

CLOSURE REQUEST REPORT

J Keats 1 24 32 #040H

Lea County, New Mexico

Incident Number nAPP2307447383

Prepared For: Chevron USA, Inc. 6301 Deauville Blvd. Midland, TX 79706

Carlsbad • Midland • San Antonio • Lubbock • Hobbs • Lafayette

SYNOPSIS

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of Chevron USA, Inc. (Chevron), presents the following Closure Request Report (CRR) detailing soil sampling activities for an inadvertent release of crude oil and produced water at the J Keats 1 24 32 #040H (Site). Based on completed remedial actions and laboratory analytical results from recent soil sampling events, Chevron is requesting No Further Action (NFA) at the Site.

SITE LOCATION AND BACKGROUND

The Site is located in Unit P, Section 01, Township 24 South, Range 32 East, in Lea County, New Mexico (32.2404213°, -103.6210556°) and is associated with oil and gas exploration and production operations on Federal Land managed by the Bureau of Land Management (BLM) (**Figure 1** in **Appendix A**).

On March 14, 2023, failure of a well head stuffing box caused the release of approximately 2.065 barrels (bbls) of crude oil and 6.196 bbls of produced water onto the well pad surface. Only 0.5 bbls of crude oil were able to be recovered. Chevron reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Corrective Action Form C-141 (Form C-141), which was received by the NMOCD on June 22, 2023, and was subsequently assigned Incident Number nAPP2307447383. **Figure 2** in **Appendix A** depicts the observed release area, hereafter referred to as the Area of Concern (AOC).

SITE CHARACTERIZATION AND CLOSURE CRITERIA

Etech confirmed the Site was characterized according to Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC) considering depth to groundwater and the proximity to:

- Any continuously flowing watercourse or any other significant watercourse;
- Any lakebed, sinkhole or playa lake (measured from the ordinary high-water mark);
- An occupied permanent residence, school, hospital, institution or church;
- A spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes;
- Any freshwater well or spring;
- Incorporated municipal boundaries or a defined municipal fresh water well field covered under a municipal ordinance;
- A wetland:
- A subsurface mine;
- An unstable area (i.e. high karst potential); and
- A 100-year floodplain.

Depth to groundwater at the Site is estimated to be greater than 55 feet below ground surface (bgs) based on a soil boring (labeled as GWDB) recently drilled by Scarborough Drilling, located approximately 0.12-miles northwest of the Site. The soil boring location may be referenced on **Figure 1** in **Appendix A**. Using a truck mounted rotary drill rig equipped with air rotary, the soil boring was advanced to a total depth of 55 feet bgs. No fluids were observed throughout the drilling process. Referenced well records for the soil boring are provided in **Appendix B**.

All other potential receptors are not within the established buffers in NMAC 19.15.29.12. Receptor details and sources used for the site characterization are included in **Figure 1 in Appendix A**.

Closure Request Report Incident Number nAPP2307447383 J Keats 1 24 32 #040H Based on the results from the desktop review and estimated regional depth to groundwater at the Site, the following Closure Criteria was applied:

Constituents of Concern (COCs)	Laboratory Analytical Method	Closure Criteria [†]
Chloride	(Environmental Protection Agency) EPA 300.0	10,000 milligrams per kilogram (mg/kg)
Total Petroleum Hydrocarbon (TPH)	EPA 8015 M/D	2,500 mg/kg
TPH-Gasoline Range Organics (GRO) + TPH-Diesel Range Organics (DRO)	EPA 8015 M/D	1,000 mg/kg
Benzene	EPA 8021B	10 mg/kg
Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX)	EPA 8021B	50 mg/kg

[†]The reclamation standard concentration requirements of 600 mg/kg chloride and 100 mg/kg TPH apply to the top 4 feet of areas to be immediately reclaimed following remediation pursuant to NMAC 19.15.17.13.

DELINEATION SOIL SAMPLING ACTIVITIES

On March 20, 2023, Etech personnel conducted delineation activities to verify the presence or absence of residual soil impacts associated with AOC. Five delineation auger holes were advanced via hand auger within and around the AOC. A minimum of three soil samples were collected from each delineation soil sampling location to submit for quantitative laboratory analyses. The locations of the delineation soil samples are shown in **Figure 2** in **Appendix A**. Photographic documentation of delineation activities is included in **Appendix C**.

The delineation soil samples were placed directly into lab provided pre-cleaned jars, packed with minimal void space, labeled, and immediately placed on ice. The soil samples were transported under strict chain-of-custody procedures, to Permian Basin Environmental Laboratory (PBELAB) in Midland, Texas, for analysis of COCs.

DELINEATION LABORATORY ANALYTICAL RESULTS

Laboratory analytical results for delineation soil samples within the AOC and immediately adjacent to the north and east of the AOC indicated elevated TPH-GRO/TPH-DRO and/or TPH concentrations present up to 0.5-foot bgs. Concentrations for all other COCs at the remaining sampling depths and sample locations were below the applicable Site Closure Criteria. Laboratory analytical results are summarized in **Table 1** included in **Appendix D**. The executed chain-of-custody forms and laboratory analytical reports are provided in **Appendix E**.

EXCAVATION SOIL SAMPLING ACTIVITIES

From June 16, 2023, through July 31, 2023, Etech personnel conducted excavation activities to address the impacts identified by delineation laboratory analytical results and visual observations via mechanical equipment. Excavation activities were driven by field screening soil for volatile organic compounds (VOCs) utilizing a calibrated photoionization detector (PID) and chloride using HACH® chloride QuanTab® test strips.

Following the removal of soil, Etech collected 5-point composite confirmation excavation soil samples at a sampling frequency of 200 square feet from the excavation floor and sidewalls. The 5-point composite samples were comprised of five equivalent aliquots homogenized in a 1-gallon, resealable plastic bag. The excavation samples were collected, handled, and analyzed as previously described. The location of confirmation excavation soil samples is shown in **Figure 2** in **Appendix A**.

Closure Request Report Incident Number nAPP2307447383 J Keats 1 24 32 #040H

pg. 3

Impacted soil was removed from the Site and transported to a licensed and approved New Mexico landfill. Upon receipt of the final confirmation excavation soil samples results, the excavation was backfilled with clean, locally sourced soil and the Site was restored to "as close to its original state" as possible. Photographic documentation of excavation activities is included in **Appendix C**.

EXCAVATION LABORATORY ANALYTICAL RESULTS

Laboratory analytical results for all excavation soil samples indicated all analyzed COCs were below the applicable Site Closure Criteria. Laboratory analytical results are summarized in **Table 1** included in **Appendix D**. The executed chain-of-custody forms and laboratory analytical reports are provided in **Appendix E**.

It should be noted that due to a shipping error, soil samples collected on June 30, 2023, were not received by PBELAB until July 7, 2023. The soil samples were prepared for analysis of TPH on July 10, 2023, and for BTEX and chloride on July 11, 2023. Analyses for TPH and chloride were completed the day following each respective soil sample preparation date, which produced results within the appropriate soil sample hold-times. However, Benzene and BTEX were not analyzed until July 13, 2023, which was outside of the respective hold-time. As a result, the confirmation excavation soil samples were recollected on July 31, 2023, and analyzed for BTEX to produce valid laboratory analytical results. Record of the shipping error is documented under lab order number 3G07012 (affecting confirmation excavation soil samples collected June 30, 2023) and provided in the laboratory analytical reports in **Appendix E**.

CLOSURE REQUEST

Based on laboratory analytical results for delineation and excavation soil samples, Chevron believes impacts associated with the inadvertent release have been delineated, excavated, and removed from the Site. The completed remedial actions at the Site have met the requirements set forth in NMAC regulations in order to be protective of human health, the environment and ground water. As such, NFA appears warranted at this time and the CRR associated with Incident Number nAPP2307447383 should be respectfully considered for Closure by the NMOCD.

If you have any questions or comments, please do not hesitate to contact Blake Estep at (432) 894-6038 or blake@etechenv.com. **Appendix F** provides correspondence email notification receipts associated with the subject release.

Sincerely,

Etech Environmental and Safety Solutions, Inc.

Blake Estep, Project Manager

Blak Eite

Closure Request Report Incident Number nAPP2307447383 J Keats 1 24 32 #040H cc: Amy Barnhill, Chevron

New Mexico Oil Conservation Division

Bureau of Land Management

Appendices:

Appendix A: Figure 1: Site Map

Figure 2: Delineation Soil Sample Locations

Figure 3: Excavation Soil Sample Locations

Appendix B: Referenced Well Records

Appendix C: Photographic Log

Appendix D: Tables

Appendix E: Laboratory Analytical Reports & Chain-of-Custody Documentation

Appendix F: NMOCD Notifications

APPENDIX A

Figures

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

Chevron USA, Inc. J Keats 1 24 32 #040H Unit P Sec 01 T24S R32E Lea County, New Mexico

APPENDIX B

Referenced Well Records

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

212C-ME	0-02921	T	ŧ	ETRA	ATEC	СН				I	LOG OF BOF	ring DTW		Page 1 of 1
Project Na	ame: Sh	ıurvessa	Inte	rcon	nect	Rele	ease							
Borehole I	LocationG	PS Coordin	ate: 3	2.2414	147, -1	103.62	3363			Surface Elevation	n: ft			
Borehole I	Number:	GWDB						E	Boreho Diame	ole eter (in.):	Date Started:	12/1/2022	Date Finish	ed: 12/1/2022
Ш	ELD (mdd)	(mdd	ERY (%)	TENT (%)	cf)		NDEX					OBSERVATIO		DRY_ft
DEPTH (ft) OPERATION TYPE	SAMPLE TAILORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	T LIQUID LIMIT	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MAT	ERIAL DESCR	RIPTION	DEPTH (ft)	REMARKS
5									1/ \(\frac{1}{2}\)	dry -SM- SAND:	Brown, loose, d		4 	
15										dense, dry, n clay seams	noderately ceme	h brown, medium nted, with frequer	nt	
25 30 30 35 35										-SM- SAND:	Brown, very loo	se, dry, trace gra	vel	
45 50 55												nal cemented lay	ers	
			•							Во	ttom of borehole	e at 55.0 feet.	, , , ,	
Sampler Types:	Split Spoo	oy	Acetat /ane s Discre Sample Fest P	te e	r T	Opera Types	Mud Rota	ary itinuou ht Aug sh	is er	Air Rotary St	otes: urface elevation i ata.	is an estimated v	alue from G	oogle Earth
Logger.	.loe Tyler					rillin	a Fai	iinme	nt. Air	Boton Dri	iller: Scarbo	rough Drilling		

APPENDIX C

Photographic Log

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

PHOTOGRAPHIC LOG

Chevron USA, Inc.
J Keats 1 24 32 #040H
Incident Number nAPP2307447383

Photograph 1 Date: 03/20/2023 Description: Northwestern view of delineation activities.

Photograph 3 Date: 06/30/2023
Description: Northwestern view of excavation activities

Photograph 2 Date: 06/16/2023

Description: Northeastern view of excavation activities.

Photograph 4 Date: 08/25/2023

Description: Northwestern view of restoration activities.

APPENDIX D

Tables

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

Table 1 SOIL SAMPLE ANALYTICAL RESULTS Chevron USA Inc. J Keats1 24 32 #040H Lea County, New Mexico

Sample I.D.	Sample Date	Sample Depth (feet bgs)	Sample Depth (inches bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	DRO+GRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table I Closur Release (NMAC 19.15.		Is Impacted by a		10	50	NE	NE	NE	1,000	2,500	10,000
				De	lineation Soil Samples	- Incident Number nAl	P2307447383				
Auger Hole -1	03/20/2023	0.5	6	7.79	285	4,200	40,300	8,200	44,500	52,700	2,290
Auger Hole -1	03/20/2023	1	12	<0.00104	0.00206	<26.0	46.2	33.1	46.2	79.3	279
Auger Hole -1	03/20/2023	2	24	<0.00103	<0.00206	<25.8	<25.8	<25.8	<25.8	<25.8	150
Auger Hole -1	03/20/2023	4	48	<0.00106	<0.00213	<26.6	<26.6	<26.6	<26.6	<26.6	556
North Auger Hole-1	03/20/2023	0.5	6	0.00114	0.00213	<26.6	1,830	532	1, 830	2,360	519
North Auger Hole-1	03/20/2023	2	24	0.00913	0.26853	<25.8	745	283	745	1,030	265
North Auger Hole-1	03/20/2023	4	48	<0.00103	<0.00206	<25.8	<25.8	<25.8	<25.8	<25.8	99.3
East Auger Hole-1	03/20/2023	0.5	6	0.0204	0.457	194	12,900	2,310	13,100	15,400	1,620
East Auger Hole-1	03/20/2023	2	24	<0.00103	<0.00206	<25.8	35.8	<25.8	35.8	35.8	117
East Auger Hole-1	03/20/2023	4	48	<0.00103	<0.00206	<25.8	<25.8	<25.8	<25.8	<25.8	85.8
South Auger Hole-1	03/20/2023	0.5	6	<0.00106	<0.00213	<26.6	<26.6	<26.6	<26.6	<26.6	130
South Auger Hole-1	03/20/2023	2	24	<0.00104	<0.00208	<26.0	<26.0	<26.0	<26.0	<26.0	102
South Auger Hole-1	03/20/2023	4	48	<0.00108	<0.00215	<26.9	<26.9	<26.9	<26.9	<26.9	93.0
West Auger Hole-1	03/20/2023	0.5	6	<0.00106	<0.00213	<26.6	<26.6	<26.6	<26.6	<26.6	1,670
West Auger Hole-1	03/20/2023	2	24	<0.00103	<0.00206	<25.8	<25.8	<25.8	<25.8	<25.8	29.1
West Auger Hole-1	03/20/2023	4	48	<0.00106	<0.00213	<26.6	<26.6	<26.6	<26.6	<26.6	54.7
				Ex	cavation Soil Samples	- Incident Number nAl	PP2307447383				
Bottom Hole-1	06/16/2023	1	12	<0.0204	<0.0408	<25.5	<25.5	<25.5	<25.5	<25.5	52.6
Bottom Hole-2	06/16/2023	1	12	<0.0204	<0.0408	<25.5	<25.5	<25.5	<25.5	<25.5	97.3
Bottom Hole-3	06/30/2023	1	12	<0.0202 [†]	<0.0404 [‡]	<25.3	<25.3	<25.3	<25.3	<25.3	221
Bottom Hole-3	07/31/2023	1	12	<0.0200	<0.0400	NA	NA	NA NA	NA	NA NA	NA
Bottom Hole-4	06/30/2023	1	12	<0.2006 [†]	<0.0412 [‡]	<25.8	<25.8	<25.8	<25.8	<25.8	24.3
Bottom Hole-4	07/31/2023	1	12	<0.0200	<0.0400	NA	NA	NA NA	NA	NA NA	NA
Bottom Hole-5	06/30/2023	1	12	<0.0206 [†]	<0.0412 [‡]	<25.8	<25.8	<25.8	<25.8	<25.8	48.3
Bottom Hole-5	07/31/2023	1	12	<0.0200	0.0400	NA	NA	NA	NA	NA NA	NA
Bottom Hole-6	06/30/2023	1	12	<0.0204 [†]	<0.0408 [‡]	<25.5	<25.5	<25.5	<25.5	<25.5	34.8
Bottom Hole-6	07/31/2023	1	12	<0.0200	<0.0400	NA	NA	NA	NA	NA	NA
North Sidewall	06/30/2023	0-1	0-12	<0.0208 [†]	<0.0417 [‡]	<26.0	<26.0	<26.0	<26.0	<26.0	163
North Wall	07/31/2023	0-1	0-12	<0.0200	<0.0400	NA	NA	NA	NA	NA	NA
East Sidewall	06/30/2023	0-1	0-12	<0.0202 [†]	<0.0404 [‡]	<25.3	<25.3	<25.3	<25.3	<25.3	98.7
East Wall-#1	07/31/2023	0-1	0-12	<0.0200	<0.0400	NA	NA	NA	NA	NA	NA
East Wall-#2	07/31/2023	0-1	0-12	<0.0200	<0.0400	NA	NA	NA	NA	NA	NA

Table 1 SOIL SAMPLE ANALYTICAL RESULTS Chevron USA Inc. J Keats1 24 32 #040H Lea County, New Mexico

Sample I.D.	Sample Date	Sample Depth (feet bgs)	Sample Depth (inches bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	DRO+GRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table I Closure Criteria for Soils Impacted by a Release (NMAC 19.15.29)		10	50	NE	NE	NE	1,000	2,500	10,000		
South Sidewall	06/30/2023	0-1	0-12	<0.0208 [†]	<0.0400 [‡]	<25.0	<25.0	<25.0	<25.0	<25.0	108
South Wall	07/31/2023	0-1	0-12	<0.0200	<0.0400	NA	NA	NA	NA	NA	NA
West Sidewall	06/30/2023	0-1	0-12	<0.0208 [†]	<0.0417 [‡]	<26.0	<26.0	<26.0	<26.0	<26.0	55.7
West Wall-#1	07/31/2023	0-1	0-12	<0.0200	<0.0400	NA	NA	NA	NA	NA	NA
West Wall-#2	07/31/2023	0-1	0-12	< 0.0200	<0.0400	NA NA	NA NA	NA NA	NA	l NA	NA NA

Notes:

bgs: below ground surface mg/kg: milligrams per kilogram BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

GRO: Gasoline Range Organics

DRO: Diesel Range Organics

ORO: Oil Range Organics

TPH: Total Petroleum Hydrocarbon NMOCD: New Mexico Oil Conservation Division

NMAC: New Mexico Administrative Code NA: Not Analyzed

Text in "grey" represents excavated soil samples
Concentrations in bold exceed the NMOCD Table I Closure Criteria and/or Reclamation Standard for Soils Impacted by a Release

Laboratory indicated Benzene was analyzed following the lapse of the appropriate hold time due to the "shipping error" BTEX GC" on June 30, 2023

Laboratory indicated BTEX was analyzed following the lapse of the appropriate hold time due to the "shipping error" BTEX GC" on June 30, 2023

APPENDIX E

Laboratory Analytical Reports & Chain-of-Custody Documentation

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Blake Estep
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: J Keats 1 24 32 #040H Project Number: 17783 Location:

Lab Order Number: 3C22016

Current Certification

Report Date: 03/30/23

13000 West County Road 100 Odessa TX, 79765 Project: J Keats 1 24 32 #040H

Project Number: 17783 Project Manager: Blake Estep

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Auger Hole - 1 @ 6"	3C22016-01	Soil	03/20/23 10:00	03-22-2023 11:40
Auger Hole - 1 @ 12"	3C22016-02	Soil	03/20/23 10:02	03-22-2023 11:40
Auger Hole - 1 @ 24"	3C22016-03	Soil	03/20/23 10:04	03-22-2023 11:40
Auger Hole - 1 @ 48"	3C22016-04	Soil	03/20/23 10:06	03-22-2023 11:40
North Auger Hole - 1 @ 6"	3C22016-05	Soil	03/20/23 10:08	03-22-2023 11:40
North Auger Hole - 1 @ 24"	3C22016-06	Soil	03/20/23 10:10	03-22-2023 11:40
North Auger Hole - 1 @ 48"	3C22016-07	Soil	03/20/23 10:12	03-22-2023 11:40
East Auger Hole - 1 @ 6"	3C22016-08	Soil	03/20/23 10:14	03-22-2023 11:40
East Auger Hole - 1 @ 24"	3C22016-09	Soil	03/20/23 10:16	03-22-2023 11:40
East Auger Hole - 1 @ 48"	3C22016-10	Soil	03/20/23 10:18	03-22-2023 11:40
South Auger Hole - 1 @ 6"	3C22016-11	Soil	03/20/23 10:20	03-22-2023 11:40
South Auger Hole - 1 @ 24"	3C22016-12	Soil	03/20/23 10:22	03-22-2023 11:40
South Auger Hole - 1 @ 48"	3C22016-13	Soil	03/20/23 10:24	03-22-2023 11:40
West Auger Hole - 1 @ 6"	3C22016-14	Soil	03/20/23 10:26	03-22-2023 11:40
West Auger Hole - 1 @ 24"	3C22016-15	Soil	03/20/23 10:28	03-22-2023 11:40
West Auger Hole - 1 @ 48"	3C22016-16	Soil	03/20/23 10:30	03-22-2023 11:40

13000 West County Road 100 Odessa TX, 79765 Project: J Keats 1 24 32 #040H

Project Number: 17783 Project Manager: Blake Estep

Auger Hole - 1 @ 6" 3C22016-01 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental l	Lab, L.P.			
BTEX by 8021B									
Benzene	7.79	0.532	mg/kg dry	500	P3C2306	03/23/23 13:25	03/27/23 09:36	EPA 8021B	
Toluene	96.2	0.532	mg/kg dry	500	P3C2306	03/23/23 13:25	03/27/23 09:36	EPA 8021B	
Ethylbenzene	33.4	0.532	mg/kg dry	500	P3C2306	03/23/23 13:25	03/27/23 09:36	EPA 8021B	
Xylene (p/m)	110	1.06	mg/kg dry	500	P3C2306	03/23/23 13:25	03/27/23 09:36	EPA 8021B	
Xylene (o)	37.9	0.532	mg/kg dry	500	P3C2306	03/23/23 13:25	03/27/23 09:36	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		101 %	80-120		P3C2306	03/23/23 13:25	03/27/23 09:36	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	8	87.6 %	80-120		P3C2306	03/23/23 13:25	03/27/23 09:36	EPA 8021B	
Total Petroleum Hydrocarbons C6-	-C35 by EPA	Method	8015M						
C6-C12	4200	266	mg/kg dry	10	P3C2804	03/28/23 13:30	03/28/23 18:24	TPH 8015M	
>C12-C28	40300	266	mg/kg dry	10	P3C2804	03/28/23 13:30	03/28/23 18:24	TPH 8015M	
>C28-C35	8200	266	mg/kg dry	10	P3C2804	03/28/23 13:30	03/28/23 18:24	TPH 8015M	
Surrogate: 1-Chlorooctane		111 %	70-130		P3C2804	03/28/23 13:30	03/28/23 18:24	TPH 8015M	
Surrogate: o-Terphenyl		117 %	70-130		P3C2804	03/28/23 13:30	03/28/23 18:24	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	52700	266	mg/kg dry	10	[CALC]	03/28/23 13:30	03/28/23 18:24	calc	
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	2290	1.06	mg/kg dry	1	P3C2601	03/26/23 14:23	03/26/23 19:56	EPA 300.0	
% Moisture	6.0	0.1	%	1	P3C2310	03/23/23 15:42	03/23/23 15:50	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: J Keats 1 24 32 #040H

Project Number: 17783 Project Manager: Blake Estep

Auger Hole - 1 @ 12" 3C22016-02 (Soil)

Analyte	D 1	Reporting	TT!4	Dilection	Datal	D 1	Analyzed	Method	Notes
	Result	Limit	Units	Dilution	Batch	Prepared	Allalyzed	Memod	note
		P	ermian Ba	asin Envi	ronmental L	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 20:11	EPA 8021B	
Toluene	0.00206	0.00104	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 20:11	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 20:11	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 20:11	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 20:11	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		85.9 %	80-120		P3C2306	03/23/23 13:25	03/23/23 20:11	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		89.7 %	80-120		P3C2306	03/23/23 13:25	03/23/23 20:11	EPA 8021B	
Total Petroleum Hydrocarbons Co	6-C35 by EP	A Method	1 8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 18:46	TPH 8015M	
>C12-C28	46.2	26.0	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 18:46	TPH 8015M	
>C28-C35	33.1	26.0	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 18:46	TPH 8015M	
Surrogate: 1-Chlorooctane		99.2 %	70-130		P3C2804	03/28/23 13:30	03/28/23 18:46	TPH 8015M	
Surrogate: o-Terphenyl		120 %	70-130		P3C2804	03/28/23 13:30	03/28/23 18:46	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	79.3	26.0	mg/kg dry	1	[CALC]	03/28/23 13:30	03/28/23 18:46	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	279	1.04	mg/kg dry	1	P3C2601	03/26/23 14:23	03/26/23 21:13	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C2310	03/23/23 15:42	03/23/23 15:50	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: J Keats 1 24 32 #040H

Project Number: 17783 Project Manager: Blake Estep

Auger Hole - 1 @ 24" 3C22016-03 (Soil)

Analyte	D 1	Reporting	** *.	75.71 7	D . 1	D 1	A	Mada d	Mada
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 21:12	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 21:12	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 21:12	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 21:12	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 21:12	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		90.2 %	80-120		P3C2306	03/23/23 13:25	03/23/23 21:12	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		90.2 %	80-120		P3C2306	03/23/23 13:25	03/23/23 21:12	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 19:08	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 19:08	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 19:08	TPH 8015M	
Surrogate: 1-Chlorooctane		103 %	70-130		P3C2804	03/28/23 13:30	03/28/23 19:08	TPH 8015M	
Surrogate: o-Terphenyl		125 %	70-130		P3C2804	03/28/23 13:30	03/28/23 19:08	TPH 8015M	
Total Petroleum Hydrocarbon	ND	25.8	mg/kg dry	1	[CALC]	03/28/23 13:30	03/28/23 19:08	calc	
C6-C35									
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	150	1.03	mg/kg dry	1	P3C2601	03/26/23 14:23	03/26/23 21:59	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C2310	03/23/23 15:42	03/23/23 15:50	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J Keats 1 24 32 #040H

Project Number: 17783 Project Manager: Blake Estep

Auger Hole - 1 @ 48" 3C22016-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00106	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 21:33	EPA 8021B	
Toluene	ND	0.00106	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 21:33	EPA 8021B	
Ethylbenzene	ND	0.00106	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 21:33	EPA 8021B	
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 21:33	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 21:33	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		93.7 %	80-120		P3C2306	03/23/23 13:25	03/23/23 21:33	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		92.2 %	80-120		P3C2306	03/23/23 13:25	03/23/23 21:33	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	\ Method	8015M						
C6-C12	ND	26.6	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 19:29	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 19:29	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 19:29	TPH 8015M	
Surrogate: 1-Chlorooctane		100 %	70-130		P3C2804	03/28/23 13:30	03/28/23 19:29	TPH 8015M	
Surrogate: o-Terphenyl		121 %	70-130		P3C2804	03/28/23 13:30	03/28/23 19:29	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	03/28/23 13:30	03/28/23 19:29	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	556	1.06	mg/kg dry	1	P3C2601	03/26/23 14:23	03/26/23 22:14	EPA 300.0	
% Moisture	6.0	0.1	%	1	P3C2310	03/23/23 15:42	03/23/23 15:50	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J Keats 1 24 32 #040H

Project Number: 17783 Project Manager: Blake Estep

North Auger Hole - 1 @ 6" 3C22016-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	0.00114	0.00106	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 21:53	EPA 8021B	
Toluene	ND	0.00106	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 21:53	EPA 8021B	
Ethylbenzene	ND	0.00106	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 21:53	EPA 8021B	
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 21:53	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 21:53	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		83.8 %	80-120		P3C2306	03/23/23 13:25	03/23/23 21:53	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		91.5 %	80-120		P3C2306	03/23/23 13:25	03/23/23 21:53	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EP	A Method	8015M						
C6-C12	ND	26.6	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 19:50	TPH 8015M	
>C12-C28	1830	26.6	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 19:50	TPH 8015M	
>C28-C35	532	26.6	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 19:50	TPH 8015M	
Surrogate: 1-Chlorooctane		91.2 %	70-130		P3C2804	03/28/23 13:30	03/28/23 19:50	TPH 8015M	
Surrogate: o-Terphenyl		98.9 %	70-130		P3C2804	03/28/23 13:30	03/28/23 19:50	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	2360	26.6	mg/kg dry	1	[CALC]	03/28/23 13:30	03/28/23 19:50	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	519	1.06	mg/kg dry	1	P3C2601	03/26/23 14:23	03/26/23 22:30	EPA 300.0	
% Moisture	6.0	0.1	%	1	P3C2310	03/23/23 15:42	03/23/23 15:50	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J Keats 1 24 32 #040H

Project Number: 17783 Project Manager: Blake Estep

North Auger Hole - 1 @ 24" 3C22016-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	0.00913	0.00103	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 22:14	EPA 8021B	
Toluene	0.0946	0.00103	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 22:14	EPA 8021B	
Ethylbenzene	0.0321	0.00103	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 22:14	EPA 8021B	
Xylene (p/m)	0.102	0.00206	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 22:14	EPA 8021B	
Xylene (o)	0.0307	0.00103	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 22:14	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		88.9 %	80-120		P3C2306	03/23/23 13:25	03/23/23 22:14	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		101 %	80-120		P3C2306	03/23/23 13:25	03/23/23 22:14	EPA 8021B	
Total Petroleum Hydrocarbons C6	6-C35 by EP.	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C2804	03/28/23 13:30	03/29/23 08:27	TPH 8015M	
>C12-C28	745	25.8	mg/kg dry	1	P3C2804	03/28/23 13:30	03/29/23 08:27	TPH 8015M	
>C28-C35	283	25.8	mg/kg dry	1	P3C2804	03/28/23 13:30	03/29/23 08:27	TPH 8015M	
Surrogate: 1-Chlorooctane		100 %	70-130		P3C2804	03/28/23 13:30	03/29/23 08:27	TPH 8015M	
Surrogate: o-Terphenyl		125 %	70-130		P3C2804	03/28/23 13:30	03/29/23 08:27	TPH 8015M	
Total Petroleum Hydrocarbon	1030	25.8	mg/kg dry	1	[CALC]	03/28/23 13:30	03/29/23 08:27	calc	
C6-C35									
General Chemistry Parameters by	EPA / Stan	dard Met	hods						
Chloride	265	1.03	mg/kg dry	1	P3C2601	03/26/23 14:23	03/26/23 22:45	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C2310	03/23/23 15:42	03/23/23 15:50	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J Keats 1 24 32 #040H

Project Number: 17783 Project Manager: Blake Estep

North Auger Hole - 1 @ 48" 3C22016-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 22:35	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 22:35	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 22:35	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 22:35	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 22:35	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		92.0 %	80-120		P3C2306	03/23/23 13:25	03/23/23 22:35	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		101 %	80-120		P3C2306	03/23/23 13:25	03/23/23 22:35	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 20:34	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 20:34	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 20:34	TPH 8015M	
Surrogate: 1-Chlorooctane		97.6 %	70-130		P3C2804	03/28/23 13:30	03/28/23 20:34	TPH 8015M	
Surrogate: o-Terphenyl		119 %	70-130		P3C2804	03/28/23 13:30	03/28/23 20:34	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/28/23 13:30	03/28/23 20:34	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	99.3	1.03	mg/kg dry	1	P3C2601	03/26/23 14:23	03/26/23 23:00	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C2310	03/23/23 15:42	03/23/23 15:50	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J Keats 1 24 32 #040H

Project Number: 17783 Project Manager: Blake Estep

East Auger Hole - 1 @ 6" 3C22016-08 (Soil)

Analyte		Reporting	** .		-			M.d. 1	NT.
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	0.0204	0.00106	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 22:56	EPA 8021B	
Toluene	0.258	0.00106	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 22:56	EPA 8021B	
Ethylbenzene	0.0365	0.00106	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 22:56	EPA 8021B	
Xylene (p/m)	0.114	0.00213	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 22:56	EPA 8021B	
Xylene (o)	0.0281	0.00106	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 22:56	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		88.0 %	80-120		P3C2306	03/23/23 13:25	03/23/23 22:56	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.9 %	80-120		P3C2306	03/23/23 13:25	03/23/23 22:56	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	1 8015M						
C6-C12	194	133	mg/kg dry	5	P3C2804	03/28/23 13:30	03/28/23 20:55	TPH 8015M	
>C12-C28	12900	133	mg/kg dry	5	P3C2804	03/28/23 13:30	03/28/23 20:55	TPH 8015M	
>C28-C35	2310	133	mg/kg dry	5	P3C2804	03/28/23 13:30	03/28/23 20:55	TPH 8015M	
Surrogate: 1-Chlorooctane		98.8 %	70-130		P3C2804	03/28/23 13:30	03/28/23 20:55	TPH 8015M	
Surrogate: o-Terphenyl		103 %	70-130		P3C2804	03/28/23 13:30	03/28/23 20:55	TPH 8015M	
Total Petroleum Hydrocarbon	15400	133	mg/kg dry	5	[CALC]	03/28/23 13:30	03/28/23 20:55	calc	
C6-C35									
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	1620	1.06	mg/kg dry	1	P3C2601	03/26/23 14:23	03/26/23 23:16	EPA 300.0	
% Moisture	6.0	0.1	%	1	P3C2310	03/23/23 15:42	03/23/23 15:50	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: J Keats 1 24 32 #040H

Project Number: 17783 Project Manager: Blake Estep

East Auger Hole - 1 @ 24" 3C22016-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 23:18	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 23:18	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 23:18	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 23:18	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 23:18	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		93.1 %	80-120		P3C2306	03/23/23 13:25	03/23/23 23:18	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	80-120		P3C2306	03/23/23 13:25	03/23/23 23:18	EPA 8021B	
Total Petroleum Hydrocarbons C6-	C35 by EP	A Method	18015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 21:17	TPH 8015M	
>C12-C28	35.8	25.8	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 21:17	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 21:17	TPH 8015M	
Surrogate: 1-Chlorooctane		96.0 %	70-130		P3C2804	03/28/23 13:30	03/28/23 21:17	TPH 8015M	
Surrogate: o-Terphenyl		119 %	70-130		P3C2804	03/28/23 13:30	03/28/23 21:17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	35.8	25.8	mg/kg dry	1	[CALC]	03/28/23 13:30	03/28/23 21:17	calc	
General Chemistry Parameters by	EPA / Stanc	lard Met	hods						
Chloride	117	1.03	mg/kg dry	1	P3C2601	03/26/23 14:23	03/26/23 23:31	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C2310	03/23/23 15:42	03/23/23 15:50	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J Keats 1 24 32 #040H

Project Number: 17783 Project Manager: Blake Estep

East Auger Hole - 1 @ 48" 3C22016-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian R	asin Envi	ronmental I	ab. L.P.			
BTEX by 8021B		_				-mo, 2021			
Benzene	ND	0.00103	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 23:39	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 23:39	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 23:39	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 23:39	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C2306	03/23/23 13:25	03/23/23 23:39	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		92.3 %	80-120		P3C2306	03/23/23 13:25	03/23/23 23:39	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	80-120		P3C2306	03/23/23 13:25	03/23/23 23:39	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	18015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 21:38	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 21:38	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 21:38	TPH 8015M	
Surrogate: 1-Chlorooctane		98.7 %	70-130		P3C2804	03/28/23 13:30	03/28/23 21:38	TPH 8015M	
Surrogate: o-Terphenyl		121 %	70-130		P3C2804	03/28/23 13:30	03/28/23 21:38	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/28/23 13:30	03/28/23 21:38	calc	
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	85.8	1.03	mg/kg dry	1	P3C2601	03/26/23 14:23	03/28/23 14:51	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C2310	03/23/23 15:42	03/23/23 15:50	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J Keats 1 24 32 #040H

Project Number: 17783 Project Manager: Blake Estep

South Auger Hole - 1 @ 6" 3C22016-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00106	mg/kg dry	1	P3C2306	03/23/23 13:25	03/24/23 00:01	EPA 8021B	
Toluene	ND	0.00106	mg/kg dry	1	P3C2306	03/23/23 13:25	03/24/23 00:01	EPA 8021B	
Ethylbenzene	ND	0.00106	mg/kg dry	1	P3C2306	03/23/23 13:25	03/24/23 00:01	EPA 8021B	
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P3C2306	03/23/23 13:25	03/24/23 00:01	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P3C2306	03/23/23 13:25	03/24/23 00:01	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		93.6 %	80-120		P3C2306	03/23/23 13:25	03/24/23 00:01	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	80-120		P3C2306	03/23/23 13:25	03/24/23 00:01	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP/	\ Method	8015M						
C6-C12	ND	26.6	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 22:44	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 22:44	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 22:44	TPH 8015M	
Surrogate: 1-Chlorooctane		101 %	70-130		P3C2804	03/28/23 13:30	03/28/23 22:44	TPH 8015M	
Surrogate: o-Terphenyl		124 %	70-130		P3C2804	03/28/23 13:30	03/28/23 22:44	TPH 8015M	
Total Petroleum Hydrocarbon	ND	26.6	mg/kg dry	1	[CALC]	03/28/23 13:30	03/28/23 22:44	calc	
C6-C35									
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	130	1.06	mg/kg dry	1	P3C2601	03/26/23 14:23	03/28/23 14:30	EPA 300.0	
% Moisture	6.0	0.1	%	1	P3C2310	03/23/23 15:42	03/23/23 15:50	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J Keats 1 24 32 #040H

Project Number: 17783 Project Manager: Blake Estep

South Auger Hole - 1 @ 24" 3C22016-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C2306	03/23/23 13:25	03/24/23 00:22	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C2306	03/23/23 13:25	03/24/23 00:22	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C2306	03/23/23 13:25	03/24/23 00:22	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C2306	03/23/23 13:25	03/24/23 00:22	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C2306	03/23/23 13:25	03/24/23 00:22	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C2306	03/23/23 13:25	03/24/23 00:22	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		93.1 %	80-120		P3C2306	03/23/23 13:25	03/24/23 00:22	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	l 8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 23:05	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 23:05	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 23:05	TPH 8015M	
Surrogate: 1-Chlorooctane		102 %	70-130		P3C2804	03/28/23 13:30	03/28/23 23:05	TPH 8015M	
Surrogate: o-Terphenyl		124 %	70-130		P3C2804	03/28/23 13:30	03/28/23 23:05	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/28/23 13:30	03/28/23 23:05	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	102	1.04	mg/kg dry	1	P3C2807	03/28/23 15:43	03/28/23 22:32	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C2310	03/23/23 15:42	03/23/23 15:50	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J Keats 1 24 32 #040H

Project Number: 17783 Project Manager: Blake Estep

South Auger Hole - 1 @ 48" 3C22016-13 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00108	mg/kg dry	1	P3C2407	03/24/23 15:44	03/24/23 18:43	EPA 8021B	
Toluene	ND	0.00108	mg/kg dry	1	P3C2407	03/24/23 15:44	03/24/23 18:43	EPA 8021B	
Ethylbenzene	ND	0.00108	mg/kg dry	1	P3C2407	03/24/23 15:44	03/24/23 18:43	EPA 8021B	
Xylene (p/m)	ND	0.00215	mg/kg dry	1	P3C2407	03/24/23 15:44	03/24/23 18:43	EPA 8021B	
Xylene (o)	ND	0.00108	mg/kg dry	1	P3C2407	03/24/23 15:44	03/24/23 18:43	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		92.9 %	80-120		P3C2407	03/24/23 15:44	03/24/23 18:43	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		91.3 %	80-120		P3C2407	03/24/23 15:44	03/24/23 18:43	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	l 8015M						
C6-C12	ND	26.9	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 23:27	TPH 8015M	
>C12-C28	ND	26.9	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 23:27	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 23:27	TPH 8015M	
Surrogate: 1-Chlorooctane		99.9 %	70-130		P3C2804	03/28/23 13:30	03/28/23 23:27	TPH 8015M	
Surrogate: o-Terphenyl		122 %	70-130		P3C2804	03/28/23 13:30	03/28/23 23:27	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.9	mg/kg dry	1	[CALC]	03/28/23 13:30	03/28/23 23:27	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	93.0	1.08	mg/kg dry	1	P3C2807	03/28/23 15:43	03/28/23 23:34	EPA 300.0	
% Moisture	7.0	0.1	%	1	P3C2310	03/23/23 15:42	03/23/23 15:50	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J Keats 1 24 32 #040H

Project Number: 17783 Project Manager: Blake Estep

West Auger Hole - 1 @ 6" 3C22016-14 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00106	mg/kg dry	1	P3C2407	03/24/23 15:44	03/24/23 19:03	EPA 8021B	
Toluene	ND	0.00106	mg/kg dry	1	P3C2407	03/24/23 15:44	03/24/23 19:03	EPA 8021B	
Ethylbenzene	ND	0.00106	mg/kg dry	1	P3C2407	03/24/23 15:44	03/24/23 19:03	EPA 8021B	
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P3C2407	03/24/23 15:44	03/24/23 19:03	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P3C2407	03/24/23 15:44	03/24/23 19:03	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		88.8 %	80-120		P3C2407	03/24/23 15:44	03/24/23 19:03	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		87.6 %	80-120		P3C2407	03/24/23 15:44	03/24/23 19:03	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	\ Method	1 8015M						
C6-C12	ND	26.6	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 23:48	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 23:48	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P3C2804	03/28/23 13:30	03/28/23 23:48	TPH 8015M	
Surrogate: 1-Chlorooctane		96.3 %	70-130		P3C2804	03/28/23 13:30	03/28/23 23:48	TPH 8015M	
Surrogate: o-Terphenyl		119 %	70-130		P3C2804	03/28/23 13:30	03/28/23 23:48	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	03/28/23 13:30	03/28/23 23:48	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	1670	1.06	mg/kg dry	1	P3C2807	03/28/23 15:43	03/28/23 23:54	EPA 300.0	
% Moisture	6.0	0.1	%	1	P3C2310	03/23/23 15:42	03/23/23 15:50	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J Keats 1 24 32 #040H

Project Number: 17783 Project Manager: Blake Estep

West Auger Hole - 1 @ 24" 3C22016-15 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
						F			
		P	ermian Ba	asin Envi	ronmental L	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C2407	03/24/23 15:44	03/24/23 19:24	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C2407	03/24/23 15:44	03/24/23 19:24	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C2407	03/24/23 15:44	03/24/23 19:24	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C2407	03/24/23 15:44	03/24/23 19:24	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C2407	03/24/23 15:44	03/24/23 19:24	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		92.6 %	80-120		P3C2407	03/24/23 15:44	03/24/23 19:24	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		99.0 %	80-120		P3C2407	03/24/23 15:44	03/24/23 19:24	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP/	A Method	1 8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C2804	03/28/23 13:30	03/29/23 00:10	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C2804	03/28/23 13:30	03/29/23 00:10	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C2804	03/28/23 13:30	03/29/23 00:10	TPH 8015M	
Surrogate: 1-Chlorooctane		94.3 %	70-130		P3C2804	03/28/23 13:30	03/29/23 00:10	TPH 8015M	
Surrogate: o-Terphenyl		119 %	70-130		P3C2804	03/28/23 13:30	03/29/23 00:10	TPH 8015M	
Total Petroleum Hydrocarbon	ND	25.8	mg/kg dry	1	[CALC]	03/28/23 13:30	03/29/23 00:10	calc	
C6-C35									
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	29.1	1.03	mg/kg dry	1	P3C2807	03/28/23 15:43	03/29/23 00:15	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C2310	03/23/23 15:42	03/23/23 15:50	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J Keats 1 24 32 #040H

Project Number: 17783 Project Manager: Blake Estep

West Auger Hole - 1 @ 48'' 3C22016-16 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00106	mg/kg dry	1	P3C2407	03/24/23 15:44	03/24/23 19:45	EPA 8021B	
Toluene	ND	0.00106	mg/kg dry	1	P3C2407	03/24/23 15:44	03/24/23 19:45	EPA 8021B	
Ethylbenzene	ND	0.00106	mg/kg dry	1	P3C2407	03/24/23 15:44	03/24/23 19:45	EPA 8021B	
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P3C2407	03/24/23 15:44	03/24/23 19:45	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P3C2407	03/24/23 15:44	03/24/23 19:45	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		99.1 %	80-120		P3C2407	03/24/23 15:44	03/24/23 19:45	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		92.1 %	80-120		P3C2407	03/24/23 15:44	03/24/23 19:45	EPA 8021B	
Total Petroleum Hydrocarbons C6-	C35 by EPA	\ Method	18015M						
C6-C12	ND	26.6	mg/kg dry	1	P3C2804	03/28/23 13:30	03/29/23 00:32	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P3C2804	03/28/23 13:30	03/29/23 00:32	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P3C2804	03/28/23 13:30	03/29/23 00:32	TPH 8015M	
Surrogate: 1-Chlorooctane		99.1 %	70-130		P3C2804	03/28/23 13:30	03/29/23 00:32	TPH 8015M	
Surrogate: o-Terphenyl		122 %	70-130		P3C2804	03/28/23 13:30	03/29/23 00:32	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	03/28/23 13:30	03/29/23 00:32	calc	
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	54.7	1.06	mg/kg dry	1	P3C2807	03/28/23 15:43	03/29/23 00:35	EPA 300.0	
% Moisture	6.0	0.1	%	1	P3C2310	03/23/23 15:42	03/23/23 15:50	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J Keats 1 24 32 #040H

Project Number: 17783 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C2306 - *** DEFAULT PREP	***									
Blank (P3C2306-BLK1)				Prepared &	k Analyzed:	03/23/23				
Benzene	ND	0.00100	mg/kg							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.108		"	0.120		89.9	80-120			
Surrogate: 4-Bromofluorobenzene	0.103		"	0.120		85.5	80-120			
LCS (P3C2306-BS1)				Prepared &	ն Analyzed:	03/23/23				
Benzene	0.101	0.00100	mg/kg	0.100		101	80-120			
Toluene	0.0905	0.00100	"	0.100		90.5	80-120			
Ethylbenzene	0.0892	0.00100	"	0.100		89.2	80-120			
Xylene (p/m)	0.162	0.00200	"	0.200		81.1	80-120			
Xylene (o)	0.0889	0.00100	"	0.100		88.9	80-120			
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		95.9	80-120			-
Surrogate: 4-Bromofluorobenzene	0.112		"	0.120		93.5	80-120			
LCS Dup (P3C2306-BSD1)				Prepared &	ն Analyzed:	03/23/23				
Benzene	0.109	0.00100	mg/kg	0.100		109	80-120	7.47	20	
Toluene	0.0968	0.00100	"	0.100		96.8	80-120	6.77	20	
Ethylbenzene	0.0949	0.00100	"	0.100		94.9	80-120	6.18	20	
Xylene (p/m)	0.172	0.00200	"	0.200		85.8	80-120	5.70	20	
Xylene (o)	0.0955	0.00100	"	0.100		95.5	80-120	7.14	20	
Surrogate: 1,4-Difluorobenzene	0.112		"	0.120		93.5	80-120			
Surrogate: 4-Bromofluorobenzene	0.106		"	0.120		88.4	80-120			
Calibration Blank (P3C2306-CCB1)				Prepared &	ե Analyzed:	03/23/23				
Benzene	0.00	<u> </u>	ug/kg			<u> </u>				
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.170		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.109		"	0.120		90.5	80-120			

Permian Basin Environmental Lab, L.P.

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

82.8

80-120

0.120

0.0994

13000 West County Road 100 Odessa TX, 79765 Project: J Keats 1 24 32 #040H

Project Number: 17783 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Dagult.	Reporting	I Inite	Spike	Source	%REC	%REC	RPD	RPD Limit	Mat
Analyte	Result	Limit	Units	Level	Result	70KEC	Limits	KPD	Limit	Notes
Batch P3C2306 - *** DEFAULT PREP ***										
Calibration Blank (P3C2306-CCB2)				Prepared &	: Analyzed:	03/23/23				
Benzene	0.00		ug/kg							
Toluene	0.160		"							
Ethylbenzene	0.200		"							
Xylene (p/m)	0.340		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.104		"	0.120		86.5	80-120			
Surrogate: 4-Bromofluorobenzene	0.102		"	0.120		84.6	80-120			
Calibration Check (P3C2306-CCV1)				Prepared &	: Analyzed:	03/23/23				
Benzene	0.102	0.00100	mg/kg	0.100		102	80-120			
Toluene	0.0887	0.00100	"	0.100		88.7	80-120			
Ethylbenzene	0.0837	0.00100	"	0.100		83.7	80-120			
Xylene (p/m)	0.160	0.00200	"	0.200		80.1	80-120			
Xylene (o)	0.0887	0.00100	"	0.100		88.7	80-120			
Surrogate: 4-Bromofluorobenzene	0.107		"	0.120		89.2	75-125			
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		95.7	75-125			
Calibration Check (P3C2306-CCV2)				Prepared &	: Analyzed:	03/23/23				
Benzene	0.109	0.00100	mg/kg	0.100	· · ·	109	80-120			
Toluene	0.0966	0.00100	"	0.100		96.6	80-120			
Ethylbenzene	0.0911	0.00100	"	0.100		91.1	80-120			
Xylene (p/m)	0.170	0.00200	"	0.200		85.0	80-120			
Xylene (o)	0.0973	0.00100	"	0.100		97.3	80-120			
Surrogate: 4-Bromofluorobenzene	0.108		"	0.120		89.9	75-125			
Surrogate: 1,4-Difluorobenzene	0.110		"	0.120		91.6	75-125			
Calibration Check (P3C2306-CCV3)				Prepared: 0)3/23/23 Aı	nalyzed: 03	/24/23			
Benzene	0.106	0.00100	mg/kg	0.100		106	80-120			
Toluene	0.104	0.00100	"	0.100		104	80-120			
Ethylbenzene	0.100	0.00100	"	0.100		100	80-120			
Xylene (p/m)	0.182	0.00200	"	0.200		90.8	80-120			
Xylene (o)	0.101	0.00100	"	0.100		101	80-120			

Permian Basin Environmental Lab, L.P.

 $Surrogate: \ 1,4-Difluor obenzene$

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

75-125

75-125

94.0

104

0.120

0.120

0.113

0.125

13000 West County Road 100 Odessa TX, 79765

Project Number: 17783

Project: J Keats 1 24 32 #040H

Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P3C2306 - *** DEFAULT PREP ***

Matrix Spike (P3C2306-MS1)	Sour	rce: 3C22015	Prepared: 03/23/23 Analyzed: 03/24/23					
Benzene	0.0663	0.00114	mg/kg dry	0.114	0.00114	57.4	80-120	QM-05
Toluene	0.133	0.00114	"	0.114	0.0989	29.6	80-120	QM-05
Ethylbenzene	0.429	0.00114	"	0.114	0.436	NR	80-120	QM-05
Xylene (p/m)	0.872	0.00227	"	0.227	0.00114	383	80-120	QM-05
Xylene (o)	0.426	0.00114	"	0.114	0.00114	373	80-120	QM-05
Surrogate: 4-Bromofluorobenzene	0.157		"	0.136		115	80-120	
Surrogate: 1,4-Difluorobenzene	0.123		"	0.136		90.1	80-120	

Matrix Spike Dup (P3C2306-MSD1)	Sour	Source: 3C22015-10 Prepared: 03/23/23 Analyzed: 03/24/23								
Benzene	0.0768	0.00114	mg/kg dry	0.114	0.00114	66.6	80-120	14.9	20	QM-05
Toluene	0.139	0.00114	"	0.114	0.0989	35.0	80-120	16.7	20	QM-05
Ethylbenzene	0.428	0.00114	"	0.114	0.436	NR	80-120	NR	20	QM-05
Xylene (p/m)	1.09	0.00227	"	0.227	0.00114	478	80-120	22.0	20	QM-05
Xylene (o)	0.602	0.00114	"	0.114	0.00114	528	80-120	34.4	20	QM-05
Surrogate: 4-Bromofluorobenzene	0.257		"	0.136		188	80-120			S-GC
Surrogate: 1 4-Diffuorobenzene	0.120		"	0.136		04 3	80-120			

Batch P3C2407 - *** DEFAULT PREP ***

Blank (P3C2407-BLK1)		Prepared & Analyzed: 03/24/23								
Benzene	ND	0.00100	mg/kg							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene	0.0965		"	0.120	80.4	80-120				
Surrogate: 1,4-Difluorobenzene	0.103		"	0.120	86.2	80-120				

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J Keats 1 24 32 #040H

Project Number: 17783 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyta	Pagult	Reporting	I Inita	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C2407 - *** DEFAULT PREP ***										
LCS (P3C2407-BS1)				Prepared &	Analyzed:	03/24/23				
Benzene	0.100	0.00100	mg/kg	0.100		100	80-120			
Toluene	0.0880	0.00100	"	0.100		88.0	80-120			
Ethylbenzene	0.0887	0.00100	"	0.100		88.7	80-120			
Xylene (p/m)	0.161	0.00200	"	0.200		80.4	80-120			
Xylene (o)	0.0889	0.00100	"	0.100		88.9	80-120			
Surrogate: 4-Bromofluorobenzene	0.103		"	0.120		86.0	80-120			
Surrogate: 1,4-Difluorobenzene	0.107		"	0.120		89.0	80-120			
LCS Dup (P3C2407-BSD1)				Prepared &	Analyzed:	03/24/23				
Benzene	0.110	0.00100	mg/kg	0.100		110	80-120	9.31	20	
Toluene	0.0930	0.00100	"	0.100		93.0	80-120	5.62	20	
Ethylbenzene	0.0936	0.00100	"	0.100		93.6	80-120	5.29	20	
Xylene (p/m)	0.169	0.00200	"	0.200		84.5	80-120	5.01	20	
Xylene (o)	0.0954	0.00100	"	0.100		95.4	80-120	7.14	20	
Surrogate: 4-Bromofluorobenzene	0.0956		"	0.120		79.7	80-120			S-G
Surrogate: 1,4-Difluorobenzene	0.104		"	0.120		87.0	80-120			
Calibration Blank (P3C2407-CCB1)				Prepared &	Analyzed:	03/24/23				
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.170		"							
Xylene (p/m)	0.210		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.102		"	0.120		85.2	80-120			
Surrogate: 4-Bromofluorobenzene	0.0932		"	0.120		77.6	80-120			S-G
Calibration Check (P3C2407-CCV1)				Prepared &	Analyzed:	03/24/23				
Benzene	0.120	0.00100	mg/kg	0.100		120	80-120			
Toluene	0.105	0.00100	"	0.100		105	80-120			
Ethylbenzene	0.0990	0.00100	"	0.100		99.0	80-120			
Xylene (p/m)	0.185	0.00200	"	0.200		92.4	80-120			
Xylene (o)	0.106	0.00100	"	0.100		106	80-120			
Surrogate: 1,4-Difluorobenzene	0.106		"	0.120		88.6	75-125			
Surrogate: 4-Bromofluorobenzene	0.0979		"	0.120		81.6	75-125			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J Keats 1 24 32 #040H

Project Number: 17783 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C2407 - *** DEFAULT PREP ***										
Calibration Check (P3C2407-CCV2)				Prepared &	Analyzed:	03/24/23				
Benzene	0.0948	0.00100	mg/kg	0.100		94.8	80-120			
Toluene	0.0931	0.00100	"	0.100		93.1	80-120			
Ethylbenzene	0.0925	0.00100	"	0.100		92.5	80-120			
Xylene (p/m)	0.169	0.00200	"	0.200		84.7	80-120			
Xylene (o)	0.0904	0.00100	"	0.100		90.4	80-120			
Surrogate: 1,4-Difluorobenzene	0.111		"	0.120		92.7	75-125			
Surrogate: 4-Bromofluorobenzene	0.125		"	0.120		104	75-125			
Matrix Spike (P3C2407-MS1)	Sou	rce: 3C24011	-01	Prepared &	Analyzed:	03/24/23				
Benzene	0.0851	0.00103	mg/kg dry	0.103	ND	82.6	80-120			
Toluene	0.0824	0.00103	"	0.103	ND	79.9	80-120			
Ethylbenzene	0.0851	0.00103	"	0.103	ND	82.5	80-120			
Xylene (p/m)	0.149	0.00206	"	0.206	ND	72.4	80-120			QM-0:
Xylene (o)	0.0781	0.00103	"	0.103	ND	75.7	80-120			QM-0:
Surrogate: 4-Bromofluorobenzene	0.135		"	0.124		109	80-120			
Surrogate: 1,4-Difluorobenzene	0.117		"	0.124		94.2	80-120			
Matrix Spike Dup (P3C2407-MSD1)	Sou	rce: 3C24011	-01	Prepared &	Analyzed:	03/24/23				
Benzene	0.0889	0.00103	mg/kg dry	0.103	ND	86.2	80-120	4.31	20	
Toluene	0.0862	0.00103	"	0.103	ND	83.6	80-120	4.49	20	
Ethylbenzene	0.0890	0.00103	"	0.103	ND	86.3	80-120	4.47	20	
Xylene (p/m)	0.155	0.00206	"	0.206	ND	75.4	80-120	3.98	20	QM-05
Xylene (o)	0.0820	0.00103	"	0.103	ND	79.5	80-120	4.83	20	QM-0:
Surrogate: 1,4-Difluorobenzene	0.116		"	0.124		93.7	80-120			
Surrogate: 4-Bromofluorobenzene	0.134		"	0.124		108	80-120			

Permian Basin Environmental Lab, L.P.

Project: J Keats 1 24 32 #040H

13000 West County Road 100 Odessa TX, 79765 Project Number: 17783 Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C2804 - TX 1005										
Blank (P3C2804-BLK1)				Prepared &	Analyzed:	03/28/23				
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	98.7		"	100		98.7	70-130			
Surrogate: o-Terphenyl	59.6		"	50.0		119	70-130			
LCS (P3C2804-BS1)				Prepared &	Analyzed:	03/28/23				
C6-C12	822	25.0	mg/kg	1000		82.2	75-125			
>C12-C28	1060	25.0	"	1000		106	75-125			
Surrogate: 1-Chlorooctane	104		"	100		104	70-130			
Surrogate: o-Terphenyl	59.9		"	50.0		120	70-130			
LCS Dup (P3C2804-BSD1)				Prepared &	Analyzed:	03/28/23				
C6-C12	790	25.0	mg/kg	1000		79.0	75-125	3.97	20	
>C12-C28	1060	25.0	"	1000		106	75-125	0.708	20	
Surrogate: 1-Chlorooctane	129		"	100		129	70-130			
Surrogate: o-Terphenyl	57.1		"	50.0		114	70-130			
Calibration Check (P3C2804-CCV1)				Prepared &	Analyzed:	03/28/23				
C6-C12	478	25.0	mg/kg	500		95.6	85-115			
>C12-C28	548	25.0	"	500		110	85-115			
Surrogate: 1-Chlorooctane	123		"	100		123	70-130			
Surrogate: o-Terphenyl	60.6		"	50.0		121	70-130			
Calibration Check (P3C2804-CCV2)				Prepared &	z Analyzed:	03/28/23				
C6-C12	478	25.0	mg/kg	500		95.5	85-115			
>C12-C28	504	25.0	"	500		101	85-115			
Surrogate: 1-Chlorooctane	124		"	100		124	70-130			
Surrogate: o-Terphenyl	63.2		"	50.0		126	70-130			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100Project Number:17783Odessa TX, 79765Project Manager:Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Project: J Keats 1 24 32 #040H

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C2804 - TX 1005										
Calibration Check (P3C2804-CCV3)				Prepared: (03/28/23 A	nalyzed: 03	/29/23			
C6-C12	480	25.0	mg/kg	500		96.0	85-115			
>C12-C28	553	25.0	"	500		111	85-115			
Surrogate: 1-Chlorooctane	124		"	100		124	70-130			
Surrogate: o-Terphenyl	62.3		"	50.0		125	70-130			
Duplicate (P3C2804-DUP1)	Sour	ce: 3C22016	-01	Prepared: (03/28/23 A	nalyzed: 03	/29/23			
C6-C12	4190	266	mg/kg dry		4200			0.304	20	R.
>C12-C28	40400	266	"		40300			0.312	20	R.
Surrogate: 1-Chlorooctane	115		"	106		108	70-130			
Surrogate: o-Terphenyl	63.7		"	53.2		120	70-130			

13000 West County Road 100Project Number:17783Odessa TX, 79765Project Manager:Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: J Keats 1 24 32 #040H

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C2310 - *** DEFAULT PREP ***										
Blank (P3C2310-BLK1)				Prepared &	ե Analyzed:	03/23/23				
% Moisture	ND	0.1	%							
Blank (P3C2310-BLK2)				Prepared &	ն Analyzed:	03/23/23				
% Moisture	ND	0.1	%							
Duplicate (P3C2310-DUP1)	Sour	rce: 3C22014-	-01	Prepared &	ե Analyzed:	03/23/23				
% Moisture	13.0	0.1	%		14.0			7.41	20	
Duplicate (P3C2310-DUP2)	Sour	rce: 3C22015-	-07	Prepared &	ն Analyzed:	03/23/23				
% Moisture	11.0	0.1	%		12.0			8.70	20	
Duplicate (P3C2310-DUP3)	Sour	rce: 3C22016-	-08	Prepared &	ն Analyzed:	03/23/23				
% Moisture	6.0	0.1	%		6.0			0.00	20	
Duplicate (P3C2310-DUP4)	Sour	rce: 3C23001-	-02	Prepared &	k Analyzed:	03/23/23				
% Moisture	10.0	0.1	%		9.0			10.5	20	
Batch P3C2601 - *** DEFAULT PREP ***										
Blank (P3C2601-BLK1)				Prepared &	k Analyzed:	03/26/23				
Chloride	ND	1.00	mg/kg							
LCS (P3C2601-BS1)				Prepared: (03/26/23 A	nalyzed: 03	3/27/23			
Chloride	21.6		mg/kg	20.0		108	90-110			
LCS Dup (P3C2601-BSD1)				Prepared &	k Analyzed:	03/26/23				
Chloride	22.0		mg/kg	20.0		110	90-110	1.66	10	

13000 West County Road 100 Odessa TX, 79765 Project: J Keats 1 24 32 #040H

Project Number: 17783 Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3C2601 - *** DEFAULT PREP ***										
Calibration Check (P3C2601-CCV1)				Prepared: (03/26/23 A	nalyzed: 03	3/27/23			
Chloride	19.0		mg/kg	20.0		94.9	90-110			
Calibration Check (P3C2601-CCV2)				Prepared: (03/26/23 A	nalyzed: 03	3/27/23			
Chloride	18.8		mg/kg	20.0		94.0	90-110			
Calibration Check (P3C2601-CCV3)				Prepared: (03/26/23 A	nalyzed: 03	3/27/23			
Chloride	18.1		mg/kg	20.0		90.4	90-110			
Matrix Spike (P3C2601-MS2)	Sour	ce: 3C22016	5-02	Prepared &	& Analyzed:	03/26/23				
Chloride	775	1.04	mg/kg dry	521	279	95.2	80-120			
Matrix Spike Dup (P3C2601-MSD2)	Sour	ce: 3C22016	5-02	Prepared &	& Analyzed:	03/26/23				
Chloride	803	1.04	mg/kg dry	521	279	101	80-120	3.52	20	
Batch P3C2807 - *** DEFAULT PREP ***										
Blank (P3C2807-BLK1)				Prepared &	& Analyzed:	: 03/28/23				
Chloride	ND	1.00	mg/kg	-	-					
LCS (P3C2807-BS1)				Prepared &	& Analyzed:	03/28/23				
Chloride	18.8		mg/kg	20.0		94.2	90-110			
LCS Dup (P3C2807-BSD1)				Prepared &	& Analyzed:	: 03/28/23				
Chloride	18.8		mg/kg	20.0		94.2	90-110	0.0212	10	
Calibration Check (P3C2807-CCV1)				Prepared &	k Analyzed:	: 03/28/23				
Chloride	18.6		mg/kg	20.0		93.1	90-110			<u> </u>

13000 West County Road 100 Odessa TX, 79765 Project: J Keats 1 24 32 #040H

Project Number: 17783 Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C2807 - *** DEFAULT PREP ***										
Calibration Check (P3C2807-CCV2)				Prepared &	: Analyzed:	03/28/23				
Chloride	18.8		mg/kg	20.0		93.8	90-110			
Calibration Check (P3C2807-CCV3)				Prepared: (03/28/23 At	nalyzed: 03	/29/23			
Chloride	18.8		mg/kg	20.0		94.1	90-110			
Matrix Spike (P3C2807-MS1)	Sour	ce: 3C27014-	01	Prepared &	: Analyzed:	03/28/23				
Chloride	9890	29.1	mg/kg dry	581	9350	93.6	80-120			
Matrix Spike Dup (P3C2807-MSD1)	Sour	ce: 3C27014-	01	Prepared &	Analyzed:	03/28/23				
Chloride	10500	29.1	mg/kg dry	581	9350	191	80-120	5.57	20	QM-0

Project Number: 17783

Project: J Keats 1 24 32 #040H

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

Notes and Definitions

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

ROI Received on Ice

R3 The RPD exceeded the acceptance limit due to sample matrix effects.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were

within acceptance limits showing that the laboratory is in control and the data is acceptable.

NPBEL CO Chain of Custody was not generated at PBELAB

Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range BULK

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

Sample results reported on a dry weight basis dry

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Duplicate Dup

Report Approved By:

Brent Barron, Laboratory Director/Technical Director

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1] Project: J Keats 1 24 32 #040H

13000 West County Road 100Project Number:17783Odessa TX, 79765Project Manager:Blake Estep

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

PH		
		200

ermian Basin Environmental Lab, LP

1 100 Rankin Hwy

Midland Texas 79701

Phone: 432-686-7235

		5	7.6
Pro	ect	Mana	ger.
	CCC		D

Blake Estep

Company Name: <u>Etech Environmental & Safety Solutions</u>, Inc.

Company Address: P.O. Box 62228 City/State/Zip:

Sampler Signature:

Midland, Texas 79711

email: blake@etechenv.com

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

	of 32
Project Name: T Keats 124 32 #0	e 31
Project #: 17783 Project Loc:	Pag
Troject II. (100 Troject Loc.	1"

Project #: / / (85 Project Loc: Area: PO#:

⊠Bill Etech

																	Repo	rt Fo	rmat:	STAI	NDAR	RD:0	7	TRRP	A STATE OF THE PARTY OF THE PAR			DES:[
(lab use only)																				-			N 5		- Contraction of the last	_	ze Fo	r:	_	_			_
ORDER#: 3	C22016																			-		-	CLP:		-	+							
	,000-					Pro	eservatio	n & # o	f Containers									T		-	_	TOT	AL:					\perp	_			72 hrs	0
LAB # (lab use only)		FIELD CODE			Start Depth	End Depth	Data Gampled		Time Sampled	No. of Containers	lce	HNO ₃	HCI	H ₂ SO ₄	NaOH	None	Other (Specify)	\Box	GW = Groundwater S=Soil/Solid NP=Non-PotableSpecify Other		Cations (Ca, Mg, Na, K)	Anions (Cl, SO4, CO3, HCO3)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg Se		Semi volatiles	81EX 80218/5030 or BTEX 8260	RCI	N.O.R.M.	Ciliorides		RUSH TAT(Pre-Schedule) 24, 48, 72	TAT GRACIATE
		ole				6	3.20	2.23	10:00	1	-							-	S	×							× C		JK				1
2	i t	f.				12"	1		10:02	1	中									b							_			_			1
3	17	n				24"			10:04		ф																		1				I
4	U	(*	1			48"	2		10:06	1	4									Ф								510	516				1
5	North	Auger	Hole			6"			10:08	1										Ф								J [517				7
6	15	ii.	£1			24"			16:10	1										Ф				d			HI	7	7				7
7	11	H	3.5			48"			10:12	1										ф				T	$\overline{\Box}$	$\overline{\Box}$	H	1	17			-	7
8	East A	uger	Hole			6"			10:14	1								1		4				$\overline{}$	\exists					_	+		7
9		11	17			24"			10:16	1	6				+	+-				b				7	計	7	-	1	1				7
10	sc I	le	11			48"			10:18	1	計				+	+-								7	7	7	H	1		1-			+
11	South	Auger	Hole			6"			10:20	-	1		7		+					6				7	긁	7	##		++	1	-		+
17	11	11	11			24"			10:22	1	++		7		+	<u></u>				4					+				+	+-			4
13	TV ·	ti	11			48"			10:24	\Box	++	-			-	+-				6				-	-	-			++	+	-	_	_
14	West A	tuger	4016			6"	1		10:26	+	+				1					1		7		-					++	-	-		4
pecial Instruct									, 00		+1								1000	4		bora						1	14	$\overline{\Gamma}$			П
elinquished by:	alteto	D 3	Date 7.22.23 Date	Time	aue	eceive											Date			ime	Sa VC Cu Cu Sa	mple DCs F	Con ree / sea / sea Ham	taine of He als or als or d De	ers In leads on cor on coo	ntact? space ntain oler(s	? e? er(s) s)		Control of the Contro	XXXXXX		2222	
elinquished by:			Date	Time	R	ecelve	Wy 6	Bl	ledose							3h	Date			me 40	Sa	r by C	Courri	ier?	,	UPS	DH	4	Fee		Lone		ır

	JA	
	TO THE	

Permian Basin Environmental Lab, LP

1 100 Rankin Hwy

Midland Texas 79701

Phone: 132-686-7235

D !-	-4 8 4	Blake	F-
rioje	ct Manager:	Diake	LS

Company Name: Etech Environmental & Safety Solutions, Inc.

Company Address: P.O. Box 62228

City/State/Zip: Midland, Texas 79711

Sampler Signature:

step

email: __blake@etechenv.com

CHAIN OF CUSTODY RECORD AND ANALYSIS	RECLIEST
--------------------------------------	----------

Project Name: J Keats 124 32 #040H

Project #: 17783 Project Loc:

PO#: 17783 Area:

⊠Bill Etech

																R	epor	t Form	at: S	TAN	DAR	D:DF	Т	RRF				DES:	: 🗆				
(lab use only)																											ze F	or:					
	3C 220	110																				-	LP:										
	00000	, 4					Dr	eservation 9, # o	f Containou			-										TOT	AL:									hrs	9
LAB# (lab use only)		FIELD (CODE			Start Depth	End Depth	Date Sampled	f Containers	No. of Containers	lce	HNO ₃	HCI H,SO,	NaOH	Na ₂ S ₂ O ₃	None	Other (Specify)	DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid	NP=Non-PotableSpecify Other	TPH: 418.1 8015M 1005 1006	Cations (Ca, Mg, Na, K)	Anions (Cl, SO4, CO3, HCO3)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg Se	Volatiles	Semi volatiles	BTEX 8021B 5030 or BTEX 8260	RCI	N.O.R.M.	Chlorides		RUSH TAT(Pre-Schedule) 24, 48, 72 hrs	STANDARD TAT
15	West	Aug	er H	ole			24"	3.20.23	10:28	1	X							5	+	K							V			á c			172
16	West	Auge	or H	ole			48"	3.20.23	10:30	1	A	-		+		\rightarrow		5	+	水						-	X	_	+	_	+	-	Zł
									,			_		+		-			+					_		-					H		N C
												_		-		_			+				-			-				4	1		
											$\overline{\Box}$	_				-			+	\exists		_		-	-	_		-		1			
			***************************************								\exists					-			+		-	\rightarrow	-	_		-	-			+	-	-	
										\dashv	-	-				-			+	-		-	-	+		-	_		-	+		\vdash	
										\dashv	-	-				_		-	_	-		_	-				_		-	+		-	
										-	+	_					+		_	-	-	-		4			-		+	-		\vdash	
						-+	\neg			\rightarrow			_		_	-	-		+	+	_	-	\rightarrow	-		-	-		-	_		-	
						-				+		-				-	4	-	+	-	_	-		-		+	_		_	1			
							\dashv			+	-	_			_	-	4		+	-	-	-		-	-	-							
					-	-				-	-	-			-	-]		+	-	-		-	-	-	-							
						-+	\dashv			-	-	-			-	_	4		+	_		+	-	-	_	_							
Special Instruc	tions:																																
Relinquished by:	Alltal		3-2°	227	Time	even	eceive										ate		Tin		Sar VO Cus Cus Sar	mple in the stody stody mple in the stody mple i	Contree of sea sea	aine of He ls or ls or l Del	rs Inteadsports on continuous	tact? pace ntaine pler(s	? e? er(s) s)			YYYYY		2222	
Relinquished by:			Dat	е	Time	R	ceive	Ina bl	dre	_					2	2		3 1		1°41	Sar	by Compera	ourie	er?	U	JPS	Dł	1.8	Fe	WEX 1		N e Star °C	r

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Blake Estep
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: J KEATS 1 2 32 #040H

Project Number: 17783 Location: None Given

Lab Order Number: 3F19011

Current Certification

Report Date: 07/14/23

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783
Project Manager: Blake Estep

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Bottom Hole - 1 @ 12"	3F19011-01	Soil	06/16/23 10:36	06-19-2023 09:41
Bottom Hole - 2 @ 12"	3F19011-02	Soil	06/16/23 11:00	06-19-2023 09:41

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

Bottom Hole - 1 @ 12" 3F19011-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.0204	mg/kg dry	20	P3F2816	06/28/23 14:13	07/01/23 11:26	EPA 8021B	
Toluene	ND	0.0204	mg/kg dry	20	P3F2816	06/28/23 14:13	07/01/23 11:26	EPA 8021B	
Ethylbenzene	ND	0.0204	mg/kg dry	20	P3F2816	06/28/23 14:13	07/01/23 11:26	EPA 8021B	
Xylene (p/m)	ND	0.0408	mg/kg dry	20	P3F2816	06/28/23 14:13	07/01/23 11:26	EPA 8021B	
Xylene (o)	ND	0.0204	mg/kg dry	20	P3F2816	06/28/23 14:13	07/01/23 11:26	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		148 %	80-120		P3F2816	06/28/23 14:13	07/01/23 11:26	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		92.2 %	80-120		P3F2816	06/28/23 14:13	07/01/23 11:26	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P3F1910	06/19/23 15:00	06/20/23 03:13	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P3F1910	06/19/23 15:00	06/20/23 03:13	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P3F1910	06/19/23 15:00	06/20/23 03:13	TPH 8015M	
Surrogate: 1-Chlorooctane		85.1 %	70-130		P3F1910	06/19/23 15:00	06/20/23 03:13	TPH 8015M	
Surrogate: o-Terphenyl		101 %	70-130		P3F1910	06/19/23 15:00	06/20/23 03:13	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	06/19/23 15:00	06/20/23 03:13	calc	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	52.6	1.02	mg/kg dry	1	P3F1908	06/19/23 15:00	06/20/23 09:56	EPA 300.0	
% Moisture	2.0	0.1	%	1	P3F2008	06/20/23 08:46	06/20/23 08:50	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

Bottom Hole - 2 @ 12" 3F19011-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.0204	mg/kg dry	20	P3F2816	06/28/23 14:13	07/01/23 11:52	EPA 8021B	
Toluene	ND	0.0204	mg/kg dry	20	P3F2816	06/28/23 14:13	07/01/23 11:52	EPA 8021B	
Ethylbenzene	ND	0.0204	mg/kg dry	20	P3F2816	06/28/23 14:13	07/01/23 11:52	EPA 8021B	
Xylene (p/m)	ND	0.0408	mg/kg dry	20	P3F2816	06/28/23 14:13	07/01/23 11:52	EPA 8021B	
Xylene (o)	ND	0.0204	mg/kg dry	20	P3F2816	06/28/23 14:13	07/01/23 11:52	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		154 %	80-120		P3F2816	06/28/23 14:13	07/01/23 11:52	EPA 8021B	S-GO
Surrogate: 1,4-Difluorobenzene	g	93.9 %	80-120		P3F2816	06/28/23 14:13	07/01/23 11:52	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P3F1910	06/19/23 15:00	06/20/23 03:36	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P3F1910	06/19/23 15:00	06/20/23 03:36	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P3F1910	06/19/23 15:00	06/20/23 03:36	TPH 8015M	
Surrogate: 1-Chlorooctane	8	32.0 %	70-130		P3F1910	06/19/23 15:00	06/20/23 03:36	TPH 8015M	
Surrogate: o-Terphenyl	ģ	07.9 %	70-130		P3F1910	06/19/23 15:00	06/20/23 03:36	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	06/19/23 15:00	06/20/23 03:36	calc	
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	97.3	1.02	mg/kg dry	1	P3F1908	06/19/23 15:00	06/20/23 10:10	EPA 300.0	
% Moisture	2.0	0.1	%	1	P3F2008	06/20/23 08:46	06/20/23 08:50	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3F2816 - *** DEFAULT PREP	***									
Blank (P3F2816-BLK1)				Prepared: ()6/28/23 Aı	nalyzed: 07	7/01/23			
Benzene	ND	0.00100	mg/kg							
Toluene	0.000520	0.00100	"							J
Ethylbenzene	0.00101	0.00100	"							B-05
Xylene (p/m)	0.00253	0.00200	"							B-05
Xylene (o)	0.00136	0.00100	"							B-05
Surrogate: 1,4-Difluorobenzene	0.111		"	0.120		92.4	80-120			
Surrogate: 4-Bromofluorobenzene	0.204		"	0.120		170	80-120			S-GC
LCS (P3F2816-BS1)				Prepared: ()6/28/23 Aı	nalyzed: 07	7/01/23			
Benzene	0.0950	0.00100	mg/kg	0.100		95.0	80-120			
Toluene	0.0949	0.00100	"	0.100		94.9	80-120			
Ethylbenzene	0.111	0.00100	"	0.100		111	80-120			
Xylene (p/m)	0.224	0.00200	"	0.200		112	80-120			
Xylene (o)	0.106	0.00100	"	0.100		106	80-120			
Surrogate: 1,4-Difluorobenzene	0.110		"	0.120		91.9	80-120			
Surrogate: 4-Bromofluorobenzene	0.210		"	0.120		175	80-120			S-GC
LCS Dup (P3F2816-BSD1)				Prepared: (06/28/23 A1	nalyzed: 07	7/01/23			
Benzene	0.0896	0.00100	mg/kg	0.100		89.6	80-120	5.79	20	
Toluene	0.0919	0.00100	"	0.100		91.9	80-120	3.16	20	
Ethylbenzene	0.109	0.00100	"	0.100		109	80-120	1.81	20	
Xylene (p/m)	0.216	0.00200	"	0.200		108	80-120	3.64	20	
Xylene (o)	0.0968	0.00100	"	0.100		96.8	80-120	9.25	20	
Surrogate: 4-Bromofluorobenzene	0.211		"	0.120		176	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.111		"	0.120		92.4	80-120			
Calibration Blank (P3F2816-CCB1)				Prepared: ()6/28/23 Aı	nalyzed: 07	7/05/23			
Benzene	0.270		ug/kg							
Toluene	0.450		"							
Ethylbenzene	0.860		"							J
Xylene (p/m)	1.73		"							J
Xylene (o)	1.11		"							B-05
Surrogate: 4-Bromofluorobenzene	0.208		"	0.120		173	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.107		"	0.120		88.9	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
,		Limit	Onto	Level	Result	/0ICEC	Limits	KI D	Lillit	110103
Batch P3F2816 - *** DEFAULT PREP ***	k									
Calibration Blank (P3F2816-CCB2)				Prepared: (06/28/23 At	nalyzed: 07	/01/23			
Benzene	0.320		ug/kg							
Toluene	0.450		"							
Ethylbenzene	0.920		"							•
Xylene (p/m)	2.32		"							B-05
Xylene (o)	1.16		"							B-05
Surrogate: 4-Bromofluorobenzene	0.186		"	0.120		155	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.111		"	0.120		92.1	80-120			
Calibration Check (P3F2816-CCV1)				Prepared: (06/28/23 Aı	nalyzed: 07	/05/23			
Benzene	0.0838	0.00100	mg/kg	0.100		83.8	80-120			
Toluene	0.0867	0.00100	"	0.100		86.7	80-120			
Ethylbenzene	0.0954	0.00100	"	0.100		95.4	80-120			
Xylene (p/m)	0.200	0.00200	"	0.200		99.9	80-120			
Xylene (o)	0.0951	0.00100	"	0.100		95.1	80-120			
Surrogate: 1,4-Difluorobenzene	0.109		"	0.120		90.8	75-125			
Surrogate: 4-Bromofluorobenzene	0.214		"	0.120		179	75-125			S-GO
Calibration Check (P3F2816-CCV2)				Prepared: (06/28/23 Aı	nalyzed: 07	/01/23			
Benzene	0.107	0.00100	mg/kg	0.100		107	80-120			
Toluene	0.0948	0.00100	"	0.100		94.8	80-120			
Ethylbenzene	0.0997	0.00100	"	0.100		99.7	80-120			
Xylene (p/m)	0.208	0.00200	"	0.200		104	80-120			
Xylene (o)	0.0978	0.00100	"	0.100		97.8	80-120			
Surrogate: 4-Bromofluorobenzene	0.179		"	0.120		149	75-125			S-GC
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		95.2	75-125			
Calibration Check (P3F2816-CCV3)				Prepared: (06/28/23 Aı	nalyzed: 07	/02/23			
Benzene	0.103	0.00100	mg/kg	0.100		103	80-120			
Toluene	0.0979	0.00100	"	0.100		97.9	80-120			
Ethylbenzene	0.107	0.00100	"	0.100		107	80-120			
Xylene (p/m)	0.219	0.00200	"	0.200		109	80-120			
Xylene (o)	0.103	0.00100	"	0.100		103	80-120			
Surrogate: 4-Bromofluorobenzene	0.180		"	0.120		150	75-125			S-GC
Surrogate: 1,4-Difluorobenzene	0.111		"	0.120		92.2	75-125			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765

Xylene (o)

Surrogate: 1,4-Difluorobenzene

Surrogate: 4-Bromofluorobenzene

Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P3F2816 - *** DEFAULT PREP ***

Matrix Spike (P3F2816-MS1)	Sour	ce: 3F19008	-01	Prepared:	06/28/23 An	alyzed: 07	7/02/23			
Benzene	0.106	0.00102	mg/kg dry	0.102	0.00143	102	80-120			
Toluene	0.0882	0.00102	"	0.102	0.00306	83.5	80-120			
Ethylbenzene	0.0955	0.00102	"	0.102	ND	93.6	80-120			
Xylene (p/m)	0.187	0.00204	"	0.204	ND	91.4	80-120			
Xylene (o)	0.0884	0.00102	"	0.102	ND	86.7	80-120			
Surrogate: 1,4-Difluorobenzene	0.117		"	0.122		95.6	80-120			
Surrogate: 4-Bromofluorobenzene	0.154		"	0.122		125	80-120			S-GC
Matrix Spike Dup (P3F2816-MSD1)	Sour	ce: 3F19008	-01	Prepared:	06/28/23 An	alyzed: 07	7/02/23			
Benzene	0.111	0.00102	mg/kg dry	0.102	0.00143	108	80-120	4.89	20	
Toluene	0.0923	0.00102	"	0.102	0.00306	87.4	80-120	4.61	20	
Ethylbenzene	0.100	0.00102	"	0.102	ND	98.2	80-120	4.78	20	
Xylene (p/m)	0.196	0.00204	"	0.204	ND	95.9	80-120	4.79	20	

0.102

0.122

0.122

91.7

93.8

120

80-120

80-120

80-120

5.61

20

0.0935

0.115

0.147

0.00102

Permian Basin Environmental Lab, L.P.

Project: J KEATS 1 2 32 #040H

13000 West County Road 100 Odessa TX, 79765 Project Number: 17783 Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3F1910 - TX 1005										
Blank (P3F1910-BLK1)				Prepared: (06/19/23 Aı	nalyzed: 06	/20/23			
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	80.6		"	100		80.6	70-130			
Surrogate: o-Terphenyl	47.6		"	50.0		95.3	70-130			
LCS (P3F1910-BS1)				Prepared: (06/19/23 Aı	nalyzed: 06	/20/23			
C6-C12	1100	25.0	mg/kg	1000		110	75-125			
>C12-C28	977	25.0	"	1000		97.7	75-125			
Surrogate: 1-Chlorooctane	124		"	100		124	70-130			
Surrogate: o-Terphenyl	69.6		"	50.0		139	70-130			S-GO
LCS Dup (P3F1910-BSD1)				Prepared: (06/19/23 Aı	nalyzed: 06	/20/23			
C6-C12	1120	25.0	mg/kg	1000		112	75-125	1.49	20	
>C12-C28	1040	25.0	"	1000		104	75-125	5.97	20	
Surrogate: 1-Chlorooctane	128		"	100		128	70-130			
Surrogate: o-Terphenyl	73.4		"	50.0		147	70-130			S-GO
Calibration Check (P3F1910-CCV1)				Prepared &	Analyzed:	06/19/23				
C6-C12	523	25.0	mg/kg	500		105	85-115			
>C12-C28	512	25.0	"	500		102	85-115			
Surrogate: 1-Chlorooctane	128		"	100		128	70-130			
Surrogate: o-Terphenyl	71.1		"	50.0		142	70-130			S-GO
Calibration Check (P3F1910-CCV2)				Prepared: (06/19/23 Aı	nalyzed: 06	/20/23			
C6-C12	521	25.0	mg/kg	500		104	85-115			
>C12-C28	526	25.0	"	500		105	85-115			
Surrogate: 1-Chlorooctane	129		"	100		129	70-130			
Surrogate: o-Terphenyl	72.9		"	50.0		146	70-130			S-GO

Permian Basin Environmental Lab, L.P.

Project Number: 17783

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Project: J KEATS 1 2 32 #040H

Amalista	Danult	Reporting	Units	Spike	Source	0/DEC	%REC Limits	DDD	RPD	Notes
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3F1910 - TX 1005										
Calibration Check (P3F1910-CCV3)				Prepared: (06/19/23 A	nalyzed: 06	/20/23			
C6-C12	525	25.0	mg/kg	500		105	85-115			
>C12-C28	506	25.0	"	500		101	85-115			
Surrogate: 1-Chlorooctane	129		"	100		129	70-130			
Surrogate: o-Terphenyl	72.0		"	50.0		144	70-130			S-GC
Duplicate (P3F1910-DUP1)	Sour	ce: 3F19014-	-02	Prepared: (06/19/23 A	nalyzed: 06	/20/23			
C6-C12	1820	2530	mg/kg dry		ND			114	20	
>C12-C28	41500	2530	"		39500			4.92	20	
Surrogate: 1-Chlorooctane	122		"	101		121	70-130			
Surrogate: o-Terphenyl	72.7		"	50.5		144	70-130			S-GC

13000 West County Road 100 Project Number: 17783 Odessa TX, 79765

Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: J KEATS 1 2 32 #040H

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3F1908 - *** DEFAULT PREP ***										
Blank (P3F1908-BLK1)				Prepared: (06/19/23 A	nalyzed: 06	5/20/23			
Chloride	ND	1.00	mg/kg							
LCS (P3F1908-BS1)				Prepared &	Analyzed:	06/19/23				
Chloride	18.1		mg/kg	20.0		90.5	90-110			
LCS Dup (P3F1908-BSD1)				Prepared &	Analyzed:	06/19/23				
Chloride	18.6		mg/kg	20.0		92.9	90-110	2.59	10	
Calibration Check (P3F1908-CCV1)				Prepared: (06/19/23 A	nalyzed: 06	5/20/23			
Chloride	20.4		mg/kg	20.0		102	90-110			
Calibration Check (P3F1908-CCV2)				Prepared &	Analyzed:	06/19/23				
Chloride	19.0		mg/kg	20.0		94.8	90-110			
Matrix Spike (P3F1908-MS1)	Sour	ce: 3F19006-	10	Prepared &	Analyzed:	06/19/23				
Chloride	137		mg/kg	100	40.2	97.0	80-120			
Matrix Spike (P3F1908-MS2)	Sour	ce: 3F19016-	01	Prepared: (06/19/23 A	nalyzed: 06	5/20/23			
Chloride	152		mg/kg	100	50.6	102	80-120			
Matrix Spike Dup (P3F1908-MSD1)	Sour	ce: 3F19006-	10	Prepared &	Analyzed:	06/19/23				
Chloride	134		mg/kg	100	40.2	93.6	80-120	2.54	20	
Matrix Spike Dup (P3F1908-MSD2)	Sour	ce: 3F19016-	01	Prepared: (06/19/23 A	nalyzed: 06	5/20/23			
Chloride	157		mg/kg	100	50.6	106	80-120	2.96	20	
Batch P3F2008 - *** DEFAULT PREP ***										
Blank (P3F2008-BLK1)				Prepared &	Analyzed:	06/20/23				
% Moisture	ND	0.1	%							

Project Number: 17783 Project Manager: Blake Estep

13000 West County Road 100 Odessa TX, 79765

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: J KEATS 1 2 32 #040H

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3F2008 - *** DEFAULT PREP ***										
Blank (P3F2008-BLK2)				Prepared &	Analyzed:	06/20/23				
% Moisture	ND	0.1	%							
Blank (P3F2008-BLK3)				Prepared &	Analyzed:	06/20/23				
% Moisture	ND	0.1	%							
Duplicate (P3F2008-DUP1)	Source	e: 3F16013-0	05	Prepared &	k Analyzed:	06/20/23				
% Moisture	9.0	0.1	%		9.0			0.00	20	
Duplicate (P3F2008-DUP2)	Source	e: 3F19005-0	03	Prepared &	z Analyzed:	06/20/23				
% Moisture	4.0	0.1	%		4.0			0.00	20	
Duplicate (P3F2008-DUP3)	Source	e: 3F19006-	11	Prepared &	Analyzed:	06/20/23				
% Moisture	14.0	0.1	%		15.0			6.90	20	
Duplicate (P3F2008-DUP4)	Source	e: 3F19008-0	04	Prepared &	t Analyzed:	06/20/23				
% Moisture	2.0	0.1	%		2.0			0.00	20	
Duplicate (P3F2008-DUP5)	Source	ce: 3F19012-0	06	Prepared &	k Analyzed:	06/20/23				
% Moisture	ND	0.1	%		ND				20	
Duplicate (P3F2008-DUP6)	Sour	e: 3F19016-0	04	Prepared &	Analyzed:	06/20/23				
% Moisture	13.0	0.1	%		13.0			0.00	20	

13000 West County Road 100 Odessa TX, 79765

Project Number: 17783

Project: J KEATS 1 2 32 #040H

Project Manager: Blake Estep

Notes and Definitions

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

ROI Received on Ice

NPBEL CO Chain of Custody was not generated at PBELAB

Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

B-05 Contamination in blank is carryover from previous sample analyzed in same purge vessel. This contamination is not present in

purge vessels that associated samples were purged in.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

Not Reported NR

Sample results reported on a dry weight basis dry

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Duplicate Dup

Report Approved By:

Brent Barron, Laboratory Director/Technical Director

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1] Project: J KEATS 1 2 32 #040H

13000 West County Road 100 Project Number: 17783
Odessa TX, 79765 Project Manager: Blake Estep

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

1 100 Rankin Hwy

Midland Texas 79701

Phone: 132-686-7235

Blake Estep Project Manager:

Etech Environmental & Safety Solutions, Inc. Company Name:

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

(Chemen) Page 14 of 14

Released to Imaging: 3/26/2024 11:42:13 AM

			•
2 2	4	120/2/1	

Project Name: J Keets 12

Project #: 17783 **Project Loc:**

Company Addro	ess: P.O. Box 62228										4.		Ar	ea:							PU	#			<u>. </u>	3 2		-	
City/State/Zip:	Midland, Texas 79													Bill	Etec	h													
Sampler Signati	ure:	ema	ail: _	bla	ke <u>@eteche</u>	nv.com																							
													Rep	port F	ormat 8	TAN	DAR	D:[]	TE	RP:		-		DES:	:🗆			البيبيان بطنيكي	
_																<u> </u>			· - 1	I			ze Fo	or:	 -		`		
ab use only)																<u> </u>				-+			믜	ı	- 1				
RDER#: 3F	19011													· .		L.,		TOT	AL:					4	4	丰	4	- Shrs	ľ
				Pre	servation & # of	Containers	· —							- -	Matrix	1006		_		8			8260] 48, 72 hrs	
LAB# (lab use only)	FIELD CODE		Start Depth	End Depth	Date Sampled	Time Sampled	No. of Containers	lce	HNO ₃	H ₂ SO ₄	NaOH	. Na ₂ S ₂ O ₃	None	Other (Specify) DW=Drinking Water SL=Sludge	GW ≈ Groundwater S≈Soll/Solld NP≃Non-PotableSpecify Other	1005	Cations (Ca, Mg, Na, K)	Anions (Ci, SO4, CO3, HCO3)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg Se	Volatiles	Semi volatiles	or BTEX	RCI	N.O.R.M.	Chlorides		RUSH TAT(Pre-Schedule) 24,	STANDARD TAT
	D			12"	6-16-23	1036	7		$\pm t$	1	Г	П		_		Ą				ᅥ			Q.	古		D C	10	ī	Ø
	Bottom Hole -1			12"	11	1100	17				_	_				X							X			ĮZ [-		×
2	Bottom Hole- 2		<u> </u>	12	-//	7700	H	-+			-			=		占				-+	-			-+	_		10	+-	/ _
		· · · · · · · · · · · · · · · · · · ·					Н	_	-		后	_	_						금	-				-	-			+-	┰
				 		 	\vdash		_	-	1-	_	_	╬					님	ㅐ	긤			-	-	湍	_	+-	+
			<u> </u>			<u> </u>	\vdash	-	_											_			_	-	귀	 	7_	-	+=
	•		L	<u> </u>			Ш		-+-	40	ㅁ	_							믜	-+	믜	\dashv		7	=+	7	4		
			<u> </u>																	-+	믜			-	-	_][-	+
							Ш			10	_														=+		45		_
				_		1														口							<u> 1</u> 5		
] [
			<u> </u>	 						10][
			 	\vdash						10				丁	****						口						1	10	
			├─	\vdash		 		-	-	10		_	-+-	計					口	_							7 [訂	
Special Instruc	Siene.											لت						abor	ator	y Co	omm	nent	ts:				+		
a kan dahad bu		Date Tim		Receiv	red by:			<u>.</u>	——w		<u></u>	T	Б	ate		lime	-\ <u>`</u>	ample OCs ustod ustod	Free ly se	of H als c	lead: on co	spac ontai	ce? iner(:	s)		YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY		2 2 2 2	
10	De Bull			-								\dashv		ate		ime	s	ample	Har	d De	elîve	red	•			Y		N	
Relinquished by:		Date Tin			red by: BNA BU	dnov						- ,		ate 125	}	41	- s	ar by ar by	Court	ier?	•	UPS	S	DHL 5		edE		NUS	1.6
mindanina ni.		1	(1	ノル	WINULDU								DU	1142	9 9	<u>41</u>		empe	ratur	e up	on F	œce	ıpτ:		1			′ ℃	سا

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Blake Estep
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: J KEATS 1 2 32 #040H

Project Number: 17783 Location: None Given

Lab Order Number: 3G07012

Current Certification

Report Date: 07/27/23

13000 West County Road 100Project Number:17783Odessa TX, 79765Project Manager:Blake Estep

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BOTTOM HOLE 3 @ 12"	3G07012-01	Soil	06/30/23 12:00	07-07-2023 15:10
BOTTOM HOLE 4 @ 12"	3G07012-02	Soil	06/30/23 12:02	07-07-2023 15:10
BOTTOM HOLE 5 @ 12"	3G07012-03	Soil	06/30/23 12:04	07-07-2023 15:10
BOTTOM HOLE 6 @ 12"	3G07012-04	Soil	06/30/23 12:06	07-07-2023 15:10
NORTH SIDEWALL @ 0-12"	3G07012-05	Soil	06/30/23 12:08	07-07-2023 15:10
EAST SIDEWALL @ 0-12"	3G07012-06	Soil	06/30/23 12:10	07-07-2023 15:10
SOUTH SIDEWALL @ 0-12"	3G07012-07	Soil	06/30/23 12:12	07-07-2023 15:10
WEST SIDEWALL @ 0-12"	3G07012-08	Soil	06/30/23 12:14	07-07-2023 15:10

Project: J KEATS 1 2 32 #040H

o-xylene was detected in the first CCB. It was not detected in the BLK or subsequent CCVs.

Due to a Shipping error BTEX analysis were run outside of the regulatory holding time of 14 days.

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

BOTTOM HOLE 3 @ 12" 3G07012-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.0202	mg/kg dry	20	P3G1108	07/11/23 15:27	07/13/23 14:19	EPA 8021B	
Toluene	ND	0.0202	mg/kg dry	20	P3G1108	07/11/23 15:27	07/13/23 14:19	EPA 8021B	
Ethylbenzene	ND	0.0202	mg/kg dry	20	P3G1108	07/11/23 15:27	07/13/23 14:19	EPA 8021B	
Xylene (p/m)	ND	0.0404	mg/kg dry	20	P3G1108	07/11/23 15:27	07/13/23 14:19	EPA 8021B	
Xylene (o)	ND	0.0202	mg/kg dry	20	P3G1108	07/11/23 15:27	07/13/23 14:19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		139 %	80-120		P3G1108	07/11/23 15:27	07/13/23 14:19	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		93.1 %	80-120		P3G1108	07/11/23 15:27	07/13/23 14:19	EPA 8021B	
Xylenes (total)	ND	0.0404	mg/kg dry	20	[CALC]	07/11/23 15:27	07/13/23 14:19	EPA 8021B	
Total BTEX	ND	0.0202	mg/kg dry	20	[CALC]	07/11/23 15:27	07/13/23 14:19	EPA 8021B	
Organics by GC									
C6-C12	ND	25.3	mg/kg dry	1	P3G1015	07/10/23 11:00	07/11/23 07:07	TX 1005	
>C12-C28	ND	25.3	mg/kg dry	1	P3G1015	07/10/23 11:00	07/11/23 07:07	TX 1005	
>C28-C35	ND	25.3	mg/kg dry	1	P3G1015	07/10/23 11:00	07/11/23 07:07	TX 1005	
Surrogate: 1-Chlorooctane		95.2 %	70-130		P3G1015	07/10/23 11:00	07/11/23 07:07	TX 1005	
Surrogate: o-Terphenyl		104 %	70-130		P3G1015	07/10/23 11:00	07/11/23 07:07	TX 1005	
Total Hydrocarbon nC6-nC35	ND	25.3	mg/kg dry	1	[CALC]	07/10/23 11:00	07/11/23 07:07	[CALC]	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	221	1.01	mg/kg dry	1	P3G1107	07/11/23 14:04	07/12/23 01:57	EPA 300.0	
% Moisture	1.0	0.1	%	1	P3G1102	07/11/23 09:55	07/11/23 10:01	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

BOTTOM HOLE 4 @ 12"

3G07012-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	D 4	Analyzed	Method	Notes
Tillulyto	Kesuit	Limit	Units	Dilution	Batch	Prepared	Anaryzeu	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.0206	mg/kg dry	20	P3G1108	07/11/23 15:27	07/13/23 14:41	EPA 8021B	
Toluene	ND	0.0206	mg/kg dry	20	P3G1108	07/11/23 15:27	07/13/23 14:41	EPA 8021B	
Ethylbenzene	ND	0.0206	mg/kg dry	20	P3G1108	07/11/23 15:27	07/13/23 14:41	EPA 8021B	
Xylene (p/m)	ND	0.0412	mg/kg dry	20	P3G1108	07/11/23 15:27	07/13/23 14:41	EPA 8021B	
Xylene (o)	ND	0.0206	mg/kg dry	20	P3G1108	07/11/23 15:27	07/13/23 14:41	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		92.5 %	80-120		P3G1108	07/11/23 15:27	07/13/23 14:41	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		124 %	80-120		P3G1108	07/11/23 15:27	07/13/23 14:41	EPA 8021B	S-GC
Xylenes (total)	ND	0.0412	mg/kg dry	20	[CALC]	07/11/23 15:27	07/13/23 14:41	EPA 8021B	
Total BTEX	ND	0.0206	mg/kg dry	20	[CALC]	07/11/23 15:27	07/13/23 14:41	EPA 8021B	
Organics by GC									
C6-C12	ND	25.8	mg/kg dry	1	P3G1015	07/10/23 11:00	07/11/23 07:31	TX 1005	
>C12-C28	ND	25.8	mg/kg dry	1	P3G1015	07/10/23 11:00	07/11/23 07:31	TX 1005	
>C28-C35	ND	25.8	mg/kg dry	1	P3G1015	07/10/23 11:00	07/11/23 07:31	TX 1005	
Surrogate: 1-Chlorooctane		92.5 %	70-130		P3G1015	07/10/23 11:00	07/11/23 07:31	TX 1005	
Surrogate: o-Terphenyl		102 %	70-130		P3G1015	07/10/23 11:00	07/11/23 07:31	TX 1005	
Total Hydrocarbon nC6-nC35	ND	25.8	mg/kg dry	1	[CALC]	07/10/23 11:00	07/11/23 07:31	[CALC]	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	24.3	1.03	mg/kg dry	1	P3G1107	07/11/23 14:04	07/12/23 02:40	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3G1102	07/11/23 09:55	07/11/23 10:01	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

BOTTOM HOLE 5 @ 12"

3G07012-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.0206	mg/kg dry	20	P3G1108	07/11/23 15:27	07/13/23 15:03	EPA 8021B	
Toluene	ND	0.0206	mg/kg dry	20	P3G1108	07/11/23 15:27	07/13/23 15:03	EPA 8021B	
Ethylbenzene	ND	0.0206	mg/kg dry	20	P3G1108	07/11/23 15:27	07/13/23 15:03	EPA 8021B	
Xylene (p/m)	ND	0.0412	mg/kg dry	20	P3G1108	07/11/23 15:27	07/13/23 15:03	EPA 8021B	
Xylene (o)	ND	0.0206	mg/kg dry	20	P3G1108	07/11/23 15:27	07/13/23 15:03	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		127 %	80-120		P3G1108	07/11/23 15:27	07/13/23 15:03	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		92.8 %	80-120		P3G1108	07/11/23 15:27	07/13/23 15:03	EPA 8021B	
Xylenes (total)	ND	0.0412	mg/kg dry	20	[CALC]	07/11/23 15:27	07/13/23 15:03	EPA 8021B	
Total BTEX	ND	0.0206	mg/kg dry	20	[CALC]	07/11/23 15:27	07/13/23 15:03	EPA 8021B	
Organics by GC									
C6-C12	ND	25.8	mg/kg dry	1	P3G1015	07/10/23 11:00	07/11/23 07:56	TX 1005	
>C12-C28	ND	25.8	mg/kg dry	1	P3G1015	07/10/23 11:00	07/11/23 07:56	TX 1005	
>C28-C35	ND	25.8	mg/kg dry	1	P3G1015	07/10/23 11:00	07/11/23 07:56	TX 1005	
Surrogate: 1-Chlorooctane		91.2 %	70-130		P3G1015	07/10/23 11:00	07/11/23 07:56	TX 1005	
Surrogate: o-Terphenyl		95.6 %	70-130		P3G1015	07/10/23 11:00	07/11/23 07:56	TX 1005	
Total Hydrocarbon nC6-nC35	ND	25.8	mg/kg dry	1	[CALC]	07/10/23 11:00	07/11/23 07:56	[CALC]	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	48.3	1.03	mg/kg dry	1	P3G1107	07/11/23 14:04	07/12/23 02:54	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3G1102	07/11/23 09:55	07/11/23 10:01	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

BOTTOM HOLE 6 @ 12"

3G07012-04 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.0204	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 11:47	EPA 8021B	O-04
Toluene	ND	0.0204	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 11:47	EPA 8021B	O-04
Ethylbenzene	ND	0.0204	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 11:47	EPA 8021B	O-04
Xylene (p/m)	ND	0.0408	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 11:47	EPA 8021B	O-04
Xylene (o)	ND	0.0204	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 11:47	EPA 8021B	O-04
Surrogate: 4-Bromofluorobenzene		135 %	80-120		P3G2007	07/20/23 14:15	07/21/23 11:47	EPA 8021B	O-04, S-LIM
Surrogate: 1,4-Difluorobenzene		92.3 %	80-120		P3G2007	07/20/23 14:15	07/21/23 11:47	EPA 8021B	O-04, S-LIM
Xylenes (total)	ND	0.0408	mg/kg dry	20	[CALC]	07/20/23 14:15	07/21/23 11:47	EPA 8021B	
Total BTEX	ND	0.0204	mg/kg dry	20	[CALC]	07/20/23 14:15	07/21/23 11:47	EPA 8021B	
Organics by GC									
C6-C12	ND	25.5	mg/kg dry	1	P3G1015	07/10/23 11:00	07/11/23 08:20	TX 1005	
>C12-C28	ND	25.5	mg/kg dry	1	P3G1015	07/10/23 11:00	07/11/23 08:20	TX 1005	
>C28-C35	ND	25.5	mg/kg dry	1	P3G1015	07/10/23 11:00	07/11/23 08:20	TX 1005	
Surrogate: 1-Chlorooctane		91.5 %	70-130		P3G1015	07/10/23 11:00	07/11/23 08:20	TX 1005	
Surrogate: o-Terphenyl		97.1 %	70-130		P3G1015	07/10/23 11:00	07/11/23 08:20	TX 1005	
Total Hydrocarbon nC6-nC35	ND	25.5	mg/kg dry	1	[CALC]	07/10/23 11:00	07/11/23 08:20	[CALC]	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	34.8	1.02	mg/kg dry	1	P3G1107	07/11/23 14:04	07/12/23 03:08	EPA 300.0	
% Moisture	2.0	0.1	%	1	P3G1102	07/11/23 09:55	07/11/23 10:01	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

NORTH SIDEWALL @ 0-12" 3G07012-05 (Soil)

Analyte		Reporting						M.d. I	NI :
Anaryte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.0208	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 12:08	EPA 8021B	O-04
Toluene	ND	0.0208	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 12:08	EPA 8021B	O-04
Ethylbenzene	ND	0.0208	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 12:08	EPA 8021B	O-04
Xylene (p/m)	ND	0.0417	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 12:08	EPA 8021B	O-04
Xylene (o)	ND	0.0208	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 12:08	EPA 8021B	O-04
Surrogate: 1,4-Difluorobenzene		91.4 %	80-120		P3G2007	07/20/23 14:15	07/21/23 12:08	EPA 8021B	O-04, S-LIM
Surrogate: 4-Bromofluorobenzene		134 %	80-120		P3G2007	07/20/23 14:15	07/21/23 12:08	EPA 8021B	O-04, S-LIM
Xylenes (total)	ND	0.0417	mg/kg dry	20	[CALC]	07/20/23 14:15	07/21/23 12:08	EPA 8021B	
Total BTEX	ND	0.0208	mg/kg dry	20	[CALC]	07/20/23 14:15	07/21/23 12:08	EPA 8021B	
Organics by GC									
C6-C12	ND	26.0	mg/kg dry	1	P3G1015	07/10/23 11:00	07/11/23 08:44	TX 1005	
>C12-C28	ND	26.0	mg/kg dry	1	P3G1015	07/10/23 11:00	07/11/23 08:44	TX 1005	
>C28-C35	ND	26.0	mg/kg dry	1	P3G1015	07/10/23 11:00	07/11/23 08:44	TX 1005	
Surrogate: 1-Chlorooctane		88.7 %	70-130		P3G1015	07/10/23 11:00	07/11/23 08:44	TX 1005	
Surrogate: o-Terphenyl		93.6 %	70-130		P3G1015	07/10/23 11:00	07/11/23 08:44	TX 1005	
Total Hydrocarbon nC6-nC35	ND	26.0	mg/kg dry	1	[CALC]	07/10/23 11:00	07/11/23 08:44	[CALC]	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	163	1.04	mg/kg dry	1	P3G1107	07/11/23 14:04	07/12/23 03:22	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3G1102	07/11/23 09:55	07/11/23 10:01	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

EAST SIDEWALL @ 0-12" 3G07012-06 (Soil)

Analyte		Reporting	** *.	75.71 7	D . 1	D .	A	Mada d	NT ·
Anaryte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.0202	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 12:29	EPA 8021B	O-04
Toluene	ND	0.0202	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 12:29	EPA 8021B	O-04
Ethylbenzene	ND	0.0202	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 12:29	EPA 8021B	O-04
Xylene (p/m)	ND	0.0404	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 12:29	EPA 8021B	O-04
Xylene (o)	ND	0.0202	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 12:29	EPA 8021B	O-04
Surrogate: 4-Bromofluorobenzene		129 %	80-120		P3G2007	07/20/23 14:15	07/21/23 12:29	EPA 8021B	O-04, S-LIM
Surrogate: 1,4-Difluorobenzene		92.4 %	80-120		P3G2007	07/20/23 14:15	07/21/23 12:29	EPA 8021B	O-04, S-LIM
Xylenes (total)	0.0422	0.0404	mg/kg dry	20	[CALC]	07/20/23 14:15	07/21/23 12:29	EPA 8021B	
Total BTEX	ND	0.0202	mg/kg dry	20	[CALC]	07/20/23 14:15	07/21/23 12:29	EPA 8021B	
Organics by GC									
C6-C12	ND	25.3	mg/kg dry	1	P3G1015	07/10/23 11:00	07/11/23 09:09	TX 1005	
>C12-C28	ND	25.3	mg/kg dry	1	P3G1015	07/10/23 11:00	07/11/23 09:09	TX 1005	
>C28-C35	ND	25.3	mg/kg dry	1	P3G1015	07/10/23 11:00	07/11/23 09:09	TX 1005	
Surrogate: 1-Chlorooctane		81.0 %	70-130		P3G1015	07/10/23 11:00	07/11/23 09:09	TX 1005	
Surrogate: o-Terphenyl		85.0 %	70-130		P3G1015	07/10/23 11:00	07/11/23 09:09	TX 1005	
Total Hydrocarbon nC6-nC35	ND	25.3	mg/kg dry	1	[CALC]	07/10/23 11:00	07/11/23 09:09	[CALC]	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	98.7	1.01	mg/kg dry	1	P3G1107	07/11/23 14:04	07/12/23 03:37	EPA 300.0	
% Moisture	1.0	0.1	%	1	P3G1102	07/11/23 09:55	07/11/23 10:01	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

SOUTH SIDEWALL @ 0-12" 3G07012-07 (Soil)

Analyte	D ag:-14	Reporting Limit	Units	Dilution	Datah	Duamanad	Analyzed	Method	Notes
7 mary to	Result	Limit	Units	Dilution	Batch	Prepared	Anaryzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.0200	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 12:54	EPA 8021B	O-04
Toluene	ND	0.0200	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 12:54	EPA 8021B	O-04
Ethylbenzene	ND	0.0200	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 12:54	EPA 8021B	O-04
Xylene (p/m)	ND	0.0400	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 12:54	EPA 8021B	O-04
Xylene (o)	ND	0.0200	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 12:54	EPA 8021B	O-04
Surrogate: 4-Bromofluorobenzene		134 %	80-120		P3G2007	07/20/23 14:15	07/21/23 12:54	EPA 8021B	O-04, S-LIM
Surrogate: 1,4-Difluorobenzene		91.6%	80-120		P3G2007	07/20/23 14:15	07/21/23 12:54	EPA 8021B	O-04, S-LIM
Xylenes (total)	ND	0.0400	mg/kg dry	20	[CALC]	07/20/23 14:15	07/21/23 12:54	EPA 8021B	
Total BTEX	ND	0.0200	mg/kg dry	20	[CALC]	07/20/23 14:15	07/21/23 12:54	EPA 8021B	
Organics by GC									
C6-C12	ND	25.0	mg/kg dry	1	P3G1015	07/10/23 11:00	07/11/23 09:35	TX 1005	
>C12-C28	ND	25.0	mg/kg dry	1	P3G1015	07/10/23 11:00	07/11/23 09:35	TX 1005	
>C28-C35	ND	25.0	mg/kg dry	1	P3G1015	07/10/23 11:00	07/11/23 09:35	TX 1005	
Surrogate: 1-Chlorooctane		82.7 %	70-130		P3G1015	07/10/23 11:00	07/11/23 09:35	TX 1005	
Surrogate: o-Terphenyl		86.7 %	70-130		P3G1015	07/10/23 11:00	07/11/23 09:35	TX 1005	
Total Hydrocarbon nC6-nC35	ND	25.0	mg/kg dry	1	[CALC]	07/10/23 11:00	07/11/23 09:35	[CALC]	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	108	1.00	mg/kg dry	1	P3G1107	07/11/23 14:04	07/12/23 03:51	EPA 300.0	·
% Moisture	ND	0.1	%	1	P3G1102	07/11/23 09:55	07/11/23 10:01	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

WEST SIDEWALL @ 0-12" 3G07012-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Duamanad	Analyzed	Method	Notes
Timiyee	Kesuit	Limit	Units	Dilution	Batch	Prepared	Anaryzeu	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.0208	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 13:15	EPA 8021B	O-04
Toluene	ND	0.0208	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 13:15	EPA 8021B	O-04
Ethylbenzene	ND	0.0208	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 13:15	EPA 8021B	O-04
Xylene (p/m)	ND	0.0417	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 13:15	EPA 8021B	O-04
Xylene (o)	ND	0.0208	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 13:15	EPA 8021B	O-04
Surrogate: 1,4-Difluorobenzene		92.2 %	80-120		P3G2007	07/20/23 14:15	07/21/23 13:15	EPA 8021B	O-04, S-LIM
Surrogate: 4-Bromofluorobenzene		137 %	80-120		P3G2007	07/20/23 14:15	07/21/23 13:15	EPA 8021B	O-04, S-LIM
Xylenes (total)	ND	0.0417	mg/kg dry	20	[CALC]	07/20/23 14:15	07/21/23 13:15	EPA 8021B	
Total BTEX	ND	0.0208	mg/kg dry	20	[CALC]	07/20/23 14:15	07/21/23 13:15	EPA 8021B	
Organics by GC									
C6-C12	ND	26.0	mg/kg dry	1	P3G1015	07/10/23 11:00	07/11/23 10:00	TX 1005	
>C12-C28	ND	26.0	mg/kg dry	1	P3G1015	07/10/23 11:00	07/11/23 10:00	TX 1005	
>C28-C35	ND	26.0	mg/kg dry	1	P3G1015	07/10/23 11:00	07/11/23 10:00	TX 1005	
Surrogate: 1-Chlorooctane		89.7 %	70-130		P3G1015	07/10/23 11:00	07/11/23 10:00	TX 1005	
Surrogate: o-Terphenyl		96.0 %	70-130		P3G1015	07/10/23 11:00	07/11/23 10:00	TX 1005	
Total Hydrocarbon nC6-nC35	ND	26.0	mg/kg dry	1	[CALC]	07/10/23 11:00	07/11/23 10:00	[CALC]	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	55.7	1.04	mg/kg dry	1	P3G1107	07/11/23 14:04	07/12/23 04:05	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3G1102	07/11/23 09:55	07/11/23 10:01	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3G1108 - *** DEFAULT PREP ***		·								
Blank (P3G1108-BLK1)				Prepared: (07/11/23 Aı	nalvzed: 07	1/12/23			
Benzene	ND	0.00100	mg/kg		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene	0.205		"	0.120		171	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.108		"	0.120		90.0	80-120			
LCS (P3G1108-BS1)				Prepared: (07/11/23 Aı	nalyzed: 07	7/12/23			
Benzene	0.0932	0.00100	mg/kg	0.100		93.2	80-120			
Toluene	0.0977	0.00100	"	0.100		97.7	80-120			
Ethylbenzene	0.118	0.00100	"	0.100		118	80-120			
Xylene (p/m)	0.220	0.00200	"	0.200		110	80-120			
Xylene (o)	0.110	0.00100	"	0.100		110	80-120			
Surrogate: 4-Bromofluorobenzene	0.213		"	0.120		177	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.110		"	0.120		91.8	80-120			
LCS Dup (P3G1108-BSD1)				Prepared: (07/11/23 Aı	nalyzed: 07	7/12/23			
Benzene	0.0925	0.00100	mg/kg	0.100		92.5	80-120	0.711	20	
Toluene	0.0979	0.00100	"	0.100		97.9	80-120	0.215	20	
Ethylbenzene	0.118	0.00100	"	0.100		118	80-120	0.619	20	
Xylene (p/m)	0.220	0.00200	"	0.200		110	80-120	0.0863	20	
Xylene (o)	0.109	0.00100	"	0.100		109	80-120	1.08	20	
Surrogate: 4-Bromofluorobenzene	0.215		"	0.120		179	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.110		"	0.120		92.0	80-120			
Calibration Blank (P3G1108-CCB1)				Prepared: (07/11/23 Aı	nalyzed: 07	7/12/23			
Benzene	0.260		ug/kg							
Toluene	0.430		"							
Ethylbenzene	0.710		"							
Xylene (p/m)	1.62		"							
Xylene (o)	0.870		"							
Surrogate: 1,4-Difluorobenzene	0.108		"	0.120		90.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.198		"	0.120		165	80-120			S-GC

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
-		Limit	Omo	Level	resuit	, or each	Limits	1012	- Dillit	110005
Batch P3G1108 - *** DEFAULT PREP **	**									
Calibration Blank (P3G1108-CCB2)				Prepared: (07/11/23 Aı	nalyzed: 07	/12/23			
Benzene	0.360		ug/kg							
Toluene	0.560		"							
Ethylbenzene	0.830		"							
Xylene (p/m)	1.46		"							
Xylene (o)	1.07		"							
Surrogate: 1,4-Difluorobenzene	0.109		"	0.120		90.9	80-120			
Surrogate: 4-Bromofluorobenzene	0.196		"	0.120		163	80-120			S-GO
Calibration Check (P3G1108-CCV1)				Prepared: (07/11/23 Aı	nalyzed: 07	/12/23			
Benzene	0.0867	0.00100	mg/kg	0.100		86.7	80-120			
Toluene	0.0997	0.00100	"	0.100		99.7	80-120			
Ethylbenzene	0.114	0.00100	"	0.100		114	80-120			
Xylene (p/m)	0.238	0.00200	"	0.200		119	80-120			
Xylene (o)	0.115	0.00100	"	0.100		115	80-120			
Surrogate: 4-Bromofluorobenzene	0.202		"	0.120		168	75-125			S-GO
Surrogate: 1,4-Difluorobenzene	0.111		"	0.120		92.9	75-125			
Calibration Check (P3G1108-CCV2)				Prepared: (07/11/23 Aı	nalyzed: 07	/12/23			
Benzene	0.0831	0.00100	mg/kg	0.100		83.1	80-120			
Toluene	0.0954	0.00100	"	0.100		95.4	80-120			
Ethylbenzene	0.110	0.00100	"	0.100		110	80-120			
Xylene (p/m)	0.226	0.00200	"	0.200		113	80-120			
Xylene (o)	0.106	0.00100	"	0.100		106	80-120			
Surrogate: 4-Bromofluorobenzene	0.208		"	0.120		173	75-125			S-GO
Surrogate: 1,4-Difluorobenzene	0.110		"	0.120		91.4	75-125			
Calibration Check (P3G1108-CCV3)				Prepared: (07/11/23 Aı	nalyzed: 07	/13/23			
Benzene	0.0958	0.00100	mg/kg	0.100		95.8	80-120			
Toluene	0.0902	0.00100	"	0.100		90.2	80-120			
Ethylbenzene	0.100	0.00100	"	0.100		100	80-120			
Xylene (p/m)	0.204	0.00200	"	0.200		102	80-120			
Xylene (o)	0.0981	0.00100	"	0.100		98.1	80-120			
Surrogate: 1,4-Difluorobenzene	0.111		"	0.120		92.4	75-125			
Surrogate: 4-Bromofluorobenzene	0.185		"	0.120		154	75-125			S-GO

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P3G1108 - *** DEFAULT PREP ***

Matrix Spike (P3G1108-MS1)	Sour	Source: 3G05006-01			07/11/23 An	alyzed: 07	7/13/23	
Benzene	0.111	0.00119	mg/kg dry	0.119	0.00643	87.6	80-120	
Toluene	0.0990	0.00119	"	0.119	0.00405	79.8	80-120	QM-05
Ethylbenzene	0.115	0.00119	"	0.119	0.00595	91.6	80-120	
Xylene (p/m)	0.227	0.00238	"	0.238	0.0110	90.6	80-120	
Xylene (o)	0.108	0.00119	"	0.119	0.00738	84.3	80-120	
Surrogate: 4-Bromofluorobenzene	0.214		"	0.143		150	80-120	S-GC
Surrogate: 1,4-Difluorobenzene	0.130		"	0.143		90.9	80-120	

Matrix Spike Dup (P3G1108-MSD1)	Sour	Source: 3G05006-01			07/11/23 An					
Benzene	0.130	0.00119	mg/kg dry	0.119	0.00643	104	80-120	16.9	20	
Toluene	0.109	0.00119	"	0.119	0.00405	88.1	80-120	9.93	20	
Ethylbenzene	0.119	0.00119	"	0.119	0.00595	95.3	80-120	4.01	20	
Xylene (p/m)	0.234	0.00238	"	0.238	0.0110	93.7	80-120	3.33	20	
Xylene (o)	0.114	0.00119	"	0.119	0.00738	89.3	80-120	5.73	20	
Surrogate: 1,4-Difluorobenzene	0.139		"	0.143		97.1	80-120			
Surrogate: 4-Bromofluorobenzene	0.185		"	0.143		129	80-120			S-GC

Batch P3G2007 - *** DEFAULT PREP ***

Blank (P3G2007-BLK1)	Blank (P3G2007-BLK1)						
Benzene	ND	0.00100	mg/kg				
Toluene	ND	0.00100	"				
Ethylbenzene	ND	0.00100	"				
Xylene (p/m)	ND	0.00200	"				
Xylene (o)	ND	0.00100	"				
Surrogate: 1,4-Difluorobenzene	0.107		"	0.120	89.1	80-120	
Surrogate: 4-Bromofluorobenzene	0.214		"	0.120	179	80-120	S-GC

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3G2007 - *** DEFAULT PREP ***										
LCS (P3G2007-BS1)				Prepared: (07/20/23 At	nalyzed: 07	/21/23			
Benzene	0.0852	0.00100	mg/kg	0.100		85.2	80-120			
Toluene	0.0928	0.00100	"	0.100		92.8	80-120			
Ethylbenzene	0.114	0.00100	"	0.100		114	80-120			
Xylene (p/m)	0.223	0.00200	"	0.200		111	80-120			
Xylene (o)	0.104	0.00100	"	0.100		104	80-120			
Surrogate: 4-Bromofluorobenzene	0.221		"	0.120		184	80-120			S-GO
Surrogate: 1,4-Difluorobenzene	0.109		"	0.120		90.6	80-120			
LCS Dup (P3G2007-BSD1)				Prepared: ()7/20/23 At	nalyzed: 07	/21/23			
Benzene	0.0900	0.00100	mg/kg	0.100		90.0	80-120	5.48	20	
Toluene	0.0948	0.00100	"	0.100		94.8	80-120	2.21	20	
Ethylbenzene	0.116	0.00100	"	0.100		116	80-120	1.61	20	
Xylene (p/m)	0.227	0.00200	"	0.200		114	80-120	1.91	20	
Xylene (o)	0.104	0.00100	"	0.100		104	80-120	0.895	20	
Surrogate: 1,4-Difluorobenzene	0.108		"	0.120		90.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.213		"	0.120		177	80-120			S-GO
Calibration Blank (P3G2007-CCB1)				Prepared: ()7/20/23 At	nalyzed: 07	/21/23			
Benzene	0.250		ug/kg							
Toluene	0.330		"							
Ethylbenzene	0.790		"							
Xylene (p/m)	1.83		"							
Xylene (o)	1.10		"							
Surrogate: 4-Bromofluorobenzene	0.215		"	0.120		180	80-120			S-GO
Surrogate: 1,4-Difluorobenzene	0.108		"	0.120		90.2	80-120			
Calibration Blank (P3G2007-CCB2)				Prepared: (07/20/23 At	nalyzed: 07	/24/23			
Benzene	0.0500		ug/kg	*						
Toluene	0.240		"							
Ethylbenzene	0.200		"							
Xylene (p/m)	0.790		"							
Xylene (o)	0.370		"							
Surrogate: 1,4-Difluorobenzene	0.106		"	0.120		88.4	80-120			
Surrogate: 4-Bromofluorobenzene	0.216		"	0.120		180	80-120			S-GO

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3G2007 - *** DEFAULT PREP ***										
Calibration Check (P3G2007-CCV1)				Prepared: (07/20/23 At	nalyzed: 07	/21/23			
Benzene	0.0801	0.00100	mg/kg	0.100		80.1	80-120			
Toluene	0.0961	0.00100	"	0.100		96.1	80-120			
Ethylbenzene	0.119	0.00100	"	0.100		119	80-120			
Xylene (p/m)	0.215	0.00200	"	0.200		107	80-120			
Xylene (o)	0.118	0.00100	"	0.100		118	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.6	75-125			
Surrogate: 4-Bromofluorobenzene	0.207		"	0.120		172	75-125			S-GO
Calibration Check (P3G2007-CCV2)				Prepared: (07/20/23 At	nalyzed: 07	/21/23			
Benzene	0.0825	0.00100	mg/kg	0.100		82.5	80-120			
Toluene	0.0854	0.00100	"	0.100		85.4	80-120			
Ethylbenzene	0.0955	0.00100	"	0.100		95.5	80-120			
Xylene (p/m)	0.197	0.00200	"	0.200		98.4	80-120			
Xylene (o)	0.0924	0.00100	"	0.100		92.4	80-120			
Surrogate: 1,4-Difluorobenzene	0.110		"	0.120		91.3	75-125			
Surrogate: 4-Bromofluorobenzene	0.209		"	0.120		174	75-125			S-GO
Calibration Check (P3G2007-CCV3)				Prepared: (07/20/23 At	nalyzed: 07	/24/23			
Benzene	0.106	0.00100	mg/kg	0.100		106	80-120			
Toluene	0.104	0.00100	"	0.100		104	80-120			
Ethylbenzene	0.117	0.00100	"	0.100		117	80-120			
Xylene (p/m)	0.236	0.00200	"	0.200		118	80-120			
Xylene (o)	0.117	0.00100	"	0.100		117	80-120			
Surrogate: 1,4-Difluorobenzene	0.109		"	0.120		91.2	75-125			
Surrogate: 4-Bromofluorobenzene	0.222		"	0.120		185	75-125			S-GO
Matrix Spike (P3G2007-MS1)	Sou	rce: 3G07012	-04	Prepared: (07/20/23 At	nalyzed: 07	/24/23			
Benzene	0.102	0.00102	mg/kg dry	0.102	0.00122	98.6	80-120			
Toluene	0.0901	0.00102	"	0.102	0.00224	86.1	80-120			
Ethylbenzene	0.102	0.00102	"	0.102	ND	99.8	80-120			
Xylene (p/m)	0.199	0.00204	"	0.204	0.00571	94.9	80-120			
Xylene (o)	0.0979	0.00102	"	0.102	0.00347	92.6	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.122		95.1	80-120			
Surrogate: 4-Bromofluorobenzene	0.165		"	0.122		135	80-120			S-GO

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P3G2007 - *** DEFAULT PREP ***

Matrix Spike Dup (P3G2007-MSD1)	Sour	Prepared: 07/20/23 Analyzed: 07/24/23								
Benzene	0.0980	0.00102	mg/kg dry	0.102	0.00122	94.8	80-120	3.90	20	
Toluene	0.0861	0.00102	"	0.102	0.00224	82.2	80-120	4.68	20	
Ethylbenzene	0.0973	0.00102	"	0.102	ND	95.3	80-120	4.56	20	
Xylene (p/m)	0.190	0.00204	"	0.204	0.00571	90.3	80-120	4.95	20	
Xylene (o)	0.0939	0.00102	"	0.102	0.00347	88.6	80-120	4.33	20	
Surrogate: 1,4-Difluorobenzene	0.118		"	0.122		96.5	80-120			
Surrogate: 4-Bromofluorobenzene	0.175		"	0.122		143	80-120			S-GC

13000 West County Road 100

Project Number: 17783

Odessa TX, 79765

Project Manager: Blake Estep

Organics by GC - Quality Control Permian Basin Environmental Lab, L.P.

Project: J KEATS 1 2 32 #040H

	Reporting		Spike	Source		%REC		RPD	
Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
			Prepared: (07/10/23 At	nalyzed: 07	/11/23			
ND	25.0	mg/kg							
ND	25.0	"							
ND	25.0	"							
102		"	100		102	70-130			
54.7		"	50.0		109	70-130			
			Prepared: (07/10/23 At	nalyzed: 07	/11/23			
942	25.0	mg/kg	1000		94.2	75-125			
821	25.0	"	1000		82.1	75-125			
118		"	100		118	70-130			
48.0		"	50.0		96.0	70-130			
			Prepared: (07/10/23 Aı	nalyzed: 07	/11/23			
961	25.0	mg/kg	1000		96.1	75-125	2.00	20	
848	25.0	"	1000		84.8	75-125	3.28	20	
120		"	100		120	70-130			
46.2		"	50.0		92.3	70-130			
			Prepared: (07/10/23 At	nalyzed: 07	/11/23			
456	25.0	mg/kg	500		91.2	85-115			
481	25.0	"	500		96.2	85-115			
104		"	100		104	70-130			
49.0		"	50.0		98.1	70-130			
			Prepared: (07/10/23 Aı	nalyzed: 07	/11/23			
448	25.0	mg/kg	500		89.7	85-115			
444	25.0	"	500		88.7	85-115			
103		"	100		103	70-130			
49.1		"	50.0		98.3	70-130			
	ND ND 102 54.7 942 821 118 48.0 961 848 120 46.2 456 481 104 49.0 448 444 103	Result Limit ND 25.0 ND 25.0 ND 25.0 102 54.7 942 25.0 821 25.0 118 48.0 961 25.0 848 25.0 120 46.2 456 25.0 481 25.0 104 49.0 448 25.0 103	ND	Result Limit Units Level	Result Limit Units Level Result	Prepared: 07/10/23 Analyzed: 07	Result	Prepared: 07/10/23 Analyzed: 07/11/23	ND

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

Organics by GC - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3G1015 - TX 1005										
Calibration Check (P3G1015-CCV3)				Prepared: (07/10/23 At	nalyzed: 07	/11/23			
C6-C12	450	25.0	mg/kg	500		90.1	85-115			
>C12-C28	438	25.0	"	500		87.5	85-115			
Surrogate: 1-Chlorooctane	104		"	100		104	70-130			
Surrogate: o-Terphenyl	48.3		"	50.0		96.7	70-130			
Duplicate (P3G1015-DUP1)	Sour	ce: 3G10007	-06	Prepared: (07/10/23 At	nalyzed: 07	/11/23			
C6-C12	ND	26.9	mg/kg dry		ND				20	
>C12-C28	ND	26.9	"		ND				20	
Surrogate: 1-Chlorooctane	109		"	108		102	70-130			
Surrogate: o-Terphenyl	58.0		"	53.8		108	70-130			

Project Number: 17783

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: J KEATS 1 2 32 #040H

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3G1102 - *** DEFAULT PREP ***										
Blank (P3G1102-BLK1)				Prepared &	Analyzed:	07/11/23				
% Moisture	ND	0.1	%							
Blank (P3G1102-BLK2)				Prepared &	Analyzed:	07/11/23				
% Moisture	ND	0.1	%							
Blank (P3G1102-BLK3)				Prepared &	Analyzed:	07/11/23				
% Moisture	ND	0.1	%							
Blank (P3G1102-BLK4)				Prepared &	Analyzed:	07/11/23				
% Moisture	ND	0.1	%							
Duplicate (P3G1102-DUP1)	Sou	rce: 3G07007-	02	Prepared &	Analyzed:	07/11/23				
% Moisture	1.0	0.1	%		1.0			0.00	20	
Duplicate (P3G1102-DUP2)	Sou	rce: 3G07010-	01	Prepared &	Analyzed:	07/11/23				
% Moisture	1.0	0.1	%		ND			200	20	R3
Duplicate (P3G1102-DUP3)	Sou	rce: 3G10005-	01	Prepared &	Analyzed:	07/11/23				
% Moisture	1.0	0.1	%		1.0			0.00	20	
Duplicate (P3G1102-DUP4)	Sou	rce: 3G10009-	03	Prepared &	Analyzed:	07/11/23				
% Moisture	1.0	0.1	%		1.0			0.00	20	
Duplicate (P3G1102-DUP5)	Sou	rce: 3G10008-	09	Prepared &	Analyzed:	07/11/23				
% Moisture	14.0	0.1	%		13.0			7.41	20	
Duplicate (P3G1102-DUP6)	Sou	rce: 3G10008-	19	Prepared &	Analyzed:	07/11/23				
% Moisture	6.0	0.1	%		6.0			0.00	20	

13000 West County Road 100Project Number:17783Odessa TX, 79765Project Manager:Blake Estep

General Chemistry Parameters by FPA / Standard Metho

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: J KEATS 1 2 32 #040H

Analysis	D14	Reporting	11	Spike	Source	0/BEC	%REC	DDD	RPD	NI-4
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3G1107 - *** DEFAULT PREP ***										
Blank (P3G1107-BLK1)				Prepared &	Analyzed:	07/11/23				
Chloride	ND	1.00	mg/kg							
LCS (P3G1107-BS1)				Prepared &	Analyzed:	07/11/23				
Chloride	18.8		mg/kg	18.0		105	90-110			
LCS Dup (P3G1107-BSD1)				Prepared &	Analyzed:	07/11/23				
Chloride	18.7		mg/kg	18.0		104	90-110	0.436	10	
Calibration Check (P3G1107-CCV1)				Prepared &	Analyzed:	: 07/11/23				
Chloride	19.6		mg/kg	18.0		109	90-110			
Calibration Check (P3G1107-CCV2)				Prepared: (07/11/23 A	nalyzed: 07	7/12/23			
Chloride	19.5		mg/kg	18.0		108	90-110			
Matrix Spike (P3G1107-MS1)	Sour	rce: 3G07009	-01	Prepared: (07/11/23 A	nalyzed: 07	7/12/23			
Chloride	101		mg/kg	100	1.72	99.8	80-120			
Matrix Spike (P3G1107-MS2)	Sour	rce: 3G07014	-01	Prepared: (07/11/23 A	nalyzed: 07	//12/23			
Chloride	122		mg/kg	100	23.8	98.5	80-120			
Matrix Spike Dup (P3G1107-MSD1)	Sour	rce: 3G07009-	-01	Prepared: ()7/11/23 A	nalyzed: 07	//12/23			
Chloride	101		mg/kg	100	1.72	99.3	80-120	0.485	20	
Matrix Spike Dup (P3G1107-MSD2)	Sour	ce: 3G07014	-01	Prepared: (07/11/23 A	nalyzed: 07	//12/23			
Chloride	122		mg/kg	100	23.8	98.0	80-120	0.442	20	

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

Notes and Definitions

S-LIM Surrogate recoveries outside method QC limits. Site matrix effects verified by 10% duplicate analysis (including sample duplicate

and MS/MSD analysis).

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

ROI Received on Ice

R3 The RPD exceeded the acceptance limit due to sample matrix effects.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were

within acceptance limits showing that the laboratory is in control and the data is acceptable.

O-04 This sample was analyzed outside the EPA recommended holding time.

NPBEL C(Chain of Custody was not generated at PBELAB

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By: Date: 7/27/2023

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1] Project: J KEATS 1 2 32 #040H

13000 West County Road 100 Project Number: 17783
Odessa TX, 79765 Project Manager: Blake Estep

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

Permian Basin Environmental Lab, LP

1400 Rankin Hwy

Midland Texas 79701

Phone: 432-686-7235

Project Manager:

Blake Estep

Company Name: <u>Etech Environmental & Safety Solutions</u>, Inc.

Company Address: P.O. Box 62228

City/State/Zip: Sampler Signature:

Midland, Texas 79711

email: _blake@etechenv.com

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Project Name: \	I keats 12	32 #040# S
Project #: 177	る。Project Loc:	
Area:	PO#- 1779	23

Released to Imaging: 3/26/2024 11:42:13 AM

⊠Bill Etech

													R	eport	t Form	at: S	TAN	DAR	D:[]		RRP				DES:	: <u>□</u>	-			
(lab use only)																			TC	LP:			naly	ze F	or:		т		-807	24
ORDER #: 36	201012																		TOT		-		-					1		
				Pr	eservation & # o	f Container	<u> </u>			-		-		-	Mat	rix	ம				ᆜ	H	\vdash	0.000515	H		H	+		
LAB# (lab use only)	FI	ELD CODE	Start Death		Date Sampled	Time Sampled	No. of Containers	<u>92</u>	HNO ₃	HCI H.SO.	NaOH	Na ₂ S ₂ O ₃	None	Other (Specify)	DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid	NP=Non-PotableSpecify Other	TPH: 418.1 4015 1005 1006	Cations (Ca, Mg, Na, K)	Anions (Cl, SO4, CO3, HCO3)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg Se	Volatiles	Semi volatiles	*BTEX 80219/5030 or BTEX 8260	RCI	N.O.R.M.	4 Chlorides		RUSH TAT(Pre-Schedule) 24, 48.	}
	Botton +	tole 3		12"	10.30.23	12:00	1	承							5	٦	K				口		-	×	古	ᆸ	X [٦ti		1 13
a	A .	Hole 4		12"	1	12:02	T	E							Ŝ		Ø		미	ᅵ				Ø	\vdash	_	K	-		
3	Bottom	Hole 5		12"		12:04	1	¥							S		X.					口		₽3	-+	-+	K	٦tc		1000
9	Bottom	Hole 6		12"		12:06	li	Ø							S		K				古	口		¥	古		X [1		
5	North S	idewall	0	12"		12:08	1	X							5		Ø				可			K	古	ᄀ	10		ΠĒ	4
(0		idewall	0	12"		12:10	1	X							5	-	X					ㅁ		K	古	ᅵ) S [1 1		
7		Sidewall	0	12"		12:12	1	E							5	_	¥				寸		_	7	寸	_	X	1	JĖ	
ያ ነ	West S	Sidewall	C) (2"		17:14	T	X						司	S	_	Ø				可	司	_	×	古	-	$\dot{-}$			960
•															· ,,	_						口	-	_			_	=	٦E	
														미		T		口		司		司			古	口		<u> </u>		
																T												5 [
				-										口				口					ᇜ					5 6		18
																T				口	口	口	ᆸ		古			5 [
			-										可	口		7			司					ᆸ		古		510		
Special Instruct	tions:				1		•											La	mple	Con	/ Co taine	om m ers Ir leads	ent	ts: t?			R		N N	
Relinquished by	meny mining and a distribution of the contract	Date	Time	Receiv	red by:	MAN SHIP I WATER HOUSE TO SHARE STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET,	miner.	· · · · · · · · · · · · · · · · · · ·	e e de este e e	one and the second seco			1	Date	Astan Lineau Line	Ti	me	Πa	stod	y sea	als o		ntair	ner(s	5)		13	7)	N N	8227777759
Relinquished by:	THE PERSON CONTRACTOR OF THE PERSON OF THE P	7-7-23 Date	3:LO Time	Receiv	ved by:	e residente de seu en commencia de servicio de servici	w-resket to	. managar		27, 27 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	nagary and co		EDITE 10-441	Date		Ti	me	Sa Sa	mple	Han Samp	d De oler/0	eliver Clien	ed	p. ?	DHL		Fed E	J	N N	
Relinquished by:		Date	Time	CON Y	tha Ble	droe	/						H	Pate [Z	3	ıŠ	me :10					on R				1.			Ν̈́ζ	3

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report Rev. 2

Prepared for:

Blake Estep
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: J KEATS 1 2 32 #040H

Project Number: 17783 Location: None Given

Lab Order Number: 3H01026

Current Certification

Report Date: 10/23/23

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Bottom Hole-3 @ 12"	3Н01026-01	Soil	07/31/23 12:05	08-01-2023 10:15
Bottom Hole-4 @ 12"	3Н01026-02	Soil	07/31/23 12:07	08-01-2023 10:15
Bottom Hole-5 @ 12"	3Н01026-03	Soil	07/31/23 12:09	08-01-2023 10:15
Bottom Hole-6 @ 12"	3Н01026-04	Soil	07/31/23 12:11	08-01-2023 10:15
North Wall @ 0-12"	3Н01026-05	Soil	07/31/23 12:21	08-01-2023 10:15
South Wall @ 0-12"	3Н01026-06	Soil	07/31/23 12:15	08-01-2023 10:15
East Wall-#1 @ 0-12"	3Н01026-07	Soil	07/31/23 12:19	08-01-2023 10:15
East Wall-#2 @ 0-12"	3Н01026-08	Soil	07/31/23 12:17	08-01-2023 10:15
West Wall-#1 @ 0-12"	3Н01026-09	Soil	07/31/23 12:23	08-01-2023 10:15
West Wall-#2 @ 0-12"	3H01026-10	Soil	07/31/23 12:25	08-01-2023 10:15

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

Bottom Hole-3 @ 12" 3H01026-01 (Soil)

	Lim	it Repo	rtıng						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.0200	mg/kg dry	20	P3H0305	08/03/23 09:45	08/04/23 12:16	EPA 8021B	
Toluene	ND	0.0200	mg/kg dry	20	P3H0305	08/03/23 09:45	08/04/23 12:16	EPA 8021B	
Ethylbenzene	ND	0.0200	mg/kg dry	20	P3H0305	08/03/23 09:45	08/04/23 12:16	EPA 8021B	
Xylene (p/m)	ND	0.0400	mg/kg dry	20	P3H0305	08/03/23 09:45	08/04/23 12:16	EPA 8021B	
Xylene (o)	ND	0.0200	mg/kg dry	20	P3H0305	08/03/23 09:45	08/04/23 12:16	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		129 %	80-120		P3H0305	08/03/23 09:45	08/04/23 12:16	EPA 8021B	S-GO
Surrogate: 1,4-Difluorobenzene		91.8 %	80-120		P3H0305	08/03/23 09:45	08/04/23 12:16	EPA 8021B	
Xylenes (total)	ND	0.0400	mg/kg dry	20	[CALC]	08/03/23 09:45	08/04/23 12:16	EPA 8021B	
Total BTEX	ND	0.0200	mg/kg dry	20	[CALC]	08/03/23 09:45	08/04/23 12:16	EPA 8021B	
General Chemistry Parameters b	y EPA / Stand	lard Metl	nods						
% Moisture	ND	0.1	%	1	P3H0216	08/02/23 12:25	08/02/23 12:29	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

Bottom Hole-4 @ 12" 3H01026-02 (Soil)

	Lim	it Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.0200	mg/kg dry	20	P3H0305	08/03/23 09:45	08/04/23 12:43	EPA 8021B	
Toluene	ND	0.0200	mg/kg dry	20	P3H0305	08/03/23 09:45	08/04/23 12:43	EPA 8021B	
Ethylbenzene	ND	0.0200	mg/kg dry	20	P3H0305	08/03/23 09:45	08/04/23 12:43	EPA 8021B	
Xylene (p/m)	ND	0.0400	mg/kg dry	20	P3H0305	08/03/23 09:45	08/04/23 12:43	EPA 8021B	
Xylene (o)	ND	0.0200	mg/kg dry	20	P3H0305	08/03/23 09:45	08/04/23 12:43	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		92.8 %	80-120		P3H0305	08/03/23 09:45	08/04/23 12:43	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		133 %	80-120		P3H0305	08/03/23 09:45	08/04/23 12:43	EPA 8021B	S-GC
Xylenes (total)	ND	0.0400	mg/kg dry	20	[CALC]	08/03/23 09:45	08/04/23 12:43	EPA 8021B	
Total BTEX	ND	0.0200	mg/kg dry	20	[CALC]	08/03/23 09:45	08/04/23 12:43	EPA 8021B	
General Chemistry Parameters b	y EPA / Stand	lard Metl	hods						
% Moisture	ND	0.1	%	1	P3H0216	08/02/23 12:25	08/02/23 12:29	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

Bottom Hole-5 @ 12" 3H01026-03 (Soil)

	Lim	it Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.0200	mg/kg dry	20	P3H0305	08/03/23 09:45	08/04/23 13:03	EPA 8021B	
Toluene	ND	0.0200	mg/kg dry	20	P3H0305	08/03/23 09:45	08/04/23 13:03	EPA 8021B	
Ethylbenzene	ND	0.0200	mg/kg dry	20	P3H0305	08/03/23 09:45	08/04/23 13:03	EPA 8021B	
Xylene (p/m)	ND	0.0400	mg/kg dry	20	P3H0305	08/03/23 09:45	08/04/23 13:03	EPA 8021B	
Xylene (o)	ND	0.0200	mg/kg dry	20	P3H0305	08/03/23 09:45	08/04/23 13:03	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		91.8 %	80-120		P3H0305	08/03/23 09:45	08/04/23 13:03	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		142 %	80-120		P3H0305	08/03/23 09:45	08/04/23 13:03	EPA 8021B	S-GC
Xylenes (total)	ND	0.0400	mg/kg dry	20	[CALC]	08/03/23 09:45	08/04/23 13:03	EPA 8021B	
Total BTEX	ND	0.0200	mg/kg dry	20	[CALC]	08/03/23 09:45	08/04/23 13:03	EPA 8021B	
General Chemistry Parameters b	y EPA / Stand	lard Metl	hods						
% Moisture	ND	0.1	%	1	P3H0216	08/02/23 12:25	08/02/23 12:29	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

Bottom Hole-6 @ 12" 3H01026-04 (Soil)

	Limi	it Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ironmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 13:05	EPA 8021B	
Toluene	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 13:05	EPA 8021B	
Ethylbenzene	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 13:05	EPA 8021B	
Xylene (p/m)	ND	0.0400	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 13:05	EPA 8021B	
Xylene (o)	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 13:05	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		144 %	80-120		P3H1005	08/10/23 09:31	08/10/23 13:05	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene	9	92.4 %	80-120		P3H1005	08/10/23 09:31	08/10/23 13:05	EPA 8021B	
Xylenes (total)	ND	0.0400	mg/kg dry	20	[CALC]	08/10/23 09:31	08/10/23 13:05	EPA 8021B	
Total BTEX	ND	0.0200	mg/kg dry	20	[CALC]	08/10/23 09:31	08/10/23 13:05	EPA 8021B	
General Chemistry Parameters b	v EPA / Stand	ard Metl	hods						
% Moisture	ND	0.1	%	1	P3H0216	08/02/23 12:25	08/02/23 12:29	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

North Wall @ 0-12" 3H01026-05 (Soil)

	Lim	it Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 13:37	EPA 8021B	
Toluene	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 13:37	EPA 8021B	
Ethylbenzene	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 13:37	EPA 8021B	
Xylene (p/m)	ND	0.0400	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 13:37	EPA 8021B	
Xylene (o)	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 13:37	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		91.2 %	80-120		P3H1005	08/10/23 09:31	08/10/23 13:37	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		145 %	80-120		P3H1005	08/10/23 09:31	08/10/23 13:37	EPA 8021B	S-GC
Xylenes (total)	ND	0.0400	mg/kg dry	20	[CALC]	08/10/23 09:31	08/10/23 13:37	EPA 8021B	
Total BTEX	ND	0.0200	mg/kg dry	20	[CALC]	08/10/23 09:31	08/10/23 13:37	EPA 8021B	
General Chemistry Parameters b	y EPA / Stand	lard Metl	hods						
% Moisture	ND	0.1	%	1	P3H0216	08/02/23 12:25	08/02/23 12:29	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

South Wall @ 0-12" 3H01026-06 (Soil)

	Limi	it Repor	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Po	ermian B	asin Envi	ironmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 14:02	EPA 8021B	
Toluene	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 14:02	EPA 8021B	
Ethylbenzene	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 14:02	EPA 8021B	
Xylene (p/m)	ND	0.0400	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 14:02	EPA 8021B	
Xylene (o)	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 14:02	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		141 %	80-120		P3H1005	08/10/23 09:31	08/10/23 14:02	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene	Ģ	92.4 %	80-120		P3H1005	08/10/23 09:31	08/10/23 14:02	EPA 8021B	
Xylenes (total)	ND	0.0400	mg/kg dry	20	[CALC]	08/10/23 09:31	08/10/23 14:02	EPA 8021B	
Total BTEX	ND	0.0200	mg/kg dry	20	[CALC]	08/10/23 09:31	08/10/23 14:02	EPA 8021B	
General Chemistry Parameters b	v EPA / Stand	ard Metl	nods						
% Moisture	ND	0.1	%	1	P3H0216	08/02/23 12:25	08/02/23 12:29	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

East Wall-#1 @ 0-12" 3H01026-07 (Soil)

	Lim	it Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 14:23	EPA 8021B	
Toluene	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 14:23	EPA 8021B	
Ethylbenzene	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 14:23	EPA 8021B	
Xylene (p/m)	ND	0.0400	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 14:23	EPA 8021B	
Xylene (o)	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 14:23	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		92.4 %	80-120		P3H1005	08/10/23 09:31	08/10/23 14:23	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		151 %	80-120		P3H1005	08/10/23 09:31	08/10/23 14:23	EPA 8021B	S-GC
Xylenes (total)	ND	0.0400	mg/kg dry	20	[CALC]	08/10/23 09:31	08/10/23 14:23	EPA 8021B	
Total BTEX	ND	0.0200	mg/kg dry	20	[CALC]	08/10/23 09:31	08/10/23 14:23	EPA 8021B	
General Chemistry Parameters by	y EPA / Stand	lard Metl	hods						
% Moisture	ND	0.1	%	1	P3H0216	08/02/23 12:25	08/02/23 12:29	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

East Wall-#2 @ 0-12" 3H01026-08 (Soil)

Analysta	Limit	t Repor	Ü						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Po	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 14:44	EPA 8021B	
Toluene	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 14:44	EPA 8021B	
Ethylbenzene	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 14:44	EPA 8021B	
Xylene (p/m)	ND	0.0400	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 14:44	EPA 8021B	
Xylene (o)	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 14:44	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		150 %	80-120		P3H1005	08/10/23 09:31	08/10/23 14:44	EPA 8021B	S-GO
Surrogate: 1,4-Difluorobenzene	9	2.4 %	80-120		P3H1005	08/10/23 09:31	08/10/23 14:44	EPA 8021B	
Xylenes (total)	ND	0.0400	mg/kg dry	20	[CALC]	08/10/23 09:31	08/10/23 14:44	EPA 8021B	
Total BTEX	ND	0.0200	mg/kg dry	20	[CALC]	08/10/23 09:31	08/10/23 14:44	EPA 8021B	

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

West Wall-#1 @ 0-12" 3H01026-09 (Soil)

	Limi	it Repor	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Po	ermian B	asin Envi	ironmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 15:05	EPA 8021B	
Toluene	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 15:05	EPA 8021B	
Ethylbenzene	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 15:05	EPA 8021B	
Xylene (p/m)	ND	0.0400	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 15:05	EPA 8021B	
Xylene (o)	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 15:05	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		157 %	80-120		P3H1005	08/10/23 09:31	08/10/23 15:05	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene	Ģ	92.1 %	80-120		P3H1005	08/10/23 09:31	08/10/23 15:05	EPA 8021B	
Xylenes (total)	ND	0.0400	mg/kg dry	20	[CALC]	08/10/23 09:31	08/10/23 15:05	EPA 8021B	
Total BTEX	ND	0.0200	mg/kg dry	20	[CALC]	08/10/23 09:31	08/10/23 15:05	EPA 8021B	
General Chemistry Parameters b	v EPA / Stand	ard Metl	ıods						
% Moisture	ND	0.1	%	1	P3H0216	08/02/23 12:25	08/02/23 12:29	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

West Wall-#2 @ 0-12" 3H01026-10 (Soil)

	Lim	it Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 15:26	EPA 8021B	
Toluene	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 15:26	EPA 8021B	
Ethylbenzene	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 15:26	EPA 8021B	
Xylene (p/m)	ND	0.0400	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 15:26	EPA 8021B	
Xylene (o)	ND	0.0200	mg/kg dry	20	P3H1005	08/10/23 09:31	08/10/23 15:26	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		93.2 %	80-120		P3H1005	08/10/23 09:31	08/10/23 15:26	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		147 %	80-120		P3H1005	08/10/23 09:31	08/10/23 15:26	EPA 8021B	S-GC
Xylenes (total)	ND	0.0400	mg/kg dry	20	[CALC]	08/10/23 09:31	08/10/23 15:26	EPA 8021B	
Total BTEX	ND	0.0200	mg/kg dry	20	[CALC]	08/10/23 09:31	08/10/23 15:26	EPA 8021B	
General Chemistry Parameters by	y EPA / Stand	lard Metl	hods						
% Moisture	ND	0.1	%	1	Р3Н0216	08/02/23 12:25	08/02/23 12:29	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3H0305 - *** DEFAULT PREP *	**									
Blank (P3H0305-BLK1)				Prepared &	Analyzed:	08/03/23				
Benzene	ND	0.00100	mg/kg							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.108		"	0.120		90.3	80-120			
Surrogate: 4-Bromofluorobenzene	0.208		"	0.120		174	80-120			S-GC
LCS (P3H0305-BS1)				Prepared &	Analyzed:	08/03/23				
Benzene	0.0878	0.00100	mg/kg	0.100		87.8	80-120			
Toluene	0.0810	0.00100	"	0.100		81.0	80-120			
Ethylbenzene	0.0940	0.00100	"	0.100		94.0	80-120			
Xylene (p/m)	0.187	0.00200	"	0.200		93.3	80-120			
Xylene (o)	0.0870	0.00100	"	0.100		87.0	80-120			
Surrogate: 1,4-Difluorobenzene	0.112		"	0.120		93.2	80-120			
Surrogate: 4-Bromofluorobenzene	0.199		"	0.120		166	80-120			S-GC
LCS Dup (P3H0305-BSD1)				Prepared &	Analyzed:	08/03/23				
Benzene	0.0981	0.00100	mg/kg	0.100		98.1	80-120	11.0	20	
Toluene	0.0979	0.00100	"	0.100		97.9	80-120	18.8	20	
Ethylbenzene	0.109	0.00100	"	0.100		109	80-120	15.0	20	
Xylene (p/m)	0.227	0.00200	"	0.200		113	80-120	19.4	20	
Xylene (o)	0.105	0.00100	"	0.100		105	80-120	18.6	20	
Surrogate: 1,4-Difluorobenzene	0.110		"	0.120		91.5	80-120			
Surrogate: 4-Bromofluorobenzene	0.217		"	0.120		181	80-120			S-GC
Calibration Blank (P3H0305-CCB1)				Prepared &	Analyzed:	08/03/23				
Benzene	0.190		ug/kg							
Toluene	0.410		"							
Ethylbenzene	0.440		"							
Xylene (p/m)	1.02		"							
Xylene (o)	0.560		"							
Surrogate: 1,4-Difluorobenzene	0.107		"	0.120		89.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.190		"	0.120		158	80-120			S-GC

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	70KEC	Limits	KrD	Limit	Notes
Batch P3H0305 - *** DEFAULT PREP ***										
Calibration Blank (P3H0305-CCB2)				Prepared: (08/03/23 At	nalyzed: 08	/04/23			
Benzene	0.330		ug/kg							
Toluene	0.330		"							
Ethylbenzene	0.900		"							
Xylene (p/m)	1.85		"							
Xylene (o)	1.13		"							B-13
Surrogate: 1,4-Difluorobenzene	0.106		"	0.120		88.6	80-120			
Surrogate: 4-Bromofluorobenzene	0.191		"	0.120		159	80-120			S-GC
Calibration Check (P3H0305-CCV1)				Prepared &	Analyzed:	08/03/23				
Benzene	0.105	0.00100	mg/kg	0.100		105	80-120			
Toluene	0.0979	0.00100	"	0.100		97.9	80-120			
Ethylbenzene	0.108	0.00100	"	0.100		108	80-120			
Xylene (p/m)	0.223	0.00200	"	0.200		112	80-120			
Xylene (o)	0.109	0.00100	"	0.100		109	80-120			
Surrogate: 1,4-Difluorobenzene	0.108		"	0.120		90.2	75-125			
Surrogate: 4-Bromofluorobenzene	0.189		"	0.120		157	75-125			S-GC
Calibration Check (P3H0305-CCV2)				Prepared: (08/03/23 At	nalyzed: 08	/04/23			
Benzene	0.0978	0.00100	mg/kg	0.100		97.8	80-120			
Toluene	0.101	0.00100	"	0.100		101	80-120			
Ethylbenzene	0.113	0.00100	"	0.100		113	80-120			
Xylene (p/m)	0.228	0.00200	"	0.200		114	80-120			
Xylene (o)	0.109	0.00100	"	0.100		109	80-120			
Surrogate: 4-Bromofluorobenzene	0.210		"	0.120		175	75-125			S-GC
Surrogate: 1,4-Difluorobenzene	0.110		"	0.120		91.4	75-125			
Calibration Check (P3H0305-CCV3)				Prepared: (08/03/23 At	nalyzed: 08	/04/23			
Benzene	0.0958	0.00100	mg/kg	0.100		95.8	80-120			
Toluene	0.0873	0.00100	"	0.100		87.3	80-120			
Ethylbenzene	0.0974	0.00100	"	0.100		97.4	80-120			
Xylene (p/m)	0.201	0.00200	"	0.200		101	80-120			
Xylene (o)	0.0964	0.00100	"	0.100		96.4	80-120			
Surrogate: 1,4-Difluorobenzene	0.109		"	0.120		90.5	75-125			
Surrogate: 4-Bromofluorobenzene	0.195		"	0.120		162	75-125			S-GC

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P3H0305 - *** DEFAULT PREP ***

Matrix Spike (P3H0305-MS1)	Sour	ce: 3H01026-0	Prepared: (08/03/23 An	alyzed: 08	3/04/23		
Benzene	0.102	0.00100 m	ng/kg dry	0.100	0.00160	101	80-120	
Toluene	0.0847	0.00100	"	0.100	0.00460	80.1	80-120	
Ethylbenzene	0.0930	0.00100	"	0.100	ND	93.0	80-120	
Xylene (p/m)	0.180	0.00200	"	0.200	0.00180	89.3	80-120	
Xylene (o)	0.0870	0.00100	"	0.100	ND	87.0	80-120	
Surrogate: 4-Bromofluorobenzene	0.168		"	0.120		140	80-120	S-GC
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		95.6	80-120	

Matrix Spike Dup (P3H0305-MSD1)	Sour	Source: 3H01026-03				alyzed: 08				
Benzene	0.102	0.00100	mg/kg dry	0.100	0.00160	100	80-120	0.447	20	
Toluene	0.0856	0.00100	"	0.100	0.00460	81.0	80-120	1.17	20	
Ethylbenzene	0.0952	0.00100	"	0.100	ND	95.2	80-120	2.38	20	
Xylene (p/m)	0.186	0.00200	"	0.200	0.00180	91.9	80-120	2.81	20	
Xylene (o)	0.0893	0.00100	"	0.100	ND	89.3	80-120	2.61	20	
Surrogate: 4-Bromofluorobenzene	0.174		"	0.120		145	80-120			S-GC
Surrogate: 1.4-Difluorobenzene	0.114		"	0.120		95.4	80-120			

Batch P3H1005 - *** DEFAULT PREP ***

Blank (P3H1005-BLK1)				Prepared & Analyzed: 08/10/23					
Benzene	ND	0.00100	mg/kg						
Toluene	ND	0.00100	"						
Ethylbenzene	ND	0.00100	"						
Xylene (p/m)	ND	0.00200	"						
Xylene (o)	ND	0.00100	"						
Surrogate: 1,4-Difluorobenzene	0.105		"	0.120	87.8	80-120			
Surrogate: 4-Bromofluorobenzene	0.217		"	0.120	181	80-120	S-GC		

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3H1005 - *** DEFAULT PREP ***										
LCS (P3H1005-BS1)				Prepared &	: Analyzed:	08/10/23				
Benzene	0.0958	0.00100	mg/kg	0.100		95.8	80-120			
Toluene	0.0995	0.00100	"	0.100		99.5	80-120			
Ethylbenzene	0.120	0.00100	"	0.100		120	80-120			
Xylene (p/m)	0.234	0.00200	"	0.200		117	80-120			
Xylene (o)	0.108	0.00100	"	0.100		108	80-120			
Surrogate: 1,4-Difluorobenzene	0.108		"	0.120		89.9	80-120			
Surrogate: 4-Bromofluorobenzene	0.226		"	0.120		188	80-120			S-G
LCS Dup (P3H1005-BSD1)				Prepared &	: Analyzed:	08/10/23				
Benzene	0.0946	0.00100	mg/kg	0.100		94.6	80-120	1.24	20	
Toluene	0.0976	0.00100	"	0.100		97.6	80-120	1.90	20	
Ethylbenzene	0.118	0.00100	"	0.100		118	80-120	1.24	20	
Xylene (p/m)	0.230	0.00200	"	0.200		115	80-120	1.84	20	
Xylene (o)	0.106	0.00100	"	0.100		106	80-120	2.32	20	
Surrogate: 1,4-Difluorobenzene	0.107		"	0.120		89.6	80-120			
Surrogate: 4-Bromofluorobenzene	0.226		"	0.120		188	80-120			S-G
Calibration Blank (P3H1005-CCB1)				Prepared &	: Analyzed:	08/10/23				
Benzene	0.250		ug/kg							
Toluene	0.350		"							
Ethylbenzene	0.590		"							
Xylene (p/m)	1.30		"							
Xylene (o)	0.730		"							
Surrogate: 1,4-Difluorobenzene	0.106		"	0.120		88.1	80-120			
Surrogate: 4-Bromofluorobenzene	0.217		"	0.120		181	80-120			S-G
Calibration Blank (P3H1005-CCB2)				Prepared &	: Analyzed:	08/10/23				
Benzene	0.240		ug/kg	-						
Toluene	0.370		"							
Ethylbenzene	0.490		"							
Xylene (p/m)	1.10		"							
Xylene (o)	0.670		"							
Surrogate: 4-Bromofluorobenzene	0.209		"	0.120		174	80-120			S-G
Surrogate: 1,4-Difluorobenzene	0.107		"	0.120		89.0	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Andre	D14	Reporting	T.T., 14.	Spike	Source	0/DEC	%REC	DDD	RPD	Natas
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3H1005 - *** DEFAULT PREP ***										
Calibration Check (P3H1005-CCV1)				Prepared &	z Analyzed:	08/10/23				
Benzene	0.0940	0.00100	mg/kg	0.100		94.0	80-120			
Toluene	0.0981	0.00100	"	0.100		98.1	80-120			
Ethylbenzene	0.113	0.00100	"	0.100		113	80-120			
Xylene (p/m)	0.228	0.00200	"	0.200		114	80-120			
Xylene (o)	0.107	0.00100	"	0.100		107	80-120			
Surrogate: 4-Bromofluorobenzene	0.224		"	0.120		187	75-125			S-GO
Surrogate: 1,4-Difluorobenzene	0.109		"	0.120		90.7	75-125			
Calibration Check (P3H1005-CCV2)				Prepared &	Analyzed:	08/10/23				
Benzene	0.0870	0.00100	mg/kg	0.100		87.0	80-120			
Toluene	0.0815	0.00100	"	0.100		81.5	80-120			
Ethylbenzene	0.0895	0.00100	"	0.100		89.5	80-120			
Xylene (p/m)	0.184	0.00200	"	0.200		92.2	80-120			
Xylene (o)	0.0882	0.00100	"	0.100		88.2	80-120			
Surrogate: 1,4-Difluorobenzene	0.110		"	0.120		91.7	75-125			
Surrogate: 4-Bromofluorobenzene	0.200		"	0.120		167	75-125			S-GO
Calibration Check (P3H1005-CCV3)				Prepared: (08/10/23 Aı	nalyzed: 08	/11/23			
Benzene	0.0937	0.00100	mg/kg	0.100		93.7	80-120			
Toluene	0.0952	0.00100	"	0.100		95.2	80-120			
Ethylbenzene	0.108	0.00100	"	0.100		108	80-120			
Xylene (p/m)	0.221	0.00200	"	0.200		111	80-120			
Xylene (o)	0.104	0.00100	"	0.100		104	80-120			
Surrogate: 1,4-Difluorobenzene	0.110		"	0.120		91.5	75-125			
Surrogate: 4-Bromofluorobenzene	0.218		"	0.120		182	75-125			S-GO
Matrix Spike (P3H1005-MS1)	Sou	ırce: 3H02010)-11	Prepared: (08/10/23 Aı	nalyzed: 08	/11/23			
Benzene	0.106	0.00110	mg/kg dry	0.110	0.00154	95.4	80-120			
Toluene	0.100	0.00110	"	0.110	0.00220	89.2	80-120			
Ethylbenzene	0.115	0.00110	"	0.110	ND	104	80-120			
Xylene (p/m)	0.224	0.00220	"	0.220	0.00176	101	80-120			
Xylene (o)	0.104	0.00110	"	0.110	ND	94.4	80-120			
Surrogate: 4-Bromofluorobenzene	0.216		"	0.132		164	80-120			S-GO
Surrogate: 1,4-Difluorobenzene	0.123		"	0.132		93.1	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: J KEATS 1 2 32 #040H

Project Number: 17783 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P3H1005 - *** DEFAULT PREP ***

Matrix Spike Dup (P3H1005-MSD1)	Sour	ce: 3H02010	-11	Prepared:	08/10/23 An					
Benzene	0.113	0.00110	mg/kg dry	0.110	0.00154	101	80-120	5.72	20	
Toluene	0.104	0.00110	"	0.110	0.00220	92.4	80-120	3.48	20	
Ethylbenzene	0.117	0.00110	"	0.110	ND	107	80-120	2.05	20	
Xylene (p/m)	0.230	0.00220	"	0.220	0.00176	104	80-120	2.86	20	
Xylene (o)	0.108	0.00110	"	0.110	ND	98.0	80-120	3.67	20	
Surrogate: 4-Bromofluorobenzene	0.208		"	0.132		158	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.123		"	0.132		93.2	80-120			

13000 West County Road 100Project Number:17783Odessa TX, 79765Project Manager:Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: J KEATS 1 2 32 #040H

		Reporting		Spike	Source		%REC		RPD					
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes				
Batch P3H0216 - *** DEFAULT PREP ***														
Blank (P3H0216-BLK1)														
% Moisture	ND	0.1	%											
Blank (P3H0216-BLK2)				Prepared &	: Analyzed:	08/02/23	08/02/23							
% Moisture	ND	0.1	%											
Blank (P3H0216-BLK3)				Prepared &	: Analyzed:	08/02/23								
% Moisture	ND	0.1	%											
Duplicate (P3H0216-DUP1)	Sou	rce: 3H01017-	-07	Prepared &	: Analyzed:	08/02/23								
% Moisture	1.0	0.1	%		2.0			66.7	20	R3				
Duplicate (P3H0216-DUP2)	Sou	rce: 3H01019-	-07	Prepared &	: Analyzed:	08/02/23								
% Moisture	ND	0.1	%		ND				20					
Duplicate (P3H0216-DUP3)	Sou	rce: 3H01024-	-01	Prepared &	: Analyzed:	08/02/23								
% Moisture	17.0	0.1	%		17.0			0.00	20					
Duplicate (P3H0216-DUP4)	Sou	rce: 3H01026-	-04	Prepared &	: Analyzed:	08/02/23								
% Moisture	ND	0.1	%		ND				20					
Duplicate (P3H0216-DUP5)	Sou	rce: 3H01027-	-09	Prepared &	: Analyzed:	08/02/23								
% Moisture	12.0	0.1	%		11.0			8.70	20					

13000 West County Road 100 Project Number: 17783 Project Manager: Blake Estep

Odessa TX, 79765

Notes and Definitions

Project: J KEATS 1 2 32 #040H

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

ROI Received on Ice

R3 The RPD exceeded the acceptance limit due to sample matrix effects.

Chain of Custody was not generated at PBELAB

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

B-13 A common laboratory contaminant was above the RL in the blank

DET Analyte DETECTED

Analyte NOT DETECTED at or above the reporting limit ND

Not Reported NR

Sample results reported on a dry weight basis dry

Relative Percent Difference RPD

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By:

Brent Barron, Laboratory Director/Technical Director

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1] Project: J KEATS 1 2 32 #040H

13000 West County Road 100Project Number:17783Odessa TX, 79765Project Manager:Blake Estep

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

Permian Basin Environmental Lab. LP

0102Ce FIELD COD	DE	Start Depth		eservation & # o	f Containers								ort For				TC:	LP:	_	An	naly:		r:		T		<u>.</u>
	DE)epth		eservation & # o	f Containers								M					_	_								,
FIELD COD	DE	Depth		eservation & # o	f Containers								M								, ,					_ :	
FIELD COD	DE)epth												atrix	1006				.ej		П	6	十		T	ء _ ا	40, 74 1113
		Start	End Depth	Date Sampled	Time Sampled	No. of Containers	eɔj	HNO ₃	HCI H,SO ₄	NaOH	Na ₂ S ₂ O ₃	None	Owner (Specify) DW=Drinking Water SL=Sludge	GW = Groundwater S=Soil/Solid NP=Non-PotableSpecify Other	TPH: 418.1 8015M 1005 10	Cations (Ca, Mg, Na, K)	Anions (Cl, SO4, CO3, HCO3)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg Se	Volatiles	Semi volatiles	BTK 80ZT /5030 or BTEX 8260	2 2 2	N.O.R.M.		RUSH TAT(Pre-Schedule) 24.48	
Button Hole - 3		_	ויג <i>ו</i>	7-31-23	1205	П	Ą] [] 2			ᇜ		ᆏ	計	ᆎ		C2994	1 [1	L] [X
Botton Hole- 4			1211		1207	I	Th.		5]	1	ᇜ	-+											
Bottom Hule- 5		_	12"		1209	П	K		JE				1		-	_		\rightarrow		\rightarrow							\perp
Bottom Hole- 6			1211		1211	П	14		JE			пtг				-	_	\rightarrow	-	_		-			_	_	+
north wall		-	6"		1221	П		口			_		+				-+	-+		-	-		_		-		++
South wall		_	4"		1210	_		-+	7/-	+	-+				_	_	-		=	-	-	11	_	_	+		+
Each wall-#1			1.11		1219			-+	7/-	+	_						_	_		_	=+	11	-	_	+_		+
East bull-#2			611		1917			$\overline{}$		1=1	-1.							_	_	_	_		-	_	+-	_	17
[4/ext [4/1]-#1	·							-	4=	-	_					_			_	_	_	-	+-	-	-		++
				1		_		_	= =	\vdash	-+		-			_		_					+-	+-	\vdash		17
V ()7 W (1) 712			V		/A&)	_		-	+=	1=1	-+				_		_		_		-	•+	+-	-			+-
						-	-		+=	+=+			4	_		_	_	_		_		_	_	_			
	·					_	_	-	4=	-	_		+		_	_		_		_	_						
						-			+-	-	_		-					_	<u> </u>	<u> </u>	<u> </u>][
ions:							Ш	Шι			Щ																
for blex ori	Date 0	Time F	Receive	ed by:			£)	lon	9	+;1	ne.	Da				Sai VC Cu: Cu: Sai Sai	mple Cs F stody stody mple I	Cont ree o sea sea Hano	tainer of He als on als on d Deli oler/C	rs inteads; n cor n cor ivere	tact pace ntain oler(: ed t Rep	? e? ier(s) s)). ?			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	22222	
	Bottom Hole- 4 Bottom Hole- 5 Bottom Hole- 6 North wall Sointh wall East wall-#1 East wall-#2 West wall-#2 West wall-#2	Bottom Hole- 4 Bottom Hole- 5 Bottom Hole- 6 North wall Sointh wall East wall-#1 East wall-#2 West wall-#2 West wall-#2 West wall-#2 John BTEX original Sa	Bottom Hole- 4 Bottom Hole- 5 Sottom Hole- 6 North wall Sointh wall East wall-#1 East wall-#2 West wall-#2 West wall-#2 Jate Time F Bull 10:15 Date Time F	Bottom Hole- 4 — 1211 Bottom Hole- 5 — 1211 Sottom Hole- 6 — 1211 Sotom Hole- 6 — 1211 Sotom Hole- 6 — 611 East wall-#1 — 611 East wall-#2 — 611 West wall-#2 — 611 West wall-#2 — 611 West wall-#2 — 611 Date Time Received	Bottom Hole- 4 Bottom Hole- 5 Bottom Hole- 6 North wall Solath wall East wall-#1 East wall-#2 West wall-#2 West wall-#2 West wall-#2 Date Time Received by: Date Time Received by:	Bottom Hole- 4 — 1211 1207 Bottom Hole- 5 — 1211 1209 Bottom Hole- 6 — 1211 1211 North wall — 6" 1221 Sointh wall — 6" 1215 East wall-#1 — 6" 1219 East wall-#2 — 6" 1223 West wall-#1 — 6" 1223 West wall-#2 — 6" 1225 West wall-#2 — 6" 1225 Date Time Received by:	Bottom Hole- 4 — 1211 1207 Bottom Hole- 5 — 1211 1209 Bottom Hole- 6 — 1211 1211 North wall — 6" 1221 Solath wall — 6" 1215 East wall-#1 — 6" 1217 West wall-#2 — 6" 1223 West wall-#2 — 6" 1223 West wall-#2 — 6" 1225 Date Time Received by: Date Time Received by:	Bottom Hole- 4 — 1211 1207 1308 1309	Rotton Hole-5	Bottom Hole- 5 Bottom Hole- 5 Bottom Hole- 5 Bottom Hole- 6 - 1211 1207 120	Settern Hole-5	Bottom Hole- 4 Bottom Hole- 5 Bottom Hole- 5 Bottom Hole- 5 Bottom Hole- 6 Bottom Hole- 5 Bottom Hole- 5	Setten Hole 4	Retton Hole - 3	Setten Hole - 3	Settlem Hole - 3	Rettlem Hole - 3	Rettles Hole - 3	Retton Hole - 3	Rotton 2016 - 3	Rotton 2 2 7-31-23 1205 15	Setten 766- 4	Septen 2016 - 3	Soften Hele - 3	Soften Hele - 3	Soften Hole - 3	Soften Hole - 3

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

DOC #: PBEL_REV_SUBMISSION

REVISION #: PBEL_2021_1
REVISION Date: 10/29/2021
EFFECTIVE DATE: 10/29/2021

REVISION/SUBMISSION FORM

Please fill in the required fields below with any requested revisions. In the event that there are multiple workorders or projects to be amended each workorder or project MUST have a separate form filled out entirely. An amended COC must be submitted in addition to the Revision/Submission Form in order for the amendments to be processed. Amended COC's do not replace the requirement of this form. If a revision is required due to errors or omissions on our part this form is still required for the necessary Non-Conformance documentation. Rerun requests will incur additional charges.

Client: Etech Environmental

Project: 3H01026

Revision Request:

Please change all the sidewall samples to represent a depth of 0-12" instead of 6".

Submitted by (Name and Date): Blake Estep 10/23/2023

PBEL_REV_SUBMISSION_2021_1.DOC

Page 1 of 1

APPENDIX F

NMOCD Notifications

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

Erick Herrera

From: Enviro, OCD, EMNRD <OCD.Enviro@emnrd.nm.gov>

Sent: Wednesday, June 28, 2023 4:03 PM

To: Blake Estep

Cc: Bratcher, Michael, EMNRD; Velez, Nelson, EMNRD

Subject: RE: [EXTERNAL] Confirmation Sampling

Blake,

Please be aware that notification requirements are **two business days**, per rule. You may proceed on your schedule. This, and all correspondence, should be included in the closure report to ensure inclusion in the project file.

JH

Jocelyn Harimon ● Environmental Specialist

Environmental Bureau
EMNRD - Oil Conservation Division
1220 South St. Francis Drive | Santa Fe, NM 87505
(505)469-2821 | <u>Jocelyn.Harimon@emnrd.nm.gov</u>
http://www.emnrd.nm.gov

From: Blake Estep

blake@etechenv.com>

Sent: Wednesday, June 28, 2023 11:58 AM

To: Enviro, OCD, EMNRD < OCD. Enviro@emnrd.nm.gov>

Cc: blm_nm_cfo_spill@blm.gov

Subject: [EXTERNAL] Confirmation Sampling

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Good afternoon,

Chevron anticipates conducting confirmation soil sampling activities at the following site between June 29-30, 2023:

Site Name: J Keats 1 24 32 #040H Incident Number: nAPP2307447383

API: 30-025-41582

Thank you,

Blake Estep
Etech Environmental & Safety Solutions, Inc.

P.O. Box 62228

Midland, Texas 79711 Phone: 432-563-2200 Mobile: 432-894-6038 Fax: 432-563-2213

Erick Herrera

From: Wells, Shelly, EMNRD <Shelly.Wells@emnrd.nm.gov>

Sent: Thursday, July 27, 2023 10:40 AM

To: Blake Estep

Cc: Bratcher, Michael, EMNRD; Velez, Nelson, EMNRD

Subject: RE: [EXTERNAL] Confirmation Sampling

You don't often get email from shelly.wells@emnrd.nm.gov. Learn why this is important

Hi Blake,

Notification requirements are **two business days**, per rule. You may proceed on your schedule. This, and all correspondence, should be included in the closure report to ensure inclusion in the project file.

Thank you,

Shelly

From: Blake Estep <black = @etechenv.com> Sent: Thursday, July 27, 2023 9:33 AM

To: Enviro, OCD, EMNRD < OCD. Enviro@emnrd.nm.gov>

Cc: blm_nm_cfo_spill@blm.gov

Subject: [EXTERNAL] Confirmation Sampling

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Good morning,

Chevron anticipates conducting confirmation soil sampling activities at the following site between July 31 & August 1, 2023:

Site Name: J Keats 1 24 32 #040H Incident Number: nAPP2307447383

API: 30-025-41582

Thank you,

Blake Estep

Etech Environmental & Safety Solutions, Inc.

P.O. Box 62228

Midland, Texas 79711 Phone: 432-563-2200 Mobile: 432-894-6038 Fax: 432-563-2213

1

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS

Action 303397

QUESTIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	303397
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2307447383
Incident Name	NAPP2307447383 J KEATS 1 24 32 #040H @ 30-025-41582
Incident Type	Oil Release
Incident Status	Remediation Closure Report Received
Incident Well	[30-025-41582] J KEATS 1 24 32 #040H

Location of Release Source	
Please answer all the questions in this group.	
Site Name	J KEATS 1 24 32 #040H
Date Release Discovered	03/14/2023
Surface Owner	Federal

Incident Details	
Please answer all the questions in this group.	
Incident Type	Oil Release
Did this release result in a fire or is the result of a fire	No
Did this release result in any injuries	No
Has this release reached or does it have a reasonable probability of reaching a watercourse	No
Has this release endangered or does it have a reasonable probability of endangering public health	No
Has this release substantially damaged or will it substantially damage property or the environment	No
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No

Nature and Volume of Release	
Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.	
Crude Oil Released (bbls) Details	Cause: Equipment Failure Well Crude Oil Released: 2 BBL Recovered: 1 BBL Lost: 1 BBL.
Produced Water Released (bbls) Details	Cause: Equipment Failure Well Produced Water Released: 6 BBL Recovered: 0 BBL Lost: 6 BBL.
Is the concentration of chloride in the produced water >10,000 mg/l	Yes
Condensate Released (bbls) Details	Not answered.
Natural Gas Vented (Mcf) Details	Not answered.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

<u>District IV</u> 1220 S. St Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 2

Action 303397

Phone:(505) 476-3470 Fax:(505) 476-3462	
QUEST	IONS (continued)
Operator: CHEVRON U S A INC 6301 Deauville Blvd Midland, TX 79706	OGRID: 4323 Action Number: 303397 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)
QUESTIONS	
Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No
Reasons why this would be considered a submission for a notification of a major release	Unavailable.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.	e. gas only) are to be submitted on the C-129 form.
Initial Response The responsible party must undertake the following actions immediately unless they could create a	safetv hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	lation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of evaluation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for rele the OCD does not relieve the operator of liability should their operations have failed to	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface it does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Amy Barnhill Title: Waste & Water Specialist Email: ABarnhill@chevron.com

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 3

Action 303397

QUESTIONS (continued)

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	303397
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Site Characterization		
Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 51 and 75 (ft.)	
What method was used to determine the depth to ground water	Attached Document	
Did this release impact groundwater or surface water	No	
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:		
A continuously flowing watercourse or any other significant watercourse	Greater than 5 (mi.)	
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Greater than 5 (mi.)	
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)	
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Greater than 5 (mi.)	
Any other fresh water well or spring	Greater than 5 (mi.)	
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)	
A wetland	Greater than 5 (mi.)	
A subsurface mine	Greater than 5 (mi.)	
An (non-karst) unstable area	Greater than 5 (mi.)	
Categorize the risk of this well / site being in a karst geology	Low	
A 100-year floodplain	Greater than 5 (mi.)	
Did the release impact areas not on an exploration, development, production, or storage site	No	

Remediation Plan		
Please answer all the questions that apply or are indicated. This information must be	be provided to the appropriate district office no later than 90 days after the release discovery date.	
Requesting a remediation plan approval with this submission	Yes	
Attach a comprehensive report demonstrating the lateral and vertical extents of soil	contamination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.	
Have the lateral and vertical extents of contamination been fully deline	pated Yes	
Was this release entirely contained within a lined containment area	No	
Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.)		
Chloride (EPA 300.0 or SM4500 Cl B)	2290	
TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M)	52700	
GRO+DRO (EPA SW-846 Method 8015M)	44500	
BTEX (EPA SW-846 Method 8021B or 8260	DB) 285	
Benzene (EPA SW-846 Method 8021B or 8260	0B) 7.7	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report inclu which includes the anticipated timelines for beginning and completing the remedia.	ides completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, tion.	
On what estimated date will the remediation commence	06/16/2023	
On what date will (or did) the final sampling or liner inspection occur	07/31/2023	
On what date will (or was) the remediation complete(d)	08/31/2023	
What is the estimated surface area (in square feet) that will be reclain	med 0	
What is the estimated volume (in cubic yards) that will be reclaimed	0	
What is the estimated surface area (in square feet) that will be remed	iated 1000	
What is the estimated volume (in cubic yards) that will be remediated	500	
These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed.		
The OCD recognizes that proposed remediation measures may have to be minimall	ly adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to	

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 **District II**

Bistrict III

Bistrict St., Artesia, NM 88210

Phone: (575) 748-1283 Fax: (575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 303397

QUESTIONS (continued)

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	303397
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Remediation Plan (continued)	
Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.	
This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants:	
(Select all answers below that apply.)	
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes
Which OCD approved facility will be used for off-site disposal	TARGA NORTHERN DELAWARE, LLC. [fAPP2123031392]
OR which OCD approved well (API) will be used for off-site disposal	Not answered.
OR is the off-site disposal site, to be used, out-of-state	Not answered.
OR is the off-site disposal site, to be used, an NMED facility	Not answered.
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.
(In Situ) Soil Vapor Extraction	Not answered.
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.
OTHER (Non-listed remedial process)	Not answered.

Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

I hereby agree and sign off to the above statement

Name: Amy Barnhill Title: Waste & Water Specialist Email: ABarnhill@chevron.com

Date: 01/18/2024

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 5

Action 303397

QUESTIONS (continued)

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	303397
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Deferral Requests Only Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation. Requesting a deferral of the remediation closure due date with the approval of this No submission

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

<u>District III</u> 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462 State of New Mexico
Energy, Minerals and Natural Resources
Oil Conservation Division
1220 S. St Francis Dr.
Santa Fe, NM 87505

QUESTIONS, Page 6

Action 303397

QUESTIONS (continued)

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	303397
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	304957
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	03/20/2023
What was the (estimated) number of samples that were to be gathered	5
What was the sampling surface area in square feet	1000

Remediation Closure Request		
Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.		
Requesting a remediation closure approval with this submission	Yes	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	No	
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes	
What was the total surface area (in square feet) remediated	1000	
What was the total volume (cubic yards) remediated	500	
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes	
What was the total surface area (in square feet) reclaimed	0	
What was the total volume (in cubic yards) reclaimed	0	
Summarize any additional remediation activities not included by answers (above)	None	

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (in .pdf format) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Name: Amy Barnhill
Title: Waste & Water Specialist
Email: ABarnhill@chevron.com
Date: 01/18/2024

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 7

Action 303397

QUESTIONS (continued)

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	303397
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Reclamation Report	
Only answer the questions in this group if all reclamation steps have been completed.	
Requesting a reclamation approval with this submission	No

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 303397

CONDITIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	303397
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

CONDITIONS

Created By	Condition	Condition Date
nvelez	None	3/26/2024