD approved facility will be used for off-site disposal Sundance Services, Inc [fKJ1600527371] OR which OCD approved well (API) will be used for off-site disposal Not answered. OR is the off-site disposal site, to be used, out-of-state No OR is the off-site disposal site, to be used, an NMED facility No (Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms) No (In Situ) Soil Vapor Extraction No (In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.) No (In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.) No (In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.) No Ground Water Abatement pursuant to 19.15.30 NMAC No OTHER (Non-listed remedial process) No Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Name: Aimee Cole I hereby agree and sign off to the above statement Email: acole@ensolum.com

Date: 12/15/2023 The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 161 of 164

QUESTIONS, Page 5

Action 291971

QUESTIONS (continued)	
Operator: Maverick Permian LLC	OGRID: 331199
1000 Main Street, Suite 2900 Houston, TX 77002	Action Number: 291971
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)
QUESTIONS	

Deferral Requests Only

Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.	
Requesting a deferral of the remediation closure due date with the approval of this submission	No

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 291971

QUESTIONS (continued)	
Operator:	OGRID:
Maverick Permian LLC 1000 Main Street, Suite 2900 Houston, TX 77002	331199
	Action Number:
	291971
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	292706
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	11/01/2023
What was the (estimated) number of samples that were to be gathered	25
What was the sampling surface area in square feet	3925

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.		
Requesting a remediation closure approval with this submission	Yes	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	No	
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes	
What was the total surface area (in square feet) remediated	3925	
What was the total volume (cubic yards) remediated	1600	
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes	
What was the total surface area (in square feet) reclaimed	3925	
What was the total volume (in cubic yards) reclaimed	580	
Summarize any additional remediation activities not included by answers (above)	All remediation activities are provided in the Closure Request Report and were completed in accordance with an approved Remediation Work Plan.	
The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (in .pdf format) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.		
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a water, human health or the environment. In addition, OCD acceptance of a C-141 repor	knowledge and understand that pursuant to OCD rules and regulations all operators are required ses which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or ally restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed on polification to the OCD when reclamation and re-vegetation are complete.	

I hereby agree and sign off to the above statement	Name: Aimee Cole Email: acole@ensolum.com
	Date: 12/15/2023

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Action 291971

QUESTIONS (continued)	
Operator: Maverick Permian LLC	OGRID: 331199
1000 Main Street, Suite 2900 Houston, TX 77002	Action Number: 291971
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)
QUESTIONS	
Reclamation Report	

Only answer the questions in this group if all reclamation steps have been completed. Requesting a reclamation approval with this submission No

Released to Imaging: 3/1/2024 3:24:49 PM

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 291971

CONDITIONS			
Operator:	OGRID:		
Maverick Permian LLC	331199		
1000 Main Street, Suite 2900	Action Number:		
Houston, TX 77002	291971		
	Action Type:		
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)		

CONDITIONS

Created	By Condition	Condition Date
scwe	Remediation Closure approved. All areas not reasonably needed for production or subsequent drilling operations will need to be reclaimed and revegetated as soon as practical. Areas reasonably needed for production or subsequent drilling operations will need to be reclaimed and revegetated as soon as they are no longer reasonably needed. A report for reclamation and revegetation will need to be submitted prior to this incident receiving the final status of "Restoration Complete."	3/1/2024