SEVENTH ANNUAL GROUNDWATER MONITORING REPORT CHESAPEAKE ENERGY CORPORATION STATE M LEASE (AP-72) LEA COUNTY, NEW MEXICO

Prepared for:

Chesapeake Energy Corporation

6100 North Western Avenue Oklahoma City, Oklahoma 73118 (405) 935-3938

Prepared by:

Equus Environmental, LLC

1323 East 71st Street, Suite 200 Tulsa, Oklahoma 74136 (918) 921-5331

May 26, 2021

TABLE OF CONTENTS

LIST (OF TAE	BLES	ii
LIST (OF FIG	URES	ii
LIST (OF APF	PENDICES	ii
1.0	INTRO	ODUCTION	1
2.0	REME	EDIATION	3
	2.1	SVE SYSTEM	3
	2.2	MW-1R LNAPL RECOVERY	5
3.0	QUAF	RTERLY GROUNDWATER MONITORING	6
	3.1	GROUNDWATER MONITORING METHODOLOGY	6
	3.2	TWENTY-FIFTH QUARTERLY GROUNDWATER SAMPLING RESULTS	7
	3.3	TWENTY-SIXTH QUARTERLY GROUNDWATER SAMPLING RESULTS	7
	3.4	TWENTY-SEVENTH QUARTERLY GROUNDWATER SAMPLING RESULTS	8
	3.5	TWENTY-EIGHTH QUARTERLY GROUNDWATER SAMPLING RESULTS	8
4.0	CONC	CLUSIONS	10
5.0	RECC	DMMENDATIONS	11

LIST OF TABLES

- 1 Summary of SVE System Field Readings
- 2 Summary of Laboratory Analytical Results for Discharge Air Samples
- 3 Summary of Liquid Level Measurements
- 4 Summary of Laboratory Analytical Results for Groundwater Samples

LIST OF FIGURES

- 1 Site Location and Topographic Features
- 2 Site Base Map
- 3 SVE System VOC Discharge Concentrations Versus Time
- 4 Groundwater Potentiometric Surface, June 6, 2020
- 5 Groundwater Potentiometric Surface, September 24, 2020
- 6 Groundwater Potentiometric Surface, December 10, 2020
- 7 Groundwater Potentiometric Surface, March 2, 2021
- 8 Isopleth of Chloride Concentrations in Groundwater, March 2, 2021
- 9 Chloride Concentration Trend Graphs

LIST OF APPENDICES

(All Appendices on CD in bound copy)

- A Stage 2 Abatement Plan
- B NMOCD Approval of Stage 2 Abatement Plan
- C Laboratory Analytical Reports and Chain-of-Custody Documentation

SEVENTH ANNUAL GROUNDWATER MONITORING REPORT CHESAPEAKE ENERGY CORPORATION STATE M LEASE (AP-72) LEA COUNTY, NEW MEXICO MAY 26, 2021

1.0 INTRODUCTION

Chesapeake Energy Corporation (Chesapeake) has retained Equus Environmental, LLC (Equus), to perform impacted groundwater monitoring and light non-aqueous phase liquid (LNAPL) hydrocarbon remediation at Chesapeake's former State M Lease site (Site) located in Lea County, New Mexico. The Site is located approximately 8 miles south-southwest of Lovington, New Mexico in the SE-SW-SE of Section 18, Township 17 South, Range 36 East, Lea County, New Mexico (coordinates 32.828061° latitude, -103.391012° longitude). The Site location and topographic features are shown on **Figure 1**. An oil and gas production tank battery was formerly located at the Site. Chesapeake purchased the Site in 2004, but never operated the tank battery. Chesapeake began abandonment and environmental investigation activities at the Site in 2007.

Initial Site investigation activities were conducted in May 2007. These investigation activities consisted of conducting EM-31 and EM-34 ground conductivity surveys, the collection of soil samples from nine boreholes, and the installation and sampling of seven groundwater monitoring wells. Following the investigation in August 2007, Chesapeake submitted to the New Mexico Oil Conservation Division (NMOCD) a Stage 1 Abatement Plan for the Site. In May 2010, the NMOCD responded to Chesapeake that the agency was not adequately staffed to review the abatement plan in a timely manner and advised Chesapeake that they could proceed with abatement operations at risk. In July 2010, Chesapeake notified the NMOCD of their intent to proceed with the Stage 1 Abatement activities. On March 20, 2012, following implementation of these activities, Chesapeake submitted the Stage 1 Abatement Report for the Site.

On March 27, 2012, Chesapeake submitted to the NMOCD the *Stage 2 Abatement Plan* (Plan) for the Site. A copy of the Plan is provided in **Appendix A**. In this Plan, Chesapeake proposed the following abatement activities at the Site:

- Excavate and remove the near-surface soils at the Site containing concentrations of chloride exceeding 1,000 milligrams per kilogram (mg/kg),
- Excavate and remove the near-surface soils at the Site containing concentrations of TPH exceeding 1,000 mg/kg,
- Install clay liners in areas where chloride and/or TPH concentrations exceed 1,000 mg/kg at depths greater than five feet below ground level (bgl),
- Install one additional groundwater monitoring well downgradient of the Site,
- Monitor the groundwater at the Site until the concentrations of chloride and benzene are below the New Mexico Water Quality Control Commission standards.

On March 7, 2013, NMOCD notified Chesapeake that the Plan was administratively complete and that Chesapeake should proceed with public notice of the Plan. On March 30, 2013, Chesapeake published a notice of the proposed activities in the Albuquerque Journal, the Hobbs-Daily News Sun and the Lovington Leader. In addition, written notification of the Plan submittal was sent to all surface owners of record within a 1-mile radius of the Site. On June 27, 2013 upon completion of the notification activities, the NMOCD approved the Plan for the Site. A copy of the NMOCD correspondence approving the Plan is included in **Appendix B**.

The soil remediation activities outlined in the Plan were conducted at the Site during the period January 15, 2014 through March 27, 2014. The soil remediation activities were summarized in the document titled **Soil Remediation Summary Report**, submitted to the NMOCD on August 6, 2014.

This **Seventh Annual Groundwater Monitoring Report** (Report) summarizes the groundwater monitoring activities conducted at the Site during the following quarterly sampling events:

- Twenty-Fifth Event June 6, 2020,
- Twenty-Sixth Event September 24, 2020,
- Twenty-Seventh Event December 10-11, 2020,
- Twenty-Eighth Event March 2, 2021.

2.0 REMEDIATION

2.1 SVE SYSTEM

As documented in the *First Annual Groundwater Monitoring Report*, dated May 19, 2015, during the period May 12-14, 2014, a soil vapor extraction (SVE) remediation system (System) was installed and made operational at the Site. The System is comprised of 8 SVE wells connected through a manifold system constructed of two- and three-inch Schedule 80 PVC piping and plumbed to a 10-horsepower 3-phase SVE Regenerative Blower housed within the System Building. The location of the System Building is shown on attached *Figure 2*. Within the System, soil vapor from the SVE wells is drawn through a moisture knock out/separator and a particulate filter prior to reaching the blower. An air-flow meter is installed downstream of the blower in the air-exhaust line and an air sample port is located on the air-exhaust line at a location upstream of its exit from the System Building.

System start-up was conducted on June 6, 2014. Routine checks of the System are conducted to record the blower run times, discharge rate/ACFM and VOC concentration of the discharge-air stream. These field readings are used to calculate the approximate weight of VOCs extracted from the subsurface and discharged from the System. The field PID data are entered into to a spreadsheet to calculate the VOC discharge rate and approximate total pounds removed by the System. The approximate total VOC discharges for each quarter are then summed to provide a cumulative VOC discharge total. These data are summarized in **Table 1**. Through March 2, 2021, the field PID data suggest that approximately 8,310 pounds of VOCs have been removed from the subsurface and discharged from the System.

During the reporting period, discharge-air samples were collected quarterly in laboratory-provided Suma canisters, shipped under chain-of-custody control to Eurofins TestAmerica, Pittsburgh, Pennsylvania and analyzed for VOC compounds and total VOCs as hexane by Method TO-15.

During the twenty-fifth quarter, discharge-air sample 20200606-M-SVE was collected on June 6, 2020. On this date, the System had been running for a total of 51,616 hours, was operating at 340 ACFM and had a field reading of 47 PPM from the discharge air stream. Laboratory analytical results for this discharge-air sample indicated a total VOC as Hexane concentration of 50,000 PPB V/V (50.0 PPM V/V).

During the twenty-sixth quarter, discharge-air sample 20200924-M-SVE was collected on September 24, 2020. On this date, the System had been running for a total of 53,703 hours, was operating at 410 ACFM and had a field reading of 47 PPM from the discharge air stream. Laboratory analytical results for this discharge-air sample indicated a total VOC as Hexane concentration of 24,000 PPB V/V (24.0 PPM V/V).

During the twenty-seventh quarter, discharge-air sample 20201211-M1-SVE was collected on December 20, 2020. On this date, the System had been running for approximately 55,250 hours, was operating at 380 ACFM and had a field reading of 67 PPM from the discharge air stream. Laboratory analytical results for this discharge-air sample indicated a total VOC as Hexane concentration of 91,000 PPB V/V (91.0 PPM V/V).

During the twenty-eighth quarter, discharge-air sample 20210302-M-SVE was collected on March 2, 2021. On this date, the System had been running for a total of 56,926 hours, was operating at 355 ACFM and had a field reading of 6.4 PPM from the discharge air stream. Laboratory analytical results for this discharge-air sample indicated a total VOC as Hexane concentration of 2,300 PPB V/V (2.3 PPM V/V).

A summary of the laboratory analytical results for the discharge-air samples is presented in **Table 2**, and complete copies of the laboratory analytical reports and chain-of-custody documentation are provided in **Appendix C**. The discharge-air analytical data are used to compute a correlation factor for the field PID readings to more accurately calculate the total VOC discharged.

Field PID instrument readings are typically lower than laboratory analysis for total VOCs. To compensate for the low field PID readings, a correlation factor is calculated based upon the ratio of the laboratory analytical value versus the field PID value. The correlation factor is then used to multiply the field PID readings and calculate the total VOC discharge. To accurately reflect the total VOC discharge from the System during a given period, **Table 1** includes the calculated unique correlation factor for each quarterly air-discharge sampling event. This unique correlation factor is then utilized to calculate the total VOC discharge from the System for the period in which that particular air-discharge sample was collected. Utilizing the noted correlation factors, approximately 14,015 pounds of VOCs have been removed from the subsurface at the Site.

Figure 3 presents a graph of the VOC concentrations observed in the discharge air stream versus time. As can be seen on this figure, the levels of VOC observed in the air discharge stream have decreased dramatically since startup. These data indicate that the System is effective at removing the hydrocarbon vapors from the subsurface. Removal of hydrocarbon vapors coupled with the influx of oxygen drawn into the impacted area by the System enhances biodegradation of the hydrocarbon impacts observed in this area.

2.2 MW-1R LNAPL RECOVERY

As documented in the *First Annual Groundwater Monitoring Report*, dated May 19, 2015, to enhance LNAPL recovery in the MW-1R area, 2-inch diameter monitoring well MW-1 was plugged and replaced with 4-inch diameter monitoring well MW-1R. On June 5, 2014, a QED Environmental Genie LNAPL recovery pump was placed and made operational in monitoring well MW-1R. The Genie LNAPL recovery pump is an air-actuated bladder pump with a floating intake (skimmer), set at a depth that produces the maximum amount of LNAPL recovery per cycle. Air is provided to the Genie LNAPL recovery pump from a compressor located within the System Building.

During the reporting period, LNAPL was not recovered from monitoring well MW-1R. This lack of recovery can be attributed to the decreasing LNAPL thicknesses observed in MW-1R during the reporting period (0.24-feet to 0.10-feet). LNAPL thicknesses this small are outside of the operating capabilities of the pump. During each quarterly monitoring event, the recovery pump and controller was inspected, cleaned and adjusted in an attempt to recover LNAPL, but was not successful.

Since start-up of the Genie LNAPL recovery pump, a total of approximately 15 drums (822.5 gallons) of LNAPL have been recovered from the Site. Chesapeake is considering a different approach to recover LNAPL from monitoring well MW-1R.

3.0 QUARTERLY GROUNDWATER MONITORING

This Report describes the findings from four quarterly groundwater sampling events conducted at the Site from June 6, 2020 through March 2, 2021.

3.1 GROUNDWATER MONITORING METHODOLOGY

Prior to collecting groundwater samples during each quarterly event, EQUUS gauged all 8 monitoring wells (MW-1R through MW-8) at the Site using an electronic interface probe to determine the depth-to-water (DTW) and LNAPL thickness within each well. The locations of these monitoring wells are shown on Figure 2. DTWs were measured from the surveyed top-of-casing (TOC) of each well and converted to elevations relative to mean sea level. These data are presented in Table 3. Potentiometric surface maps were constructed utilizing these data to illustrate the groundwater flow direction within the shallow groundwater system beneath the Site. These potentiometric surface maps are presented on Figures 4 through 7. It should be noted that DTW measurements collected from monitoring well MW-1R are not honored for generating potentiometric surfaces due to the influence of LNAPL present in the monitoring well and the potential influence of the SVE system on groundwater levels. As can be seen on the figures, groundwater flow at the Site is, in general, from the northwest to the southeast. The June 2020 potentiometric surface did exhibit a change in groundwater flow direction generally observed at the Site. As can be seen on Figure 4, groundwater in the northwest portion of the Site appears to flow in the opposite direction as historically documented, towards monitoring This change in groundwater flow direction may be attributed to either a measurement recording error, or an unknown condition causing a groundwater drawdown effect on monitoring well MW-2.

Upon completion of DTW measurement activities, Equus field personnel collected groundwater samples per the Plan. As specified in the Plan, chloride is the primary constituent of concern (COC) at the Site until the LNAPL has been adequately eliminated from monitoring well MW-1R. When the LNAPL has been adequately eliminated from monitoring well MW-1R, the groundwater within this well will be monitored for benzene, toluene, ethylbenzene and total xylenes (BTEX) until the levels of BTEX fall below the Limits of 0.01 mg/L, 0.75 mg/L, 0.75 mg/L and 0.62 mg/L, respectively.

The laboratory analytical results for chloride from these sampling events are screened against the **New Mexico Administrative Code 20.6.2, Standards for Groundwater of 10,000 mg/L TDS Concentration or Less** for chloride of 250 mg/L (Limit). According to the remediation

goals set in the Plan, each monitoring well is required to exhibit eight consecutive monitoring events where chloride is below the Limit of 250 mg/L. When these remediation goals are met, Chesapeake will cease groundwater sampling activities for chloride.

As recommended in the *Fifth Annual Groundwater Monitoring Report*, dated May 20, 2019, during this reporting period groundwater samples were only collected from monitoring wells MW-4 and MW-8 for chloride analysis due to the remaining monitoring wells having already achieved the abatement goal of eight consecutive quarters of chloride concentrations below 250 mg/L.

The groundwater samples from monitoring wells MW-4 and MW-8 were collected utilizing EPA approved low-flow purging/sampling methodologies. Field parameters consisting of pH, specific conductivity, temperature, and dissolved oxygen (DO) were measured during field activities utilizing a multi-parameter meter and air-tight flow-through cell. Upon stabilization of the field parameters, groundwater samples were collected into laboratory prepared containers, labeled as to source and contents, placed on ice for preservation, placed under chain-of-custody control and shipped via overnight courier to the analytical laboratory (Eurofins TestAmerica, Edison, new Jersey). As per the Plan, groundwater samples collected from these monitoring wells were analyzed for chloride by EPA Method 300.0. A summary of the laboratory analytical results for chloride analyses is presented in **Table 4**, and complete copies of the laboratory analytical reports and chain-of-custody documentation is provided in **Appendix C**.

3.2 TWENTY-FIFTH QUARTERLY GROUNDWATER SAMPLING RESULTS

The twenty-fifth groundwater sampling event was conducted at the Site on June 6, 2020. As can be seen in **Table 4**, the groundwater sample collected from monitoring well MW-4 (429 mg/L) exhibited a concentration of chloride that exceeds the Limit of 250 mg/L. The chloride concentration reported in monitoring well MW-8 (97.4 mg/L) exhibited a chloride concentration that was less than the Limit of 250 mg/L.

During the twenty-fifth quarterly groundwater sampling event, LNAPL was observed in monitoring well MW-1R at a thickness of 0.24 feet.

3.3 TWENTY-SIXTH QUARTERLY GROUNDWATER SAMPLING RESULTS

The twenty-sixth quarterly groundwater sampling event was conducted at the Site on September 24, 2020. As can be seen in **Table 4**, the groundwater sample collected from monitoring well MW-4 (430 mg/L) exhibited a concentration of chloride that exceeds the Limit of

250 mg/L. The chloride concentration reported in monitoring well MW-8 (88.8 mg/L) exhibited a chloride concentration that was less than the Limit of 250 mg/L

During the twenty-sixth quarterly groundwater sampling event, LNAPL was observed in monitoring well MW-1R at a thickness of 0.26 feet.

3.4 TWENTY-SEVENTH QUARTERLY GROUNDWATER SAMPLING RESULTS

The twenty-seventh quarterly groundwater sampling event was conducted at the Site on December 10-11, 2020. As can be seen in **Table 4**, the groundwater sample collected from monitoring well MW-4 (475 mg/L) exhibited a concentration of chloride that exceeds the Limit of 250 mg/L. The chloride concentration reported in monitoring well MW-8 (73.5 mg/L) exhibited a chloride concentration that was less than the Limit of 250 mg/L

During the twenty-seventh quarterly groundwater sampling event, LNAPL was observed in monitoring well MW-1R at a thickness of 0.18 feet.

3.5 TWENTY-EIGHTH QUARTERLY GROUNDWATER SAMPLING RESULTS

The twenty-eighth quarterly groundwater sampling event was conducted at the Site on March 2, 2021. As can be seen in **Table 4**, the groundwater sample collected from monitoring well MW-4 (437 mg/L) exhibited a chloride concentration that exceeds the Limit of 250 mg/L. The groundwater sample collected from monitoring well MW-8 (63.9 mg/L) exhibited a chloride concentration that was less than the Limit of 250 mg/L. **Figure 8** presents an isopleth of the chloride concentrations observed in the groundwater samples collected during this sampling event. As can be seen on this figure, the highest levels of chloride observed in Site groundwater are observed in monitoring wells MW-4 and MW-8, in the southeast portion of the Site. To complete the chloride isopleth, Equus used chloride concentrations detected in monitoring wells MW-1 through MW-3 and MW-5 through MW-7 during the March 2018 sampling event. It should be noted that concentrations of chloride in monitoring well MW-8 have been less than the Limit during the last seven groundwater monitoring events.

Figure 9 presents chloride concentration trend graphs for each of the monitoring wells sampled at the Site. A review of this figure indicates that the chloride concentration trends observed in the groundwater samples are, in general, decreasing in monitoring wells MW-4 and MW-8. The soil remediation activities conducted in the first quarter of 2014 have removed the continuing source of chloride impacts to the groundwater at the Site. Source removal has facilitated the

physical natural attenuation mechanisms of dispersion and dilution on remnant chloride concentrations present in Site groundwater.

During the twenty-eighth quarterly groundwater sampling event, LNAPL was observed in monitoring well MW-1R at a thickness of 0.10 feet.

4.0 CONCLUSIONS

Based upon the data presented herein, the following conclusions are presented:

- Groundwater beneath the Site is encountered at depths ranging from approximately 46 to 49 feet from the surveyed top-of-casing of the Site monitoring wells.
- The direction of groundwater flow at the Site is, in general, from the northwest to the southeast. A change in groundwater flow direction was observed during the June 2020 monitoring event, which may be attributed to either a measurement recording error, or an unknown condition causing a groundwater drawdown effect on monitoring well MW-2.
- During the reporting period, concentrations of chloride greater than the Limit of 250 mg/L were observed in the groundwater samples collected from monitoring wells MW-4, ranging from 429 mg/L to 437 mg/L. Concentrations of chloride less than the Limit of 250 mg/L were observed in MW-8 during all events, ranging from 63.9 mg/L to 97.4 mg/L. Concentrations of chloride less than the Limit have been observed in monitoring well MW-8 during the last seven monitoring events.
- The SVE System is operating as designed and has removed approximately 14,015 pounds of VOCs since start-up on June 6, 2014.
- During the reporting period, a measurable quantity of LNAPL was not recovered from monitoring well MW-1R. The lack of recovery is attributed to the decreasing LNAPL thicknesses observed within MW-1R (0.24-feet to 0.10-feet) during the reporting period. LNAPL thicknesses this thin are outside the effective operating capabilities of the skimmer-pump technology deployed within monitoring well MW-1R.

5.0 RECOMMENDATIONS

Based upon a review of the data presented within this report, the following recommendations have been developed:

- Operation of the LNAPL skimmer-pump within monitoring well MW-1R should cease as
 the LNAPL thickness observed within this well is too thin to be recovered utilizing this
 technology. Different approaches to LNAPL recovery (sorbent socks, surfactant
 flush, etc.) within this well are being evaluated.
- As specified in the Plan, LNAPL recovery within monitoring well MW-1R should be continued until the LNAPL observed within this well has been adequately eliminated.
- As specified in the Plan, when the LNAPL has been adequately eliminated from monitoring well MW-1R, the groundwater within this well should be monitored for BTEX until the levels of these constituents fall below the Limits of 0.01 mg/L, 0.75 mg/L, 0.75 mg/L and 0.62 mg/L, respectively, for eight consecutive quarters.
- The groundwater within monitoring wells MW-4 and MW-8 should continue to be monitored on a quarterly basis for chloride until eight consecutive quarterly sampling events result in chloride levels less than the New Mexico Water Quality Control Commission standards. The next groundwater monitoring event at the Site is scheduled to be conducted in June 2021.

TABLES

Chesapeake Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

		Run	Operating	Hours	Discharge	Readings		VOC Disch	narge		Calculated
Date	Time	Time	since					lbs since last	Tot	tal	Correlation
		Reading	last reading	Total	PPM	CFM	lbs/Hr	Reading	lbs	Tons	Factor
06/07/14	8:00	4131.73	19.73	20	596	519	2.281	44.99	44.99	0.02	
06/08/14	7:10	4154.69	22.96	43	398	483	1.416	32.50	77.50	0.04	
06/08/14	9:15	4156.94	2.25	45	5000	489	18.021	40.55	118.05	0.06	
06/12/14	12:40	4256.45	99.51	144	1817	120	1.607	159.92	277.96	0.14	
06/12/14	12:43	4259.65	3.20	148	1561	117	1.346	4.31	282.27	0.14	
06/13/14	7:15	4274.90	18.45	163	1804	122	1.622	29.93	307.89	0.15	
06/13/14	7:17	4276.27	1.37	164	3390	121	3.023	4.14	312.03	0.16	
06/13/14	7:18	4277.08	0.81	165	2301	120	2.035	1.65	313.68	0.16	
06/19/14	12:05	4422.02	144.94	310	1153	120	1.020	147.81	461.49	0.23	
06/19/14	13:30	4423.74	1.72	312	1117	107	0.881	1.52	463.00	0.23	
06/19/14	16:00	4426.00	2.26	314	1448	121	1.291	2.92	465.92	0.23	
06/24/14	12:05	4543.27	117.27	431	1440	120	1.274	149.36	615.28	0.31	0.98
06/26/14	12:40	4591.01	165.01	479	1970	127	1.844	304.28	919.56	0.46	
06/26/14	12:42	4593.20	2.19	481	1968	120	1.741	3.81	923.37	0.46	
07/03/14	9:35	4755.92	162.72	644	1650	126	1.532		1172.71	0.59	
07/03/14	9:37	4757.95	2.03	646	1318	126	1.224	2.48	1175.20	0.59	
07/09/14	11:40	4901.77	143.82	790	875	126	0.812	116.80	1292.00	0.65	
07/09/14	11:42	4903.69	1.92	792	795	124	0.727	1.40	1293.39	0.65	
07/17/14	12:33	5094.48	190.79	982	790	124	0.722	137.75	1431.15	0.72	
07/17/14	12:34	5095.13	0.65	983	790	127	0.739	0.48	1431.63	0.72	
07/17/14	12:36	5097.75	2.62	986	790	127	0.739	1.94	1433.56	0.72	
08/01/14	11:00	5452.10	354.35	1,340	1078	139	1.104		1824.91	0.91	
08/01/14	11:42	5454.03	1.93	1,342	938	150	1.037	2.00	1826.91	0.91	
08/01/14	11:44	5456.32	2.29	1,344	2314	14	0.239	0.55	1827.46	0.91	
10/10/14	13:00	7118.38	1662.06	3,006	130	51	0.049	81.70	1909.16	0.95	
10/10/14	13:02	7120.15	1.77	3,008	216	58	0.093	0.16	1909.32	0.95	1.86
10/31/14	13:00	7622.85	502.70	3,511	161	48	0.053	28.63	1937.95	0.97	1.00
10/31/14	13:04	7624.49	1.64	3,512	78	54	0.037	0.05	1938.00	0.97	
12/11/14	13:50	8607.53	983.04	4,496	352	131	0.340	334.10	2272.11	1.14	
01/15/15	10:11	9441.32	833.79	5,329	47	131	0.045	37.60	2309.70	1.15	
01/15/15	10:11	9442.31	0.99		173	151	0.043	0.19	2309.70	1.15	
01/15/15	10:12	9445.26	2.95	5,330 5,333	388	136	0.194	1.15	2311.04	1.15	
01/13/15	11:50	9778.04	332.78	5,666	240	54	0.389	31.49	2342.53	1.17	
01/29/15	11:52	9780.13	2.09		239	50	0.093	0.18	2342.72		0.21
				5,668				48.63		1.17	
02/26/15	11:00	10448.98	668.85	6,337	72	137	0.073		2391.35	1.20	
02/26/15	11:02	10450.10		6,338	178	155	0.204		2391.57	1.20	
03/12/15	10:15	10780.66		6,669	483	155	0.552		2573.97	1.29	
04/28/15	8:30	11901.34		7,789	126	114	0.106		2692.84	1.35	
04/28/15	8:36	11907.42	6.08	7,795	132	126	0.123		2693.58	1.35	
05/14/15	9:05	12285.12	377.70	8,173	96	55	0.039		2708.26	1.35	1.10
05/14/15	9:10	12290.05	4.93	8,178	105	58	0.045		2708.48	1.35	
05/28/15	11:30	12623.70	333.65	8,512	6	150	0.006		2710.55	1.36	
06/11/15	10:39	12650.70	27.00	8,539	318	172	0.403	10.88	2721.43	1.36	
07/02/15	11:00	13154.04		9,042	85	112	0.070		2756.75	1.38	0.76
09/03/15	8:00	14662.17		10,550	249	104	0.191		3044.60	1.52	
12/10/15	13:00	17015.28	2353.11	12,903	162	95	0.113	266.92	3311.52	1.66	0.8

Received by OCD: 4/25/2024 8:54:21 AM Table 1: Summary of SVE System Field Readings Comparison State M Lease (AP-7) Chesapeake Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

Date							VOC Discharge				Calculated
	Time	Time	since					lbs since last	Tot	al	Correlation
		Reading	last reading	Total	PPM	CFM	lbs/Hr	Reading	lbs	Tons	Factor
03/10/16	12:00	17899.58	884.30	13,788	209	105	0.162	143.03	3454.55	1.73	1.78
06/29/16	8:00	20558.59	2659.01	16,447	156	101	0.116	309.58	3764.13	1.88	3.77
07/27/16	12:30	21232.43	673.84	17,120	126	103	0.095	64.20	3828.33	1.91	
08/25/16	11:00	21927.96	695.53	17,816	115	270	0.229	159.45	3987.78	1.99	1.55
09/22/16	10:20	22596.81	668.85	18,485	169	220	0.274	183.07	4170.85	2.09	
12/08/16	9:30	24443.73	1846.92	20,332	109	220	0.177	327.03	4497.88	2.25	6.59
01/10/17	12:23	24758.20	314.47	20,646	173	233	0.297	93.37	4591.25	2.30	
01/25/17	10:56	25115.43	357.23	21,003	206	179	0.271	96.95	4688.20	2.34	3.06
02/22/17	10:35	25786.27	670.84	21,674	248	214	0.391	262.30	4950.50	2.48	5.55
03/09/17	11:04	26146.82	360.55	22,035	321	209	0.495	178.51	5129.01	2.56	
04/05/17	11:55	26792.33	645.51	22,680	454	113	0.378	 	5373.09	2.69	
05/16/17	7:00	26967.77	175.44	22,856	61	198	0.089	15.69	5388.79	2.69	5.78
06/07/17	13:00	27495.83	528.06	23,384	54	221	0.087	46.02	5434.80	2.72	
09/07/17	11:36	29698.50	2202.67	25,587	62	200	0.091	201.31	5636.11	2.82	
09/22/17	11:30	30057.43	358.93	25,945	56	211	0.087	31.26	5667.37	2.83	
10/04/17	10:15	30344.40	286.97	26,232	57	198	0.083	23.87	5691.24	2.85	0.81
11/02/17	13:00	31042.78	698.38	26,931	58	185	0.079	 	5746.48	2.87	
12/01/17	12:30	31739.31	696.53	27,627	59	192	0.083	 	5804.63	2.90	
12/06/17	12:40	31859.62	120.31	27,748	6	270	0.011	1.36	5806.00	2.90	
12/18/17	15:00	32149.36	289.74	28,037	60	208	0.092	26.65	5832.65	2.92	
01/09/18	10:00	32672.25	522.89	28,560	52	189	0.072	37.88	5870.52	2.94	
01/26/18	10:15	33080.48	408.23	28,968	48	172	0.061	24.84	5895.36	2.95	0.40
02/09/18	13:10	33416.85	336.37	29,305	32	220	0.052		5912.82	2.96	0.19
02/23/18	11:15	33753.60	336.75	29,642	34	186	0.047	15.70	5928.51	2.96	
03/07/18	10:55	34040.75	287.15	29,929	52	227	0.087	24.98	5953.50	2.98	
03/16/18	13:03	34251.67	210.92	30,140	48	195	0.069	14.55	5968.05	2.98	
04/13/18	9:15	34970.90	719.23	30,859	46	200	0.068	48.77	6016.82	3.01	
04/30/18	13:16	35332.87	361.97	31,221	46	200	0.068	24.54	6041.36	3.02	
05/15/18	13:34 14:20	35692.17	359.30	31,580	48	200	0.071	25.42	6066.78	3.03	0.65
05/29/18 06/04/18		36028.04	335.87	31,916	71	200	0.071	23.77	6090.55		0.05
06/04/18	16:30 14:30	36169.50 36556.30	141.46 386.80	32,058 32,444	48	200	0.105 0.071	14.81 27.37	6105.35 6132.72	3.05	
07/03/18	10:30	36865.13	308.83	32,753	56	520	0.071	66.28	6199.01	3.10	
07/03/18	10:40	37249.27	384.14	33,137	46	486	0.213	63.30	6262.30	3.13	
08/09/18	12:30	37754.97	505.70	33,643	58	386	0.165	83.45	6345.75	3.13	
09/06/18	12.50	3,734.37	303.70	33,043	36	300	0.103	05.45	03-3.73	5.17	2.13
09/19/18	12:00	38730.31	975.34	34,618	46	405	0.137	133.93	6479.67	3.24	
10/04/18	15:30	39093.45	363.14	34,981	73	425	0.137	82.47	6562.14	3.28	
10/18/18	13:00	39428.14	334.69	35,316	42	261	0.081		6589.19	3.29	
10/31/18	13:40	39716.90	288.76	35,605	52	317	0.001	35.08	6624.27	3.31	
11/16/18	8:00	39983.80	266.90	35,872	68	156	0.078		6645.14	3.32	1.19
11/16/18	9:54	39985.70	1.90	35,874	77	264	0.149		6645.42	3.32	1.13
±±/±0/±0	J.J .										
12/11/18	14:20	40585.95	600.25	36,474	90	150	0.099	59.53	6704.95	3.35	

Received by OCD: 4/25/2024 8:54:21 AM Table 1: Summary of SVE System Field Readings (AP-7 Chesapeake Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

		Run	Operating	Hours	Discharge I	Readings	VOC Discharge				Calculate
Date	Time	Time	since					lbs since last	Tot	al	Correlatio
		Reading	last reading	Total	PPM	CFM	lbs/Hr	Reading	lbs	Tons	Factor
01/24/19	14:58	41636.05	670.48	37,524	63	275	0.128	85.62	6853.01	3.43	
02/05/19	12:02	41919.95	283.90	37,808	48	251	0.088	25.08	6878.09	3.44	
02/21/19	12:00	42303.95	384.00	38,192	26	218	0.042	16.10	6894.20	3.45	
03/07/19	7:00	42632.85	328.90	38,521	80	208	0.122	40.29	6934.48	3.47	0.97
03/22/19	11:09	42986.51	353.66	38,875	47	177	0.062	21.78	6956.26	3.48	
04/03/19	15:00	43277.65	291.14	39,166	58	440	0.186	54.29	7010.55	3.51	
04/18/19	12:00	43634.32	356.67	39,522	105	450	0.348	124.21	7134.76	3.57	
05/17/19	13:30	44330.99	696.67	40,219	39	365	0.104	72.34	7207.11	3.60	
06/12/19	17:00	44952.75	621.76	40,841	6	170	0.008	4.67	7211.78	3.61	
06/25/19	11:00	45283.69	330.94	41,172	23	445	0.075	24.97	7236.75	3.62	
07/09/19	13:30	45573.87	290.18	41,462	27	360	0.072	20.79	7257.53	3.63	
07/22/19	14:00	45906.56	332.69	41,795	27	425	0.083	27.62	7285.15	3.64	0.87
08/05/19	11:30	46239.45	332.89	42,127	37	462	0.126	41.94	7327.09	3.66	
08/19/19	11:00	46575.01	335.56	42,463	23	533	0.090	30.32	7357.41	3.68	
09/03/19	15:15	46937.77	362.76	42,826	31	455	0.104	37.71	7395.12	3.70	
09/05/19	7:30	46980.41	42.64	42,868	79	227	0.133	5.65	7400.77	3.70	
09/16/19	11:30	47242.95	262.54	43,131	21	372	0.058	15.12	7415.89	3.71	
09/30/19	11:00	47576.43	333.48	43,464	24	355	0.063	20.94	7436.83	3.72	
10/16/19	12:00	47958.94	382.51	43,847	22	280	0.045	17.37	7454.20	3.73	
10/28/19	11:45	48246.61	287.67	44,135	16	326	0.038	11.06	7465.26	3.73	
11/11/19	11:00	48581.38	334.77	44,469	35	488	0.127	42.56	7507.82	3.75	
11/11/19	12:10	48582.46	1.08	44,470	27	188	0.037	0.04	7507.86	3.75	0.88
11/26/19	11:20	48916.78	334.32	44,805	16	284	0.033	10.95	7518.82	3.76	0.00
11/26/19	11:50	48917.34	0.56	44,805	26	472	0.089	0.05	7518.87	3.76	
12/11/19	10:30	49294.17	376.83	45,182	30	214	0.047	17.79	7536.65	3.77	
12/22/19	11:00	49558.50	264.33	45,447	16	462	0.054	14.40	7551.05	3.78	
12/30/19	14:00	49631.20	72.70	45,519	30	462	0.102	7.43	7558.48	3.78	
01/12/20	13:00	49682.50	51.30	45,571	19	282	0.039	2.01	7560.49	3.78	
02/10/20	11:00	49806.20	123.70	45,694	19	145	0.033	2.55	7563.04	3.78	
03/05/20	12:40	50000.00	193.80	45,888	38	197	0.055	10.66	7573.71	3.78	0.69
03/09/20	12:10	50070.44	70.44	45,958	23	250	0.033	2.92	7576.62	3.79	0.03
03/03/20	11:45	50070.44	12.81	45,971	25	323	0.041	0.76	7577.39	3.79	
04/06/20	10:30	50139.34	56.09	46,027	26	316	0.060	3.34	7580.73	3.79	
04/20/20	10:30	50225.20	85.86	46,113	19	408	0.056	4.84	7585.57	3.79	1.00
05/05/20	11:00	50540.55	315.35	46,429	61	311	0.140	44.17	7629.74	3.81	1.06
05/18/20	12:30	50840.55	300.00	46,729	36	506	0.132	39.72	7669.46	3.83	
06/06/20	10:10	51279.56	439.01	47,168	47	340	0.118	51.71	7721.16	3.86	
06/20/20	13:20	51616.41	336.85	47,504	34	322	0.081	27.18	7748.35	3.87	
07/06/20	10:44	51998.22	381.81	47,886	0.5	425	0.002	0.60	7748.94	3.87	
07/19/20	11:10	52309.12	310.90	48,197	29	470	0.099	30.80	7779.75	3.89	0.51
08/09/20	17:30	52819.74	510.62	48,708	28	428	0.087	44.46	7824.20	3.91	
09/14/20	18:30	53480.00	660.26	49,368	25	421	0.076	50.19	7874.40	3.94	
09/24/20	13:20	53703.31	223.31	49,591	47	410	0.143	31.85	7906.25	3.95	
11/15/20	13:00	54664.23	960.92	50,552	38	418	0.116	111.61	8017.86	4.01	
12/11/20	8:27	55250.13	585.90	51,138	67	380	0.187	109.62	8127.48	4.06	1.36
02/28/21	10:00	56876.10	1625.97	52,764	37	410	0.112	181.80	8309.28	4.15	0.36
03/02/21	14:05	56926.31	50.21	52,814	6.4	355	0.017	0.84	8310.12	4.16	3.30

Notes:

- 1. Color shading indicates air sampling period with a unique correlation factor.
- 2. During the June 24 & July 17, 2014 site visit the field readings were not recorded. The italicized values presented above for these dates are conservative estimated values based upon last known readings.

Table 1

 Table 2 : Summary of Laboratory Analytical Results for Discharge Air Samples
 Chesapeake Energy Corporation, State M Lease (AP-72)

Lea County, New Mexico

	Sample ID:	SVE	Canister #34000823 Serial C8528 2014-12-11	CANISTER #C8522	Canister #8408 2015-06-11 Air Sample	Canister #5451 Batch #320- 14155 9-3-15	CANISTER #34000512 BATCH ID #320- 15930	STATE M-1 LEASE	20160629 M SVE	20160922 M SVE	20161208 M SVE	20170309 M SVE
Parameters	Sample Date:	1-Aug-14	11-Dec-14	12-Mar-15	11-Jun-15	3-Sep-15	10-Dec-15	10-Mar-16	29-Jun-16	22-Sep-16	8-Dec-16	9-Mar-17
Volatile Organic Compounds by T	TO 15											
Acetone	ppb v/v	<2000	<615	<965	<860	<615	<370	<915	<280	<175	<106	<203
Benzene	ppb v/v	8,820	2,960	533	3,630	312	194	1,070	2,600	853	373	550
Benzyl chloride	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
Bromodichloromethane	ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	103.5	<6.33	<12.2
Bromoform	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
Bromomethane	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
2-Butanone (MEK)	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
Carbon disulfide	ppb v/v	1,800	272	<154	<138	<98.4	<59.2	<146	177	<27.9	<16.9	<32.4
Carbon tetrachloride	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
Chlorobenzene	ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	<10.5	<6.33	<12.2
Dibromochloromethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
Chloroethane	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
Chloroform	ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	<10.5	<6.33	<12.2
Chloromethane	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
1,2-Dibromoethane	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
1,2-Dichlorobenzene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
1,3-Dichlorobenzene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
1,4-Dichlorobenzene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
Dichlorodifluoromethane	ppb v/v	1,980	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
1,1-Dichloroethane	ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	<10.5	<6.33	<12.2
1,2-Dichloroethane	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
1,1-Dichloroethene	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2 <59.2	<146	<44.8	<27.9	<16.9	<32.4
cis-1,2-Dichloroethene	ppb v/v	<160	<49.2	84.5	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
trans-1,2-Dichloroethene		<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
1,2-Dichloropropane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2 <49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
	ppb v/v		<49.2	<77.2	<68.8	<49.2 <49.2		<73.2		<14.0	<8.44	<16.2
cis-1,3-Dichloropropene	ppb v/v	<160 <160	<49.2 <49.2	<77.2	<68.8	<49.2 <49.2	<29.6 <29.6		<22.4 <22.4	-	<8.44	<16.2
trans-1,3-Dichloropropene 1,2-Dichloro-1,1,2,2-tetrafluoroethane	ppb v/v	<160	<49.2 <49.2	<77.2	<68.8			<73.2		<14.0	<8.44	<16.2
	ppb v/v					<49.2	<29.6	<73.2	<22.4	<14.0		
Ethylbenzene	ppb v/v	13,500	3,830	799	2,890	731	723 186	446	2,530	1,390	531	908
4-Ethyltoluene	ppb v/v	974	533	164	299	256		<73.2	660	497	135	263
Hexachlorobutadiene	ppb v/v	<800	<246	<386	<344	<246	<148	<366	<112	<69.8	<42.2	<81.0
2-Hexanone	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
Methylene Chloride	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
4-Methyl-2-pentanone	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
Styrene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
1,1,2,2-Tetrachloroethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	41.1	<14.0	<8.44	20.0
Tetrachloroethene	ppb v/v	<160	71.9	<77.2	<68.8	<49.2	<29.6	92.9	<22.4	<14.0	<8.44	<16.2
Toluene	ppb v/v	4,020	1,040	228	1,480	<49.2	<29.6	120	975	380	164	193

Received by OCD: 4/25/2024 8:54:21 AM

Table 2 : Summary of Laboratory Analytical Results for Discharge Air Samples Chesapeake Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

	Sample ID:	SVE	Canister #34000823 Serial C8528 2014-12-11	CANISTER #C8522	Canister #8408 2015-06-11 Air Sample	Canister #5451 Batch #320- 14155 9-3-15	CANISTER #34000512 BATCH ID #320- 15930	STATE M-1 LEASE	20160629 M SVE	20160922 M SVE	20161208 M SVE	20170309 M SVE
Parameters	Sample Date:	1-Aug-14	11-Dec-14	12-Mar-15	11-Jun-15	3-Sep-15	10-Dec-15	10-Mar-16	29-Jun-16	22-Sep-16	8-Dec-16	9-Mar-17
1,2,4-Trichlorobenzene	ppb v/v	<800	<246	<386	<344	<246	<148	<366	<112	<69.8	<42.2	<81.0
1,1,1-Trichloroethane	ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	<10.5	<6.33	<12.2
1,1,2-Trichloroethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
Trichloroethene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
Trichlorofluoromethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
1,1,2-Trichloro-1,2,2-trifluoroethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
1,2,4-Trimethylbenzene	ppb v/v	2,020	648	299	774	<98.4	355	<146	968	740	228	411
1,3,5-Trimethylbenzene	ppb v/v	821	385	172	353	73.0	247	<73.2	727	541	192	397
Vinyl acetate	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
Vinyl chloride	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.8	<14.0	<8.44	<16.2
m,p-Xylene	ppb v/v	12,700	4,680	1,110	3,920	1,140	1,380	609	5,050	2,550	870	1,510
o-Xylene	ppb v/v	4,520	1,190	286	1,120	164	194	107	720	419	177	337
Total VOC as Hexane (C6-C12)	ppb v/v	1,060,000	655,000	99,400	351,000	190,000	140,000	371,000	590,000	262,000	117,000	167,000

 Table 2 : Summary of Laboratory Analytical Results for Discharge Air Samples
 Chesapeake Energy Corporation, State M Lease (AP-72)

Lea County, New Mexico

	Sample ID:	20170607M SVE	20170907 M SVE	20171206 -M- SVE	20180307-M- SVE	20180604-M- SVE	20180906-M- SVE	2018121-M- SVE	20190307 M SVE	20190905 M SVE	20200122 M1- SVE	20200305 M SVE	20200606-M- SVE	20200924M1S VE	20201211 M-1	20210302 M-1
Parameters	Sample Date:		7-Sep-17	6-Dec-17	7-Mar-18	4-Jun-18	6-Sep-18	11-Dec-18	7-Mar-19	5-Sep-19	22-Jan-20	5-Mar-20	6-Jun-20	24-Sep-20	11-Dec-20	2-Mar-21
T di di li cicio	oumple Bute.	7-0uii-17	1-0cp-11	0-000-17	7-11101-10	4-0uii-10	0-оср-10	11-560-10	7 - Wai - 13	0-0cp-13	22-0411-20	0-111ai -20	0-0411-20	24-00p-20	11-000-20	2-14101-21
Volatile Organic Compounds by	TO-15															
Acetone	ppb v/v	<76.0	<116	<20.0	5.67	<78.0	<124	<178	<22.3	<84	<17	<78	<34	<29	<110	<7.8
Benzene	ppb v/v	180	143	1.77	24.5	87.9	112	137	40.1	140	3.7	42	48	18	80	<0.78
Benzyl chloride	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Bromodichloromethane	ppb v/v	<4.56	<6.93	<1.20	<0.300	<4.68	<7.43	<10.7	<1.34	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Bromoform	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Bromomethane	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<84	<17	<78	<34	<29	<110	<7.8
2-Butanone (MEK)	ppb v/v	<12.2	178	<3.20	<0.800	<12.5	<19.8	<28.4	5.97	<34	<6.7	<31	<34	<11	<43	<3.1
Carbon disulfide	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<34	<6.7	<31	<34	<11	<43	<3.1
Carbon tetrachloride	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Chlorobenzene	ppb v/v	<4.56	<6.93	<1.20	<0.300	<4.68	<7.43	<10.7	<1.34	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Dibromochloromethane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Chloroethane	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<34	<6.7	<31	<34	<11	<43	<3.1
Chloroform	ppb v/v	<4.56	<6.93	<1.20	<0.300	<4.68	<7.43	<10.7	<1.34	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Chloromethane	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<84	<17	<78	<34	<29	<110	<7.8
1,2-Dibromoethane	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,2-Dichlorobenzene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,3-Dichlorobenzene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,4-Dichlorobenzene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Dichlorodifluoromethane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,1-Dichloroethane	ppb v/v	<4.56	<6.93	<1.20	<0.300	<4.68	<7.43	<10.7	<1.34	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,2-Dichloroethane	ppb v/v	<12.2	<18.5	<3.20	0.881	<12.5	<19.8	<28.4	<3.56	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,1-Dichloroethene	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
cis-1,2-Dichloroethene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
trans-1,2-Dichloroethene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,2-Dichloropropane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
cis-1,3-Dichloropropene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
trans-1,3-Dichloropropene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Ethylbenzene	ppb v/v	229	219	4.75	25.4	250	334	363	284	270	33	120	150	56	180	<0.78
4-Ethyltoluene	ppb v/v	58.5	45.1	2.38	3.74	42.7	89.2	76.7	167	180	25	100	130	64	170	0.82
Hexachlorobutadiene	ppb v/v	<30.4	<46.2	<8.00	<2.00	<31.2	<49.5	<71.0	<8.90	<34	<6.7	<31	<34	<11	<43	<3.1
2-Hexanone	ppb v/v	<6.08	<9.24	<1.60	<0.400	<4.68	<9.91	<14.2	<1.78	<34	<6.7	<31	<34	<11	<43	<3.1
Methylene Chloride	ppb v/v	<6.08	<9.24	<1.60	0.540	<6.24	<9.91	<14.2	<1.78	<84	<17	<78	<34	<29	<110	<7.8
4-Methyl-2-pentanone	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Styrene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,1,2,2-Tetrachloroethane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Tetrachloroethene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Toluene	ppb v/v	68.4	49.2	<1.60	6.92	34.4	44.3	41.0	38.8	30	3.1	<7.8	11	3.1	<11	<0.78

Received by OCD: 4/25/2024 8:54:21 AM

Table 2 : Summary of Laboratory Analytical Results for Discharge Air Samples Chesapeake Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

	Sample ID:	20170607M SVE	20170907 M SVE	20171206 -M- SVE	20180307-M- SVE	20180604-M- SVE	20180906-M- SVE	2018121-M- SVE	20190307 M SVE	20190905 M SVE	20200122 M1- SVE	20200305 M SVE	20200606-M- SVE	20200924M1S VE		20210302 M-1
Parameters	Sample Date:	7-Jun-17	7-Sep-17	6-Dec-17	7-Mar-18	4-Jun-18	6-Sep-18	11-Dec-18	7-Mar-19	5-Sep-19	22-Jan-20	5-Mar-20	6-Jun-20	24-Sep-20	11-Dec-20	2-Mar-21
1,2,4-Trichlorobenzene	ppb v/v	<30.4	<46.2	<8.00	<2.00	<31.2	<49.5	<71.0	<8.90	<34	<6.7	<31	<34	<11	<43	<3.1
1,1,1-Trichloroethane	ppb v/v	<4.56	<6.93	<1.20	<0.300	<4.68	<7.43	<10.7	<1.34	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,1,2-Trichloroethane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Trichloroethene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	20	<8.4	<2.9	<11	<0.78
Trichlorofluoromethane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,1,2-Trichloro-1,2,2-trifluoroethane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,2,4-Trimethylbenzene	ppb v/v	85.9	50.3	7.35	9.05	71.3	134	124	83.0	75	10	59	60	38	79	<0.78
1,3,5-Trimethylbenzene	ppb v/v	53.6	45.5	6.18	5.81	46.2	88.6	102	67.0	69	9.1	43	50	31	77	1.0
Vinyl acetate	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<8.4	<6.7	<31	<34	<11	<43	<3.1
Vinyl chloride	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
m,p-Xylene	ppb v/v	322	330	10.3	48.7	376	501	544	442	440	66	210	280	110	380	<0.78
o-Xylene	ppb v/v	98.4	96.4	2.54	15.6	107	133	158	137	120	55	50	63	25	83	<0.78
Total VOC as Hexane (C6-C12)	ppb v/v	54,500	40,900	4,630	9,930	46,500	76,600	107,000	77,900	69,000	14,000	26,000	50,000	24,000	91,000	2,300

	Top of	Depth to				
	Casing	Liquid	Depth to	Depth to	LNAPL	Groundwater
Monitoring	Elevation	Measurement	LNAPL	Groundwater	Thickness	Elevation
Well	(AMSL-Feet)	Date	(Feet-TOC)	(Feet-TOC)	(Feet)	(AMSL-Feet)
MW-1R	3888.97	06/03/14	44.57	49.89	5.32	3839.08
	3888.97	09/22/14	44.87	48.91	4.04	3840.06
	3888.97	12/10/14	45.80	46.30	0.50	3842.67
	3888.97	03/11/15	45.12	46.83	1.71	3842.14
	3888.97	06/10/15	45.54	46.31	0.77	3842.66
	3888.97	09/02/15	45.81	47.37	1.56	3841.60
	3888.97	12/09/15	45.22	49.07	3.85	3839.90
	3888.97	03/09/16	45.30	47.18	1.88	3841.79
	3888.97	06/28/16	45.75	47.02	1.27	3841.95
	3888.97	09/21/16	46.10	46.38	0.28	3842.59
	3888.97	12/07/16	46.13	46.88	0.75	3842.09
	3888.97	03/08/17	46.14	46.57	0.43	3842.40
	3888.97	06/06/17	45.82	48.86	3.04	3840.11
	3888.97	09/08/17	46.30	46.63	0.33	3842.34
	3888.97	12/04/17	46.36	46.77	0.41	3842.20
	3888.97	03/05/18	46.47	46.81	0.34	3842.16
	3888.97	06/05/18	46.56	46.93	0.37	3842.04
	3888.97	09/05/18	46.31	48.81	2.50	3840.16
	3888.97	12/11/18	46.34	49.11	2.77	3839.86
	3888.97	03/06/19	46.48	49.20	2.72	3839.77
	3888.97	06/04/19	46.58	48.84	2.26	3840.13
	3888.97	09/04/19	47.88	48.67	0.79	3840.30
	3888.97	12/06/19	47.13	47.43	0.30	3841.54
	3888.97	03/05/20	47.11	47.68	0.57	3841.29
	3888.97	06/06/20	47.21	47.45	0.24	3841.52
	3888.97	09/24/20	47.44	47.60	0.16	3841.37
	3888.97	12/10/20	47.51	47.69	0.18	3841.28
	3888.97	03/02/21	47.48	47.58	0.10	3841.39
MW-2	3890.51	06/03/14		47.23		3843.28
=	3890.51	09/22/14		46.37		3844.14
	3890.51	12/10/14		45.91		3844.60
	3890.51	03/11/15		46.03		3844.48
	3890.51	06/10/15		46.38		3844.13
	3890.51	09/02/15		46.44		3844.07
	3890.51	12/09/15		46.51		3844.00
	3890.51	03/09/16		46.61		3843.90
	3890.51	06/28/16		46.70		3843.81
	3890.51	09/21/16		46.80		3843.71
	3890.51	12/07/16		46.82		3843.69
	3890.51	03/08/17		46.88		3843.63
	3890.51	06/06/17		46.98		3843.53
	3890.51	09/08/17		47.06		3843.45
	3890.51	12/04/17		47.11		3843.40
	3890.51	03/05/18		47.22		3843.29

Chesapeake Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

	Top of	Depth to				
	Casing	Liquid	Depth to	Depth to	LNAPL	Groundwater
Monitoring	Elevation	Measurement	LNAPL	Groundwater	Thickness	Elevation
Well	(AMSL-Feet)	Date	(Feet-TOC)	(Feet-TOC)	(Feet)	(AMSL-Feet)
MW-2	3890.51	06/05/18		47.31		3843.20
(con't)	3890.51	09/05/18		47.36		3843.15
	3890.51	12/11/18		47.46		3843.05
	3890.51	03/06/19		47.51		3843.00
	3890.51	06/04/19		47.61		3842.90
	3890.51	09/04/19		47.76		3842.75
	3890.51	12/06/19		47.81		3842.70
	3890.51	03/05/20		47.91		3842.60
	3890.51	06/06/20		49.98		3840.53
	3890.51	09/24/20		48.14		3842.37
	3890.51	12/10/20		48.21		3842.30
	3890.51	03/02/21		48.25		3842.26
MW-3	3889.34	06/03/14		46.35		3842.99
	3889.34	09/22/14		46.49		3842.85
	3889.34	12/10/14		46.08		3843.26
	3889.34	03/11/15		46.28		3843.06
	3889.34	06/10/15		46.51		3842.83
	3889.34	09/02/15		46.60		3842.74
	3889.34	12/09/15		46.68		3842.66
	3889.34	03/09/16		46.72		3842.62
	3889.34	06/28/16		46.85		3842.49
	3889.34	09/21/16		46.96		3842.38
	3889.34	12/07/16		47.02		3842.32
	3889.34	03/08/17		47.11		3842.23
	3889.34	06/06/17		47.13		3842.21
	3889.34	09/08/17		47.23		3842.11
	3889.34	12/04/17		47.28		3842.06
	3889.34	03/05/18		47.44		3841.90
	3889.34	06/05/18		47.48		3841.86
	3889.34	09/05/18		47.55		3841.79
	3889.34	12/11/18		47.60		3841.74
	3889.34	03/06/19		47.68		3841.66
	3889.34	06/04/19		47.80		3841.54
	3889.34	09/04/19		47.95		3841.39
	3889.34	12/06/19		48.00		3841.34
	3889.34	03/05/20		48.03		3841.31
	3889.34	06/06/20		48.16		3841.18
	3889.34	09/24/20		48.34		3841.00
	3889.34	12/10/20		48.42		3840.92
	3889.34	03/02/21		48.42	-	3840.92
	3003.34	00/02/21		70.72		JUTU.JZ

Monitoring Well	Top of Casing Elevation (AMSL-Feet)	Depth to Liquid Measurement Date	Depth to LNAPL (Feet-TOC)	Depth to Groundwater (Feet-TOC)	LNAPL Thickness (Feet)	Groundwater Elevation (AMSL-Feet)
MW-4	3888.90	06/03/14		46.38		3842.52
	3888.90	09/22/14		46.50		3842.40
	3888.90	12/10/14		46.14		3842.76
	3888.90	03/11/15		46.35		3842.55
	3888.90	06/10/15		46.49		3842.41
	3888.90	09/02/15		46.57		3842.33
	3888.90	12/09/15		46.68		3842.22
	3888.90	03/09/16		46.75		3842.15
	3888.90	06/28/16		46.87		3842.03
	3888.90	09/21/16		46.94		3841.96
	3888.90	12/07/16		47.03		3841.87
	3888.90	03/08/17		47.08		3841.82
	3888.90	06/06/17		47.15		3841.75
	3888.90	09/08/17		47.24		3841.66
	3888.90	12/04/17		47.29		3841.61
	3888.90	03/05/18		47.38		3841.52
	3888.90	06/05/18		47.50		3841.40
	3888.90	09/05/18		47.53		3841.37
	3888.90	12/11/18		47.62		3841.28
	3888.90	03/06/19		47.72		3841.18
	3888.90	06/04/19		47.80		3841.10
	3888.90	09/04/19		47.98		3840.92
	3888.90	12/06/19		48.00		3840.90
	3888.90	03/05/20		48.07		3840.83
	3888.90	06/06/20		48.20		3840.70
	3888.90	09/24/20		48.32		3840.58
	3888.90	12/10/20		48.39		3840.51
	3888.90	03/02/21		48.44		3840.46
MW-5	3890.41	06/03/14		46.56		3843.85
10100	3890.41	09/22/14		46.70		3843.71
	3890.41	12/10/14		46.29		3844.12
	3890.41	03/11/15		46.44		3843.97
	3890.41	06/10/15		46.69		3843.72
	3890.41	09/02/15		46.79		3843.62
	3890.41	12/09/15		46.85		3843.56
	3890.41	03/09/16		46.90		3843.51
	3890.41	06/28/16		47.08	_ 	3843.33
	3890.41	09/21/16		47.13		3843.28
	3890.41	12/07/16		47.13		3843.27
				47.14		
	3890.41	03/08/17				3843.18
	3890.41	06/06/17		47.32		3843.09
	3890.41	09/08/17		47.40		3843.01
	3890.41 3890.41	12/04/17 03/05/18		47.27 47.54		3843.14 3842.87

Monitoring Well	Top of Casing Elevation (AMSL-Feet)	Depth to Liquid Measurement Date	Depth to LNAPL (Feet-TOC)	Depth to Groundwater (Feet-TOC)	LNAPL Thickness (Feet)	Groundwater Elevation (AMSL-Feet)
MW-5	3890.41	06/05/18		47.66		3842.75
(con't)	3890.41	09/05/18		47.72		3842.69
	3890.41	12/11/18		47.80		3842.61
	3890.41	03/06/19		47.85		3842.56
	3890.41	06/04/19		47.98		3842.43
	3890.41	09/04/19		48.15		3842.26
	3890.41	12/06/19		48.17		3842.24
	3890.41	03/05/20		48.23		3842.18
	3890.41	06/06/20		48.33		3842.08
	3890.41	09/24/20		48.51		3841.90
	3890.41	12/10/20		48.60		3841.81
	3890.41	03/02/21		48.60		3841.81
MW-6	3888.25	06/03/14		46.25		3842.00
	3888.25	09/22/14		46.39		3841.86
	3888.25	12/10/14		46.09		3842.16
	3888.25	03/11/15		46.23		3842.02
	3888.25	06/10/15		46.32		3841.93
	3888.25	09/02/15		46.48		3841.77
	3888.25	12/09/15		46.57		3841.68
	3888.25	03/09/16		46.62		3841.63
	3888.25	06/28/16		46.74		3841.51
	3888.25	09/21/16		46.81		3841.44
	3888.25	12/07/16		46.90		3841.35
	3888.25	03/08/17		46.93		3841.32
	3888.25	06/06/17		47.08		3841.17
	3888.25	09/08/17		47.12		3841.13
	3888.25	12/04/17		47.21		3841.04
	3888.25	03/05/18		47.30		3840.95
	3888.25	06/05/18		47.36		3840.89
	3888.25	09/05/18		47.43		3840.82
	3888.25	12/11/18		47.52		3840.73
	3888.25	03/06/19		47.60		3840.65
	3888.25	06/04/19		47.71		3840.54
	3888.25	09/04/19		47.81		3840.44
	3888.25	12/06/19		47.90		3840.35
	3888.25	03/05/20		47.98		3840.27
	3888.25	06/06/20		48.08		3840.17
	3888.25	09/24/20		48.23		3840.02
	3888.25	12/10/20		48.28		3839.97
	3888.25	03/02/21		48.33		3839.92

Monitoring Well	Top of Casing Elevation (AMSL-Feet)	Depth to Liquid Measurement Date	Depth to LNAPL (Feet-TOC)	Depth to Groundwater (Feet-TOC)	LNAPL Thickness (Feet)	Groundwater Elevation (AMSL-Feet)		
MW-7	3889.23	06/03/14		45.94		3843.29		
	3889.23	09/22/14		46.08		3843.15		
	3889.23	12/10/14		45.70		3843.53		
	3889.23	03/11/15		45.36		3843.87		
	3889.23	06/10/15		46.08		3843.15		
	3889.23	09/02/15		46.14		3843.09		
	3889.23	12/09/15		46.24		3842.99		
	3889.23	03/09/16		46.30		3842.93		
	3889.23	06/28/16		46.42		3842.81		
	3889.23	09/21/16		46.52		3842.71		
	3889.23	12/07/16		46.59		3842.64		
	3889.23	03/08/17		46.65		3842.58		
	3889.23	06/06/17		46.73		3842.50		
	3889.23	09/08/17		46.80		3842.43		
	3889.23	12/04/17		46.88		3842.35		
	3889.23	03/05/18		46.96		3842.27		
	3889.23	06/05/18		47.04		3842.19		
	3889.23	09/05/18		47.11		3842.12		
	3889.23	12/11/18		47.20		3842.03		
	3889.23	03/06/19		47.27		3841.96		
	3889.23	06/04/19		47.37		3841.86		
	3889.23	09/04/19		47.50		3841.73		
	3889.23	12/06/19		47.58		3841.65		
	3889.23	03/05/20		47.66		3841.57		
	3889.23	06/06/20		47.72		3841.51		
	3889.23	09/24/20		47.90		3841.33		
	3889.23	12/10/20		47.96		3841.27		
	3889.23	03/02/21		48.02		3841.21		
MW-8	3887.06	06/03/14		44.94		3842.12		
	3887.06	09/22/14		45.11		3841.95		
	3887.06	12/10/14		44.79		3842.27		
	3887.06	03/11/15		44.94		3842.12		
	3887.06	06/10/15		45.22		3841.84		
	3887.06	09/02/15		45.21		3841.85		
	3887.06	12/09/15		45.29		3841.77		
	3887.06	03/09/16		45.35		3841.71		
	3887.06	06/28/16		45.56		3841.50		
	3887.06	09/21/16		45.67		3841.39		
	3887.06	12/07/16		45.64		3841.42		
	3887.06	03/08/17		45.68		3841.38		
	3887.06	06/06/17		45.78		3841.28		
	3887.06	09/08/17		45.82		3841.24		
	3887.06	12/04/17		45.91		3841.15		
	3887.06	03/05/18		46.03		3841.03		

Received by OCD: 4/25/2024 8:54:21 AM Table 3: Summary of Liquid Level Measurements Table 3: Summary of Liquid Level Measurements Chesapeake Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

Monitoring Well	Top of Casing Elevation (AMSL-Feet)	Depth to Liquid Measurement Date	Depth to LNAPL (Feet-TOC)	Depth to Groundwater (Feet-TOC)	LNAPL Thickness (Feet)	Groundwater Elevation (AMSL-Feet)
MW-8	3887.06	06/05/18		46.12		3840.94
(con't)	3887.06	09/05/18		46.16		3840.90
	3887.06	12/11/18		46.26		3840.80
	3887.06	03/06/19		46.33		3840.73
	3887.06	06/04/19		46.42		3840.64
	3887.06	09/04/19		46.53		3840.53
	3887.06	12/06/19		46.62		3840.44
	3887.06	03/05/20		46.71		3840.35
	3887.06	06/06/20		46.79		3840.27
	3887.06	09/24/20		46.95		3840.11
	3887.06	12/10/20		47.02		3840.04
	3887.06	03/02/21		47.06		3840.00

Notes:

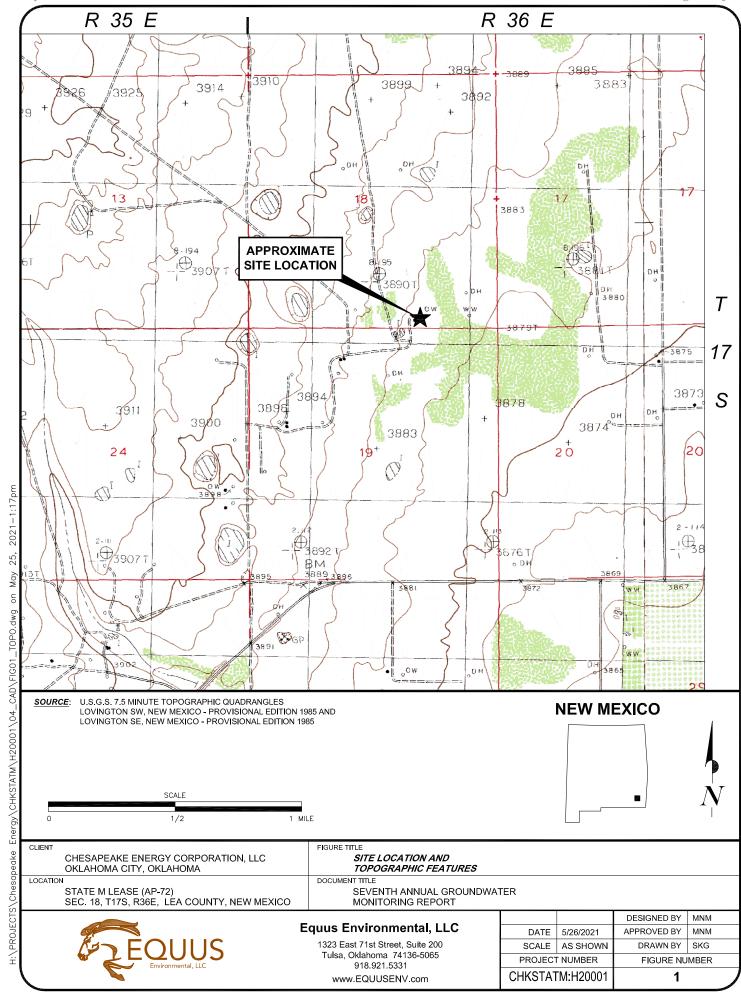
- 1. TOC: Measured from top of casing.
- 2. LNAPL: Light non aqueous phase liquid.
- 3. --: Denotes Not Measured.
- 4. AMSL: Denotes above mean sea level (AMSL)

Table 4: Summary of Laboratory Analytical Results for Groundwater Samples Chesapeake Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

	Chloride (mg/L)															
	June 2014	Sept. 2014	Dec. 2014	March 2015	June 2015	Sept. 2015	Dec. 2015	March 2016	June 2016	Sept. 2016	Dec. 2016	March 2017	June 2017	Sept. 2017	Dec. 2017	March 2018
MW-1R		51.4	116	39.0	24.6	21.6	23.5	34.8	24.9	28.5	44.8	32.0	28.6	29.3	29.0	33.7
MW-2	17.7	17.4	18.3	16.6	16.8	16.6	15.4 *	13.5	18.9	17.6	18.2	15.0	15.9	15.2	16.2	16.6
MW-3	59.7	59.7	58.9	57.0	57.1	56.3	50.5 *	49.3	51.5	52.0	55.1	50.0	53.7	49.5	58.1	64.3
MW-4	586	534	535	543	556	567	546 *	525	527	569	605	500	493	465	492	484
MW-5	28.6	27.3	27.9	26.1	26.2	25.8	22.4 *	22.4	26.1	26.2	27.8	23.1	24.7	20.4	25.4	25.9
MW-6	282	263	268	261	253	277	197 *	150	128	128	125	94.4	86.3	79.3	71.8	64.7
MW-7	42.7	29.6	36.0	39.7	36.2	35.2	28.8 *	27.7	36.0	38.2	39.6	24.2	23.8	24.0	27.7	31.6
MW-8	409	442	463	485	558	327	499	504	539	490	768	489	531	573	570	587

Notes:

- 1. mg/L: milligrams per liter.
- 2. < : Analyte not detected at the laboratory reporting limit.
- 3. All analyses performed by TestAmerica Laboratories in Nashville, Tennessee.
- 4. Cells shaded in blue indicate results that are above the laboratory reporting limit.
- 5. Cells with text **bolded** indicate results that exceed the New Mexico Administrative Code 20.6.2.3103, Standards for Groundwater: chloride (250.0 mg/L).
- 6. --- : Analysis not performed.
- 7. * : Analysis performed outside of holding time.
- 8. December 2016 results for MW-1R and MW-8 were confirmed by laboratory. reanalysis.
- 9. Sample MW-1R was collected in December 2017 under sample ID MW-R1 as shown on the COC and in the field book.
- 10. Beginning with the September 2019 sampling event, Eurofins TestAmerica (Edison, NJ) became the Project Laboratory.

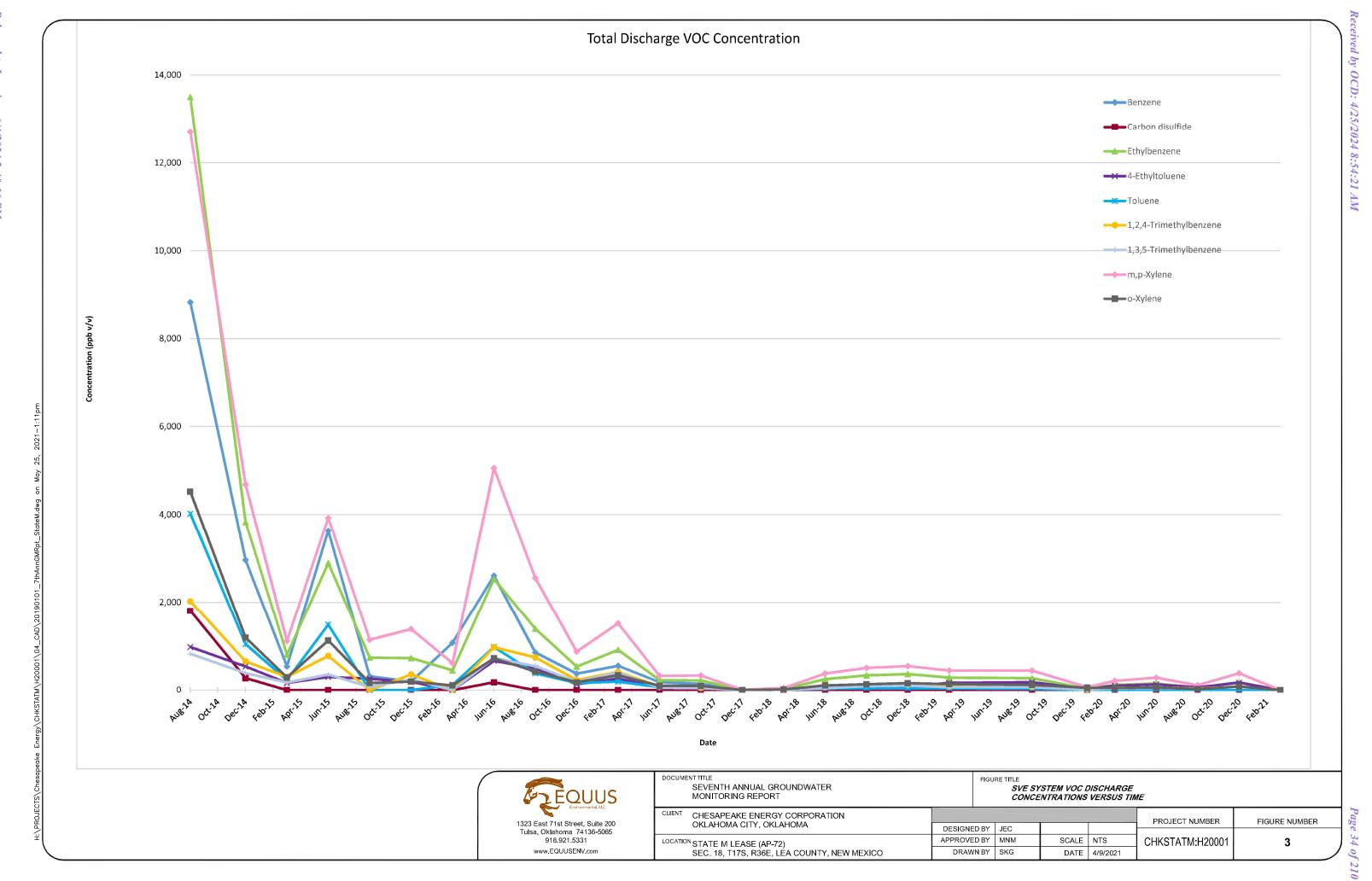

Table 4: Summary of Laboratory Analytical Results for Groundwater Samples Chesapeake Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

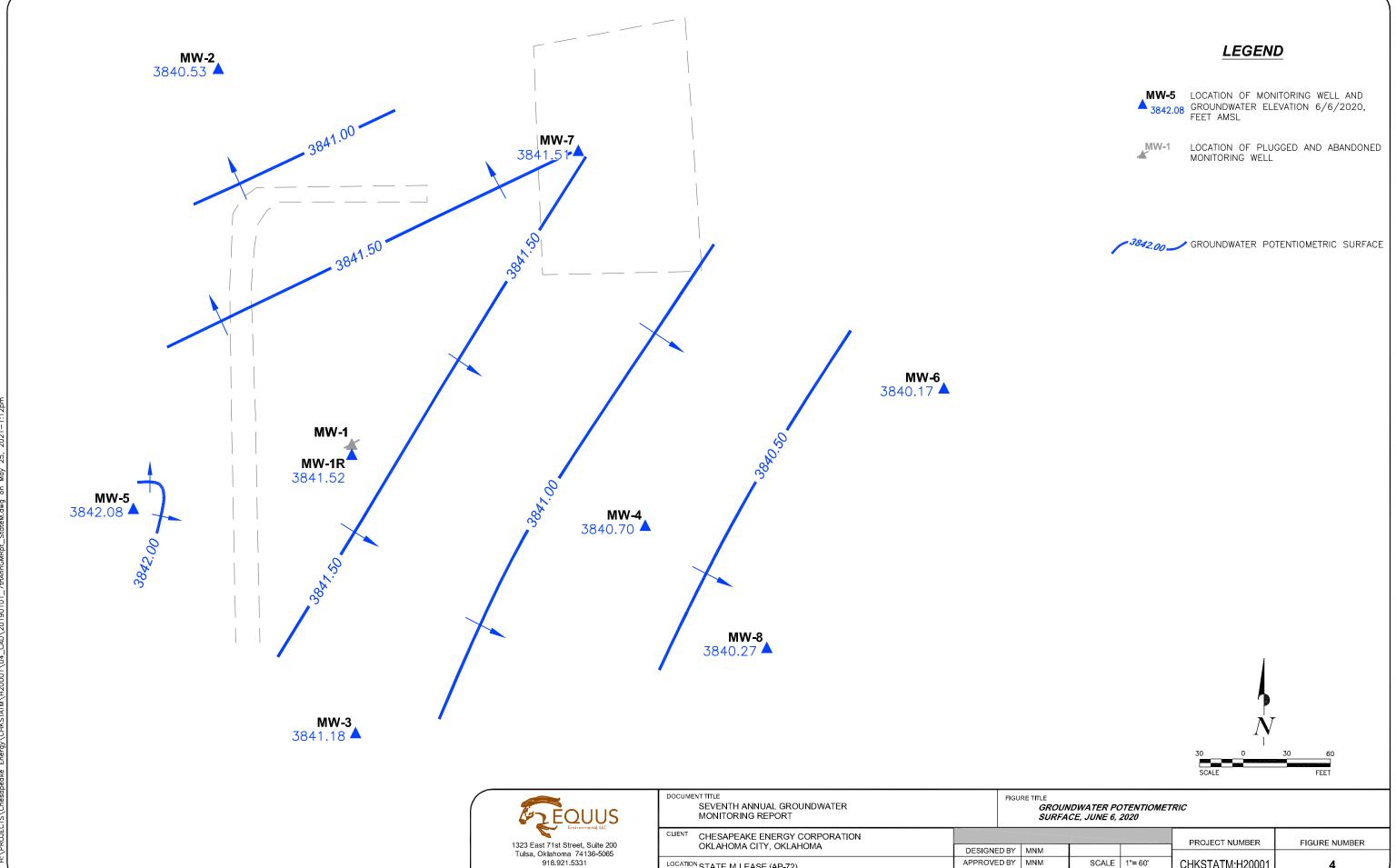
	Chloride (mg/L)											
	June 2018	Sept. 2018	Dec. 2018	March 2019	June 2019	Sept. 2019	Dec. 2019	March 2020	June 2020	Sept. 2020	Dec. 2020	March 2021
MW-1R												
MW-2												
MW-3												
MW-4	413	387	373	617	392	404	421	443	429	430	475	437
MW-5												
MW-6												
MW-7												
MW-8	539	398	474	308	283	223	198	118	97.4	88.8	73.5	63.9

Notes:

- 1. mg/L: milligrams per liter.
- 2. < : Analyte not detected at the laboratory reporting limit.
- 3. All analyses performed by TestAmerica Laboratories in Nashville, Tennessee.
- 4. Cells shaded in blue indicate results that are above the laboratory reporting limit.
- Cells with text **bolded** indicate results that exceed the New Mexico Administrative Code 20.6.2.3103, Standards for Groundwater: chloride (250.0 mg/L).
- 6. --- : Analysis not performed.
- 7. * : Analysis performed outside of holding time.
- 8. December 2016 results for MW-1R and MW-8 were confirmed by laboratory. reanalysis.
- 9. Sample MW-1R was collected in December 2017 under sample ID MW-R1 as shown on the COC and in the field book.
- 10. Beginning with the September 2019 sampling event, Eurofins TestAmerica (Edison, NJ) became the Project Laboratory.

FIGURES




1323 East 71st Street, Suite 200 Tulsa, Oklahoma 74136-5065 918.921.5331 www.EQUUSENV.com

DOCUMENT TITLE
SEVENTH ANNUAL GROUNDWATER
MONITORING REPORT

FIGURE TITLE
SITE BASE MAP

CLIENT CHESAPEAKE ENERGY CORPORATION					PROJECT NUMBER	FIGURE NUMBER		
OKLAHOMA CITY, OKLAHOMA	DESIGNED B	BY MNM			TROSEOT NOWBER	I IGONE NOWIDER		
LOCATION STATE M LEASE (AP-72)	APPROVED B	BY MNM	SCALE	1"= 60'	CHKSTATM:H20001	2		
SEC. 18, T17S, R36E, LEA COUNTY, NEW MEXICO	DRAWN B	SKG	DATE	5/26/2021			_	

LOCATION STATE M LEASE (AP-72) SEC. 18, T17S, R36E, LEA COUNTY, NEW MEXICO

www.EQUUSENV.com

APPROVED BY MNM

DRAWN BY SKG

SCALE 1"= 60'

DATE 5/26/2021

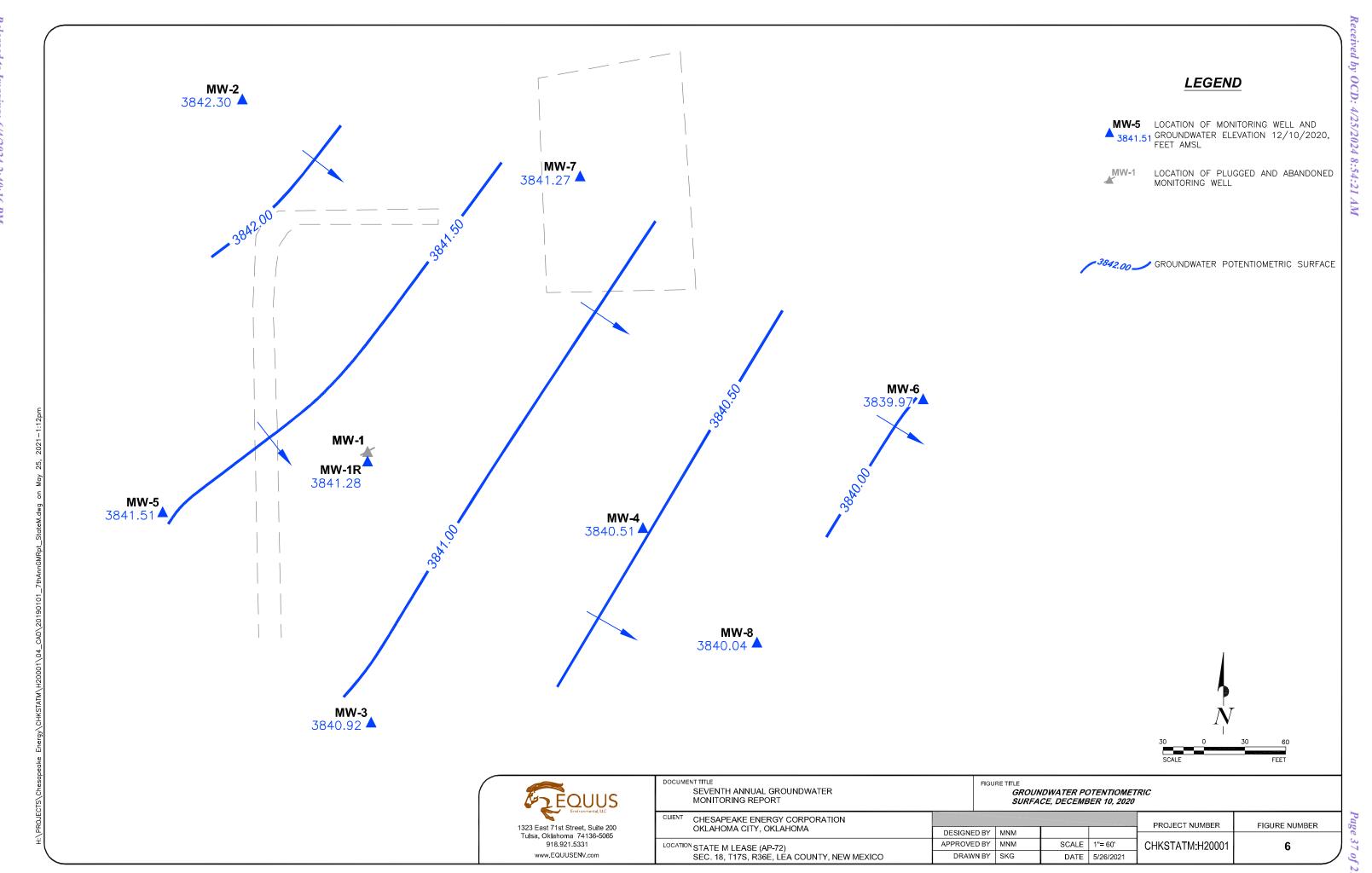
CHKSTATM:H20001

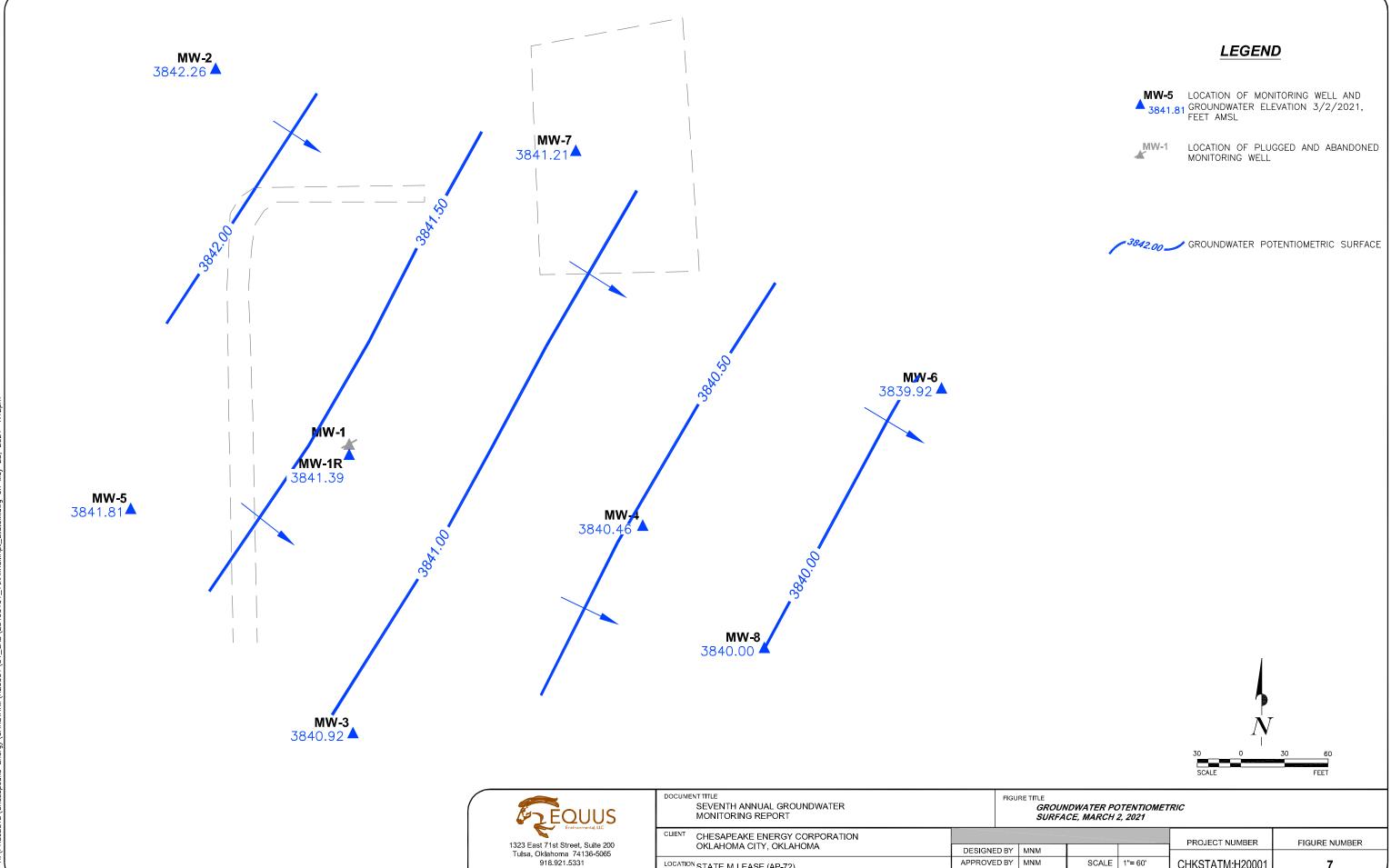
OKLAHOMA CITY, OKLAHOMA

www.EQUUSENV.com

LOCATION STATE M LEASE (AP-72) SEC. 18, T17S, R36E, LEA COUNTY, NEW MEXICO

DESIGNED BY MNM APPROVED BY MNM


DRAWN BY SKG


SCALE 1"= 60'

DATE 5/26/2021

CHKSTATM:H20001

5

LOCATION STATE M LEASE (AP-72) SEC. 18, T17S, R36E, LEA COUNTY, NEW MEXICO

www.EQUUSENV.com

DESIGNED BY MNM APPROVED BY MNM

DRAWN BY SKG

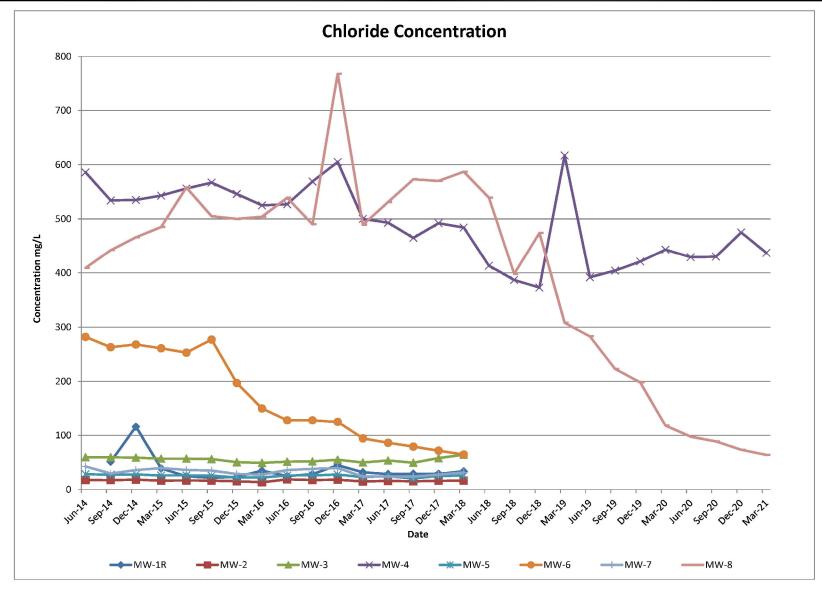
SCALE 1"= 60'

DATE 5/26/2021

CHKSTATM:H20001

LOCATION STATE M LEASE (AP-72) SEC. 18, T17S, R36E, LEA COUNTY, NEW MEXICO

www.EQUUSENV.com


APPROVED BY MNM

DRAWN BY SKG

SCALE 1"= 60'

DATE 5/26/2021

CHKSTATM:H20001

www.EQUUSENV.com

DOCUMENT TITLE SEVENTH ANNUAL GROUNDWATER MONITORING REPORT	FIGURE TITLE CHLORIDE CONCENTRATION TREND GRAPHS
CHENT	

CHESAPEAKE ENERGY CORPORATION					PROJECT NUMBER	FIGURE NUMBER
OKLAHOMA CITY, OKLAHOMA	DESIGNED BY	CNA				T TOOKE NOMBER
LOCATION STATE M LEASE (AP-72)	APPROVED BY	MNM	SCALE	NTS	CHKSTATM;H20001	9
SEC. 18, T17S, R36E, LEA COUNTY, NEW MEXICO	DRAWN BY	SKG	DATE	5/26/2021		

Received by OCD: 4/25/2024 8:54:21 AM

APPENDICES

- A Stage 2 Abatement Plan
- B NMOCD Approval of Stage 2 Abatement Plan
- C Laboratory Analytical Reports and Chain-of-Custody Documentation

APPENDIX A STAGE 2 ABATEMENT PLAN

Mr. Glenn Von Gonten
New Mexico Oil Conservation Division
1220 South St. Francis Drive
Santa Fe, New Mexico 87505

ENVIRONMENT

Fax 432 687 5401

www.arcadis-us.com

ARCADIS U.S., Inc.

Suite 300 Midland Texas 79701 Tel 432 687 5400

1004 North Big Spring Street

Subject:

State M-1 AP-072 Stage 2 Abatement Plan

Dear Mr. Von Gonten:

On behalf of Chesapeake Energy Corporation, ARCCADIS U.S. Inc. respectfully submits the enclosed Stage 2 Abatement plan for the State M-1 site (AP-072). A Stage 1 Abatement Plan Report was submitted on March 20, 2012. Your review and approval of this Abatement Plan will be appreciated. The landowner, Darr Angell, is anxious for us to complete soil remediation at this site.

If you have any questions please do not hesitate to contact Bradley Blevins at (575) 391-1462 or via e-mail at bblevins@chkenergy or me at (432) 687-5400, e-mail address shall@aracdis-us.com.

Date:

March 27, 2012

Contact:

Sharon Hall

Phone:

432 687-5400

Email:

shall@aracdis-us.com

Our ref:

MT001088

ARCADIS U.S., Inc.

TX Engineering License # F-533

Sincerely,

ARCADIS U.S., Inc.

Sham E. Hall

Sharon E. Hall

Associate Vice President

Copies

Bradley Blevins- Chesapeake, Hobbs

Imagine the result

g:\aproject\chesapeake\m-1 stage 2 plan\transmitall letter.doc

Imagine the result

Chesapeake Energy Corporation

State M-1 AP-072 Stage 2 Abatement Plan Proposal

Hobbs, New Mexico

March 27, 2012

Sharon Hall Associate Vice President

State M-1 AP-072

Stage 2 Abatement Plan Proposal

Prepared for: Chesapeake Energy Corporation Hobbs, New Mexico

Prepared by:
ARCADIS U.S., Inc.
1004 North Big Spring Street
Suite 300
Midland
Texas 79701
Tel 432 687 5400
Fax 432 687 5401

Our Ref.: MT001088.0001.00001

Date: March 27, 2012

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Table of Contents

1.	. INTRODUCTION					
2.	SUMM	ARY OF	F STAGE 1 ABATEMENT ACTIVITIES	1		
3.	STAGE	2 ABA	ATEMENT PLAN PROPOSAL	2		
	3.1	Soil Re	emediation	2		
	3.2	Ground	dwater Remediation and Monitoring	3		
		3.2.1	Chlorides	4		
		3.2.2	Hydrocarbons	4		
4.	PUBLI	C NOTII	FICATION	4		
5.	REME	OITAIC	N WORK SCHEDULE	4		
6	REFER	ENCES		5		

Figures

Figure 1 Soil and Groundwater Analyte Concentrations

Figure 2 Proposed Excavation

Appendices

Appendix A Multi-Med Model Inputs and Outputs

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

1. INTRODUCTION

The subject site is a former tank battery site located east of Buckeye, New Mexico. The site was purchased by Chesapeake Energy Corporation (Chesapeake) in April 2004. Chesapeake did not operate the tank battery or the associated well field and began the process of facility abandonment in 2007.

Seven monitor wells and nine soil borings have been drilled at the site. Elevated chloride concentrations and limited hydrocarbon compounds were detected in soil samples collected from soil borings and monitoring wells. Elevated chlorides were detected in the down gradient monitor wells and light non-aqueous phase liquid (LNAPL) occurs in monitoring well MW-1. LNAPL recovery activities have been piloted at the site and will commence again upon completion of surface reclamation activities.

2. SUMMARY OF STAGE 1 ABATEMENT ACTIVITIES

Initial site investigation activities were conducted in May of 2007 following abandonment of the tank battery. Stage 1 Abatement activities were conducted during the period of May 2007 through September 2011. Stage 1 Abatement activities included drilling and soil sampling of nine boreholes, drilling and sampling of seven monitor wells, EM 31 and EM 34 surveys, conversion of one monitoring well into a recovery well and recovery of phase-separated hydrocarbons from the recovery well.

New Mexico Oil Conservation Division (NMOCD) was notified of impacts to groundwater at the site via e-mail on May 30, 2007. NMOCD notified Chesapeake in a letter dated June 19, 2007 that a Stage 1 Abatement Plan was required for the site in accordance with Rule 19.

The Stage 1 Abatement Plan was submitted to NMOCD on August 22, 2007. The plan summarized site activities taken to date. The plan proposed the drilling and sampling of a minimum of three additional soil borings and installation and sampling of nine groundwater monitoring wells.

BBC contacted NMOCD via email on April 24, 2010 to inquire about the status of the Stage 1 Abatement Plan approval and Chesapeake's desire to conduct the proposed Stage 1 Abatement Plan activities. On May 27, 2010, NMOCD responded via email that the State was not staffed to review the Abatement Plans (APs) in a timely manner. On June 23, 2010, BBC contacted NMOCD via email to request a waiver of the Public Notice requirement and inform NMOCD that Chesapeake and the landowner were

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

anxious to move forward with the proposed AP activities. NMOCD replied via email on June 23, 2010 stating they were still understaffed to review the AP and could not waive the Public Notice requirement. They advised BBC that Chesapeake could proceed "at risk." On July 12, 2010 BBC informed NMOCD by registered letter that Chesapeake was planning to start the Stage 1 Assessment on or about August 23, 2010. They further informed NMOCD they would be submitting the required Public Notices, a copy of which was attached to the letter. NMOCD did not respond to the registered letter.

The public notices were published in the Hobbs News-Sun and Lovington Leader on July 22, 2010 and the Albuquerque Journal on July 24, 2010. No comments were received from the public or NMOCD during the 30-day comment period and Chesapeake proceeded with the proposed Stage 1 Abatement Plan activities on August 26, 2010. Copies of correspondence and Public Notice are included in Appendix A.

A detailed description of site activities and results can be found in the report submitted to NMOCD dated March 20, 2012 entitled State M-1 AP-072, Stage 1 Abatement Report (Site Assessment Investigation). Analytical results for soil and groundwater sampling are summarized on Figure 1.

3. STAGE 2 ABATEMENT PLAN PROPOSAL

After review of various remedial options, we propose the following Stage 2 Abatement Plan. The plan addresses soil and groundwater remediation.

3.1 Soil Remediation

The selected remedial option will be the excavation of near-surface soils and installation of clay liners. The anticipated extent and depth of excavation is based on assessment activities (laboratory analysis and visual observation) and is shown in Figure 2. Near surface soils (to a depth of 5 feet below ground surface) with chloride concentrations in excess of 1,000 milligrams per kilogram (mg/kg) and a Total Petroleum Hydrocarbons (TPH) concentration in excess of 1,000 mg/kg will be excavated and disposed. Excavated soils will be disposed at Lea Land Landfill.

Areas where chloride or TPH concentrations are expected to exceed 1,000 mg/kg at depths greater than 5 feet below ground surface soils will be excavated to a depth of 5

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

feet below ground surface. Soils will be screened in the field for chlorides using chloride field test kits and for TPH using a photoionization. Critical samples (samples used to delineate the excavations) will be submitted for laboratory analysis of chlorides and/or TPH. Following excavation, a 12-inch compacted clay layer that meets or exceeds a permeability of equal to or less than 1 x 10⁻⁸ centimeters per second will be installed in the excavations. The lined excavations will be backfilled with four feet of locally obtained native soil. All of the excavated areas will be re-seeded with native vegetation. Areas that are supporting vegetation will not be disturbed.

Use of the USEPA Multi-Med model demonstrates that the clay liners will mitigate the leaching of chlorides to groundwater. The model predicts that after 7000 years of infiltration through the liner the maximum concentration of chlorides in groundwater will be 221.8 milligrams per liter (mg/L). The Multi-Med inputs and outputs are included in Appendix A.

3.2 Groundwater Remediation and Monitoring

One additional groundwater monitoring well will be installed downgradient of the site. The monitoring well will be designated MW-8.

Groundwater samples will be collected from all of the monitoring wells and analyzed for chlorides using USEPA method 9056 for each of four quarters. Based on sample results for one year (four quarters), sampling frequency will be reviewed and may be revised.

Sampling will be discontinued when eight quarters of sample results indicate chloride concentrations are below New Mexico Water Quality Control Commission, Title 20, Chapter 6, Part 2 standards. Sample results will be submitted to the NMOCD annually on June 15.

Following removal of LNAPL from MW-1, groundwater samples will be collected from MW-1 and analyzed for benzene, toluene ethylbenzene and xylenes (BTEX) using USEPA method 8260B for each of four quarters. Based on sample results for one year (four quarters), sampling frequency will be reviewed and may be revised.

Sampling of MW-1 for BTEX will be discontinued when eight quarters of sample results indicate BTEX concentrations are below New Mexico Water Quality Control Commission, Title 20, Chapter 6, Part 2 standards. Sample results will be submitted to

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

the NMOCD annually on June 15. Proposed groundwater remediation is presented in Sections 3.2.1 and 3.2.2.

3.2.1 Chlorides

Chloride concentrations in groundwater exceed New Mexico Water Quality Control Commission standards in two wells (MW-1 411mg/L and MW-4 472mg/L).

Removal of near-surface soils that are a potential source of chlorides and BTEX in groundwater and lining of excavations with chloride and TPH concentrations in excess of 1,000 mg/kg will mitigate leaching of chlorides to groundwater. Considering the relatively low concentrations of chlorides in groundwater and the fact that soil removal and clay liner infiltration barrier installation will be conducted at this site, we propose monitoring the site for a period of two years before considering pumping of groundwater at this site. With the proposed source removal and mitigation and the severe drought conditions being experienced in this area, we believe it prudent to evaluate if chloride mass removal by pumping is warranted at this site.

3.2.2 Hydrocarbons

A pilot LNAPL recovery test will take place over a three week period and will be used to develop long-term recovery procedures. LNAPL will be recovered from MW-1 and disposed in a NMOCD approved facility. Additionally, two soil vent borings equipped with wind turbines will be installed in the area near MW-1.

4. PUBLIC NOTIFICATION

Written notification of submittal of the Stage 2 Abatement Plan Proposal and site activities will be sent to all surface owners of record within a one-mile radius of the site. NMOCD will be supplied with a list of parties to be notified. Publication of notice of activities will be published in a state-wide circulated newspaper, the Albuquerque Journal, and two county newspapers, the Hobbs-Daily News Sun and the Lovington Leader.

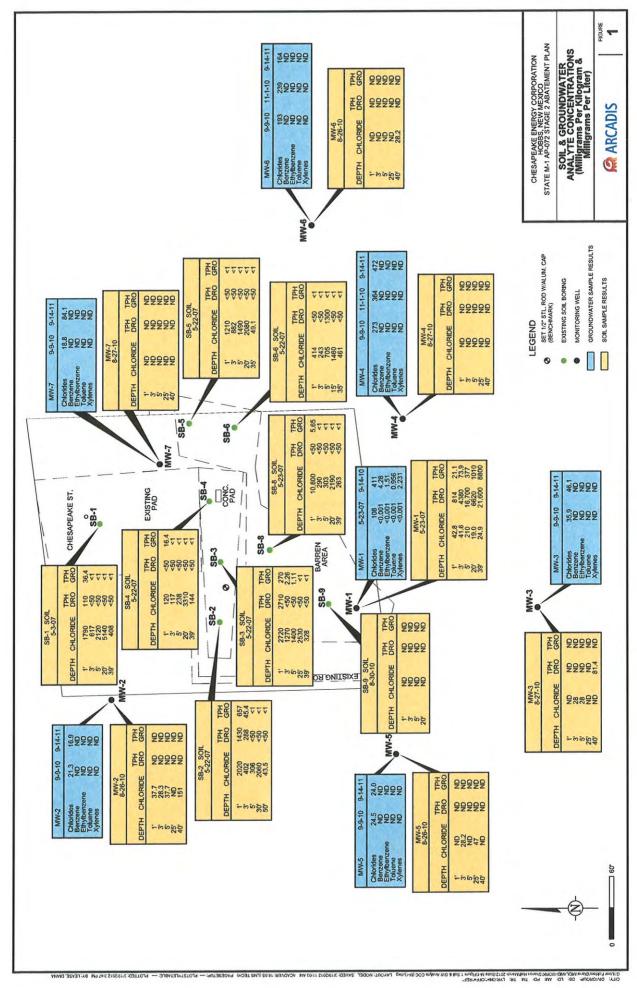
5. REMEDIATION WORK SCHEDULE

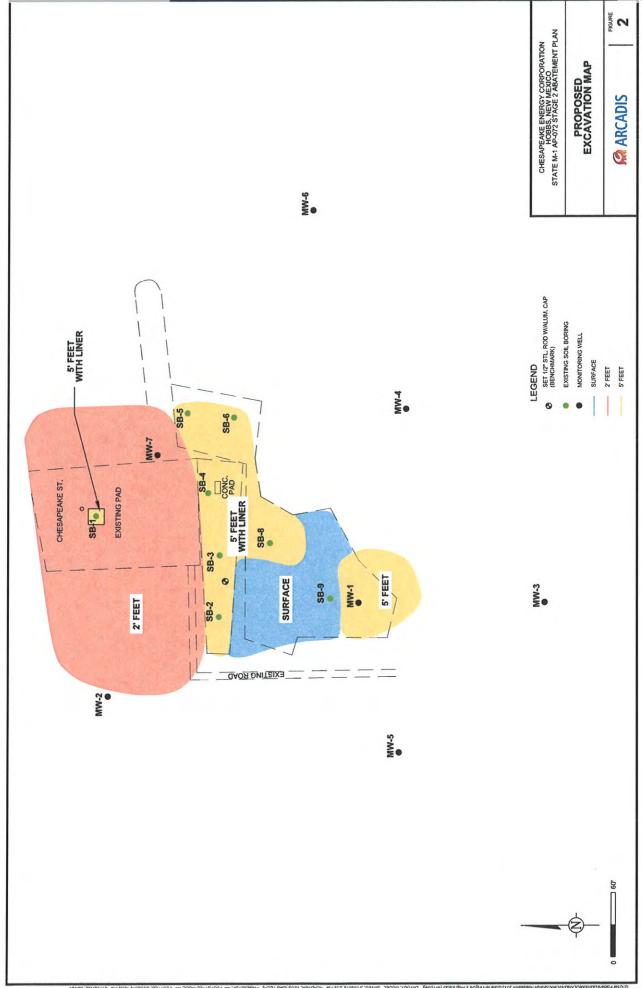
Soil remediation activities are expected to be completed in 15 working days (Monday through Friday). Groundwater remediation activities will be ongoing. An estimated completion date for groundwater remediation is not available.

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

6. REFERENCES


Groundwater Handbook; United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Research Information; 1992


New Mexico Water Quality Control Commission, Title 20 Chapter 6, Part 2, Subpart I

State M-1 AP-072 Stage 1 Abatement Report (Site Assessment Investigation); ARCADIS; March 2012

State M-1Salt Water Disposal Tank Battery, Stage 1 Abatement Plan (Ap-072), BBC International; August 2007

New Mexico Water Quality Control Commission, Title 20 Chapter 6, Part 2, Subpart I

Appendix A

Multi-Med Model Inputs and Outputs

Chesapeake State M-1 Chesapeake Energy Corporation Buckeye, Lea County, New Mexico Multimed Model Input and Output (With Liner)

MOD	EL INPUT	AND OUT	PUT		MODEL	RANGE	
<i>IN</i>	INPUT PARAMETERS						
	U	nsaturated	Zone Flo	w Parameters			
Depth of Unsaturated Zone	m	45	feet	13.7 m	0.000000001	None	
Hydraulic Conductivity	cm/hr	2	ft/day	2.54 cm/hr	0.00000000001	10,000	
Unsaturated Zone Porosity	fraction	0.05	fraction	0.05 fraction	0.000000001	0.99	
Residual Water Content	fraction	0.01	fraction	0.010 fraction	0.000000001	1	
	Uns	aturated Z	one Trans	port Parameters			
Thickness of Layer	m	45	feet	13.7 m	0.000000001	None	
Percent of Organic Matter	%	2.6	%	2.6 %	0	100	
Bulk Density	g/cm ³	1.35	g/cm ³	1.35 g/cm ³	0.01	5	
Biological Decay Coefficient	1/yr	0	1/yr	0 1/yr	0	None	
		Aqu	ifer Paran	reters			
Aquifer Porosity	fraction	0.25	fraction	0.25 fraction	0.000000001	0.99	
Bulk Density	g/cm ³	1.35	g/cm ³	1.35 g/cm ³	0.01	5	
Aquifer Thickness	m	50	ft	15.24 m	0.000000001	100,000	
Hydraulic Conductivity	m/yr	2	ft/day	223 m/yr	0.0000001	100,000,000	
Hydraulic Gradient	m/m	0.007	m/m	0.007 m/m	0.00000001	None	
Organic Carbon Content	fraction	0.00315	fraction	0.00315 fraction	0.000001	1	
Temperature of Aquifer	°C	14.4	°C	14.4 °C	0.00000001	None	
рH		6.2		6.2	0.3	14	
x-distance Radial Distance from							
Site to Receptor	m	1	m	1 m	1	None	
			rce Param		·····		
Infiltration Rate from the Facility	m/yr	0.124	in/yr	0.00315 m/yr	0.0000000001	10,000,000,000	
Area of Waste Disposal Unit	m ²	46,800	ft ²	4348 m ²	0.01	None	
Length Scale of Facility	m	240	feet	73.2 m	0.000000001	10,000,000,000	
Width Scale of Facility	m	195	feet	59.4 m	0.000000001	10,000,000,000	
Recharge Rate into the Plume	m/yr	16.71	in/yr	0.4244 m/уг	0	10,000,000,000	
Duration of Pulse	yr	8,000	уr	8000 yr	0.000000001	None	
Initial Concentration at Landfill	mg/L_	6,000	mg/L	6,000 mg/L	0	None	
		Addit	ional Para	meters			
Method	·····			Gaussian	Gaussian	Patch	
Name of Chemical Specified	***************************************			Chloride			

MODEL	OUTPUT		
Final Concentration at Landfill	mg/L	221.8	mg/L

	MODEL OUTPUT		
Concentration at Landfill	0.0 mg/L	Time	1 yr
	0.0 mg/L		10 yr
	0.0 mg/L		20 yr
	18.9 mg/L		50 yr
	36.6 mg/L		70 yr
	45.4 mg/L		80 yr
	61.8 mg/L		100 yr
	123.4 mg/L		200 yr
	154.1 mg/L		300 yr
	166.3 mg/L		400 yr
	178.5 mg/L		500 yr
	190.7 mg/L		600 yr
	204.8 mg/L		800 yr
	211.1 mg/L		1,000 yr
	220.4 mg/L		2,000 yr
	221.6 mg/L		3,000 yr
	221.8 mg/L		4,000 yr
	221.8 mg/L		5,000 yr
	221.8 mg/L		6,000 yr
	221.8 mg/L		7,000 yr

Chesapeake State M-1 Chesapeake Energy Corporation Buckeye, Lea County, New Mexico

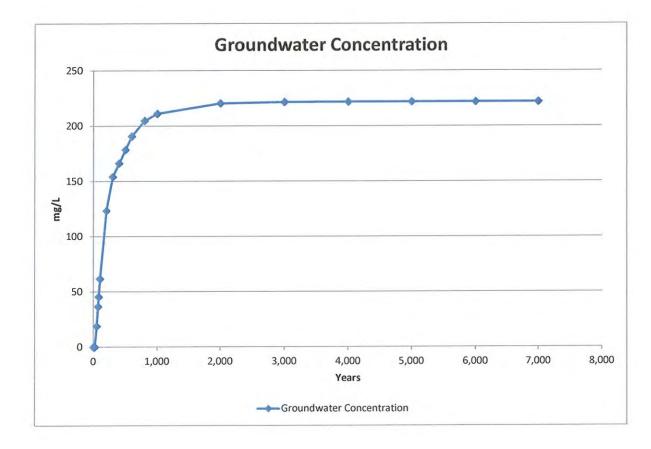


TABLE 6-3. TOTAL POROSITY OF VARIOUS MATERIALS

	No. of		Arithmetic
Material	Analyses	Range	Mean
Igneous Rocks			
Weathered granite	8	0.34-0.57	0.45
Weathered gabbro	4	0.42-0.45	0.43
Basalt	94	0.03-0.35	0.17
Sedimentary Materials			
Sandstone	65	0.14-0.49	0.34
Siltstone	7	0.21-0.41	0.35
Sand (fine)	243	0.26-0.53	0.43
Sand (coarse)	26	0.31-0.46	0.39
Gravel (fine)	38	0.25-0.38	0.34
Gravel (coarse)	15	0.24-0.36	0.28
Silt	281	0.34-0.61	0.46
Clay	74	0.34-0.57	0.42
Limestone	74	0.07-0.56	0.3
Metamorphic Rocks			
Schist	18	0.04-0.49	0.38

Sources: From Mercer et al. (1982), McWhorter and Sunada (1977), Original reference Morris and Johnson, (1967).

Texture	Bulk Density g/cm^3	Average Wilting Point	Plant Available Water Inches/Ft
Sandy loam	1.6	0.057	1.66
Silt Loam	1.45	0.119	2
Loam	1.5	0.097	2.4
Sandy clay loam	1.45	0.137	1.66
Clay loam	1.45	0.157	1.9

TABLE 6-8. MEAN BULK DENSITY (g/cm3) FOR FIVE SOIL TEXTURAL CLASSIFICATIONSa,b

Soil Texture	Mean Value	Range Reported	
Silt Loams	1.32	0.86 - 1.67	
Clay and Clay Loams	1.3	0.94 - 1.54	
Sandy Loams	1.49	1.25 - 1.76	
Gravelly Silt Loams	1.22	1.02 - 1.58	
Loams	1.42	1.16 - 1.58	
All Soils	1.35	0.86 - 1.76	

a Baes, C.F., III and R.D. Sharp. 1983. A Proposal for Estimation of Soil Leaching Constants for Use in Assessment Models. J. Environ. Qual. 12(1):17-28 (Original reference).

b From Dean et al. (1989)

TABLE 6-2. DESCRIPTIVE STATISTICS FOR SATURATED HYDRAULIC CONDUCTIVITY (cm hr-1)

	Hydraulic (Conductivity	/ (Ks)*			
Soil Type	×	S	CV	n		
Clay**	0.2	0.42	210.3	114	cm/hr	17.52
Clay Loam	0.26	0.7	267.2	345	cm/hr	22.776
Loam	1.04	1.82	174.6	735	cm/hr	91.104
Loamy Sand	14,59	11.36	77.9	315	cm/hr	1278.084
Silt	0.25	0.33	129.9	88	cm/hr	21.9
Silt Loam	0.45	1.23	275.1	1093	cm/hr	39.42
Silty Clay	0.02	0.11	453.3	126	cm/hr	1.752
Sifty Clay Loam	0.07	0.19	288.7	592	cm/hr	6.132
Sand	29.7	15.6	52.4	246	cm/hr	2601.72
Sandy Clay	0.12	0.28	234.1	46	cm/hr	10.512
Sandy Clay Loam	1.31	2.74	208.6	214	cm/hr	114.756
Sandy Loam	4.42	5.63	127	1183	cm/hr	387.192

^{*} n = Sample size, = Mean, s = Standard deviation, CV = Coefficient of variation (percent)

Sources: From Dean et al. (1989),

Original reference Carsel and Parrish (1988).

^{**} Agricultural soil, less than 60 percent clay

Saturated water content is the maximum volumetric amount of water in the soil when all pores are filled with water. Very often it is assumed that saturated water content equals the porosity n. However, in many cases qS is smaller than n due to the fact that small amounts of air will be trapped in very small pores. Residual water content can be defined as the asymptote of the pF-curve when h gets very high negative values. Usually qR is very small - on the order of 0.001--0.02 for coarse soils but gets as high values as 0.15..0.25 for heavy clay soils. Air entry point ha is

Soil texture. Fine-textured soils can hold much more organic matter than sandy soils for two reasons. First, clay particles form electrochemical bonds that hold organic compounds. Second, decomposition occurs faster in well-aerated sandy soils. A sandy loam rarely holds more than 2% organic matter.

The recharge rate in this model is the net amount of water that percolates directly into the aquifer system outside of the land disposal facility. The recharge is assumed to have no contamination and hence dilutes the groundwater contaminant plume. The recharge rate into the plume can be calculated in a variety of ways. One possibility is to use a model, such as HELP (Hydrologic Evaluation of Landfill Performance) (Schroeder et al., 1984), without any engineering controls (leachate collection system or a liner) to simulate the water balance for natural conditions.

The infiltration rate is the net amount of leachate that percolates into the aquifer system from a land disposal facility. Because of the use of engineering controls and the presence of non-native porous materials in the landfill facility, the infiltration rate will typically be different than the recharge rate. However, it can be estimated by similar

Most soils contain 2-10 percent organic matter. The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production. http://www.fao.org

APPENDIX B

NMOCD APPROVAL OF STAGE 2 ABATEMENT PLAN

From: Chase Acker

To: Bruce McKenzie

Subject: FW: Stage 2 Abatement Plan Approval: AP-72 Former State M-1 Tank Battery located in Unit Letter O of Section

18 in Township 17 South, Range 36 East, NMPM in Lea County, NM

Date: Monday, April 14, 2014 1:56:01 PM

From: Griswold, Jim, EMNRD [mailto:Jim.Griswold@state.nm.us]

Sent: Thursday, June 27, 2013 5:14 PM

To: Larry Wooten

Cc: Hall, Sharon; Chase Acker

Subject: Stage 2 Abatement Plan Approval: AP-72 Former State M-1 Tank Battery located in Unit Letter

O of Section 18 in Township 17 South, Range 36 East, NMPM in Lea County, NM

Mr. Wooten,

The Oil Conservation Division (OCD) has reviewed the Stage 2 Abatement Plan for the above-referenced site submitted on your behalf by Arcadis and dated 3/27/12. That plan has substantially met the requirements of 19.15.30 NMAC and is hereby approved. Please proceed with field activities.

Be advised this approval does not relieve Chesapeake of responsibility should the situation continue to pose a threat to groundwater, surface water, human health, or the environment. Furthermore, this approval does not relieve your responsibility for compliance with any federal, state, or local laws and/or regulations. Please retain a copy of this email for your files, as no hardcopy will be sent. If you have any questions, please feel free to contact me at any time.

Jim Griswold

Senior Hydrologist EMNRD/Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505 505,476,3465

303.470.3403

email: jim.griswold@state.nm.us

This email (and attachments if any) is intended only for the use of the individual or entity to which it is addressed, and may contain information that is confidential or privileged and exempt from disclosure under applicable law. If the reader of this email is not the intended recipient, or the employee or agent responsible for delivering this message to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender immediately by return email and destroy all copies of the email (and attachments if any).

APPENDIX C

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

ANALYTICAL REPORT

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive **RIDC Park** Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-106939-1

Laboratory Sample Delivery Group: Property ID: 891077

Client Project/Site: State M-1

For:

eurofins

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Chase Acker

-athy Gartner

Authorized for release by: 6/24/2020 1:25:41 PM

Cathy Gartner, Project Manager II (615)301-5041

cathy.gartner@testamericainc.com

·····LINKS ······

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 6/4/2024 2:40:16 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

Client: Chesapeake Energy Corporation Project/Site: State M-1

Laboratory Job ID: 180-106939-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Sample Summary	5
Subcontract Data	6
Receipt Checklists	20

1

2

3

4

6

Case Narrative

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-106939-1 SDG: Property ID: 891077

Job ID: 180-106939-1

Laboratory: Eurofins TestAmerica, Pittsburgh

Narrative

Job Narrative 180-106939-1

Subcontract Work

Method TO 15: This method was subcontracted to Eurofins Air Toxics. The subcontract laboratory certification is different from that of the facility issuing the final report.

Definitions/Glossary

Client: Chesapeake Energy Corporation

Job ID: 180-106939-1 Project/Site: State M-1 SDG: Property ID: 891077

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor

Dilution Factor Dil Fac

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Eurofins TestAmerica, Pittsburgh

Sample Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-106939-1

SDG: Property ID: 891077

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
180-106939-1	20200606-M-SVE	Air	06/06/20 10:26	06/10/20 08:19	

Air Toxics

6/23/2020

Ms. Cathy Gartner **Eurofins Test America** 2960 Foster Creighton Dr.

Nashville TN 37204

Project Name: CHK STATE M Project #: CHKSTATM:H20001

Workorder #: 2006280

Dear Ms. Cathy Gartner

The following report includes the data for the above referenced project for sample(s) received on 6/10/2020 at Air Toxics Ltd.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Brian Whittaker

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Brian Whittaker at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Brian Whittaker

Project Manager

Air Toxics

WORK ORDER #: 2006280

Work Order Summary

CLIENT: Ms. Cathy Gartner BILL TO:

Accounts Payable

Eurofins Test America

Eurofins Test America 4104 Shuffel St NW

2960 Foster Creighton Dr. Nashville, TN 37204

North Canton, OH 44720

PHONE: 800-765-0980 P.O. # CHKSTATM:H20001

FAX:

615-726-3404

PROJECT#

CHKSTATM:H20001 CHK STATE M

DATE RECEIVED: DATE COMPLETED: 06/10/2020 06/23/2020

CONTACT:

Brian Whittaker

			RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	20200606-M-SVE	TO-15	6.5 "Hg	4.7 psi
02A	Lab Blank	TO-15	NA	NA
03A	CCV	TO-15	NA	NA
04A	LCS	TO-15	NA	NA
04AA	LCSD	TO-15	NA	NA

CERTIFIED BY:

DATE: 06/23/20

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP - E87680, LA NELAP - 02089, NH NELAP - 209218, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-18-13, UT NELAP - CA009332019-11, VA NELAP - 460197, WA NELAP - C935

> Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-011, Effective date: 10/18/2019, Expiration date: 10/17/2020.

Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 351-8279

> Page 2 of 14 Page 7 of 20

LABORATORY NARRATIVE EPA Method TO-15 Eurofins Test America Workorder# 2006280

One 6 Liter Summa Canister sample was received on June 10, 2020. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

TVOC (Total Volatile Organic Compounds) referenced to Hexane includes area counts for peaks that elute from Hexane minus 0.08 minutes to Naphthalene plus 0.08 minutes and quantitating the area based on the response factor of Hexane.

Dilution was performed on sample 20200606-M-SVE due to the presence of high level non-target species.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.
 - M Reported value may be biased due to apparent matrix interferences.
 - CN See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

eurofins **Air Toxics**

Summary of Detected Compounds EPA METHOD TO-15 GC/MS

Client Sample ID: 20200606-M-SVE

Lab ID#: 2006280-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Benzene	8.4	48	27	150	
Ethyl Benzene	8.4	150	36	650	
4-Ethyltoluene	8.4	130	41	630	
Toluene	8.4	11	32	40	
1,2,4-Trimethylbenzene	8.4	60	41	290	
1,3,5-Trimethylbenzene	8.4	50	41	240	
m,p-Xylene	8.4	280	36	1200	
o-Xylene	8.4	63	36	270	
TVOC Ref. to Hexane	170	50000	590	180000	

File Name:

Client Sample ID: 20200606-M-SVE

Lab ID#: 2006280-01A

Date of Collection: 6/6/20 10:26:00 AM

EPA METHOD TO-15 GC/MS 14062207

Air Toxics

Dil. Factor:	1.68	Date	of Analysis: 6/22/	20 03:13 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Acetone	34	Not Detected	80	Not Detected
Benzene	8.4	48	27	150
alpha-Chlorotoluene	8.4	Not Detected	43	Not Detected
Bromodichloromethane	8.4	Not Detected	56	Not Detected
Bromoform	8.4	Not Detected	87	Not Detected
Bromomethane	34	Not Detected	130	Not Detected
2-Butanone (Methyl Ethyl Ketone)	34	Not Detected	99	Not Detected
Carbon Disulfide	34	Not Detected	100	Not Detected
Carbon Tetrachloride	8.4	Not Detected	53	Not Detected
Chlorobenzene	8.4	Not Detected	39	Not Detected
Dibromochloromethane	8.4	Not Detected	72	Not Detected
Chloroethane	34	Not Detected	89	Not Detected
Chloroform	8.4	Not Detected	41	Not Detected
Chloromethane	34	Not Detected	69	Not Detected
1,2-Dibromoethane (EDB)	8.4	Not Detected	64	Not Detected
1,2-Dichlorobenzene	8.4	Not Detected	50	Not Detected
1,3-Dichlorobenzene	8.4	Not Detected	50	Not Detected
1,4-Dichlorobenzene	8.4	Not Detected	50	Not Detected
1,1-Dichloroethane	8.4	Not Detected	34	Not Detected
Freon 12	8.4	Not Detected	42	Not Detected
1,2-Dichloroethane	8.4	Not Detected	34	Not Detected
1,1-Dichloroethene	8.4	Not Detected	33	Not Detected
cis-1,2-Dichloroethene	8.4	Not Detected	33	Not Detected
trans-1,2-Dichloroethene	8.4	Not Detected	33	Not Detected
1,2-Dichloropropane	8.4	Not Detected	39	Not Detected
cis-1,3-Dichloropropene	8.4	Not Detected	38	Not Detected
trans-1,3-Dichloropropene	8.4	Not Detected	38	Not Detected
Freon 114	8.4	Not Detected	59	Not Detected
Ethyl Benzene	8.4	150	36	650
4-Ethyltoluene	8.4	130	41	630
Hexachlorobutadiene	34	Not Detected	360	Not Detected
2-Hexanone	34	Not Detected	140	Not Detected
Methylene Chloride	34	Not Detected	120	Not Detected
4-Methyl-2-pentanone	8.4	Not Detected	34	Not Detected
Styrene	8.4	Not Detected	36	Not Detected
1,1,2,2-Tetrachloroethane	8.4	Not Detected	58	Not Detected
Tetrachloroethene	8.4	Not Detected	57	Not Detected
Toluene	8.4	11	32	40
1,2,4-Trichlorobenzene	34	Not Detected	250	Not Detected
1,1,1-Trichloroethane	8.4	Not Detected	46	Not Detected
1,1,2-Trichloroethane	8.4	Not Detected	46	Not Detected
Trichloroethene	8.4	Not Detected	45	Not Detected

***** eurofins **Air Toxics**

Client Sample ID: 20200606-M-SVE Lab ID#: 2006280-01A

EPA METHOD TO-15 GC/MS

File Name:	14062207	Date of Collection: 6/6/20 10:26:00 AN		/20 10:26:00 AM
Dil. Factor:	1.68	Date of Analysis: 6/22/20 03:13 PM		/20 03:13 PM
•	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 11	8.4	Not Detected	47	Not Detected

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	8.4	Not Detected	47	Not Detected
Freon 113	8.4	Not Detected	64	Not Detected
1,2,4-Trimethylbenzene	8.4	60	41	290
1,3,5-Trimethylbenzene	8.4	50	41	240
Vinyl Acetate	34	Not Detected	120	Not Detected
Vinyl Chloride	8.4	Not Detected	21	Not Detected
m,p-Xylene	8.4	280	36	1200
o-Xylene	8.4	63	36	270
TVOC Ref. to Hexane	170	50000	590	180000

Container Type: 6 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: Lab Blank Lab ID#: 2006280-02A

File Name: Dil. Factor:	14062206a 1.00		of Collection: NA of Analysis: 6/22/	20 10:57 AM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Acetone	20	Not Detected	48	Not Detected
Benzene	5.0	Not Detected	16	Not Detected
alpha-Chlorotoluene	5.0	Not Detected	26	Not Detected
Bromodichloromethane	5.0	Not Detected	34	Not Detected
Bromoform	5.0	Not Detected	52	Not Detected
Bromomethane	20	Not Detected	78	Not Detected
2-Butanone (Methyl Ethyl Ketone)	20	Not Detected	59	Not Detected
Carbon Disulfide	20	Not Detected	62	Not Detected
Carbon Tetrachloride	5.0	Not Detected	31	Not Detected
Chlorobenzene	5.0	Not Detected	23	Not Detected
Dibromochloromethane	5.0	Not Detected	42	Not Detected
Chloroethane	20	Not Detected	53	Not Detected
Chloroform	5.0	Not Detected	24	Not Detected
Chloromethane	20	Not Detected	41	Not Detected
1,2-Dibromoethane (EDB)	5.0	Not Detected	38	Not Detected
1,2-Dichlorobenzene	5.0	Not Detected	30	Not Detected
1,3-Dichlorobenzene	5.0	Not Detected	30	Not Detected
1,4-Dichlorobenzene	5.0	Not Detected	30	Not Detected
1,1-Dichloroethane	5.0	Not Detected	20	Not Detected
Freon 12	5.0	Not Detected	25	Not Detected
1,2-Dichloroethane	5.0	Not Detected	20	Not Detected
1,1-Dichloroethene	5.0	Not Detected	20	Not Detected
cis-1,2-Dichloroethene	5.0	Not Detected	20	Not Detected
trans-1,2-Dichloroethene	5.0	Not Detected	20	Not Detected
1,2-Dichloropropane	5.0	Not Detected	23	Not Detected
cis-1,3-Dichloropropene	 5.0	Not Detected	23	Not Detected
trans-1,3-Dichloropropene	5.0	Not Detected	23	Not Detected
Freon 114	5.0	Not Detected	35	Not Detected
Ethyl Benzene	5.0	Not Detected	22	Not Detected
4-Ethyltoluene	5.0	Not Detected	24	Not Detected
Hexachlorobutadiene		Not Detected	210	Not Detected
nexactilorobutadierie 2-Hexanone	20	Not Detected	82	Not Detected
	20	Not Detected	69	Not Detected
Methylene Chloride	5.0	Not Detected	20	Not Detected
4-Methyl-2-pentanone	5.0	Not Detected	21	Not Detected
Styrene				
1,1,2,2-Tetrachloroethane	5.0	Not Detected	34	Not Detected
Tetrachloroethene	5.0	Not Detected	34	Not Detected
Toluene	5.0	Not Detected	19	Not Detected
1,2,4-Trichlorobenzene	20	Not Detected	150	Not Detected
1,1,1-Trichloroethane	5.0	Not Detected	27	Not Detected
1,1,2-Trichloroethane	5.0	Not Detected	27	Not Detected
Trichloroethene	5.0	Not Detected	27	Not Detected

***** eurofins

Client Sample ID: Lab Blank Lab ID#: 2006280-02A

Lab 1D#. 2000200-02/1		
EPA METHOD TO-15 GC/	MS	

Air Toxics

File Name: Dil. Factor:	14062206a 1.00		of Collection: NA of Analysis: 6/22/	'20 10:57 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	5.0	Not Detected	28	Not Detected
Freon 113	5.0	Not Detected	38	Not Detected
1,2,4-Trimethylbenzene	5.0	Not Detected	24	Not Detected
1,3,5-Trimethylbenzene	5.0	Not Detected	24	Not Detected
Vinyl Acetate	20	Not Detected	70	Not Detected
Vinyl Chloride	5.0	Not Detected	13	Not Detected
m,p-Xylene	5.0	Not Detected	22	Not Detected

Not Detected

Not Detected

22

350

Not Detected

Not Detected

5.0

100

Container Type: NA - Not Applicable

o-Xylene

TVOC Ref. to Hexane

2		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	96	70-130	

MS

Client Sample ID: CCV

Lab ID#: 2006280-03A
EPA METHOD TO-15 GC/N

Air Toxics

File Name: 14062202 **Date of Collection: NA** Dil. Factor: Date of Analysis: 6/22/20 08:53 AM 1.00

Compound	%Recovery
Acetone	94
Benzene	90
alpha-Chlorotoluene	124
Bromodichloromethane	91
Bromoform	95
Bromomethane	97
2-Butanone (Methyl Ethyl Ketone)	98
Carbon Disulfide	93
Carbon Tetrachloride	93
Chlorobenzene	94
Dibromochloromethane	96
Chloroethane	101
Chloroform	92
Chloromethane	89
1,2-Dibromoethane (EDB)	97
1,2-Dichlorobenzene	103
1,3-Dichlorobenzene	98
1,4-Dichlorobenzene	105
1,1-Dichloroethane	96
Freon 12	97
1,2-Dichloroethane	91
1,1-Dichloroethene	93
cis-1,2-Dichloroethene	98
trans-1,2-Dichloroethene	95
1,2-Dichloropropane	93
cis-1,3-Dichloropropene	99
trans-1,3-Dichloropropene	102
Freon 114	92
Ethyl Benzene	87
4-Ethyltoluene	106
Hexachlorobutadiene	96
2-Hexanone	103
Methylene Chloride	93
4-Methyl-2-pentanone	105
Styrene	98
1,1,2,2-Tetrachloroethane	91
Tetrachloroethene	91
Toluene	89
1,2,4-Trichlorobenzene	102
1,1,1-Trichloroethane	94
1,1,2-Trichloroethane	89
Trichloroethene	90

Client Sample ID: CCV Lab ID#: 2006280-03A **EPA METHOD TO-15 GC/MS**

Air Toxics

File Name:	14062202	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 6/22/20 08:53 AM

Compound	%Recovery	
Freon 11	95	_
Freon 113	97	
1,2,4-Trimethylbenzene	99	
1,3,5-Trimethylbenzene	96	
Vinyl Acetate	106	
Vinyl Chloride	90	
m,p-Xylene	93	
o-Xylene	89	
TVOC Ref. to Hexane	100	

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	101	70-130	

Client Sample ID: LCS

Lab 1D#: 2006280-04A
EPA METHOD TO-15 GC/MS

Air Toxics

File Name: **Date of Collection: NA** 14062203 Dil. Factor: Date of Analysis: 6/22/20 09:16 AM 1.00

Dil. Factor:	.00 Date of Analysi	S: 6/22/20 09:16 AM
Compound	%Recovery	Method Limits
Acetone	107	70-130
Benzene	97	70-130 70-130
alpha-Chlorotoluene	123	70-130
Bromodichloromethane	98	70-130
Bromoform	100	70-130
Bromomethane	104	70-130
2-Butanone (Methyl Ethyl Ketone)	102	70-130
Carbon Disulfide	102	70-130
Carbon Tetrachloride	96	70-130
Chlorobenzene	98	70-130
Dibromochloromethane	102	70-130
Chloroethane	106	70-130
Chloroform	97	70-130
Chloromethane	98	70-130
1,2-Dibromoethane (EDB)	99	70-130
1,2-Dichlorobenzene	 99	70-130
1,3-Dichlorobenzene	99	70-130
1,4-Dichlorobenzene	102	70-130
1,1-Dichloroethane	96	70-130
Freon 12	96	70-130
1,2-Dichloroethane	93	70-130
1,1-Dichloroethene	97	70-130
cis-1,2-Dichloroethene	94	70-130
trans-1,2-Dichloroethene	107	70-130
1,2-Dichloropropane	98	70-130
cis-1,3-Dichloropropene	 111	70-130
trans-1,3-Dichloropropene	106	70-130
Freon 114	100	70-130
Ethyl Benzene	95	70-130
4-Ethyltoluene	107	70-130
Hexachlorobutadiene	84	70-130
2-Hexanone	98	70-130
Methylene Chloride	98	70-130
4-Methyl-2-pentanone	101	70-130
Styrene	98	70-130
1,1,2,2-Tetrachloroethane	98	70-130
Tetrachloroethene	94	70-130
Toluene	91	70-130
1,2,4-Trichlorobenzene	91	70-130
1,1,1-Trichloroethane	98	70-130
1,1,2-Trichloroethane	93	70-130
Trichloroethene	95	70-130

***** eurofins

Air Toxics

Client Sample ID: LCS Lab ID#: 2006280-04A

EPA METHOD TO-15 GC/MS

File Name:	14062203	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 6/22/20 09:16 AM

Compound	%Recovery	Method Limits
Freon 11	100	70-130
Freon 113	98	70-130
1,2,4-Trimethylbenzene	96	70-130
1,3,5-Trimethylbenzene	94	70-130
Vinyl Acetate	100	60-140
Vinyl Chloride	97	- 70-130
m,p-Xylene	96	70-130
o-Xylene	92	70-130
TVOC Ref. to Hexane	Not Spiked	

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	100	70-130	

Air Toxics

Client Sample ID: LCSD Lab ID#: 2006280-04AA

EPA METHOD TO-15 GC/MS

File Name:	14062204	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 6/22/20 09:48 AM

Dil. Factor:	1.00 Date of Analysi	s: 6/22/20 09:48 AM
		Method
Compound	%Recovery	Limits
Acetone	109	70-130
Benzene	97	70-130
alpha-Chlorotoluene	129	70-130
Bromodichloromethane	100	70-130
Bromoform	104	70-130
Bromomethane	101	70-130
2-Butanone (Methyl Ethyl Ketone)	102	70-130
Carbon Disulfide	102	70-130
Carbon Tetrachloride	97	70-130
Chlorobenzene	101	70-130
Dibromochloromethane	103	70-130
Chloroethane	100	70-130
Chloroform	96	70-130
Chloromethane	98	70-130
1,2-Dibromoethane (EDB)	103	70-130
1,2-Dichlorobenzene	104	70-130
1,3-Dichlorobenzene	102	70-130
1,4-Dichlorobenzene	106	70-130
1,1-Dichloroethane	98	70-130
Freon 12	101	70-130
1,2-Dichloroethane	95	70-130
1,1-Dichloroethene	99	70-130
cis-1,2-Dichloroethene	93	70-130
trans-1,2-Dichloroethene	109	70-130
1,2-Dichloropropane	100	70-130
cis-1,3-Dichloropropene	108	70-130
trans-1,3-Dichloropropene	108	70-130
Freon 114	98	70-130
Ethyl Benzene	96	70-130
4-Ethyltoluene	110	70-130
Hexachlorobutadiene	90	70-130
2-Hexanone	100	70-130
Methylene Chloride	98	70-130
4-Methyl-2-pentanone	104	70-130
Styrene	99	70-130
1,1,2,2-Tetrachloroethane	97	70-130
Tetrachloroethene	97	70-130
Toluene	95	70-130
1,2,4-Trichlorobenzene	97	70-130
1,1,1-Trichloroethane	99	70-130
1,1,2-Trichloroethane	96	70-130
Trichloroethene	96	70-130

***** eurofins

Client Sample ID: LCSD Lab ID#: 2006280-04AA

EPA METHOD TO-15 GC/MS

Air Toxics

File Name:	14062204	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 6/22/20 09:48 AM

Compound	%Recovery	Method Limits
Freon 11	101	70-130
Freon 113	99	70-130
1,2,4-Trimethylbenzene	100	70-130
1,3,5-Trimethylbenzene	99	70-130
Vinyl Acetate	103	60-140
Vinyl Chloride	98	70-130
m,p-Xylene	97	70-130
o-Xylene	96	70-130
TVOC Ref. to Hexane	Not Spiked	

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	102	70-130	

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation Job Number: 180-106939-1 SDG Number: Property ID: 891077

Login Number: 106939 List Source: Eurofins TestAmerica, Pittsburgh

List Number: 1

Creator: Gartner, Cathy

Answer Comment Question

Radioactivity wasn't checked or is </= background as measured by a survey meter.

The cooler's custody seal, if present, is intact.

Sample custody seals, if present, are intact.

The cooler or samples do not appear to have been compromised or tampered with.

Samples were received on ice.

Cooler Temperature is acceptable.

Cooler Temperature is recorded.

COC is present.

COC is filled out in ink and legible.

COC is filled out with all pertinent information.

Is the Field Sampler's name present on COC?

There are no discrepancies between the containers received and the COC.

Samples are received within Holding Time (excluding tests with immediate HTs)

Sample containers have legible labels.

Containers are not broken or leaking.

Sample collection date/times are provided.

Appropriate sample containers are used.

Sample bottles are completely filled.

Sample Preservation Verified.

There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Multiphasic samples are not present.

Samples do not require splitting or compositing.

Residual Chlorine Checked.

Eurofins TestAmerica, Pittsburgh

Page 20 of 20

Received by OCD: 4/25/2024 8:54:21 AM

		3-1		СН	AIN	OF C	USTOD	Y RECO	RD				No. 1521
PROJEC				OJECT NUMBER: PROJECT NAME:						7			
	- 60	ZEQUUS	CHKSTATM: H20641			CHK STATE M			1		coc of _		
			SHIPPED TO:			PROJEC	TMAN	AGER:	4		TAT:		
SAMPLER'S P	RINTED NAM	ME:		Alv	RTO	XIC	.5			BRAD)	1		S-TOND ARD
Terry SAMPLEB'S S	Fishe			SIG		*						ASOW:	
SAMPLEB'S S	IGNATURE:		×	ain			Ì					NA	
5-7	-51	-	Sample Matrix	of Sample Containers		TOTAL VUCJ							10(a) HEXANE (6-C12
			9	ole (10	SI						, i v	
Date	Time		am	am	-	75							
	Titile	Sample ID	S	of S	TO-15	E							
				**	-	10							REMARKS
6-6-20	1026	20200606-M-SVE	Air	1	X	X						TAG	#
												1.,4	
						-							
				/					+		_		
						_				1			
		la de											
		10				\neg							
						-			+				
						-	_	-	+	++			
	/												
						$\neg \uparrow$			1				
TOTAL NUMBE	ER OF CONT	AINERS											
RELINQUISHE	D BY:		DATE 6-	8-10	RECE	IVED	3Y;					DATE	
Sang	Sh	~	TIME /		DECE	IVED	9V.					TIME	
RELINQUISHED BY:			TIME		neve	VED	. 1					TIME	
TIME			AIRB	ILL NU	MBER:								
METHOD OF SHIPMENT. FENEX					15.	201	18	30	820	06			
RECEIVED IN LABORATORY BY:			Send	PDF, I	DD, and	INVOICE (f appli				GEMNIENY COW		
TIME										JULI	E. (ZEC4	C ECANATENA, COM	
LABORATORY	LABORATORY CONTACT:						RY ADDR			~ ^			0 - 1
CATI	V GAD	NER (015-2N) - 5041				180 BLUERAVINE RD. STEB FOLSOM, CA 95630							
CATHY GARTNER 615-301-5041													

ANALYTICAL REPORT

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive **RIDC Park** Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-111865-1

Laboratory Sample Delivery Group: Property ID: 891077

Client Project/Site: State M-1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Chase Acker

CathyGartner

Authorized for release by: 10/9/2020 12:03:02 PM

Cathy Gartner, Project Manager II (615)301-5041

Cathy.Gartner@Eurofinset.com

·····LINKS ······

Review your project results through Total Access

Have a Question?

Visit us at:

Released to Imaging: 6/4/2024 2:40:16 PM

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

Client: Chesapeake Energy Corporation Project/Site: State M-1

Laboratory Job ID: 180-111865-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Sample Summary	5
Subcontract Data	6
Chain of Custody	20
Receipt Checklists	21

3

4

6

6

Case Narrative

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-111865-1

SDG: Property ID: 891077

Job ID: 180-111865-1

Laboratory: Eurofins TestAmerica, Pittsburgh

Narrative

Job Narrative 180-111865-1

Subcontract Work

Method TO 15: This method was subcontracted to Eurofins Air Toxics. The subcontract laboratory certification is different from that of the facility issuing the final report.

Definitions/Glossary

Client: Chesapeake Energy Corporation

Job ID: 180-111865-1 Project/Site: State M-1 SDG: Property ID: 891077

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Negative / Absent NEG POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count

Sample Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-111865-1

SDG: Property ID: 891077

_					
Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
180-111865-1	20200924M1 SVE	Air	09/24/20 13:20	09/25/20 10:02	

10/9/2020

Ms. Cathy Gartner
Eurofins Test America
500 Wilson Pike Circle Suite 100

Brentwood TN 37027

Project Name: CHK STATE M Project #: CHKSTATM:H20001

Workorder #: 2009766

Dear Ms. Cathy Gartner

The following report includes the data for the above referenced project for sample(s) received on 9/28/2020 at Air Toxics Ltd.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Brian Whittaker

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Brian Whittaker at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Brian Whittaker

Project Manager

Air Toxics

WORK ORDER #: 2009766

Work Order Summary

CLIENT: Ms. Cathy Gartner

BILL TO: Accounts Payable

Eurofins Test America

Eurofins Test America 4104 Shuffel St NW

Brentwood, TN 37027

500 Wilson Pike Circle Suite 100

North Canton, OH 44720

PHONE:

800-765-0980

P.O. # 180-111865

FAX:

615-726-3404

PROJECT # CHKSTATM:H20001 CHK STATE M

DATE RECEIVED:

09/28/2020

CONTACT: Brian Whittaker

DATE COMPLETED: 10/09/2020

EDACTION #	NIADATE	TEST	RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	<u>PRESSURE</u>
01A	20200924M1SVE	TO-15	6.7 "Hg	4.9 psi
02A	Lab Blank	TO-15	NA	NA
03A	CCV	TO-15	NA	NA
04A	LCS	TO-15	NA	NA
04AA	LCSD	TO-15	NA	NA
02A 03A 04A	Lab Blank CCV LCS	TO-15 TO-15 TO-15	NA NA NA	NA NA NA

CERTIFIED BY:

new juges

DATE: 10/09/20

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP - 209219, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-19-14, UT NELAP – CA009332020-12, VA NELAP - 10615, WA NELAP - C935

Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-013, Effective date: 10/18/2019, Expiration date: 10/17/2020.

Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 351-8279

Page 2 of 14 Page 7 of 21 2

-

5

7

LABORATORY NARRATIVE EPA Method TO-15 Eurofins Test America Workorder# 2009766

One 6 Liter Summa Canister sample was received on September 28, 2020. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

TVOC (Total Volatile Organic Compounds) referenced to Hexane includes area counts for peaks that elute from Hexane minus 0.08 minutes to Naphthalene plus 0.08 minutes and quantitating the area based on the response factor of Hexane.

Dilution was performed on sample 20200924M1SVE due to the presence of high level target species.

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.
 - M Reported value may be biased due to apparent matrix interferences.
 - CN See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: 20200924M1SVE

Lab ID#: 2009766-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	2.9	18	9.1	58
Ethyl Benzene	2.9	56	12	240
4-Ethyltoluene	2.9	64	14	320
Toluene	2.9	3.1	11	12
1,2,4-Trimethylbenzene	2.9	38	14	180
1,3,5-Trimethylbenzene	2.9	31	14	150
m,p-Xylene	2.9	110	12	480
o-Xylene	2.9	25	12	110
TVOC Ref. to Hexane	57	24000	200	84000

Client Sample ID: 20200924M1SVE Lab ID#: 2009766-01A

EPA METHOD TO-15 GC/MS FULL SCAN

•		
Dil. Factor:	5.72	Date of Analysis: 10/7/20 07:23 PM
File Name:	a100717	Date of Collection: 9/24/20 1:20:00 PM

Dil. Factor:	5.72	Date of Analysis: 10/7/20 07:23 PM				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)		
Acetone	29	Not Detected	68	Not Detected		
Benzene	2.9	18	9.1	58		
alpha-Chlorotoluene	2.9	Not Detected	15	Not Detected		
Bromodichloromethane	2.9	Not Detected	19	Not Detected		
Bromoform	2.9	Not Detected	30	Not Detected		
Bromomethane	29	Not Detected	110	Not Detected		
2-Butanone (Methyl Ethyl Ketone)	11	Not Detected	34	Not Detected		
Carbon Disulfide	11	Not Detected	36	Not Detected		
Carbon Tetrachloride	2.9	Not Detected	18	Not Detected		
Chlorobenzene	2.9	Not Detected	13	Not Detected		
Dibromochloromethane	2.9	Not Detected	24	Not Detected		
Chloroethane	11	Not Detected	30	Not Detected		
Chloroform	2.9	Not Detected	14	Not Detected		
Chloromethane	29	Not Detected	59	Not Detected		
1,2-Dibromoethane (EDB)	2.9	Not Detected	22	Not Detected		
1,2-Dichlorobenzene	2.9	Not Detected	17	Not Detected		
1,3-Dichlorobenzene	2.9	Not Detected	17	Not Detected		
1,4-Dichlorobenzene	2.9	Not Detected	17	Not Detected		
1,1-Dichloroethane	2.9	Not Detected	12	Not Detected		
Freon 12	2.9	Not Detected	14	Not Detected		
1,2-Dichloroethane	2.9	Not Detected	12	Not Detected		
1,1-Dichloroethene	2.9	Not Detected	11	Not Detected		
cis-1,2-Dichloroethene	2.9	Not Detected	11	Not Detected		
trans-1,2-Dichloroethene	2.9	Not Detected	11	Not Detected		
1,2-Dichloropropane	2.9	Not Detected	13	Not Detected		
cis-1,3-Dichloropropene	2.9	Not Detected	13	Not Detected		
trans-1,3-Dichloropropene	2.9	Not Detected	13	Not Detected		
Freon 114	2.9	Not Detected	20	Not Detected		
Ethyl Benzene	2.9	56	12	240		
4-Ethyltoluene	2.9	64	14	320		
Hexachlorobutadiene	11	Not Detected	120	Not Detected		
2-Hexanone	11	Not Detected	47	Not Detected		
Methylene Chloride	29	Not Detected	99	Not Detected		
4-Methyl-2-pentanone	2.9	Not Detected	12	Not Detected		
Styrene	2.9	Not Detected	12	Not Detected		
1,1,2,2-Tetrachloroethane	2.9	Not Detected	20	Not Detected		
Tetrachloroethene	2.9	Not Detected	19	Not Detected		
Toluene	2.9	3.1	11	12		
1,2,4-Trichlorobenzene	11	Not Detected	85	Not Detected		
1,1,1-Trichloroethane	2.9	Not Detected	16	Not Detected		
1,1,2-Trichloroethane	2.9	Not Detected	16	Not Detected		
Trichloroethene	2.9	Not Detected	15	Not Detected		
The more deficition	2.0	1401 20100100	10	NOT DOTOGGG		

***** eurofins **Air Toxics**

Client Sample ID: 20200924M1SVE Lab ID#: 2009766-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	a100717	Date of Collection: 9/24/20 1:20:00 PM
Dil. Factor:	5.72	Date of Analysis: 10/7/20 07:23 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	2.9	Not Detected	16	Not Detected
Freon 113	2.9	Not Detected	22	Not Detected
1,2,4-Trimethylbenzene	2.9	38	14	180
1,3,5-Trimethylbenzene	2.9	31	14	150
Vinyl Acetate	11	Not Detected	40	Not Detected
Vinyl Chloride	2.9	Not Detected	7.3	Not Detected
m,p-Xylene	2.9	110	12	480
o-Xylene	2.9	25	12	110
TVOC Ref. to Hexane	57	24000	200	84000

Container Type: 6 Liter Summa Canister

		Wethod	
Surrogates	%Recovery	Limits	
Toluene-d8	108	70-130	
1,2-Dichloroethane-d4	106	70-130	
4-Bromofluorobenzene	105	70-130	

Client Sample ID: Lab Blank Lab ID#: 2009766-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	a100706c 1.00		Date of Collection: NA Date of Analysis: 10/7/20 12:15 PM			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)		
Acetone	5.0	Not Detected	12	Not Detected		
Benzene	0.50	Not Detected	1.6	Not Detected		
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected		
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected		
Bromoform	0.50	Not Detected	5.2	Not Detected		
Bromomethane	5.0	Not Detected	19	Not Detected		
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected		
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected		
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected		
Chlorobenzene	0.50	Not Detected	2.3	Not Detected		
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected		
Chloroethane	2.0	Not Detected	5.3	Not Detected		
Chloroform	0.50	Not Detected	2.4	Not Detected		
Chloromethane	5.0	Not Detected	10	Not Detected		
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected		
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected		
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected		
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected		
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected		
Freon 12	0.50	Not Detected	2.5	Not Detected		
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected		
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected		
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected		
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected		
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected		
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected		
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected		
Freon 114	0.50	Not Detected	3.5	Not Detected		
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected		
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected		
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected		
2-Hexanone	2.0	Not Detected	8.2	Not Detected		
Methylene Chloride	5.0	Not Detected	17	Not Detected		
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected		
Styrene	0.50	Not Detected	2.1	Not Detected		
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected		
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected		
Toluene	0.50	Not Detected	1.9	Not Detected		
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected		
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected		
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected		
Trichloroethene	0.50	Not Detected	2.7	Not Detected		
	3.00					

Vinyl Chloride

TVOC Ref. to Hexane

m,p-Xylene

o-Xylene

Air Toxics

0.50 0.50

0.50

10

Client Sample ID: Lab Blank Lab ID#: 2009766-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	a100706c Date of Collection: NA 1.00 Date of Analysis: 10/7/20 12:15 PM		20 12:15 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.50	Not Detected	2.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

1.3

2.2

2.2

35

Not Detected

Not Detected

Not Detected

Not Detected

Container Type: NA - Not Applicable

21.		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	106	70-130	
1,2-Dichloroethane-d4	102	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: CCV Lab ID#: 2009766-03A

EPA METHOD TO-15 GC/MS FULL SCAN

Air Toxics

File Name: a100702 **Date of Collection: NA** Dil. Factor: Date of Analysis: 10/7/20 09:51 AM 1.00

Compound	%Recovery	
Acetone	99	
Benzene	99	
alpha-Chlorotoluene	117	
Bromodichloromethane	104	
Bromoform	112	
Bromomethane	110	
2-Butanone (Methyl Ethyl Ketone)	101	
Carbon Disulfide	103	
Carbon Tetrachloride	97	
Chlorobenzene	100	
Dibromochloromethane	98	
Chloroethane	99	
Chloroform	102	
Chloromethane	103	
1,2-Dibromoethane (EDB)	97	
1,2-Dichlorobenzene	104	
1,3-Dichlorobenzene	104	
1,4-Dichlorobenzene	102	
1,1-Dichloroethane	99	
Freon 12	99	
1,2-Dichloroethane	103	
1,1-Dichloroethene	100	
cis-1,2-Dichloroethene	95	
trans-1,2-Dichloroethene	108	
1,2-Dichloropropane	104	
cis-1,3-Dichloropropene	103	
trans-1,3-Dichloropropene	99	
Freon 114	91	
Ethyl Benzene	99	
4-Ethyltoluene	97	
Hexachlorobutadiene	102	
2-Hexanone	102	
Methylene Chloride	106	
4-Methyl-2-pentanone	101	
Styrene	111	
1,1,2,2-Tetrachloroethane	96	
Tetrachloroethene	99	
Toluene	97	
1,2,4-Trichlorobenzene	105	
1,1,1-Trichloroethane	98	
1,1,2-Trichloroethane	97	
Trichloroethene	101	

Air Toxics

Client Sample ID: CCV Lab ID#: 2009766-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: a100702 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/7/20 09:51 AM

Compound	%Recovery	
Freon 11	98	
Freon 113	90	
1,2,4-Trimethylbenzene	103	
1,3,5-Trimethylbenzene	102	
Vinyl Acetate	100	
Vinyl Chloride	98	
m,p-Xylene	95	
o-Xylene	94	
TVOC Ref. to Hexane	100	

Container Type: NA - Not Applicable

Surrogates	%Recovery	Method Limits
Toluene-d8	104	70-130
1,2-Dichloroethane-d4	102	70-130
4-Bromofluorobenzene	112	70-130

Client Sample ID: LCS Lab ID#: 2009766-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: a100703 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/7/20 10:16 AM

		Method
Compound	%Recovery	Limits
Acetone	99	70-130
Benzene	106	70-130
alpha-Chlorotoluene	126	70-130
Bromodichloromethane	108	70-130
Bromoform	117	70-130
Bromomethane	110	70-130
2-Butanone (Methyl Ethyl Ketone)	104	70-130
Carbon Disulfide	108	70-130
Carbon Tetrachloride	103	70-130
Chlorobenzene	102	70-130
Dibromochloromethane	102	70-130
Chloroethane	100	70-130
Chloroform	106	70-130
Chloromethane	109	70-130
1,2-Dibromoethane (EDB)	101	70-130
1,2-Dichlorobenzene	111	70-130
1,3-Dichlorobenzene	111	70-130
1,4-Dichlorobenzene	110	70-130
1,1-Dichloroethane	101	70-130
Freon 12	104	70-130
1,2-Dichloroethane	105	70-130
1,1-Dichloroethene	105	70-130
cis-1,2-Dichloroethene	99	70-130
trans-1,2-Dichloroethene	112	70-130
1,2-Dichloropropane	106	70-130
cis-1,3-Dichloropropene	106	70-130
trans-1,3-Dichloropropene	106	70-130
Freon 114	97	70-130
Ethyl Benzene	102	70-130
4-Ethyltoluene	103	70-130
Hexachlorobutadiene	125	70-130
2-Hexanone	106	70-130
Methylene Chloride	111	70-130
4-Methyl-2-pentanone	105	70-130
Styrene	114	70-130
1,1,2,2-Tetrachloroethane	102	70-130
Tetrachloroethene	104	70-130
Toluene	100	70-130
1,2,4-Trichlorobenzene	127	70-130
1,1,1-Trichloroethane	102	70-130
1,1,2-Trichloroethane	101	70-130
Trichloroethene	103	70-130

Air Toxics

Client Sample ID: LCS Lab ID#: 2009766-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: a100703 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/7/20 10:16 AM

Compound	%Recovery	Method Limits
Freon 11	103	70-130
Freon 113	95	70-130
1,2,4-Trimethylbenzene	111	70-130
1,3,5-Trimethylbenzene	103	70-130
Vinyl Acetate	108	60-140
Vinyl Chloride	100	70-130
m,p-Xylene	99	70-130
o-Xylene	98	70-130
TVOC Ref. to Hexane	Not Spiked	

Container Type: NA - Not Applicable

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	105	70-130	
1,2-Dichloroethane-d4	102	70-130	
4-Bromofluorobenzene	109	70-130	

eurofins Air Toxics

Client Sample ID: LCSD Lab ID#: 2009766-04AA

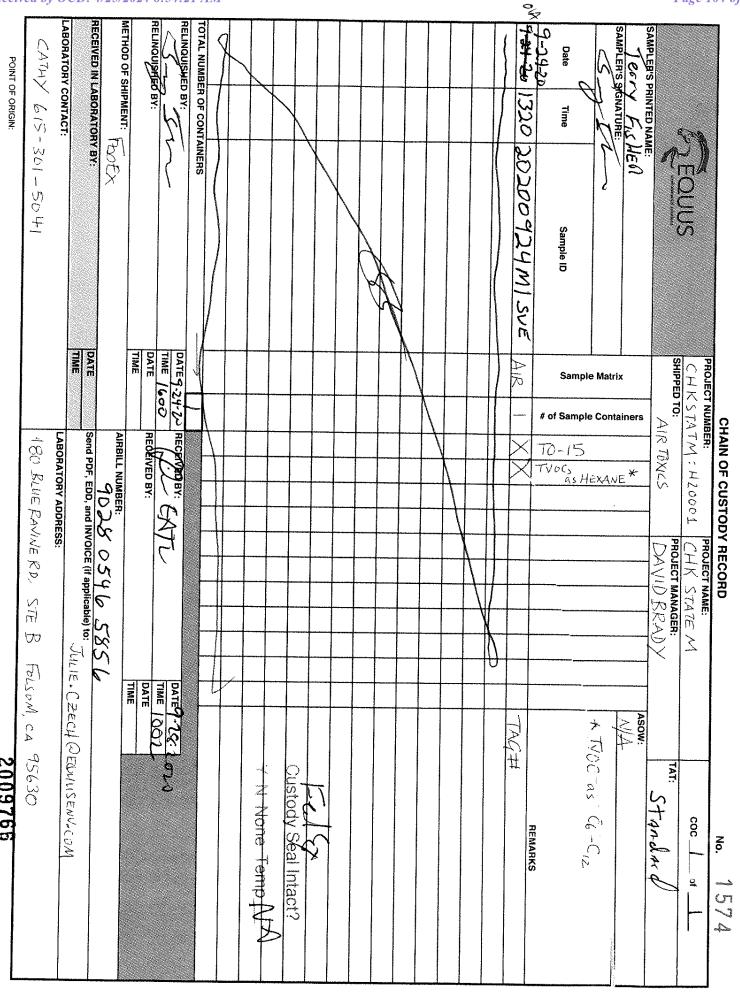
EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	a100704	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 10/7/20 10:42 AM

		Method
Compound	%Recovery	Limits
Acetone	104	70-130
Benzene	109	70-130
alpha-Chlorotoluene	134 Q	70-130
Bromodichloromethane	110	70-130
Bromoform	123	70-130
Bromomethane	113	70-130
2-Butanone (Methyl Ethyl Ketone)	107	70-130
Carbon Disulfide	111	70-130
Carbon Tetrachloride	104	70-130
Chlorobenzene	107	70-130
Dibromochloromethane	104	70-130
Chloroethane	102	70-130
Chloroform	107	70-130
Chloromethane	113	70-130
1,2-Dibromoethane (EDB)	105	70-130
1,2-Dichlorobenzene	116	70-130
1,3-Dichlorobenzene	115	70-130
1,4-Dichlorobenzene	114	70-130
1,1-Dichloroethane	105	70-130
Freon 12	105	70-130
1,2-Dichloroethane	110	70-130
1,1-Dichloroethene	108	70-130
cis-1,2-Dichloroethene	102	70-130
trans-1,2-Dichloroethene	111	70-130
1,2-Dichloropropane	111	70-130
cis-1,3-Dichloropropene	111	70-130
trans-1,3-Dichloropropene	108	70-130
Freon 114	99	70-130
Ethyl Benzene	107	70-130
4-Ethyltoluene	107	70-130
Hexachlorobutadiene	136 Q	70-130
2-Hexanone	114	70-130
Methylene Chloride	111	70-130
4-Methyl-2-pentanone	110	70-130
Styrene	119	70-130
1,1,2,2-Tetrachloroethane	106	70-130
Tetrachloroethene	109	70-130
Toluene	103	70-130
1,2,4-Trichlorobenzene	138 Q	70-130
1,1,1-Trichloroethane	104	70-130
1,1,2-Trichloroethane	105	70-130
Trichloroethene	104	70-130

***** eurofins **Air Toxics**

Client Sample ID: LCSD Lab ID#: 2009766-04AA


EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	a100704	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 10/7/20 10:42 AM

Compound	%Recovery	Method Limits
Freon 11	105	70-130
Freon 113	96	70-130
1,2,4-Trimethylbenzene	115	70-130
1,3,5-Trimethylbenzene	111	70-130
Vinyl Acetate	108	60-140
Vinyl Chloride	 104	
m,p-Xylene	104	70-130
o-Xylene	102	70-130
TVOC Ref. to Hexane	Not Spiked	

Q = Exceeds Quality Control limits. **Container Type: NA - Not Applicable**

Surrogates		Method	
	%Recovery	Limits	
Toluene-d8	106	70-130	
1,2-Dichloroethane-d4	104	70-130	
4-Bromofluorobenzene	110	70-130	

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation Job Number: 180-111865-1

SDG Number: Property ID: 891077

Login Number: 111865 List Source: Eurofins TestAmerica, Pittsburgh

List Number: 1

Creator: Gartner, Cathy

Answer Comment Question

Radioactivity wasn't checked or is </= background as measured by a survey meter.

The cooler's custody seal, if present, is intact.

Sample custody seals, if present, are intact.

The cooler or samples do not appear to have been compromised or tampered with.

Samples were received on ice.

Cooler Temperature is acceptable.

Cooler Temperature is recorded.

COC is present.

COC is filled out in ink and legible.

COC is filled out with all pertinent information.

Is the Field Sampler's name present on COC?

There are no discrepancies between the containers received and the COC.

Samples are received within Holding Time (excluding tests with immediate HTs)

Sample containers have legible labels.

Containers are not broken or leaking.

Sample collection date/times are provided.

Appropriate sample containers are used.

Sample bottles are completely filled.

Sample Preservation Verified.

There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Multiphasic samples are not present.

Samples do not require splitting or compositing.

Residual Chlorine Checked.

Eurofins TestAmerica, Pittsburgh

ANALYTICAL REPORT

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-114957-1

Laboratory Sample Delivery Group: Property ID: 891077

Client Project/Site: State M-1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Chase Acker

CathyGartner

Authorized for release by: 1/4/2021 3:43:22 PM

Cathy Gartner, Project Manager II (615)301-5041

Cathy.Gartner@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 6/4/2024 2:40:16 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

2

3

Ē

6

<u>/</u>

Client: Chesapeake Energy Corporation Project/Site: State M-1

Laboratory Job ID: 180-114957-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Sample Summary	5
Method Summary	6
Subcontract Data	7
Chain of Custody	21
Receipt Checklists	22

2

3

4

6

8

9

Case Narrative

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-114957-1

SDG: Property ID: 891077

Job ID: 180-114957-1

Laboratory: Eurofins TestAmerica, Pittsburgh

Narrative

Job Narrative 180-114957-1

Subcontract Work

Method TO 15: This method was subcontracted to Eurofins Air Toxics. The subcontract laboratory certification is different from that of the facility issuing the final report.

Definitions/Glossary

Client: Chesapeake Energy Corporation

Job ID: 180-114957-1 Project/Site: State M-1 SDG: Property ID: 891077

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac **Dilution Factor** Detection Limit (DoD/DOE) DL DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Sample Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-114957-1

SDG: Property ID: 891077

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
180-114957-1	20201211 M-1	Air	12/11/20 08:27	12/15/20 11:08	

Method Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-114957-1

SDG: Property ID: 891077

Method	Method Description	Protocol	Laboratory
TO-15	TO-15	EPA	Eurofins

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

Eurofins = Eurofins Air Toxics, 180 Blue Ravine Road, Suite B, Folsom, CA 95630

Eurofins TestAmerica, Pittsburgh

12/30/2020

Ms. Cathy Gartner
Eurofins Test America
500 Wilson Pike Circle Suite 100

Brentwood TN 37027

Project Name: CHK STATE M Project #: CHKSTATM:H20001

Workorder #: 2012402

Dear Ms. Cathy Gartner

The following report includes the data for the above referenced project for sample(s) received on 12/15/2020 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Brian Whattaker

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Brian Whittaker at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Brian Whittaker

Project Manager

Air Toxics

WORK ORDER #: 2012402

Work Order Summary

CLIENT: Ms. Cathy Gartner

BILL TO: Accounts Payable

Eurofins Test America

Eurofins Test America 4104 Shuffel St NW

500 Wilson Pike Circle Suite 100 Brentwood, TN 37027

North Canton, OH 44720

PHONE: 800-765-0980

P.O. # 180-114957

FAX: 615-726-3404

PROJECT # CHKSTATM:H20001 CHK STATE M

DECEIDT

DATE RECEIVED: 12/15/2020

CONTACT: Brian Whittaker

DATE COMPLETED: 12/30/2020

			KECEH I	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	20201211 M-1	TO-15	5.0 "Hg	5 psi
02A	Lab Blank	TO-15	NA	NA
03A	CCV	TO-15	NA	NA
04A	LCS	TO-15	NA	NA
04AA	LCSD	TO-15	NA	NA

CERTIFIED BY:

year juga

DATE: 12/30/20

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP - 209220, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-20-16, UT NELAP – CA009332020-12, VA NELAP - 10615, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)

Accreditation number: CA300005-014, Effective date: 10/18/2020, Expiration date: 10/17/2021.

Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 351-8279

Page 2 of 14 Page 8 of 22 3

9

6

í

Ō

9

ETNIAT

LABORATORY NARRATIVE EPA Method TO-15 Eurofins Test America Workorder# 2012402

One 6 Liter Summa Canister sample was received on December 15, 2020. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

TVOC (Total Volatile Organic Compounds) referenced to Hexane includes area counts for peaks that elute from Hexane minus 0.08 minutes to Naphthalene plus 0.08 minutes and quantitating the area based on the response factor of Hexane.

Dilution was performed on sample 20201211 M-1 due to the presence of high level target species.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.
 - M Reported value may be biased due to apparent matrix interferences.
 - CN See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Released to Imaging: 6/4/2024 2:40:16 PM

3

4

5

7

8

6

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: 20201211 M-1

Lab ID#: 2012402-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	11	80	34	260
Ethyl Benzene	11	180	46	770
4-Ethyltoluene	11	170	53	830
1,2,4-Trimethylbenzene	11	79	52	390
1,3,5-Trimethylbenzene	11	77	53	380
m,p-Xylene	11	380	46	1700
o-Xylene	11	83	46	360
TVOC Ref. to Hexane	210	91000	750	320000

Client Sample ID: 20201211 M-1 Lab ID#: 2012402-01A

EPA METHOD TO-15 GC/MS FULL SCAN

•		Dat Limit	Amount Dat Limit Amount
l	Dil. Factor:	21.4	Date of Analysis: 12/21/20 07:29 PM
	File Name:	3122117	Date of Collection: 12/11/20 8:27:00 AM
- 1			

pt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit	Amount
		(ug/m3)	(ug/m3)
110	Not Detected	250	Not Detected
11	80	34	260
11	Not Detected	55	Not Detected
11	Not Detected	72	Not Detected
11	Not Detected	110	Not Detected
110	Not Detected	420	Not Detected
43	Not Detected	130	Not Detected
43	Not Detected	130	Not Detected
11	Not Detected	67	Not Detected
11	Not Detected	49	Not Detected
11	Not Detected	91	Not Detected
43	Not Detected	110	Not Detected
11	Not Detected	52	Not Detected
110	Not Detected	220	Not Detected
11	Not Detected	82	Not Detected
11	Not Detected	64	Not Detected
11	Not Detected	64	Not Detected
11	Not Detected	64	Not Detected
11	Not Detected	43	Not Detected
11	Not Detected	53	Not Detected
11	Not Detected	43	Not Detected
11	Not Detected	42	Not Detected
11	Not Detected	42	Not Detected
11	Not Detected	42	Not Detected
11	Not Detected	49	Not Detected
11	Not Detected	48	Not Detected
11	Not Detected	48	Not Detected
11	Not Detected	75	Not Detected
11	180	46	770
11	170	53	830
43	Not Detected	460	Not Detected
43	Not Detected	180	Not Detected
110	Not Detected	370	Not Detected
11	Not Detected	44	Not Detected
11	Not Detected	46	Not Detected
11	Not Detected	73	Not Detected
11	Not Detected	72	Not Detected
11	Not Detected	40	Not Detected
43	Not Detected	320	Not Detected
11	Not Detected	58	Not Detected
11	Not Detected	58	Not Detected
11	Not Detected	58	Not Detected
	11 11 11 11 11 11 43 43 110 11 11 11 11 43 11	11 Not Detected 11 Not Detected 11 Not Detected 11 Not Detected 11 180 11 170 43 Not Detected 43 Not Detected 110 Not Detected 11 Not Detected	11 Not Detected 42 11 Not Detected 48 11 Not Detected 48 11 Not Detected 48 11 Not Detected 75 11 180 46 11 170 53 43 Not Detected 460 43 Not Detected 180 110 Not Detected 370 11 Not Detected 44 11 Not Detected 46 11 Not Detected 73 11 Not Detected 72 11 Not Detected 40 43 Not Detected 320 11 Not Detected 58 11 Not Detected 58

Client Sample ID: 20201211 M-1 Lab ID#: 2012402-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3122117	Date of Collection: 12/11/20 8:27:00 AM			
Dil. Factor:	21.4	Date of Analysis: 12/21/20 07:29 PM			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Freon 11	11	Not Detected	60	Not Detected	

Compound	Rpt. Limit (ppbv)	(ppbv)	kpt. Limit (ug/m3)	(ug/m3)
Freon 11	11	Not Detected	60	Not Detected
Freon 113	11	Not Detected	82	Not Detected
1,2,4-Trimethylbenzene	11	79	52	390
1,3,5-Trimethylbenzene	11	77	53	380
Vinyl Acetate	43	Not Detected	150	Not Detected
Vinyl Chloride	11	Not Detected	27	Not Detected
m,p-Xylene	11	380	46	1700
o-Xylene	11	83	46	360
TVOC Ref. to Hexane	210	91000	750	320000

Container Type: 6 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	93	70-130
4-Bromofluorobenzene	101	70-130

Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2012402-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3122106g	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/21/20 12:07 PM

Dil. Factor:	1.00	Date of Analysis: 12/21/20 12:07 PM		I/20 12:07 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Acetone	5.0	Not Detected	12	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Freon 12	0.50	Not Detected	2.5	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected

***** eurofins **Air Toxics**

> Client Sample ID: Lab Blank Lab ID#: 2012402-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3122106g 1.00	Date of Collection: NA Date of Analysis: 12/21/20 12:07 PM		I/20 12:07 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.50	Not Detected	2.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
TVOC Ref. to Hexane	10	Not Detected	35	Not Detected

Container Type: NA - Not Applicable

	2/5	Method Limits	
Surrogates	%Recovery		
Toluene-d8	100	70-130	
1,2-Dichloroethane-d4	91	70-130	
4-Bromofluorobenzene	103	70-130	

***** eurofins

Client Sample ID: CCV Lab ID#: 2012402-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3122102 **Date of Collection: NA** Dil. Factor: Date of Analysis: 12/21/20 10:16 AM 1.00

Compound	%Recovery
Acetone	82
Benzene	92
alpha-Chlorotoluene	96
Bromodichloromethane	95
Bromoform	107
Bromomethane	88
2-Butanone (Methyl Ethyl Ketone)	89
Carbon Disulfide	86
Carbon Tetrachloride	103
Chlorobenzene	98
Dibromochloromethane	102
Chloroethane	82
Chloroform	93
Chloromethane	73
1,2-Dibromoethane (EDB)	98
1,2-Dichlorobenzene	106
1,3-Dichlorobenzene	105
1,4-Dichlorobenzene	106
1,1-Dichloroethane	91
Freon 12	94
1,2-Dichloroethane	95
1,1-Dichloroethene	86
cis-1,2-Dichloroethene	93
trans-1,2-Dichloroethene	90
1,2-Dichloropropane	94
cis-1,3-Dichloropropene	95
trans-1,3-Dichloropropene	93
Freon 114	98
Ethyl Benzene	101
4-Ethyltoluene	102
Hexachlorobutadiene	112
2-Hexanone	93
Methylene Chloride	87
4-Methyl-2-pentanone	92
Styrene	97
1,1,2,2-Tetrachloroethane	94
Tetrachloroethene	105
Toluene	93
1,2,4-Trichlorobenzene	108
1,1,1-Trichloroethane	96
1,1,2-Trichloroethane	96
Trichloroethene	98

Air Toxics

Client Sample ID: CCV Lab ID#: 2012402-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3122102	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/21/20 10:16 AM

Compound	%Recovery	
Freon 11	98	
Freon 113	99	
1,2,4-Trimethylbenzene	97	
1,3,5-Trimethylbenzene	102	
Vinyl Acetate	96	
Vinyl Chloride	79	
m,p-Xylene	99	
o-Xylene	99	
TVOC Ref. to Hexane	100	

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	100	70-130	
1,2-Dichloroethane-d4	92	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: LCS Lab ID#: 2012402-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3122103 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 12/21/20 10:43 AM

1.00	Dute of Analys	Method
Compound	%Recovery	Limits
		70-130
Acetone	82 95	70-130 70-130
Benzene	98	70-130 70-130
alpha-Chlorotoluene	97	70-130 70-130
Bromodichloromethane	109	70-130
Bromoform		
Bromomethane	90	70-130
2-Butanone (Methyl Ethyl Ketone)	92	70-130
Carbon Disulfide	88	70-130
Carbon Tetrachloride	106	70-130
Chlorobenzene	100	70-130
Dibromochloromethane	103	70-130
Chloroethane	86	70-130
Chloroform	94	70-130
Chloromethane	72	70-130
1,2-Dibromoethane (EDB)	102	70-130
1,2-Dichlorobenzene	106	70-130
1,3-Dichlorobenzene	106	70-130
1,4-Dichlorobenzene	108	70-130
1,1-Dichloroethane	92	70-130
Freon 12	96	70-130
1,2-Dichloroethane	97	70-130
1,1-Dichloroethene	91	70-130
cis-1,2-Dichloroethene	98	70-130
trans-1,2-Dichloroethene	93	70-130
1,2-Dichloropropane	97	70-130
cis-1,3-Dichloropropene	99	70-130
trans-1,3-Dichloropropene	94	70-130
Freon 114	101	70-130
Ethyl Benzene	103	70-130
4-Ethyltoluene	105	70-130
Hexachlorobutadiene	126	70-130
2-Hexanone	96	70-130
Methylene Chloride	86	70-130
4-Methyl-2-pentanone	95	70-130
Styrene	99	70-130
1,1,2,2-Tetrachloroethane	96	70-130
Tetrachloroethene	106	70-130
Toluene	95	70-130
1,2,4-Trichlorobenzene	122	70-130
1,1,1-Trichloroethane	96	70-130
1,1,2-Trichloroethane	98	70-130
Trichloroethene	100	70-130
	. 55	

eurofins | Air Toxics

Client Sample ID: LCS Lab ID#: 2012402-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3122103	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/21/20 10:43 AM

		Method
Compound	%Recovery	Limits
Freon 11	99	70-130
Freon 113	101	70-130
1,2,4-Trimethylbenzene	100	70-130
1,3,5-Trimethylbenzene	104	70-130
Vinyl Acetate	101	70-130
Vinyl Chloride	79	70-130
m,p-Xylene	103	70-130
o-Xylene	100	70-130
TVOC Ref. to Hexane	Not Spiked	

Container Type: NA - Not Applicable

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	102	70-130	
1,2-Dichloroethane-d4	91	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: LCSD Lab ID#: 2012402-04AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3122104	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/21/20 11:11 AM

Dil. Factor:	1.00 Date of Analysis: 12/21/20 11:11 AM	
		Method
Compound	%Recovery	Limits
Acetone	83	70-130
Benzene	95	70-130
alpha-Chlorotoluene	99	70-130
Bromodichloromethane	96	70-130
Bromoform	110	70-130
Bromomethane	90	70-130
2-Butanone (Methyl Ethyl Ketone)	93	70-130
Carbon Disulfide	88	70-130
Carbon Tetrachloride	106	70-130
Chlorobenzene	101	70-130
Dibromochloromethane	104	70-130
Chloroethane	84	70-130
Chloroform	95	70-130
Chloromethane	74	70-130
1,2-Dibromoethane (EDB)	103	70-130
1,2-Dichlorobenzene	106	70-130
1,3-Dichlorobenzene	107	70-130
1,4-Dichlorobenzene	108	70-130
1,1-Dichloroethane	92	70-130
Freon 12	95	70-130
1,2-Dichloroethane	96	70-130
1,1-Dichloroethene	91	70-130
cis-1,2-Dichloroethene	96	70-130
trans-1,2-Dichloroethene	92	70-130
1,2-Dichloropropane	95	70-130
cis-1,3-Dichloropropene	98	70-130
trans-1,3-Dichloropropene	95	70-130
Freon 114	100	70-130
Ethyl Benzene	104	70-130
4-Ethyltoluene	106	70-130
Hexachlorobutadiene	129	70-130
2-Hexanone	95	70-130
Methylene Chloride	85	70-130
4-Methyl-2-pentanone	95	70-130
Styrene	100	70-130
1,1,2,2-Tetrachloroethane	96	70-130
Tetrachloroethene	108	70-130
Toluene	94	70-130
1,2,4-Trichlorobenzene	124	70-130
1,1,1-Trichloroethane	95	70-130
1,1,2-Trichloroethane	98	70-130
Trichloroethene	99	70-130

Client Sample ID: LCSD Lab ID#: 2012402-04AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3122104	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/21/20 11:11 AM

		Method	
Compound	%Recovery	Limits	
Freon 11	98	70-130	
Freon 113	101	70-130	
1,2,4-Trimethylbenzene	101	70-130	
1,3,5-Trimethylbenzene	104	70-130	
Vinyl Acetate	101	70-130	
Vinyl Chloride	80	70-130	
m,p-Xylene	104	70-130	
o-Xylene	102	70-130	
TVOC Ref. to Hexane	Not Spiked		

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	101	70-130	
1,2-Dichloroethane-d4	91	70-130	
4-Bromofluorobenzene	104	70-130	

POINT OF ORIGIN:

Client: Chesapeake Energy Corporation

Job Number: 180-114957-1

SDG Number: Property ID: 891077

Login Number: 114957 List Source: Eurofins TestAmerica, Pittsburgh

List Number: 1

Creator: Gartner, Cathy

Question Answer Comment

Radioactivity wasn't checked or is </= background as measured by a survey

meter.

The cooler's custody seal, if present, is intact.

Sample custody seals, if present, are intact.

The cooler or samples do not appear to have been compromised or

tampered with.

Samples were received on ice.

Cooler Temperature is acceptable.

Cooler Temperature is recorded.

COC is present.

COC is filled out in ink and legible.

COC is filled out with all pertinent information.

Is the Field Sampler's name present on COC?

There are no discrepancies between the containers received and the COC.

Samples are received within Holding Time (excluding tests with immediate

HTs)

Sample containers have legible labels.

Containers are not broken or leaking.

Sample collection date/times are provided.

Appropriate sample containers are used.

Sample bottles are completely filled.

Sample Preservation Verified.

There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs

Containers requiring zero headspace have no headspace or bubble is

<6mm (1/4").

Multiphasic samples are not present.

Samples do not require splitting or compositing.

Residual Chlorine Checked.

7

8

ç

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-118512-1

Laboratory Sample Delivery Group: Property ID: 891077

Client Project/Site: State M-1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Chase Acker

CathyGartner

Authorized for release by: 3/17/2021 11:50:28 AM

Cathy Gartner, Project Manager II (615)301-5041

Cathy.Gartner@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 6/4/2024 2:40:16 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

1

2

3

_

7

Client: Chesapeake Energy Corporation Project/Site: State M-1

Laboratory Job ID: 180-118512-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	
Case Narrative	3
Definitions/Glossary	4
Sample Summary	5
Subcontract Data	6
Chain of Custody	20
Receipt Checklists	21

2

3

4

6

7

8

Case Narrative

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-118512-1

SDG: Property ID: 891077

Job ID: 180-118512-1

Laboratory: Eurofins TestAmerica, Pittsburgh

Narrative

Job Narrative 180-118512-1

Comments

No additional comments.

Subcontract Work

Method TO 15: This method was subcontracted to Eurofins Air Toxics. The subcontract laboratory certification is different from that of the facility issuing the final report.

Definitions/Glossary

Client: Chesapeake Energy Corporation

Job ID: 180-118512-1 Project/Site: State M-1 SDG: Property ID: 891077

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Negative / Absent NEG POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count

Sample Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 180-118512-1

SDG: Property ID: 891077

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
180-118512-1	20210302 M-1	Air	03/02/21 14:35	03/04/21 11:32	

Eurofins TestAmerica, Pittsburgh

3/17/2021

Ms. Cathy Gartner Eurofins Test America 500 Wilson Pike Circle Suite 100

Brentwood TN 37027

Project Name: CHKSTATE M Project #: CHKSTATM:H20001

Workorder #: 2103143

Dear Ms. Cathy Gartner

The following report includes the data for the above referenced project for sample(s) received on 3/4/2021 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Brian Whittaker

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Brian Whittaker at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Brian Whittaker

Project Manager

Air Toxics

WORK ORDER #: 2103143

Work Order Summary

CLIENT: Ms. Cathy Gartner

BILL TO: Accounts Payable

Eurofins Test America

Eurofins Test America 4104 Shuffel St NW

500 Wilson Pike Circle Suite 100 Brentwood, TN 37027

North Canton, OH 44720

PHONE: 800-765-0980

P.O. # 23738

FAX: 615-726-3404 **DATE RECEIVED:** 03/04/2021

PROJECT # CHKSTATM:H20001 CHKSTATE M

DATE RECEIVED: 03/04/2021 **DATE COMPLETED:** 03/17/2021

CONTACT: Brian Whittaker

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	20210302 M-1	TO-15	4.5 "Hg	4.9 psi
02A	Lab Blank	TO-15	NA	NA
03A	CCV	TO-15	NA	NA
04A	LCS	TO-15	NA	NA
04AA	LCSD	TO-15	NA	NA

CERTIFIED BY:

year juga

DATE: 03/17/21

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP - 209220, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-20-16, UT NELAP – CA009332020-12, VA NELAP - 10615, WA NELAP - C935

Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-014, Effective date: 10/18/2020, Expiration date: 10/17/2021.

Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 351-8279

Page 2 of 14 Page 7 of 21

e

4

5

7

8

LABORATORY NARRATIVE **EPA Method TO-15 Eurofins Test America** Workorder# 2103143

One 6 Liter Summa Canister sample was received on March 04, 2021. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

TVOC (Total Volatile Organic Compounds) referenced to Hexane includes area counts for peaks that elute from Hexane minus 0.08 minutes to Naphthalene plus 0.08 minutes and quantitating the area based on the response factor of Hexane.

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page. Target compound non-detects in the samples that are associated with high bias in QC analyses have not been flagged.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.
 - M Reported value may be biased due to apparent matrix interferences.
 - CN See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

Released to Imaging: 6/4/2024 2:40:16 PM

- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Page 3 of 14 Page 8 of 21

2

3

4

J

8

eurofins | Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: 20210302 M-1

Lab ID#: 2103143-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
4-Ethyltoluene	0.78	0.82	3.8	4.0
1,3,5-Trimethylbenzene	0.78	1.0	3.8	4.9
TVOC Ref. to Hexane	16	2300	55	8100

File Name:

Client Sample ID: 20210302 M-1 Lab ID#: 2103143-01A

EPA METHOD TO-15 GC/MS FULL SCAN

Date of Collection: 3/2/21 2:35:00 PM

23

4.3

4.3

4.2

p031613

Dil Fostori	pus 1013		Date of Applysics 2/46/24 05:04 DM				
Dil. Factor:	1.57	Date of Analysis: 3/16/21 05:04					
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)			
Acetone	7.8	Not Detected	19	Not Detected			
Benzene	0.78	Not Detected	2.5	Not Detected			
alpha-Chlorotoluene	0.78	Not Detected	4.1	Not Detected			
Bromodichloromethane	0.78	Not Detected	5.2	Not Detected			
Bromoform	0.78	Not Detected	8.1	Not Detected			
Bromomethane	7.8	Not Detected	30	Not Detected			
2-Butanone (Methyl Ethyl Ketone)	3.1	Not Detected	9.2	Not Detected			
Carbon Disulfide	3.1	Not Detected	9.8	Not Detected			
Carbon Tetrachloride	0.78	Not Detected	4.9	Not Detected			
Chlorobenzene	0.78	Not Detected	3.6	Not Detected			
Dibromochloromethane	0.78	Not Detected	6.7	Not Detected			
Chloroethane	3.1	Not Detected	8.3	Not Detected			
Chloroform	0.78	Not Detected	3.8	Not Detected			
Chloromethane	7.8	Not Detected	16	Not Detected			
1,2-Dibromoethane (EDB)	0.78	Not Detected	6.0	Not Detected			
1,2-Dichlorobenzene	0.78	Not Detected	 4.7	Not Detected			
1,3-Dichlorobenzene	0.78	Not Detected	4.7	Not Detected			
1,4-Dichlorobenzene	0.78	Not Detected	4.7	Not Detected			
1,1-Dichloroethane	0.78	Not Detected	3.2	Not Detected			
Freon 12	0.78	Not Detected	3.9	Not Detected			
1,2-Dichloroethane	0.78	Not Detected	3.2	Not Detected			
1,1-Dichloroethene	0.78	Not Detected	3.1	Not Detected			
cis-1,2-Dichloroethene	0.78	Not Detected	3.1	Not Detected			
trans-1,2-Dichloroethene	0.78	Not Detected	3.1	Not Detected			
1,2-Dichloropropane	0.78	Not Detected	3.6	Not Detected			
cis-1,3-Dichloropropene	0.78	Not Detected	3.6	Not Detected			
trans-1,3-Dichloropropene	0.78	Not Detected	3.6	Not Detected			
Freon 114	0.78	Not Detected	5.5	Not Detected			
Ethyl Benzene	0.78	Not Detected	3.4	Not Detected			
4-Ethyltoluene	0.78	0.82	3.8	4.0			
Hexachlorobutadiene	3.1	Not Detected	-	Not Detected			
2-Hexanone	3.1	Not Detected	13	Not Detected			
Methylene Chloride	7.8	Not Detected	27	Not Detected			
4-Methyl-2-pentanone	0.78	Not Detected UJ	3.2	Not Detected U			
Styrene	0.78	Not Detected	3.3	Not Detected			
1,1,2,2-Tetrachloroethane	0.78	Not Detected	<u>5.</u> 4	Not Detected			
Tetrachloroethene	0.78	Not Detected	5.3	Not Detected			
Toluene	0.78	Not Detected	3.0	Not Detected			
TOTAL	0.70	Not Bollottod	0.0	Tion Donotica			

Not Detected

Not Detected

Not Detected

Not Detected

3.1

0.78

0.78

0.78

Not Detected

Not Detected

Not Detected

Not Detected

Trichloroethene

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Client Sample ID: 20210302 M-1 Lab ID#: 2103143-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p031613	Date of Collection: 3/2/21 2:35:00 PM
Dil. Factor:	1.57	Date of Analysis: 3/16/21 05:04 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.78	Not Detected	4.4	Not Detected
Freon 113	0.78	Not Detected	6.0	Not Detected
1,2,4-Trimethylbenzene	0.78	Not Detected	3.8	Not Detected
1,3,5-Trimethylbenzene	0.78	1.0	3.8	4.9
Vinyl Acetate	3.1	Not Detected	11	Not Detected
Vinyl Chloride	0.78	Not Detected	2.0	Not Detected
m,p-Xylene	0.78	Not Detected	3.4	Not Detected
o-Xylene	0.78	Not Detected	3.4	Not Detected
TVOC Ref. to Hexane	16	2300	55	8100

UJ = Analyte associated with low bias in the CCV.

Container Type: 6 Liter Summa Canister

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	97	70-130	
1,2-Dichloroethane-d4	119	70-130	
4-Bromofluorobenzene	116	70-130	

Client Sample ID: Lab Blank Lab ID#: 2103143-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	р031607с 1.00	Date of Collection: NA Date of Analysis: 3/16/21 01:28 PM		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Acetone	5.0	Not Detected	12	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Freon 12	0.50	Not Detected	2.5	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
Hexachlorobutadiene	2.0	Not Detected	<u>-</u> 21	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected UJ	2.0	Not Detected UJ
Styrene	0.50	Not Detected	2.1	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected

File Name:

J

5

6

ج

eurofins | Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2103143-02A

EPA METHOD TO-15 GC/MS FULL SCAN

Date of Collection: NA

p031607c

Dil. Factor:	1.00	Date of Analysis: 3/16/21 01:28 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.50	Not Detected	2.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
TVOC Ref. to Hexane	10	Not Detected	35	Not Detected

UJ = Analyte associated with low bias in the CCV.

Container Type: NA - Not Applicable

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	97	70-130	
1,2-Dichloroethane-d4	116	70-130	
4-Bromofluorobenzene	113	70-130	

eurofins

3

5

6

8

Air Toxics

Client Sample ID: CCV Lab ID#: 2103143-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p031602	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 3/16/21 09:53 AM

Compound	%Recovery	
Acetone	76	
Benzene	94	
alpha-Chlorotoluene	103	
Bromodichloromethane	116	
Bromoform	122	
Bromomethane	100	
2-Butanone (Methyl Ethyl Ketone)	84	
Carbon Disulfide	86	
Carbon Tetrachloride	122	
Chlorobenzene	97	
Dibromochloromethane	115	
Chloroethane	84	
Chloroform	113	
Chloromethane	99	
1,2-Dibromoethane (EDB)	97	
1,2-Dichlorobenzene	103	
1,3-Dichlorobenzene	103	
1,4-Dichlorobenzene	104	
1,1-Dichloroethane	90	
Freon 12	130	
1,2-Dichloroethane	133 Q	
1,1-Dichloroethene	100	
cis-1,2-Dichloroethene	95	
trans-1,2-Dichloroethene	96	
1,2-Dichloropropane	73	
cis-1,3-Dichloropropene	98	
trans-1,3-Dichloropropene	110	
Freon 114	105	
Ethyl Benzene	99	
4-Ethyltoluene	101	
Hexachlorobutadiene	125	
2-Hexanone	72	
Methylene Chloride	81	
4-Methyl-2-pentanone	69 Q	
Styrene	104	
1,1,2,2-Tetrachloroethane	83	
Tetrachloroethene	115	
Toluene	94	
1,2,4-Trichlorobenzene	109	
1,1,1-Trichloroethane	116	
1,1,2-Trichloroethane	94	
Trichloroethene	105	

5

6

eurofins | Air Toxics

Client Sample ID: CCV Lab ID#: 2103143-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p031602	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 3/16/21 09:53 AM

Compound	%Recovery	
Freon 11	129	_
Freon 113	108	
1,2,4-Trimethylbenzene	108	
1,3,5-Trimethylbenzene	100	
Vinyl Acetate	98	
Vinyl Chloride	101	
m,p-Xylene	102	
o-Xylene	102	
TVOC Ref. to Hexane	100	

Q = Exceeds Quality Control limits.

Container Type: NA - Not Applicable

Surrogates	%Recovery	Method Limits
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	117	70-130
4-Bromofluorobenzene	121	70-130

Client Sample ID: LCS Lab ID#: 2103143-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p031603 **Date of Collection: NA** Dil. Factor: 1.00 Date of Analysis: 3/16/21 10:22 AM

DII. Factor.	1.00 Date of Arialys	15. 3/10/21 10:22 AW
		Method
Compound	%Recovery	Limits
Acetone	81	70-130
Benzene	96	70-130
alpha-Chlorotoluene	101	70-130
Bromodichloromethane	116	70-130
Bromoform	122	70-130
Bromomethane	100	70-130
2-Butanone (Methyl Ethyl Ketone)	92	70-130
Carbon Disulfide	93	70-130
Carbon Tetrachloride	130	70-130
Chlorobenzene	98	70-130
Dibromochloromethane	114	70-130
Chloroethane	91	70-130
Chloroform	117	70-130
Chloromethane	90	70-130
1,2-Dibromoethane (EDB)	96	70-130
1,2-Dichlorobenzene	101	70-130
1,3-Dichlorobenzene	102	70-130
1,4-Dichlorobenzene	103	70-130
1,1-Dichloroethane	96	70-130
Freon 12	137 Q	70-130
1,2-Dichloroethane	131 Q	70-130
1,1-Dichloroethene	111	70-130
cis-1,2-Dichloroethene	101	70-130
trans-1,2-Dichloroethene	98	70-130
1,2-Dichloropropane	76	70-130
cis-1,3-Dichloropropene	99	70-130
trans-1,3-Dichloropropene	112	70-130
Freon 114	110	70-130
Ethyl Benzene	101	70-130
4-Ethyltoluene	102	70-130
Hexachlorobutadiene		70-130
2-Hexanone	68 Q	70-130
Methylene Chloride	84	70-130
4-Methyl-2-pentanone	69 Q	70-130
Styrene	103	70-130
1,1,2,2-Tetrachloroethane	84	70-130
Tetrachloroethene	116	70-130
Toluene	92	70-130
1,2,4-Trichlorobenzene	122	70-130
1,1,1-Trichloroethane	118	70-130
1,1,2-Trichloroethane	93	70-130
Trichloroethene	105	70-130
Homoroeniene	100	70-130

***** eurofins **Air Toxics**

Client Sample ID: LCS Lab ID#: 2103143-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p031603	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 3/16/21 10:22 AM

Compound	%Recovery	Method Limits
Freon 11	133 Q	70-130
Freon 113	113	70-130
1,2,4-Trimethylbenzene	107	70-130
1,3,5-Trimethylbenzene	99	70-130
Vinyl Acetate	110	70-130
Vinyl Chloride	103	70-130
m,p-Xylene	102	70-130
o-Xylene	101	70-130
TVOC Ref. to Hexane	Not Spiked	

Q = Exceeds Quality Control limits. **Container Type: NA - Not Applicable**

Surrogates	%Recovery	Method Limits
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	125	70-130
4-Bromofluorobenzene	120	70-130

eurofins

Client Sample ID: LCSD Lab ID#: 2103143-04AA

Air Toxics

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p031604	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 3/16/21 10:51 AM

Dil. Factor:	1.00 Date of Analys	IS: 3/16/21 10:51 AM
Compound	%Recovery	Method Limits
Acetone	73	70-130
Benzene	94	70-130
alpha-Chlorotoluene	100	70-130
Bromodichloromethane	115	70-130
Bromoform	121	70-130
Bromomethane	100	70-130
2-Butanone (Methyl Ethyl Ketone)	93	70-130
Carbon Disulfide	91	70-130
Carbon Tetrachloride	128	70-130
Chlorobenzene	97	70-130
Dibromochloromethane	114	70-130
Chloroethane	91	70-130
Chloroform	117	70-130
Chloromethane	90	70-130
1,2-Dibromoethane (EDB)	97	70-130
1,2-Dichlorobenzene	101	70-130
1,3-Dichlorobenzene	102	70-130
1,4-Dichlorobenzene	103	70-130
1,1-Dichloroethane	94	70-130
Freon 12	134 Q	70-130
1,2-Dichloroethane	128	70-130
1,1-Dichloroethene	109	70-130
cis-1,2-Dichloroethene	101	70-130
trans-1,2-Dichloroethene	102	70-130
1,2-Dichloropropane	75	70-130
cis-1,3-Dichloropropene	100	70-130
trans-1,3-Dichloropropene	112	70-130
Freon 114	108	70-130
Ethyl Benzene	101	70-130
4-Ethyltoluene	100	70-130
Hexachlorobutadiene	145 Q	70-130
2-Hexanone	70	70-130
Methylene Chloride	82	70-130
4-Methyl-2-pentanone	68 Q	70-130
Styrene	102	70-130
1,1,2,2-Tetrachloroethane	82	70-130
Tetrachloroethene	115	70-130
Toluene	92	70-130
1,2,4-Trichlorobenzene	126	70-130
1,1,1-Trichloroethane	117	70-130
1,1,2-Trichloroethane	94	70-130
Trichloroethene	105	70-130

Client Sample ID: LCSD Lab ID#: 2103143-04AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p031604	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 3/16/21 10:51 AM

Compound	%Recovery	Method Limits
Freon 11	130	70-130
Freon 113	112	70-130
1,2,4-Trimethylbenzene	107	70-130
1,3,5-Trimethylbenzene	98	70-130
Vinyl Acetate	108	70-130
Vinyl Chloride	103	70-130
m,p-Xylene	102	70-130
o-Xylene	100	70-130
TVOC Ref. to Hexane	Not Spiked	

Q = Exceeds Quality Control limits. **Container Type: NA - Not Applicable**

	Method
%Recovery	Limits
96	70-130
120	70-130
121	70-130
	96 120

METHOD OF SHIPMENT:

RELINQUISHED BY: RELINQUISHED BY:

TIME /600

HECEIVED BY:

DATE 3

25

S S S

TIME DATE

1600

RECEIVED BY:

TIME DATE TOTAL NUMBER OF CONTAINERS

RECEIVED IN LABORATORY BY:

DATE

LABORATORY ADDRESS:

WANC @ EQUINENVION ; JULIE, CZECH (D. EWHIN ENV. COM

180 BLUE RAVINE RD.

STE B

TOLSOM, CA 956 30

AIRBILL NUMBER: 94871502296 Send PDF, EDD, and INVOICE (if applicable) to:

ABORATORY CONTACT:

Page 147 of 210 SAMPLER'S SIGNATURE: SAMPLER'S PRINTED NAME: 3/2/21 Temp Date 1435 Time FISHER 20210302 Sample ID 2 SHIPPED TO: PROJECT NUMBER: AIR CHKSTATM: H20001 Sample Matrix # of Sample Containers **CHAIN OF CUSTODY RECORD** AIR TOXICS TO-15 TVOCs * as HEXANE PROJECT MANAGER: PROJECT NAME: CHKSTATE M DAVIO BIZADY 2103143 ASOW: CAN Sec * Trocs as C6-C12 N/A# TAT: N2489 000 REMARKS 9

POINT OF ORIGIN:

CATHY GARTNER 615-301-5041

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation Job Number: 180-118512-1

SDG Number: Property ID: 891077

Login Number: 118512 List Source: Eurofins TestAmerica, Pittsburgh

List Number: 1

Creator: Gartner, Cathy

Answer Comment Question

Radioactivity wasn't checked or is </= background as measured by a survey

meter.

The cooler's custody seal, if present, is intact.

Sample custody seals, if present, are intact.

The cooler or samples do not appear to have been compromised or

tampered with.

Samples were received on ice.

Cooler Temperature is acceptable.

Cooler Temperature is recorded.

COC is present.

COC is filled out in ink and legible.

COC is filled out with all pertinent information.

Is the Field Sampler's name present on COC?

There are no discrepancies between the containers received and the COC.

Samples are received within Holding Time (excluding tests with immediate HTs)

Sample containers have legible labels.

Containers are not broken or leaking.

Sample collection date/times are provided.

Appropriate sample containers are used.

Sample bottles are completely filled.

Sample Preservation Verified.

There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Multiphasic samples are not present.

Samples do not require splitting or compositing.

Residual Chlorine Checked.

Eurofins TestAmerica, Pittsburgh

Released to Imaging: 6/4/2024 2:40:16 PM

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

Laboratory Job ID: 460-210651-1

Laboratory Sample Delivery Group: Property ID: 891077

Client Project/Site: State M-1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Chase Acker

-athy Gartner

Authorized for release by: 6/18/2020 3:21:23 PM

Cathy Gartner, Project Manager II (615)301-5041

cathy.gartner@testamericainc.com

Review your project

results through
Total Access

·····LINKS ·······

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 6/4/2024 2:40:16 PM

Results relate only to the items tested and the sample(s) as received by the laboratory.

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

210

2

3

4

7

10

12

13

Client: Chesapeake Energy Corporation Project/Site: State M-1

Laboratory Job ID: 460-210651-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receint Checklists	15

3

4

6

8

10

12

13

14

Definitions/Glossary

Client: Chesapeake Energy Corporation

Job ID: 460-210651-1 Project/Site: State M-1 SDG: Property ID: 891077

Glossary

DL, RA, RE, IN

Abbreviation	These commonly used abbreviations may or may not be present in this report.				
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis				
%R	Percent Recovery				
CFL	Contains Free Liquid				
CFU	Colony Forming Unit				
CNF	Contains No Free Liquid				
DER	Duplicate Error Ratio (normalized absolute difference)				
Dil Fac	Dilution Factor				
DL	Detection Limit (DoD/DOE)				

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry) EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Eurofins TestAmerica, Edison

Case Narrative

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 460-210651-1

SDG: Property ID: 891077

Job ID: 460-210651-1

Laboratory: Eurofins TestAmerica, Edison

Narrative

Job Narrative 460-210651-1

Comments

No additional comments.

Receipt

The samples were received on 6/9/2020 9:30 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.3° C.

GC Semi VOA

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-4 (460-210651-2), MW-8 (460-210651-3), Dup (460-210651-4), (460-210802-A-2), (460-210802-A-2 DU), (460-210802-A-2 MS) and (460-210802-A-2 MSD). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 460-210651-1 SDG: Property ID: 891077

Lab Sample ID: 460-210651-1

Client Sample ID: EQ Blank

No Detections.

Client Sample ID: MW-4 Lab Sample ID: 460-210651-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Chloride	429	11.0	mg/L	11	300.0	Total/NA

Lab Sample ID: 460-210651-3 **Client Sample ID: MW-8**

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Chloride	97.4	2.00	mg/L		300.0	Total/NA

Lab Sample ID: 460-210651-4 **Client Sample ID: Dup**

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Chloride	424	11.0	mg/L	11	300.0	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample Results

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Client Sample ID: EQ Blank Date Collected: 06/06/20 10:25

Lab Sample ID: 460-210651-1

Matrix: Water

Matrix: Water

Job ID: 460-210651-1

SDG: Property ID: 891077

Date Received: 06/09/20 09:30

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Chloride ND 1.00 06/11/20 22:25 mg/L

Client Sample ID: MW-4 Lab Sample ID: 460-210651-2 Date Collected: 06/06/20 11:40 **Matrix: Water**

Date Received: 06/09/20 09:30

Method: 300.0 - Anions, Ion Chromatography Result Qualifier Analyte RL **MDL** Unit D Prepared Analyzed Dil Fac Chloride 429 11.0 mg/L 06/12/20 12:49

Client Sample ID: MW-8 Lab Sample ID: 460-210651-3

Date Collected: 06/06/20 12:30 Date Received: 06/09/20 09:30

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Chloride 2.00 06/12/20 13:04 97.4 mg/L

Client Sample ID: Dup Lab Sample ID: 460-210651-4 **Matrix: Water**

Date Collected: 06/06/20 00:00 Date Received: 06/09/20 09:30

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chloride 424 11.0 mg/L 06/12/20 13:19

QC Sample Results

Client: Chesapeake Energy Corporation

Job ID: 460-210651-1 Project/Site: State M-1 SDG: Property ID: 891077

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 460-700664/3

Matrix: Water

Analysis Batch: 700664

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 1.00 Chloride mg/L 06/11/20 13:28 $\overline{\mathsf{ND}}$

Lab Sample ID: LCS 460-700664/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 700664

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Bromide 3.20 3.080 mg/L 96 90 - 110 Chloride 3.20 3.152 mg/L 98 90 - 110 Fluoride 1.60 1.695 mg/L 106 90 - 110 Sulfate 4.80 4.730 mg/L 99 90 - 110

Lab Sample ID: LCSD 460-700664/6 **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA

Analysis Batch: 700664

%Rec. Spike LCSD LCSD **RPD** Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Bromide 3.20 3.083 90 - 110 mg/L 96 0 15 3.20 Chloride 3.170 mg/L 99 90 - 110 15 Fluoride 1.60 1.709 mg/L 107 90 - 110 15 Sulfate 4.80 4.718 mg/L 98 90 - 110 n 15

Lab Sample ID: MB 460-700937/26 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 700937

	1410	IVID								
Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Chloride	ND		1.00		mg/L		_		06/12/20 16:50	1

MD MD

Lab Sample ID: LCS 460-700937/28 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 700937

_	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromide	3.20	3.030		mg/L		95	90 - 110	
Chloride	3.20	3.114		mg/L		97	90 - 110	
Fluoride	1.60	1.758		mg/L		110	90 - 110	
Sulfate	4.80	4.802		ma/L		100	90 - 110	

Lab Sample ID: LCSD 460-700937/29 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 700937

/ maryolo Batolli / 0000/										
_	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Bromide	3.20	3.045		mg/L	_	95	90 - 110	0	15	
Chloride	3.20	3.087		mg/L		96	90 - 110	1	15	
Fluoride	1.60	1.696		mg/L		106	90 - 110	4	15	
Sulfate	4.80	4.687		mg/L		98	90 - 110	2	15	

Eurofins TestAmerica, Edison

QC Association Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 460-210651-1 SDG: Property ID: 891077

HPLC/IC

Analysis Batch: 700664

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-210651-1	EQ Blank	Total/NA	Water	300.0	
MB 460-700664/3	Method Blank	Total/NA	Water	300.0	
LCS 460-700664/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 460-700664/6	Lab Control Sample Dup	Total/NA	Water	300.0	

Analysis Batch: 700937

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-210651-2	MW-4	Total/NA	Water	300.0	
460-210651-3	MW-8	Total/NA	Water	300.0	
460-210651-4	Dup	Total/NA	Water	300.0	
MB 460-700937/26	Method Blank	Total/NA	Water	300.0	
LCS 460-700937/28	Lab Control Sample	Total/NA	Water	300.0	
LCSD 460-700937/29	Lab Control Sample Dup	Total/NA	Water	300.0	

Lab Chronicle

Client: Chesapeake Energy Corporation

Project/Site: State M-1

SDG: Property ID: 891077

Client Sample ID: EQ Blank

Date Collected: 06/06/20 10:25

Lab Sample ID: 460-210651-1

Matrix: Water

Job ID: 460-210651-1

Date Received: 06/09/20 09:30

	Batcn	Batcn		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	700664	06/11/20 22:25	VMI	TAL EDI

Lab Sample ID: 460-210651-2

Date Collected: 06/06/20 11:40 Date Received: 06/09/20 09:30

Client Sample ID: MW-4

Matrix: Water

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Analysis TAL EDI Total/NA 300.0 11 700937 06/12/20 12:49 VMI

Client Sample ID: MW-8 Lab Sample ID: 460-210651-3

Date Collected: 06/06/20 12:30 **Matrix: Water**

Date Received: 06/09/20 09:30

Dilution Batch **Batch Batch** Prepared **Prep Type** Туре Method Factor Number or Analyzed Run Analyst Lab 2 VMI TAL EDI Total/NA Analysis 300.0 700937 06/12/20 13:04

Client Sample ID: Dup Lab Sample ID: 460-210651-4

Date Collected: 06/06/20 00:00 **Matrix: Water**

Date Received: 06/09/20 09:30

Dilution Batch Batch Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 300.0 700937 06/12/20 13:19 TAL EDI

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Accreditation/Certification Summary

Client: Chesapeake Energy Corporation

Job ID: 460-210651-1 Project/Site: State M-1 SDG: Property ID: 891077

Laboratory: Eurofins TestAmerica, Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Connecticut	State	PH-0200	09-30-20
DE Haz. Subst. Cleanup Act (HSCA)	State	<cert no.=""></cert>	12-31-21
Georgia	State	12028 (NJ)	06-30-20
Massachusetts	State	M-NJ312	06-30-20
New Jersey	NELAP	12028	06-30-20
New York	NELAP	11452	04-01-21
Pennsylvania	NELAP	68-00522	02-28-21
Rhode Island	State	LAO00132	12-31-20
USDA	US Federal Programs	P330-18-00135	05-03-21

Laboratory: Eurofins TestAmerica, Nashville

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arizona	State Program	AZ0473	05-05-14 *

Eurofins TestAmerica, Edison

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: Chesapeake Energy Corporation

Method Description

Anions, Ion Chromatography

Project/Site: State M-1

Job ID: 460-210651-1 SDG: Property ID: 891077

TAL EDI

Protocol	Laboratory

MCAWW

Laboratory

Protocol References:

Method

300.0

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Eurofins TestAmerica, Edison

Sample Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 460-210651-1

SDG: Property ID: 891077

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asse
460-210651-1	EQ Blank	Water	06/06/20 10:25	06/09/20 09:30	
460-210651-2	MW-4	Water	06/06/20 11:40	06/09/20 09:30	
460-210651-3	MW-8	Water	06/06/20 12:30	06/09/20 09:30	
460-210651-4	Dup	Water	06/06/20 00:00	06/09/20 09:30	

	CHAIN OF CUSTODY RECORD	DY RECORD	210661 No. 1519
	PROJECT NUMBER: CHXSTATM: H20001	PROJECT NAME:	
CAN ECOUS	SHIPPED TO: TA-EDISON	MANAGER: D BRAD	TAT: STANDARD
SAMPLER'S PRINTED NAME: TERLY FISH SAMPLER'S SIGNATUBE:	xirix eranisin	ASOW:	//A
Date Time Sample ID	Sample Ma		
6-6-20 1025 Eq BlaNK	+		HEMAHKS
	7		*
6-6-20 1280 min- 8	* - 3		3
6-6-20 - 0-6	3		>
8			
7			
		460-210	480-210651 Chain of Custody
8			
TOTAL NUMBER OF CONTAINERS	4	size v G	
RELINGUISHED BY:	TIME 1600 TREET EX	TIME	,
RELINQUISHED BY:		DATE C/9	12 . 14
METHOD OF SHIPMENT:		610	
RECEIVED IN LABORATORY BY:	DATE Send PDF, EDD, an	ö	THUE. CZECH (P EQUNJENJ. 10M
LABORATORY CONTACT:	LABORATORY ADDRESS:		
CATHY BARTNER 615-301-5041	777 NEV	777 NEW BURHAM RD, EDISWIN	EDISM, NJ 08817
THOUSE OF COURT	-	1	

Page 13 of 15

6/18/2020

		8
	I	
36		
16/	/	
U	/	~
 		1
Date		

samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis.

Eurofins TestAmerica Edison Receipt Temperature and pH Log

20661

Job Number:

of

Mirate Metals Hardness Pest QAM Phenots Sulfide TKN TOC Cyanide Phos Other O	Cooler #f: Cooler #2:	S S	Constitute		8 8	Cooler #4:	Cooler Temperatures M: C C 188: C C	empera construction	stures		Cooler #7:	2 0 0	o o o		
(2) (pH<2) (pH>9) (pH<2) (pH>12)	443	шшо	COD	Nitrate Nitrite	Metals	Cooler #6:	Pest	PH PH	100 Sept.	Sulfide	color #9: TKN	100 TO	Total Cyanide	Total Phos	Other
	je l	(pH<2)	(pH<2)	(pH<2)	(pH<2)	1	(pH 5-9)		(pH<2)	(6 <hd)< td=""><td>(pH<2)</td><td>(pH<2)</td><td>(pH>12)</td><td>(pH<2)</td><td></td></hd)<>	(pH<2)	(pH<2)	(pH>12)	(pH<2)	
	ve Nam	1e/Conc.					nlo/	ime of Pre	servative	used (ml):					
Preservative Name/Conc.:													-		

EDS-WI-038, Rev 4.1 10/22/2019

Initials:

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Job Number: 460-210651-1

SDG Number: Property ID: 891077

Login Number: 210651 List Source: Eurofins TestAmerica, Edison

List Number: 1

Creator: Meyers, Gary

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

Laboratory Job ID: 460-219217-1

Laboratory Sample Delivery Group: Property ID: 891077

Client Project/Site: State M-1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Chase Acker

Authorized for release by: 10/5/2020 5:17:21 PM

Cathy Gartner, Project Manager II (615)301-5041

Cathy.Gartner@Eurofinset.com

Review your project results through

·····LINKS ·······

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 6/4/2024 2:40:16 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the

Results relate only to the items tested and the sample(s) as received by the laboratory.

Project Manager at the e-mail address or telephone number listed on this page.

Client: Chesapeake Energy Corporation Project/Site: State M-1

Laboratory Job ID: 460-219217-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	9
Lab Chronicle	10
Certification Summary	11
Method Summary	12
Sample Summary	13
Chain of Custody	14
Receipt Checklists	16

2

3

4

6

0

10

12

13

14

Definitions/Glossary

Client: Chesapeake Energy Corporation

Job ID: 460-219217-1 Project/Site: State M-1 SDG: Property ID: 891077

Glossarv

LOQ

Ciossaiy	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit

Limit of Quantitation (DoD/DOE)

ML Minimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Negative / Absent NEG POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Eurofins TestAmerica, Edison

Case Narrative

Client: Chesapeake Energy Corporation

Job ID: 460-219217-1 Project/Site: State M-1 SDG: Property ID: 891077

Job ID: 460-219217-1

Laboratory: Eurofins TestAmerica, Edison

Narrative

Job Narrative 460-219217-1

Comments

No additional comments.

Receipt

The samples were received on 9/25/2020 10:30 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.6° C.

GC Semi VOA

Method 300.0: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-4 (460-219217-3). Elevated reporting limits (RLs) are provided.

Method 300.0: The following sample was diluted to bring the concentration of target analytes within the calibration range: Dup (460-219217-2). Elevated reporting limits (RLs) are provided.

Method 300.0: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-8 (460-219217-4). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

SDG: Property ID: 891077

Job ID: 460-219217-1

Lab Sample ID: 460-219217-1 Client Sample ID: EQ Blank

No Detections.

Client Sample ID: Dup Lab Sample ID: 460-219217-2

Analyte Dil Fac D Method Result Qualifier RL **MDL** Unit **Prep Type** Chloride 5.00 5 300.0 Total/NA 88.4 mg/L

Client Sample ID: MW-4 Lab Sample ID: 460-219217-3

Analyte Result Qualifier RL MDL Unit Dil Fac D Method **Prep Type** Chloride 430 7.00 300.0 Total/NA mg/L

Client Sample ID: MW-8 Lab Sample ID: 460-219217-4

Result Qualifier Analyte RLMDL Unit Dil Fac D Method **Prep Type** Chloride 88.8 5.00 mg/L 5 300.0 Total/NA

This Detection Summary does not include radiochemical test results.

5

Client Sample Results

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Client Sample ID: EQ Blank Date Collected: 09/24/20 09:30

Lab Sample ID: 460-219217-1

Matrix: Water

Job ID: 460-219217-1

Matrix: Water

SDG: Property ID: 891077

Date Received: 09/25/20 10:30

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Chloride ND 1.00 09/28/20 15:46 mg/L

Client Sample ID: Dup Lab Sample ID: 460-219217-2

Date Collected: 09/24/20 00:00 Date Received: 09/25/20 10:30

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Chloride 88.4 5.00 mg/L 10/01/20 01:58

Client Sample ID: MW-4 Lab Sample ID: 460-219217-3 **Matrix: Water**

Date Collected: 09/24/20 11:00 Date Received: 09/25/20 10:30

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL MDL Unit Prepared Dil Fac Analyzed 7.00 Chloride 430 mg/L 09/28/20 21:28

Client Sample ID: MW-8 Lab Sample ID: 460-219217-4 **Matrix: Water**

Date Collected: 09/24/20 12:10 Date Received: 09/25/20 10:30

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Chloride 5.00 mg/L 10/01/20 15:01 88.8

QC Sample Results

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 460-219217-1 SDG: Property ID: 891077

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prepared

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Analyzed

09/30/20 16:29

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 460-727337/3

Matrix: Water

Analysis Batch: 727337

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte D Prepared 1.00 09/28/20 12:02 Chloride ND mg/L

Lab Sample ID: LCS 460-727337/5

Matrix: Water

Analysis Batch: 727337

Spike LCS LCS %Rec. Added Result Qualifier D %Rec Limits Analyte Unit 3.20 3.009 90 - 110 Chloride mg/L 94

Lab Sample ID: LCSD 460-727337/6

Matrix: Water

Analysis Batch: 727337

Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Limits **RPD Analyte** Unit D %Rec Limit Chloride 3.20 3.009 94 90 - 110 mg/L

RL

1.00

MDL Unit

LCS LCS

mg/L

Lab Sample ID: MB 460-728042/3

Matrix: Water

Analysis Batch: 728042

MB MB

Analyte Result Qualifier

Chloride ND

Lab Sample ID: LCS 460-728042/5

Matrix: Water Analysis Batch: 728042

Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Chloride 3.20 2.954 92 90 - 110 mg/L

Lab Sample ID: LCSD 460-728042/6

Matrix: Water

Analysis Batch: 728042

Spike LCSD LCSD %Rec. Added Result Qualifier Limits **RPD** Analyte Unit D %Rec 3.20 2.954 Chloride mg/L 92 90 - 110

Lab Sample ID: MB 460-728243/3

Matrix: Water

Analysis Batch: 728243

MB MB

Result Qualifier RL **MDL** Unit Prepared Analyte Analyzed Chloride 1.00 ND mg/L 10/01/20 03:42

Lab Sample ID: LCS 460-728243/5

Matrix: Water

Released to Imaging: 6/4/2024 2:40:16 PM

Analysis Batch: 728243

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit D %Rec Limits Chloride 90 - 110 3.20 3.124 mg/L 98

Eurofins TestAmerica, Edison

Client Sample ID: Lab Control Sample

Dil Fac

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Limit

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Dil Fac

QC Sample Results

Client: Chesapeake Energy Corporation

Job ID: 460-219217-1 Project/Site: State M-1 SDG: Property ID: 891077

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: LCSD 460-728243/6 **Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 728243

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	3.20	3.095		mg/L		97	90 - 110	1	15

QC Association Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 460-219217-1 SDG: Property ID: 891077

HPLC/IC

Lab Sample ID 460-219217-1	Client Sample ID EQ Blank	Prep Type Total/NA	Matrix	Method	Prep Batch
400-219217-1	EQ BIATIK	IOIal/NA	Water	300.0	
460-219217-3	MW-4	Total/NA	Water	300.0	
MB 460-727337/3	Method Blank	Total/NA	Water	300.0	
LCS 460-727337/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 460-727337/6	Lab Control Sample Dup	Total/NA	Water	300.0	

Analysis Batch: 728042

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-219217-2	Dup	Total/NA	Water	300.0	
MB 460-728042/3	Method Blank	Total/NA	Water	300.0	
LCS 460-728042/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 460-728042/6	Lab Control Sample Dup	Total/NA	Water	300.0	

Analysis Batch: 728243

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-219217-4	MW-8	Total/NA	Water	300.0	
MB 460-728243/3	Method Blank	Total/NA	Water	300.0	
LCS 460-728243/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 460-728243/6	Lab Control Sample Dup	Total/NA	Water	300.0	

Eurofins TestAmerica, Edison

Analysis Batch: 727337

Job ID: 460-219217-1

SDG: Property ID: 891077

Client Sample ID: EQ Blank

Date Collected: 09/24/20 09:30 Date Received: 09/25/20 10:30

Lab Sample ID: 460-219217-1

Matrix: Water

ı		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	300.0		1	727337	09/28/20 15:46	VMI	TAL EDI

Lab Sample ID: 460-219217-2

Matrix: Water

Date Collected: 09/24/20 00:00 Date Received: 09/25/20 10:30

Client Sample ID: Dup

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		5	728042	10/01/20 01:58	VMI	TAL EDI

Client Sample ID: MW-4 Lab Sample ID: 460-219217-3

Date Collected: 09/24/20 11:00 **Matrix: Water**

Date Received: 09/25/20 10:30

Batch **Batch** Dilution Batch Prepared **Prep Type** Type Method **Factor** Number or Analyzed Run Analyst Lab TAL EDI Total/NA Analysis 300.0 727337 09/28/20 21:28 VMI

Client Sample ID: MW-8 Lab Sample ID: 460-219217-4

Date Collected: 09/24/20 12:10 **Matrix: Water**

Date Received: 09/25/20 10:30

Batch **Batch** Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Analysis 300.0 728243 10/01/20 15:01 VMI TAL EDI Total/NA

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Accreditation/Certification Summary

Client: Chesapeake Energy Corporation

Job ID: 460-219217-1 Project/Site: State M-1 SDG: Property ID: 891077

Laboratory: Eurofins TestAmerica, Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Connecticut	State	PH-0200	09-30-20 *
DE Haz. Subst. Cleanup Act (HSCA)	State	<cert no.=""></cert>	12-31-21
Georgia	State	12028 (NJ)	07-01-21
Massachusetts	State	M-NJ312	06-30-21
New Jersey	NELAP	12028	06-30-21
New York	NELAP	11452	04-01-21
Pennsylvania	NELAP	68-00522	02-28-21
Rhode Island	State	LAO00132	12-31-20
USDA	US Federal Programs	P330-18-00135	05-03-21

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Eurofins TestAmerica, Edison

Method Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 460-219217-1

SDG: Property ID: 891077

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	MCAWW	TAL EDI

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Sample Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 460-219217-1

SDG: Property ID: 891077

460-219217-2 Dup Water 09/24/20 00:00 09/25/20 10:30 460-219217-3 MW-4 Water 09/24/20 11:00 09/25/20 10:30	Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
460-219217-3 MW-4 Water 09/24/20 11:00 09/25/20 10:30	460-219217-1	EQ Blank	Water	09/24/20 09:30	09/25/20 10:30	
	460-219217-2	Dup	Water	09/24/20 00:00	09/25/20 10:30	
100 040047 4 100 40 40 40 40 40 40 40 40 40 40 40 40 4	460-219217-3	MW-4	Water	09/24/20 11:00	09/25/20 10:30	
460-219217-4 MW-8 Water 09/24/20 12:10 09/25/20 10:30	460-219217-4	MW-8	Water	09/24/20 12:10	09/25/20 10:30	

	5	CHAIN OF CUSTODY RECORD	Y RECORD	No. 1513
(PROJECT NUMBER:	ER:	_	-
OI II OI CH	CHKSTA	TATM: H20001	CHK STATE M	DOC 04
EQUOS widenand delitera	SHIPPED TO:	O: TA-EDISON	PROJECT MANAGER:	TAT: Stanlard
1-	sis		ASOW:	0 (00)10
IERRY FIShol			N/A	777
SAMPLEYS SIGNATURE:		Е		
	gamble	OKID		
Date Time Sample ID		7H7		REMARKS
9-27-20 930 EQBlank	3	×		1
9.24-20 - Org	3	X	Ser.	12
9-24 100 mm-y	3	×		N
Cisi	3	X		n
A				
R				
			4	
			10 Custody	
8			1	
TOTAL NUMBER OF CONTAINERS	<u> </u>			
RELINQUISHED BY:	DATE 9-24-20 RECEIVED BY:	RECEIVED BY:	DATE	
RELINQUISHED BX	DATE	RECEIVED BY:	DATE	
METHOD OF SHIPMENT:	TIME	AIBBILL NIMBER	TIME	
MEX - Fly of the		Fedex	Fedex 1361 517 6870	
RECEIVED IN LABORATORY BY:	DATE	Send PDF, EDD, and I	JULIE.	CZECH @ EWNUSENV. COM
3.6	11 4 .	LABORATORY ADDRESS:	ESS:	
CATHY 615-301-5041		777 NEW	NEW DURHAM RD. EDISON, NJ (11880
POINT OF ORIGIN:				

Other

	1
	2
	3
	4
	5
	6
	7
	8
1	9
0	10
2/2	11
2	12

12 13

Samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis.

Other Expiration Date:
The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted. (pH<2) Total (Z) (pH>12) Total Cyanide 9 8 (pH<2) TOC Cooler #9: Cooler #8: (pH<2) TKN Volume of Preservative used (ml): Sulfide (pH>9) Phenois (pH<2) Cooler Temperatures p (pH<2) CAM OF If pH adjustments are required record the information below: P Ų y (bH 2-9) Pest Cooler #6: Cooler #4: Cooler #5: (pH<2) Metals Hardness IR Gun # (pH<2) Nitrate Nitrite (pH<2) (pH<2) COD Sample No(s). adjusted: Preservative Name/Conc.: Lot # of Preservative(s): Cooler#1: 3. O'C Cooler #3: Ammonia (pH<2) Cooler #2: TALS Sample Number **fumber of Coolers:**

Initials:

EDS-WI-038, Rev 4.1 10/22/2019

Job Number:

Receipt Temperature and pH Log

Eurofins TestAmerica Edison

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Job Number: 460-219217-1

SDG Number: Property ID: 891077

Login Number: 219217 List Source: Eurofins TestAmerica, Edison

List Number: 1 Creator: Lysy, Susan

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

Released to Imaging: 6/4/2024 2:40:16 PM

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

Laboratory Job ID: 460-224660-1

Laboratory Sample Delivery Group: Property ID: 891077

Client Project/Site: State M-1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Chase Acker

L'athy Gartner

Authorized for release by: 12/22/2020 5:57:48 PM

Cathy Gartner, Project Manager II (615)301-5041

Cathy.Gartner@Eurofinset.com

····· Links ·····

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 6/4/2024 2:40:16 PM

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

3

4

7

_

10

12

13

Client: Chesapeake Energy Corporation Project/Site: State M-1

Laboratory Job ID: 460-224660-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	15

Definitions/Glossary

Client: Chesapeake Energy Corporation

Job ID: 460-224660-1 Project/Site: State M-1 SDG: Property ID: 891077

Glossary

EDL

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)

LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin)

MDL Method Detection Limit ML Minimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Negative / Absent NEG POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count

Case Narrative

Client: Chesapeake Energy Corporation

Job ID: 460-224660-1 Project/Site: State M-1 SDG: Property ID: 891077

Job ID: 460-224660-1

Laboratory: Eurofins TestAmerica, Edison

Narrative

Job Narrative 460-224660-1

Comments

No additional comments.

Receipt

The samples were received on 12/11/2020 10:35 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.0° C.

GC Semi VOA

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-4 (460-224660-2), MW-8 (460-224660-3) and Dup (460-224660-4). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Client Sample ID: EQ Blank

Job ID: 460-224660-1 SDG: Property ID: 891077

Lab Sample ID: 460-224660-1

No Detections.

Client Sample ID: MW-4 Lab Sample ID: 460-224660-2

Analyte Dil Fac D Method Result Qualifier RL **MDL** Unit **Prep Type** Chloride 475 20.0 20 300.0 Total/NA mg/L

Client Sample ID: MW-8 Lab Sample ID: 460-224660-3

Analyte Result Qualifier RL MDL Unit Dil Fac D Method **Prep Type** 20.0 20 300.0 Total/NA Chloride 73.5 mg/L

Client Sample ID: Dup Lab Sample ID: 460-224660-4

Result Qualifier Analyte RLMDL Unit Dil Fac D Method **Prep Type** Chloride 482 20.0 mg/L 20 300.0 Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample Results

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Client Sample ID: EQ Blank Date Collected: 12/10/20 08:25

Date Received: 12/11/20 10:35

Lab Sample ID: 460-224660-1

Matrix: Water

Job ID: 460-224660-1

SDG: Property ID: 891077

Method: 300.0 - Anions, Ion Chromatography

Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Chloride ND 1.00 12/16/20 14:19 mg/L

Client Sample ID: MW-4 Lab Sample ID: 460-224660-2

Date Collected: 12/10/20 09:40

Matrix: Water

Date Received: 12/11/20 10:35

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Chloride 475 20.0 mg/L 12/16/20 14:34 20

Client Sample ID: MW-8 Lab Sample ID: 460-224660-3

Date Collected: 12/10/20 10:50

Matrix: Water

Date Received: 12/11/20 10:35

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL MDL Unit Prepared Dil Fac Analyzed Chloride 73.5 20.0 mg/L 12/16/20 14:49 20

Client Sample ID: Dup Lab Sample ID: 460-224660-4

Date Collected: 12/10/20 00:00

Matrix: Water

Date Received: 12/11/20 10:35

Method: 300.0 - Anions, Ion Chromatography

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Chloride 20.0 mg/L 12/16/20 15:04 482 20

QC Sample Results

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 460-224660-1 SDG: Property ID: 891077

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 460-747358/3

Matrix: Water

Analysis Batch: 747358

MB MB Analyte

Result Qualifier RL **MDL** Unit D Analyzed Dil Fac **Prepared** 12/16/20 10:30 Chloride 1.00 ND mg/L

Lab Sample ID: LCS 460-747358/5

Matrix: Water

Analysis Batch: 747358

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Chloride 3.20 3.004 90 - 110 mg/L 94

Lab Sample ID: LCSD 460-747358/6

Matrix: Water

Analysis Batch: 747358

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Limits RPD Limit Unit %Rec Chloride 3.20 2.996 mg/L 94 90 - 110 15

QC Association Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 460-224660-1

SDG: Property ID: 891077

HPLC/IC

Analysis Batch: 747358

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-224660-1	EQ Blank	Total/NA	Water	300.0	
460-224660-2	MW-4	Total/NA	Water	300.0	
460-224660-3	MW-8	Total/NA	Water	300.0	
460-224660-4	Dup	Total/NA	Water	300.0	
MB 460-747358/3	Method Blank	Total/NA	Water	300.0	
LCS 460-747358/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 460-747358/6	Lab Control Sample Dup	Total/NA	Water	300.0	

Lab Chronicle

Client: Chesapeake Energy Corporation

Project/Site: State M-1

SDG: Property ID: 891077

Client Sample ID: EQ Blank

Date Collected: 12/10/20 08:25 Date Received: 12/11/20 10:35

Lab Sample ID: 460-224660-1

Matrix: Water

Matrix: Water

Matrix: Water

Job ID: 460-224660-1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	747358	12/16/20 14:19	VMI	TAL EDI

Client Sample ID: MW-4 Lab Sample ID: 460-224660-2 **Matrix: Water**

Date Collected: 12/10/20 09:40

Date Received: 12/11/20 10:35

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		20	747358	12/16/20 14:34	VMI	TAL EDI

Lab Sample ID: 460-224660-3 **Client Sample ID: MW-8**

Date Collected: 12/10/20 10:50

Date Received: 12/11/20 10:35

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		20	747358	12/16/20 14:49	VMI	TAL EDI

Lab Sample ID: 460-224660-4 Client Sample ID: Dup

Date Collected: 12/10/20 00:00

Date Received: 12/11/20 10:35

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	300.0		20	747358	12/16/20 15:04	VMI	TAL EDI	_

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Accreditation/Certification Summary

Client: Chesapeake Energy Corporation

Job ID: 460-224660-1 Project/Site: State M-1 SDG: Property ID: 891077

Laboratory: Eurofins TestAmerica, Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Connecticut	State	PH-0200	09-30-20 *
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	12-31-21
Georgia	State	12028 (NJ)	07-01-21
Massachusetts	State	M-NJ312	06-30-21
New Jersey	NELAP	12028	06-30-21
New York	NELAP	11452	04-01-21
Pennsylvania	NELAP	68-00522	02-28-21
Rhode Island	State	LAO00132	12-31-20
USDA	US Federal Programs	P330-20-00244	11-03-23

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 460-224660-1

SDG: Property ID: 891077

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	MCAWW	TAL EDI

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Sample Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 460-224660-1

SDG: Property ID: 891077

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset I
460-224660-1	EQ Blank	Water	12/10/20 08:25	12/11/20 10:35	
460-224660-2	MW-4	Water	12/10/20 09:40	12/11/20 10:35	
460-224660-3	MW-8	Water	12/10/20 10:50	12/11/20 10:35	
460-224660-4	Dup	Water	12/10/20 00:00	12/11/20 10:35	

224660 1582 STANDARD of REMARKS No. 200 9 £1880 QAQCO EDUNTENVAOM EDISON, NJ 460-224660 Chain of Custody ASOW: DATE TIME DATE TIME 2 DAVID BRADY NEW DURHAM 12D. Send PDF, EDD, and INVOICE (if applicable) to: CHK STATE PROJECT MANAGER: 9345 40549 908 PROJECT NAME: CHAIN OF CUSTODY RECORD LABORATORY ADDRESS: CHKSTATM: H2000 DATE 13-10-20 RECEIVED BY:
TIME 1600
DATE
RECEIVED BY:
TIME RECEIVED/BY: SHIPPED TO:

TA-EDISON ttt CHTOKIDE X PROJECT NUMBER: # of Sample Containers DATE Sample Matrix 3 3 615-301-5041 Sample ID Ea Blank FEDEX my ne TOTAL NUMBER OF CONTAINERS CATHY GARTNER RECEIVED IN LABORATORY BY: SAMPLER'S PRINTED NAME: ABORATORY CONTACT: METHOD OF SHIPMENT: 0460 Time 825 1050 RELINQUISHED BY: RELINQUISHED BY: 12-10-20 12-10-20 12-10-20 12-10-20 Date

POINT OF ORIGIN:

appropriate Froject manager and Department manager should be notified about the samples which were pri adj *Samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis. Date: Initials:

Cooler #1: Coo	Job Number:	22466	200	0		Receip	t Tempe	rature a	Receipt Temperature and pH Log	Di O						_
Cooler #8: C C C C C Cooler #8: C C C Cooler #8: C C C C C C C C C C C C C C C C C C C	Number of Coolers:		1		IR Gun #		17									
Fig. Co Co Co Co Co Co Co C						Co	oler Te	mpera	itures							
12	Cooler #1		200		ŭ	poler #4:	RAW	CORRECTED		ŭ	ooler #7:	THE RESIDENCE	CORRECTED			
October #8: C Cooler #8: C Coo	Cooler #2	-			ŭ	ooler#5:	Ď	Q		Ö	ooler #8:	S)	Ş			
Perconstitution COD Nutrate Nutrate Perconstitution Pe	Cooler #3				Ö	coler #6:	ပ္	ည		S	ooler #9:	S	မွ			
CPH-C2 (PH-C2 (Ammonia		Nitrate Nitrite	Metals	Hardness	Pest	QAM	Phenols	Sulfide	TKN	T0C	Total Cyanide	Total Phos	Other	Other
Istments are required record the information below:	TALS Sample Number	(pH<2)	(pH<2)	(pH<2)	(pH<2)	(pH<2)	(pH 5-9)	(pH<2)	(pH<2)	(pH>9)	(pH<2)	(pH<2)	(pH>12)	(pH<2)		
Istments are required record the information below:																
Istments are required record the information below:																
ustments are required record the information below:																
ustments are required record the information below:																
ustments are required record the information below:																
ustments are required record the information below:																
ustments are required record the information below:																
Istments are required record the information below:																
Istments are required record the information below:																
Istments are required record the information below:																
ustments are required record the information below: Volume of Preser																
ustments are required record the information below: Volume of Preser																
Volume of Preser		If pH ad			red recor	the info	rmation be	elow:								
Volume of Preser	Sample No(s)	. adjusted.														
	Preservative Na	ame/Conc.					Volu	me of Pre	servative L	.(m) pesr						
	I of # of Dress	-(a)oniseino							ferina	ion Date.						
				-		-										

EDS-WI-038, Rev 4.1 10/22/2019

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Job Number: 460-224660-1

SDG Number: Property ID: 891077

List Source: Eurofins TestAmerica, Edison

Login Number: 224660

List Number: 1 Creator: Lvsv. Susan

Creator: Lysy, Susan		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	1486445
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

Released to Imaging: 6/4/2024 2:40:16 PM

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

Laboratory Job ID: 460-229224-1

Laboratory Sample Delivery Group: Property ID: 891077

Client Project/Site: State M-1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Chase Acker

Authorized for release by: 3/17/2021 3:10:22 PM

Cathy Gartner, Project Manager II (615)301-5041

Cathy.Gartner@Eurofinset.com

·····LINKS ·······

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env Released to Imaging: 6/4/2024 2:40:16 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Chesapeake Energy Corporation Project/Site: State M-1

Laboratory Job ID: 460-229224-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	15

1

2

3

4

6

8

10

40

13

Definitions/Glossary

Client: Chesapeake Energy Corporation

Job ID: 460-229224-1 Project/Site: State M-1 SDG: Property ID: 891077

Glossary

Olocoul, y	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)

Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Negative / Absent NEG POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Case Narrative

Client: Chesapeake Energy Corporation

Job ID: 460-229224-1 Project/Site: State M-1 SDG: Property ID: 891077

Job ID: 460-229224-1

Laboratory: Eurofins TestAmerica, Edison

Narrative

Job Narrative 460-229224-1

Comments

No additional comments.

Receipt

The samples were received on 3/3/2021 10:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.7° C.

GC Semi VOA

Method 300.0: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-4 (460-229224-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Client Sample ID: EQ Blank

Job ID: 460-229224-1

SDG: Property ID: 891077

Lab Sample ID: 460-229224-1

No Detections.

Client Sample ID: MW-4 Lab Sample ID: 460-229224-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac [Method	Prep Type
Chloride	437	10.0	mg/L	10	300.0	Total/NA

Client Sample ID: MW-8 Lab Sample ID: 460-229224-3

Analyte	Result Qualifie	r RL	MDL Unit	Dil Fac	D Method	Prep Type
Chloride	63.9	1.00	mg/L	1	300.0	Total/NA

Client Sample ID: Dup Lab Sample ID: 460-229224-4

Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Chloride	63.8		1.00	mg/L	1	300.0	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample Results

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Client Sample ID: EQ Blank

Date Collected: 03/02/21 08:55

Lab Sample ID: 460-229224-1

Matrix: Water

Job ID: 460-229224-1

Matrix: Water

SDG: Property ID: 891077

Date Received: 03/03/21 10:00

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Chloride ND 1.00 03/05/21 17:54 mg/L

Client Sample ID: MW-4 Lab Sample ID: 460-229224-2

Date Collected: 03/02/21 10:55 Date Received: 03/03/21 10:00

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Chloride 437 10.0 mg/L 03/07/21 06:13 10

Client Sample ID: MW-8 Lab Sample ID: 460-229224-3 **Matrix: Water**

Date Collected: 03/02/21 13:20 Date Received: 03/03/21 10:00

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL MDL Unit Prepared Dil Fac Analyzed Chloride 63.9 1.00 mg/L 03/05/21 18:24

Client Sample ID: Dup Lab Sample ID: 460-229224-4 **Matrix: Water**

Date Collected: 03/02/21 00:00 Date Received: 03/03/21 10:00

Method: 300.0 - Anions, Ion Chromatography

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Chloride 1.00 mg/L 03/05/21 18:39 63.8

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 460-229224-1

SDG: Property ID: 891077

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 460-762716/3

Matrix: Water

Analysis Batch: 762716

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac D Prepared 1.00 03/05/21 14:25 Chloride ND mg/L

Lab Sample ID: LCS 460-762716/5

Matrix: Water

Analysis Batch: 762716

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Chloride 3.20 3.222 90 - 110 mg/L 101

Lab Sample ID: LCSD 460-762716/6

Matrix: Water

Analysis Batch: 762716

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Limits **RPD** Limit Unit %Rec Chloride 3.20 3.224 101 90 - 110 mg/L

Lab Sample ID: MB 460-762899/10

Matrix: Water

Analysis Batch: 762899

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Chloride $\overline{\mathsf{ND}}$ 1.00 03/06/21 21:30 mg/L

Lab Sample ID: LCS 460-762899/12

Matrix: Water

Analysis Batch: 762899

LCS LCS Spike %Rec. Analyte Added Result Qualifier Limits Unit %Rec Chloride 3.20 3.458 108 90 - 110 mg/L

Lab Sample ID: LCSD 460-762899/13

Released to Imaging: 6/4/2024 2:40:16 PM

Matrix: Water

Analysis Batch: 762899

RPD Spike LCSD LCSD %Rec. Analyte Added Result Qualifier %Rec Limits **RPD** Limit Unit D 3.20 3.452 108 Chloride mg/L 90 - 110

QC Association Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 460-229224-1

SDG: Property ID: 891077

HPLC/IC

Analysis Batch: 762716

Lab Sample ID 460-229224-1	Client Sample ID EQ Blank	Prep Type Total/NA	Matrix Water	Method 300.0	Prep Batch
460-229224-3	MW-8	Total/NA	Water	300.0	
460-229224-4	Dup	Total/NA	Water	300.0	
MB 460-762716/3	Method Blank	Total/NA	Water	300.0	
LCS 460-762716/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 460-762716/6	Lab Control Sample Dup	Total/NA	Water	300.0	

Analysis Batch: 762899

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-229224-2	MW-4	Total/NA	Water	300.0	
MB 460-762899/10	Method Blank	Total/NA	Water	300.0	
LCS 460-762899/12	Lab Control Sample	Total/NA	Water	300.0	
LCSD 460-762899/13	Lab Control Sample Dup	Total/NA	Water	300.0	

Eurofins TestAmerica, Edison

2

4

0

0

10

12

13

Lab Chronicle

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Client Sample ID: EQ Blank

Date Collected: 03/02/21 08:55 Date Received: 03/03/21 10:00

Lab Sample ID: 460-229224-1

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Job ID: 460-229224-1

SDG: Property ID: 891077

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	762716	03/05/21 17:54	VMI	TAL EDI

Client Sample ID: MW-4 Lab Sample ID: 460-229224-2

Date Collected: 03/02/21 10:55

Date Received: 03/03/21 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10	762899	03/07/21 06:13	VMI	TAL EDI

Lab Sample ID: 460-229224-3 **Client Sample ID: MW-8**

Date Collected: 03/02/21 13:20 Date Received: 03/03/21 10:00

Batch **Batch** Dilution Batch Prepared Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab TAL EDI Total/NA Analysis 300.0 762716 03/05/21 18:24 VMI

Client Sample ID: Dup Lab Sample ID: 460-229224-4

Date Collected: 03/02/21 00:00

Date Received: 03/03/21 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	762716	03/05/21 18:39	VMI	TAL EDI

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Accreditation/Certification Summary

Client: Chesapeake Energy Corporation

Job ID: 460-229224-1 Project/Site: State M-1 SDG: Property ID: 891077

Laboratory: Eurofins TestAmerica, Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Connecticut	State	PH-0200	09-30-22
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	12-31-21
Georgia	State	12028 (NJ)	07-01-21
Massachusetts	State	M-NJ312	06-30-21
New Jersey	NELAP	12028	06-30-21
New York	NELAP	11452	04-01-21
Pennsylvania	NELAP	68-00522	02-28-22
Rhode Island	State	LAO00132	12-30-21
USDA	US Federal Programs	P330-20-00244	11-03-23

Method Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 460-229224-1

SDG: Property ID: 891077

Protocol	Laboratory

Method **Method Description** 300.0 Anions, Ion Chromatography MCAWW TAL EDI

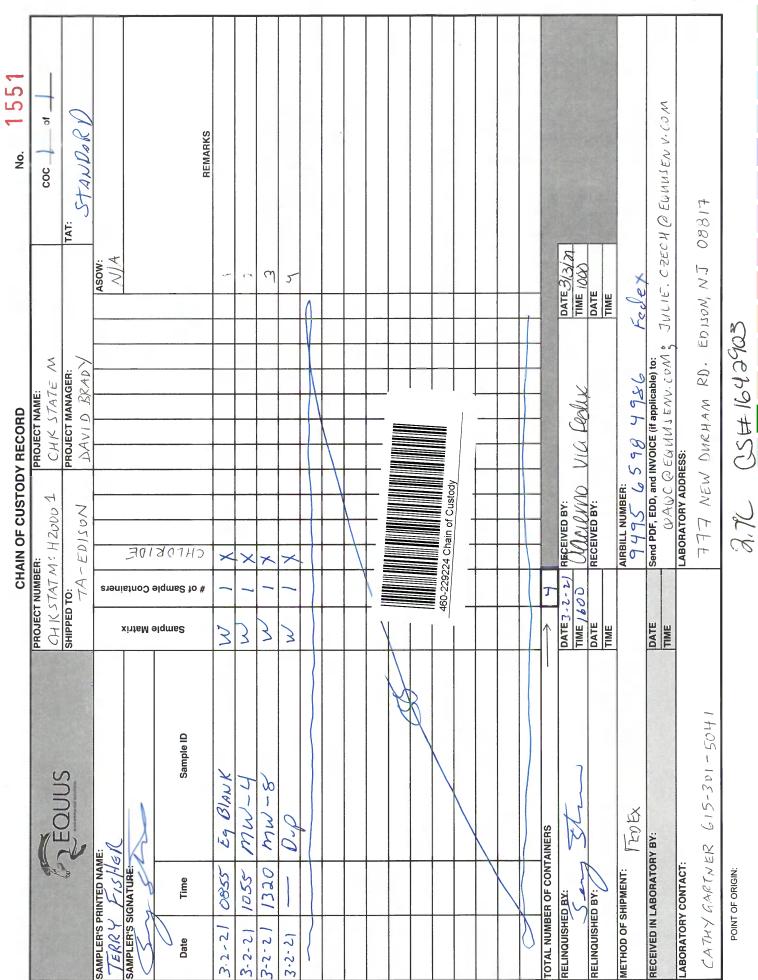
Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Sample Summary


Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 460-229224-1

SDG: Property ID: 891077

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
460-229224-1	EQ Blank	Water	03/02/21 08:55	03/03/21 10:00	
460-229224-2	MW-4	Water	03/02/21 10:55	03/03/21 10:00	
460-229224-3	MW-8	Water	03/02/21 13:20	03/03/21 10:00	
460-229224-4	Dup	Water	03/02/21 00:00	03/03/21 10:00	

			_	Eurorii Receipt	ıs rest Temper	America ature ar	Euronins TestAmerica Edison Receipt Temperature and pH Log	_ 6 C					Page	5
Job Number:	907/3047				11									
Number of Coolers:	/	R	IR Gun #)7	1								
	and the same of th			Coc	er Te	Cooler Temperatures	tures							
Cooler #1:	13,702,70		රි	Cooler #4:	သ	S		රී	Cooler #7:	Q.	Q Q			
Cooler #2:	2: C	ام ا	ပိ	Cooler #5:	Ŋ	y		ပိ	Cooler #8:	υ υ	S			
Cooler#3:	3: C		ပိ	Cooler #6:	ပ္	y		ပိ	Cooler #9:	Ş	y			
	Ammonia COD	Nitrate Nitrite Me	Metals	Hardness	Pest	EPH or QAM	Phenois	Sulfide	TKN	100	Total Cyanide	Total Phos	Other	Other
TALS Sample Number	(pH<2) (pH<2)	(pH<2)	(pH<2)	(pH<2) ((pH 5-9)	(pH<2)	(pH<2)	(pH>9)	(pH<2)	(pH<2)	(pH>12)	(pH<2)		
											\vdash			
	If pH adjustments are requi	s are required	record	ired record the information below:	ation be	ow:								
Sample No(s). adjusted:). adjusted:											4		
Preservative Name/Conc	ame/Conc.:				Volun	ne of Pres	Volume of Preservative used (ml):	ed (ml):				1		
Lot # of Preservative(s):	ervative(s):						Expirati	Expiration Date:						
	The appro Sa	The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted. Samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis	fanager analysi:	and Depar s which are	tment Ma	nager sho	ould be not	ified abou	t the samp	oles which	were pH a	adjusted.		
338, Rev 4.1	4							XX	. 6					
019		3					Date:	7	7					

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Job Number: 460-229224-1

SDG Number: Property ID: 891077

Login Number: 229224 List Source: Eurofins TestAmerica, Edison

List Number: 1

Creator: DiGuardia, Joseph L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Released to Imaging: 6/4/2024 2:40:16 PM

1

4

6

o

1 N

12

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 337542

CONDITIONS

Operator:	OGRID:
CHESAPEAKE OPERATING, INC.	147179
6100 NORTH WESTERN AVE	Action Number:
OKC, OK 73118	337542
	Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created By	Condition	Condition Date
michael.buchanan	SEVENTH ANNUAL GROUNDWATER MONITORING REPORT CHESAPEAKE ENERGY CORPORATION STATE M LEASE (AP-72) has been accepted as part of the record.	6/4/2024