

SITE INFORMATION

Closure Report Daisy State 24 CTB (11.11.2023) Incident #: NAPP2333835289 Eddy County, New Mexico Unit B Sec 23 T25S R37E 32.1207°, -104.1585°

Crude Oil & Produced Water Release Point of Release: Failed Check Valve Release Date: 11.11.2023 Volume Released: 4 Barrels of Crude Oil Volume Released: 3.8 Barrels of Produced Water Volume Recovered: 2 Barrels of Crude Oil Volume Recovered: 1 Barrel of Produced Water

Prepared for: Concho Operating, LLC 15 West London Road Loving, New Mexico 88256

Prepared by: Carmona Resources, LLC 310 West Wall Street Suite 500 Midland, Texas 79701

> 310 West Wall Street, Suite 500 Midland TX, 79701 432.813.1992

TABLE OF CONTENTS

1.0 SITE INFORMATION AND BACKGROUND

2.0 SITE CHARACTERIZATION AND GROUNDWATER

3.0 NMAC REGULATORY CRITERIA

4.0 SITE ASSESSMENT ACTIVITIES

5.0 REMEDIATION ACTIVITIES

6.0 CONCLUSIONS

FIGURES

FIGURE 1	OVERVIEW	FIGURE 2	TOPOGRAPHIC
FIGURE 3	SAMPLE LOCATION	FIGURE 4	EXCAVATION

APPENDICES

- APPENDIX A TABLES
- APPENDIX B PHOTOS
- APPENDIX C INITIAL AND FINAL C-141
- APPENDIX D SITE CHARACTERIZATION AND GROUNDWATER
- APPENDIX E LABORATORY REPORTS

December 27, 2023

Mike Bratcher District Supervisor Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Re: Closure Report Daisy State 24 CTB (11.11.2023) Concho Operating, LLC Site Location: Unit B, S23, T25S, R37E (Lat 32.1207°, Long -104.1585°) Eddy County, New Mexico

Mr. Bratcher:

On behalf of Concho Operating, LLC (COG), Carmona Resources, LLC has prepared this letter to document site assessment activities for the Daisy State 24 CTB. The site is located at 32.1207°, -104.1585° within Unit B, S23, T25S, R37E, in Eddy County, New Mexico (Figures 1 and 2).

1.0 Site Information and Background

Based on the initial C-141 obtained from the New Mexico Oil Conservation Division (NMOCD), the release was discovered on November 11, 2023, caused by a failed check valve, resulting in the release of crude oil and produced water. It resulted in approximately four (4) barrels of crude oil, three-point eight (3.8) barrels of produced water, and two (2) barrels of crude oil, one (1) barrel of produced water recovered. The impacted area occurred on the pad, shown in Figure 3. The initial C-141 form is attached in Appendix C.

2.0 Site Characterization and Groundwater

The site is located within a high karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases, no known water sources are within a 0.50-mile radius of the location. The closest well is approximately 1.19 miles Southeast of the site in S25, T25S, R27E and was drilled in 2016. The well has a reported depth to groundwater of 12 feet below the ground surface (ft bgs). A copy of the associated point of diversion summary report is attached in Appendix D.

3.0 NMAC Regulatory Criteria

Per the NMOCD regulatory criteria established in 19.15.29.12 NMAC, the following criteria were utilized in assessing the site.

- Benzene: 10 milligrams per kilogram (mg/kg).
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg.
- TPH: 100 mg/kg (GRO + DRO + MRO).
- Chloride: 600 mg/kg.

4.0 Site Assessment Activities

Initial Assessment

On December 7, 2023, Carmona Resources, LLC performed site assessment activities to evaluate soil impacts stemming from the release. A total of four (4) sample points (S-1 through S-4) and four (4) horizontal sample points (H-1 through H-4) were installed to total depths ranging from surface to 4.0' bgs inside and around the perimeter of the release area. See Figure 3 for the sample locations. For chemical analysis, the soil samples were collected and placed directly into laboratory-provided sample containers, stored on ice, and transported

310 West Wall Street, Suite 500 Midland TX, 79701 432.813.1992

under the proper chain-of-custody protocol to Eurofins Laboratories in Midland, Texas. The samples were analyzed for total petroleum hydrocarbons (TPH) by EPA method 8015, modified benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B, and chloride by EPA method 300.0. The laboratory reports, including analytical methods, results, and chain-of-custody documents, are attached in Appendix E.

See Table 1 for the analytical results.

5.0 Remediation Activities

Carmona Resources personnel were onsite to supervise the remediation activities, collect confirmation samples, and document backfill activities. Before collecting composite confirmation samples, the NMOCD division office was notified via the NMOCD web portal on December 13, 2023, per Subsection D of 19.15.29.12 NMAC. See Appendix C. A total of seventeen (17) confirmation floor samples were collected (CS-1 through CS-17), and nine (9) sidewall samples (SW-1 through SW-9) were collected every 200 square feet to ensure the proper removal of the contaminated soils. All collected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 4500. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix E. The excavation depths and confirmation sample locations are shown in Figure 4.

All final confirmation samples were below the regulatory requirements for TPH, BTEX, and chloride. Refer to Table 2.

Once the remediation activities were completed, the excavated areas were backfilled with clean material to surface grade. Approximately 120 cubic yards of material were excavated and transported offsite for proper disposal.

6.0 Conclusions

Based on the assessment results and the analytical data, no further actions are required at the site. The final C-141 is attached, and COG formally requests the closure of the spill. If you have any questions regarding this report or need additional information, please get in touch with us at 432-813-1992.

Sincerely, Carmona Resources, LLC

onner '

Conner Moehring Sr. Project Manager

M

Ashton Thielke Sr. Project Manager

APPENDIX A

Table 1 COG Operating Daisy 24 State Com Battery (11.11.23) Eddy County, New Mexico

				TPH	l (mg/kg)		Densene	Teluene	Ethlyleensense	Vulene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	Benzene (mg/kg)	Toluene (mg/kg)	Ethlybenzene (mg/kg)	Xylene (mg/kg)	(mg/kg)	(mg/kg)
	12/7/2023	0-1'	<49.5	<49.5	<49.5	<49.5	<0.00198	<0.00198	<0.00198	< 0.00396	< 0.00396	935
	"	1.5'	<50.1	<50.1	<50.1	<50.1	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	349
S-1	"	2.0'	<50.3	<50.3	<50.3	<50.3	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	494
	"	3.0'	<50.5	<50.5	<50.5	<50.5	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	275
	"	4.0'	<50.0	<50.0	<50.0	<50.0	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	207
	12/7/2023	0-1'	<49.7	<49.7	<49.7	<49.7	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	115
	"	1.5'	<49.6	<49.6	<49.6	<49.6	<0.00198	<0.00198	<0.00198	< 0.00396	< 0.00396	59.0
S-2	"	2.0'	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	54.4
	"	3.0'	<50.3	<50.3	<50.3	<50.3	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	12.8
	"	4.0'	<50.1	<50.1	<50.1	<50.1	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	<5.01
	12/7/2023	0-1'	<50.4	<50.4	<50.4	<50.4	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	132
	"	1.5'	<50.4	<50.4	<50.4	<50.4	<0.00199	< 0.00199	<0.00199	<0.00398	<0.00398	106
S-3	"	2.0'	<50.5	<50.5	<50.5	<50.5	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	91.6
	"	3.0'	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	320
	"	4.0'	<49.7	<49.7	<49.7	<49.7	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	77.7
	12/7/2023	0-1'	<49.6	72.4	<49.6	72.4	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	619
	"	1.5'	<50.4	<50.4	<50.4	<50.4	<0.00200	< 0.00200	<0.00200	<0.00401	<0.00401	179
S-4	"	2.0'	<50.5	<50.5	<50.5	<50.5	<0.00200	< 0.00200	<0.00200	<0.00399	<0.00399	252
	"	3.0'	<50.0	<50.0	<50.0	<50.0	<0.00202	< 0.00202	<0.00202	<0.00403	<0.00403	66.8
	"	4.0'	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	77.3
H-1	12/7/2023	0-0.5'	<49.5	<49.5	<49.5	<49.5	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	186
H-2	12/7/2023	0-0.5'	<50.5	<50.5	<50.5	<50.5	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	97.2
H-3	12/7/2023	0-0.5'	<50.1	64.6	<50.1	64.6	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	139
H-4	12/7/2023	0-0.5'	<49.7	<49.7	<49.7	<49.7	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	96.9
Regulato	ory Criteria ^A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram TPH - Total Petroleum Hydrocarbons

ft - feet

(S) Sample Points (H) Horizontals

Removed

.

Table 2 COG Operating Daisy 24 State Com Battery (11.11.23) Eddy County, New Mexico

Sample ID	Date	Depth (ft)		TPH	l (mg/kg)	r	Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
05.4	40/40/0000	4.51	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
CS-1	12/18/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
CS-2	12/18/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
CS-3	12/18/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
CS-4	12/18/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
CS-5	12/18/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
CS-6	12/18/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
CS-7	12/18/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
CS-8	12/18/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
CS-9	12/18/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-10	12/18/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-11	12/18/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-12	12/18/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
CS-13	12/18/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-14	12/18/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
CS-15	12/18/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-16	12/18/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
CS-17	12/18/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
SW-1	12/18/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-2	12/18/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
SW-3	12/18/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
SW-4	12/18/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
SW-5	12/18/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
SW-6	12/18/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
SW-7	12/18/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
SW-8	12/18/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
SW-9	12/18/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
	ory Criteria ^A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC mg/kg - milligram per kilogram TPH - Total Petroleum Hydrocarbons ft - feet (CS) Confirmation Floor Sample (SW) Confirmation Sidewall Sample

APPENDIX B

PHOTOGRAPHIC LOG

Concho Operating, LLC

NE

Photograph No. 1

Facility: Daisy State 24 CTB (11.11.2023)

County: Eddy County, New Mexico

Description:

View South of CS-1 through CS-10.

Photograph No. 2

- Facility: Daisy State 24 CTB (11.11.2023)
- County: Eddy County, New Mexico

Description:

View Southeast of CS-7 through CS-13

Photograph No. 3

- Facility: Daisy State 24 CTB (11.11.2023)
- County: Eddy County, New Mexico

Description: View North of CS-1 through CS-14.

PHOTOGRAPHIC LOG

Concho Operating, LLC

Facility: Daisy State 24 CTB (11.11.2023)

County: Eddy County, New Mexico

Description:

View North of CS-14 through CS-17.

Photograph No. 5

- Facility: Daisy State 24 CTB (11.11.2023)
- County: Eddy County, New Mexico

Description:

View North of CS-15 through CS-17.

APPENDIX C

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	OGRID
Contact Name	Contact Telephone
Contact email	Incident # (assigned by OCD)
Contact mailing address	

Location of Release Source

Latitude	

(NAD 83 in decimal degrees to 5 decimal places)

Site Name	Site Type
Date Release Discovered	API# (if applicable)

Unit Letter	Section	Township	Range	County

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		

Page 2

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by	If YES, for what reason(s) does the responsible party consider this a major release?
19.15.29.7(A) NMAC?	
🗌 Yes 🗌 No	
If YES, was immediate no	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.
The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name	Title:
Signature:	Date:
email:	Telephone:
OCD Only	
Received by:	Date:

	6 - S		8		Spill Calcu	ulation - On-Pad	Surface Pool Spill	83	27 7	8 4
Received by OCL Convert Irregular shape into a series of rectangles			10:18:13 / Average Depth (in.)	Area (sq. ft.)	Estimated volume of each pool area (bbl.)	Penetration allowance (ft.)	Total Estimated Volume of Spill (bbl.)	Percentage of Oil if Spilled Fluid is a Mixture (%.)	Total Estimated Volume of Spilled Oil (bbl.)	Page 20 of 1/47 Spilled Liquid other than Oil (bbl.)
Rectangle A	40	3	0.5	120.00	0.89	0.00	0.89	1	0.00	0.89
Rectangle B	36	20	0.5	720.00	5.34	0.00	5.35	1	0.00	5.35
Rectangle C	27	20	0.2	540.00	1.60	0.00	1.60		0.00	1.60
Rectangle D				0.00	0.00	0.00	0.00		0.00	0.00
Rectangle E		0	6	0.00	0.00	0.00	0.00	1	0.00	0.00
Rectangle F				0.00	0.00	0.00	0.00		0.00	0.00
Rectangle G			G	0.00	0.00	0.00	0.00	1	0.00	0.00
Rectangle H	č		2	0.00	0.00	0.00	0.00		0.00	0.00
Rectangle I				0.00	0.00	0.00	0.00		0.00	0.00
— Released to Imag	ing: 4	1/9/20	24 2:03:34	PM 0.00	0.00	0.00	0.00		0.00	0.00 -
Total Surface Pool Volume Released, Release to Soil/Caliche:				7.8463		0.0000	7.8463			

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Page 21eof 147

Action 290684

QUESTIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	290684
	Action Type:
	[C-141] Initial C-141 (C-141-v-Initial)

QUESTIONS

Prerequisites		
Incident ID (n#)	nAPP2333835289	
Incident Name	NAPP2333835289 DAISY STATE 24 CTB @ 0	
Incident Type	Release Other	
Incident Status	Initial C-141 Received	
Incident Facility	[fAPP2203350881] Daisy 24 State Com Battery	

Location of Release Source

Please answer all the questions in this group.			
Site Name	Daisy State 24 CTB		
Date Release Discovered	11/11/2023		
Surface Owner	State		

Incident Details

Please answer all the questions in this group.		
Incident Type	Release Other	
Did this release result in a fire or is the result of a fire	No	
Did this release result in any injuries	No	
Has this release reached or does it have a reasonable probability of reaching a watercourse	No	
Has this release endangered or does it have a reasonable probability of endangering public health	No	
Has this release substantially damaged or will it substantially damage property or the environment	No	
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No	

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.			
Crude Oil Released (bbls) Details	Cause: Equipment Failure Valve Crude Oil Released: 4 BBL Recovered: 2 BBL Lost: 2 BBL.		
Produced Water Released (bbls) Details	Cause: Equipment Failure Valve Produced Water Released: 4 BBL Recovered: 1 BBL Lost: 3 BBL.		
Is the concentration of chloride in the produced water >10,000 mg/l	Yes		
Condensate Released (bbls) Details	Not answered.		
Natural Gas Vented (Mcf) Details	Not answered.		
Natural Gas Flared (Mcf) Details	Not answered.		
Other Released Details	Not answered.		
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	calculations attached to Initial C-141		

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170 District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	290684
	Action Type:
	[C-141] Initial C-141 (C-141-y-Initial)

QUESTIONS

Nature and Volume of Release (continued)			
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.		
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No		
Reasons why this would be considered a submission for a notification of a major release	Unavailable.		
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.			

Initial Response	
------------------	--

The responsible party must undertake the following actions immediately unless they could create a	safety hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	Тгие
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	Тгие
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	liation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of evaluation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for rele the OCD does not relieve the operator of liability should their operations have failed to	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Brittany Esparza Title: Environmental Technician Email: brittany.Esparza@ConocoPhillips.com Date: 12/04/2023

Action 290684

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170 District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	290684
	Action Type:
	[C-141] Initial C-141 (C-141-v-Initial)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date. What is the shallowest depth to groundwater beneath the area affected by the Not answered. release in feet below ground surface (ft bgs)

What method was used to determine the depth to ground water	Not answered.
Did this release impact groundwater or surface water	Not answered.
What is the minimum distance, between the closest lateral extents of the release ar	nd the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Not answered.
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Not answered.
An occupied permanent residence, school, hospital, institution, or church	Not answered.
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Not answered.
Any other fresh water well or spring	Not answered.
Incorporated municipal boundaries or a defined municipal fresh water well field	Not answered.
A wetland	Not answered.
A subsurface mine	Not answered.
An (non-karst) unstable area	Not answered.
Categorize the risk of this well / site being in a karst geology	Not answered.
A 100-year floodplain	Not answered.
Did the release impact areas not on an exploration, development, production, or storage site	Not answered.

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

Requesting a remediation plan approval with this submission

No The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Action 290684

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
	Action Number:
Midland, TX 79701	290684
	Action Type:
	[C-141] Initial C-141 (C-141-v-Initial)
CONDITIONS	

CONDITIONS

Created By		Condition Date
scwells	None	12/4/2023

CONDITIONS

Page 24cof 147

Action 290684

Page 3

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Page 25 of 147

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within 1/2-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 1/23/2024 10:18:13 AM Form C-141 State of New Mer			Page 26 of 14				
	Oil Conservation Division		Incident ID				
Page 4	Oil Conservation Division	n	District RP				
			Facility ID				
			Application ID				
regulations all operators a public health or the enviro failed to adequately invest addition, OCD acceptance and/or regulations. Printed Name: Signature:	formation given above is true and complete to the required to report and/or file certain release n ponment. The acceptance of a C-141 report by the tigate and remediate contamination that pose a the of a C-141 report does not relieve the operator	otifications and perform of e OCD does not relieve the hreat to groundwater, surf of responsibility for comp 	corrective actions for rele e operator of liability sho ace water, human health oliance with any other feo	ases which may endanger ould their operations have or the environment. In deral, state, or local laws			
OCD Only							
Received by:		_ Date:					

Page 6

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u> : Each of the following a	items must be included in the closure report.
A scaled site and sampling diagram as described in 19.15.29.	11 NMAC
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	s of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: appropriate OD	C District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report and/or file certaid may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and re- human health or the environment. In addition, OCD acceptance of compliance with any other federal, state, or local laws and/or regular restore, reclaim, and re-vegetate the impacted surface area to the co- accordance with 19.15.29.13 NMAC including notification to the C- Printed Name:	ations. The responsible party acknowledges they must substantially onditions that existed prior to the release or their final land use in DCD when reclamation and re-vegetation are complete.
Signature: Jacqui Harris	Date:
email:	Telephone:
OCD Only	
Received by:	Date:
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible /or regulations.
Closure Approved by:	Date:
Printed Name:	Title:

APPENDIX D

14

63' - Drilled 2015 (67.08' - Drilled 2003

Daisy State 24 CTB (11.11.2023)

16.11' - Drilled 2023

12' - Drilled 2016

Released to Imaging: 4/9/2024 2:03:34 PM

Legend

- 0.50 Mile Radius
- 🍰 1.19 Miles
- 🍰 1.28 Miles
- 🍰 1.30 Miles
- 🍰 1.65 Miles
- Daisy State 24 CTB (11.11.2023)

Page 29 of 147

- NMSEO Water Well
- USGS Water Well

mi

Received by OCD: 1/23/2024 10:18:13 AM Hign Karst

COG Operating

Daisy State 24 CTB (11.11.2023)

Legend

• Daisy State 24 CTB (11.11.2023) 🯉 High

🥖 Medium

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is closed)	(-					2=NE 3 st to larg	=SW 4=SE jest) (NA) AD83 UTM in me	eters)	(In feet)	
POD Number	POD Sub- Code basin C	County		Q 16	-	Sec	Tws	Rna	Х	Y	Distance	-	-	Water Column
C 03938 POD1	CUB	ED					25S	27E	581482	3552616 🌍	1913		12	9
C 03861 POD1	С	ED	4	2	3	18	25S	28E	582266	3554864 🌍	2049	91	63	28
C 03262 POD1	CUB	ED	2	1	2	22	25S	27E	577837	3554244* 🌍	2507	75		
C 04371 POD1	CUB	ED	3	3	4	26	25S	27E	579369	3551272 🌍	3041	100	69	31
C 03263 POD1	CUB	ED	1	1	1	07	25S	28E	581628	3557501* 🌍	3584	133		
C 01573 POD1	С	ED	3	1	4	20	25S	28E	584144	3553361 🌍	3882	176	96	80
										Avera	ge Depth to	Water:	60	feet
											Minimum	Depth:	12	feet
											Maximum	Depth:	96	feet
Pocord Count: 6				-										

Record Count: 6

UTMNAD83 Radius Search (in meters):

Easting (X): 580343.17

Northing (Y): 3554154.2

Radius: 4000

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Page 31 of 147

New Mexico Office of the State Engineer Point of Diversion Summary

		Casing Perfor	•		Та		- Botton				12 feet
Pump Type: Casing Size: 2.00		Pipe D Depth		0	Size:		1 feet		Estimated Yield: Depth Water:		
Log File D	ate:	03/22/2016	PCW	Rcv I	Date	:			Sou	irce:	Shallow
Drill Start		03/08/2016	Drill F	ìnish	Dat	te:	0	3/08/20	16 Plu	g Date:	
Driller Lic Driller Na		1711 EDWARD BRYAN	Driller	· Con	npar	ıy:	ST	RAUB	CORPORAT	ION	
	C 0	3938 POD1	2	2	2	25	25S	27E	581482	3552616 🧲)
Vell Tag	POD	Number	Q64	Q16	Q4	Sec	Tws	Rng	X	Y	
Vell Tag	POD	Number	••				largest Tws			"M in meters) Y	

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

10/9/23 9:36 AM

POINT OF DIVERSION SUMMARY

New Mexico Office of the State Engineer Point of Diversion Summary

	(quar	ters are	e sma	llest to	o largest)		(NAD83	UTM in meters)			
Well Tag	POD	Number	Q64	Q16	Q4	Sec	Tws	Rng	Х	Y	
	C 0.	3861 POD1	4	2	3	18	25S	28E	582266	3554864 🌍	
Driller Lice	ense:	1348	Driller	Com	pan	y:	TAY	LOR V	WATER WI	ELL SERVICE	
Driller Nam	ne:	TAYLOR, CLIN	TON E.								
Drill Start Date: 04/26/2015			Drill F	inish	Dat	e:	04	4/30/20	15 P		
Log File Da	PCW I	Rev D	ate:			S	Source:				
Pump Type	Pipe D	ischa	rge	Size:			E	100 GPM			
Casing Size: 6.00			Depth	Well:			91 feet			epth Water:	63 feet
ζ.	Wate	er Bearing Stratif	ications:		То	рł	Bottom	Desc	ription		
					6	8	91	Other	r/Unknown		
x Casing Perfor			forations:	rations: Top			Bottom				
					7	'1	91				

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

10/9/23 9:40 AM

POINT OF DIVERSION SUMMARY

Groundwater V New Mexico V GO		Date	Time	? Water-level date-time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? S
-------------------------------	--	------	------	---	------------------------	---	---	---------------------------------	--------

Click to hideNews Bulletins

- Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs

site_no list =

• 320738104073301

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320738104073301 25S.28E.18.32441

Eddy County, New Mexico Latitude 32°07'37.3", Longitude 104°07'38.5" NAD83 Land-surface elevation 3,030.80 feet above NGVD29 This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Rustler Formation (312RSLR) local aquifer.

Output formats

Table of data	
Tab-separated data	
Graph of data	
Reselect period	

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measur
1948-12-06		D	62610		2963.93	NGVD29	1	Z		
1948-12-06		D	62611		2965.54	NAVD88	1	Z		
1948-12-06		D	72019	66.87			1	Z		
1978-01-12		D	62610		2963.55	NGVD29	1	Z		
1978-01-12		D	62611		2965.16	NAVD88	1	Z		
1978-01-12		D	72019	67.25			1	Z		
1983-02-01		D	62610		2966.25	NGVD29	1	Z		
1983-02-01		D	62611		2967.86	NAVD88	1	Z		
1983-02-01		D	72019	64.55			1	Z		
1987-10-13		D	62610		2965.34	NGVD29	1	Z		
1987-10-13		D	62611		2966.95	NAVD88	1	Z		
1987-10-13		D	72019	65.46			1	Z		
1988-04-07		D	62610		2965.51	NGVD29	1	Z		
1988-04-07		D	62611		2967.12	NAVD88	1	Z		
1988-04-07		D	72019	65.29			1	Z		

.

Received by QGD: 1/23/2024 10:18:13 AM

USGS Groundwater for New Mexico: Water Levels -- 1 sites

Page 35 of 147

Date	Time	? Water-level date-time accuracy	? Par. cod	ameter e	Water level, feet below land surface	Water level, feet above specific vertical datum		Referenced vertical datum	? S
1992-11-04	D	62610		2963.59	NGVD29	Ρ	S		
1992-11-04	D	62611		2965.20	NAVD88	Р	S		
1992-11-04	D	72019	67.21			Р	S		
1998-01-23	D	62610		2966.13	NGVD29	1	S		
1998-01-23	D	62611		2967.74	NAVD88	1	S		
1998-01-23	D	72019	64.67			1	S		
2003-01-24	D	62610		2963.72	NGVD29	1	S	USGS	
2003-01-24	D	62611		2965.33	NAVD88	1	S	USGS	
2003-01-24	D	72019	67.08			1	S	USGS	

Explanation

Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Status	Р	Pumping
Method of measurement	S	Steel-tape measurement.
Method of measurement	Z	Other.
Measuring agency		Not determined
Measuring agency	USGS	U.S. Geological Survey
Source of measurement		Not determined
Source of measurement	S	Measured by personnel of reporting agency.
Water-level approval status	А	Approved for publication Processing and review completed.

Questions or Comments Automated retrievals <u>Help</u>

Data Tips Explanation of terms Subscribe for system changes <u>News</u>

Accessibility FOIA Privacy

Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2023-10-09 11:42:56 EDT 0.34 0.3 nadww01

.

	Date	Time	? Water-level date-time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? S
--	------	------	---	------------------------	---	---	---------------------------------	--------

Click to hideNews Bulletins

- Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs

site_no list =

• 320627104101801

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320627104101801 25S.27E.27.21242

Eddy County, New Mexico Latitude 32°06'25.92", Longitude 104°10'27.98" NAD83 Land-surface elevation 3,064 feet above NAVD88 This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Rustler Formation (312RSLR) local aquifer.

Output formats

Table of data	
Tab-separated data	
Graph of data	
Reselect period	

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measur
1983-02-02		D	62610		3049.96	NGVD29	1	Z		
1983-02-02		D	62611		3051.58	NAVD88	1	Z		
1983-02-02		D	72019	12.42			1	Z		
1987-10-09		D	62610		3051.85	NGVD29	1	Z		
1987-10-09		D	62611		3053.47	NAVD88	1	Z		
1987-10-09		D	72019	10.53			1	Z		
1992-12-08		D	62610		3050.12	NGVD29	1	S		
1992-12-08		D	62611		3051.74	NAVD88	1	S		
1992-12-08		D	72019	12.26			1	S		
1998-01-07		D	62610		3048.19	NGVD29	1	S		
1998-01-07		D	62611		3049.81	NAVD88	1	S		
1998-01-07		D	72019	14.19			1	S		
2003-01-29		D	62610		3045.95	NGVD29	1	S	USG	S
2003-01-29		D	62611		3047.57	NAVD88	1	S	USG	S
2003-01-29		D	72019	16.43			1	S	USG	S

.
Received by QGD: 1/23/2024 10:18:13 AM

USGS Groundwater for New Mexico: Water Levels -- 1 sites

Page 37 of 147

Date	Time	? Water-leve date-time accuracy	? Par cod	rameter le	Water level, feet below land surface	Water level, feet above specific vertical datum	ve	ferenced rtical tum
2022-01-13 14:35 U	TC I	m 62610		3046.65	NGVD29	1	V	USGS
2022-01-13 14:35 U	TC I	m 62611		3048.27	NAVD88	1	V	USGS
2022-01-13 14:35 U	TC I	m 72019	15.73			1	V	USGS
2023-02-14 16:05 U	TC I	m 62610		3046.27	NGVD29	1	S	USGS
2023-02-14 16:05 U	TC I	m 62611		3047.89	NAVD88	1	S	USGS
2023-02-14 16:05 U	TC I	m 72019	16.11			1	S	USGS

Explanation

Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Water-level date-time accuracy	m	Date is accurate to the Minute
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Method of measurement	S	Steel-tape measurement.
Method of measurement	V	Calibrated electric-tape measurement.
Method of measurement	Z	Other.
Measuring agency		Not determined
Measuring agency	USGS	U.S. Geological Survey
Source of measurement		Not determined
Source of measurement	S	Measured by personnel of reporting agency.
Water-level approval status	А	Approved for publication Processing and review completed.

Questions or Comments Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

FOIA

Accessibility

Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2023-10-09 11:44:24 EDT 2.89 0.45 nadww01

New Mexico NFHL Data

FEMA, Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey,

nmflood.org is made possible through a collaboration with NMDHSEM,

This is a non-regulatory product for informational use only. Please consult your local floodplain administrator for further information.

APPENDIX E

Received by OCD: 1/23/2024 10:18:13 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mike Carmona Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 12/13/2023 7:49:25 AM

JOB DESCRIPTION

Daisy 24 State Com battery (11.11.23) Eddy County, New Mexico

JOB NUMBER

880-36710-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 12/13/2023 7:49:25 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Page 42 of 147

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	7
Surrogate Summary	22
QC Sample Results	24
	30
Lab Chronicle	35
Certification Summary	42
Method Summary	43
Sample Summary	44
	45
Receipt Checklists	47

Definitions/Glossary

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23) Page 43 of 147

Job ID: 880-36710-	1
SDG: Eddy County, New Mexico	С

Qualifiers

Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	5
GC Semi VOA		
Qualifier	Qualifier Description	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	8
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	9
Glossary		10
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	4.0
DER	Duplicate Error Ratio (normalized absolute difference)	13
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	14

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

 DLC
 Decision Level Concentration (Radiochemistry)

 EDL
 Estimated Detection Limit (Dioxin)

 LOD
 Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum C

 MCL
 EPA recommended "Maximum Contaminant Level"

 MDA
 Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDLMethod Detection LimitMLMinimum Level (Dioxin)MPNMost Probable NumberMQLMethod Quantitation Limit

 NC
 Not Calculated

 ND
 Not Detected at the reporting limit (or MDL or EDL if shown)

 NEG
 Negative / Absent

 POS
 Positive / Present

 PQL
 Practical Quantitation Lim

 PQL
 Practical Quantitation Limit

 PRES
 Presumptive

 QC
 Quality Control

RERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

 TEF
 Toxicity Equivalent Factor (Dioxin)

 TEQ
 Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23) Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Job ID: 880-36710-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-36710-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 12/8/2023 2:36 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -0.5°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: S-1 (0-1') (880-36710-1), S-1 (1.5') (880-36710-2), S-1 (2') (880-36710-3), S-1 (3') (880-36710-4), S-1 (4') (880-36710-5), S-2 (0-1') (880-36710-6), S-2 (1.5') (880-36710-7), S-2 (2') (880-36710-8), S-2 (3') (880-36710-9), S-2 (4') (880-36710-10), S-3 (0-1') (880-36710-11), S-3 (1.5') (880-36710-12), S-3 (2') (880-36710-13), S-3 (3') (880-36710-14), S-3 (4') (880-36710-15), S-4 (0-1') (880-36710-16), S-4 (1.5') (880-36710-17), S-4 (2') (880-36710-18), S-4 (3') (880-36710-19) and S-4 (4') (880-36710-20).

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: (LCS 880-68742/1-A) and (LCSD 880-68742/2-A). Evidence of matrix interferences is not obvious.

Method 8021B: Surrogate recovery for the following samples were outside control limits: S-1 (1.5') (880-36710-2), S-1 (2') (880-36710-3), S-1 (3') (880-36710-4), S-1 (4') (880-36710-5), (880-36710-A-1-E MS) and (880-36710-A-1-F MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following samples were outside control limits: S-2 (1.5') (880-36710-7), S-2 (3') (880-36710-9), S-3 (0-1') (880-36710-11), S-3 (1.5') (880-36710-12), S-3 (2') (880-36710-13), S-3 (3') (880-36710-14), S-3 (4') (880-36710-15), S-4 (0-1') (880-36710-16), S-4 (1.5') (880-36710-17), S-4 (2') (880-36710-18), S-4 (3') (880-36710-19) and S-4 (4') (880-36710-20). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-68700 and analytical batch 880-68637 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: S-1 (0-1') (880-36710-1), S-1 (1.5') (880-36710-2), S-1 (2') (880-36710-3), S-1 (3') (880-36710-4), S-1 (4') (880-36710-5), S-2 (0-1') (880-36710-6), S-2 (1.5') (880-36710-7), S-2 (2') (880-36710-8), S-2 (3') (880-36710-9), S-2 (4') (880-36710-10), S-3 (0-1') (880-36710-11), S-3 (1.5') (880-36710-12), S-3 (2') (880-36710-13), S-3 (3') (880-36710-14), S-3 (4') (880-36710-15), S-4 (0-1') (880-36710-16), S-4 (1.5') (880-36710-17), S-4 (2') (880-36710-18), S-4 (3') (880-36710-19), S-4 (4') (880-36710-20), (880-36710-A-1-C MS) and (880-36710-A-1-D MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23) Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Page 45 of 147

Job ID: 880-36710-1 (Continued)

Laboratory: Eurofins Midland (Continued)

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-68689 and analytical batch 880-68723 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

Client Sample ID: S-1 (0-1') Date Collected: 12/07/23 00:00

Date Received: 12/08/23 14:36

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		12/09/23 15:55	12/10/23 09:12	1
Toluene	<0.00198	U	0.00198		mg/Kg		12/09/23 15:55	12/10/23 09:12	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		12/09/23 15:55	12/10/23 09:12	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		12/09/23 15:55	12/10/23 09:12	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		12/09/23 15:55	12/10/23 09:12	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		12/09/23 15:55	12/10/23 09:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	119		70 - 130				12/09/23 15:55	12/10/23 09:12	1
1,4-Difluorobenzene (Surr)	84		70 - 130				12/09/23 15:55	12/10/23 09:12	1
Method: TAL SOP Total BTEX - To	tal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			12/10/23 09:12	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.5	U	49.5		mg/Kg			12/08/23 20:49	1
- Method: SW846 8015B NM - Diese	l Range Orga	nics (DRO)	(60)						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.5		49.5		mg/Kg		12/08/23 15:25	12/08/23 20:49	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.5	U	49.5		mg/Kg		12/08/23 15:25	12/08/23 20:49	1
C10-C28)	<10 F		49.5		m all a		10/00/00 15:05	10/08/02 00:40	1
Oll Range Organics (Over C28-C36)	<49.5	U	49.5		mg/Kg		12/08/23 15:25	12/08/23 20:49	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	158	S1+	70 - 130				12/08/23 15:25	12/08/23 20:49	1
o-Terphenyl	142	S1+	70 - 130				12/08/23 15:25	12/08/23 20:49	1
Method: EPA 300.0 - Anions, Ion C	hromatogran	hv - Solubl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	935		4.97		mg/Kg			12/09/23 08:53	1
Client Sample ID: S-1 (1.5')							Lab Sam	ple ID: 880-3	6710-2
ate Collected: 12/07/23 00:00								-	x: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		12/09/23 15:55	12/10/23 09:38	1
Toluene	<0.00201	U	0.00201		mg/Kg		12/09/23 15:55	12/10/23 09:38	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		12/09/23 15:55	12/10/23 09:38	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		12/09/23 15:55	12/10/23 09:38	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		12/09/23 15:55	12/10/23 09:38	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		12/09/23 15:55	12/10/23 09:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	145	S1+	70 - 130				12/09/23 15:55	12/10/23 09:38	1
1,4-Difluorobenzene (Surr)	80		70 - 130				12/09/23 15:55	12/10/23 09:38	1

Eurofins Midland

Page 46 of 147

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-36710-1

Matrix: Solid

5

Released to Imaging: 4/9/2024 2:03:34 PM

Project/Site: Daisy 24 State Com battery (11.11.23)

Matrix: Solid

5

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-36710-2

Client Sample ID: S-1 (1.5')

Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			12/10/23 09:38	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.1	U	50.1		mg/Kg			12/08/23 21:53	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.1	U	50.1		mg/Kg		12/08/23 15:25	12/08/23 21:53	1
Diesel Range Organics (Over C10-C28)	<50.1	U	50.1		mg/Kg		12/08/23 15:25	12/08/23 21:53	
Oll Range Organics (Over C28-C36)	<50.1	U	50.1		mg/Kg		12/08/23 15:25	12/08/23 21:53	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	152	S1+	70 - 130				12/08/23 15:25	12/08/23 21:53	1
o-Terphenyl	143	S1+	70 - 130				12/08/23 15:25	12/08/23 21:53	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solub	le						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	349		4.99		mg/Kg			12/09/23 09:00	1
Client Sample ID: S-1 (2')							Lab Sam	ple ID: 880-3	6710-3
ate Collected: 12/07/23 00:00								Matri	ix: Solid
ate Received: 12/08/23 14:36									

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		12/09/23 15:55	12/10/23 10:05	1
Toluene	<0.00202	U	0.00202		mg/Kg		12/09/23 15:55	12/10/23 10:05	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		12/09/23 15:55	12/10/23 10:05	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		12/09/23 15:55	12/10/23 10:05	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		12/09/23 15:55	12/10/23 10:05	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		12/09/23 15:55	12/10/23 10:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	155	S1+	70 - 130				12/09/23 15:55	12/10/23 10:05	1
1,4-Difluorobenzene (Surr)	105		70 - 130				12/09/23 15:55	12/10/23 10:05	1

Method: TAL SOP Total BTEX -	Total BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			12/10/23 10:05	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.3	U	50.3		mg/Kg			12/08/23 22:14	1
Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.3	U	50.3		mg/Kg		12/08/23 15:25	12/08/23 22:14	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.3	U	50.3		mg/Kg		12/08/23 15:25	12/08/23 22:14	1
C10-C28)									

Eurofins Midland

Released to Imaging: 4/9/2024 2:03:34 PM

Project/Site: Daisy 24 State Com battery (11.11.23)

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-36710-3

Client Sample ID: S-1 (2')

Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.3	U	50.3		mg/Kg		12/08/23 15:25	12/08/23 22:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	159	S1+	70 - 130				12/08/23 15:25	12/08/23 22:14	1
o-Terphenyl	152	S1+	70 - 130				12/08/23 15:25	12/08/23 22:14	1
Method: EPA 300.0 - Anions, Ion Analyte Chloride	• •	Qualifier	RL 5.01	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed	Dil Fac
lient Sample ID: S-1 (3') ate Collected: 12/07/23 00:00 ate Received: 12/08/23 14:36							Lab Sam	ple ID: 880-3 Matri	6710-4 x: Solic
Method: SW846 8021B - Volatile (Organic Comp	ounds (GC))						
							- ·		
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Benzene	Result <0.00199		RL 0.00199	MDL	mg/Kg	D	12/09/23 15:55	Analyzed 12/10/23 10:31	Dil Fac 1

Toluene	<0.00199	U	0.00199	mg/Kg	12/09/23 15:55	12/10/23 10:31	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg	12/09/23 15:55	12/10/23 10:31	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg	12/09/23 15:55	12/10/23 10:31	1
o-Xylene	<0.00199	U	0.00199	mg/Kg	12/09/23 15:55	12/10/23 10:31	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg	12/09/23 15:55	12/10/23 10:31	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	159	S1+	70 - 130		12/09/23 15:55	12/10/23 10:31	1
1,4-Difluorobenzene (Surr)	77		70 - 130		12/09/23 15:55	12/10/23 10:31	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			12/10/23 10:31	1

Method: SW846 8015 NM - Diesel R	lange Organ	ics (DRO) (G	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.5	U	50.5		mg/Kg			12/08/23 22:36	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.5	U	50.5		mg/Kg		12/08/23 15:25	12/08/23 22:36	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.5	U	50.5		mg/Kg		12/08/23 15:25	12/08/23 22:36	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.5	U	50.5		mg/Kg		12/08/23 15:25	12/08/23 22:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	158	S1+	70 - 130				12/08/23 15:25	12/08/23 22:36	1
o-Terphenyl	148	S1+	70 - 130				12/08/23 15:25	12/08/23 22:36	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	275		4.98		mg/Kg			12/09/23 09:26	1

Matrix: Solid

5

Client Sample Results

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

Client Sample ID: S-1 (4') Date Collected: 12/07/23 00:00

Date Received: 12/08/23 14:36

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00198	U	0.00198		mg/Kg		12/09/23 15:55	12/10/23 10:57	
Toluene	<0.00198	U	0.00198		mg/Kg		12/09/23 15:55	12/10/23 10:57	
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		12/09/23 15:55	12/10/23 10:57	
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		12/09/23 15:55	12/10/23 10:57	
o-Xylene	<0.00198	U	0.00198		mg/Kg		12/09/23 15:55	12/10/23 10:57	
Kylenes, Total	<0.00397	U	0.00397		mg/Kg		12/09/23 15:55	12/10/23 10:57	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	154	S1+	70 - 130				12/09/23 15:55	12/10/23 10:57	
1,4-Difluorobenzene (Surr)	92		70 - 130				12/09/23 15:55	12/10/23 10:57	
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00397	U	0.00397		mg/Kg			12/10/23 10:57	
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
						-		A sea la serva al	
nalyte		Qualifier	RL	MDL		D	Prepared	Analyzed	
Analyte Total TPH	<50.0	U	50.0	MDL	mg/Kg	D	Prepared	12/08/23 22:57	
Analyte ^{Fotal} TPH Method: SW846 8015B NM - Dies	<pre><50.0</pre>	U	50.0	MDL MDL		D	Prepared Prepared		
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	<pre><50.0</pre>	U nics (DRO) Qualifier	50.0 (GC)		mg/Kg			12/08/23 22:57	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	<50.0 sel Range Orga Result	U nics (DRO) Qualifier U	50.0 (GC) RL		mg/Kg Unit		Prepared	12/08/23 22:57 Analyzed	Dil Fa
Analyte Fotal TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<50.0 sel Range Orga Result <50.0	U nics (DRO) Qualifier U	50.0 (GC) RL 50.0		mg/Kg Unit mg/Kg		Prepared 12/08/23 15:25	12/08/23 22:57 Analyzed 12/08/23 22:57	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36)	<50.0 sel Range Orga Result <50.0 <50.0	U nics (DRO) Qualifier U U U	50.0 (GC) RL 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 12/08/23 15:25 12/08/23 15:25	12/08/23 22:57 Analyzed 12/08/23 22:57 12/08/23 22:57	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate	<50.0 Sel Range Orga Result <50.0 <50.0 <50.0	U nics (DRO) Qualifier U U U	50.0 (GC) RL 50.0 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 12/08/23 15:25 12/08/23 15:25 12/08/23 15:25	Analyzed 12/08/23 22:57 12/08/23 22:57 12/08/23 22:57 12/08/23 22:57 12/08/23 22:57	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane p-Terphenyl	<50.0 Sel Range Orga Result <50.0 <50.0 <50.0 <50.0 <50.0 <164	U nics (DRO) Qualifier U U U Qualifier	50.0 (GC) RL 50.0 50.0 50.0 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 12/08/23 15:25 12/08/23 15:25 12/08/23 15:25 Prepared	Analyzed 12/08/23 22:57 12/08/23 22:57 12/08/23 22:57 12/08/23 22:57 12/08/23 22:57 12/08/23 22:57 Analyzed	Dil Fa Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<50.0 sel Range Orga Result <50.0 <50.0 <50.0 <50.0 <60.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0 <70.0	U nics (DRO) Qualifier U U U U Qualifier S1+ S1+	50.0 (GC) RL 50.0 50.0 50.0 50.0 50.0 50.0 70.130 70.130 70.130		mg/Kg Unit mg/Kg mg/Kg		Prepared 12/08/23 15:25 12/08/23 15:25 12/08/23 15:25 Prepared 12/08/23 15:25	Analyzed 12/08/23 22:57 Analyzed 12/08/23 22:57 12/08/23 22:57 12/08/23 22:57 12/08/23 22:57 12/08/23 22:57	Dil Fa Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane p-Terphenyl	<50.0 Sel Range Orga Result <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <164 164 158 Chromatograp	U nics (DRO) Qualifier U U U U Qualifier S1+ S1+	50.0 (GC) RL 50.0 50.0 50.0 50.0 50.0 50.0 70.130 70.130 70.130		mg/Kg Unit mg/Kg mg/Kg		Prepared 12/08/23 15:25 12/08/23 15:25 12/08/23 15:25 Prepared 12/08/23 15:25	Analyzed 12/08/23 22:57 Analyzed 12/08/23 22:57 12/08/23 22:57 12/08/23 22:57 12/08/23 22:57 12/08/23 22:57	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate I-Chlorooctane D-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte	<50.0 Sel Range Orga Result <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <164 164 158 Chromatograp	U nics (DRO) Qualifier U U U Qualifier S1+ S1+ S1+ Ohy - Solubl	(GC) RL 50.0 50.0 50.0 <u>Limits</u> 70 - 130 70 - 130 e	MDL	mg/Kg Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 12/08/23 15:25 12/08/23 15:25 12/08/23 15:25 Prepared 12/08/23 15:25 12/08/23 15:25	12/08/23 22:57 Analyzed 12/08/23 22:57 12/08/23 22:57 12/08/23 22:57 Analyzed 12/08/23 22:57 12/08/23 22:57	Dil Fa Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate I-Chlorooctane - Terphenyl Method: EPA 300.0 - Anions, Ion Analyte Chloride	<50.0 Sel Range Orga Result <50.0 <50.0 <50.0 <50.0 <50.0 %Recovery 164 158 Chromatograp Result	U nics (DRO) Qualifier U U U Qualifier S1+ S1+ S1+ Ohy - Solubl	50.0 RL 50.0	MDL	mg/Kg Unit mg/Kg mg/Kg mg/Kg Unit	<u>D</u>	Prepared 12/08/23 15:25 12/08/23 15:25 12/08/23 15:25 Prepared 12/08/23 15:25 12/08/23 15:25 12/08/23 15:25 Prepared	12/08/23 22:57 Analyzed 12/08/23 22:57 12/08/23 22:57 12/08/23 22:57 Analyzed Analyzed	Dil Fa Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane p-Terphenyl Method: EPA 300.0 - Anions, Ion	<50.0 Sel Range Orga Result <50.0 <50.0 <50.0 <50.0 <50.0 %Recovery 164 158 Chromatograp Result	U nics (DRO) Qualifier U U U Qualifier S1+ S1+ S1+ Ohy - Solubl	50.0 RL 50.0	MDL	mg/Kg Unit mg/Kg mg/Kg mg/Kg Unit	<u>D</u>	Prepared 12/08/23 15:25 12/08/23 15:25 12/08/23 15:25 Prepared 12/08/23 15:25 12/08/23 15:25 12/08/23 15:25 Prepared	Analyzed 12/08/23 22:57 12/08/23 22:57 12/08/23 22:57 12/08/23 22:57 12/08/23 22:57 12/08/23 22:57 12/08/23 22:57 12/08/23 22:57 12/08/23 09:33 ple ID: 880-3	Dil Fa Dil Fa

thod:	SW846	8021B - V	olatile	Organic	Compoun	ds (GC)	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/09/23 15:55	12/10/23 11:24	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/09/23 15:55	12/10/23 11:24	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/09/23 15:55	12/10/23 11:24	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		12/09/23 15:55	12/10/23 11:24	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/09/23 15:55	12/10/23 11:24	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		12/09/23 15:55	12/10/23 11:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	126		70 - 130				12/09/23 15:55	12/10/23 11:24	1
1,4-Difluorobenzene (Surr)	92		70 - 130				12/09/23 15:55	12/10/23 11:24	1

Eurofins Midland

Page 49 of 147

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-36710-5

Matrix: Solid

5

Released to Imaging: 4/9/2024 2:03:34 PM

Project/Site: Daisy 24 State Com battery (11.11.23)

Page 50 of 147

Matrix: Solid

5

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-36710-6

Client Sample ID: S-2 (0-1')

Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			12/10/23 11:24	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7		mg/Kg			12/08/23 23:19	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7		mg/Kg		12/08/23 15:25	12/08/23 23:19	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.7	U	49.7		mg/Kg		12/08/23 15:25	12/08/23 23:19	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		12/08/23 15:25	12/08/23 23:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	168	S1+	70 - 130				12/08/23 15:25	12/08/23 23:19	1
o-Terphenyl	153	S1+	70 - 130				12/08/23 15:25	12/08/23 23:19	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	115		4.99		mg/Kg			12/09/23 15:10	1

Client Sample ID: S-2 (1.5')

Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

Lab Sample ID: 880-36710-7 Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		12/09/23 15:55	12/10/23 11:51	1
Toluene	<0.00198	U	0.00198		mg/Kg		12/09/23 15:55	12/10/23 11:51	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		12/09/23 15:55	12/10/23 11:51	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		12/09/23 15:55	12/10/23 11:51	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		12/09/23 15:55	12/10/23 11:51	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		12/09/23 15:55	12/10/23 11:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	182	S1+	70 - 130				12/09/23 15:55	12/10/23 11:51	1
1,4-Difluorobenzene (Surr)	109		70 - 130				12/09/23 15:55	12/10/23 11:51	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			12/10/23 11:51	1
	el Range Organ	ics (DRO) (C	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.6	U	49.6		mg/Kg			12/08/23 23:40	1
	esel Range Orga	nics (DRO)	(GC)						
Analyta	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte									
Gasoline Range Organics	<49.6	U	49.6		mg/Kg		12/08/23 15:25	12/08/23 23:40	1
	<49.6	U	49.6		mg/Kg		12/08/23 15:25	12/08/23 23:40	1

Eurofins Midland

Page 50

C10-C28)

Client Sample ID: S-2 (1.5')

Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		12/08/23 15:25	12/08/23 23:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	162	S1+	70 - 130				12/08/23 15:25	12/08/23 23:40	1
o-Terphenyl	143	S1+	70 - 130				12/08/23 15:25	12/08/23 23:40	1
_ Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	59.0		5.02		mg/Kg			12/09/23 09:46	1
Client Sample ID: S-2 (2')							Lab Sam	ple ID: 880-3	6710-8
Date Collected: 12/07/23 00:00								Matri	x: Solid
Date Received: 12/08/23 14:36									
_ Method: SW846 8021B - Volatile (Organic Comp	ounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		12/09/23 15:55	12/10/23 12:17	1
Toluene	<0.00201	U	0.00201		mg/Kg		12/09/23 15:55	12/10/23 12:17	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		12/09/23 15:55	12/10/23 12:17	1

m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg	12/09/23 15:55	12/10/23 12:17	1
o-Xylene	<0.00201	U	0.00201	mg/Kg	12/09/23 15:55	12/10/23 12:17	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg	12/09/23 15:55	12/10/23 12:17	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Surrogate 4-Bromofluorobenzene (Surr)	%Recovery 128	Qualifier	Limits 70 - 130		Prepared 12/09/23 15:55	Analyzed 12/10/23 12:17	Dil Fac
U		Qualifier					Dil Fac 1 1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg	_		12/10/23 12:17	1

Method: SW846 8015 NM - Diesel R	ange Organi	ics (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			12/09/23 00:02	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		12/08/23 15:25	12/09/23 00:02	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		12/08/23 15:25	12/09/23 00:02	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		12/08/23 15:25	12/09/23 00:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	161	S1+	70 - 130				12/08/23 15:25	12/09/23 00:02	1
o-Terphenyl	152	S1+	70 - 130				12/08/23 15:25	12/09/23 00:02	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	54.4		5.01		mg/Kg			12/09/23 09:52	1

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-36710-7 Matrix: Solid

13 14

Released to Imaging: 4/9/2024 2:03:34 PM

Client Sample Results

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

Client Sample ID: S-2 (3') Date Collected: 12/07/23 00:00

Date Received: 12/08/23 14:36

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		12/09/23 15:55	12/10/23 12:44	
Toluene	<0.00201	U	0.00201		mg/Kg		12/09/23 15:55	12/10/23 12:44	
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		12/09/23 15:55	12/10/23 12:44	
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		12/09/23 15:55	12/10/23 12:44	
o-Xylene	<0.00201	U	0.00201		mg/Kg		12/09/23 15:55	12/10/23 12:44	
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		12/09/23 15:55	12/10/23 12:44	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	194	S1+	70 - 130				12/09/23 15:55	12/10/23 12:44	
1,4-Difluorobenzene (Surr)	108		70 - 130				12/09/23 15:55	12/10/23 12:44	-
Method: TAL SOP Total BTEX - To	otal BTEX Calo	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			12/10/23 12:44	
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
		ics (DRO) (Qualifier	GC) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Method: SW846 8015 NM - Diesel Analyte Total TPH		Qualifier		MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier		MDL		<u>D</u>	Prepared		
Analyte Total TPH	Result <50.3	Qualifier U	RL 50.3	MDL		<u> </u>	Prepared		
Analyte Total TPH Method: SW846 8015B NM - Dies	el Range Orga	Qualifier U	RL 50.3	MDL	mg/Kg	<u>D</u> 	Prepared Prepared		
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte	el Range Orga	Qualifier U nics (DRO) Qualifier	RL 50.3		mg/Kg			12/09/23 00:23	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10	el Range Orga Result Result <50.3	Qualifier U nics (DRO) Qualifier U	RL 50.3 (GC) RL 50.3		mg/Kg Unit mg/Kg		Prepared 12/08/23 15:25	12/09/23 00:23 Analyzed 12/09/23 00:23	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <50.3 el Range Orga Result	Qualifier U nics (DRO) Qualifier U	(GC)		mg/Kg Unit		Prepared	12/09/23 00:23 Analyzed	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.3	Qualifier U nics (DRO) Qualifier U U	RL 50.3 (GC) RL 50.3 50.3		mg/Kg Unit mg/Kg mg/Kg		Prepared 12/08/23 15:25 12/08/23 15:25	Analyzed 12/09/23 00:23 12/09/23 00:23 12/09/23 00:23 12/09/23 00:23	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Orga Result Result <50.3	Qualifier U nics (DRO) Qualifier U U	RL 50.3 (GC) RL 50.3		mg/Kg Unit mg/Kg		Prepared 12/08/23 15:25	12/09/23 00:23 Analyzed 12/09/23 00:23	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.3	Qualifier U nics (DRO) Qualifier U U	RL 50.3 (GC) RL 50.3 50.3		mg/Kg Unit mg/Kg mg/Kg		Prepared 12/08/23 15:25 12/08/23 15:25	Analyzed 12/09/23 00:23 12/09/23 00:23 12/09/23 00:23 12/09/23 00:23	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <50.3	Qualifier U nics (DRO) Qualifier U U U	RL 50.3 (GC) RL 50.3 50.3 50.3		mg/Kg Unit mg/Kg mg/Kg		Prepared 12/08/23 15:25 12/08/23 15:25 12/08/23 15:25	Analyzed 12/09/23 00:23 Analyzed 12/09/23 00:23 12/09/23 00:23 12/09/23 00:23	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <50.3	Qualifier U nics (DRO) Qualifier U U Qualifier	RL 50.3 (GC) RL 50.3 50.3 50.3 50.3 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 12/08/23 15:25 12/08/23 15:25 12/08/23 15:25 Prepared	Analyzed 12/09/23 00:23 Analyzed 12/09/23 00:23 12/09/23 00:23 12/09/23 00:23 12/09/23 00:23 Analyzed	
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <50.3	Qualifier U nics (DRO) Qualifier U U U Qualifier S1+	RL 50.3 (GC) RL 50.3 50.3 50.3 50.3 50.3 70.130		mg/Kg Unit mg/Kg mg/Kg		Prepared 12/08/23 15:25 12/08/23 15:25 12/08/23 15:25 Prepared 12/08/23 15:25	Analyzed 12/09/23 00:23 Analyzed 12/09/23 00:23 12/09/23 00:23 12/09/23 00:23 12/09/23 00:23 12/09/23 00:23 12/09/23 00:23	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <50.3	Qualifier U nics (DRO) Qualifier U U U Qualifier S1+ S1+	RL 50.3 (GC) RL 50.3 50.3 50.3 50.3 50.3 70.130 70.130 70.130		mg/Kg Unit mg/Kg mg/Kg		Prepared 12/08/23 15:25 12/08/23 15:25 12/08/23 15:25 Prepared 12/08/23 15:25	Analyzed 12/09/23 00:23 Analyzed 12/09/23 00:23 12/09/23 00:23 12/09/23 00:23 12/09/23 00:23 12/09/23 00:23 12/09/23 00:23	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <50.3	Qualifier U nics (DRO) Qualifier U U U Qualifier S1+ S1+	RL 50.3 (GC) RL 50.3 50.3 50.3 50.3 50.3 70.130 70.130 70.130		mg/Kg Unit mg/Kg mg/Kg mg/Kg		Prepared 12/08/23 15:25 12/08/23 15:25 12/08/23 15:25 Prepared 12/08/23 15:25	Analyzed 12/09/23 00:23 Analyzed 12/09/23 00:23 12/09/23 00:23 12/09/23 00:23 12/09/23 00:23 12/09/23 00:23 12/09/23 00:23	Dil Fa Dil Fa

Date Received: 12/08/23 14:36

Method: SW846 8021B - Volat	ile Organic Comp	ounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/09/23 15:55	12/10/23 13:11	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/09/23 15:55	12/10/23 13:11	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/09/23 15:55	12/10/23 13:11	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		12/09/23 15:55	12/10/23 13:11	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/09/23 15:55	12/10/23 13:11	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		12/09/23 15:55	12/10/23 13:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	119		70 - 130				12/09/23 15:55	12/10/23 13:11	1
1,4-Difluorobenzene (Surr)	84		70 - 130				12/09/23 15:55	12/10/23 13:11	1

Eurofins Midland

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-36710-9

Matrix: Solid

5

Project/Site: Daisy 24 State Com battery (11.11.23)

Matrix: Solid

5

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-36710-10

Client Sample ID: S-2 (4')

Client: Carmona Resources

Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			12/10/23 13:11	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.1	U	50.1		mg/Kg			12/09/23 00:45	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.1	U	50.1		mg/Kg		12/08/23 15:25	12/09/23 00:45	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.1	U	50.1		mg/Kg		12/08/23 15:25	12/09/23 00:45	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.1	U	50.1		mg/Kg		12/08/23 15:25	12/09/23 00:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	161	S1+	70 - 130				12/08/23 15:25	12/09/23 00:45	1
o-Terphenyl	152	S1+	70 - 130				12/08/23 15:25	12/09/23 00:45	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.01	U	5.01		mg/Kg			12/09/23 03:14	1

Client Sample ID: S-3 (0-1')

Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

Lab Sample ID: 880-36710-11 Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/09/23 15:55	12/10/23 14:58	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/09/23 15:55	12/10/23 14:58	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/09/23 15:55	12/10/23 14:58	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		12/09/23 15:55	12/10/23 14:58	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/09/23 15:55	12/10/23 14:58	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		12/09/23 15:55	12/10/23 14:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	133	S1+	70 - 130				12/09/23 15:55	12/10/23 14:58	1
1,4-Difluorobenzene (Surr)	73		70 - 130				12/09/23 15:55	12/10/23 14:58	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			12/10/23 14:58	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (C	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.4	U	50.4		mg/Kg			12/09/23 01:27	1
Method: SW846 8015B NM - Dies Analyte	• •	nics (DRO) Qualifier	<mark>(GC)</mark> RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.4	U	50.4		mg/Kg		12/08/23 15:25	12/09/23 01:27	1
Diesel Range Organics (Over C10-C28)	<50.4	U	50.4		mg/Kg		12/08/23 15:25	12/09/23 01:27	1

Eurofins Midland

Released to Imaging: 4/9/2024 2:03:34 PM

Client Sample ID: S-3 (0-1')

Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

m-Xylene & p-Xylene

o-Xylene

Xylenes, Total

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.4	U	50.4		mg/Kg		12/08/23 15:25	12/09/23 01:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	164	S1+	70 - 130				12/08/23 15:25	12/09/23 01:27	
o-Terphenyl	156	S1+	70 - 130				12/08/23 15:25	12/09/23 01:27	1
_ Method: EPA 300.0 - Anions, Ion C	hromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	132		4.98		mg/Kg			12/09/23 03:34	
Client Sample ID: S-3 (1.5')							Lab Samp	le ID: 880-36	710-12
Date Collected: 12/07/23 00:00								Matri	ix: Solic
Date Received: 12/08/23 14:36									
- Method: SW846 8021B - Volatile O	rganic Comp	ounds (GC))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		12/09/23 15:55	12/10/23 15:25	-
Toluene	<0.00199	U	0.00199		mg/Kg		12/09/23 15:55	12/10/23 15:25	

Matrix: Solid

Job ID: 880-36710-1

SDG: Eddy County, New Mexico

Lab Sample ID: 880-36710-11

12/09/23 15:55

12/09/23 15:55

12/09/23 15:55

12/10/23 15:25

12/10/23 15:25

12/10/23 15:25

10 11 12

12 13 14

1

1

1

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	176	S1+	70 - 130				12/09/23 15:55	12/10/23 15:25	1
1,4-Difluorobenzene (Surr)	105		70 - 130				12/09/23 15:55	12/10/23 15:25	1
- Method: TAL SOP Total BTEX -	Total BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			12/10/23 15:25	1
- Method: SW846 8015 NM - Dies	sel Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.4	U	50.4		mg/Kg			12/09/23 01:48	

0.00398

0.00199

0.00398

mg/Kg

mg/Kg

mg/Kg

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

<0.00398 U

<0.00199 U

<0.00398 U

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.4	U	50.4		mg/Kg		12/08/23 15:25	12/09/23 01:48	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.4	U	50.4		mg/Kg		12/08/23 15:25	12/09/23 01:48	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.4	U	50.4		mg/Kg		12/08/23 15:25	12/09/23 01:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	153	S1+	70 - 130				12/08/23 15:25	12/09/23 01:48	1
o-Terphenyl	148	S1+	70 - 130				12/08/23 15:25	12/09/23 01:48	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	106		4.99		mg/Kg			12/09/23 03:40	1

Eurofins Midland

Released to Imaging: 4/9/2024 2:03:34 PM

Client Sample Results

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

Client Sample ID: S-3 (2') Date Collected: 12/07/23 00:00

Date Received: 12/08/23 14:36

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199		mg/Kg		12/09/23 15:55	12/10/23 15:51	
Toluene	<0.00199	U	0.00199		mg/Kg		12/09/23 15:55	12/10/23 15:51	
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		12/09/23 15:55	12/10/23 15:51	
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		12/09/23 15:55	12/10/23 15:51	
o-Xylene	<0.00199	U	0.00199		mg/Kg		12/09/23 15:55	12/10/23 15:51	
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		12/09/23 15:55	12/10/23 15:51	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	203	S1+	70 - 130				12/09/23 15:55	12/10/23 15:51	
1,4-Difluorobenzene (Surr)	117		70 - 130				12/09/23 15:55	12/10/23 15:51	
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg			12/10/23 15:51	
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.5	U	50.5		mg/Kg			12/09/23 02:09	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.5	U	50.5		mg/Kg		12/08/23 15:25	12/09/23 02:09	
Diesel Range Organics (Over	<50.5	U	50.5		mg/Kg		12/08/23 15:25	12/09/23 02:09	
C10-C28) Oll Range Organics (Over C28-C36)	<50.5	U	50.5		mg/Kg		12/08/23 15:25	12/09/23 02:09	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane		<u>S1+</u>	70 - 130				12/08/23 15:25	12/09/23 02:09	
o-Terphenyl		S1+	70 - 130				12/08/23 15:25	12/09/23 02:09	
Method: EDA 200.0 Aniona Ion	Chromotogram	by Colubl	•						
Method: EPA 300.0 - Anions, Ion Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
	91.6		5.04		mg/Kg			12/09/23 03:47	
Chloride									
Chloride Client Sample ID: S-3 (3')							Lab Samp	le ID: 880-36	710-14

Method: SW846 8021B - Volatile Organic Compounds (GC)

ne erganne eemp								
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00198	U	0.00198		mg/Kg		12/09/23 15:55	12/10/23 16:18	1
<0.00198	U	0.00198		mg/Kg		12/09/23 15:55	12/10/23 16:18	1
<0.00198	U	0.00198		mg/Kg		12/09/23 15:55	12/10/23 16:18	1
<0.00396	U	0.00396		mg/Kg		12/09/23 15:55	12/10/23 16:18	1
<0.00198	U	0.00198		mg/Kg		12/09/23 15:55	12/10/23 16:18	1
<0.00396	U	0.00396		mg/Kg		12/09/23 15:55	12/10/23 16:18	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
154	S1+	70 - 130				12/09/23 15:55	12/10/23 16:18	1
81		70 - 130				12/09/23 15:55	12/10/23 16:18	1
	Result <0.00198	Result Qualifier <0.00198	Result Qualifier RL <0.00198	Result Qualifier RL MDL <0.00198	<0.00198	Result Qualifier RL MDL Unit D <0.00198	Result Qualifier RL MDL Unit D Prepared <0.00198	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Eurofins Midland

Page 55 of 147

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-36710-13

Matrix: Solid

Project/Site: Daisy 24 State Com battery (11.11.23)

Matrix: Solid

5

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-36710-14

Client Sample ID: S-3 (3')

Client: Carmona Resources

Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			12/10/23 16:18	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			12/09/23 02:31	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		12/08/23 15:25	12/09/23 02:31	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		12/08/23 15:25	12/09/23 02:31	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/08/23 15:25	12/09/23 02:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	150	S1+	70 - 130				12/08/23 15:25	12/09/23 02:31	1
o-Terphenyl	136	S1+	70 - 130				12/08/23 15:25	12/09/23 02:31	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	320		5.03		mg/Kg			12/09/23 03:53	1

Client Sample ID: S-3 (4')

Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

Lab Sample ID: 880-36710-15 Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/09/23 15:55	12/10/23 16:44	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/09/23 15:55	12/10/23 16:44	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/09/23 15:55	12/10/23 16:44	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		12/09/23 15:55	12/10/23 16:44	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/09/23 15:55	12/10/23 16:44	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		12/09/23 15:55	12/10/23 16:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	136	S1+	70 - 130				12/09/23 15:55	12/10/23 16:44	1
1,4-Difluorobenzene (Surr)	74		70 - 130				12/09/23 15:55	12/10/23 16:44	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			12/10/23 16:44	1
Method: SW846 8015 NM - Di	esel Range Organ	ics (DRO) (C	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7		mg/Kg			12/09/23 02:53	1
Method: SW846 8015B NM - D	Diesel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
					ma/Ka				

-					•	•	
Gasoline Range Organics	<49.7	U	49.7	mg/Kg	12/08/23 15:25	12/09/23 02:53	
(GRO)-C6-C10							
Diesel Range Organics (Over	<49.7	U	49.7	mg/Kg	12/08/23 15:25	12/09/23 02:53	
C10-C28)							

Eurofins Midland

1

Matrix: Solid

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-36710-15

Client Sample ID: S-3 (4')

Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		12/08/23 15:25	12/09/23 02:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	162	S1+	70 - 130				12/08/23 15:25	12/09/23 02:53	1
o-Terphenyl	145	S1+	70 - 130				12/08/23 15:25	12/09/23 02:53	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
								10/00/00 01 10	
Chloride	77.7		4.97		mg/Kg			12/09/23 04:13	1
=	77.7		4.97		mg/Kg		Lab Samp	12/09/23 04:13	1 710-16
Chloride Client Sample ID: S-4 (0-1') Date Collected: 12/07/23 00:00	77.7		4.97		mg/Kg		Lab Samp	le ID: 880-36	1 710-16 x: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00201	U	0.00201		mg/Kg		12/09/23 15:55	12/10/23 17:10	1
Toluene	<0.00201	U	0.00201		mg/Kg		12/09/23 15:55	12/10/23 17:10	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		12/09/23 15:55	12/10/23 17:10	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		12/09/23 15:55	12/10/23 17:10	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		12/09/23 15:55	12/10/23 17:10	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		12/09/23 15:55	12/10/23 17:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	178	S1+	70 - 130				12/09/23 15:55	12/10/23 17:10	1
1,4-Difluorobenzene (Surr)	122		70 - 130				12/09/23 15:55	12/10/23 17:10	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			12/10/23 17:10	1

Method: SW846 8015 NM - Dies	sel Range Organics (DRO) (O	SC)					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	72.4	49.6	mg/Kg			12/09/23 03:14	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.6	U	49.6		mg/Kg		12/08/23 15:25	12/09/23 03:14	1
(GRO)-C6-C10									
Diesel Range Organics (Over	72.4		49.6		mg/Kg		12/08/23 15:25	12/09/23 03:14	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		12/08/23 15:25	12/09/23 03:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	153	S1+	70 - 130				12/08/23 15:25	12/09/23 03:14	1
o-Terphenyl	141	S1+	70 - 130				12/08/23 15:25	12/09/23 03:14	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	619		24.9		mg/Kg			12/09/23 04:19	5

5

Client Sample Results

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

Client Sample ID: S-4 (1.5')

Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/09/23 15:55	12/10/23 17:37	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/09/23 15:55	12/10/23 17:37	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/09/23 15:55	12/10/23 17:37	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		12/09/23 15:55	12/10/23 17:37	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/09/23 15:55	12/10/23 17:37	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		12/09/23 15:55	12/10/23 17:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	171	S1+	70 - 130				12/09/23 15:55	12/10/23 17:37	1
1,4-Difluorobenzene (Surr)	95		70 - 130				12/09/23 15:55	12/10/23 17:37	1
Method: TAL SOP Total BTEX - T	otal BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			12/10/23 17:37	1
Method: SW846 8015 NM - Diese	l Pango Organ		60)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.4	U	50.4		mg/Kg			12/09/23 03:35	1
-									
Method: SW846 8015B NM - Dies			· · · ·						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.4	U	50.4		mg/Kg		12/08/23 15:25	12/09/23 03:35	1
Diesel Range Organics (Over	<50.4	U	50.4		mg/Kg		12/08/23 15:25	12/09/23 03:35	1
C10-C28) Oll Range Organics (Over C28-C36)	<50.4		50.4		mg/Kg		12/08/23 15:25	12/09/23 03:35	1
On Mange Organics (Over 020-030)	~50.4	0	50.4		mg/rtg		12/00/23 13.23	12/09/23 03:33	I
	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate		S1+	70 - 130				12/08/23 15:25	12/09/23 03:35	1
Surrogate 1-Chlorooctane	147	5/+					12/08/23 15:25	12/09/23 03:35	1
		S1+	70 - 130					12/03/20 00.00	
1-Chlorooctane o-Terphenyl	140	S1+						12/03/20 00:00	
1-Chlorooctane	140 Chromatograp	S1+		MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion	140 Chromatograp	S1+ bhy - Solub	le	MDL	Unit mg/Kg	D	Prepared		Dil Fac

Date Received: 12/08/23 14:36

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		12/09/23 15:55	12/10/23 18:03	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/09/23 15:55	12/10/23 18:03	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/09/23 15:55	12/10/23 18:03	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		12/09/23 15:55	12/10/23 18:03	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/09/23 15:55	12/10/23 18:03	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		12/09/23 15:55	12/10/23 18:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	147	S1+	70 - 130				12/09/23 15:55	12/10/23 18:03	1
1,4-Difluorobenzene (Surr)	83		70 - 130				12/09/23 15:55	12/10/23 18:03	1

Eurofins Midland

Page 58 of 147

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-36710-17

Matrix: Solid

5

Project/Site: Daisy 24 State Com battery (11.11.23)

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Client Sample ID: S-4 (2')

Client: Carmona Resources

Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			12/10/23 18:03	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.5	U	50.5		mg/Kg			12/09/23 03:56	1
Method: SW846 8015B NM - Diese	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.5	U	50.5		mg/Kg		12/08/23 15:25	12/09/23 03:56	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.5	U	50.5		mg/Kg		12/08/23 15:25	12/09/23 03:56	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.5	U	50.5		mg/Kg		12/08/23 15:25	12/09/23 03:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	166	S1+	70 - 130				12/08/23 15:25	12/09/23 03:56	1
o-Terphenyl	158	S1+	70 - 130				12/08/23 15:25	12/09/23 03:56	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	252		5.03		mg/Kg			12/09/23 04:32	1

Client Sample ID: S-4 (3)

Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

Sample ID: 880-36/10-19 Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		12/09/23 15:55	12/10/23 18:30	1
Toluene	<0.00202	U	0.00202		mg/Kg		12/09/23 15:55	12/10/23 18:30	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		12/09/23 15:55	12/10/23 18:30	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		12/09/23 15:55	12/10/23 18:30	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		12/09/23 15:55	12/10/23 18:30	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		12/09/23 15:55	12/10/23 18:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	173	S1+	70 - 130				12/09/23 15:55	12/10/23 18:30	1
1,4-Difluorobenzene (Surr)	116		70 - 130				12/09/23 15:55	12/10/23 18:30	1

Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00403	U	0.00403		mg/Kg			12/10/23 18:30	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			12/09/23 04:17	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		12/08/23 15:25	12/09/23 04:17	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		12/08/23 15:25	12/09/23 04:17	1
C10-C28)									

Eurofins Midland

Released to Imaging: 4/9/2024 2:03:34 PM

Lab Sample ID: 880-36710-18 Matrix: Solid 5

Matrix: Solid

5

12 13

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-36710-19

Client Sample ID: S-4 (3')

Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		12/08/23 15:25	12/09/23 04:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	170	S1+	70 - 130				12/08/23 15:25	12/09/23 04:17	1
o-Terphenyl	161	S1+	70 - 130				12/08/23 15:25	12/09/23 04:17	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	66.8		5.04		mg/Kg			12/09/23 04:39	1
Client Sample ID: S-4 (4')							Lab Samp	le ID: 880-36	710-20
Date Collected: 12/07/23 00:00								Matri	x: Solid

ollected: 12/07/23 00:00

Date Received: 12/08/23 14:36

Method: SW846 8021B - Volati	le Organic Comp	ounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		12/09/23 15:55	12/10/23 18:57	1
Toluene	<0.00199	U	0.00199		mg/Kg		12/09/23 15:55	12/10/23 18:57	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		12/09/23 15:55	12/10/23 18:57	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		12/09/23 15:55	12/10/23 18:57	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		12/09/23 15:55	12/10/23 18:57	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		12/09/23 15:55	12/10/23 18:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	148	S1+	70 - 130				12/09/23 15:55	12/10/23 18:57	1
1,4-Difluorobenzene (Surr)	93		70 - 130				12/09/23 15:55	12/10/23 18:57	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg	_		12/10/23 18:57	1

Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (G	iC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			12/09/23 04:41	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		12/08/23 15:25	12/09/23 04:41	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		12/08/23 15:25	12/09/23 04:41	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/08/23 15:25	12/09/23 04:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	145	S1+	70 - 130				12/08/23 15:25	12/09/23 04:41	1
o-Terphenyl	139	S1+	70 - 130				12/08/23 15:25	12/09/23 04:41	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	77.3		5.05		mg/Kg			12/09/23 04:45	1

Surrogate Summary

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Pe	rcent Surrogat	rcent Surrogate Recovery (A	rcent Surrogate Recovery (Acceptance Li	rcent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1					
Lab Sample ID	Client Sample ID	(70-130)	(70-130)					
880-36710-1	S-1 (0-1')	119	84					
880-36710-1 MS	S-1 (0-1')	171 S1+	91					
880-36710-1 MSD	S-1 (0-1')	158 S1+	99					
880-36710-2	S-1 (1.5')	145 S1+	80					
880-36710-3	S-1 (2')	155 S1+	105					
880-36710-4	S-1 (3')	159 S1+	77					
880-36710-5	S-1 (4')	154 S1+	92					
880-36710-6	S-2 (0-1')	126	92					
880-36710-7	S-2 (1.5')	182 S1+	109					
880-36710-8	S-2 (2')	128	88					
880-36710-9	S-2 (3')	194 S1+	108					
880-36710-10	S-2 (4')	119	84					
880-36710-11	S-3 (0-1')	133 S1+	73					
880-36710-12	S-3 (1.5')	176 S1+	105					
880-36710-13	S-3 (2')	203 S1+	117					
880-36710-14	S-3 (3')	154 S1+	81					
880-36710-15	S-3 (4')	136 S1+	74					
880-36710-16	S-4 (0-1')	178 S1+	122					
880-36710-17	S-4 (1.5')	171 S1+	95					
880-36710-18	S-4 (2')	147 S1+	83					
880-36710-19	S-4 (3')	173 S1+	116					
880-36710-20	S-4 (4')	148 S1+	93					
LCS 880-68742/1-A	Lab Control Sample	151 S1+	84					
LCSD 880-68742/2-A	Lab Control Sample Dup	141 S1+	81					
MB 880-68401/5-B	Method Blank	77	83					
MB 880-68742/5-A	Method Blank	76	81					
Surrogate Legend								

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) 1CO1 OTPH1 (70-130) (70-130) Lab Sample ID Client Sample ID 880-36710-1 S-1 (0-1') 158 S1+ 142 S1+ 880-36710-1 MS S-1 (0-1') 152 S1+ 126 880-36710-1 MSD S-1 (0-1') 152 S1+ 127 880-36710-2 S-1 (1.5') 143 S1+ 152 S1+ 880-36710-3 S-1 (2') 159 S1+ 152 S1+ 880-36710-4 S-1 (3') 158 S1+ 148 S1+ 880-36710-5 S-1 (4') 164 S1+ 158 S1+ 880-36710-6 168 S1+ 153 S1+ S-2 (0-1') 880-36710-7 S-2 (1.5') 162 S1+ 143 S1+ 880-36710-8 S-2 (2') 161 S1+ 152 S1+ 880-36710-9 S-2 (3') 155 S1+ 150 S1+ 880-36710-10 S-2 (4') 161 S1+ 152 S1+ 880-36710-11 S-3 (0-1') 164 S1+ 156 S1+

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Prep Type: Total/NA

5

Prep Type: Total/NA

Surrogate Summary

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid

Matrix: Solid				Prep Type: Total/NA	
				Percent Surrogate Recovery (Acceptance Limits)	
		1CO1	OTPH1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		5
880-36710-12	S-3 (1.5')	153 S1+	148 S1+	·	
880-36710-13	S-3 (2')	151 S1+	143 S1+		6
880-36710-14	S-3 (3')	150 S1+	136 S1+		6
880-36710-15	S-3 (4')	162 S1+	145 S1+		
880-36710-16	S-4 (0-1')	153 S1+	141 S1+		
880-36710-17	S-4 (1.5')	147 S1+	140 S1+		
880-36710-18	S-4 (2')	166 S1+	158 S1+		8
880-36710-19	S-4 (3')	170 S1+	161 S1+		
880-36710-20	S-4 (4')	145 S1+	139 S1+		9
LCS 880-68700/2-A	Lab Control Sample	93	107		
LCSD 880-68700/3-A	Lab Control Sample Dup	94	91		
MB 880-68700/1-A	Method Blank	190 S1+	195 S1+		
Surrogate Legend					

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Page 62 of 147

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Prep Type: Total/NA

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-68401/5- Matrix: Solid Analysis Batch: 68650										Client Sa	mple ID: Meth Prep Type: Prep Bat	Total/NA
		MB MB		_				_	_			
Analyte		sult Qualif			MDL	Unit		<u>D</u>		repared	Analyzed	Dil Fac
Benzene	<0.00		0.0020			mg/K	-)5/23 10:27	12/09/23 19:20	
Toluene	<0.00		0.0020			mg/K)5/23 10:27	12/09/23 19:20	
Ethylbenzene	<0.00	200 U	0.0020	0		mg/K			12/0	05/23 10:27	12/09/23 19:20	
m-Xylene & p-Xylene	<0.00	400 U	0.0040	0		mg/K	9		12/0	05/23 10:27	12/09/23 19:20	
o-Xylene	<0.00	200 U	0.0020	0		mg/K	g		12/0	05/23 10:27	12/09/23 19:20	
Xylenes, Total	<0.00	400 U	0.0040	0		mg/K	g		12/0	5/23 10:27	12/09/23 19:20	
		MB MB										
Surrogate	%Recov	rery Qualif	fier Limits						P	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)		77	70 - 130	_					12/0	05/23 10:27	12/09/23 19:20	
1,4-Difluorobenzene (Surr)		83	70 - 130						12/0	5/23 10:27	12/09/23 19:20	-
_ Lab Sample ID: MB 880-68742/5-	A									Client Sa	mple ID: Meth	od Blank
Matrix: Solid										Show Of	Prep Type:	
Analysis Batch: 68650											Prep Bat	
Analysis Datch. 00050		МВ МВ									Fiep Dat	
Analyte		sult Qualif	ïer R		MDL	Unit		D		roparod	Analyzed	Dil Fac
Benzene	<0.00		0.0020		WDL	mg/Kg	7	_		Prepared 09/23 15:55	12/10/23 08:45	
							-					
	<0.00		0.0020			mg/K	-			9/23 15:55	12/10/23 08:45	
Ethylbenzene	<0.00		0.0020			mg/Kg				9/23 15:55	12/10/23 08:45	
m-Xylene & p-Xylene	<0.00		0.0040			mg/K	-			9/23 15:55	12/10/23 08:45	~
o-Xylene	<0.00		0.0020			mg/K	-			9/23 15:55	12/10/23 08:45	~
Xylenes, Total	<0.00	400 U	0.0040	0		mg/K	g		12/0	9/23 15:55	12/10/23 08:45	~
		MB MB										
Surrogate	%Recov	<u> </u>		_						Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)		76 81	70 - 130 70 - 130)9/23 15:55)9/23 15:55	12/10/23 08:45 12/10/23 08:45	
		01	70 - 730						12/0	9/23 10.00	12/10/23 00.45	
Lab Sample ID: LCS 880-68742/1	- A							C	lient	t Sample	ID: Lab Contro	
Matrix: Solid											Prep Type	
Analysis Batch: 68650											Prep Bat	ch: 68742
			Spike		LCS						%Rec	
Analyte			Added	Result	Qua	lifier	Unit			%Rec	Limits	
Benzene			0.100	0.09266			mg/Kg			93	70 - 130	
Toluene			0.100	0.1096			mg/Kg			110	70 - 130	
Ethylbenzene			0.100	0.09715			mg/Kg			97	70 - 130	
m-Xylene & p-Xylene			0.200	0.1982			mg/Kg			99	70 - 130	
o-Xylene			0.100	0.1001			mg/Kg			100	70 - 130	
	LCS	LCS										
Surrogate	%Recovery	Qualifier	Limits									
4-Bromofluorobenzene (Surr)	151	S1+	70 - 130									
1,4-Difluorobenzene (Surr)	84		70 - 130									
_ Lab Sample ID: LCSD 880-68742	/2-A						CI	ient	San	nple ID: L	ab Control Sa	nple Dur
Matrix: Solid									Cuil		Prep Type:	
											Prep Bat	
Analysis Batch: 68650			Spike	LCSD	1.00	.n						
Analyta			Spike				1114		~	0/ Dec	%Rec	RPE D Limi
Analyte			Added	Result	Qua	intier	Unit		D	%Rec	Limits R	PD Limi

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Eurofins Midland

11

Released to Imaging: 4/9/2024 2:03:34 PM

Benzene

0.08313

mg/Kg

83

70 - 130

0.100

35

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23) Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-6	8742/2-A					Clier	nt Sam	ple ID: I	Lab Contro		
Matrix: Solid									Prep 1	ype: To	tal/N/
Analysis Batch: 68650									Prep	Batch:	68742
			Spike	LCSD	LCSD				%Rec		RPI
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Toluene			0.100	0.1032		mg/Kg		103	70 - 130	6	3
Ethylbenzene			0.100	0.1037		mg/Kg		104	70 - 130	7	3
m-Xylene & p-Xylene			0.200	0.2042		mg/Kg		102	70 - 130	3	3
o-Xylene			0.100	0.1022		mg/Kg		102	70 - 130	2	3
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	141	S1+	70 - 130								
1,4-Difluorobenzene (Surr)	81		70 - 130								
Lab Cameria ID: 000 00740 4								01		ID: 0.4	(0.4)
Lab Sample ID: 880-36710-1 Matrix: Solid								Circ	ent Sample	ype: To	
Analysis Batch: 68650	Sample	Sample	Spike	MS	MS				%Rec	Batch:	00/4/
Analyta	•	Qualifier				Unit	Б	% Baa			
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
Benzene	< 0.00198		0.0996	0.1079		mg/Kg		108	70 - 130		
Toluene	<0.00198		0.0996	0.1144		mg/Kg		115	70 - 130		
Ethylbenzene	<0.00198		0.0996	0.09054		mg/Kg		91	70 - 130		
m-Xylene & p-Xylene	<0.00396	U	0.199	0.2008		mg/Kg		101	70 - 130		
o-Xylene	<0.00198	U	0.0996	0.1074		mg/Kg		108	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	171	S1+	70 - 130								
1,4-Difluorobenzene (Surr)	91		70 - 130								
Lab Sample ID: 880-36710-1	MSD							Clie	ent Sample	ID: S-1	(0-1'
Matrix: Solid									Prep 1	ype: To	tal/N/
Analysis Batch: 68650										Batch:	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPI
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Benzene	< 0.00198	U	0.100	0.09050		mg/Kg		90	70 - 130	18	3
Toluene	<0.00198		0.100	0.1075		mg/Kg		107	70 - 130	6	3
Ethylbenzene	< 0.00198		0.100	0.1028		mg/Kg		102	70 - 130	13	3
m-Xylene & p-Xylene	< 0.00396		0.201	0.1999		mg/Kg		102	70 - 130	0	3
o-Xylene	< 0.00198		0.100	0.09963		mg/Kg		99	70 - 130 70 - 130	8	3
,						5.5				-	Ū
Surrorate		MSD	l incite								
Surrogate	%Recovery		Limits								
4-Bromofluorobenzene (Surr)	158 99	S1+	70 - 130								
1.4-Difluorobenzene (Surr)			70 - 130								

Page 64 of 147

5

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23) Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 68700

Page 65 of 147

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued) Lab Sample ID: MB 880-68700/1-A Matrix: Solid Analysis Batch: 68637 MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		12/08/23 15:25	12/08/23 19:46	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		12/08/23 15:25	12/08/23 19:46	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	190	S1+	70 - 130				12/08/23 15:25	12/08/23 19:46	1
o-Terphenyl	195	S1+	70 - 130				12/08/23 15:25	12/08/23 19:46	1

Lab Sample ID: LCS 880-68700/2-A Matrix: Solid

Matrix: Solid							Prep ⁻	Type: Total/NA
Analysis Batch: 68637							Prep	Batch: 68700
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	1006		mg/Kg		101	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	970.5		mg/Kg		97	70 - 130	
C10-C28)								

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	93		70 - 130
o-Terphenyl	107		70 - 130

Lab Sample ID: LCSD 880-68700/3-A				Clier	nt Sam	n <mark>ple ID:</mark> I	Lab Contro	ol Sampl	e Dup
Matrix: Solid							Prep 1	Type: To	tal/NA
Analysis Batch: 68637							Prep	Batch:	68700
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	1015		mg/Kg		101	70 - 130	1	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	963.3		mg/Kg		96	70 - 130	1	20
C10-C28)									

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	94		70 - 130
o-Terphenyl	91		70 - 130

Lab Sample ID: 880-36710-1 MS Matrix: Solid

Analysis Batch: 68637									Prep	b Batch:	68700	
	Sample	Sample	Spike	MS	MS				%Rec			
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits			
Gasoline Range Organics (GRO)-C6-C10	<49.5	U	996	871.6		mg/Kg		84	70 - 130			
Diesel Range Organics (Over C10-C28)	<49.5	U	996	1279		mg/Kg		126	70 - 130			

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	152	S1+	70 - 130
o-Terphenyl	126		70 - 130

Eurofins Midland

Client Sample ID: S-1 (0-1')

Prep Type: Total/NA

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23) Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matelia: Callel	1 MSD								Cli	ent Sample		
Matrix: Solid											Type: To	
Analysis Batch: 68637											Batch:	
	Sample		Spike		MSD			_	~ -	%Rec		RPD
Analyte		Qualifier	Added		Qualifi			<u>D</u> .	%Rec	Limits	RPD	Limi
Gasoline Range Organics (GRO)-C6-C10	<49.5	U	996	881.0		mg/Kg			85	70 - 130	1	20
Diesel Range Organics (Over	<49.5	U.	996	1288		mg/Kg			127	70 - 130	1	20
C10-C28)	10.0	0	000	1200		ing/rtg			121	10 - 100	•	2.
,												
	MSD											
Surrogate 1-Chlorooctane	%Recovery	Qualifier	Limits 70 - 130									
	152	57+	70 - 130 70 - 130									
o-Terphenyl	127		70 - 130									
lethod: 300.0 - Anions,	Ion Chromat	ography										
Lab Sample ID: MB 880-686	689/1-A								Client S	Sample ID:	Method	Blan
Matrix: Solid										Prep	Type: S	olubl
Analysis Batch: 68723												
		МВ МВ										
Analyte	Re	esult Qualifier		RL	MDL L	Init	D	Pr	epared	Analyz	zed	Dil Fa
Chloride	<	5.00 U		5.00	n	ng/Kg				12/09/23	06:43	
							0		•		ontrol S	omoli
	3689/2-A						CI	ent	Sample	D: Lab C		
Matrix: Solid	3689/2-A						CI	ent	Sample		Type: S	
Matrix: Solid	3689/2-A		Spiko	105	109		CII	ent	Sample	Prep		
Matrix: Solid Analysis Batch: 68723	3689/2-A		Spike Added		LCS	er Unit	CII		-	Prep %Rec		
Matrix: Solid Analysis Batch: 68723 Analyte			Added	Result				<u>D</u>	%Rec	Prep %Rec Limits		
Matrix: Solid Analysis Batch: 68723 Analyte						er <u>Unit</u> mg/Kg			-	Prep %Rec		
Matrix: Solid Analysis Batch: 68723 Analyte Chloride			Added	Result		mg/Kg		<u>D</u> .	%Rec 107	Prep %Rec Limits 90 - 110	Type: S	oluble
Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: LCSD 880-6			Added	Result		mg/Kg		<u>D</u> .	%Rec 107	Prep %Rec Limits 90 - 110	Type: S	oluble e Dup
Analyte Chloride Lab Sample ID: LCSD 880-6 Matrix: Solid			Added	Result		mg/Kg		<u>D</u> .	%Rec 107	Prep %Rec Limits 90 - 110	Type: S	oluble e Dup
Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: LCSD 880-6 Matrix: Solid			Added	Result 266.3		mg/Kg		<u>D</u> .	%Rec 107	Prep %Rec Limits 90 - 110	Type: S	e Dup oluble
Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: LCSD 880-6			Added 250	Result 266.3 LCSD	Qualifi	mg/Kg		<u>D</u> .	%Rec 107	Prep %Rec Limits 90 - 110 Lab Contro Prep	Type: S	e Dup oluble RPI
Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 68723 Analyte			Added 250 Spike	Result 266.3 LCSD	Qualifi	mg/Kg		D Sam	%Rec 107 ple ID:	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec	Type: S	e Duj oluble RPI Limi
Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 68723 Analyte Chloride	68689/3-A		Added 250 Spike Added	Result 266.3 LCSD Result	Qualifi	er Unit		D Sam	%Rec 107 ple ID: %Rec 104	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110	Type: S ol Sampl Type: S <u>RPD</u> 2	e Dup olubio olubio RPI Limi 20
Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: 880-36679-/	68689/3-A		Added 250 Spike Added	Result 266.3 LCSD Result	Qualifi	er Unit		D Sam	%Rec 107 ple ID: %Rec 104	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID	Type: S ol Sampl Type: S <u></u> 2 : Matrix	e Dup oluble RPI Limi 20 Spike
Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: 880-36679-7 Matrix: Solid	68689/3-A		Added 250 Spike Added	Result 266.3 LCSD Result	Qualifi	er Unit		D Sam	%Rec 107 ple ID: %Rec 104	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID	Type: S ol Sampl Type: S <u>RPD</u> 2	e Dup oluble RPI Limi 20 Spike
Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: 880-36679-/	68689/3-A		Added 250 Spike Added 250	Result 266.3 LCSD Result 260.3	Qualifi LCSD Qualifi	er Unit		D Sam	%Rec 107 ple ID: %Rec 104	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep	Type: S ol Sampl Type: S <u></u> 2 : Matrix	e Dup oluble RPI Limi 20 Spike
Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: 880-36679-7 Matrix: Solid Analysis Batch: 68723	68689/3-A A-87-E MS Sample		Added 250 Spike Added 250 Spike	Result 266.3 LCSD Result 260.3	Qualifi LCSD Qualifi	er Unit mg/Kg		<u>D</u> . Sam	%Rec 107 ple ID: %Rec 104 Client	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec	Type: S ol Sampl Type: S <u></u> 2 : Matrix	e Dup oluble RPI Limi 20 Spike
Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: 880-36679-7 Matrix: Solid Analysis Batch: 68723 Analyte	68689/3-A A-87-E MS Sample Result	Qualifier	Added 250 Spike Added 250 Spike Added	Result 266.3 LCSD Result 260.3 MS Result	Qualifi LCSD Qualifi MS Qualifi	er Unit er Unit mg/Kg		D Sam	%Rec 107 ple ID: %Rec 104 Client	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits	Type: S ol Sampl Type: S <u></u> 2 : Matrix	e Dup oluble RPI Limi 20 Spike
Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: 880-36679-7 Matrix: Solid Analysis Batch: 68723 Analyte	68689/3-A A-87-E MS Sample	Qualifier	Added 250 Spike Added 250 Spike	Result 266.3 LCSD Result 260.3	Qualifi LCSD Qualifi MS Qualifi	er Unit mg/Kg		<u>D</u> . Sam	%Rec 107 ple ID: %Rec 104 Client	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec	Type: S ol Sampl Type: S <u></u> 2 : Matrix	e Dup oluble RPI Limi 20 Spike
Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: 880-36679-7 Matrix: Solid Analysis Batch: 68723 Analyte Chloride	68689/3-A A-87-E MS 	Qualifier	Added 250 Spike Added 250 Spike Added	Result 266.3 LCSD Result 260.3 MS Result	Qualifi LCSD Qualifi MS Qualifi	er Unit mg/Kg		<u>D</u> .	%Rec 107 ple ID: %Rec 104 Client %Rec 87	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	Type: S DI Sampl Type: S RPD 2 C: Matrix Type: S	e Dup oluble RPI Limi 20 Spike
Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: 880-36679-7 Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: 880-36679-7	68689/3-A A-87-E MS 	Qualifier	Added 250 Spike Added 250 Spike Added	Result 266.3 LCSD Result 260.3 MS Result	Qualifi LCSD Qualifi MS Qualifi	er Unit mg/Kg		<u>D</u> .	%Rec 107 ple ID: %Rec 104 Client %Rec 87	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	Type: S OI Sampl Type: S RPD 2	e Dup oluble RPI Limi 20 Spike oluble
Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: 880-36679-7 Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: 880-36679-7 Matrix: Solid	68689/3-A A-87-E MS 	Qualifier	Added 250 Spike Added 250 Spike Added	Result 266.3 LCSD Result 260.3 MS Result	Qualifi LCSD Qualifi MS Qualifi	er Unit mg/Kg		<u>D</u> .	%Rec 107 ple ID: %Rec 104 Client %Rec 87	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	Type: S DI Sampl Type: S RPD 2 C: Matrix Type: S	e Dup oluble RPI Limi 20 Spike oluble
Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: 880-36679-7 Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: 880-36679-7 Matrix: Solid	68689/3-A A-87-E MS Sample Result 123 A-87-F MSD	Qualifier F1	Added 250 Spike Added 250 Spike Added 252	Result 266.3 LCSD Result 260.3 MS Result 341.4	Qualifi LCSD Qualifi MS Qualifi F1	er Unit mg/Kg		<u>D</u> .	%Rec 107 ple ID: %Rec 104 Client %Rec 87	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110 0: Matrix Sp Prep	Type: S OI Sampl Type: S RPD 2	e Dup oluble RPI Limi 20 Spike oluble
Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 68723 Analyte Chloride Lab Sample ID: 880-36679-7 Matrix: Solid Analysis Batch: 68723	68689/3-A A-87-E MS Sample Result 123 A-87-F MSD Sample	Qualifier	Added 250 Spike Added 250 Spike Added	Result 266.3 LCSD Result 260.3 MS Result 341.4	Qualifi LCSD Qualifi MS Qualifi	er Unit mg/Kg		<u>D</u> .	%Rec 107 ple ID: %Rec 104 Client %Rec 87	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	Type: S OI Sampl Type: S RPD 2	e Dup oluble RPE Limi 20 Spike oluble

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23) Page 67 of 147

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 880-36709-A-4-B M Matrix: Solid	S							Client	Sample ID: Prep	: Matrix Type: S	
Analysis Batch: 68723											
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	96.9		248	338.8		mg/Kg		98	90 - 110		
Lab Sample ID: 880-36709-A-4-C M	SD					C	Client Sa	ample IC): Matrix Sp	oike Dup	olicate
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 68723	• •						~-		
Analyte	-	Sample Qualifier	Spike Added		MSD Qualifier	Unit	D	%Rec	%Rec Limits	RPD	RPD Limit
Chloride	96.9		248	336.1	quamer	mg/Kg		97	90 - 110	1	20
-											
Lab Sample ID: MB 880-68697/1-A Matrix: Solid								Client S	Sample ID: I	Method Type: S	
Analysis Batch: 68724									Fieb	Type. S	oluble
		MB MB									
Analyte	R	esult Qualifier		RL	MDL Unit		D P	repared	Analyz	ed	Dil Fac
Chloride	<	<5.00 U		5.00	mg/K	9			12/09/23 (02:55	1
- Lab Sample ID: LCS 880-68697/2-A							Client	Sample	e ID: Lab Co	ontrol S	ample
Matrix: Solid										Type: S	
Analysis Batch: 68724											
			Spike		LCS		_	~ -	%Rec		
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
Lab Sample ID: LCSD 880-68697/3-	A		250	258.2		mg/Kg Cli	ent San	103 Iple ID:	90 - 110 Lab Contro		
Chloride Lab Sample ID: LCSD 880-68697/3- Matrix: Solid Analysis Batch: 68724	A		250	258.2			ent San		Lab Contro	l Sampl Type: S	-
Lab Sample ID: LCSD 880-68697/3- Matrix: Solid Analysis Batch: 68724	A		Spike	LCSD	LCSD	Cli		nple ID:	Lab Contro Prep ⁻ %Rec	Type: S	oluble RPD
Lab Sample ID: LCSD 880-68697/3- Matrix: Solid Analysis Batch: 68724 Analyte	A		Spike Added	LCSD Result	LCSD Qualifier	Cli	ent San	%Rec	Lab Contro Prep %Rec Limits	Type: So	oluble RPD Limit
Lab Sample ID: LCSD 880-68697/3- Matrix: Solid Analysis Batch: 68724	A		Spike	LCSD		Cli		nple ID:	Lab Contro Prep ⁻ %Rec	Type: S	oluble RPD Limit
Lab Sample ID: LCSD 880-68697/3- Matrix: Solid Analysis Batch: 68724 Analyte Chloride Lab Sample ID: 880-36710-10 MS	A		Spike Added	LCSD Result		Cli		%Rec 103	Lab Contro Prep %Rec Limits 90 - 110	Type: So <u>RPD</u> 0 ole ID: So	oluble RPD Limit 20 -2 (4')
Lab Sample ID: LCSD 880-68697/3- Matrix: Solid Analysis Batch: 68724 Analyte Chloride Lab Sample ID: 880-36710-10 MS Matrix: Solid	A		Spike Added	LCSD Result		Cli		%Rec 103	Lab Contro Prep %Rec Limits 90 - 110	Type: S	oluble RPD Limit 20 -2 (4')
Lab Sample ID: LCSD 880-68697/3- Matrix: Solid Analysis Batch: 68724 Analyte Chloride Lab Sample ID: 880-36710-10 MS			Spike Added 250	LCSD Result 256.9	Qualifier	Cli		%Rec 103	Lab Contro Prep %Rec Limits 90 - 110 Client Samp Prep	Type: So <u>RPD</u> 0 ole ID: So	oluble RPD Limit 20 -2 (4')
Lab Sample ID: LCSD 880-68697/3- Matrix: Solid Analysis Batch: 68724 Analyte Chloride Lab Sample ID: 880-36710-10 MS Matrix: Solid	Sample	Sample Qualifier	Spike Added	LCSD Result 256.9 MS		Cli		%Rec 103	Lab Contro Prep %Rec Limits 90 - 110	Type: So <u>RPD</u> 0 ole ID: So	oluble RPD Limit 20 -2 (4')
Lab Sample ID: LCSD 880-68697/3- Matrix: Solid Analysis Batch: 68724 Analyte Chloride Lab Sample ID: 880-36710-10 MS Matrix: Solid Analysis Batch: 68724	Sample	Qualifier	Spike Added 250 Spike	LCSD Result 256.9 MS	Qualifier	Cli Unit mg/Kg	<u> </u>	<mark>%Rec</mark> 103	Lab Contro Prep %Rec Limits 90 - 110 Client Samp Prep %Rec	Type: So <u>RPD</u> 0 ole ID: So	oluble RPD Limit 20 -2 (4')
Lab Sample ID: LCSD 880-68697/3- Matrix: Solid Analysis Batch: 68724 Analyte Chloride Lab Sample ID: 880-36710-10 MS Matrix: Solid Analysis Batch: 68724 Analyte Chloride	Sample Result	Qualifier	Spike Added 250 Spike Added	LCSD Result 256.9 MS Result	Qualifier	Cli Unit mg/Kg Unit	<u> </u>	%Rec 103 0 %Rec 99	Lab Contro Prep 7 %Rec Limits 90 - 110 Client Samp Prep 7 %Rec Limits 90 - 110	Type: Si <u>RPD</u> 0 ole ID: Si Type: Si	oluble RPD Limit 20 -2 (4') oluble
Lab Sample ID: LCSD 880-68697/3- Matrix: Solid Analysis Batch: 68724 Analyte Chloride Lab Sample ID: 880-36710-10 MS Matrix: Solid Analysis Batch: 68724 Analyte	Sample Result	Qualifier	Spike Added 250 Spike Added	LCSD Result 256.9 MS Result	Qualifier	Cli Unit mg/Kg Unit	<u> </u>	%Rec 103 0 %Rec 99	Lab Contro Prep 7 %Rec Limits 90 - 110 Client Samp Prep 7 %Rec Limits 90 - 110	Type: Si <u>RPD</u> 0 ole ID: Si Type: Si	oluble RPD Limit 20 -2 (4') oluble -2 (4')
Lab Sample ID: LCSD 880-68697/3- Matrix: Solid Analysis Batch: 68724 Analyte Chloride Lab Sample ID: 880-36710-10 MS Matrix: Solid Analysis Batch: 68724 Analyte Chloride Lab Sample ID: 880-36710-10 MSD	Sample Result	Qualifier	Spike Added 250 Spike Added	LCSD Result 256.9 MS Result	Qualifier	Cli Unit mg/Kg Unit	<u> </u>	%Rec 103 0 %Rec 99	Lab Contro Prep 7 %Rec Limits 90 - 110 Client Samp Prep 7 %Rec Limits 90 - 110	Type: Si <u>RPD</u> 0 ole ID: Si Type: Si ole ID: Si	oluble RPD Limit 20 -2 (4') oluble -2 (4')
Lab Sample ID: LCSD 880-68697/3- Matrix: Solid Analysis Batch: 68724 Analyte Chloride Lab Sample ID: 880-36710-10 MS Matrix: Solid Analysis Batch: 68724 Analyte Chloride Lab Sample ID: 880-36710-10 MSD Matrix: Solid Analysis Batch: 68724	Sample Result <5.01 Sample	Qualifier U	Spike Added 250 Spike Added 251 Spike	LCSD Result 256.9 MS Result 250.8	Qualifier MS Qualifier MSD	Cli Unit mg/Kg	D	%Rec 103 %Rec 99 00	Lab Contro Prep %Rec Limits 90 - 110 Client Samp Prep %Rec Limits 90 - 110 Client Samp Prep %Rec	Type: Si RPD 0 ole ID: Si Type: Si ole ID: Si Type: Si	oluble RPD Limit 20 -2 (4') oluble -2 (4') oluble
Lab Sample ID: LCSD 880-68697/3- Matrix: Solid Analysis Batch: 68724 Analyte Chloride Lab Sample ID: 880-36710-10 MS Matrix: Solid Analysis Batch: 68724 Chloride Lab Sample ID: 880-36710-10 MSD Matrix: Solid Analysis Batch: 68724 Analyte	Sample Result <5.01 Sample Result	Qualifier	Spike Added 250 Spike Added 251 Spike Added	LCSD Result 256.9 MS Result 250.8 MSD Result	Qualifier MS Qualifier	Cli Unit mg/Kg Unit Unit	<u> </u>	%Rec 103 %Rec 99 00 %Rec 99 00 %Rec	Lab Contro Prep %Rec Limits 90 - 110 Client Samp Prep %Rec Limits 90 - 110 Client Samp Prep %Rec Limits	Type: Si RPD 0 ole ID: Si Type: Si ole ID: Si Type: Si RPD	oluble RPD Limit 20 -2 (4') oluble -2 (4') oluble RPD Limit
Lab Sample ID: LCSD 880-68697/3- Matrix: Solid Analysis Batch: 68724 Chloride Lab Sample ID: 880-36710-10 MS Matrix: Solid Analysis Batch: 68724 Analyte Chloride Lab Sample ID: 880-36710-10 MSD Matrix: Solid	Sample Result <5.01 Sample	Qualifier	Spike Added 250 Spike Added 251 Spike	LCSD Result 256.9 MS Result 250.8	Qualifier MS Qualifier MSD	Cli Unit mg/Kg	D	%Rec 103 %Rec 99 00	Lab Contro Prep %Rec Limits 90 - 110 Client Samp Prep %Rec Limits 90 - 110 Client Samp Prep %Rec	Type: Si RPD 0 ole ID: Si Type: Si ole ID: Si Type: Si	oluble RPD Limit 20 -2 (4') oluble -2 (4') oluble RPD Limit
Lab Sample ID: LCSD 880-68697/3- Matrix: Solid Analysis Batch: 68724 Analyte Chloride Lab Sample ID: 880-36710-10 MS Matrix: Solid Analysis Batch: 68724 Analyte Chloride Lab Sample ID: 880-36710-10 MSD Matrix: Solid Analysis Batch: 68724 Analyte	Sample Result <5.01 Sample Result	Qualifier	Spike Added 250 Spike Added 251 Spike Added	LCSD Result 256.9 MS Result 250.8 MSD Result	Qualifier MS Qualifier MSD	Cli Unit mg/Kg Unit Unit	D	%Rec 103 %Rec 99 00 %Rec 99 00 %Rec 99 00 %Rec 99 00 99 00 99 00 99 00 99 00 99 00 99 00 99 99	Lab Contro Prep %Rec Limits 90 - 110 Client Samp Prep %Rec Limits 90 - 110 Client Samp Prep %Rec Limits	Type: Si RPD 0 ole ID: Si Type: Si ole ID: Si Type: Si RPD 0	oluble RPD Limit 20 -2 (4') oluble -2 (4') oluble RPD Limit 20
Lab Sample ID: LCSD 880-68697/3- Matrix: Solid Analysis Batch: 68724 Analyte Chloride Lab Sample ID: 880-36710-10 MS Matrix: Solid Analysis Batch: 68724 Analyte Chloride Lab Sample ID: 880-36710-10 MSD Matrix: Solid Analysis Batch: 68724 Analyte Chloride Lab Sample ID: 880-36710-20 MS Matrix: Solid	Sample Result <5.01 Sample Result	Qualifier	Spike Added 250 Spike Added 251 Spike Added	LCSD Result 256.9 MS Result 250.8 MSD Result	Qualifier MS Qualifier MSD	Cli Unit mg/Kg Unit Unit	D	%Rec 103 %Rec 99 00 %Rec 99 00 %Rec 99 00 %Rec 99 00 99 00 99 00 99 00 99 00 99 00 99 00 99 99	Lab Contro Prep 7 %Rec Limits 90 - 110 Client Samp Prep 7 %Rec Limits 90 - 110 Client Samp 90 - 110 Client Samp	Type: Si RPD 0 ole ID: Si Type: Si ole ID: Si Type: Si RPD 0	oluble RPD Limit 20 -2 (4') oluble -2 (4') oluble RPD Limit 20 -4 (4')
Lab Sample ID: LCSD 880-68697/3- Matrix: Solid Analysis Batch: 68724 Analyte Chloride Lab Sample ID: 880-36710-10 MS Matrix: Solid Analysis Batch: 68724 Chloride Lab Sample ID: 880-36710-10 MSD Matrix: Solid Analysis Batch: 68724 Analysis Batch: 68724 Analyte Chloride Lab Sample ID: 880-36710-20 MS	Sample Result <5.01 Sample Result <5.01	Qualifier U Sample Qualifier U	Spike Added 250 Spike Added 251 Spike Added	LCSD Result 256.9 MS Result 250.8 MSD Result 251.7	Qualifier MS Qualifier MSD Qualifier	Cli Unit mg/Kg Unit Unit	D	%Rec 103 %Rec 99 00 %Rec 99 00 %Rec 99 00 %Rec 99 00 99 00 99 00 99 00 99 00 99 00 99 00 99 99	Lab Contro Prep 7 %Rec Limits 90 - 110 Client Samp Prep 7 %Rec Limits 90 - 110 Client Samp Prep 7 %Rec Limits 90 - 110	Type: Si RPD 0 ole ID: Si Type: Si ole ID: Si RPD 0 ole ID: Si	oluble RPD Limit 20 -2 (4') oluble -2 (4') oluble RPD Limit 20 -4 (4')
Lab Sample ID: LCSD 880-68697/3- Matrix: Solid Analysis Batch: 68724 Analyte Chloride Lab Sample ID: 880-36710-10 MS Matrix: Solid Analysis Batch: 68724 Analyte Chloride Lab Sample ID: 880-36710-10 MSD Matrix: Solid Analysis Batch: 68724 Analyte Chloride Lab Sample ID: 880-36710-20 MS Matrix: Solid	Sample Result <5.01 Sample Result <5.01	Qualifier	Spike Added 250 Spike Added 251 Spike Added	LCSD Result 256.9 MS Result 250.8 MSD Result 251.7	Qualifier MS Qualifier MSD	Cli Unit mg/Kg Unit Unit	D	%Rec 103 %Rec 99 00 %Rec 99 00 %Rec 99 00 %Rec 99 00 99 00 99 00 99 00 99 00 99 00 99 00 99 99	Lab Contro Prep 7 %Rec Limits 90 - 110 Client Samp Prep 7 %Rec Limits 90 - 110 Client Samp 90 - 110 Client Samp	Type: Si RPD 0 ole ID: Si Type: Si ole ID: Si RPD 0 ole ID: Si	oluble RPD Limit 20 -2 (4') oluble -2 (4') oluble RPD Limit 20 -4 (4')

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Method: 300.0 - Anions, Ion Chromatography

Sample Spike MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limit	Lab Sample ID: 880-36710 Matrix: Solid Analysis Batch: 68724	-20 MSD							С	lient Samp Prep	ole ID: S- Type: So		
	Analysis Datch. 00724	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Chloride 77.3 253 332.5 mg/Kg 101 90.110 0 24	-	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec		RPD	Limit	
	Chloride	77.3		253	332.5		mg/Kg		101	90 - 110	0	20	

Eurofins Midland

Page 68 of 147

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

GC VOA

Prep Batch: 68401

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
MB 880-68401/5-B	Method Blank	Total/NA	Solid	5035	
Analysis Batch: 68650					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36710-1	S-1 (0-1')	Total/NA	Solid	8021B	68742
880-36710-2	S-1 (1.5')	Total/NA	Solid	8021B	68742
880-36710-3	S-1 (2')	Total/NA	Solid	8021B	68742
880-36710-4	S-1 (3')	Total/NA	Solid	8021B	68742
880-36710-5	S-1 (4')	Total/NA	Solid	8021B	68742
880-36710-6	S-2 (0-1')	Total/NA	Solid	8021B	68742
880-36710-7	S-2 (1.5')	Total/NA	Solid	8021B	68742
880-36710-8	S-2 (2')	Total/NA	Solid	8021B	68742
880-36710-9	S-2 (3')	Total/NA	Solid	8021B	68742
880-36710-10	S-2 (4')	Total/NA	Solid	8021B	68742
880-36710-11	S-3 (0-1')	Total/NA	Solid	8021B	68742
880-36710-12	S-3 (1.5')	Total/NA	Solid	8021B	68742
880-36710-13	S-3 (2')	Total/NA	Solid	8021B	68742
880-36710-14	S-3 (3')	Total/NA	Solid	8021B	68742
880-36710-15	S-3 (4')	Total/NA	Solid	8021B	68742
880-36710-16	S-4 (0-1')	Total/NA	Solid	8021B	68742
880-36710-17	S-4 (1.5')	Total/NA	Solid	8021B	68742
880-36710-18	S-4 (2')	Total/NA	Solid	8021B	68742
880-36710-19	S-4 (3')	Total/NA	Solid	8021B	68742
880-36710-20	S-4 (4')	Total/NA	Solid	8021B	68742
MB 880-68401/5-B	Method Blank	Total/NA	Solid	8021B	68401
MB 880-68742/5-A	Method Blank	Total/NA	Solid	8021B	68742
LCS 880-68742/1-A	Lab Control Sample	Total/NA	Solid	8021B	68742
LCSD 880-68742/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	68742
880-36710-1 MS	S-1 (0-1')	Total/NA	Solid	8021B	68742
880-36710-1 MSD	S-1 (0-1')	Total/NA	Solid	8021B	68742

Prep Batch: 68742

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-36710-1	S-1 (0-1')	Total/NA	Solid	5035	
880-36710-2	S-1 (1.5')	Total/NA	Solid	5035	
880-36710-3	S-1 (2')	Total/NA	Solid	5035	
880-36710-4	S-1 (3')	Total/NA	Solid	5035	
880-36710-5	S-1 (4')	Total/NA	Solid	5035	
880-36710-6	S-2 (0-1')	Total/NA	Solid	5035	
880-36710-7	S-2 (1.5')	Total/NA	Solid	5035	
880-36710-8	S-2 (2')	Total/NA	Solid	5035	
880-36710-9	S-2 (3')	Total/NA	Solid	5035	
880-36710-10	S-2 (4')	Total/NA	Solid	5035	
880-36710-11	S-3 (0-1')	Total/NA	Solid	5035	
880-36710-12	S-3 (1.5')	Total/NA	Solid	5035	
880-36710-13	S-3 (2')	Total/NA	Solid	5035	
880-36710-14	S-3 (3')	Total/NA	Solid	5035	
880-36710-15	S-3 (4')	Total/NA	Solid	5035	
880-36710-16	S-4 (0-1')	Total/NA	Solid	5035	
880-36710-17	S-4 (1.5')	Total/NA	Solid	5035	
880-36710-18	S-4 (2')	Total/NA	Solid	5035	

Eurofins Midland

Page 69 of 147

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

GC VOA (Continued)

Prep Batch: 68742 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36710-19	S-4 (3')	Total/NA	Solid	5035	
880-36710-20	S-4 (4')	Total/NA	Solid	5035	
MB 880-68742/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-68742/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-68742/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-36710-1 MS	S-1 (0-1')	Total/NA	Solid	5035	
880-36710-1 MSD	S-1 (0-1')	Total/NA	Solid	5035	

Analysis Batch: 68968

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36710-1	S-1 (0-1')	Total/NA	Solid	Total BTEX	
380-36710-2	S-1 (1.5')	Total/NA	Solid	Total BTEX	
880-36710-3	S-1 (2')	Total/NA	Solid	Total BTEX	
380-36710-4	S-1 (3')	Total/NA	Solid	Total BTEX	
380-36710-5	S-1 (4')	Total/NA	Solid	Total BTEX	
380-36710-6	S-2 (0-1')	Total/NA	Solid	Total BTEX	
380-36710-7	S-2 (1.5')	Total/NA	Solid	Total BTEX	
380-36710-8	S-2 (2')	Total/NA	Solid	Total BTEX	
380-36710-9	S-2 (3')	Total/NA	Solid	Total BTEX	
380-36710-10	S-2 (4')	Total/NA	Solid	Total BTEX	
380-36710-11	S-3 (0-1')	Total/NA	Solid	Total BTEX	
80-36710-12	S-3 (1.5')	Total/NA	Solid	Total BTEX	
380-36710-13	S-3 (2')	Total/NA	Solid	Total BTEX	
380-36710-14	S-3 (3')	Total/NA	Solid	Total BTEX	
380-36710-15	S-3 (4')	Total/NA	Solid	Total BTEX	
380-36710-16	S-4 (0-1')	Total/NA	Solid	Total BTEX	
380-36710-17	S-4 (1.5')	Total/NA	Solid	Total BTEX	
380-36710-18	S-4 (2')	Total/NA	Solid	Total BTEX	
380-36710-19	S-4 (3')	Total/NA	Solid	Total BTEX	
880-36710-20	S-4 (4')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 68637

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-36710-1	S-1 (0-1')	Total/NA	Solid	8015B NM	68700
880-36710-2	S-1 (1.5')	Total/NA	Solid	8015B NM	68700
880-36710-3	S-1 (2')	Total/NA	Solid	8015B NM	68700
880-36710-4	S-1 (3')	Total/NA	Solid	8015B NM	68700
880-36710-5	S-1 (4')	Total/NA	Solid	8015B NM	68700
880-36710-6	S-2 (0-1')	Total/NA	Solid	8015B NM	68700
880-36710-7	S-2 (1.5')	Total/NA	Solid	8015B NM	68700
880-36710-8	S-2 (2')	Total/NA	Solid	8015B NM	68700
880-36710-9	S-2 (3')	Total/NA	Solid	8015B NM	68700
880-36710-10	S-2 (4')	Total/NA	Solid	8015B NM	68700
880-36710-11	S-3 (0-1')	Total/NA	Solid	8015B NM	68700
880-36710-12	S-3 (1.5')	Total/NA	Solid	8015B NM	68700
880-36710-13	S-3 (2')	Total/NA	Solid	8015B NM	68700
880-36710-14	S-3 (3')	Total/NA	Solid	8015B NM	68700
880-36710-15	S-3 (4')	Total/NA	Solid	8015B NM	68700
880-36710-16	S-4 (0-1')	Total/NA	Solid	8015B NM	68700

Eurofins Midland

Page 70 of 147

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

GC Semi VOA (Continued)

Analysis Batch: 68637 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-36710-17	S-4 (1.5')	Total/NA	Solid	8015B NM	68700
880-36710-18	S-4 (2')	Total/NA	Solid	8015B NM	68700
880-36710-19	S-4 (3')	Total/NA	Solid	8015B NM	68700
880-36710-20	S-4 (4')	Total/NA	Solid	8015B NM	68700
MB 880-68700/1-A	Method Blank	Total/NA	Solid	8015B NM	68700
LCS 880-68700/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	68700
LCSD 880-68700/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	68700
880-36710-1 MS	S-1 (0-1')	Total/NA	Solid	8015B NM	68700
880-36710-1 MSD	S-1 (0-1')	Total/NA	Solid	8015B NM	68700

Prep Batch: 68700

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36710-1	S-1 (0-1')	Total/NA	Solid	8015NM Prep	
880-36710-2	S-1 (1.5')	Total/NA	Solid	8015NM Prep	
880-36710-3	S-1 (2')	Total/NA	Solid	8015NM Prep	
880-36710-4	S-1 (3')	Total/NA	Solid	8015NM Prep	
880-36710-5	S-1 (4')	Total/NA	Solid	8015NM Prep	
880-36710-6	S-2 (0-1')	Total/NA	Solid	8015NM Prep	
880-36710-7	S-2 (1.5')	Total/NA	Solid	8015NM Prep	
880-36710-8	S-2 (2')	Total/NA	Solid	8015NM Prep	
880-36710-9	S-2 (3')	Total/NA	Solid	8015NM Prep	
880-36710-10	S-2 (4')	Total/NA	Solid	8015NM Prep	
880-36710-11	S-3 (0-1')	Total/NA	Solid	8015NM Prep	
880-36710-12	S-3 (1.5')	Total/NA	Solid	8015NM Prep	
880-36710-13	S-3 (2')	Total/NA	Solid	8015NM Prep	
880-36710-14	S-3 (3')	Total/NA	Solid	8015NM Prep	
880-36710-15	S-3 (4')	Total/NA	Solid	8015NM Prep	
880-36710-16	S-4 (0-1')	Total/NA	Solid	8015NM Prep	
880-36710-17	S-4 (1.5')	Total/NA	Solid	8015NM Prep	
880-36710-18	S-4 (2')	Total/NA	Solid	8015NM Prep	
880-36710-19	S-4 (3')	Total/NA	Solid	8015NM Prep	
880-36710-20	S-4 (4')	Total/NA	Solid	8015NM Prep	
MB 880-68700/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-68700/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-68700/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-36710-1 MS	S-1 (0-1')	Total/NA	Solid	8015NM Prep	
880-36710-1 MSD	S-1 (0-1')	Total/NA	Solid	8015NM Prep	

Analysis Batch: 68812

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-36710-1	S-1 (0-1')	Total/NA	Solid	8015 NM	
880-36710-2	S-1 (1.5')	Total/NA	Solid	8015 NM	
880-36710-3	S-1 (2')	Total/NA	Solid	8015 NM	
880-36710-4	S-1 (3')	Total/NA	Solid	8015 NM	
880-36710-5	S-1 (4')	Total/NA	Solid	8015 NM	
880-36710-6	S-2 (0-1')	Total/NA	Solid	8015 NM	
880-36710-7	S-2 (1.5')	Total/NA	Solid	8015 NM	
880-36710-8	S-2 (2')	Total/NA	Solid	8015 NM	
880-36710-9	S-2 (3')	Total/NA	Solid	8015 NM	
880-36710-10	S-2 (4')	Total/NA	Solid	8015 NM	
880-36710-11	S-3 (0-1')	Total/NA	Solid	8015 NM	

Eurofins Midland

Page 71 of 147

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

GC Semi VOA (Continued)

Analysis Batch: 68812 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36710-12	S-3 (1.5')	Total/NA	Solid	8015 NM	
880-36710-13	S-3 (2')	Total/NA	Solid	8015 NM	
880-36710-14	S-3 (3')	Total/NA	Solid	8015 NM	
880-36710-15	S-3 (4')	Total/NA	Solid	8015 NM	
880-36710-16	S-4 (0-1')	Total/NA	Solid	8015 NM	
880-36710-17	S-4 (1.5')	Total/NA	Solid	8015 NM	
880-36710-18	S-4 (2')	Total/NA	Solid	8015 NM	
880-36710-19	S-4 (3')	Total/NA	Solid	8015 NM	
880-36710-20	S-4 (4')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 68689

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36710-1	S-1 (0-1')	Soluble	Solid	DI Leach	
880-36710-2	S-1 (1.5')	Soluble	Solid	DI Leach	
880-36710-3	S-1 (2')	Soluble	Solid	DI Leach	
880-36710-4	S-1 (3')	Soluble	Solid	DI Leach	
880-36710-5	S-1 (4')	Soluble	Solid	DI Leach	
880-36710-6	S-2 (0-1')	Soluble	Solid	DI Leach	
880-36710-7	S-2 (1.5')	Soluble	Solid	DI Leach	
880-36710-8	S-2 (2')	Soluble	Solid	DI Leach	
880-36710-9	S-2 (3')	Soluble	Solid	DI Leach	
MB 880-68689/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-68689/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-68689/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-36679-A-87-E MS	Matrix Spike	Soluble	Solid	DI Leach	
880-36679-A-87-F MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
880-36709-A-4-B MS	Matrix Spike	Soluble	Solid	DI Leach	
880-36709-A-4-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Leach Batch: 68697

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36710-10	S-2 (4')	Soluble	Solid	DI Leach	
880-36710-11	S-3 (0-1')	Soluble	Solid	DI Leach	
880-36710-12	S-3 (1.5')	Soluble	Solid	DI Leach	
880-36710-13	S-3 (2')	Soluble	Solid	DI Leach	
880-36710-14	S-3 (3')	Soluble	Solid	DI Leach	
880-36710-15	S-3 (4')	Soluble	Solid	DI Leach	
880-36710-16	S-4 (0-1')	Soluble	Solid	DI Leach	
880-36710-17	S-4 (1.5')	Soluble	Solid	DI Leach	
880-36710-18	S-4 (2')	Soluble	Solid	DI Leach	
880-36710-19	S-4 (3')	Soluble	Solid	DI Leach	
880-36710-20	S-4 (4')	Soluble	Solid	DI Leach	
MB 880-68697/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-68697/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-68697/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-36710-10 MS	S-2 (4')	Soluble	Solid	DI Leach	
880-36710-10 MSD	S-2 (4')	Soluble	Solid	DI Leach	
880-36710-20 MS	S-4 (4')	Soluble	Solid	DI Leach	
880-36710-20 MSD	S-4 (4')	Soluble	Solid	DI Leach	

Page 72 of 147

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

אט: 880-36710-1 nty, New Mexico
QC Association Summary

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23) Job ID: 880-36710-1 SDG: Eddy County, New Mexico

HPLC/IC

Analysis Batch: 68723

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-36710-1	S-1 (0-1')	Soluble	Solid	300.0	68689
880-36710-2	S-1 (1.5')	Soluble	Solid	300.0	68689
880-36710-3	S-1 (2')	Soluble	Solid	300.0	68689
880-36710-4	S-1 (3')	Soluble	Solid	300.0	68689
880-36710-5	S-1 (4')	Soluble	Solid	300.0	68689
880-36710-6	S-2 (0-1')	Soluble	Solid	300.0	68689
880-36710-7	S-2 (1.5')	Soluble	Solid	300.0	68689
880-36710-8	S-2 (2')	Soluble	Solid	300.0	68689
880-36710-9	S-2 (3')	Soluble	Solid	300.0	68689
MB 880-68689/1-A	Method Blank	Soluble	Solid	300.0	68689
LCS 880-68689/2-A	Lab Control Sample	Soluble	Solid	300.0	68689
LCSD 880-68689/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	68689
880-36679-A-87-E MS	Matrix Spike	Soluble	Solid	300.0	68689
880-36679-A-87-F MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	68689
880-36709-A-4-B MS	Matrix Spike	Soluble	Solid	300.0	68689
880-36709-A-4-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	68689

Analysis Batch: 68724

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36710-10	S-2 (4')	Soluble	Solid	300.0	68697
880-36710-11	S-3 (0-1')	Soluble	Solid	300.0	68697
880-36710-12	S-3 (1.5')	Soluble	Solid	300.0	68697
880-36710-13	S-3 (2')	Soluble	Solid	300.0	68697
880-36710-14	S-3 (3')	Soluble	Solid	300.0	68697
880-36710-15	S-3 (4')	Soluble	Solid	300.0	68697
880-36710-16	S-4 (0-1')	Soluble	Solid	300.0	68697
880-36710-17	S-4 (1.5')	Soluble	Solid	300.0	68697
880-36710-18	S-4 (2')	Soluble	Solid	300.0	68697
880-36710-19	S-4 (3')	Soluble	Solid	300.0	68697
880-36710-20	S-4 (4')	Soluble	Solid	300.0	68697
MB 880-68697/1-A	Method Blank	Soluble	Solid	300.0	68697
LCS 880-68697/2-A	Lab Control Sample	Soluble	Solid	300.0	68697
LCSD 880-68697/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	68697
880-36710-10 MS	S-2 (4')	Soluble	Solid	300.0	68697
880-36710-10 MSD	S-2 (4')	Soluble	Solid	300.0	68697
880-36710-20 MS	S-4 (4')	Soluble	Solid	300.0	68697
880-36710-20 MSD	S-4 (4')	Soluble	Solid	300.0	68697

Eurofins Midland

Lab Chronicle

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

Client Sample ID: S-1 (0-1') Date Collected: 12/07/23 00:00

Date Received: 12/08/23 14:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	68742	12/09/23 15:55	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68650	12/10/23 09:12	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			68968	12/10/23 09:12	SM	EET MID
Total/NA	Analysis	8015 NM		1			68812	12/08/23 20:49	SM	EET MID
Total/NA	Prep	8015NM Prep			10.10 g	10 mL	68700	12/08/23 15:25	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	68637	12/08/23 20:49	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	68689	12/08/23 15:11	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68723	12/09/23 08:53	СН	EET MID

Lab Sample ID: 880-36710-2

Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	68742	12/09/23 15:55	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68650	12/10/23 09:38	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			68968	12/10/23 09:38	SM	EET MID
Total/NA	Analysis	8015 NM		1			68812	12/08/23 21:53	SM	EET MID
Total/NA	Prep	8015NM Prep			9.99 g	10 mL	68700	12/08/23 15:25	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	68637	12/08/23 21:53	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	68689	12/08/23 15:11	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68723	12/09/23 09:00	СН	EET MID

Client Sample ID: S-1 (2') Date Collected: 12/07/23 00:00

Date Received: 12/08/23 14:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	68742	12/09/23 15:55	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68650	12/10/23 10:05	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			68968	12/10/23 10:05	SM	EET MID
Total/NA	Analysis	8015 NM		1			68812	12/08/23 22:14	SM	EET MID
Total/NA	Prep	8015NM Prep			9.95 g	10 mL	68700	12/08/23 15:25	ТКС	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	68637	12/08/23 22:14	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	68689	12/08/23 15:11	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68723	12/09/23 09:20	СН	EET MID

Client Sample ID: S-1 (3') Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	68742	12/09/23 15:55	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68650	12/10/23 10:31	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			68968	12/10/23 10:31	SM	EET MID

Eurofins Midland

Page 74 of 147

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-36710-1 Matrix: Solid

5 9

Matrix: Solid

Lab Sample ID: 880-36710-3

Matrix: Solid

Matrix: Solid

Lab Sample ID: 880-36710-4

Client Sample ID: S-1 (3') Date Collected: 12/07/23 00:00

Date Received: 12/08/23 14:36

Client Sample ID: S-1 (4')

Date Collected: 12/07/23 00:00

Date Received: 12/08/23 14:36

Prep Type

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Initial

Amount

9.90 g

1 uL

5.02 g

50 mL

Initial

Final

Amount

10 mL

1 uL

50 mL

50 mL

Final

Batch

68812

68700

68637

68689

68723

Batch

Number

Dil

1

1

1

Dil

Factor

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

Batch

Туре

Prep

Analysis

Analysis

Analysis

Leach

Batch

Batch

Method

8015 NM

8015NM Prep

8015B NM

DI Leach

300.0

Batch

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-36710-4

Analyst

SM

TKC

SM

Run

Matrix: Solid

Lab

EET MID

EET MID

EET MID

Matrix: Solid

Matrix: Solid

Lab EET MID EET MID

Page 75 of 147

9 10 11 12 13

Prepared

Lab Sample ID: 880-36710-6

Lab Sample ID: 880-36710-7

Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analys
Total/NA	Prep	5035			5.04 g	5 mL	68742	12/09/23 15:55	EL
Total/NA	Analysis	8021B		1	5 mL	5 mL	68650	12/10/23 10:57	MNR
Total/NA	Analysis	Total BTEX		1			68968	12/10/23 10:57	SM
Total/NA	Analysis	8015 NM		1			68812	12/08/23 22:57	SM
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	68700	12/08/23 15:25	TKC
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	68637	12/08/23 22:57	SM
Soluble	Leach	DI Leach			4.98 g	50 mL	68689	12/08/23 15:11	SMC
Soluble	Analysis	300.0		1	50 mL	50 mL	68723	12/09/23 09:33	СН

Client Sample ID: S-2 (0-1')

Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	68742	12/09/23 15:55	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68650	12/10/23 11:24	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			68968	12/10/23 11:24	SM	EET MID
Total/NA	Analysis	8015 NM		1			68812	12/08/23 23:19	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	68700	12/08/23 15:25	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	68637	12/08/23 23:19	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	68689	12/08/23 15:11	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68723	12/09/23 15:10	СН	EET MID

Client Sample ID: S-2 (1.5') Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	68742	12/09/23 15:55	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68650	12/10/23 11:51	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			68968	12/10/23 11:51	SM	EET MID
Total/NA	Analysis	8015 NM		1			68812	12/08/23 23:40	SM	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	68700	12/08/23 15:25	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	68637	12/08/23 23:40	SM	EET MID

Eurofins Midland

Matrix: Solid

 12/08/23
 15:11
 SMC
 EET MID

 12/09/23
 09:26
 CH
 EET MID

 Lab Sample ID: 880-36710-5

Prepared

or Analyzed

12/08/23 22:36

12/08/23 15:25

12/08/23 22:36

Released to Imaging: 4/9/2024 2:03:34 PM

Matrix: Solid

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-36710-7

Lab Sample ID: 880-36710-8

Lab Sample ID: 880-36710-9

Matrix: Solid

Client Sample ID: S-2 (1.5') Date Collected: 12/07/23 00:00

Date Received: 12/08/23 14:36

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.98 g	50 mL	68689	12/08/23 15:11	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68723	12/09/23 09:46	СН	EET MID

Client Sample ID: S-2 (2') Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	68742	12/09/23 15:55	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68650	12/10/23 12:17	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			68968	12/10/23 12:17	SM	EET MID
Total/NA	Analysis	8015 NM		1			68812	12/09/23 00:02	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	68700	12/08/23 15:25	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	68637	12/09/23 00:02	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	68689	12/08/23 15:11	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68723	12/09/23 09:52	СН	EET MID

Client Sample ID: S-2 (3') Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	68742	12/09/23 15:55	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68650	12/10/23 12:44	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			68968	12/10/23 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			68812	12/09/23 00:23	SM	EET MID
Total/NA	Prep	8015NM Prep			9.94 g	10 mL	68700	12/08/23 15:25	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	68637	12/09/23 00:23	SM	EET MID
Soluble	Leach	DI Leach			5.00 g	50 mL	68689	12/08/23 15:11	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68723	12/09/23 09:59	СН	EET MID

Client Sample ID: S-2 (4') Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

Lab Sample ID: 880-36710-10 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	68742	12/09/23 15:55	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68650	12/10/23 13:11	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			68968	12/10/23 13:11	SM	EET MID
Total/NA	Analysis	8015 NM		1			68812	12/09/23 00:45	SM	EET MID
Total/NA	Prep	8015NM Prep			9.98 g	10 mL	68700	12/08/23 15:25	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	68637	12/09/23 00:45	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	68697	12/08/23 15:14	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68724	12/09/23 03:14	СН	EET MID

Eurofins Midland

Lab Chronicle

Initial

Amount

5.01 g

5 mL

9.93 g

1 uL

5.02 g

50 mL

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

50 mL

Batch

68742

68650

68968

68812

68700

68637

68697

68724

Number

Dil

1

1

1

1

1

Factor

Run

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Client Sample ID: S-3 (1.5')

Date Collected: 12/07/23 00:00

Date Received: 12/08/23 14:36

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Client Sample ID: S-3 (0-1') Date Collected: 12/07/23 00:00

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Page	77	of 1	47

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-36710-11

Analyst

EL

MNR

SM

SM

ткс

SM

SMC

СН

Lab Sample ID: 880-36710-13

Lab Sample ID: 880-36710-14

Prepared

or Analyzed

12/09/23 15:55

12/10/23 14:58

12/10/23 14:58

12/09/23 01:27

12/08/23 15:25

12/09/23 01:27

12/08/23 15:14

12/09/23 03:34

Matrix: Solid

Lab

EET MID

Matrix: Solid

Lab Sample ID: 880-36710-12

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	68742	12/09/23 15:55	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68650	12/10/23 15:25	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			68968	12/10/23 15:25	SM	EET MID
Total/NA	Analysis	8015 NM		1			68812	12/09/23 01:48	SM	EET MID
Total/NA	Prep	8015NM Prep			9.92 g	10 mL	68700	12/08/23 15:25	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	68637	12/09/23 01:48	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	68697	12/08/23 15:14	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68724	12/09/23 03:40	СН	EET MID

Client Sample ID: S-3 (2') Date Collected: 12/07/23 00:00

Date Received: 12/08/23 14:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	68742	12/09/23 15:55	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68650	12/10/23 15:51	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			68968	12/10/23 15:51	SM	EET MID
Total/NA	Analysis	8015 NM		1			68812	12/09/23 02:09	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	68700	12/08/23 15:25	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	68637	12/09/23 02:09	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	68697	12/08/23 15:14	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68724	12/09/23 03:47	CH	EET MID

Client Sample ID: S-3 (3') Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	68742	12/09/23 15:55	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68650	12/10/23 16:18	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			68968	12/10/23 16:18	SM	EET MID

Eurofins Midland

Released to Imaging: 4/9/2024 2:03:34 PM

Matrix: Solid

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23) Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-36710-14

Lab Sample ID: 880-36710-15

Client Sample ID: S-3 (3') Date Collected: 12/07/23 00:00

Date Received: 12/08/23 14:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			68812	12/09/23 02:31	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	68700	12/08/23 15:25	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	68637	12/09/23 02:31	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	68697	12/08/23 15:14	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68724	12/09/23 03:53	СН	EET MID

Client Sample ID: S-3 (4') Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	68742	12/09/23 15:55	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68650	12/10/23 16:44	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			68968	12/10/23 16:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			68812	12/09/23 02:53	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	68700	12/08/23 15:25	ТКС	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	68637	12/09/23 02:53	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	68697	12/08/23 15:14	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68724	12/09/23 04:13	СН	EET MID

Client Sample ID: S-4 (0-1')

Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	68742	12/09/23 15:55	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68650	12/10/23 17:10	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			68968	12/10/23 17:10	SM	EET MID
Total/NA	Analysis	8015 NM		1			68812	12/09/23 03:14	SM	EET MID
Total/NA	Prep	8015NM Prep			10.09 g	10 mL	68700	12/08/23 15:25	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	68637	12/09/23 03:14	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	68697	12/08/23 15:14	SMC	EET MID
Soluble	Analysis	300.0		5	50 mL	50 mL	68724	12/09/23 04:19	СН	EET MID

Client Sample ID: S-4 (1.5') Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	68742	12/09/23 15:55	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68650	12/10/23 17:37	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			68968	12/10/23 17:37	SM	EET MID
Total/NA	Analysis	8015 NM		1			68812	12/09/23 03:35	SM	EET MID
Total/NA	Prep	8015NM Prep			9.92 g	10 mL	68700	12/08/23 15:25	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	68637	12/09/23 03:35	SM	EET MID

Eurofins Midland

Matrix: Solid

Matrix: Solid

Matrix: Solid

Lab Sample ID: 880-36710-16

Lab Sample ID: 880-36710-17

Matrix: Solid

Matrix: Solid

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-36710-17

Lab Sample ID: 880-36710-18

Client Sample ID: S-4 (1.5') Date Collected: 12/07/23 00:00

Date Received: 12/08/23 14:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.01 g	50 mL	68697	12/08/23 15:14	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68724	12/09/23 04:26	СН	EET MID

Client Sample ID: S-4 (2') Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	68742	12/09/23 15:55	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68650	12/10/23 18:03	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			68968	12/10/23 18:03	SM	EET MID
Total/NA	Analysis	8015 NM		1			68812	12/09/23 03:56	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	68700	12/08/23 15:25	ТКС	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	68637	12/09/23 03:56	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	68697	12/08/23 15:14	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68724	12/09/23 04:32	СН	EET MID

Client Sample ID: S-4 (3') Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

Final Dil Batch Batch Initial Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 5035 4.96 g 5 mL 68742 12/09/23 15:55 EL EET MID Total/NA 8021B 5 mL 5 mL 68650 12/10/23 18:30 EET MID Analysis 1 MNR Total/NA Analysis Total BTEX 68968 12/10/23 18:30 SM EET MID 1 Total/NA Analysis 8015 NM 1 68812 12/09/23 04:17 SM EET MID Total/NA Prep 8015NM Prep 10.00 g 10 mL 68700 12/08/23 15:25 TKC EET MID Total/NA Analysis EET MID 8015B NM 1 1 uL 1 uL 68637 12/09/23 04:17 SM Leach Soluble DI Leach 4.96 g 50 mL 68697 12/08/23 15:14 SMC EET MID Soluble Analysis 300.0 1 50 mL 50 mL 68724 12/09/23 04:39 СН EET MID

Client Sample ID: S-4 (4') Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:36

Lab Sample ID: 880-36710-20 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	68742	12/09/23 15:55	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68650	12/10/23 18:57	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			68968	12/10/23 18:57	SM	EET MID
Total/NA	Analysis	8015 NM		1			68812	12/09/23 04:41	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	68700	12/08/23 15:25	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	68637	12/09/23 04:41	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	68697	12/08/23 15:14	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68724	12/09/23 04:45	CH	EET MID

Eurofins Midland

Lab Sample ID: 880-36710-19 Matrix: Solid

Released to Imaging: 4/9/2024 2:03:34 PM

Lab Chronicle

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Eurofins Midland

Accreditation/Certification Summary

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23) Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	m	Identification Number	Expiration Date
Texas	NELAF)	T104704400-23-26	06-30-24
The following apply	es are included in this report, but	the laboratory is not certif	fied by the governing authority. This lis	t may include analytes
for which the agenc	does not offer certification.		, , , , ,	t may more analyte.
for which the agence Analysis Method	•	Matrix	Analyte	
for which the agenc	does not offer certification.		, , , , ,	

Eurofins Midland

Page 81 of 147

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

Job ID: 880-36710-1 SDG: Eddy County, New Mexico

Method	Method Description	Protocol	Laboratory	
8021B	Volatile Organic Compounds (GC)	SW846	EET MID	
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID	
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID	5
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID	
300.0	Anions, Ion Chromatography	EPA	EET MID	
5035	Closed System Purge and Trap	SW846	EET MID	
8015NM Prep	Microextraction	SW846	EET MID	
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID	
Protocol Refe	rences:			8
ASTM = A	STM International			
EPA = US	Environmental Protection Agency			9
SW846 = "	Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edit	ion, November 1986 And Its Updates.		
TAL SOP =	TestAmerica Laboratories, Standard Operating Procedure			

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Sample Summary

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

SDG: Eddy County,	New Mexico

880-36710-1 S-1 (0-1') Solid 12/07/23 00:00 12/08/23 14 880-36710-2 S-1 (1.5') Solid 12/07/23 00:00 12/08/23 14 880-36710-3 S-1 (2') Solid 12/07/23 00:00 12/08/23 14 880-36710-4 S-1 (3') Solid 12/07/23 00:00 12/08/23 14 880-36710-5 S-1 (4') Solid 12/07/23 00:00 12/08/23 14 880-36710-6 S-2 (0-1') Solid 12/07/23 00:00 12/08/23 14 880-36710-7 S-2 (1.5') Solid 12/07/23 00:00 12/08/23 14 880-36710-8 S-2 (2') Solid 12/07/23 00:00 12/08/23 14 880-36710-8 S-2 (2') Solid 12/07/23 00:00 12/08/23 14 880-36710-9 S-2 (3') Solid 12/07/23 00:00 12/08/23 14 880-36710-10 S-2 (4') Solid 12/07/23 00:00 12/08/23 14 880-36710-11 S-3 (0-1') Solid 12/07/23 00:00 12/08/23 14 880-36710-11 S-3 (0-1') Solid 12/07/23 00:00 12
880-36710-3 S-1 (2') Solid 12/07/23 00:00 12/08/23 14 880-36710-4 S-1 (3') Solid 12/07/23 00:00 12/08/23 14 880-36710-4 S-1 (3') Solid 12/07/23 00:00 12/08/23 14 880-36710-5 S-1 (4') Solid 12/07/23 00:00 12/08/23 14 880-36710-6 S-2 (0-1') Solid 12/07/23 00:00 12/08/23 14 880-36710-7 S-2 (1.5') Solid 12/07/23 00:00 12/08/23 14 880-36710-8 S-2 (2') Solid 12/07/23 00:00 12/08/23 14 880-36710-8 S-2 (2') Solid 12/07/23 00:00 12/08/23 14 880-36710-9 S-2 (3') Solid 12/07/23 00:00 12/08/23 14 880-36710-10 S-2 (4') Solid 12/07/23 00:00
880-36710-4 S-1 (3') Solid 12/07/23 00:00 12/08/23 14 880-36710-5 S-1 (4') Solid 12/07/23 00:00 12/08/23 14 880-36710-6 S-2 (0-1') Solid 12/07/23 00:00 12/08/23 14 880-36710-7 S-2 (1.5') Solid 12/07/23 00:00 12/08/23 14 880-36710-8 S-2 (2') Solid 12/07/23 00:00 12/08/23 14 880-36710-9 S-2 (3') Solid 12/07/23 00:00 12/08/23 14 880-36710-10 S-2 (4') Solid 12/07/23 00:00 12/08/23 14
880-36710-5 S-1 (4') Solid 12/07/23 00:00 12/08/23 14 880-36710-6 S-2 (0-1') Solid 12/07/23 00:00 12/08/23 14 880-36710-7 S-2 (1.5') Solid 12/07/23 00:00 12/08/23 14 880-36710-8 S-2 (2') Solid 12/07/23 00:00 12/08/23 14 880-36710-9 S-2 (3') Solid 12/07/23 00:00 12/08/23 14 880-36710-10 S-2 (4') Solid 12/07/23 00:00 12/08/23 14
880-36710-6 S-2 (0-1') Solid 12/07/23 00:00 12/08/23 14 880-36710-7 S-2 (1.5') Solid 12/07/23 00:00 12/08/23 14 880-36710-8 S-2 (2') Solid 12/07/23 00:00 12/08/23 14 880-36710-8 S-2 (2') Solid 12/07/23 00:00 12/08/23 14 880-36710-9 S-2 (3') Solid 12/07/23 00:00 12/08/23 14 880-36710-10 S-2 (4') Solid 12/07/23 00:00 12/08/23 14
Solid 12/07/23 00:00 12/08/23 14 880-36710-8 S-2 (2') Solid 12/07/23 00:00 12/08/23 14 880-36710-8 S-2 (2') Solid 12/07/23 00:00 12/08/23 14 880-36710-9 S-2 (3') Solid 12/07/23 00:00 12/08/23 14 880-36710-10 S-2 (4') Solid 12/07/23 00:00 12/08/23 14
880-36710-8 S-2 (2') Solid 12/07/23 00:00 12/08/23 14 880-36710-9 S-2 (3') Solid 12/07/23 00:00 12/08/23 14 880-36710-10 S-2 (4') Solid 12/07/23 00:00 12/08/23 14
880-36710-9 S-2 (3') Solid 12/07/23 00:00 12/08/23 14 880-36710-10 S-2 (4') Solid 12/07/23 00:00 12/08/23 14
880-36710-10 S-2 (4') Solid 12/07/23 00:00 12/08/23 14
Solid 12/07/23 00:00 12/08/23 14
880-36710-12 S-3 (1.5') Solid 12/07/23 00:00 12/08/23 14
380-36710-13 S-3 (2') Solid 12/07/23 00:00 12/08/23 14
880-36710-14 S-3 (3') Solid 12/07/23 00:00 12/08/23 14
380-36710-15 S-3 (4') Solid 12/07/23 00:00 12/08/23 14
880-36710-16 S-4 (0-1') Solid 12/07/23 00:00 12/08/23 14
880-36710-17 S-4 (1.5') Solid 12/07/23 00:00 12/08/23 14
880-36710-18 S-4 (2') Solid 12/07/23 00:00 12/08/23 14
880-36710-19 S-4 (3') Solid 12/07/23 00:00 12/08/23 14
880-36710-20 S-4 (4') Solid 12/07/23 00:00 12/08/23 14

Job ID: 880-36710-1

									<u>,</u>
Project Manager	Conner Moehring	Π	Bill to: (if different)		Carmona Resources	Resou	Ces	Work Ord	
	Carmona Resources	0	Company Name						
	310 W Wall St Ste 500	>	Address.					State of Project:	Fromitields SRC pertund
City, State ZIP	Midland, TX 79701	0	City, State ZIP.						
Phone	432-813-6823	Email	Email mcarmona@carmonaresources.com	nonares	ources.c	com		Deliverables EDD AC	Other
Project Name	Daisy 24 State Com Battery (11 11.23)	Turn Around	round			-			
Project Number	2205	Routine	マ Rush	Pres.		\neg			ervau
Project Location	Eddy County New Mexico	Due Date	48 HR	Cour		+			
Sampler's Name.	JR								2
PO#)	1		8		+ 1415		······	
SAMPLE RECEIPT	PT Tems Blank Yes No) Wet Ine	No.	eters					H25U4 H2 NACH NA
Received Intact:	(res) No Thermon	Γ		ame	021E	+ D			H ₃ PO ₄ HP
Cooler Custody Seals	Yes No MA	9		Par					Nahoo NABIS
Sample Custody Seals	Yes No (N/A	eading	1:07						Zn Acetate+NaOH Zn
I otal Containers.	Corrected Temperature		þ. K						NaOH+Ascorbic Acid SAPC
Sample Identification	tification Date Time	Soil	Water Comp	# of Cont					Sample Comments
S-1 (0-1')	-1') 12/7/2023	×	G	_	×	× ×			
S-1 (1 5)	5') 12/7/2023	×	G	1	×	× ×			
S-1 (2')	2) 12/7/2023	×	G		×	××			
S-1 (3)		×	G		×	X X			
5-1 (4)		×	G		×	×			
S-2 (0-1)		×	G		×	×			
S-2 (1 5)		×	G		×	×××			
S-2 (2)	2) 12/7/2023	×	G		×	X X			
S-2 (3)		×	G		×	××			
S-2 (4')	i) 12/7/2023	×	G		×	×			
Comments: Email	Comments: Email to Mike Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmonareso	resources.com a	and Conner Mo	ehring /	Cmoeh	ring@c	armonaresources.com		
	Relinquished by (Signature)				Date/Time	ē	Rec	Received)by: (Signature)	Date/Time
A				2	28	96			
					Į	K			

12/13/2023

Page 84 of 147

Chain of Custody

(h.).	. \		Comments: Email to Mike Carmona / Mcarmona@carmonarosources com and Connor Modering / Construction	S-4 (4')	S-4 (3')	S-4 (2')	S-4 (1 5')	S-4 (0-1')	S-3 (4')	S-3 (3')	S-3 (2')	S-3 (1 5')	S-3 (0-1')	Sample Identification	Total Containers.	Sample Custody Seals. Yes		Received Intact:	SAMPLE RECEIPT T	PO#	*	Project Location Edd	Project Number	Project Name Daisy 24 (Phone 432-813-6823	City, State ZIP Midland, TX 79701	Address. 310 W Wall St Ste 500	Company Name Carmona Resources	Project Manager Conner Moehring
	Relinguished by: (Signature)		mona / Mcarmo	12/7/2023	12/7/2023	12/7/2023	12/7/2023	12/7/2023	12/7/2023	12/7/2023	12/7/2023	12/7/2023	12/7/2023	Date		s No N/A		Yes No	Temp Blank		JR	Eddy County, New Mexico	2205	Daisy 24 State Com Battery (11 11 23)	3	79701	St Ste 500	sources	hring
	y. (Signature)		L Ina@carmona											Time	Corrected Temperature	Temperature Reading	Correction Factor	Thermometer ID	Yes No			Mexico		ry (11 11 23)					
		esources.com		×	×	×	×	×	×	×	×	×	×	Soil	erature	ading)r		Wet Ice.			Due Date	Routine	Tum	Email				
			L and Connor	6	G	6	G	G	9	6	6	9	G	Water Comp					Yes No			48 HR	マ Rush	Turn Around	mcarmona@carmonaresources.com	City, State ZIP	Address	Company Name	Bill to (it different)
N		woening	Moohring		<u> </u>	-		-	-				3 1	ab/#of mpCont			Pa	iran	nete	18			Pres.		carmonare			ле	đ
5	Date/Time			×	×	×	×	×	×	×	×	×	×		L	в	TEX	802 ⁻	1B						esources				Carmo
122	ime	Buuus		+	+	-	×	×	×	×	×	×	×	тр	H 801					+ MI	RO)				s.com				Carmona Resources
		carmona		× :	×	×	×	×	×	×	×	×	×				lorid			<u> </u>			-						Irces
		resource				_	_																	AN/					
\square		is,com																						ALYSIS I					
	Received by: (Signature)																							NALYSIS REQUEST	Deliverables EDD	Reporting.Level II Level III ST/UST	State of Project:	Program: UST/PST PRP rownfields	
	7				+																						1		Work Orde
														Sample Comments	NaOH+Ascorbic Acid SAPC	Zn Acetate+NaOH Zn	Na ₂ S ₂ O ₃ NaSO ₃	NaHSO, NARIS	H,PO, HP	H-SOA H-			None NO	Preservative Codes	ADaPT D Other		I	ownfields RC	Work Order Comments
	Date/Time	:												omments	Acid SAPC	ΗZn					MeOH Me			ve Codes			[Doerfund	

12/13/2023

Work Order No: 36710

Chain of Custody

Page 85 of 147

14

Job Number: 880-36710-1

List Source: Eurofins Midland

SDG Number: Eddy County, New Mexico

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 36710 List Number: 1 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	

N/A

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 1/23/2024 10:18:13 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mike Carmona Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 12/20/2023 9:58:27 AM Revision 1

JOB DESCRIPTION

Daisy 24 State Com battery (11.11.23) Eddy County, New Mexico

JOB NUMBER

880-36709-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

See page two for job notes and contact information

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 12/20/2023 9:58:27 AM Revision 1

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 89 of 147

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	14
Lab Chronicle	16
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Receipt Checklists	22

Definitions/Glossary

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

Job ID: 880-36709-1 SDG: Eddy County, New Mexico

..... -

Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
S1+	Surrogate recovery exceeds control limits, high biased.	ę
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VO	Α	
Qualifier	Qualifier Description	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	1
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	4
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
	Dementing a Lineit en Demusente al Lineit (Deulie els ensisters)	

- Reporting Limit or Requested Limit (Radiochemistry) RL RPD Relative Percent Difference, a measure of the relative difference between two points
- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

Case Narrative

Client: Carmona Resources Project: Daisy 24 State Com battery (11.11.23)

Job ID: 880-36709-1

Eurofins Midland

Job Narrative 880-36709-1

<u>REVISION</u>

The report being provided is a revision of the original report sent on 12/11/2023. The report (revision 1) is being revised due to COC missing on final report, revision needed.

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 12/8/2023 2:37 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -0.5°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: H-1 (0-0.5') (880-36709-1), H-2 (0-0.5') (880-36709-2), H-3 (0-0.5') (880-36709-3) and H-4 (0-0.5') (880-36709-4).

GC VOA

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-68490 and 880-68743 and analytical batch 880-68654 was outside the upper control limits.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-68743 and analytical batch 880-68654 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-68711 and analytical batch 880-68737 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: H-1 (0-0.5') (880-36709-1), H-2 (0-0.5') (880-36709-2), H-3 (0-0.5') (880-36709-3), H-4 (0-0.5') (880-36709-4), (880-36709-A-1-C MS) and (880-36709-A-1-D MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Midland

Client Sample Results

RL

MDL Unit

D

Prepared

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

Method: SW846 8021B - Volatile Organic Compounds (GC)

Result Qualifier

Client Sample ID: H-1 (0-0.5') Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:37

Analyte

Analyte	Result	Quanner			Unit		ricparca	Analyzea	Diriuo
Benzene	<0.00200	U	0.00200		mg/Kg		12/09/23 16:01	12/10/23 05:51	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/09/23 16:01	12/10/23 05:51	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/09/23 16:01	12/10/23 05:51	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		12/09/23 16:01	12/10/23 05:51	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/09/23 16:01	12/10/23 05:51	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		12/09/23 16:01	12/10/23 05:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130				12/09/23 16:01	12/10/23 05:51	1
1,4-Difluorobenzene (Surr)	116		70 - 130				12/09/23 16:01	12/10/23 05:51	1
Method: TAL SOP Total BTEX	- Total BTE	X Calculat	tion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			12/10/23 05:51	1
Method: SW846 8015 NM - Die	esel Range	Organics ((DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.5	U	49.5		mg/Kg			12/09/23 10:41	1
Method: SW846 8015B NM - D	Niesel Range	Organics							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.5	U	49.5		mg/Kg		12/08/23 16:38	12/09/23 10:41	1
Diesel Range Organics (Over C10-C28)	<49.5	U	49.5		mg/Kg		12/08/23 16:38	12/09/23 10:41	1
Oll Range Organics (Over C28-C36)	<49.5	U	49.5		mg/Kg		12/08/23 16:38	12/09/23 10:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	141	S1+	70 - 130				12/08/23 16:38	12/09/23 10:41	1
o-Terphenyl	130		70 - 130				12/08/23 16:38	12/09/23 10:41	1
Method: EPA 300.0 - Anions,	Ion Chroma	tography -	Soluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	186		25.2		mg/Kg			12/09/23 08:14	5
lient Sample ID: H-2 (0-	0.5')					L	ab Sample	D: 880-36	6709-2
ate Collected: 12/07/23 00:00 ate Received: 12/08/23 14:37								Matrix	c: Solid
Method: SW846 8021B - Volat Analyte	-	Compoun Qualifier	ds (GC) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199		0.00199		mg/Kg		12/09/23 16:01	12/10/23 06:11	1
Toluene	< 0.00199		0.00199		mg/Kg		12/09/23 16:01	12/10/23 06:11	1
Ethylbenzene	< 0.00199		0.00199		mg/Kg		12/09/23 16:01	12/10/23 06:11	1
m-Xylene & p-Xylene	< 0.00398		0.00398		mg/Kg		12/09/23 16:01		
o-Xylene	< 0.00199		0.00199		mg/Kg		12/09/23 16:01		1
Xylenes, Total	<0.00398		0.00398		mg/Kg		12/09/23 16:01		1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1 Bramafluarahanzana (Surr)	105		70 120				10/00/00 16:01		

12/09/23 16:01 12/10/23 06:11 1 12/09/23 16:01 12/10/23 06:11 1

Eurofins Midland

Page 92 of 147

Dil Fac

5

11 12 13

Job ID: 880-36709-1 SDG: Eddy County, New Mexico

Analyzed

Lab Sample ID: 880-36709-1

Matrix: Solid

Released to Imaging: 4/9/2024 2:03:34 PM

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

70 - 130

70 - 130

105

Client Sample Results

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

Client Sample ID: H-2 (0-0.5') Date Collected: 12/07/23 00:00

Date Received: 12/08/23 14:37

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
otal BTEX	<0.00398	U	0.00398		mg/Kg			12/10/23 06:11	1
Method: SW846 8015 NM - Die	esel Range	Organics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.5	U	50.5		mg/Kg			12/09/23 11:47	
Method: SW846 8015B NM - D	iesel Range	• Organics	(DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics GRO)-C6-C10	<50.5	U	50.5		mg/Kg		12/08/23 16:38	12/09/23 11:47	
Diesel Range Organics (Over C10-C28)	<50.5	U	50.5		mg/Kg		12/08/23 16:38	12/09/23 11:47	
Oll Range Organics (Over C28-C36)	<50.5	U	50.5		mg/Kg		12/08/23 16:38	12/09/23 11:47	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	149	S1+	70 - 130				12/08/23 16:38	12/09/23 11:47	
p-Terphenyl	142	S1+	70 - 130				12/08/23 16:38	12/09/23 11:47	
Method: EPA 300.0 - Anions, I	on Chroma	tography -	Soluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	97.2		5.03		mg/Kg			12/09/23 14:37	
lient Sample ID: H-3 (0-0).5')					L	ab Sample	D: 880-36	5709-0
ate Collected: 12/07/23 00:00	,							Matrix	
ate Received: 12/08/23 14:37									
Method: SW846 8021B - Volat	ile Organic	Compoun	ds (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00198	U	0.00198		mg/Kg		12/09/23 16:01	12/10/23 06:32	
			0.00400				40/00/00 40.04	40/40/00 00:00	
Toluene	<0.00198	0	0.00198		mg/Kg		12/09/23 16:01	12/10/23 06:32	

	nume organie	Compound							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		12/09/23 16:01	12/10/23 06:32	1
Toluene	<0.00198	U	0.00198		mg/Kg		12/09/23 16:01	12/10/23 06:32	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		12/09/23 16:01	12/10/23 06:32	1
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		12/09/23 16:01	12/10/23 06:32	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		12/09/23 16:01	12/10/23 06:32	1
Xylenes, Total	<0.00397	U	0.00397		mg/Kg		12/09/23 16:01	12/10/23 06:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130				12/09/23 16:01	12/10/23 06:32	1
1,4-Difluorobenzene (Surr)	112		70 - 130				12/09/23 16:01	12/10/23 06:32	1

Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier MDL Unit D Analyzed RL Prepared Dil Fac Total BTEX <0.00397 U 0.00397 12/10/23 06:32 mg/Kg 1 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte **Result Qualifier** RL MDL Unit Analyzed D Prepared Dil Fac **Total TPH** 50.1 12/09/23 12:09 64.6 mg/Kg 1 Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac Gasoline Range Organics <50.1 U 50.1 mg/Kg 12/08/23 16:38 12/09/23 12:09 1 (GRO)-C6-C10 **Diesel Range Organics (Over** 50.1 mg/Kg 12/08/23 16:38 12/09/23 12:09 64.6 1 C10-C28)

Eurofins Midland

Page 93 of 147

5

Matrix: Solid

Job ID: 880-36709-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-36709-2

Client: Carmona Resources

Analyte

Surrogate

o-Terphenyl

Analyte

Chloride

1-Chlorooctane

RL

RL

4.97

50.1

Limits

70 - 130

70 - 130

MDL Unit

MDL Unit

mg/Kg

mg/Kg

D

D

Prepared

12/08/23 16:38

Prepared

Prepared

Job ID: 880-36709-1 SDG: Eddy County, New Mexico

Analyzed

12/09/23 12:09

Analyzed

Analyzed

12/09/23 14:44

Client Sample ID: H-3 (0-0.5') Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:37

Project/Site: Daisy 24 State Com battery (11.11.23)

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Result Qualifier

<50.1 U

%Recovery Qualifier

124

139

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

132 S1+

Result Qualifier

Lab Sample ID: 880-36709-3 Matrix: Solid

Solid Dil Fac Dil Fac

1

1

1

Dil Fac

Lab Sample	ID:	880-36709-4
		Matrix: Solid

12/08/23 16:38 12/09/23 12:09

12/08/23 16:38 12/09/23 12:09

Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:37

Client Sample ID: H-4 (0-0.5')

Oll Range Organics (Over C28-C36)

Method: SW846 8021B - Vo	latile Organic	Compound	ds (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		12/09/23 16:01	12/10/23 06:52	1
Toluene	<0.00201	U	0.00201		mg/Kg		12/09/23 16:01	12/10/23 06:52	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		12/09/23 16:01	12/10/23 06:52	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		12/09/23 16:01	12/10/23 06:52	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		12/09/23 16:01	12/10/23 06:52	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		12/09/23 16:01	12/10/23 06:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130				12/09/23 16:01	12/10/23 06:52	1
1,4-Difluorobenzene (Surr)	111		70 - 130				12/09/23 16:01	12/10/23 06:52	1
	EX - Total BTE	X Calculat	tion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			12/10/23 06:52	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
l	Total TPH	<49.7	U	49.7		mg/Kg			12/09/23 12:30	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7		mg/Kg		12/08/23 16:38	12/09/23 12:30	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.7	U	49.7		mg/Kg		12/08/23 16:38	12/09/23 12:30	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		12/08/23 16:38	12/09/23 12:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	131	S1+	70 - 130				12/08/23 16:38	12/09/23 12:30	1
o-Terphenyl	123		70 - 130				12/08/23 16:38	12/09/23 12:30	1
Method: EPA 300.0 - Anions,	lon Chroma	tography -	Soluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	96.9		4.95		mg/Kg			12/09/23 14:50	1

Eurofins Midland

Surrogate Summary

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

Job ID: 880-36709-1 SDG: Eddy County, New Mexico

Prep Type: Total/NA

Method: 8021B - Volatile Organic Compounds (GC) **Matrix: Solid**

		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
380-36709-1	H-1 (0-0.5')	102	116	 _
880-36709-2	H-2 (0-0.5')	105	115	
880-36709-3	H-3 (0-0.5')	96	112	
880-36709-4	H-4 (0-0.5')	99	111	
880-36722-A-1-B MS	Matrix Spike	98	102	
880-36722-A-1-C MSD	Matrix Spike Duplicate	98	113	
LCS 880-68743/1-A	Lab Control Sample	104	112	
LCSD 880-68743/2-A	Lab Control Sample Dup	87	107	
MB 880-68490/5-A	Method Blank	111	141 S1+	
MB 880-68743/5-A	Method Blank	106	132 S1+	

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

_			Per
		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-36709-1	H-1 (0-0.5')	141 S1+	130
880-36709-1 MS	H-1 (0-0.5')	145 S1+	107
880-36709-1 MSD	H-1 (0-0.5')	143 S1+	110
880-36709-2	H-2 (0-0.5')	149 S1+	142 S1+
880-36709-3	H-3 (0-0.5')	132 S1+	124
880-36709-4	H-4 (0-0.5')	131 S1+	123
LCS 880-68711/2-A	Lab Control Sample	113	128
LCSD 880-68711/3-A	Lab Control Sample Dup	114	113
MB 880-68711/1-A	Method Blank	227 S1+	240 S1+

Surrogate Legend

1CO = 1-Chlorooctane OTPH = o-Terphenyl

5 6

Prep Type: Total/NA

Lab Sample ID: MB 880-68490/5-A

QC Sample Results

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid								Prep Type: To	
Analysis Batch: 68654	МВ	МВ						Prep Batch:	68490
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200		0.00200		mg/Kg		12/06/23 12:07	12/09/23 12:02	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/06/23 12:07	12/09/23 12:02	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/06/23 12:07	12/09/23 12:02	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		12/06/23 12:07	12/09/23 12:02	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/06/23 12:07	12/09/23 12:02	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		12/06/23 12:07	12/09/23 12:02	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				12/06/23 12:07	12/09/23 12:02	1
1,4-Difluorobenzene (Surr)	141	S1+	70 - 130				12/06/23 12:07	12/09/23 12:02	1
Lab Sample ID: MB 880-687	'43/5-A							le ID: Method	
Matrix: Solid								Prep Type: To	
Analysis Batch: 68654								Prep Batch:	68743
	MB	MB							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/09/23 16:01	12/10/23 00:05	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/09/23 16:01	12/10/23 00:05	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/09/23 16:01	12/10/23 00:05	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		12/09/23 16:01	12/10/23 00:05	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/09/23 16:01	12/10/23 00:05	1

Xylenes, Total	<0.00400	U	0.00400
	MB	МВ	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	106		70 - 130
1,4-Difluorobenzene (Surr)	132	S1+	70 - 130

Lab Sample ID: LCS 880-68743/1-A Matrix: Solid Analysis Batch: 68654

Analysis Batch: 68654							Prep Ba	tch: 68743
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1096		mg/Kg		110	70 - 130	
Toluene	0.100	0.09294		mg/Kg		93	70 - 130	
Ethylbenzene	0.100	0.08787		mg/Kg		88	70 - 130	
m-Xylene & p-Xylene	0.200	0.2149		mg/Kg		107	70_130	
o-Xylene	0.100	0.1043		mg/Kg		104	70 - 130	

mg/Kg

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	104		70 - 130
1,4-Difluorobenzene (Surr)	112		70 - 130

Lab Sample ID: LCSD 880-68743/2-A Matrix: Solid		(Client Sa	mple	ID: Lat	Control Prep Ty			
Analysis Batch: 68654	Spike	LCSD	LCSD				Prep E %Rec	Batch:	68743 RPD
Analyte	Added 0.100	Result 0.1026	Qualifier	Unit mg/Kg	<u>D</u>	%Rec 103	Limits 70 - 130	RPD 7	Limit 35

Eurofins Midland

5

7

1

1

1

Dil Fac

SDG: Eddy County, New Mexico

Client Sample ID: Method Blank

12/09/23 16:01 12/10/23 00:05

12/09/23 16:01 12/10/23 00:05

12/09/23 16:01 12/10/23 00:05

Client Sample ID: Lab Control Sample

Analyzed

Prep Type: Total/NA

Prepared

Job ID: 880-36709-1

Released to Imaging: 4/9/2024 2:03:34 PM

QC Sample Results

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

Job ID: 880-36709-1 SDG: Eddy County, New Mexico

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Type: Total/NA

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-68743/2-A Matrix: Solid Analysis Batch: 68654			C	Client Sa	mple	Prep Ty	rol Sample Dup Type: Total/NA p Batch: 68743		
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	0.100	0.09148		mg/Kg		91	70 - 130	2	35
Ethylbenzene	0.100	0.07112		mg/Kg		71	70 - 130	21	35
m-Xylene & p-Xylene	0.200	0.1766		mg/Kg		88	70 - 130	20	35
o-Xylene	0.100	0.08618		mg/Kg		86	70 - 130	19	35
LCSD LCSD									

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	87		70 - 130
1,4-Difluorobenzene (Surr)	107		70 - 130

Lab Sample ID: 880-36722-A-1-B MS Matrix: Solid Analysis Batch: 68654

Analysis Batch: 68654									Prep Batch: 68743
	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	<0.00202	U	0.0998	0.07954		mg/Kg		80	70 - 130
Toluene	<0.00202	U F1	0.0998	0.06871	F1	mg/Kg		69	70 - 130
Ethylbenzene	<0.00202	U F1	0.0998	0.06174	F1	mg/Kg		62	70 - 130
m-Xylene & p-Xylene	<0.00404	U	0.200	0.1540		mg/Kg		77	70 - 130
o-Xylene	<0.00202	U	0.0998	0.07894		mg/Kg		78	70 - 130

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	98		70 - 130
1,4-Difluorobenzene (Surr)	102		70 - 130

Lab Sample ID: 880-36722-A-1-C MSD Matrix: Solid Analysis Batch: 68654

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Analysis Batch: 68654									Prep E	Batch: 6	38743
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	< 0.00202	U	0.101	0.09043		mg/Kg		90	70 - 130	13	35
Toluene	<0.00202	U F1	0.101	0.07444		mg/Kg		74	70 - 130	8	35
Ethylbenzene	<0.00202	U F1	0.101	0.06426	F1	mg/Kg		64	70 - 130	4	35
m-Xylene & p-Xylene	<0.00404	U	0.202	0.1688		mg/Kg		84	70 - 130	9	35
o-Xylene	<0.00202	U	0.101	0.08581		mg/Kg		84	70 - 130	8	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								

70 - 130

70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

98

113

Lab Sample ID: MB 880-68711/1-A Matrix: Solid Analysis Batch: 68737								le ID: Method Prep Type: To Prep Batch	otal/NA
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		12/08/23 16:38	12/09/23 08:09	1

7

Eurofins Midland

Released to Imaging: 4/9/2024 2:03:34 PM

QC Sample Results

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Job ID: 880-36709-1 SDG: Eddy County, New Mexico

Lab Sample ID: MB 880-68	3711/1-A									Client Sam	ple ID: Me	ethod	Blank
Matrix: Solid											Prep Typ	be: To	tal/NA
Analysis Batch: 68737											Prep B	atch:	6871 [•]
-		MB	MB										
Analyte	Re	sult	Qualifier	RL	I	MDL	Unit		D	Prepared	Analyz	ed	Dil Fa
Diesel Range Organics (Over C10-C28)	<	50.0	U	50.0			mg/K	g	_	12/08/23 16:38	3 12/09/23 0	08:09	
Oll Range Organics (Over C28-C3	6) <	50.0	U	50.0			mg/K	g		12/08/23 16:38	3 12/09/23 0	08:09	
		MВ	MB										
Surrogate	%Reco	very	Qualifier	Limits						Prepared	Analyz	ed	Dil Fa
1-Chlorooctane		227	S1+	70 - 130						12/08/23 16:38	3 12/09/23 (08:09	
o-Terphenyl		240	S1+	70 - 130						12/08/23 16:38	3 12/09/23 (08:09	
Lab Sample ID: LCS 880-6	68711/2-A							Cli	ent	Sample ID:	Lab Con	trol S	ample
Matrix: Solid											Prep Typ	oe: To	tal/N/
Analysis Batch: 68737											Prep B	atch:	6871 [°]
				Spike	LCS						%Rec		
Analyte				Added	Result	Qua	alifier	Unit		D %Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10				1000	1133			mg/Kg		113	70 - 130		
Diesel Range Organics (Over C10-C28)				1000	1131			mg/Kg		113	70 - 130		
	LCS	LCS	;										
Surrogate	%Recovery	Qua	lifier	Limits									
1-Chlorooctane	113			70 - 130									
o-Terphenyl	128			70 - 130									
Matrix: Solid Analysis Batch: 68737				Spike	LCSD		20				Prep Typ Prep B %Rec		
Analyte				Added	Result			Unit		D %Rec	Limits	RPD	Limi
Gasoline Range Organics				1000	1109	Que		mg/Kg		- <u>- //////////////////////////////////</u>	70 - 130	2	2
(GRO)-C6-C10													
Diesel Range Organics (Over C10-C28)				1000	1115			mg/Kg		112	70 - 130	1	2
	LCSD	LCS	D										
Surrogate	%Recovery	Qua	lifier	Limits									
1-Chlorooctane	114			70 - 130									
o-Terphenyl	113			70 - 130									
Lab Sample ID: 880-36709	-1 MS									Client Sa	ample ID:	н.1 (0-0 5
Matrix: Solid											Prep Typ		
Analysis Batch: 68737											Prep B		
	Sample		-	Spike		MS					%Rec		
Analyte	Result		lifier	Added	Result	Qua	alifier	Unit		D %Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10	<49.5	U		1010	900.9			mg/Kg		87	70 - 130		
Diesel Range Organics (Over C10-C28)	<49.5	U		1010	1304			mg/Kg		127	70 - 130		
	MS	мs											
Surrogate	%Recovery		lifier	Limits									
1-Chlorooctane		S1+		70 - 130									
				70 100									

Eurofins Midland

107

o-Terphenyl

70 - 130

QC Sample Results

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23) Job ID: 880-36709-1 SDG: Eddy County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-3670	9-1 MSD						C	Client S	ample ID:	H-1 (0	-0.5')
Matrix: Solid									Prep Ty	pe: Tot	al/NA
Analysis Batch: 68737									Prep B	atch:	68711
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<49.5	U	1010	942.7		mg/Kg		91	70 - 130	5	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.5	U	1010	1337		mg/Kg		130	70 - 130	2	20
C10-C28)											
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	143	S1+	70 - 130								
o-Terphenyl	110		70 - 130								

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-68689/1-A Matrix: Solid Analysis Batch: 68723									5110		nple ID: M Prep T		
······ ,··· ···························	МВ	MB											
Analyte	Result	Qualifier		RL	r	MDL Uni	t	D	P	repared	Analy	zed	Dil Fac
Chloride	<5.00	U		5.00		mg/	Kg			-	12/09/23	06:43	1
Lab Sample ID: LCS 880-68689/2-/	4						С	lient	Sar	nple ID	: Lab Cor	ntrol Sa	ample
Matrix: Solid										•	Prep T		
Analysis Batch: 68723													
			Spike		LCS	LCS					%Rec		
Analyte			Added	F	Result	Qualifier	Unit		D	%Rec	Limits		
Chloride			250		266.3		mg/K	g		107	90 - 110		
Lab Sample ID: LCSD 880-68689/3	-A						Client	Sam	ple	ID: Lab	Control	Sample	e Dun
Matrix: Solid	~						• none	Cam		ibi Luc	Prep T		
Analysis Batch: 68723											i top i	, , , , , , , , , , , , , , , , , , , ,	
·····, ····,											a/ -		
			Spike		LCSD	LCSD					%Rec		RPD
Analyte			Spike Added			Qualifier	Unit		D	%Rec	%Rec Limits	RPD	RPD Limit
Analyte			•				Unit mg/K	g	D	%Rec		RPD	
Chloride			Added		Result			g		104	Limits 90 - 110	2	Limi
			Added		Result			g		104	Limits 90 - 110 ample ID:	2 : H-4 ((Limit 20 0-0.5')
Chloride Lab Sample ID: 880-36709-4 MS Matrix: Solid			Added		Result			g		104	Limits 90 - 110	2 : H-4 ((Limit 20 0-0.5')
Chloride Lab Sample ID: 880-36709-4 MS Matrix: Solid Analysis Batch: 68723		mple	Added		Result 260.3			g		104	Limits 90 - 110 ample ID:	2 : H-4 ((Limit 20 0-0.5')
Chloride Lab Sample ID: 880-36709-4 MS Matrix: Solid Analysis Batch: 68723 Sam	ple Sar sult Qu	-	Added 250	F	Result 260.3 MS	Qualifier	mg/K	g		104	Limits 90 - 110 ample ID: Prep T	2 : H-4 ((Limit 20 0-0.5')
Chloride Lab Sample ID: 880-36709-4 MS Matrix: Solid Analysis Batch: 68723 Sam Analyte Re	-	-	Added 250 Spike	F	Result 260.3 MS	Qualifier	mg/K		C	104	Limits 90 - 110 ample ID: Prep Ty %Rec	2 : H-4 ((Limit 20 0-0.5')
Chloride Lab Sample ID: 880-36709-4 MS Matrix: Solid Analysis Batch: 68723 Sam Analyte Chloride	sult Qu	-	Added 250 Spike Added	F	Result 260.3 MS Result	Qualifier	mg/K		С 	104	Limits 90 - 110 ample ID: Prep T %Rec Limits 90 - 110	2 : H-4 ((ype: So	Limit 20 0-0.5') oluble
Chloride Lab Sample ID: 880-36709-4 MS Matrix: Solid Analysis Batch: 68723 Sam Analyte Re Chloride Supple ID: 880-36709-4 MSD	sult Qu	-	Added 250 Spike Added	F	Result 260.3 MS Result	Qualifier	mg/K		С 	104	Limits 90 - 110 ample ID: Prep T %Rec Limits 90 - 110 ample ID:	2 : H-4 ((ype: So	Limit 20 0-0.5') oluble
Chloride Lab Sample ID: 880-36709-4 MS Matrix: Solid Analysis Batch: 68723 Sam Analyte Re Chloride S Lab Sample ID: 880-36709-4 MSD Matrix: Solid	sult Qu	-	Added 250 Spike Added	F	Result 260.3 MS Result	Qualifier	mg/K		С 	104	Limits 90 - 110 ample ID: Prep T %Rec Limits 90 - 110	2 : H-4 ((ype: So	Limit 20 0-0.5') oluble
Chloride Lab Sample ID: 880-36709-4 MS Matrix: Solid Analysis Batch: 68723 Analyte Re Chloride S Lab Sample ID: 880-36709-4 MSD Matrix: Solid Analysis Batch: 68723	sult Qu	alifier	Added 250 Spike Added	F	Result 260.3 MS Result	Qualifier	mg/K		С 	104	Limits 90 - 110 ample ID: Prep T %Rec Limits 90 - 110 ample ID:	2 : H-4 ((ype: So	Limit 20 0-0.5') oluble
Chloride Lab Sample ID: 880-36709-4 MS Matrix: Solid Analysis Batch: 68723 Analyte Re Chloride S Lab Sample ID: 880-36709-4 MSD Matrix: Solid Analysis Batch: 68723 Sam	Sult Qu (6.9)	alifier	Added 250 Spike Added 248	F	MS Result 338.8	Qualifier MS Qualifier	Unit		С 	104	Limits 90 - 110 ample ID: Prep Ty %Rec Limits 90 - 110 ample ID: Prep Ty	2 : H-4 ((ype: So	Limit 20 0-0.5') oluble

Released to Imaging: 4/9/2024 2:03:34 PM

5

QC Association Summary

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

Job ID: 880-36709-1 SDG: Eddy County, New Mexico

GC VOA

Prep Batch: 68490

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-68490/5-A	Method Blank	Total/NA	Solid	5035	
analysis Batch: 6865	4				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36709-1	H-1 (0-0.5')	Total/NA	Solid	8021B	68743
880-36709-2	H-2 (0-0.5')	Total/NA	Solid	8021B	68743
880-36709-3	H-3 (0-0.5')	Total/NA	Solid	8021B	68743
880-36709-4	H-4 (0-0.5')	Total/NA	Solid	8021B	68743
MB 880-68490/5-A	Method Blank	Total/NA	Solid	8021B	68490
MB 880-68743/5-A	Method Blank	Total/NA	Solid	8021B	68743
LCS 880-68743/1-A	Lab Control Sample	Total/NA	Solid	8021B	68743
LCSD 880-68743/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	68743
880-36722-A-1-B MS	Matrix Spike	Total/NA	Solid	8021B	68743
880-36722-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	68743

Prep Batch: 68743

880-36709-3	H-3 (0-0.5)	Iotal/INA	Solia	8021B	68743	
880-36709-4	H-4 (0-0.5')	Total/NA	Solid	8021B	68743	8
MB 880-68490/5-A	Method Blank	Total/NA	Solid	8021B	68490	
MB 880-68743/5-A	Method Blank	Total/NA	Solid	8021B	68743	9
LCS 880-68743/1-A	Lab Control Sample	Total/NA	Solid	8021B	68743	
LCSD 880-68743/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	68743	10
880-36722-A-1-B MS	Matrix Spike	Total/NA	Solid	8021B	68743	
880-36722-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	68743	11
Prep Batch: 68743						40
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	12
880-36709-1	H-1 (0-0.5')	Total/NA	Solid	5035		4.9
880-36709-2	H-2 (0-0.5')	Total/NA	Solid	5035		15
880-36709-3						
000-00700-0	H-3 (0-0.5')	Total/NA	Solid	5035		
880-36709-4	H-3 (0-0.5') H-4 (0-0.5')	Total/NA Total/NA	Solid Solid	5035 5035		14
						14
880-36709-4	H-4 (0-0.5')	Total/NA	Solid	5035		14
880-36709-4 MB 880-68743/5-A	H-4 (0-0.5') Method Blank	Total/NA Total/NA	Solid Solid	5035 5035		14
880-36709-4 MB 880-68743/5-A LCS 880-68743/1-A	H-4(0-0.5') Method Blank Lab Control Sample	Total/NA Total/NA Total/NA	Solid Solid Solid	5035 5035 5035		14
880-36709-4 MB 880-68743/5-A LCS 880-68743/1-A LCSD 880-68743/2-A	H-4 (0-0.5') Method Blank Lab Control Sample Lab Control Sample Dup	Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid	5035 5035 5035 5035 5035		14

Analysis Batch: 68847

Lab Sample ID 880-36709-1	Client Sample ID H-1 (0-0.5')	Prep Type Total/NA	Matrix Solid	Total BTEX	Prep Batch
880-36709-2	H-2 (0-0.5')	Total/NA	Solid	Total BTEX	
880-36709-3	H-3 (0-0.5')	Total/NA	Solid	Total BTEX	
880-36709-4	H-4 (0-0.5')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 68711

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36709-1	H-1 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-36709-2	H-2 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-36709-3	H-3 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-36709-4	H-4 (0-0.5')	Total/NA	Solid	8015NM Prep	
MB 880-68711/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-68711/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-68711/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-36709-1 MS	H-1 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-36709-1 MSD	H-1 (0-0.5')	Total/NA	Solid	8015NM Prep	
Analysis Batch: 687	37				

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36709-1	H-1 (0-0.5')	Total/NA	Solid	8015B NM	68711

Eurofins Midland

Page 100 of 147

QC Association Summary

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

GC Semi VOA (Continued)

Analysis Batch: 68737 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36709-2	H-2 (0-0.5')	Total/NA	Solid	8015B NM	68711
880-36709-3	H-3 (0-0.5')	Total/NA	Solid	8015B NM	68711
880-36709-4	H-4 (0-0.5')	Total/NA	Solid	8015B NM	68711
MB 880-68711/1-A	Method Blank	Total/NA	Solid	8015B NM	68711
LCS 880-68711/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	68711
LCSD 880-68711/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	68711
880-36709-1 MS	H-1 (0-0.5')	Total/NA	Solid	8015B NM	68711
880-36709-1 MSD	H-1 (0-0.5')	Total/NA	Solid	8015B NM	68711

Analysis Batch: 68813

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36709-1	H-1 (0-0.5')	Total/NA	Solid	8015 NM	
880-36709-2	H-2 (0-0.5')	Total/NA	Solid	8015 NM	
880-36709-3	H-3 (0-0.5')	Total/NA	Solid	8015 NM	
880-36709-4	H-4 (0-0.5')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 68689

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36709-1	H-1 (0-0.5')	Soluble	Solid	DI Leach	
880-36709-2	H-2 (0-0.5')	Soluble	Solid	DI Leach	
880-36709-3	H-3 (0-0.5')	Soluble	Solid	DI Leach	
880-36709-4	H-4 (0-0.5')	Soluble	Solid	DI Leach	
MB 880-68689/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-68689/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-68689/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-36709-4 MS	H-4 (0-0.5')	Soluble	Solid	DI Leach	
880-36709-4 MSD	H-4 (0-0.5')	Soluble	Solid	DI Leach	

Analysis Batch: 68723

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36709-1	H-1 (0-0.5')	Soluble	Solid	300.0	68689
880-36709-2	H-2 (0-0.5')	Soluble	Solid	300.0	68689
880-36709-3	H-3 (0-0.5')	Soluble	Solid	300.0	68689
880-36709-4	H-4 (0-0.5')	Soluble	Solid	300.0	68689
MB 880-68689/1-A	Method Blank	Soluble	Solid	300.0	68689
LCS 880-68689/2-A	Lab Control Sample	Soluble	Solid	300.0	68689
LCSD 880-68689/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	68689
880-36709-4 MS	H-4 (0-0.5')	Soluble	Solid	300.0	68689
880-36709-4 MSD	H-4 (0-0.5')	Soluble	Solid	300.0	68689

Job ID: 880-36709-1 SDG: Eddy County, New Mexico

Lab Chronicle

Initial

Amount

4.99 g

5 mL

10.10 g

1 uL

4.96 g

50 mL

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

50 mL

Batch

68743

68654

68847

68813

68711

68737

68689

68723

Number

Dil

1

1

1

1

5

Factor

Run

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23)

Batch

5035

8021B

Total BTEX

8015NM Prep

8015 NM

8015B NM

DI Leach

300.0

Method

Client Sample ID: H-1 (0-0.5') Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:37

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Leach

Analysis

Prep

Job ID: 880-36709-1 SDG: Eddy County, New Mexico

Analyst

EL

Lab Sample ID: 880-36709-2

Lab Sample ID: 880-36709-3

Lab Sample ID: 880-36709-4

Lab Sample ID: 880-36709-1

Prepared

or Analyzed

12/09/23 16:01

12/10/23 05:51 MNR

12/10/23 05:51 SM

12/09/23 10:41 SM

12/08/23 16:38 TKC

12/09/23 10:41 SM

12/08/23 15:11 SMC

12/09/23 08:14 CH

Matrix: Solid

Lab

EET MID

Matrix: Solid

Matrix: Solid

Client Sample ID: H-2 (0-0.5') Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:37

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	68743	12/09/23 16:01	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68654	12/10/23 06:11	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			68847	12/10/23 06:11	SM	EET MID
Total/NA	Analysis	8015 NM		1			68813	12/09/23 11:47	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	68711	12/08/23 16:38	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	68737	12/09/23 11:47	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	68689	12/08/23 15:11	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68723	12/09/23 14:37	CH	EET MID

Client Sample ID: H-3 (0-0.5') Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:37

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	68743	12/09/23 16:01	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68654	12/10/23 06:32	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			68847	12/10/23 06:32	SM	EET MID
Total/NA	Analysis	8015 NM		1			68813	12/09/23 12:09	SM	EET MID
Total/NA	Prep	8015NM Prep			9.99 g	10 mL	68711	12/08/23 16:38	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	68737	12/09/23 12:09	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	68689	12/08/23 15:11	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68723	12/09/23 14:44	СН	EET MID

Client Sample ID: H-4 (0-0.5') Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:37

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	68743	12/09/23 16:01	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68654	12/10/23 06:52	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			68847	12/10/23 06:52	SM	EET MID

Eurofins Midland

Matrix: Solid

Released to Imaging: 4/9/2024 2:03:34 PM

Lab Chronicle

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23) Job ID: 880-36709-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-36709-4

Client Sample ID: H-4 (0-0.5') Date Collected: 12/07/23 00:00 Date Received: 12/08/23 14:37

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			68813	12/09/23 12:30	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	68711	12/08/23 16:38	ТКС	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	68737	12/09/23 12:30	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	68689	12/08/23 15:11	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68723	12/09/23 14:50	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Page 103 of 147

Matrix: Solid

5 6

Accreditation/Certification Summary

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23) Job ID: 880-36709-1 SDG: Eddy County, New Mexico

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		Identification Number	Expiration Date
exas	NELAP		T104704400-23-26	06-30-24
0,	s are included in this report, does not offer certification.	but the laboratory is r	not certified by the governing authori	ty. This list may include analyte
0,	•	but the laboratory is r Matrix	not certified by the governing authori Analyte	ty. This list may include analyte:
for which the agency	does not offer certification.	2		ty. This list may include analyte:

Eurofins Midland

Method Summary

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23) Job ID: 880-36709-1 SDG: Eddy County, New Mexico

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Carmona Resources Project/Site: Daisy 24 State Com battery (11.11.23) Job ID: 880-36709-1 SDG: Eddy County, New Mexico

ab Sample ID.	Client Sample ID	Matrix	Collected	Received	
80-36709-1	H-1 (0-0.5')	Solid	12/07/23 00:00	12/08/23 14:37	
80-36709-2	H-2 (0-0.5')	Solid	12/07/23 00:00	12/08/23 14:37	
80-36709-3	H-3 (0-0.5')	Solid		12/08/23 14:37	
80-36709-4	H-4 (0-0.5')	Solid	12/07/23 00:00	12/08/23 14:37	
					1

Project Manager Conner Company Name Carmon Address. 310 W1 City, State ZIP Midland Project Name. Dais Project Number Dais Project Location Sampler's Name: PO #: Cooler Custody Seals Sample Custody Seals. Total Containers. Sample Location H-1 (0-0 5') H-2 (0-0 5') H-2 (0-0 5')	Moehnng Ia Resour Mall St St ,TX 797C Fes Yes N Yes N		Email Email Turn Jate Soil X	Bill to. (if different) Carmona Re Company Name: Address. Address. City. State ZIP Imcarmona@carmonaresources com Imcarmonaresources com Around Pres. Around Pres. Around Pres. Around Code Around Pres. Around Pres. Around Code Bres. Code G 1 G 1 X X	-1 -1 C # Parameters C Presenters		× × Chloride 300.0	ANALYS	NALYSIS REQUEST	EDD	Og Chain of Custody Og Chain of Custody Og Chain of Custody Isrust IRC Isrust IRP Isrust IRP Isrust IRP Isrust Income NO Isrust Preservative Codes None NO DI Water I Cool Cool MeOH Me HCL. HC HNO3 HN H3PO4 H2 Nacetate-NaOH Zn NaOH Ascorbic Acid SAPC NaOH+Ascorbic Acid SAPC Sample Comments
H-1 (0-0 5')						×					van
H-2 (0-0 5')	12/7/2023		×	G	_	×					
H-3 (0-0 5')	12/7/2023		×	G		××××					
H-4 (0-0 5')	12/7/2023		×	G		×××					
											_
Comments: Email to Mike Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmonaresources.com	like Carmona / Mcarmo	na@carmonares	ources.com a	nd Conner Mo	ehring / C	moehring@	carmonare	sources.cor	3 - -		
	Relinquished by (Signature)	y (Signature)				Date/Time			Received by	(Signature)	
					-						

5

13

Chain of Custody

Job Number: 880-36709-1

List Source: Eurofins Midland

SDG Number: Eddy County, New Mexico

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 36709 List Number: 1 Creator: Rodriguez, Leticia

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

December 20, 2023

CONNER MOEHRING CARMONA RESOURCES 310 W WALL ST SUITE 415 MIDLAND, TX 79701

RE: DAISY 24 STATE COM BATTERY

Enclosed are the results of analyses for samples received by the laboratory on 12/19/23 8:56.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	12/19/2023	Sampling Date:	12/18/2023
Reported:	12/20/2023	Sampling Type:	Soil
Project Name:	DAISY 24 STATE COM BATTERY	Sampling Condition:	Cool & Intact
Project Number:	2205 (11.11.23)	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 1 (1.5') (H236726-01)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/19/2023	ND	2.22	111	2.00	9.35	
Toluene*	<0.050	0.050	12/19/2023	ND	2.23	112	2.00	1.61	
Ethylbenzene*	<0.050	0.050	12/19/2023	ND	2.33	117	2.00	1.25	
Total Xylenes*	<0.150	0.150	12/19/2023	ND	7.08	118	6.00	3.00	
Total BTEX	<0.300	0.300	12/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/19/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2023	ND	190	95.1	200	0.766	
DRO >C10-C28*	<10.0	10.0	12/20/2023	ND	169	84.5	200	3.70	
EXT DRO >C28-C36	<10.0	10.0	12/20/2023	ND					
Surrogate: 1-Chlorooctane	91.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	104	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	12/19/2023	Sampling Date:	12/18/2023
Reported:	12/20/2023	Sampling Type:	Soil
Project Name:	DAISY 24 STATE COM BATTERY	Sampling Condition:	Cool & Intact
Project Number:	2205 (11.11.23)	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 2 (1.5') (H236726-02)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/19/2023	ND	2.22	111	2.00	9.35	
Toluene*	<0.050	0.050	12/19/2023	ND	2.23	112	2.00	1.61	
Ethylbenzene*	<0.050	0.050	12/19/2023	ND	2.33	117	2.00	1.25	
Total Xylenes*	<0.150	0.150	12/19/2023	ND	7.08	118	6.00	3.00	
Total BTEX	<0.300	0.300	12/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.8	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/20/2023	ND	448	112	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2023	ND	190	95.1	200	0.766	
DRO >C10-C28*	<10.0	10.0	12/20/2023	ND	169	84.5	200	3.70	
EXT DRO >C28-C36	<10.0	10.0	12/20/2023	ND					
Surrogate: 1-Chlorooctane	90.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	100	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	12/19/2023	Sampling Date:	12/18/2023
Reported:	12/20/2023	Sampling Type:	Soil
Project Name:	DAISY 24 STATE COM BATTERY	Sampling Condition:	Cool & Intact
Project Number:	2205 (11.11.23)	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 3 (1.5') (H236726-03)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/19/2023	ND	2.22	111	2.00	9.35	
Toluene*	<0.050	0.050	12/19/2023	ND	2.23	112	2.00	1.61	
Ethylbenzene*	<0.050	0.050	12/19/2023	ND	2.33	117	2.00	1.25	
Total Xylenes*	<0.150	0.150	12/19/2023	ND	7.08	118	6.00	3.00	
Total BTEX	<0.300	0.300	12/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/20/2023	ND	448	112	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2023	ND	190	95.1	200	0.766	
DRO >C10-C28*	<10.0	10.0	12/20/2023	ND	169	84.5	200	3.70	
EXT DRO >C28-C36	<10.0	10.0	12/20/2023	ND					
Surrogate: 1-Chlorooctane	85.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	91.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	12/19/2023	Sampling Date:	12/18/2023
Reported:	12/20/2023	Sampling Type:	Soil
Project Name:	DAISY 24 STATE COM BATTERY	Sampling Condition:	Cool & Intact
Project Number:	2205 (11.11.23)	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 4 (1.5') (H236726-04)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/19/2023	ND	2.22	111	2.00	9.35	
Toluene*	<0.050	0.050	12/19/2023	ND	2.23	112	2.00	1.61	
Ethylbenzene*	<0.050	0.050	12/19/2023	ND	2.33	117	2.00	1.25	
Total Xylenes*	<0.150	0.150	12/19/2023	ND	7.08	118	6.00	3.00	
Total BTEX	<0.300	0.300	12/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/20/2023	ND	448	112	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2023	ND	190	95.1	200	0.766	
DRO >C10-C28*	<10.0	10.0	12/20/2023	ND	169	84.5	200	3.70	
EXT DRO >C28-C36	<10.0	10.0	12/20/2023	ND					
Surrogate: 1-Chlorooctane	95.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	106	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	12/19/2023	Sampling Date:	12/18/2023
Reported:	12/20/2023	Sampling Type:	Soil
Project Name:	DAISY 24 STATE COM BATTERY	Sampling Condition:	Cool & Intact
Project Number:	2205 (11.11.23)	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 5 (1.5') (H236726-05)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/19/2023	ND	2.22	111	2.00	9.35	
Toluene*	<0.050	0.050	12/19/2023	ND	2.23	112	2.00	1.61	
Ethylbenzene*	<0.050	0.050	12/19/2023	ND	2.33	117	2.00	1.25	
Total Xylenes*	<0.150	0.150	12/19/2023	ND	7.08	118	6.00	3.00	
Total BTEX	<0.300	0.300	12/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/20/2023	ND	448	112	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2023	ND	190	95.1	200	0.766	
DRO >C10-C28*	<10.0	10.0	12/20/2023	ND	169	84.5	200	3.70	
EXT DRO >C28-C36	<10.0	10.0	12/20/2023	ND					
Surrogate: 1-Chlorooctane	102	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	114 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	12/19/2023	Sampling Date:	12/18/2023
Reported:	12/20/2023	Sampling Type:	Soil
Project Name:	DAISY 24 STATE COM BATTERY	Sampling Condition:	Cool & Intact
Project Number:	2205 (11.11.23)	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 6 (1.5') (H236726-06)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/19/2023	ND	2.22	111	2.00	9.35	
Toluene*	<0.050	0.050	12/19/2023	ND	2.23	112	2.00	1.61	
Ethylbenzene*	<0.050	0.050	12/19/2023	ND	2.33	117	2.00	1.25	
Total Xylenes*	<0.150	0.150	12/19/2023	ND	7.08	118	6.00	3.00	
Total BTEX	<0.300	0.300	12/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.6	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/20/2023	ND	448	112	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2023	ND	190	95.1	200	0.766	
DRO >C10-C28*	<10.0	10.0	12/20/2023	ND	169	84.5	200	3.70	
EXT DRO >C28-C36	<10.0	10.0	12/20/2023	ND					
Surrogate: 1-Chlorooctane	97.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	12/19/2023	Sampling Date:	12/18/2023
Reported:	12/20/2023	Sampling Type:	Soil
Project Name:	DAISY 24 STATE COM BATTERY	Sampling Condition:	Cool & Intact
Project Number:	2205 (11.11.23)	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 7 (1.5') (H236726-07)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/19/2023	ND	2.22	111	2.00	9.35	
Toluene*	<0.050	0.050	12/19/2023	ND	2.23	112	2.00	1.61	
Ethylbenzene*	<0.050	0.050	12/19/2023	ND	2.33	117	2.00	1.25	
Total Xylenes*	<0.150	0.150	12/19/2023	ND	7.08	118	6.00	3.00	
Total BTEX	<0.300	0.300	12/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/20/2023	ND	448	112	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2023	ND	190	95.1	200	0.766	
DRO >C10-C28*	<10.0	10.0	12/20/2023	ND	169	84.5	200	3.70	
EXT DRO >C28-C36	<10.0	10.0	12/20/2023	ND					
Surrogate: 1-Chlorooctane	104	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	116 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	12/19/2023	Sampling Date:	12/18/2023
Reported:	12/20/2023	Sampling Type:	Soil
Project Name:	DAISY 24 STATE COM BATTERY	Sampling Condition:	Cool & Intact
Project Number:	2205 (11.11.23)	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 8 (1.5') (H236726-08)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/19/2023	ND	2.22	111	2.00	9.35	
Toluene*	<0.050	0.050	12/19/2023	ND	2.23	112	2.00	1.61	
Ethylbenzene*	<0.050	0.050	12/19/2023	ND	2.33	117	2.00	1.25	
Total Xylenes*	<0.150	0.150	12/19/2023	ND	7.08	118	6.00	3.00	
Total BTEX	<0.300	0.300	12/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/20/2023	ND	448	112	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2023	ND	190	95.1	200	0.766	
DRO >C10-C28*	<10.0	10.0	12/20/2023	ND	169	84.5	200	3.70	
EXT DRO >C28-C36	<10.0	10.0	12/20/2023	ND					
Surrogate: 1-Chlorooctane	110	48.2-13	4						
Surrogate: 1-Chlorooctadecane	123	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	12/19/2023	Sampling Date:	12/18/2023
Reported:	12/20/2023	Sampling Type:	Soil
Project Name:	DAISY 24 STATE COM BATTERY	Sampling Condition:	Cool & Intact
Project Number:	2205 (11.11.23)	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 9 (1.5') (H236726-09)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/19/2023	ND	2.22	111	2.00	9.35	
Toluene*	<0.050	0.050	12/19/2023	ND	2.23	112	2.00	1.61	
Ethylbenzene*	<0.050	0.050	12/19/2023	ND	2.33	117	2.00	1.25	
Total Xylenes*	<0.150	0.150	12/19/2023	ND	7.08	118	6.00	3.00	
Total BTEX	<0.300	0.300	12/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/20/2023	ND	448	112	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2023	ND	190	95.1	200	0.766	
DRO >C10-C28*	<10.0	10.0	12/20/2023	ND	169	84.5	200	3.70	
EXT DRO >C28-C36	<10.0	10.0	12/20/2023	ND					
Surrogate: 1-Chlorooctane	100	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	111 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	12/19/2023	Sampling Date:	12/18/2023
Reported:	12/20/2023	Sampling Type:	Soil
Project Name:	DAISY 24 STATE COM BATTERY	Sampling Condition:	Cool & Intact
Project Number:	2205 (11.11.23)	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 10 (1.5') (H236726-10)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/19/2023	ND	2.22	111	2.00	9.35	
Toluene*	<0.050	0.050	12/19/2023	ND	2.23	112	2.00	1.61	
Ethylbenzene*	<0.050	0.050	12/19/2023	ND	2.33	117	2.00	1.25	
Total Xylenes*	<0.150	0.150	12/19/2023	ND	7.08	118	6.00	3.00	
Total BTEX	<0.300	0.300	12/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.1	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/20/2023	ND	448	112	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2023	ND	190	95.1	200	0.766	
DRO >C10-C28*	<10.0	10.0	12/20/2023	ND	169	84.5	200	3.70	
EXT DRO >C28-C36	<10.0	10.0	12/20/2023	ND					
Surrogate: 1-Chlorooctane	102	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	113 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	12/19/2023	Sampling Date:	12/18/2023
Reported:	12/20/2023	Sampling Type:	Soil
Project Name:	DAISY 24 STATE COM BATTERY	Sampling Condition:	Cool & Intact
Project Number:	2205 (11.11.23)	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 11 (1.5') (H236726-11)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/19/2023	ND	2.22	111	2.00	9.35	
Toluene*	<0.050	0.050	12/19/2023	ND	2.23	112	2.00	1.61	
Ethylbenzene*	<0.050	0.050	12/19/2023	ND	2.33	117	2.00	1.25	
Total Xylenes*	<0.150	0.150	12/19/2023	ND	7.08	118	6.00	3.00	
Total BTEX	<0.300	0.300	12/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/20/2023	ND	448	112	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2023	ND	190	95.1	200	0.766	
DRO >C10-C28*	<10.0	10.0	12/20/2023	ND	169	84.5	200	3.70	
EXT DRO >C28-C36	<10.0	10.0	12/20/2023	ND					
Surrogate: 1-Chlorooctane	87.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	98.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	12/19/2023	Sampling Date:	12/18/2023
Reported:	12/20/2023	Sampling Type:	Soil
Project Name:	DAISY 24 STATE COM BATTERY	Sampling Condition:	Cool & Intact
Project Number:	2205 (11.11.23)	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 12 (1.5') (H236726-12)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/19/2023	ND	2.22	111	2.00	9.35	
Toluene*	<0.050	0.050	12/19/2023	ND	2.23	112	2.00	1.61	
Ethylbenzene*	<0.050	0.050	12/19/2023	ND	2.33	117	2.00	1.25	
Total Xylenes*	<0.150	0.150	12/19/2023	ND	7.08	118	6.00	3.00	
Total BTEX	<0.300	0.300	12/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.6	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/20/2023	ND	448	112	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2023	ND	190	95.1	200	0.766	
DRO >C10-C28*	<10.0	10.0	12/20/2023	ND	169	84.5	200	3.70	
EXT DRO >C28-C36	<10.0	10.0	12/20/2023	ND					
Surrogate: 1-Chlorooctane	82.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	90.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	12/19/2023	Sampling Date:	12/18/2023
Reported:	12/20/2023	Sampling Type:	Soil
Project Name:	DAISY 24 STATE COM BATTERY	Sampling Condition:	Cool & Intact
Project Number:	2205 (11.11.23)	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 13 (1.5') (H236726-13)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/19/2023	ND	2.22	111	2.00	9.35	
Toluene*	<0.050	0.050	12/19/2023	ND	2.23	112	2.00	1.61	
Ethylbenzene*	<0.050	0.050	12/19/2023	ND	2.33	117	2.00	1.25	
Total Xylenes*	<0.150	0.150	12/19/2023	ND	7.08	118	6.00	3.00	
Total BTEX	<0.300	0.300	12/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/20/2023	ND	448	112	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2023	ND	190	95.1	200	0.766	
DRO >C10-C28*	<10.0	10.0	12/20/2023	ND	169	84.5	200	3.70	
EXT DRO >C28-C36	<10.0	10.0	12/20/2023	ND					
Surrogate: 1-Chlorooctane	85.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	95.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	12/19/2023	Sampling Date:	12/18/2023
Reported:	12/20/2023	Sampling Type:	Soil
Project Name:	DAISY 24 STATE COM BATTERY	Sampling Condition:	Cool & Intact
Project Number:	2205 (11.11.23)	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 14 (1.5') (H236726-14)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/19/2023	ND	2.22	111	2.00	9.35	
Toluene*	<0.050	0.050	12/19/2023	ND	2.23	112	2.00	1.61	
Ethylbenzene*	<0.050	0.050	12/19/2023	ND	2.33	117	2.00	1.25	
Total Xylenes*	<0.150	0.150	12/19/2023	ND	7.08	118	6.00	3.00	
Total BTEX	<0.300	0.300	12/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 5	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/20/2023	ND	448	112	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2023	ND	180	90.2	200	3.87	
DRO >C10-C28*	<10.0	10.0	12/20/2023	ND	177	88.5	200	2.86	
EXT DRO >C28-C36	<10.0	10.0	12/20/2023	ND					
Surrogate: 1-Chlorooctane	83.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	77.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	12/19/2023	Sampling Date:	12/18/2023
Reported:	12/20/2023	Sampling Type:	Soil
Project Name:	DAISY 24 STATE COM BATTERY	Sampling Condition:	Cool & Intact
Project Number:	2205 (11.11.23)	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 15 (1.5') (H236726-15)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/19/2023	ND	2.22	111	2.00	9.35	
Toluene*	<0.050	0.050	12/19/2023	ND	2.23	112	2.00	1.61	
Ethylbenzene*	<0.050	0.050	12/19/2023	ND	2.33	117	2.00	1.25	
Total Xylenes*	<0.150	0.150	12/19/2023	ND	7.08	118	6.00	3.00	
Total BTEX	<0.300	0.300	12/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.3	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/20/2023	ND	448	112	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2023	ND	148	74.2	200	8.77	
DRO >C10-C28*	<10.0	10.0	12/20/2023	ND	155	77.7	200	6.07	
EXT DRO >C28-C36	<10.0	10.0	12/20/2023	ND					
Surrogate: 1-Chlorooctane	81.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	89.0	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	12/19/2023	Sampling Date:	12/18/2023
Reported:	12/20/2023	Sampling Type:	Soil
Project Name:	DAISY 24 STATE COM BATTERY	Sampling Condition:	Cool & Intact
Project Number:	2205 (11.11.23)	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 16 (1.5') (H236726-16)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/19/2023	ND	2.22	111	2.00	9.35	
Toluene*	<0.050	0.050	12/19/2023	ND	2.23	112	2.00	1.61	
Ethylbenzene*	<0.050	0.050	12/19/2023	ND	2.33	117	2.00	1.25	
Total Xylenes*	<0.150	0.150	12/19/2023	ND	7.08	118	6.00	3.00	
Total BTEX	<0.300	0.300	12/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/20/2023	ND	448	112	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2023	ND	173	86.3	200	0.635	
DRO >C10-C28*	<10.0	10.0	12/20/2023	ND	179	89.7	200	0.857	
EXT DRO >C28-C36	<10.0	10.0	12/20/2023	ND					
Surrogate: 1-Chlorooctane	88.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	82.0	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	12/19/2023	Sampling Date:	12/18/2023
Reported:	12/20/2023	Sampling Type:	Soil
Project Name:	DAISY 24 STATE COM BATTERY	Sampling Condition:	Cool & Intact
Project Number:	2205 (11.11.23)	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 17 (1.5') (H236726-17)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/19/2023	ND	2.22	111	2.00	9.35	
Toluene*	<0.050	0.050	12/19/2023	ND	2.23	112	2.00	1.61	
Ethylbenzene*	<0.050	0.050	12/19/2023	ND	2.33	117	2.00	1.25	
Total Xylenes*	<0.150	0.150	12/19/2023	ND	7.08	118	6.00	3.00	
Total BTEX	<0.300	0.300	12/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/20/2023	ND	448	112	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2023	ND	180	90.2	200	3.87	
DRO >C10-C28*	<10.0	10.0	12/20/2023	ND	177	88.5	200	2.86	
EXT DRO >C28-C36	<10.0	10.0	12/20/2023	ND					
Surrogate: 1-Chlorooctane	85.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	80.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	12/19/2023	Sampling Date:	12/18/2023
Reported:	12/20/2023	Sampling Type:	Soil
Project Name:	DAISY 24 STATE COM BATTERY	Sampling Condition:	Cool & Intact
Project Number:	2205 (11.11.23)	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: SW - 1 (1.5') (H236726-18)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/19/2023	ND	2.22	111	2.00	9.35	
Toluene*	<0.050	0.050	12/19/2023	ND	2.23	112	2.00	1.61	
Ethylbenzene*	<0.050	0.050	12/19/2023	ND	2.33	117	2.00	1.25	
Total Xylenes*	<0.150	0.150	12/19/2023	ND	7.08	118	6.00	3.00	
Total BTEX	<0.300	0.300	12/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	100	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/20/2023	ND	448	112	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2023	ND	148	74.2	200	8.77	
DRO >C10-C28*	<10.0	10.0	12/20/2023	ND	155	77.7	200	6.07	
EXT DRO >C28-C36	<10.0	10.0	12/20/2023	ND					
Surrogate: 1-Chlorooctane	92.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	102	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	12/19/2023	Sampling Date:	12/18/2023
Reported:	12/20/2023	Sampling Type:	Soil
Project Name:	DAISY 24 STATE COM BATTERY	Sampling Condition:	Cool & Intact
Project Number:	2205 (11.11.23)	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: SW - 2 (1.5') (H236726-19)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/19/2023	ND	2.22	111	2.00	9.35	
Toluene*	<0.050	0.050	12/19/2023	ND	2.23	112	2.00	1.61	
Ethylbenzene*	<0.050	0.050	12/19/2023	ND	2.33	117	2.00	1.25	
Total Xylenes*	<0.150	0.150	12/19/2023	ND	7.08	118	6.00	3.00	
Total BTEX	<0.300	0.300	12/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.0	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/20/2023	ND	448	112	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2023	ND	173	86.3	200	0.635	
DRO >C10-C28*	<10.0	10.0	12/20/2023	ND	179	89.7	200	0.857	
EXT DRO >C28-C36	<10.0	10.0	12/20/2023	ND					
Surrogate: 1-Chlorooctane	84.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	80.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	12/19/2023	Sampling Date:	12/18/2023
Reported:	12/20/2023	Sampling Type:	Soil
Project Name:	DAISY 24 STATE COM BATTERY	Sampling Condition:	Cool & Intact
Project Number:	2205 (11.11.23)	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: SW - 3 (1.5') (H236726-20)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/19/2023	ND	2.22	111	2.00	9.35	
Toluene*	<0.050	0.050	12/19/2023	ND	2.23	112	2.00	1.61	
Ethylbenzene*	<0.050	0.050	12/19/2023	ND	2.33	117	2.00	1.25	
Total Xylenes*	<0.150	0.150	12/19/2023	ND	7.08	118	6.00	3.00	
Total BTEX	<0.300	0.300	12/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/20/2023	ND	448	112	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2023	ND	190	95.1	200	0.766	
DRO >C10-C28*	<10.0	10.0	12/20/2023	ND	169	84.5	200	3.70	
EXT DRO >C28-C36	<10.0	10.0	12/20/2023	ND					
Surrogate: 1-Chlorooctane	85.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	94.1	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	12/19/2023	Sampling Date:	12/18/2023
Reported:	12/20/2023	Sampling Type:	Soil
Project Name:	DAISY 24 STATE COM BATTERY	Sampling Condition:	Cool & Intact
Project Number:	2205 (11.11.23)	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: SW - 4 (1.5') (H236726-21)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/19/2023	ND	2.36	118	2.00	4.79	QM-07
Toluene*	<0.050	0.050	12/19/2023	ND	2.36	118	2.00	1.42	
Ethylbenzene*	<0.050	0.050	12/19/2023	ND	2.45	122	2.00	1.47	QM-07
Total Xylenes*	<0.150	0.150	12/19/2023	ND	7.32	122	6.00	2.08	
Total BTEX	<0.300	0.300	12/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/20/2023	ND	448	112	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/19/2023	ND	164	81.9	200	5.97	
DRO >C10-C28*	<10.0	10.0	12/19/2023	ND	175	87.6	200	3.22	
EXT DRO >C28-C36	<10.0	10.0	12/19/2023	ND					
Surrogate: 1-Chlorooctane	75.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	81.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	12/19/2023	Sampling Date:	12/18/2023
Reported:	12/20/2023	Sampling Type:	Soil
Project Name:	DAISY 24 STATE COM BATTERY	Sampling Condition:	Cool & Intact
Project Number:	2205 (11.11.23)	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: SW - 5 (1.5') (H236726-22)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/19/2023	ND	2.36	118	2.00	4.79	
Toluene*	<0.050	0.050	12/19/2023	ND	2.36	118	2.00	1.42	
Ethylbenzene*	<0.050	0.050	12/19/2023	ND	2.45	122	2.00	1.47	
Total Xylenes*	<0.150	0.150	12/19/2023	ND	7.32	122	6.00	2.08	
Total BTEX	<0.300	0.300	12/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/20/2023	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/19/2023	ND	164	81.9	200	5.97	
DRO >C10-C28*	<10.0	10.0	12/19/2023	ND	175	87.6	200	3.22	
EXT DRO >C28-C36	<10.0	10.0	12/19/2023	ND					
Surrogate: 1-Chlorooctane	85.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	12/19/2023	Sampling Date:	12/18/2023
Reported:	12/20/2023	Sampling Type:	Soil
Project Name:	DAISY 24 STATE COM BATTERY	Sampling Condition:	Cool & Intact
Project Number:	2205 (11.11.23)	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: SW - 6 (1.5') (H236726-23)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/19/2023	ND	2.36	118	2.00	4.79	
Toluene*	<0.050	0.050	12/19/2023	ND	2.36	118	2.00	1.42	
Ethylbenzene*	<0.050	0.050	12/19/2023	ND	2.45	122	2.00	1.47	
Total Xylenes*	<0.150	0.150	12/19/2023	ND	7.32	122	6.00	2.08	
Total BTEX	<0.300	0.300	12/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.8	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/20/2023	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/19/2023	ND	164	81.9	200	5.97	
DRO >C10-C28*	<10.0	10.0	12/19/2023	ND	175	87.6	200	3.22	
EXT DRO >C28-C36	<10.0	10.0	12/19/2023	ND					
Surrogate: 1-Chlorooctane	72.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	78.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	12/19/2023	Sampling Date:	12/18/2023
Reported:	12/20/2023	Sampling Type:	Soil
Project Name:	DAISY 24 STATE COM BATTERY	Sampling Condition:	Cool & Intact
Project Number:	2205 (11.11.23)	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: SW - 7 (1.5') (H236726-24)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/19/2023	ND	2.36	118	2.00	4.79	
Toluene*	<0.050	0.050	12/19/2023	ND	2.36	118	2.00	1.42	
Ethylbenzene*	<0.050	0.050	12/19/2023	ND	2.45	122	2.00	1.47	
Total Xylenes*	<0.150	0.150	12/19/2023	ND	7.32	122	6.00	2.08	
Total BTEX	<0.300	0.300	12/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/20/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/19/2023	ND	164	81.9	200	5.97	
DRO >C10-C28*	<10.0	10.0	12/19/2023	ND	175	87.6	200	3.22	
EXT DRO >C28-C36	<10.0	10.0	12/19/2023	ND					
Surrogate: 1-Chlorooctane	91.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	98.1	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	12/19/2023	Sampling Date:	12/18/2023
Reported:	12/20/2023	Sampling Type:	Soil
Project Name:	DAISY 24 STATE COM BATTERY	Sampling Condition:	Cool & Intact
Project Number:	2205 (11.11.23)	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: SW - 8 (1.5') (H236726-25)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/19/2023	ND	2.36	118	2.00	4.79	
Toluene*	<0.050	0.050	12/19/2023	ND	2.36	118	2.00	1.42	
Ethylbenzene*	<0.050	0.050	12/19/2023	ND	2.45	122	2.00	1.47	
Total Xylenes*	<0.150	0.150	12/19/2023	ND	7.32	122	6.00	2.08	
Total BTEX	<0.300	0.300	12/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/20/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/19/2023	ND	164	81.9	200	5.97	
DRO >C10-C28*	<10.0	10.0	12/19/2023	ND	175	87.6	200	3.22	
EXT DRO >C28-C36	<10.0	10.0	12/19/2023	ND					
Surrogate: 1-Chlorooctane	78.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	83.1	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	12/19/2023	Sampling Date:	12/18/2023
Reported:	12/20/2023	Sampling Type:	Soil
Project Name:	DAISY 24 STATE COM BATTERY	Sampling Condition:	Cool & Intact
Project Number:	2205 (11.11.23)	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: SW - 9 (1.5') (H236726-26)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/19/2023	ND	2.36	118	2.00	4.79	
Toluene*	<0.050	0.050	12/19/2023	ND	2.36	118	2.00	1.42	
Ethylbenzene*	<0.050	0.050	12/19/2023	ND	2.45	122	2.00	1.47	
Total Xylenes*	<0.150	0.150	12/19/2023	ND	7.32	122	6.00	2.08	
Total BTEX	<0.300	0.300	12/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/20/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/19/2023	ND	164	81.9	200	5.97	
DRO >C10-C28*	<10.0	10.0	12/19/2023	ND	175	87.6	200	3.22	
EXT DRO >C28-C36	<10.0	10.0	12/19/2023	ND					
Surrogate: 1-Chlorooctane	72.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	76.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
BS-3	Blank spike recovery outside of lab established statistical limits, but still within method limits. Data is not adversely affected.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keene, Lab Director/Quality Manager

				5	20	N I	30	00	2	40	202	0.			Total	Samp	Coole	Recei	SAM	PO #:	Samp	Projec	Projec	Projec	Phone:	City, S	Address:	Compa		Project		
			mments: Ema	CS-10 (1.5')	CS-9 (1.5')	CS-8 (1.5')	CS-7 (1.5')	CS-6 (1.5')	CS-5 (1.5')	CS-4 (1.5')	CS-3 (1.5')	CS-2 (1.5')	CS-1 (1.5')	Sample Identification	Total Containers:	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIPT		Sampler's Name:	Project Location	Project Number:	Project Name:		City, State ZIP:		INGILIC.		Project Manager: (
			il to Mike Car	(1.5')	(1.5')	(1.5")	(1.5')	(1.5')	(1.5')	(1.5')	(1.5')	(1.5")	1.5')	ntification		ls: Yes	s: Yes					Eddy		Daisy 24 St	432-813-6823	Midland, IX /9/01	DIV VY VY VI O	310 W Wall St Ste 500	Carmona Resources	Conner Moehring		
Contraction of the state of the	Relinquished		mona / Mcarm	12/18/2023	12/18/2023	12/18/2023	12/18/2023	12/18/2023	12/18/2023	12/18/2023	12/18/2023	12/18/2023	12/18/2023	Date		No N/A	-	Z	Temp Blank:		JM	Eddy County, New Mexico	2205	Daisy 24 State Com Battery (11.11.23)		101	704	Ste 500	urces	Bu		
	Relinquished by: (Signature)		Comments: Email to Mike Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmonaresources.com											Time	Corrected Temperature	Competed Temperatury	Correction Factor	Thermometer IU:	Yes No			Nexico		y (11.11.23)								
)		aresources.co	×		< >	< >	< >	< >	< >	××	×	×	Soil		adiliy.	JI.	5	Wet Ice:			Due Date:	Routine	Turn	Effiail.	Empil.						
			m and Conne		2 6	2 4	2	2	6	Comp	Comp	Comp	Comp	Water Comp	Grab/		-0.82	1	Con Sal	-		24 HK	I KUSN	Turn Around	Incannonageo	mcarmona@carmonaresources.com	City, State ZIP:	Address:	Company Name	Bill to: (if different)		
12			r Moehri	Comp	T	T	T	Comp 1	T		T		np 1	np Cont	-			Pa	ram	eter	s		Code	Pres.	_	armonar			0			
19/	Dat		ng / Cn		+	+	+	+	+	+	× ;	× :	× ×		-		вт	TEX	8021	в						esource			T	Carmo		
123(0)	Date/Time		hoehrin		+	+	+	+	×	×	×	×	××	<	трн	801	5M (GR	0 + 0	ORO	+ MI	RO)				s.com				Carmona Resources		
CX CU	š	-	1g@carmo		×	×	×	×	×	×	×	×	× >	<			Ch	lorio	ie 45	00			+	-						ouroes		
d	0		Indresou			-												-		-					A							
YLOOA			Illes.o								_		-	+									_	_	ALYSI							
	Re				-			1	_		-	-	+	+											ANALYSIS REQUEST	L						
1444	Received by: (Signature)													1											IEST	Deliverables. Loo		Reporting:Level II Level III	State of Project:	Program: UST/PST PRP rownfields		
	y: (Sign	0												+					_							JIES. LU	Joe ED	1:Level II	Project:	: UST/P		
7	ature)	atural			-				\vdash	-				+	-													Leve		ST PR	Wo	
																											AD			P Dro	rk Orde	
							\vdash	-	-	-	-	-		-		1	Nat	Zn	Nat	H3H	H ₂ S	HCL	Coo	Non			ADaPT	ST/UST		wnfields	Page Work Order Comments	
															Samp	011-1-00	DH+Asco	Contatet	NaHSU4: NABIS	H3PU4. nr	H2SU4: H2	HCL: HC	Cool: Cool	None: NO	Preser		Other:	RRP			Page	
		Da											,		Sample Comments		NaOH+Ascorbic Acid: SAPC	7n Acetate+NaOH: Zn	SU2	5	ING	NHN	Me	DIV	Preservative Codes		er	Level IV				
		Date/Time													Ime		i s	5			01.	NIADH- Na	MeOH: Me	DI Water: H ₂ O	Cod			evel		perfund		

Page 29 of 31

H23670

Chain of Custody

1

Page 137 of 147

						Cam	Carmona Resources	1000		Work Order	Work Order Comments
Project Manager: C	Conner Moehring			Dill IO. (il dilletetit)		Contra	one noor			Program: UST/PST PRP Frov]rownfields]RC]perfund
Company Name: C	Carmona Resources			Company manie	ę					State of Project:	
Address: 3	310 W Wall St Ste 500			Audiess.						Reporting:Level II Level III S	ST/UST RRP Level IV
City, State ZIP: N	Midland, TX 79701			City, State ZIP:		-					ADaPT Other
	432-813-6823		Email	Email: mcarmona@carmonaresources.com	carmonar	esource	s.com				1
	Deine 24 State Com Battony (11 11 23)	~ /11 11 221	Turr	Turn Around					ANALYSIS REQUEST	UEST	Preservative Codes
Flueu Nallie.	2005		Routine	✓ Rush	Pres. Code						None: NO DI Water: H ₂ O
Project I ocation	Eddy County, New Mexico	Aexico	Due Date:	24 HR)				2
Sampler's Name:	ML						MRC				H_SO.: H_ NaOH: Na
PO #					ers			_			0
SAMPLE RECEIPT	T JempBlank:	Yes No	Wet Ice:	Yes No	met	21B		4500			NaHSO: NABIS
Received Intact:	-	Thermometer ID:	<u></u>	140	ara	K 80	-	ide			Na.S.O. NaSO.
Cooler Custody Seals:	Yes No NA	Correction Factor:	or.	1	F	BTE	-	hlo			Zn Acetate+NaOH: Zn
Sample Custody Seals:	S: Yes No NIA	Temperature Reading:	eading:	-0.82		1	-	0			NaOH+Ascorbic Acid: SAPC
Total Containers:		Corrected Lemperature:	perature:	- Cubi	+		PH 8	_			
Sample Identification	ification Date	Time	Soil	Water Comp	np Cont	# .	1	-			Cambra Commente
CS-11 (1.5)	1.5') 12/18/2023		×	Comp	np 1	×	×	×			
CS-12 (1.5)			X	Comp	mp 1	×	×	×			
CS-13 (1.5')			×	Comp	mp 1	×	×	×			
CS-14 (1.5')			×	Comp	mp 1	×	×	×			
CS-15 (1.5')	1.5') 12/18/2023		×	Comp	mp 1	×	×	×			
CS-16 (1.5')			×	Comp	mp 1	×	×	×			
CS-17 (1.5)			×	Comp	mp 1	×	×	×			
SW-1 (1.5')			×	Comp	mp 1	×	×	×			
SW-2 (1.5')	1.5') 12/18/2023		×	Comp	mp 1	×	×	×			
SW-3 (1.5')	1.5') 12/18/2023		×	Comp	mp 1	×	×	×			
Comments: Email	Mike Carmor	ona@carmon	aresources.co	m and Conner	Moehrin	1g / Cm	oehring	@carmoi	naresources.com		
	Relinquished	Relinquished by: (Signature)			2	Date	Date/Time	ASK (R	Received by: (Signature)	Date/Time
1 del	Vicel	>							Solon reions	()	

Work Order No:

H236724

Page 138 of 147

Chain of Custody

T dgc 00

Released to Imaging: 4/9/2024 2:03:34 PM

,	~
٩,	,
2	5
Q	3
-	-
-	2
ς	>
-	-h
0	2
è	
2	~
5	n.
5	-
5	2
5	2
6	-

Work Order No: H236726

Page 31 of 31

M				WS RCA			Sample I	Total Containers:	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIPT	PO#:	Sampler's Name:	Project Location	Project Number:	Project Name:	Phone.	Dhopo:	City, State ZIP:	Address:	Company Name:	Project Manager:
	SW-9 (1.5)	SW-8 (1.5')	SW-7 (1.5')	SW-6 (1.5')	SW-5 (1.5")	SW-4 (1.5')	Sample Identification		Seals:	eals:		EIPT					Daisy	702-010	432-813-6823	Midland,	310 W V	Carmona	Conner I
Relinquist	SW-9 (1.5) 12/18/2023 \lambda Comp Image: Composition of the second secon	12/18/2023	12/18/2023	12/18/2023	12/18/2023	12/18/2023	Date		Yes No NIA	Yes No NA	Yes No	Temp Blank:		M	Eddy County, New Mexico	2205	Daisy 24 State Com Battery (11.11.23)	0000	6823	Midland, TX 79701	310 W Wall St Ste 500	Carmona Resources	Conner Moehring
Relinquished by: (Signature)	123	123	123	23	23	23	Time	Corrected Temperature:	Temperature Reading:	Correction Factor:	Thermometer ID:	Yes No			w Mexico		ttery (11.11.23)						
	A A A A A A A A A A A A A A A A A A A	< ×	×	×	×	×	Soil	iperature:	leading:	tor.	D:	Wet Ice:			Due Date:	Routine	Tur		Ema				
	ym and Conne	2 2	0	Co	Co	Co	Water Comp		-0.80		Ref.	Yes No			24 HR	√ Rush	Turn Around		Email: mcarmona@carmonaresources.com	City, State ZIP:	Address:	Company Name:	Bill to: (if different)
la	Iner Moehrin	Comp 1			Comp 1		ab/ # of mp Cont	+	ľ		Para	amet	ters			Code	Pres.		carmonar			le:	4)
Date/Time	g/Cm	× ×	< ×	×	×	×	-		1	BTE	X 80)21B	1992						esource				Carmo
	oehring	× >	< ×	×	~	×	TF	РН 8	015N	N (G	RO	+ DF	RO +	MR	0)				s.com				Carmona Resources
ACC -)@carmor	× >	< >	× ×	< >	××			(Chlo	ride	450	0			+	-						ources
Me	naresources	-																ANAL					
Received	.com	-	+	+	-	-									-			ANAI YSIS REQUEST					
Received by: (Signature)					+	+						_				+	_	DUEST			Deporting	State of Project:	
Signature				1		1								_							avel II	biect:	
		-	+	+	+	+	+					2		-		+	-				eve		WORK
				+					,											ADaPT	ST/UST	PIONII	of land
							Samp		NaOH+Ascorbic Acid: SAPC	Zn Acetate+NaOH: Zn	Na ₂ S ₂ O ₃ : NaSO ₃	NaHSO4: NABIS	H,PO,: HP	H ₂ S0 ₄ : H ₂	HCL: HC	Cool: Cool	None: NO	Preserv			JST RRP	Program: US I/FS1 _FNF _PIOWINISHS	Work Utuer Collineitis
Date/Time							Sample Comments	>	bic Acid: SA	aOH: Zn	SO3	BIS		NaOH: Na	HNO3: HN	MeOH: Me	DI Water: H ₂ O	Preservative Codes					Inorfund

Received by OCD: 1/23/2024 10:18:13 AM

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 306665

QUESTION	NS
Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	306665
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2333835289
Incident Name	NAPP2333835289 DAISY STATE 24 CTB @ 0
Incident Type	Release Other
Incident Status	Remediation Closure Report Received
Incident Facility	[fAPP2203350881] DAISY 24 STATE COM BATTERY

Location of Release Source

Please answer all the questions in this group.	
Site Name DAISY STATE 24 CTB	
Date Release Discovered	11/11/2023
Surface Owner	State

Incident Details

Please answer all the questions in this group.	
Incident Type	Release Other
Did this release result in a fire or is the result of a fire	No
Did this release result in any injuries	No
Has this release reached or does it have a reasonable probability of reaching a watercourse	Νο
Has this release endangered or does it have a reasonable probability of endangering public health	No
Has this release substantially damaged or will it substantially damage property or the environment	No
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission. Cause: Equipment Failure | Valve | Crude Oil | Released: 4 BBL | Recovered: 2 BBL | Lost: 2 Crude Oil Released (bbls) Details BBL Cause: Equipment Failure | Valve | Produced Water | Released: 4 BBL | Recovered: 1 BBL | Produced Water Released (bbls) Details Lost: 3 BBL Is the concentration of chloride in the produced water >10,000 mg/l Yes Condensate Released (bbls) Details Not answered. Natural Gas Vented (Mcf) Details Not answered. Natural Gas Flared (Mcf) Details Not answered. Other Released Details Not answered. Are there additional details for the questions above (i.e. any answer containing calculations attached to Initial C-141 Other, Specify, Unknown, and/or Fire, or any negative lost amounts)

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 306665

QUESTIONS (continued)

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	306665
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Nature and Volume of Release (continued)			
	Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.	
	Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No	
	Reasons why this would be considered a submission for a notification of a major release	Unavailable.	
	With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.		

	Initial	Res	ponse
--	---------	-----	-------

The responsible party must undertake the following actions immediately unless they could create a s	safety hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	iation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of veluation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for releat the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Brittany Esparza Title: Environmental Technician Email: brittany.Esparza@ConocoPhillips.com Date: 12/04/2023

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Action 306665

Page 142 of 147

QUESTIONS (co	ontinued)
---------------	-----------

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	306665
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Less than or equal 25 (ft.)
What method was used to determine the depth to ground water	NM OSE iWaters Database Search
Did this release impact groundwater or surface water	No
What is the minimum distance, between the closest lateral extents of the release an	nd the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Between ½ and 1 (mi.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Greater than 5 (mi.)
An occupied permanent residence, school, hospital, institution, or church	Between 1 and 5 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Greater than 5 (mi.)
Any other fresh water well or spring	Greater than 5 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Between 500 and 1000 (ft.)
A subsurface mine	Greater than 5 (mi.)
An (non-karst) unstable area	Zero feet, overlying, or within area
Categorize the risk of this well / site being in a karst geology	High
A 100-year floodplain	Between 500 and 1000 (ft.)
Did the release impact areas not on an exploration, development, production, or storage site	No

Remediation Plan

Please answer all the questions that	apply or are indicated. This information must be provided to	o the appropriate district office no later than 90 days after the release discovery date.
Requesting a remediation pla	an approval with this submission	Yes
Attach a comprehensive report demo	onstrating the lateral and vertical extents of soil contamination	on associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.
Have the lateral and vertical e	extents of contamination been fully delineated	Yes
Was this release entirely con	tained within a lined containment area	No
Soil Contamination Sampling: (Provide the highest observable value for each, in m	nilligrams per kilograms.)
Chloride	(EPA 300.0 or SM4500 CI B)	935
TPH (GRO+DRO+MRO)	(EPA SW-846 Method 8015M)	72.4
GRO+DRO	(EPA SW-846 Method 8015M)	72.4
BTEX	(EPA SW-846 Method 8021B or 8260B)	0.1
Benzene	(EPA SW-846 Method 8021B or 8260B)	0.1
Per Subsection B of 19.15.29.11 NM	· · · · · · · · · · · · · · · · · · ·	0.1 ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA
Per Subsection B of 19.15.29.11 NM	AC unless the site characterization report includes complete nes for beginning and completing the remediation.	
Per Subsection B of 19.15.29.11 NM. which includes the anticipated timeli On what estimated date will t	AC unless the site characterization report includes complete nes for beginning and completing the remediation.	ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA
Per Subsection B of 19.15.29.11 NM. which includes the anticipated timeli On what estimated date will t	AC unless the site characterization report includes complete ines for beginning and completing the remediation. the remediation commence final sampling or liner inspection occur	ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA 12/15/2023
Per Subsection B of 19.15.29.11 NM which includes the anticipated timeli On what estimated date will t On what date will (or did) the On what date will (or was) the	AC unless the site characterization report includes complete ines for beginning and completing the remediation. the remediation commence final sampling or liner inspection occur	ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA 12/15/2023 12/18/2023
Per Subsection B of 19.15.29.11 NM which includes the anticipated timeli On what estimated date will t On what date will (or did) the On what date will (or was) the What is the estimated surface	AC unless the site characterization report includes complete ines for beginning and completing the remediation. the remediation commence final sampling or liner inspection occur e remediation complete(d)	ad efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA 12/15/2023 12/18/2023 12/18/2023
Per Subsection B of 19.15.29.11 NM which includes the anticipated timeli On what estimated date will t On what date will (or did) the On what date will (or was) the What is the estimated surface What is the estimated volume	AC unless the site characterization report includes complete nes for beginning and completing the remediation. the remediation commence final sampling or liner inspection occur e remediation complete(d) e area (in square feet) that will be reclaimed	ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA 12/15/2023 12/18/2023 0
Per Subsection B of 19.15.29.11 NM which includes the anticipated timeli On what estimated date will t On what date will (or did) the On what date will (or was) the What is the estimated surface What is the estimated volume What is the estimated surface	AC unless the site characterization report includes complete nes for beginning and completing the remediation. the remediation commence final sampling or liner inspection occur e remediation complete(d) e area (in square feet) that will be reclaimed e (in cubic yards) that will be reclaimed	ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA 12/15/2023 12/18/2023 0 0 0

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 306665

QUESTI	ONS (continued)
Operator: COG OPERATING LLC 600 W Illinois Ave Midland, TX 79701	OGRID: 229137 Action Number: 306665 Action Type:
QUESTIONS	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)
Remediation Plan (continued)	
Please answer all the questions that apply or are indicated. This information must be provided to the	appropriate district office no later than 90 days after the release discovery date.
This remediation will (or is expected to) utilize the following processes to remediate	
(Select all answers below that apply.)	
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	No
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	No
(In Situ) Soil Vapor Extraction	No
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	No
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	No
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	No
Ground Water Abatement pursuant to 19.15.30 NMAC No	
OTHER (Non-listed remedial process)	Yes
Other Non-listed Remedial Process. Please specify	none.
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed eff which includes the anticipated timelines for beginning and completing the remediation.	forts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a	nowledge and understand that pursuant to OCD rules and regulations all operators are required ses which may endanger public health or the environment. The acceptance of a C-141 report by idequately investigate and remediate contamination that pose a threat to groundwater, surface does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Brittany Esparza Title: Environmental Technician Email: brittany.Esparza@ConocoPhillips.com Date: 01/23/2024
The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accors significantly deviate from the remediation plan proposed, then it should consult with the division to de	rdance with the physical realities encountered during remediation. If the responsible party has any need to etermine if another remediation plan submission is required.

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Action 306665

QUESTIONS (continued)		
Operator: COG OPERATING LLC 600 W Illinois Ave Midland, TX 79701	OGRID: 229137	
	Action Number: 306665	
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)	
QUESTIONS		
Deferral Requests Only		

Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.		
Requesting a deferral of the remediation closure due date with the approval of this submission	Νο	

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 306665

QUESTIONS (continued)		
Operator:	OGRID:	
COG OPERATING LLC	229137	
600 W Illinois Ave	Action Number:	
Midland, TX 79701	306665	
	Action Type:	
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)	

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	294125
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	12/18/2023
What was the (estimated) number of samples that were to be gathered	12
What was the sampling surface area in square feet	1550

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.		
Requesting a remediation closure approval with this submission	Yes	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	No	
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes	
What was the total surface area (in square feet) remediated	2670	
What was the total volume (cubic yards) remediated	480	
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes	
What was the total surface area (in square feet) reclaimed	0	
What was the total volume (in cubic yards) reclaimed	0	
Summarize any additional remediation activities not included by answers (above)	No reclaiming was done.	
The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (in .pdf format) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required		
to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface		

water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete

I hereby agree and sign off to the above statement	Name: Brittany Esparza Title: Environmental Technician Email: brittany.Esparza@ConocoPhillips.com Date: 01/23/2024
--	---

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Action 306665

Page 146 of 147

QUESTIONS (continued)		
Operator: COG OPERATING LLC 600 W Illinois Ave Midland, TX 79701	OGRID: 229137	
	Action Number: 306665	
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)	
QUESTIONS		
Reclamation Report		

Only answer the questions in this group if all reclamation steps have been completed. Requesting a reclamation approval with this submission No

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 147 of 147

CONDITIONS

Action 306665

Condition Date

4/9/2024

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	306665
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

CONDITIONS

CONDITIONS

Created By Condition

scwells None