

General Information

NMOCD District:	District 2 – Artesia	Incident ID:	nAPP2334849928	
Landowner:	Bureau of Land Management	RP Reference:	N/A	
Client:	XTO Energy	Site Location:	Poker Lake Unit 342 Battery	
Date:	May 24, 2024	Project #:	23E-06066	
Client Contact:	Amy Ruth	Phone #:	432.661.0571	
Vertex PM:	Sally Carttar	Phone #:	575.361.3561	

Objective

The objective of the environmental remediation work plan is to identify exceedances found during the site assessment/characterization activity and propose an appropriate remediation technique to address the release at Poker Lake Unit 342 Battery. The release involved approximately 15 barrels of produced water discharged onto the pad due to an equipment failure. Approximately 15 barrels of produced water were recovered. Areas of environmental concern identified and delineated include the western and middle portion of the pad, north of the tank battery. An aerial photograph of the site with characterization locations and approximate area of release impact is presented on Figure 1 (Attachment 1). Closure criteria have been selected as per New Mexico Administrative Code 19.15.29. and are presented below.

Table 1. Closure Criteria for Soils Impacted by a Release						
Minimum depth below any point within the horizontal boundary of the release to groundwater						
less than 10,000 mg/l TDS	Constituent	Limit				
	Chloride	600 mg/kg				
< 50 feet	TPH (GRO+DRO+MRO)	100 mg/kg				
< 50 feet	ВТЕХ	50 mg/kg				
	Benzene	10 mg/kg				

TDS - Total dissolved solids

Site Assessment/Characterization

Site characterization was started on February 2, 2024, and delineation was completed on May 7, 2024. An extension request was submitted on February 29, 2024, and New Mexico Oil Conservation Division approved an updated deadline of May 30, 2024. Correspondence regarding the extension is included in Attachment 3. A total of 12 sample points were established and 27 samples collected for field screening. Samples were obtained at various depths for horizontal and vertical delineation, but efforts with a hand auger hit refusal at 0.5 to 1 foot below ground surface at all sample points. Samples at the greatest lateral limits and the deepest vertical distance below closure criteria were submitted to the laboratory for analysis. In total, 27 samples were submitted to Eurofins Environmental Testing South Central in Albuquerque, New Mexico, for analysis. The sample locations are presented on Figure 1 (Attachment 1). Laboratory analysis results have been compared to the above noted closure criteria and the results from the characterization activity are presented in Table 2 (Attachment 2). Laboratory data reports are included in Attachment 4. All applicable research as it pertains to closure criteria selection is presented in Attachment 5. Exceedances are identified in the table as bold with a grey background.

DTGW - Depth to groundwater

TPH – Total petroleum hydrocarbons = gasoline range organics (GRO) + diesel range organics (DRO) + motor oil range organics (MRO)

BTEX – Benzene, toluene, ethylbenzene, and xylenes

Proposed Remedial Activities

Areas identified with contaminant concentrations above closure criteria will be remediated through excavation. Laboratory results from the site characterization were referenced to estimate the vertical and horizontal limits of the impacts and the volume of soil to be removed. Soil will be excavated to the extents of the known contamination or in 1-foot increments, whichever is less. Field screening will be utilized to confirm removal of contaminated soil below the applicable closure criteria. Contaminated soils will be stored on a 30-mil liner prior to disposal at an approved facility. Once excavation is complete, confirmatory samples will be collected and laboratory analysis completed to confirm closure criteria guidelines are met. Excavations will be backfilled with clean soil sourced locally.

All 12 sample points established during delineation were on-pad. Exceedances to closure criteria were identified at multiple sample points on and around the west and central portion of the pad, north of the tank battery. Soil will be excavated at a starting depth of 1 foot around BH24-02 and BH24-10, which will be vertically delineated during excavation and will likely need to be excavated deeper. The rest of the planned excavation area will be excavated to a depth of 0.5 feet, as shown on Figure 1 (Attachment 1). Heavy equipment will be used to complete excavation in open areas and hand crews will be used to complete excavation next to equipment or lines that is deemed unsafe. A hydrovac truck will be utilized to identify lines in the excavation area. Field screening will be utilized to find the horizontal and vertical extents of the impacted area. Confirmation samples will be collected as per New Mexico Oil Conservation Division guidance and submitted for laboratory analysis of all applicable parameters. The estimated volume to be excavated is approximately 85 cubic yards.

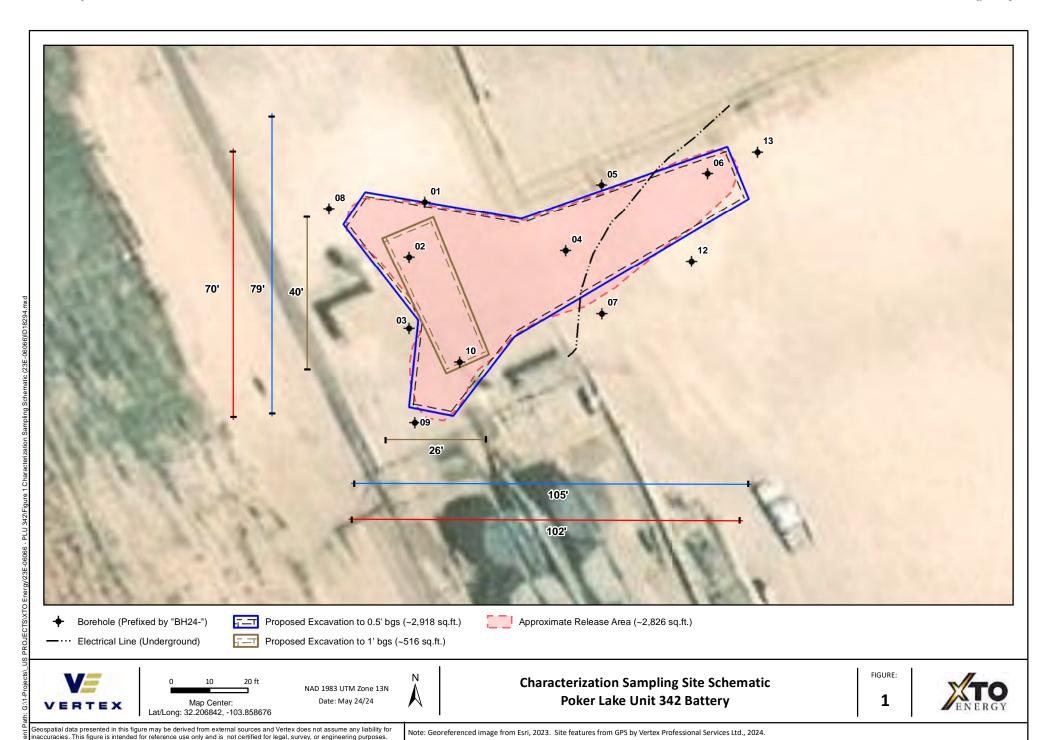
Sample Point	Excavation Depth	Remediation Method		
BH24-02	1'	Backhoe		
BH24-10	1	Backhoe		
BH24-04	0.5	Backhoe		
BH24-06	0.5	Backhoe		

Should you have any questions or concerns, please do not hesitate to contact Sally Carttar at 575.361.3561 or scarttar@vertex.ca.

Andrew Ludvik, B.Sc.	Date
ENVIRONMENTAL TECHNICIAN, REPORTING	
Sally Carttar, BA	Date
PROJECT MANAGER, REPORT REVIEW	

Attachments

Attachment 1. Characterization Sampling Site Schematic


Attachment 2. Field Screening and Laboratory Results Table

Attachment 3. Extension Request and Approval Correspondence

Attachment 4. Laboratory Data Reports and Chain of Custody Forms

Attachment 5. Closure Criteria Research

ATTACHMENT 1

ATTACHMENT 2

Client Name: XTO Energy

Site Name: Poker Lake Unit 342 Battery NMOCD Tracking #: nAPP2334849928

Project #: 23E-06066

Lab Reports: 890-6118-1, 890-6119-1, 890-6150-1, 890-6149-1, 885-1475-1, 885-4188-1

		tial Characterization	on Sample	Laborato	-			/ater <50	eet bgs				
	Sample Description				Petroleum Hydrocarbons								
			Volatile Extractable							Inorganic			
Sample ID	Depth (ft)	Sample Date	Benzene	BTEX (Total)	Gasoline Range Organics (GRO)	Diesel Range Organics (DRO)	Motor Oil Range Organics (MRO)	(GRO + DRO)	Total Petroleum Hydrocarbons (TPH)	Chloride Concentration			
	0	Fohrware F 2024	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)			
BH24-01	0.5	February 5, 2024 February 5, 2024	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	334 112			
		February 5, 2024	ND	ND	ND	ND	ND	ND	ND	5,550			
	BH24-02 0.5 2	February 5, 2024	ND	ND	ND	ND	ND	ND	ND	2,030			
BH24-02		May 7, 2024	ND	ND	ND	ND	ND	ND	ND	ND			
4	May 7, 2024	ND	ND	ND	ND	ND	ND	ND	ND				
BH24-03 0 1	0	March 15, 2024	ND	ND	ND	ND	ND	ND	ND	73			
	February 5, 2024	ND	ND	ND	ND	ND	ND	ND	41				
D1124 04	0	February 6, 2024	ND	ND	ND	ND	ND	ND	ND	1250			
BH24-04 0.5	February 6, 2024	ND	ND	ND	ND	ND	ND	ND	161				
BH24-05	0	February 6, 2024	ND	ND	ND	ND	ND	ND	ND	72			
БП24-05	0.05	February 6, 2024	ND	ND	ND	ND	ND	ND	ND	46			
DU124.0C	0	February 6, 2024	ND	ND	ND	ND	ND	ND	ND	190			
BH24-06	0.05	February 6, 2024	ND	ND	ND	ND	ND	ND	ND	152			
BH24-07	0	February 6, 2024	ND	ND	ND	ND	ND	ND	ND	54			
ВП24-07	0.5	February 6, 2024	ND	ND	ND	ND	ND	ND	ND	38			
DH34 00	0	February 7, 2024	ND	ND	ND	ND	ND	ND	ND	66			
BH24-08	0.5	February 7, 2024	ND	ND	ND	ND	ND	ND	ND	71			
DU24 00	0	February 7, 2024	ND	ND	ND	ND	ND	ND	ND	110			
BH24-09	1	February 7, 2024	ND	ND	ND	ND	ND	ND	ND	93			
	0	February 8, 2024	ND	ND	ND	52.9	ND	52.9	52.9	4680			
BH24-10	1	February 8, 2024	ND	ND	ND	ND	ND	ND	ND	643			
	2	May 7, 2024	ND	ND	ND	ND	ND	ND	ND	ND			
DU24 42	0	February 8, 2024	ND	ND	ND	ND	ND	ND	ND	64			
BH24-12	0.5	February 8, 2024	ND	ND	ND	ND	ND	ND	ND	78			
DU24 42	0	February 8, 2024	ND	ND	ND	ND	ND	ND	ND	66			
BH24-13	0.5	February 8, 2024	ND	ND	ND	ND	ND	ND	ND	73			

[&]quot;ND" Not Detected at the Reporting Limit

Bold and grey shaded indicates exceedance outside of NMOCD Closure Criteria

[&]quot;-" indicates not analyzed/assessed

ATTACHMENT 3

Received by OCD: 5/29/2024 2:31:35 PM

XTO - Extension Request - Poker Lake Unit 342 - Incident Number nAPP2334849928

Hamlet, Robert, EMNRD < Robert. Hamlet@emnrd.nm.gov>

Fri 3/1/2024 10:19 AM

To:amy.ruth@exxonmobil.com <amy.ruth@exxonmobil.com>

Cc:alan.romero1@exxonmobil.com <alan.romero1@exxonmobil.com>;Sally Carttar <SCarttar@vertex.ca>;Bratcher, Michael, EMNRD <mike.bratcher@emnrd.nm.gov>;Wells, Shelly, EMNRD <Shelly.Wells@emnrd.nm.gov>;Velez, Nelson, EMNRD <Nelson.Velez@emnrd.nm.gov>

RE: Incident #NAPP2334849928

Amy,

Your request for a 90-day extension to May 30th, 2024, is approved. Please include this e-mail correspondence in the remediation and/or closure report.

Robert Hamlet • Environmental Specialist - Advanced

Environmental Bureau **EMNRD** - Oil Conservation Division 506 W. Texas Ave. | Artesia, NM 88210 575.909.0302 | robert.hamlet@state.nm.us http://www.emnrd.state.nm.us/OCD/

From: Wells, Shelly, EMNRD <Shelly.Wells@emnrd.nm.gov>

Sent: Thursday, February 29, 2024 2:59 PM

To: Hamlet, Robert, EMNRD < Robert. Hamlet@emnrd.nm.gov> Cc: Bratcher, Michael, EMNRD < mike.bratcher@emnrd.nm.gov>

Subject: FW: [EXTERNAL] XTO - Extension Request - Poker Lake Unit 342 - Incident Number nAPP2334849928

From: Ruth, Amy <amy.ruth@exxonmobil.com> Sent: Thursday, February 29, 2024 2:44 PM

To: Enviro, OCD, EMNRD < OCD. Enviro@emnrd.nm.gov>

Received by OCD: 5/29/2024 2:31:35 PM

Cc: Romero, Alan alan.romero1@exxonmobil.com; Sally Carttar Subject: [EXTERNAL] XTO - Extension Request - Poker Lake Unit 342 - Incident Number nAPP2334849928

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments. Good afternoon,

XTO is requesting an extension for the current deadline of March 6, 2024, to complete remedial activities and submitting a report required in 19.15.29.12.B.(1) NMAC at the PLU 342 nAPP2334849928). In order to complete all remedial activities and submit a report, XTO requests an extension until June 4, 2024.

Please contact me with any questions or concerns.

Respectfully,

Amy C. Ruth

Environmental Advisor
UOG Unconventional Permian/Delaware
amy.ruth@exxonmobil.com

XTO ENERGY, INC. – An ExxonMobil Subsidiary

3104 E. Greene Street | Carlsbad, NM 88220 | M: 432.661.0571

This document may contain information that is privileged, confidential and exempt from disclosure under applicable law. If you are not the intended recipient, you are notified that any unauthorized disclosure, copying, distribution or action on/of the contents of this document is prohibited.

ATTACHMENT 4

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Chance Dixon Vertex 3101 Boyd Dr Carlsbad, New Mexico 88220

Generated 3/6/2024 11:39:20 AM Revision 2

JOB DESCRIPTION

PLU 342 23E-06066

JOB NUMBER

890-6119-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 3/6/2024 11:39:20 AM Revision 2

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies Page 2 of 24

Client: Vertex Laboratory Job ID: 890-6119-1 Project/Site: PLU 342 SDG: 23E-06066

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	15
Lab Chronicle	17
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
Receint Checklists	23

2

3

4

6

8

10

4.0

13

14

Definitions/Glossary

Client: Vertex Job ID: 890-6119-1 Project/Site: PLU 342 SDG: 23E-06066

Qualifiers

GC VOA

Qualifier **Qualifier Description**

Surrogate recovery exceeds control limits, low biased. S1-U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description**

S1+ Surrogate recovery exceeds control limits, high biased. U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

MS and/or MSD recovery exceeds control limits. U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid **CFU** Colony Forming Unit **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present **Practical Quantitation Limit** PQL

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Vertex Job ID: 890-6119-1 Project: PLU 342

Eurofins Carlsbad Job ID: 890-6119-1

> Job Narrative 890-6119-1

REVISION

The report being provided is a revision of the original report sent on 2/19/2024. The report (revision 2) is being revised due to Per client email, requesting sample depths be added to the report.

Report revision history

Revision 1 - 2/21/2024 - Reason - Per client email, requesting project name change.

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

The samples were received on 2/7/2024 8:53 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -1.2°C.

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: BH24-02 (890-6119-1), BH24-02 (890-6119-2), BH24-01 (890-6119-3), BH24-01 (890-6119-4), BH24-03 (890-6119-5) and BH24-03 (890-6119-6).

One or more containers for the following sample was received empty: BH24-03 (890-6119-5).

GC VOA

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-73192 and analytical batch 880-73320 was outside the control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-72729 and analytical batch 880-73314 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: BH24-02 (890-6119-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Method 300 ORGFM 28D - Soluble: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-72650 and analytical batch 880-72725 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 890-6119-1 SDG: 23E-06066

Project/Site: PLU 342

Client Sample ID: BH24-02 Lab Sample ID: 890-6119-1 Date Collected: 02/05/24 12:20 Matrix: Solid Date Received: 02/07/24 08:53

Sample Depth: 0'

Client: Vertex

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/14/24 16:48	02/16/24 15:57	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/14/24 16:48	02/16/24 15:57	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/14/24 16:48	02/16/24 15:57	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		02/14/24 16:48	02/16/24 15:57	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/14/24 16:48	02/16/24 15:57	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		02/14/24 16:48	02/16/24 15:57	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	78		70 - 130			02/14/24 16:48	02/16/24 15:57	1
1,4-Difluorobenzene (Surr)	78		70 - 130			02/14/24 16:48	02/16/24 15:57	1
Method: TAL SOP Total BTEX	- Total BTE	X Calculat	ion					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg			02/16/24 15:57	1
Method: SW846 8015 NM - Die	esel Range (Organics (DRO) (GC)					
Method: SW846 8015 NM - Die Analyte	_	Organics (Qualifier	DRO) (GC) RL	Unit	D	Prepared	Analyzed	Dil Fac
	_	Qualifier	, , ,	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 02/16/24 20:05	Dil Fac
Analyte Total TPH	<50.2	Qualifier U	RL 50.2		<u>D</u>	Prepared		
Analyte Total TPH Method: SW846 8015B NM - D	Result <50.2	Qualifier U	RL 50.2		<u>D</u>	Prepared Prepared		1
Analyte Total TPH Method: SW846 8015B NM - D Analyte Gasoline Range Organics	Result <50.2	Qualifier U Organics Qualifier	RL 50.2 (DRO) (GC)	mg/Kg	_ =	<u> </u>	02/16/24 20:05	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - D Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <50.2 Diesel Range Result	Qualifier U Organics Qualifier U	70.2 (DRO) (GC) RL	mg/Kg Unit	_ =	Prepared	02/16/24 20:05 Analyzed 02/16/24 20:05	
Analyte Total TPH Method: SW846 8015B NM - D Analyte Gasoline Range Organics (GRO)-C6-C10	Result <50.2 Diesel Range Result <50.2	Qualifier U Organics Qualifier U	RL 50.2 (DRO) (GC) RL 50.2	mg/Kg Unit mg/Kg	_ =	Prepared 02/09/24 11:20 02/09/24 11:20	02/16/24 20:05 Analyzed 02/16/24 20:05	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - D Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.2	Qualifier U Organics Qualifier U U	RL 50.2 (DRO) (GC) RL 50.2 50.2	mg/Kg Unit mg/Kg mg/Kg	_ =	Prepared 02/09/24 11:20 02/09/24 11:20	02/16/24 20:05 Analyzed 02/16/24 20:05 02/16/24 20:05	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - D Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.2	Qualifier U Organics Qualifier U U	RL 50.2 (DRO) (GC) RL 50.2 50.2 50.2	mg/Kg Unit mg/Kg mg/Kg	_ =	Prepared 02/09/24 11:20 02/09/24 11:20 02/09/24 11:20	02/16/24 20:05 Analyzed 02/16/24 20:05 02/16/24 20:05 02/16/24 20:05	1 Dil Fac

Client Sample ID: BH24-02 Lab Sample ID: 890-6119-2 Date Collected: 02/05/24 12:30 **Matrix: Solid**

RL

49.8

Unit

mg/Kg

D

Prepared

Analyzed

02/09/24 19:00

Dil Fac

Result Qualifier

5550

Date Received: 02/07/24 08:53

Sample Depth: 0.5'

Analyte

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		02/14/24 16:48	02/16/24 16:18	1
Toluene	< 0.00199	U	0.00199	mg/Kg		02/14/24 16:48	02/16/24 16:18	1
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		02/14/24 16:48	02/16/24 16:18	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		02/14/24 16:48	02/16/24 16:18	1
o-Xylene	< 0.00199	U	0.00199	mg/Kg		02/14/24 16:48	02/16/24 16:18	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		02/14/24 16:48	02/16/24 16:18	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	81		70 - 130			02/14/24 16:48	02/16/24 16:18	1

Matrix: Solid

Lab Sample ID: 890-6119-2

Job ID: 890-6119-1

Client: Vertex Project/Site: PLU 342 SDG: 23E-06066

Client Sample ID: BH24-02

Date Collected: 02/05/24 12:30 Date Received: 02/07/24 08:53

Sample Depth: 0.5'

Surrogate	%Recovery Qualifier	Limits	Prepared Analyze	d Dil Fac
1,4-Difluorobenzene (Surr)	89	70 - 130	02/14/24 16:48 02/16/24 16	6:18 1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			02/16/24 16:18	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9 U	49.9	mg/Kg			02/16/24 21:09	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		02/09/24 11:20	02/16/24 21:09	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		02/09/24 11:20	02/16/24 21:09	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		02/09/24 11:20	02/16/24 21:09	1
Surragata	9/ Bassivari	Qualifier	Limita			Droporod	Analyzad	Dil Ess

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	127		70 - 130	02/09/24 11:20	02/16/24 21:09	1
o-Terphenyl	109		70 - 130	02/09/24 11:20	02/16/24 21:09	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2030		25.2	mg/Kg			02/09/24 19:06	5

Client Sample ID: BH24-01 Lab Sample ID: 890-6119-3 **Matrix: Solid**

Date Collected: 02/05/24 12:00 Date Received: 02/07/24 08:53

Sample Depth: 0'

Method: SW846 8021B - Volatile Organic Compounds (Method:	: SW846 8021B	- Volatile Organic	Compounds (GC)
--	---------	---------------	--------------------	----------------

Analyte	Result	Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg	02/14/24 16:48	02/16/24 16:38	1
Toluene	< 0.00199	U	0.00199	mg/Kg	02/14/24 16:48	02/16/24 16:38	1
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg	02/14/24 16:48	02/16/24 16:38	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg	02/14/24 16:48	02/16/24 16:38	1
o-Xylene	< 0.00199	U	0.00199	mg/Kg	02/14/24 16:48	02/16/24 16:38	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg	02/14/24 16:48	02/16/24 16:38	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	80		70 - 130		02/14/24 16:48	02/16/24 16:38	1
1,4-Difluorobenzene (Surr)	70		70 - 130		02/14/24 16:48	02/16/24 16:38	1

l Method: TΔI	SOP Total BTFX	- Total RTFX	Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			02/16/24 16:38	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0 U	50.0	mg/Kg			02/16/24 21:30	1

02/09/24 19:12

Matrix: Solid

Job ID: 890-6119-1 Client: Vertex Project/Site: PLU 342 SDG: 23E-06066

Da Date Received: 02/07/24 08:53

Sample Depth: 0'

Silent Sample ID: BH24-01	Lab Sample ID: 890-6119-3
Pate Collected: 02/05/24 12:00	Matrix: Solid

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Result Qualifier Dil Fac Analyte RL Unit Prepared Analyzed <50.0 U 50.0 02/09/24 11:20 02/16/24 21:30 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 50.0 02/09/24 11:20 02/16/24 21:30 mg/Kg C10-C28) Oll Range Organics (Over C28-C36) <50.0 U 50.0 02/09/24 11:20 02/16/24 21:30 mg/Kg Prepared Dil Fac Surrogate %Recovery Qualifier Limits Analyzed 1-Chlorooctane 70 - 130 02/09/24 11:20 02/16/24 21:30 120 02/09/24 11:20 02/16/24 21:30 o-Terphenyl 105 70 - 130 Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier Unit RL Prepared Analyzed Dil Fac

Client Sample ID: BH24-01 Lab Sample ID: 890-6119-4

5.02

mg/Kg

334

Date Collected: 02/05/24 12:10 Date Received: 02/07/24 08:53

Sample Depth: 0.5'

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/14/24 16:48	02/16/24 16:59	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/14/24 16:48	02/16/24 16:59	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/14/24 16:48	02/16/24 16:59	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		02/14/24 16:48	02/16/24 16:59	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/14/24 16:48	02/16/24 16:59	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		02/14/24 16:48	02/16/24 16:59	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	77		70 - 130			02/14/24 16:48	02/16/24 16:59	1
1,4-Difluorobenzene (Surr)	71		70 - 130			02/14/24 16:48	02/16/24 16:59	1
Method: TAL SOP Total BTEX	- Total BTE	X Calculat	ion					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400	mg/Kg			02/16/24 16:59	1
Method: SW846 8015 NM - Die	esel Range	Organics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.2	U	50.2	mg/Kg			02/16/24 21:51	1
Method: SW846 8015B NM - D	iesel Range	Organics	(DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.2	U	50.2	mg/Kg		02/09/24 11:20	02/16/24 21:51	1
Diesel Range Organics (Over C10-C28)	<50.2	U	50.2	mg/Kg		02/09/24 11:20	02/16/24 21:51	1
OII Range Organics (Over C28-C36)	<50.2	U	50.2	mg/Kg		02/09/24 11:20	02/16/24 21:51	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	124		70 - 130			02/09/24 11:20	02/16/24 21:51	1

Job ID: 890-6119-1

Client: Vertex Project/Site: PLU 342 SDG: 23E-06066

Client Sample ID: BH24-01 Lab Sample ID: 890-6119-4

Date Collected: 02/05/24 12:10 Matrix: Solid Date Received: 02/07/24 08:53

Sample Depth: 0.5'

Method: EPA 300.0 - Anions, Id	on Chromat	ography - S	Soluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	112		5.05	mg/Kg			02/09/24 19:19	1

Client Sample ID: BH24-03 Lab Sample ID: 890-6119-6 Matrix: Solid

Date Collected: 02/05/24 12:50 Date Received: 02/07/24 08:53

Sample Depth: 1'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/14/24 16:48	02/16/24 17:20	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/14/24 16:48	02/16/24 17:20	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/14/24 16:48	02/16/24 17:20	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		02/14/24 16:48	02/16/24 17:20	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/14/24 16:48	02/16/24 17:20	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		02/14/24 16:48	02/16/24 17:20	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	74		70 - 130			02/14/24 16:48	02/16/24 17:20	1
1.4-Difluorobenzene (Surr)	93		70 - 130			02/14/24 16:48	02/16/24 17:20	1

Method: TAL SOP Total BTEX - Total BTEX Calculation									
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Total BTEX	<0.00400	U	0.00400	mg/Kg			02/16/24 17:20	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)									
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Total TPH	<50.4	U	50.4	mg/Kg			02/16/24 22:13	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.4	Ū	50.4	mg/Kg		02/09/24 11:20	02/16/24 22:13	1
Diesel Range Organics (Over C10-C28)	<50.4	U	50.4	mg/Kg		02/09/24 11:20	02/16/24 22:13	1
Oll Range Organics (Over C28-C36)	<50.4	U	50.4	mg/Kg		02/09/24 11:20	02/16/24 22:13	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	108		70 - 130			02/09/24 11:20	02/16/24 22:13	1
o-Terphenyl	88		70 - 130			02/09/24 11:20	02/16/24 22:13	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble									
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	41.4		5.04	mg/Kg			02/09/24 19:25	1

Surrogate Summary

 Client: Vertex
 Job ID: 890-6119-1

 Project/Site: PLU 342
 SDG: 23E-06066

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

			Percei	nt Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-39033-A-2-C MS	Matrix Spike	116	122	
880-39033-A-2-D MSD	Matrix Spike Duplicate	113	121	
890-6119-1	BH24-02	78	78	
890-6119-2	BH24-02	81	89	
890-6119-3	BH24-01	80	70	
890-6119-4	BH24-01	77	71	
890-6119-6	BH24-03	74	93	
LCS 880-73192/1-A	Lab Control Sample	112	120	
LCSD 880-73192/2-A	Lab Control Sample Dup	112	120	
MB 880-73192/5-A	Method Blank	66 S1-	98	

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr) DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)				
		1CO1	OTPH1			
Lab Sample ID	Client Sample ID	(70-130)	(70-130)			
890-6119-1	BH24-02	131 S1+	108			
890-6119-1 MS	BH24-02	128	95			
890-6119-1 MSD	BH24-02	119	89			
890-6119-2	BH24-02	127	109			
890-6119-3	BH24-01	120	105			
890-6119-4	BH24-01	124	105			
890-6119-6	BH24-03	108	88			
LCS 880-72729/2-A	Lab Control Sample	105	117			
LCSD 880-72729/3-A	Lab Control Sample Dup	106	107			
MB 880-72729/1-A	Method Blank	271 S1+	242 S1+			

Surrogate Legend

1CO = 1-Chlorooctane
OTPH = o-Terphenyl

Eurofins Carlsbad

Released to Imaging: 6/11/2024 11:36:10 AM

2

5

9

11

13

14

Client: Vertex Project/Site: PLU 342

Job ID: 890-6119-1 SDG: 23E-06066

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-73192/5-A

Matrix: Solid

Analysis Batch: 73320

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 73192

	IVID	IVID						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/14/24 16:48	02/16/24 11:06	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/14/24 16:48	02/16/24 11:06	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/14/24 16:48	02/16/24 11:06	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		02/14/24 16:48	02/16/24 11:06	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/14/24 16:48	02/16/24 11:06	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		02/14/24 16:48	02/16/24 11:06	1

MB MB

MD MD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	66	S1-	70 - 130
1,4-Difluorobenzene (Surr)	98		70 - 130

Client Sample ID: Lab Control Sample

02/14/24 16:48 02/16/24 11:06 02/14/24 16:48 02/16/24 11:06

Analyzed

Prepared

Prep Type: Total/NA Prep Batch: 73192

Prep Type: Total/NA

Prep Batch: 73192

Dil Fac

Lab Sample ID: LCS 880-73192/1-A **Matrix: Solid**

Analysis Batch: 73320

Spike	LCS	LCS				%Rec	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
0.100	0.09329		mg/Kg		93	70 - 130	
0.100	0.08754		mg/Kg		88	70 - 130	
0.100	0.09520		mg/Kg		95	70 - 130	
0.200	0.2018		mg/Kg		101	70 - 130	
0.100	0.09753		mg/Kg		98	70 - 130	
	Added 0.100 0.100 0.100 0.200	Added Result 0.100 0.09329 0.100 0.08754 0.100 0.09520 0.200 0.2018	Added Result Qualifier 0.100 0.09329 0.100 0.08754 0.100 0.09520 0.200 0.2018	Added Result Qualifier Unit 0.100 0.09329 mg/Kg 0.100 0.08754 mg/Kg 0.100 0.09520 mg/Kg 0.200 0.2018 mg/Kg	Added Result Qualifier Unit D 0.100 0.09329 mg/Kg 0.100 0.08754 mg/Kg 0.100 0.09520 mg/Kg 0.200 0.2018 mg/Kg	Added Result Qualifier Unit D %Rec 0.100 0.09329 mg/Kg 93 0.100 0.08754 mg/Kg 88 0.100 0.09520 mg/Kg 95 0.200 0.2018 mg/Kg 101	Added Result Qualifier Unit D %Rec Limits 0.100 0.09329 mg/Kg 93 70 - 130 0.100 0.08754 mg/Kg 88 70 - 130 0.100 0.09520 mg/Kg 95 70 - 130 0.200 0.2018 mg/Kg 101 70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	112		70 - 130
1,4-Difluorobenzene (Surr)	120		70 - 130

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Lab Sample ID: LCSD 880-73192/2-A

Analysis Batch: 73320

	Spike	LCSD L	CSD		%Rec		RPD
Analyte	Added	Result Q	Qualifier Unit	D %Rec	Limits	RPD	Limit
Benzene	0.100	0.09399	mg/Kg	94	70 - 130	1	35
Toluene	0.100	0.08640	mg/Kg	86	70 - 130	1	35
Ethylbenzene	0.100	0.09818	mg/Kg	98	70 - 130	3	35
m-Xylene & p-Xylene	0.200	0.2054	mg/Kg	103	70 - 130	2	35
o-Xylene	0.100	0.09884	mg/Kg	99	70 - 130	1	35

LCSD LCSD

Surrogate	%Recovery Qu	alifier Limit	s
4-Bromofluorobenzene (Surr)	112	70 - 1	30
1.4-Difluorobenzene (Surr)	120	70 - 1	30

Lab Sample ID: 880-39033-A-2-C MS

Analysis Batch: 73320									Prep ly Prep E	pe: 100 Batch: 7	
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene	<0.00199	U	0.100	0.09558		mg/Kg		95	70 - 130		
Toluene	< 0.00199	U	0.100	0.09032		mg/Kg		90	70 - 130		

Eurofins Carlsbad

Client Sample ID: Matrix Spike

Client: Vertex Job ID: 890-6119-1 Project/Site: PLU 342 SDG: 23E-06066

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-39033-A-2-C MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 73320

•	Sample Sa	ample	Spike	MS	MS				%Rec
Analyte	Result Qu	ualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Ethylbenzene	<0.00199 U		0.100	0.1022		mg/Kg		102	70 - 130
m-Xylene & p-Xylene	<0.00398 U		0.200	0.2133		mg/Kg		106	70 - 130
o-Xylene	<0.00199 U		0.100	0.1035		mg/Kg		103	70 - 130

MS MS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 70 - 130 116 1,4-Difluorobenzene (Surr) 122 70 - 130

Lab Sample ID: 880-39033-A-2-D MSD

Matrix: Solid

Analysis Batch: 73320

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Prep Batch: 73192

Prep Batch: 73192

Sample Sample Spike MSD MSD %Rec **RPD** Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Benzene <0.00199 U 0.101 0.1046 70 - 130 9 35 mg/Kg 104 Toluene <0.00199 U 0.09485 70 - 130 35 0.101 mg/Kg 94 Ethylbenzene <0.00199 U 0.101 0.1090 mg/Kg 108 70 - 130 6 35 m-Xylene & p-Xylene <0.00398 U 0.201 0.2261 mg/Kg 112 70 - 130 35 6 <0.00199 U 109 o-Xylene 0 101 0.1101 mg/Kg 70 - 130

MSD MSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 70 - 130 113 1,4-Difluorobenzene (Surr) 121 70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-72729/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA Prep Batch: 72729

Analysis Batch: 73314

	MB	MB							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		02/09/24 11:20	02/16/24 19:02	1	
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		02/09/24 11:20	02/16/24 19:02	1	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		02/09/24 11:20	02/16/24 19:02	1	

MB MB Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed 1-Chlorooctane 271 S1+ 70 - 130 02/09/24 11:20 02/16/24 19:02 70 - 130 02/09/24 11:20 02/16/24 19:02 o-Terphenyl 242 S1+

Lab Sample ID: LCS 880-72729/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid Analysis Batch: 73314

Analysis Batch: 73314							Prep E	Batch: 72729
•	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	1024		mg/Kg		102	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	930.8		mg/Kg		93	70 - 130	
C10-C28)								

Eurofins Carlsbad

Prep Type: Total/NA

Client: Vertex Project/Site: PLU 342

Job ID: 890-6119-1 SDG: 23E-06066

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-72729/2-A **Matrix: Solid**

Analysis Batch: 73314

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 72729

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	105		70 - 130
o-Terphenyl	117		70 - 130

Lab Sample ID: LCSD 880-72729/3-A

Matrix: Solid

Analysis Batch: 73314

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 72729

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Gasoline Range Organics 1000 1018 mg/Kg 102 70 - 130 20 (GRO)-C6-C10 1000 Diesel Range Organics (Over 956.9 mg/Kg 96 70 - 130 20 C10-C28)

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	106		70 - 130
o-Terphenyl	107		70 - 130

Lab Sample ID: 890-6119-1 MS

Matrix: Solid

Analysis Batch: 73314

Client Sample ID: BH24-02

Prep Type: Total/NA

Prep Batch: 72729

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<50.2	U	1010	1139		mg/Kg		109	70 - 130	
Diesel Range Organics (Over C10-C28)	<50.2	U	1010	1333		mg/Kg		129	70 - 130	

Spike

Added

1010

1010

MSD MSD

1006

1241

Result Qualifier

Unit

mg/Kg

mg/Kg

%Rec

95

120

	IVIS	IVIS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	128		70 - 130
o-Terphenyl	95		70 - 130

Lab Sample ID: 890-6119-1 MSD

Matrix: Solid

Analysis Batch: 73314

Gasoline Range Organics

Client Sample ID: BH24-02 **Prep Type: Total/NA**

70 - 130

Prep Batch: 72729

%Rec **RPD** Limits RPD Limit 70 - 130 12 20

7

20

(GRO)-C6-C10 Diesel Range Organics (Over

C10-C28)

Analyte

MSD MSD

Sample Sample

<50.2 U

<50.2 U

Result Qualifier

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	119		70 - 130
o-Terphenyl	89		70 - 130

Job ID: 890-6119-1

SDG: 23E-06066

Project/Site: PLU 342

Client: Vertex

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-72650/1-A **Matrix: Solid**

Lab Sample ID: LCS 880-72650/2-A

Client Sample ID: Method Blank

Prep Type: Soluble

Analysis Batch: 72725

MB MB

Result Qualifier RL Unit Analyzed Dil Fac Analyte D Prepared 5.00 02/09/24 16:28 Chloride <5.00 U mg/Kg

> Client Sample ID: Lab Control Sample **Prep Type: Soluble**

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Matrix Spike

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Matrix: Solid Analysis Batch: 72725

Spike LCS LCS

%Rec Added Result Qualifier Unit D %Rec Limits Analyte 250 90 - 110 Chloride 254.4 mg/Kg 102

Lab Sample ID: LCSD 880-72650/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid Prep Type: Soluble

Analysis Batch: 72725

Spike LCSD LCSD %Rec **RPD** Added Result Qualifier Limits **RPD Analyte** Unit %Rec Limit Chloride 250 264.2 106 90 - 110 20 mg/Kg

Lab Sample ID: 890-6117-A-11-B MS **Client Sample ID: Matrix Spike Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 72725

Spike MS MS %Rec Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 768 F1 1250 2129 mg/Kg 109 90 - 110

Lab Sample ID: 890-6117-A-11-C MSD

Matrix: Solid

Analysis Batch: 72725

MSD MSD RPD Sample Sample Spike %Rec Analyte Result Qualifier Added Result Qualifier RPD Unit %Rec Limits Limit Chloride 768 F1 1250 2186 F1 113 90 - 110 mg/Kg

Lab Sample ID: 890-6118-A-6-B MS

Matrix: Solid

Analysis Batch: 72725

Sample Sample Spike MS MS %Rec Result Qualifier Added %Rec Analyte Result Qualifier Unit D Limits 252 Chloride 152 383.5 mg/Kg 92 90 - 110

Lab Sample ID: 890-6118-A-6-C MSD

Matrix: Solid

Analysis Batch: 72725 Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier Added Analyte Result Qualifier Limits RPD Limit Unit %Rec Chloride 252 409.9 152 mg/Kg 103 90 - 110

QC Association Summary

 Client: Vertex
 Job ID: 890-6119-1

 Project/Site: PLU 342
 SDG: 23E-06066

GC VOA

Prep Batch: 73192

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6119-1	BH24-02	Total/NA	Solid	5035	
890-6119-2	BH24-02	Total/NA	Solid	5035	
890-6119-3	BH24-01	Total/NA	Solid	5035	
890-6119-4	BH24-01	Total/NA	Solid	5035	
890-6119-6	BH24-03	Total/NA	Solid	5035	
MB 880-73192/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-73192/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-73192/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-39033-A-2-C MS	Matrix Spike	Total/NA	Solid	5035	
880-39033-A-2-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 73320

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6119-1	BH24-02	Total/NA	Solid	8021B	73192
890-6119-2	BH24-02	Total/NA	Solid	8021B	73192
890-6119-3	BH24-01	Total/NA	Solid	8021B	73192
890-6119-4	BH24-01	Total/NA	Solid	8021B	73192
890-6119-6	BH24-03	Total/NA	Solid	8021B	73192
MB 880-73192/5-A	Method Blank	Total/NA	Solid	8021B	73192
LCS 880-73192/1-A	Lab Control Sample	Total/NA	Solid	8021B	73192
LCSD 880-73192/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	73192
880-39033-A-2-C MS	Matrix Spike	Total/NA	Solid	8021B	73192
880-39033-A-2-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	73192

Analysis Batch: 73586

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6119-1	BH24-02	Total/NA	Solid	Total BTEX	
890-6119-2	BH24-02	Total/NA	Solid	Total BTEX	
890-6119-3	BH24-01	Total/NA	Solid	Total BTEX	
890-6119-4	BH24-01	Total/NA	Solid	Total BTEX	
890-6119-6	BH24-03	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 72729

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6119-1	BH24-02	Total/NA	Solid	8015NM Prep	
890-6119-2	BH24-02	Total/NA	Solid	8015NM Prep	
890-6119-3	BH24-01	Total/NA	Solid	8015NM Prep	
890-6119-4	BH24-01	Total/NA	Solid	8015NM Prep	
890-6119-6	BH24-03	Total/NA	Solid	8015NM Prep	
MB 880-72729/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-72729/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-72729/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-6119-1 MS	BH24-02	Total/NA	Solid	8015NM Prep	
890-6119-1 MSD	BH24-02	Total/NA	Solid	8015NM Prep	

Analysis Batch: 73314

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6119-1	BH24-02	Total/NA	Solid	8015B NM	72729
890-6119-2	BH24-02	Total/NA	Solid	8015B NM	72729

Eurofins Carlsbad

2

3

4

7

^

11

14

QC Association Summary

Client: Vertex Job ID: 890-6119-1 Project/Site: PLU 342 SDG: 23E-06066

GC Semi VOA (Continued)

Analysis Batch: 73314 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6119-3	BH24-01	Total/NA	Solid	8015B NM	72729
890-6119-4	BH24-01	Total/NA	Solid	8015B NM	72729
890-6119-6	BH24-03	Total/NA	Solid	8015B NM	72729
MB 880-72729/1-A	Method Blank	Total/NA	Solid	8015B NM	72729
LCS 880-72729/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	72729
LCSD 880-72729/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	72729
890-6119-1 MS	BH24-02	Total/NA	Solid	8015B NM	72729
890-6119-1 MSD	BH24-02	Total/NA	Solid	8015B NM	72729

Analysis Batch: 73531

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6119-1	BH24-02	Total/NA	Solid	8015 NM	
890-6119-2	BH24-02	Total/NA	Solid	8015 NM	
890-6119-3	BH24-01	Total/NA	Solid	8015 NM	
890-6119-4	BH24-01	Total/NA	Solid	8015 NM	
890-6119-6	BH24-03	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 72650

Loudin Butoni 12000					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6119-1	BH24-02	Soluble	Solid	DI Leach	
890-6119-2	BH24-02	Soluble	Solid	DI Leach	
890-6119-3	BH24-01	Soluble	Solid	DI Leach	
890-6119-4	BH24-01	Soluble	Solid	DI Leach	
890-6119-6	BH24-03	Soluble	Solid	DI Leach	
MB 880-72650/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-72650/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-72650/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-6117-A-11-B MS	Matrix Spike	Soluble	Solid	DI Leach	
890-6117-A-11-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
890-6118-A-6-B MS	Matrix Spike	Soluble	Solid	DI Leach	
890-6118-A-6-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 72725

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6119-1	BH24-02	Soluble	Solid	300.0	72650
890-6119-2	BH24-02	Soluble	Solid	300.0	72650
890-6119-3	BH24-01	Soluble	Solid	300.0	72650
890-6119-4	BH24-01	Soluble	Solid	300.0	72650
890-6119-6	BH24-03	Soluble	Solid	300.0	72650
MB 880-72650/1-A	Method Blank	Soluble	Solid	300.0	72650
LCS 880-72650/2-A	Lab Control Sample	Soluble	Solid	300.0	72650
LCSD 880-72650/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	72650
890-6117-A-11-B MS	Matrix Spike	Soluble	Solid	300.0	72650
890-6117-A-11-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	72650
890-6118-A-6-B MS	Matrix Spike	Soluble	Solid	300.0	72650
890-6118-A-6-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	72650

SDG: 23E-06066

Client Sample ID: BH24-02

Client: Vertex

Project/Site: PLU 342

Date Collected: 02/05/24 12:20 Date Received: 02/07/24 08:53

Lab Sample ID: 890-6119-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	73192	02/14/24 16:48	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73320	02/16/24 15:57	SM	EET MID
Total/NA	Analysis	Total BTEX		1			73586	02/16/24 15:57	SM	EET MID
Total/NA	Analysis	8015 NM		1			73531	02/16/24 20:05	SM	EET MID
Total/NA	Prep	8015NM Prep			9.96 g	10 mL	72729	02/09/24 11:20	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73314	02/16/24 20:05	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	72650	02/08/24 11:58	SA	EET MID
Soluble	Analysis	300.0		10			72725	02/09/24 19:00	CH	EET MID

Lab Sample ID: 890-6119-2

Matrix: Solid

Client Sample ID: BH24-02 Date Collected: 02/05/24 12:30 Date Received: 02/07/24 08:53

Batch Batch Dil Initial Final Batch Prepared Method Number **Prep Type** Type Run **Factor Amount** Amount or Analyzed **Analyst** Lab Total/NA Prep 5035 73192 02/14/24 16:48 MNR EET MID 5.02 g 5 mL 8021B Total/NA 5 mL 73320 02/16/24 16:18 SM **EET MID** Analysis 5 mL 1 Total/NA Total BTEX Analysis 1 73586 02/16/24 16:18 SM **EET MID** Total/NA 8015 NM 73531 **EET MID** Analysis 1 02/16/24 21:09 SM Total/NA Prep 8015NM Prep 10.02 g 10 mL 72729 02/09/24 11:20 TKC **EET MID** Total/NA 8015B NM 73314 02/16/24 21:09 SM **EET MID** Analysis 1 uL 1 uL Soluble 4.96 g 50 mL 72650 02/08/24 11:58 SA Leach DI Leach **EET MID** Soluble 300.0 02/09/24 19:06 CH Analysis 5 72725 **EET MID**

Client Sample ID: BH24-01 Lab Sample ID: 890-6119-3 Date Collected: 02/05/24 12:00 Matrix: Solid

Date Received: 02/07/24 08:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	73192	02/14/24 16:48	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73320	02/16/24 16:38	SM	EET MID
Total/NA	Analysis	Total BTEX		1			73586	02/16/24 16:38	SM	EET MID
Total/NA	Analysis	8015 NM		1			73531	02/16/24 21:30	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	72729	02/09/24 11:20	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73314	02/16/24 21:30	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	72650	02/08/24 11:58	SA	EET MID
Soluble	Analysis	300.0		1			72725	02/09/24 19:12	CH	EET MID

Client Sample ID: BH24-01 Lab Sample ID: 890-6119-4 Date Collected: 02/05/24 12:10 Matrix: Solid

Date Received: 02/07/24 08:53

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	73192	02/14/24 16:48	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73320	02/16/24 16:59	SM	EET MID
Total/NA	Analysis	Total BTEX		1			73586	02/16/24 16:59	SM	EET MID

Lab Chronicle

Client: Vertex Job ID: 890-6119-1 Project/Site: PLU 342 SDG: 23E-06066

Client Sample ID: BH24-01

Date Collected: 02/05/24 12:10 Date Received: 02/07/24 08:53

Lab Sample ID: 890-6119-4

Matrix: Solid

		Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	8015 NM		1			73531	02/16/24 21:51	SM	EET MID
	Total/NA	Prep	8015NM Prep			9.97 g	10 mL	72729	02/09/24 11:20	TKC	EET MID
	Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73314	02/16/24 21:51	SM	EET MID
	Soluble	Leach	DI Leach			4.95 g	50 mL	72650	02/08/24 11:58	SA	EET MID
L	Soluble	Analysis	300.0		1			72725	02/09/24 19:19	CH	EET MID

Client Sample ID: BH24-03 Lab Sample ID: 890-6119-6 Date Collected: 02/05/24 12:50 **Matrix: Solid**

Date Received: 02/07/24 08:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	73192	02/14/24 16:48	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73320	02/16/24 17:20	SM	EET MID
Total/NA	Analysis	Total BTEX		1			73586	02/16/24 17:20	SM	EET MID
Total/NA	Analysis	8015 NM		1			73531	02/16/24 22:13	SM	EET MID
Total/NA	Prep	8015NM Prep			9.92 g	10 mL	72729	02/09/24 11:20	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73314	02/16/24 22:13	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	72650	02/08/24 11:58	SA	EET MID
Soluble	Analysis	300.0		1			72725	02/09/24 19:25	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

 Client: Vertex
 Job ID: 890-6119-1

 Project/Site: PLU 342
 SDG: 23E-06066

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date
exas	NELAI	Р	T104704400-23-26	06-30-24
The following analyte	s are included in this reno	rt but the laboratory is r	not certified by the governing authori	ity. This list may include
The following analyte	o are iniciaaca in tilio repo	it, but the luberatory is i	not ocitined by the governing duthor	ity. Triio not may morade
,	does not offer certification	•	not sertified by the governing dutilon	ity. Triio iiot may moidae
,	•	•	Analyte	ry. This list may include
for which the agency	does not offer certification	i.	, , ,	

-

4

5

7

9

10

12

1 4

Method Summary

Client: Vertex

Project/Site: PLU 342

Job ID: 890-6119-1

SDG: 23E-06066

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Vertex

Project/Site: PLU 342

Job ID: 890-6119-1

SDG: 23E-06066

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-6119-1	BH24-02	Solid	02/05/24 12:20	02/07/24 08:53	0'
890-6119-2	BH24-02	Solid	02/05/24 12:30	02/07/24 08:53	0.5'
890-6119-3	BH24-01	Solid	02/05/24 12:00	02/07/24 08:53	0'
890-6119-4	BH24-01	Solid	02/05/24 12:10	02/07/24 08:53	0.5'
890-6119-6	BH24-03	Solid	02/05/24 12:50	02/07/24 08:53	1'

Mee: XTO JULY Program: UST/PST State of Project: Will Program: UST/PST State of Project: Reporting: Level II Deliverables: EDD Conf. T.	www.usr/Psr[Evel	Work Order Comments Work Order Comments UST/PST □ PRP□ Brownfields □ RRC□ Level II □ Level III □ PST/UST □ TRRP□ Level II □ Level III □ PST/UST □ TRRP□ Reservative None: NO Cool: Cool HCL: HC H, SO 4: H2 Na 5, O 3: Na SO 3 Zn Acetate-Na OH; Na 95, O 3: Na SO 3 Na 5, O 3: Na SO 3 Sample Com Sample Com Se Ag SiO₂ Na Sr TI Sn U V Zn Hg: 1631 / 245.1 / 7470 / 7471 Hg: 1631 / 245.1 / 7470 / 7471
ANALYSIS REQUEST Code	UST/PST Control Contro	Level II C EDD E ECT EDD E EST E EDD E EDD E EST E EDD E EDD E EST E EDD E EDD E EST E EDD E EST E EDD E EST E EDD
ANALYSIS REQUEST ANALYSIS REQUEST Compared to the compared t	Se Ag S	Se Ag 5 Hg: 1
ANALYSIS REQUEST ANALYSIS REQUEST (1 C C C C C C C C C C C C C C C C C C C	Se Ag 9	Se Agg 5 Hg: 1
\$\\\ \tag{3.08} \\ \tag{4.5} \\ \tag{5.5} \\	Se Ag 9	Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag Sir Co Cu Pb Mn Mo Ni Se Ag Ti U Hg: 1 Usboontractors. It assigns standard terms and conditions out hosses are due to circumstances beyond the control conditions and the enforced unless previously negotiated. Relinquished by: (Signature) Received by
# # for the parameters of the	H-5G-1:H2 H-9C-1:HP NaHSO 4: NABIS Na 5.5 O3: NaSO 3 Zn Acetate-NaOH: NaOH+Ascorbic Aci NaOH+Ascorbic	H-5G-4:H2 H-9C 4: HP NaHSO 4: NABIS Na 5,50-3: NASO 3 Zn Acetate-NaOH- NaOH+Ascorbic Aci Sample Com Sample Com Se Ag SiO ₂ Na Sr TI Sn U V Zn Hg: 1631 / 245.1 / 7470 / 7471
Comp Cont Cont Cont Cont Cont Cont Cont Cont	Na ₂ S Zn A Na ₃ D Na ₃ D Na ₃ D Na ₃ D Sr TI Sn Hor 1231 20 8 1 7 4 70	Na 52 Zn And And And And And And And And And An
Comp Cont 25 T	Se Ag SiO ₂ Na Sr TI Sn	Na Or Na Sr TI Sn Hg: 1631 / 245.1 / 7470
Comp Comp Comp	Se Ag SiO ₂ Na Sr Ti Sn	Se Ag SiO ₂ Na Sr Tl Sn Hg: 1631 / 245.1 / 7470
0 3	0.5 2	Se Ag SiO ₂ Na Sr Tl Sn U V Hg: 1631 / 245.1 / 7470 / 747
3	PM Texas 11 Al Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag SiO ₂ Na Sr 71 Sn U V Zn Heinten Splus SRCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Ti II Heinten Sio Share	Se Ag SiO ₂ Na Sr Tl Sn U V Hg: 1631/245.1/7470 /747
5	PLP 6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Ti II Hot 1631 (2012) 2013	Se Ag SiO ₂ Na Sr Tl Sn U V Hg: 1631 / 245.1 / 7470 / 747
	W Texas 11 Al Sb As Ba Be Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO ₂ Na Sr Tl Sn U V Zn PLP6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl II Hot 1631 (1967)	Se Ag SiO ₂ Na Sr Tl Sn U V Hg: 1631 / 245.1 / 7470 / 747
19:10:17:24:27:17:47:0		

Login Sample Receipt Checklist

Client: Vertex Job Number: 890-6119-1 SDG Number: 23E-06066

Login Number: 6119 **List Source: Eurofins Carlsbad**

List Number: 1

Creator: Lopez, Abraham

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Login Sample Receipt Checklist

Client: Vertex Job Number: 890-6119-1 SDG Number: 23E-06066

List Source: Eurofins Midland
List Number: 2
List Creation: 02/08/24 11:21 AM

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

6

7

10

12

13

14

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Generated 2/19/2024 4:44:32 PM

Attn: Chance Dixon Vertex 3101 Boyd Dr Carlsbad, New Mexico 88220

JOB DESCRIPTION

PLU 342 23E 06066

JOB NUMBER

890-6118-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 2/19/2024 4:44:32 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Client: Vertex Laboratory Job ID: 890-6118-1 Project/Site: PLU 342 SDG: 23E 06066

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	13
QC Sample Results	15
QC Association Summary	23
Lab Chronicle	26
Certification Summary	29
Method Summary	30
Sample Summary	31
Racaint Chacklists	32

Definitions/Glossary

 Client: Vertex
 Job ID: 890-6118-1

 Project/Site: PLU 342
 SDG: 23E 06066

Qualifiers

GC VOA Qualifier

 Qualifier
 Qualifier Description

 F1
 MS and/or MSD recovery exceeds control limits.

 F2
 MS/MSD RPD exceeds control limits

S1- Surrogate recovery exceeds control limits, low biased.
U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

 Qualifier
 Qualifier Description

 S1+
 Surrogate recovery exceeds control limits, high biased.

 U
 Indicates the analyte was analyzed for but not detected.

HPLC/IC

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Carlsbad

Released to Imaging: 6/11/2024 11:36:10 AM

9

5

7

10

12

Case Narrative

Client: Vertex Job ID: 890-6118-1 Project: PLU 342

Eurofins Carlsbad Job ID: 890-6118-1

Job Narrative 890-6118-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 2/7/2024 8:53 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -1.2°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: BH24-04 (890-6118-1), BH24-04 (890-6118-2), BH24-05 (890-6118-3), BH24-05 (890-6118-4), BH24-06 (890-6118-5), BH24-06 (890-6118-6), BH24-07 (890-6118-7) and BH24-07 (890-6118-8).

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-73190 and analytical batch 880-73398 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-73398 recovered above the upper control limit for Benzene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 880-73398/64).

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-73189 and 880-73192 and analytical batch 880-73320 was outside the control limits.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-73189 and analytical batch 880-73320 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-73320 recovered below the lower control limit for Ethylbenzene, m-Xylene & p-Xylene and o-Xylene. An acceptable CCV was ran within the 12 hour window, therefore the data has been qualified and reported. The associated sample is impacted: (CCV 880-73320/64).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-72728 and analytical batch 880-73314 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Lab Sample ID: 890-6118-1

Client Sample Results

 Client: Vertex
 Job ID: 890-6118-1

 Project/Site: PLU 342
 SDG: 23E 06066

Client Sample ID: BH24-04

Date Collected: 02/06/24 09:30 Date Received: 02/07/24 08:53

Sample Depth: 0

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		02/14/24 16:44	02/17/24 13:21	1
Toluene	<0.00202	U	0.00202	mg/Kg		02/14/24 16:44	02/17/24 13:21	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		02/14/24 16:44	02/17/24 13:21	1
m-Xylene & p-Xylene	<0.00404	U	0.00404	mg/Kg		02/14/24 16:44	02/17/24 13:21	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		02/14/24 16:44	02/17/24 13:21	1
Xylenes, Total	<0.00404	U	0.00404	mg/Kg		02/14/24 16:44	02/17/24 13:21	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130			02/14/24 16:44	02/17/24 13:21	1
1,4-Difluorobenzene (Surr)	107		70 - 130			02/14/24 16:44	02/17/24 13:21	1
Method: TAL SOP Total BTEX - 7 Analyte	Result	Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	
Analyte Total BTEX	Result < 0.00404	Qualifier U	0.00404	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 02/17/24 13:21	Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Diese	Result <0.00404 Range Organ	Qualifier U	0.00404 GC)	mg/Kg	_ =		02/17/24 13:21	·
Analyte Total BTEX	Result <0.00404 Range Organ	Qualifier U ics (DRO) (Qualifier	0.00404		<u>D</u>	Prepared Prepared		
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte	Result <0.00404 Pl Range Organ Result <49.8	Qualifier U ics (DRO) (Qualifier U	0.00404 GC) RL 49.8	mg/Kg	_ =		02/17/24 13:21 Analyzed	1 Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH	Result <0.00404 el Range Organ Result <49.8 sel Range Orga	Qualifier U ics (DRO) (Qualifier U	0.00404 GC) RL 49.8	mg/Kg	_ =		02/17/24 13:21 Analyzed	Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese	Result <0.00404 el Range Organ Result <49.8 sel Range Orga	Qualifier U ics (DRO) (Qualifier U nics (DRO) Qualifier	0.00404 GC) RL 49.8 (GC)	mg/Kg Unit mg/Kg	<u>D</u>	Prepared	02/17/24 13:21 Analyzed 02/16/24 10:18	Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics	Result <0.00404 el Range Organ Result <49.8 sel Range Orga Result	Qualifier U ics (DRO) (Qualifier U nics (DRO) Qualifier U	0.00404 GC) RL 49.8 (GC) RL	mg/Kg Unit mg/Kg Unit	<u>D</u>	Prepared Prepared	02/17/24 13:21 Analyzed 02/16/24 10:18 Analyzed	1 Dil Fac

 Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

 Analyte
 Result
 Qualifier
 RL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Chloride
 1250
 24.8
 mg/Kg
 02/09/24 17:43
 5

Limits

70 - 130

70 - 130

%Recovery Qualifier

118 102

Client Sample ID: BH24-04

Date Collected: 02/06/24 09:40 Date Received: 02/07/24 08:53

Sample Depth: 0.5

Surrogate

o-Terphenyl

1-Chlorooctane

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		02/14/24 16:44	02/17/24 13:41	1
Toluene	<0.00201	U	0.00201	mg/Kg		02/14/24 16:44	02/17/24 13:41	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		02/14/24 16:44	02/17/24 13:41	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		02/14/24 16:44	02/17/24 13:41	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		02/14/24 16:44	02/17/24 13:41	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		02/14/24 16:44	02/17/24 13:41	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130			02/14/24 16:44	02/17/24 13:41	1

Eurofins Carlsbad

2

3

7

_

- -

12

Dil Fac

Matrix: Solid

Analyzed

02/16/24 10:18

02/16/24 10:18

Lab Sample ID: 890-6118-2

Prepared

02/09/24 11:16

02/09/24 11:16

Job ID: 890-6118-1

Lab Sample ID: 890-6118-2

Client: Vertex Project/Site: PLU 342 SDG: 23E 06066

Client Sample ID: BH24-04

Date Collected: 02/06/24 09:40 Date Received: 02/07/24 08:53

Sample Depth: 0.5

Method: SW846 8021B	Volatile Organic Compou	nds (GC) (Continued)
Michiga, Offord OUL ID	Tolutile Organie Compou	ilus (GG) (GGillillucu)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1 4-Difluorobenzene (Surr)	104	70 130	02/14/24 16:44	02/17/24 13:41	1

Method: TAL So	OP Total BTFX	- Total BTEX	Calculation
INICIIIOG. IAL O	JI IOLAI DILA	- IUlai DILA	Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	ma/Ka			02/17/24 13:41	1

Mathada OMO40 0045 NM Disasi Damas Omenica (DDO) (OO	Α.
Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC	. 1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.3	U	50.3	ma/Ka			02/16/24 11:25	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.3	U	50.3	mg/Kg		02/09/24 11:16	02/16/24 11:25	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.3	U	50.3	mg/Kg		02/09/24 11:16	02/16/24 11:25	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.3	U	50.3	mg/Kg		02/09/24 11:16	02/16/24 11:25	1

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	108	70 - 130	02/09/24 11:16	02/16/24 11:25	1
o-Terphenyl	90	70 - 130	02/09/24 11:16	02/16/24 11:25	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	161		4.99	mg/Kg			02/09/24 17:50	1

Client Sample ID: BH24-05 Lab Sample ID: 890-6118-3

Date Collected: 02/06/24 09:50 Date Received: 02/07/24 08:53

Sample Depth: 0

н	Method: SW846 803	04D V-1-41-	O	
н	METHOD: SWX46 XII	71B - VOIATIIE	Organic Comp	Allinas (Gal.)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		02/14/24 16:44	02/17/24 14:02	1
Toluene	<0.00202	U	0.00202	mg/Kg		02/14/24 16:44	02/17/24 14:02	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		02/14/24 16:44	02/17/24 14:02	1
m-Xylene & p-Xylene	<0.00403	U	0.00403	mg/Kg		02/14/24 16:44	02/17/24 14:02	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		02/14/24 16:44	02/17/24 14:02	1
Xylenes, Total	<0.00403	U	0.00403	mg/Kg		02/14/24 16:44	02/17/24 14:02	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130			02/14/24 16:44	02/17/24 14:02	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	DII Fac
4-Bromofluorobenzene (Surr)	104		70 - 130	02/14/24 16:44	02/17/24 14:02	1
1,4-Difluorobenzene (Surr)	105		70 - 130	02/14/24 16:44	02/17/24 14:02	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00403	U	0.00403	mg/Kg			02/17/24 14:02	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.2	U	50.2	mg/Kg		_	02/16/24 11:47	1

Eurofins Carlsbad

Matrix: Solid

Released to Imaging: 6/11/2024 11:36:10 AM

Lab Sample ID: 890-6118-3

Client: Vertex Job ID: 890-6118-1 Project/Site: PLU 342 SDG: 23E 06066

Client Sample ID: BH24-05

Date Collected: 02/06/24 09:50 Date Received: 02/07/24 08:53

Sample Depth: 0

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.2	U	50.2	mg/Kg		02/09/24 11:16	02/16/24 11:47	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.2	U	50.2	mg/Kg		02/09/24 11:16	02/16/24 11:47	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.2	U	50.2	mg/Kg		02/09/24 11:16	02/16/24 11:47	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 130			02/09/24 11:16	02/16/24 11:47	1
o-Terphenyl	90		70 - 130			02/09/24 11:16	02/16/24 11:47	1
- Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Amaluda	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	result						·, ·	

Lab Sample ID: 890-6118-4 Client Sample ID: BH24-05

Date Collected: 02/06/24 10:00 Date Received: 02/07/24 08:53

Released to Imaging: 6/11/2024 11:36:10 AM

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		02/14/24 16:44	02/17/24 14:23	1
Toluene	< 0.00199	U	0.00199	mg/Kg		02/14/24 16:44	02/17/24 14:23	1
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		02/14/24 16:44	02/17/24 14:23	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		02/14/24 16:44	02/17/24 14:23	1
o-Xylene	< 0.00199	U	0.00199	mg/Kg		02/14/24 16:44	02/17/24 14:23	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		02/14/24 16:44	02/17/24 14:23	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130			02/14/24 16:44	02/17/24 14:23	1
1,4-Difluorobenzene (Surr)	100		70 - 130			02/14/24 16:44	02/17/24 14:23	1
Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			02/17/24 14:23	1
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.4	U	50.4	mg/Kg			02/16/24 12:09	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.4	U	50.4	mg/Kg		02/09/24 11:16	02/16/24 12:09	1
Diesel Range Organics (Over C10-C28)	<50.4	U	50.4	mg/Kg		02/09/24 11:16	02/16/24 12:09	1
Oll Range Organics (Over C28-C36)	<50.4	U	50.4	mg/Kg		02/09/24 11:16	02/16/24 12:09	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	112		70 - 130			02/09/24 11:16	02/16/24 12:09	1
o-Terphenyl	96		70 - 130			02/09/24 11:16	02/16/24 12:09	1

Eurofins Carlsbad

Matrix: Solid

Job ID: 890-6118-1

Matrix: Solid

Lab Sample ID: 890-6118-4

Client: Vertex Project/Site: PLU 342 SDG: 23E 06066

Client Sample ID: BH24-05

Date Collected: 02/06/24 10:00 Date Received: 02/07/24 08:53

Sample Depth: 0.5

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble											
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac			
Chloride	46.3		5.03	mg/Kg			02/09/24 18:02	1			

Client Sample ID: BH24-06 Lab Sample ID: 890-6118-5 Matrix: Solid

Date Collected: 02/06/24 10:10 Date Received: 02/07/24 08:53

Sample Depth: 0

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00198	U	0.00198	mg/Kg		02/14/24 16:44	02/17/24 14:43	
Toluene	<0.00198	U	0.00198	mg/Kg		02/14/24 16:44	02/17/24 14:43	
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		02/14/24 16:44	02/17/24 14:43	
m-Xylene & p-Xylene	<0.00396	U	0.00396	mg/Kg		02/14/24 16:44	02/17/24 14:43	
o-Xylene	<0.00198	U	0.00198	mg/Kg		02/14/24 16:44	02/17/24 14:43	
Xylenes, Total	<0.00396	U	0.00396	mg/Kg		02/14/24 16:44	02/17/24 14:43	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	102		70 - 130			02/14/24 16:44	02/17/24 14:43	
1,4-Difluorobenzene (Surr)	102		70 - 130			02/14/24 16:44	02/17/24 14:43	
Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00396	U	0.00396	mg/Kg			02/17/24 14:43	
Analyte Total TPH		Qualifier U		Unit mg/Kg	D	Prepared	Analyzed 02/16/24 12:31	Dil Fa
Iotal IPH	<50.5	U	50.5	mg/Kg			02/16/24 12:31	
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.5	U	50.5	mg/Kg		02/09/24 11:16	02/16/24 12:31	
Diesel Range Organics (Over C10-C28)	<50.5	U	50.5	mg/Kg		02/09/24 11:16	02/16/24 12:31	
Oll Range Organics (Over C28-C36)	<50.5	U	50.5	mg/Kg		02/09/24 11:16	02/16/24 12:31	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	122		70 - 130			02/09/24 11:16	02/16/24 12:31	
o-Terphenyl	101		70 - 130			02/09/24 11:16	02/16/24 12:31	
Method: EPA 300.0 - Anions, Ion	• •	-						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	190		4.98	mg/Kg			02/09/24 18:09	

Client: Vertex Job ID: 890-6118-1 Project/Site: PLU 342 SDG: 23E 06066

Client Sample ID: BH24-06 Lab Sample ID: 890-6118-6

Date Collected: 02/06/24 10:20 Matrix: Solid Date Received: 02/07/24 08:53

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		02/14/24 16:41	02/17/24 03:57	1
Toluene	< 0.00199	U	0.00199	mg/Kg		02/14/24 16:41	02/17/24 03:57	1
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		02/14/24 16:41	02/17/24 03:57	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		02/14/24 16:41	02/17/24 03:57	1
o-Xylene	< 0.00199	U	0.00199	mg/Kg		02/14/24 16:41	02/17/24 03:57	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		02/14/24 16:41	02/17/24 03:57	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	81		70 - 130			02/14/24 16:41	02/17/24 03:57	1
1,4-Difluorobenzene (Surr)	85		70 - 130			02/14/24 16:41	02/17/24 03:57	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			02/17/24 03:57	1
Method: SW846 8015 NM - Diese	al Range Organ	ice (DRO) ((ec)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7	mg/Kg			02/16/24 12:53	1
Markarak OMO 40 0045D NES - Di								
Method: SW846 8015B NM - Die:	sel Range Orga	nics (DRO)	(GC)					,
	•	nics (DRO) Qualifier	(GC)	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Gasoline Range Organics	•	Qualifier	• •	<mark>Unit</mark> mg/Kg	<u>D</u>	Prepared 02/09/24 11:16	Analyzed 02/16/24 12:53	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U	RL		<u>D</u>			
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36)	Result <49.7	Qualifier U	RL 49.7	mg/Kg	<u>D</u>	02/09/24 11:16	02/16/24 12:53	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.7 <49.7	Qualifier U U U	49.7 49.7	mg/Kg	<u>D</u>	02/09/24 11:16 02/09/24 11:16	02/16/24 12:53 02/16/24 12:53	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.7 <49.7 <49.7	Qualifier U U U	RL 49.7 49.7 49.7	mg/Kg	<u> </u>	02/09/24 11:16 02/09/24 11:16 02/09/24 11:16	02/16/24 12:53 02/16/24 12:53 02/16/24 12:53	1 1 1 Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate	Result <49.7 <49.7 <49.7 <49.7 <49.7 %Recovery	Qualifier U U U	### RL 49.7 49.7 49.7 Limits	mg/Kg	<u> </u>	02/09/24 11:16 02/09/24 11:16 02/09/24 11:16 Prepared	02/16/24 12:53 02/16/24 12:53 02/16/24 12:53 Analyzed	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49.7 <49	Qualifier U U Qualifier	RL 49.7 49.7 49.7 Limits 70 - 130 70 - 130	mg/Kg	<u>D</u>	02/09/24 11:16 02/09/24 11:16 02/09/24 11:16 Prepared 02/09/24 11:16	02/16/24 12:53 02/16/24 12:53 02/16/24 12:53 Analyzed 02/16/24 12:53	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U U Qualifier	RL 49.7 49.7 49.7 Limits 70 - 130 70 - 130	mg/Kg	<u>D</u>	02/09/24 11:16 02/09/24 11:16 02/09/24 11:16 Prepared 02/09/24 11:16	02/16/24 12:53 02/16/24 12:53 02/16/24 12:53 Analyzed 02/16/24 12:53	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Client Sample ID: BH24-07 Lab Sample ID: 890-6118-7 Date Collected: 02/06/24 10:30

Date Received: 02/07/24 08:53

Sample Depth: 0

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		02/14/24 16:41	02/17/24 04:18	1
Toluene	<0.00198	U	0.00198	mg/Kg		02/14/24 16:41	02/17/24 04:18	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		02/14/24 16:41	02/17/24 04:18	1
m-Xylene & p-Xylene	<0.00396	U	0.00396	mg/Kg		02/14/24 16:41	02/17/24 04:18	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		02/14/24 16:41	02/17/24 04:18	1
Xylenes, Total	<0.00396	U	0.00396	mg/Kg		02/14/24 16:41	02/17/24 04:18	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		70 - 130			02/14/24 16:41	02/17/24 04:18	1

Eurofins Carlsbad

Released to Imaging: 6/11/2024 11:36:10 AM

Matrix: Solid

Lab Sample ID: 890-6118-7

Client Sample Results

Client: Vertex Job ID: 890-6118-1 Project/Site: PLU 342 SDG: 23E 06066

Client Sample ID: BH24-07

Date Collected: 02/06/24 10:30 Date Received: 02/07/24 08:53

Sample Depth: 0

Method: SW846 8021B - Vo	latile Organic Compounds	(GC) (Continued)
--------------------------	--------------------------	------------------

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1.4-Difluorobenzene (Surr)	79	70 - 130	02/14/24 16:41	02/17/24 04:18	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00396	U	0.00396	mg/Kg			02/17/24 04:18	1

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9 U	49.9	mg/Kg			02/16/24 13:15	1

Method: SW846 8015B NM - Diesel Range Organics	(DRO)	(GC)	١
motified. Offerto College Ithin Biodol Rungo Organico	(5.10)	, , , , ,	,

		(,	\ - - /					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		02/09/24 11:16	02/16/24 13:15	1
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		02/09/24 11:16	02/16/24 13:15	1
C10-C28) OII Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		02/09/24 11:16	02/16/24 13:15	1
Surrogato	%Pacayary	Qualifier	l imite			Propared	Analyzad	Dil Eac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	111		70 - 130	02/09/24 11:16	02/16/24 13:15	1
o-Terphenyl	95		70 - 130	02/09/24 11:16	02/16/24 13:15	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	53.6	4.97	mg/Kg			02/09/24 18:34	1

Client Sample ID: BH24-07 Lab Sample ID: 890-6118-8

Date Collected: 02/06/24 10:40 Date Received: 02/07/24 08:53

Sample Depth: 0.5

ı	Method: SW846 8021B	Valatila Ossasia	O = (OO)

Welliou. Syvo46 60216 - Voial	method. 5wo46 6021B - volatile Organic Compounds (GC)								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	<0.00202	U	0.00202	mg/Kg		02/14/24 16:48	02/16/24 14:33	1	
Toluene	<0.00202	U	0.00202	mg/Kg		02/14/24 16:48	02/16/24 14:33	1	
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		02/14/24 16:48	02/16/24 14:33	1	
m-Xylene & p-Xylene	<0.00403	U	0.00403	mg/Kg		02/14/24 16:48	02/16/24 14:33	1	
o-Xylene	<0.00202	U	0.00202	mg/Kg		02/14/24 16:48	02/16/24 14:33	1	
Xylenes, Total	<0.00403	U	0.00403	mg/Kg		02/14/24 16:48	02/16/24 14:33	1	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	83		70 - 130			02/14/24 16:48	02/16/24 14:33	1	

4-bromonuorobenzene (Surr)	03	70 - 130	02/14/24 10.46	02/10/24 14.33	1
1,4-Difluorobenzene (Surr)	73	70 - 130	02/14/24 16:48	02/16/24 14:33	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Released to Imaging: 6/11/2024 11:36:10 AM

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	DII Fac
Total BTEX	<0.00403	U	0.00403	mg/Kg			02/16/24 14:33	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			02/16/24 13:36	1

Eurofins Carlsbad

Matrix: Solid

Lab Sample ID: 890-6118-8

02/09/24 18:40

Client Sample Results

 Client: Vertex
 Job ID: 890-6118-1

 Project/Site: PLU 342
 SDG: 23E 06066

Client Sample ID: BH24-07

Date Collected: 02/06/24 10:40 Date Received: 02/07/24 08:53

Sample Depth: 0.5

Chloride

itesuit	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
<50.0	U	50.0	mg/Kg		02/09/24 11:16	02/16/24 13:36	1
<50.0	U	50.0	mg/Kg		02/09/24 11:16	02/16/24 13:36	1
<50.0	U	50.0	mg/Kg		02/09/24 11:16	02/16/24 13:36	1
%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
116		70 - 130			02/09/24 11:16	02/16/24 13:36	1
95		70 - 130			02/09/24 11:16	02/16/24 13:36	1
d	0.1.1.1	_					
nromatograp	hy - Solubi	е					
	<50.0 <50.0 **Recovery 116 95	116 95	<50.0 U 50.0 <50.0 U 50.0 **Recovery Qualifier Limits 70 - 130	<50.0 U 50.0 mg/Kg <50.0 U 50.0 mg/Kg *Recovery 116 70 - 130 95 70 - 130	<50.0 U 50.0 mg/Kg <50.0 U 50.0 mg/Kg %Recovery 116 70 - 130 95 70 - 130	<50.0 U	<50.0 U

5.05

37.5

mg/Kg

Eurofins Carlsbad

9

3

4

6

8

9

10

13

Surrogate Summary

Client: Vertex Job ID: 890-6118-1 Project/Site: PLU 342 SDG: 23E 06066

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		BFB1	DFBZ1	Percent Surrogate Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-38969-A-1-B MS	Matrix Spike	106	114	
880-38969-A-1-C MSD	Matrix Spike Duplicate	101	97	
880-39033-A-2-C MS	Matrix Spike	116	122	
880-39033-A-2-D MSD	Matrix Spike Duplicate	113	121	
890-6117-A-1-E MS	Matrix Spike	100	103	
890-6117-A-1-F MSD	Matrix Spike Duplicate	101	103	
390-6118-1	BH24-04	104	107	
890-6118-2	BH24-04	102	104	
890-6118-3	BH24-05	104	105	
890-6118-4	BH24-05	106	100	
890-6118-5	BH24-06	102	102	
890-6118-6	BH24-06	81	85	
390-6118-7	BH24-07	86	79	
890-6118-8	BH24-07	83	73	
LCS 880-73189/1-A	Lab Control Sample	122	129	
LCS 880-73190/1-A	Lab Control Sample	106	101	
LCS 880-73192/1-A	Lab Control Sample	112	120	
LCSD 880-73189/2-A	Lab Control Sample Dup	117	112	
LCSD 880-73190/2-A	Lab Control Sample Dup	116	99	
LCSD 880-73192/2-A	Lab Control Sample Dup	112	120	
MB 880-73188/5-A	Method Blank	75	98	
MB 880-73189/5-A	Method Blank	69 S1-	79	
MB 880-73190/5-A	Method Blank	76	101	
MB 880-73192/5-A	Method Blank	66 S1-	98	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-6118-1	BH24-04	118	102	
890-6118-1 MS	BH24-04	115	86	
890-6118-1 MSD	BH24-04	111	84	
890-6118-2	BH24-04	108	90	
890-6118-3	BH24-05	109	90	
890-6118-4	BH24-05	112	96	
890-6118-5	BH24-06	122	101	
890-6118-6	BH24-06	114	97	
890-6118-7	BH24-07	111	95	
890-6118-8	BH24-07	116	95	
LCS 880-72728/2-A	Lab Control Sample	112	115	
LCSD 880-72728/3-A	Lab Control Sample Dup	108	104	
MB 880-72728/1-A	Method Blank	268 S1+	234 S1+	

Surrogate Summary

Client: Vertex

Project/Site: PLU 342 OTPH = o-Terphenyl

Job ID: 890-6118-1 SDG: 23E 06066

Client: Vertex Job ID: 890-6118-1 SDG: 23E 06066 Project/Site: PLU 342

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-73188/5-A

Matrix: Solid

Analyte Benzene

Toluene

Analysis Batch: 73398

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 73188

Dil Fac

MB	MB					
Result	Qualifier	RL	Unit	D	Prepared	Analyzed
<0.00200	U	0.00200	mg/Kg		02/14/24 16:39	02/16/24 20:08
<0.00200	U	0.00200	mg/Kg		02/14/24 16:39	02/16/24 20:08
<0.00200	U	0.00200	mg/Kg		02/14/24 16:39	02/16/24 20:08

Ethylbenzene 8 <0.00400 U 0.00400 02/14/24 16:39 m-Xylene & p-Xylene mg/Kg 02/16/24 20:08 o-Xylene <0.00200 U 0.00200 mg/Kg 02/14/24 16:39 02/16/24 20:08 Xylenes, Total <0.00400 U 0.00400 mg/Kg 02/14/24 16:39 02/16/24 20:08

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	75	70 - 130	02/14/24 16:39	02/16/24 20:08	1
1.4-Difluorobenzene (Surr)	98	70 - 130	02/14/24 16:39	02/16/24 20:08	1

Lab Sample ID: MB 880-73189/5-A

Matrix: Solid

Analysis Batch: 73320

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 73189

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/14/24 16:41	02/16/24 21:44	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/14/24 16:41	02/16/24 21:44	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/14/24 16:41	02/16/24 21:44	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		02/14/24 16:41	02/16/24 21:44	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/14/24 16:41	02/16/24 21:44	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		02/14/24 16:41	02/16/24 21:44	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	69	S1-	70 - 130	02/14/24 16:41	02/16/24 21:44	1
1,4-Difluorobenzene (Surr)	79		70 - 130	02/14/24 16:41	02/16/24 21:44	1

Lab Sample ID: LCS 880-73189/1-A

Matrix: Solid

Analysis Batch: 73320

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 73189

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09443		mg/Kg		94	70 - 130	
Toluene	0.100	0.08948		mg/Kg		89	70 - 130	
Ethylbenzene	0.100	0.1061		mg/Kg		106	70 - 130	
m-Xylene & p-Xylene	0.200	0.2152		mg/Kg		108	70 - 130	
o-Xylene	0.100	0.1049		mg/Kg		105	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	122	70 - 130
1.4-Difluorobenzene (Surr)	129	70 - 130

Lab Sample ID: LCSD 880-73189/2-A

Matrix: Solid

Analysis Batch: 73320

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 73189

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.08970		mg/Kg		90	70 - 130	5	35

QC Sample Results

Client: Vertex Job ID: 890-6118-1 Project/Site: PLU 342 SDG: 23E 06066

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-73189/2-A

Matrix: Solid

Analysis Batch: 73320

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 73189

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	0.100	0.08017		mg/Kg		80	70 - 130	11	35
Ethylbenzene	0.100	0.1014		mg/Kg		101	70 - 130	4	35
m-Xylene & p-Xylene	0.200	0.2106		mg/Kg		105	70 - 130	2	35
o-Xylene	0.100	0.1022		mg/Kg		102	70 - 130	3	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	117		70 - 130
1,4-Difluorobenzene (Surr)	112		70 - 130

Lab Sample ID: 880-38969-A-1-B MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 73320

Prep Type: Total/NA

Prep Batch: 73189

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U F1 F2	0.100	0.06560	F1	mg/Kg		65	70 - 130	
Toluene	<0.00199	U F1	0.100	0.06254	F1	mg/Kg		62	70 - 130	
Ethylbenzene	<0.00199	U F1	0.100	0.06140	F1	mg/Kg		61	70 - 130	
m-Xylene & p-Xylene	<0.00398	U F1	0.200	0.1271	F1	mg/Kg		63	70 - 130	
o-Xylene	< 0.00199	U F1	0.100	0.06503	F1	mg/Kg		65	70 - 130	

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	106	70 - 130
1,4-Difluorobenzene (Surr)	114	70 - 130

Lab Sample ID: 880-38969-A-1-C MSD

Matrix: Solid

Analysis Batch: 73320

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 73189

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00199	U F1 F2	0.101	0.04331	F1 F2	mg/Kg		43	70 - 130	41	35
Toluene	< 0.00199	U F1	0.101	0.04462	F1	mg/Kg		44	70 - 130	33	35
Ethylbenzene	< 0.00199	U F1	0.101	0.04449	F1	mg/Kg		44	70 - 130	32	35
m-Xylene & p-Xylene	<0.00398	U F1	0.201	0.09033	F1	mg/Kg		45	70 - 130	34	35
o-Xylene	< 0.00199	U F1	0.101	0.04935	F1	mg/Kg		49	70 - 130	27	35

MSD MSD

мв мв

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	101	70 - 130
1,4-Difluorobenzene (Surr)	97	70 - 130

Lab Sample ID: MB 880-73190/5-A

Matrix: Solid

Analysis Batch: 73398

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 73190

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/14/24 16:44	02/17/24 06:47	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/14/24 16:44	02/17/24 06:47	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/14/24 16:44	02/17/24 06:47	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		02/14/24 16:44	02/17/24 06:47	1

Eurofins Carlsbad

Page 16 of 33

QC Sample Results

Client: Vertex Job ID: 890-6118-1 Project/Site: PLU 342 SDG: 23E 06066

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 880-73190/5-A

Matrix: Solid

Analysis Batch: 73398

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 73190

MB MB Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac o-Xylene <0.00200 U 0.00200 02/14/24 16:44 02/17/24 06:47 mg/Kg Xylenes, Total <0.00400 U 0.00400 mg/Kg 02/14/24 16:44 02/17/24 06:47

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	76	70 - 130	02/14/24 16:44	02/17/24 06:47	1
1,4-Difluorobenzene (Surr)	101	70 - 130	02/14/24 16:44	02/17/24 06:47	1

Lab Sample ID: LCS 880-73190/1-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Prep Type: Total/NA **Analysis Batch: 73398** Prep Batch: 73190 LCS LCS %Rec Spike

Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.1127 mg/Kg 113 70 - 130 Toluene 0.100 0.09114 mg/Kg 91 70 - 130 0.100 0.09180 92 Ethylbenzene mg/Kg 70 - 130 m-Xylene & p-Xylene 0.200 0.1875 mg/Kg 94 70 - 130 o-Xylene 0.100 0.09675 mg/Kg 70 - 130

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	106	70 - 130
1.4-Difluorobenzene (Surr)	101	70 - 130

Lab Sample ID: LCSD 880-73190/2-A

Matrix: Solid

Analysis Batch: 73398

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 73190

LCSD LCSD Spike %Rec RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Benzene 0.100 0.1031 mg/Kg 103 70 - 130 9 35 Toluene 0.100 0.09251 mg/Kg 93 70 - 130 35 Ethylbenzene 0.100 0.09963 mg/Kg 100 70 - 130 8 35 m-Xylene & p-Xylene 0.200 0.2102 mg/Kg 105 70 - 130 11 35 o-Xylene 0.100 0.1085 mg/Kg 109 70 - 130 35

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	116	70 - 130
1.4-Difluorobenzene (Surr)	99	70 - 130

Lab Sample ID: 890-6117-A-1-E MS

Matrix: Solid

Analysis Batch: 73398

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 73190

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U	0.100	0.08816		mg/Kg		88	70 - 130	
Toluene	< 0.00199	U F1	0.100	0.06795	F1	mg/Kg		67	70 - 130	
Ethylbenzene	< 0.00199	U F1	0.100	0.06588	F1	mg/Kg		66	70 - 130	
m-Xylene & p-Xylene	<0.00398	U F1	0.200	0.1288	F1	mg/Kg		64	70 - 130	
o-Xylene	< 0.00199	U F1	0.100	0.06497	F1	mg/Kg		64	70 - 130	

Client: Vertex Project/Site: PLU 342

Job ID: 890-6118-1 SDG: 23E 06066

Method: 8021B - Volatile Organic Compounds (GC) (Continued) Lab Sample ID: 890-6117-A-1-E MS

Matrix: Solid

Analysis Batch: 73398

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 73190

MS MS

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 100 70 - 130 1,4-Difluorobenzene (Surr) 103 70 - 130

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 73190

Lab Sample ID: 890-6117-A-1-F MSD **Matrix: Solid**

Analysis Batch: 73398

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00199	U	0.101	0.08911		mg/Kg		89	70 - 130	1	35
Toluene	<0.00199	U F1	0.101	0.07001	F1	mg/Kg		69	70 - 130	3	35
Ethylbenzene	<0.00199	U F1	0.101	0.06779	F1	mg/Kg		67	70 - 130	3	35
m-Xylene & p-Xylene	<0.00398	U F1	0.201	0.1334	F1	mg/Kg		66	70 - 130	3	35
o-Xylene	<0.00199	U F1	0.101	0.06752	F1	mg/Kg		67	70 - 130	4	35

MSD MSD

Surrogate	%Recovery Qua	lifter Limits
4-Bromofluorobenzene (Surr)	101	70 - 130
1,4-Difluorobenzene (Surr)	103	70 - 130

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 73192

Analysis Batch: 73320

Matrix: Solid

Matrix: Solid

Analysis Batch: 73320

Lab Sample ID: MB 880-73192/5-A

Lab Sample ID: LCS 880-73192/1-A

MR MR

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/14/24 16:48	02/16/24 11:06	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/14/24 16:48	02/16/24 11:06	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/14/24 16:48	02/16/24 11:06	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		02/14/24 16:48	02/16/24 11:06	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/14/24 16:48	02/16/24 11:06	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		02/14/24 16:48	02/16/24 11:06	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	66	S1-	70 - 130	02/14/24 16:48	02/16/24 11:06	1
1,4-Difluorobenzene (Surr)	98		70 - 130	02/14/24 16:48	02/16/24 11:06	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 73192

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09329		mg/Kg		93	70 - 130	
Toluene	0.100	0.08754		mg/Kg		88	70 - 130	
Ethylbenzene	0.100	0.09520		mg/Kg		95	70 - 130	
m-Xylene & p-Xylene	0.200	0.2018		mg/Kg		101	70 - 130	
o-Xylene	0.100	0.09753		mg/Kg		98	70 - 130	

LCS LCS

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 112 70 - 130

Client: Vertex Job ID: 890-6118-1 Project/Site: PLU 342 SDG: 23E 06066

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-73192/1-A

Matrix: Solid

Analysis Batch: 73320

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 73192

LCS LCS

Surrogate %Recovery Qualifier Limits 1,4-Difluorobenzene (Surr) 120 70 - 130

Lab Sample ID: LCSD 880-73192/2-A

Matrix: Solid

Analysis Batch: 73320

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 73192

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09399	-	mg/Kg		94	70 - 130	1	35
Toluene	0.100	0.08640		mg/Kg		86	70 - 130	1	35
Ethylbenzene	0.100	0.09818		mg/Kg		98	70 - 130	3	35
m-Xylene & p-Xylene	0.200	0.2054		mg/Kg		103	70 - 130	2	35
o-Xylene	0.100	0.09884		mg/Kg		99	70 - 130	1	35

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	112	70 - 130
1.4-Difluorobenzene (Surr)	120	70 - 130

Lab Sample ID: 880-39033-A-2-C MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 73320

Prep Type: Total/NA Prep Batch: 73192

-	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U	0.100	0.09558		mg/Kg		95	70 - 130	
Toluene	<0.00199	U	0.100	0.09032		mg/Kg		90	70 - 130	
Ethylbenzene	<0.00199	U	0.100	0.1022		mg/Kg		102	70 - 130	
m-Xylene & p-Xylene	<0.00398	U	0.200	0.2133		mg/Kg		106	70 - 130	
o-Xylene	<0.00199	U	0.100	0.1035		mg/Kg		103	70 - 130	
0 7tylono	-0.00100	Ü	0.100	0.1000		mg/rtg		100	702 100	

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	116		70 - 130
1,4-Difluorobenzene (Surr)	122		70 - 130

Lab Sample ID: 880-39033-A-2-D MSD

Released to Imaging: 6/11/2024 11:36:10 AM

Matrix: Solid

Analysis Batch: 73320

Client Sample ID: Matrix Spike Duplicate

Prep Batch: 73192

ı		Sample	Sample	эріке	MOD	MOD				%Rec		KPD
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	Benzene	<0.00199	U	0.101	0.1046		mg/Kg		104	70 - 130	9	35
	Toluene	<0.00199	U	0.101	0.09485		mg/Kg		94	70 - 130	5	35
	Ethylbenzene	< 0.00199	U	0.101	0.1090		mg/Kg		108	70 - 130	6	35
I	m-Xylene & p-Xylene	<0.00398	U	0.201	0.2261		mg/Kg		112	70 - 130	6	35
	o-Xylene	<0.00199	U	0.101	0.1101		mg/Kg		109	70 - 130	6	35
ı												

MSD MSD

Surrogate	%Recovery Qu	ualifier	Limits
4-Bromofluorobenzene (Surr)	113		70 - 130
1,4-Difluorobenzene (Surr)	121		70 - 130

Eurofins Carlsbad

Prep Type: Total/NA

Job ID: 890-6118-1 Client: Vertex Project/Site: PLU 342

SDG: 23E 06066

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-72728/1-A

Matrix: Solid

Analysis Batch: 73314

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 72728

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		02/09/24 11:16	02/16/24 07:45	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		02/09/24 11:16	02/16/24 07:45	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		02/09/24 11:16	02/16/24 07:45	1
	МВ	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

70 - 130

70 - 130

268 S1+

234 S1+

Client Sample ID: Lab Control Sample

02/16/24 07:45

02/16/24 07:45

Matrix: Solid

1-Chlorooctane

o-Terphenyl

Analysis Batch: 73314

Lab Sample ID: LCS 880-72728/2-A

Prep Type: Total/NA Prep Batch: 72728 LCS LCS Spike %Rec

02/09/24 11:16

02/09/24 11:16

Analyte Added Result Qualifier Unit D %Rec Limits Gasoline Range Organics 1000 1071 107 70 - 130 mg/Kg (GRO)-C6-C10 1000 Diesel Range Organics (Over 933.5 mg/Kg 93 70 - 130C10-C28)

LCS LCS %Recovery Qualifier Limits Surrogate 1-Chlorooctane 112 70 - 130 o-Terphenyl 115 70 - 130

Lab Sample ID: LCSD 880-72728/3-A

Matrix: Solid

Analysis Batch: 73314

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 72728

LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier RPD Limit Unit D %Rec Limits Gasoline Range Organics 1000 1086 mg/Kg 109 70 - 130 20 (GRO)-C6-C10 Diesel Range Organics (Over 1000 934.5 mg/Kg 93 70 - 130 20 C10-C28)

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	108		70 - 130
o-Terphenyl	104		70 - 130

Lab Sample ID: 890-6118-1 MS Client Sample ID: BH24-04

Matrix: Solid

Analysis Batch: 73314

Prep Type: Total/NA Prep Batch: 72728

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	<49.8	U	991	989.8		mg/Kg		97	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	<49.8	U	991	1241		mg/Kg		123	70 - 130	
C10-C28)										

Job ID: 890-6118-1

Prep Batch: 72728

Client: Vertex Project/Site: PLU 342 SDG: 23E 06066

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-6118-1 MS Client Sample ID: BH24-04 Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 73314

MS MS Surrogate %Recovery Qualifier Limits 1-Chlorooctane 115 70 - 130 o-Terphenyl 86 70 - 130

Lab Sample ID: 890-6118-1 MSD Client Sample ID: BH24-04

Matrix: Solid

Prep Type: Total/NA Analysis Batch: 73314 Prep Batch: 72728

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<49.8	U	991	961.4		mg/Kg		94	70 - 130	3	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.8	U	991	1209		mg/Kg		120	70 - 130	3	20
C10-C28)											

MSD MSD Surrogate %Recovery Qualifier Limits 70 - 130 1-Chlorooctane 111 84 70 - 130 o-Terphenyl

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-72650/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 72725

мв мв Analyte Result Qualifier RL Unit D Prepared Analyzed Chloride 5.00 <5.00 U mg/Kg 02/09/24 16:28

Lab Sample ID: LCS 880-72650/2-A Client Sample ID: Lab Control Sample **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 72725

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit %Rec Limits Chloride 250 254.4 mg/Kg 102 90 - 110

Lab Sample ID: LCSD 880-72650/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid**

Analysis Batch: 72725

Spike LCSD LCSD %Rec RPD Result Qualifier Added Analyte Unit D %Rec Limits RPD Limit Chloride 250 264.2 mg/Kg 106 90 - 110 20

Client Sample ID: BH24-06 Lab Sample ID: 890-6118-6 MS

Matrix: Solid

Analysis Batch: 72725

7, 0.0 2	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloride	152		252	383.5		mg/Kg		92	90 - 110

Eurofins Carlsbad

Dil Fac

Prep Type: Soluble

Prep Type: Soluble

QC Sample Results

Client: Vertex Job ID: 890-6118-1 Project/Site: PLU 342 SDG: 23E 06066

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 890-6118-6 MSD Client Sample ID: BH24-06 **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 72725

ı	7 min, 610 = 0101											
		Sample	Sample	Spike	MSD	MSD				%Rec		RPD
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	Chloride	152		252	409.9		mg/Kg		103	90 - 110	7	20

QC Association Summary

 Client: Vertex
 Job ID: 890-6118-1

 Project/Site: PLU 342
 SDG: 23E 06066

GC VOA

Prep Batch: 73188

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-73188/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 73189

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6118-6	BH24-06	Total/NA	Solid	5035	
890-6118-7	BH24-07	Total/NA	Solid	5035	
MB 880-73189/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-73189/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-73189/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-38969-A-1-B MS	Matrix Spike	Total/NA	Solid	5035	
880-38969-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Prep Batch: 73190

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6118-1	BH24-04	Total/NA	Solid	5035	
890-6118-2	BH24-04	Total/NA	Solid	5035	
890-6118-3	BH24-05	Total/NA	Solid	5035	
890-6118-4	BH24-05	Total/NA	Solid	5035	
890-6118-5	BH24-06	Total/NA	Solid	5035	
MB 880-73190/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-73190/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-73190/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-6117-A-1-E MS	Matrix Spike	Total/NA	Solid	5035	
890-6117-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Prep Batch: 73192

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6118-8	BH24-07	Total/NA	Solid	5035	
MB 880-73192/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-73192/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-73192/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-39033-A-2-C MS	Matrix Spike	Total/NA	Solid	5035	
880-39033-A-2-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 73320

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6118-6	BH24-06	Total/NA	Solid	8021B	73189
890-6118-7	BH24-07	Total/NA	Solid	8021B	73189
890-6118-8	BH24-07	Total/NA	Solid	8021B	73192
MB 880-73189/5-A	Method Blank	Total/NA	Solid	8021B	73189
MB 880-73192/5-A	Method Blank	Total/NA	Solid	8021B	73192
LCS 880-73189/1-A	Lab Control Sample	Total/NA	Solid	8021B	73189
LCS 880-73192/1-A	Lab Control Sample	Total/NA	Solid	8021B	73192
LCSD 880-73189/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	73189
LCSD 880-73192/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	73192
880-38969-A-1-B MS	Matrix Spike	Total/NA	Solid	8021B	73189
880-38969-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	73189
880-39033-A-2-C MS	Matrix Spike	Total/NA	Solid	8021B	73192
880-39033-A-2-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	73192

Eurofins Carlsbad

2

2

3

5

1

9

10

12

1

ins Cansbac

QC Association Summary

 Client: Vertex
 Job ID: 890-6118-1

 Project/Site: PLU 342
 SDG: 23E 06066

GC VOA

Analysis Batch: 73398

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6118-1	BH24-04	Total/NA	Solid	8021B	73190
890-6118-2	BH24-04	Total/NA	Solid	8021B	73190
890-6118-3	BH24-05	Total/NA	Solid	8021B	73190
890-6118-4	BH24-05	Total/NA	Solid	8021B	73190
890-6118-5	BH24-06	Total/NA	Solid	8021B	73190
MB 880-73188/5-A	Method Blank	Total/NA	Solid	8021B	73188
MB 880-73190/5-A	Method Blank	Total/NA	Solid	8021B	73190
LCS 880-73190/1-A	Lab Control Sample	Total/NA	Solid	8021B	73190
LCSD 880-73190/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	73190
890-6117-A-1-E MS	Matrix Spike	Total/NA	Solid	8021B	73190
890-6117-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	73190

Analysis Batch: 73576

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6118-1	BH24-04	Total/NA	Solid	Total BTEX	
890-6118-2	BH24-04	Total/NA	Solid	Total BTEX	
890-6118-3	BH24-05	Total/NA	Solid	Total BTEX	
890-6118-4	BH24-05	Total/NA	Solid	Total BTEX	
890-6118-5	BH24-06	Total/NA	Solid	Total BTEX	
890-6118-6	BH24-06	Total/NA	Solid	Total BTEX	
890-6118-7	BH24-07	Total/NA	Solid	Total BTEX	
890-6118-8	BH24-07	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 72728

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6118-1	BH24-04	Total/NA	Solid	8015NM Prep	
890-6118-2	BH24-04	Total/NA	Solid	8015NM Prep	
890-6118-3	BH24-05	Total/NA	Solid	8015NM Prep	
890-6118-4	BH24-05	Total/NA	Solid	8015NM Prep	
890-6118-5	BH24-06	Total/NA	Solid	8015NM Prep	
890-6118-6	BH24-06	Total/NA	Solid	8015NM Prep	
890-6118-7	BH24-07	Total/NA	Solid	8015NM Prep	
890-6118-8	BH24-07	Total/NA	Solid	8015NM Prep	
MB 880-72728/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-72728/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-72728/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-6118-1 MS	BH24-04	Total/NA	Solid	8015NM Prep	
890-6118-1 MSD	BH24-04	Total/NA	Solid	8015NM Prep	

Analysis Batch: 73314

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6118-1	BH24-04	Total/NA	Solid	8015B NM	72728
890-6118-2	BH24-04	Total/NA	Solid	8015B NM	72728
890-6118-3	BH24-05	Total/NA	Solid	8015B NM	72728
890-6118-4	BH24-05	Total/NA	Solid	8015B NM	72728
890-6118-5	BH24-06	Total/NA	Solid	8015B NM	72728
890-6118-6	BH24-06	Total/NA	Solid	8015B NM	72728
890-6118-7	BH24-07	Total/NA	Solid	8015B NM	72728
890-6118-8	BH24-07	Total/NA	Solid	8015B NM	72728

Eurofins Carlsbad

2

3

4

6

8

9

11

12

QC Association Summary

 Client: Vertex
 Job ID: 890-6118-1

 Project/Site: PLU 342
 SDG: 23E 06066

GC Semi VOA (Continued)

Analysis Batch: 73314 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-72728/1-A	Method Blank	Total/NA	Solid	8015B NM	72728
LCS 880-72728/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	72728
LCSD 880-72728/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	72728
890-6118-1 MS	BH24-04	Total/NA	Solid	8015B NM	72728
890-6118-1 MSD	BH24-04	Total/NA	Solid	8015B NM	72728

Analysis Batch: 73527

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6118-1	BH24-04	Total/NA	Solid	8015 NM	
890-6118-2	BH24-04	Total/NA	Solid	8015 NM	
890-6118-3	BH24-05	Total/NA	Solid	8015 NM	
890-6118-4	BH24-05	Total/NA	Solid	8015 NM	
890-6118-5	BH24-06	Total/NA	Solid	8015 NM	
890-6118-6	BH24-06	Total/NA	Solid	8015 NM	
890-6118-7	BH24-07	Total/NA	Solid	8015 NM	
890-6118-8	BH24-07	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 72650

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6118-1	BH24-04	Soluble	Solid	DI Leach	
890-6118-2	BH24-04	Soluble	Solid	DI Leach	
890-6118-3	BH24-05	Soluble	Solid	DI Leach	
890-6118-4	BH24-05	Soluble	Solid	DI Leach	
890-6118-5	BH24-06	Soluble	Solid	DI Leach	
890-6118-6	BH24-06	Soluble	Solid	DI Leach	
890-6118-7	BH24-07	Soluble	Solid	DI Leach	
890-6118-8	BH24-07	Soluble	Solid	DI Leach	
MB 880-72650/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-72650/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-72650/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-6118-6 MS	BH24-06	Soluble	Solid	DI Leach	
890-6118-6 MSD	BH24-06	Soluble	Solid	DI Leach	

Analysis Batch: 72725

Released to Imaging: 6/11/2024 11:36:10 AM

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6118-1	BH24-04	Soluble	Solid	300.0	72650
890-6118-2	BH24-04	Soluble	Solid	300.0	72650
890-6118-3	BH24-05	Soluble	Solid	300.0	72650
890-6118-4	BH24-05	Soluble	Solid	300.0	72650
890-6118-5	BH24-06	Soluble	Solid	300.0	72650
890-6118-6	BH24-06	Soluble	Solid	300.0	72650
890-6118-7	BH24-07	Soluble	Solid	300.0	72650
890-6118-8	BH24-07	Soluble	Solid	300.0	72650
MB 880-72650/1-A	Method Blank	Soluble	Solid	300.0	72650
LCS 880-72650/2-A	Lab Control Sample	Soluble	Solid	300.0	72650
LCSD 880-72650/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	72650
890-6118-6 MS	BH24-06	Soluble	Solid	300.0	72650
890-6118-6 MSD	BH24-06	Soluble	Solid	300.0	72650

Eurofins Carlsbad

3

Λ

6

0

9

4 4

12

Г

Client: Vertex Job ID: 890-6118-1 Project/Site: PLU 342 SDG: 23E 06066

Client Sample ID: BH24-04 Lab Sample ID: 890-6118-1

Date Collected: 02/06/24 09:30 Matrix: Solid Date Received: 02/07/24 08:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	73190	02/14/24 16:44	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73398	02/17/24 13:21	SM	EET MID
Total/NA	Analysis	Total BTEX		1			73576	02/17/24 13:21	SM	EET MID
Total/NA	Analysis	8015 NM		1			73527	02/16/24 10:18	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	72728	02/09/24 11:16	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73314	02/16/24 10:18	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	72650	02/08/24 11:58	SA	EET MID
Soluble	Analysis	300.0		5			72725	02/09/24 17:43	CH	EET MID

Client Sample ID: BH24-04 Lab Sample ID: 890-6118-2 Date Collected: 02/06/24 09:40 Matrix: Solid

Date Received: 02/07/24 08:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	73190	02/14/24 16:44	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73398	02/17/24 13:41	SM	EET MID
Total/NA	Analysis	Total BTEX		1			73576	02/17/24 13:41	SM	EET MID
Total/NA	Analysis	8015 NM		1			73527	02/16/24 11:25	SM	EET MID
Total/NA	Prep	8015NM Prep			9.94 g	10 mL	72728	02/09/24 11:16	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73314	02/16/24 11:25	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	72650	02/08/24 11:58	SA	EET MID
Soluble	Analysis	300.0		1			72725	02/09/24 17:50	CH	EET MID

Client Sample ID: BH24-05 Lab Sample ID: 890-6118-3 Date Collected: 02/06/24 09:50 **Matrix: Solid**

Date Received: 02/07/24 08:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	73190	02/14/24 16:44	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73398	02/17/24 14:02	SM	EET MID
Total/NA	Analysis	Total BTEX		1			73576	02/17/24 14:02	SM	EET MID
Total/NA	Analysis	8015 NM		1			73527	02/16/24 11:47	SM	EET MID
Total/NA	Prep	8015NM Prep			9.97 g	10 mL	72728	02/09/24 11:16	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73314	02/16/24 11:47	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	72650	02/08/24 11:58	SA	EET MID
Soluble	Analysis	300.0		1			72725	02/09/24 17:56	CH	EET MID

Client Sample ID: BH24-05 Lab Sample ID: 890-6118-4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	73190	02/14/24 16:44	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73398	02/17/24 14:23	SM	EET MID
Total/NA	Analysis	Total BTEX		1			73576	02/17/24 14:23	SM	EET MID

Eurofins Carlsbad

Date Collected: 02/06/24 10:00 **Matrix: Solid** Date Received: 02/07/24 08:53

Released to Imaging: 6/11/2024 11:36:10 AM

 Client: Vertex
 Job ID: 890-6118-1

 Project/Site: PLU 342
 SDG: 23E 06066

Client Sample ID: BH24-05

Lab Sample ID: 890-6118-4

Date Collected: 02/06/24 10:00 Matrix: Solid
Date Received: 02/07/24 08:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			73527	02/16/24 12:09	SM	EET MID
Total/NA	Prep	8015NM Prep			9.92 g	10 mL	72728	02/09/24 11:16	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73314	02/16/24 12:09	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	72650	02/08/24 11:58	SA	EET MID
Soluble	Analysis	300.0		1			72725	02/09/24 18:02	CH	EET MID

Client Sample ID: BH24-06

Date Collected: 02/06/24 10:10

Lab Sample ID: 890-6118-5

Matrix: Solid

Date Collected: 02/06/24 10:10 Date Received: 02/07/24 08:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	73190	02/14/24 16:44	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73398	02/17/24 14:43	SM	EET MID
Total/NA	Analysis	Total BTEX		1			73576	02/17/24 14:43	SM	EET MID
Total/NA	Analysis	8015 NM		1			73527	02/16/24 12:31	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	72728	02/09/24 11:16	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73314	02/16/24 12:31	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	72650	02/08/24 11:58	SA	EET MID
Soluble	Analysis	300.0		1			72725	02/09/24 18:09	CH	EET MID

Client Sample ID: BH24-06
Date Collected: 02/06/24 10:20
Lab Sample ID: 890-6118-6
Matrix: Solid

Date Received: 02/07/24 08:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	73189	02/14/24 16:41	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73320	02/17/24 03:57	SM	EET MID
Total/NA	Analysis	Total BTEX		1			73576	02/17/24 03:57	SM	EET MID
Total/NA	Analysis	8015 NM		1			73527	02/16/24 12:53	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	72728	02/09/24 11:16	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73314	02/16/24 12:53	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	72650	02/08/24 11:58	SA	EET MID
Soluble	Analysis	300.0		1			72725	02/09/24 18:15	CH	EET MID

Client Sample ID: BH24-07 Lab Sample ID: 890-6118-7

Date Collected: 02/06/24 10:30 Date Received: 02/07/24 08:53

Released to Imaging: 6/11/2024 11:36:10 AM

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	73189	02/14/24 16:41	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73320	02/17/24 04:18	SM	EET MID
Total/NA	Analysis	Total BTEX		1			73576	02/17/24 04:18	SM	EET MID
Total/NA	Analysis	8015 NM		1			73527	02/16/24 13:15	SM	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.03 g 1 uL	10 mL 1 uL	72728 73314	02/09/24 11:16 02/16/24 13:15	TKC SM	EET MID EET MID

Eurofins Carlsbad

2

5

9

11

13

_

Matrix: Solid

Client: Vertex Job ID: 890-6118-1 Project/Site: PLU 342 SDG: 23E 06066

Client Sample ID: BH24-07 Lab Sample ID: 890-6118-7

Date Collected: 02/06/24 10:30 Matrix: Solid

Date Received: 02/07/24 08:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.03 g	50 mL	72650	02/08/24 11:58	SA	EET MID
Soluble	Analysis	300.0		1			72725	02/09/24 18:34	CH	EET MID

Client Sample ID: BH24-07 Lab Sample ID: 890-6118-8

Date Collected: 02/06/24 10:40 **Matrix: Solid**

Date Received: 02/07/24 08:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	73192	02/14/24 16:48	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73320	02/16/24 14:33	SM	EET MID
Total/NA	Analysis	Total BTEX		1			73576	02/16/24 14:33	SM	EET MID
Total/NA	Analysis	8015 NM		1			73527	02/16/24 13:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	72728	02/09/24 11:16	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73314	02/16/24 13:36	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	72650	02/08/24 11:58	SA	EET MID
Soluble	Analysis	300.0		1			72725	02/09/24 18:40	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Released to Imaging: 6/11/2024 11:36:10 AM

Accreditation/Certification Summary

 Client: Vertex
 Job ID: 890-6118-1

 Project/Site: PLU 342
 SDG: 23E 06066

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date
Texas	NELA	Р	T104704400-23-26	06-30-24
0 ,		ut the laboratory is not certif	fied by the governing authority. This lis	t may include analytes
for which the agency do	oes not offer certification. Prep Method	Matrix	Analyte	
8015 NM	1 TOP MOUNTOU	Solid	Total TPH	
Total BTEX	Total BTEX		Total BTEX	

3

4

O

7

9

10

12

13

Method Summary

Client: Vertex Job ID: 890-6118-1 Project/Site: PLU 342 SDG: 23E 06066

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Job ID: 890-6118-1 Client: Vertex Project/Site: PLU 342

JUD	ID.	090-	0110-1	
S	DG:	23F	06066	

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-6118-1	BH24-04	Solid	02/06/24 09:30	02/07/24 08:53	0
890-6118-2	BH24-04	Solid	02/06/24 09:40	02/07/24 08:53	0.5
890-6118-3	BH24-05	Solid	02/06/24 09:50	02/07/24 08:53	0
890-6118-4	BH24-05	Solid	02/06/24 10:00	02/07/24 08:53	0.5
890-6118-5	BH24-06	Solid	02/06/24 10:10	02/07/24 08:53	0
890-6118-6	BH24-06	Solid	02/06/24 10:20	02/07/24 08:53	0.5
890-6118-7	BH24-07	Solid	02/06/24 10:30	02/07/24 08:53	0
890-6118-8	BH24-07	Solid	02/06/24 10:40	02/07/24 08:53	0.5

Login Sample Receipt Checklist

Client: Vertex Job Number: 890-6118-1 SDG Number: 23E 06066

Login Number: 6118 List Source: Eurofins Carlsbad

List Number: 1

Creator: Lopez, Abraham

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

__

3

4

6

8

11

4.0

Login Sample Receipt Checklist

Client: Vertex Job Number: 890-6118-1 SDG Number: 23E 06066

Login Number: 6118 **List Source: Eurofins Midland** List Number: 2 List Creation: 02/08/24 11:21 AM

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

<6mm (1/4").

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Chance Dixon Vertex 3101 Boyd Dr Carlsbad, New Mexico 88220

Generated 2/20/2024 1:08:15 PM

JOB DESCRIPTION

PLU 342 023 - E - 06066

JOB NUMBER

890-6150-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 2/20/2024 1:08:15 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

 Client: Vertex
 Laboratory Job ID: 890-6150-1

 Project/Site: PLU 342
 SDG: 023 - E - 06066

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	15
Lab Chronicle	17
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
Racaint Chacklists	23

Definitions/Glossary

Client: Vertex Job ID: 890-6150-1 Project/Site: PLU 342 SDG: 023 - E - 06066

Qualifiers

GC VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description**

S1+ Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		

Dilution Factor Dil Fac

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

Not Calculated NC

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points RPD

Toxicity Equivalent Factor (Dioxin) TEF TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Vertex Job ID: 890-6150-1 Project: PLU 342

Job ID: 890-6150-1 Eurofins Carlsbad

Job Narrative 890-6150-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 2/9/2024 8:54 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.0°C.

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: BH 24 - 08 0' (890-6150-1), BH 24 - 08 0.5' (890-6150-2), BH 24 - 09 0' (890-6150-3) and BH 24 - 09 0.5' (890-6150-4).

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-72934 and analytical batch 880-73312 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Carlsbad

9

3

_

6

9

11

14

Lab Sample ID: 890-6150-1

Client Sample Results

 Client: Vertex
 Job ID: 890-6150-1

 Project/Site: PLU 342
 SDG: 023 - E - 06066

Client Sample ID: BH 24 - 08 0'

Date Collected: 02/07/24 13:10 Date Received: 02/09/24 08:54

Sample Depth: 0'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		02/15/24 12:35	02/19/24 13:24	1
Toluene	<0.00198	U	0.00198	mg/Kg		02/15/24 12:35	02/19/24 13:24	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		02/15/24 12:35	02/19/24 13:24	1
m-Xylene & p-Xylene	<0.00397	U	0.00397	mg/Kg		02/15/24 12:35	02/19/24 13:24	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		02/15/24 12:35	02/19/24 13:24	1
Xylenes, Total	<0.00397	U	0.00397	mg/Kg		02/15/24 12:35	02/19/24 13:24	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130			02/15/24 12:35	02/19/24 13:24	1
1,4-Difluorobenzene (Surr)	104		70 - 130			02/15/24 12:35	02/19/24 13:24	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	U	0.00397	mg/Kg			02/19/24 13:24	1
Analyte	Result	Qualifier	RL	1114	_	Duamanad		
				Unit	D	Prepared	Analyzed	
	<50.4		50.4	mg/Kg	— –	Prepared	02/16/24 13:36	
Total TPH	<50.4	U	50.4		<u>D</u>			
Total TPH Method: SW846 8015B NM - Dies	<50.4	U	50.4		D	Prepared		1
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	<50.4	nics (DRO) Qualifier	50.4 (GC)	mg/Kg			02/16/24 13:36	Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<50.4 sel Range Orga Result	Unics (DRO) Qualifier	50.4 (GC)	mg/Kg		Prepared	02/16/24 13:36 Analyzed	Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<50.4 sel Range Orga Result <50.4	nics (DRO) Qualifier U	50.4 (GC) RL 50.4	mg/Kg Unit mg/Kg		Prepared 02/12/24 14:51	02/16/24 13:36 Analyzed 02/16/24 13:36	Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<50.4 sel Range Orga Result <50.4 <50.4	Oualifier U U	50.4 (GC) RL 50.4 50.4	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/12/24 14:51 02/12/24 14:51	02/16/24 13:36 Analyzed 02/16/24 13:36 02/16/24 13:36	Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<50.4 sel Range Orga Result <50.4 <50.4 <50.4	Onics (DRO) Qualifier U U	50.4 (GC) RL 50.4 50.4 50.4	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/12/24 14:51 02/12/24 14:51 02/12/24 14:51	02/16/24 13:36 Analyzed 02/16/24 13:36 02/16/24 13:36 02/16/24 13:36	Dil Face 1 1 1 Dil Face
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<50.4 sel Range Orga Result <50.4 <50.4 <50.4 %Recovery	Onics (DRO) Qualifier U U	50.4 (GC) RL 50.4 50.4 50.4 Limits	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/12/24 14:51 02/12/24 14:51 02/12/24 14:51 Prepared	02/16/24 13:36 Analyzed 02/16/24 13:36 02/16/24 13:36 02/16/24 13:36 Analyzed	Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<50.4 sel Range Orga Result <50.4 <50.4 <50.4 %Recovery 99 106	Onics (DRO) Qualifier U U Qualifier	50.4 (GC) RL 50.4 50.4 50.4 Limits 70 - 130 70 - 130	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/12/24 14:51 02/12/24 14:51 02/12/24 14:51 Prepared 02/12/24 14:51	02/16/24 13:36 Analyzed 02/16/24 13:36 02/16/24 13:36 02/16/24 13:36 Analyzed 02/16/24 13:36	Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<50.4 sel Range Orga Result <50.4 <50.4 <50.4 %Recovery 99 106 a Chromatograp	Onics (DRO) Qualifier U U Qualifier	50.4 (GC) RL 50.4 50.4 50.4 Limits 70 - 130 70 - 130	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/12/24 14:51 02/12/24 14:51 02/12/24 14:51 Prepared 02/12/24 14:51	02/16/24 13:36 Analyzed 02/16/24 13:36 02/16/24 13:36 02/16/24 13:36 Analyzed 02/16/24 13:36	Dil Fac 1 Dil Fac 1 Dil Fac 1 Dil Fac 1 Dil Fac

Client Sample ID: BH 24 - 08 0.5'

Date Collected: 02/07/24 13:20

Date Received: 02/09/24 08:54

Sample Depth: 0.5'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/15/24 12:35	02/19/24 13:45	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/15/24 12:35	02/19/24 13:45	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/15/24 12:35	02/19/24 13:45	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		02/15/24 12:35	02/19/24 13:45	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/15/24 12:35	02/19/24 13:45	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		02/15/24 12:35	02/19/24 13:45	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130			02/15/24 12:35	02/19/24 13:45	1

Eurofins Carlsbad

Lab Sample ID: 890-6150-2

Matrix: Solid

2

4

0

ŏ

10

12

11

Lab Sample ID: 890-6150-2

Lab Sample ID: 890-6150-3

Matrix: Solid

 Client: Vertex
 Job ID: 890-6150-1

 Project/Site: PLU 342
 SDG: 023 - E - 06066

Client Sample ID: BH 24 - 08 0.5'

Date Collected: 02/07/24 13:20 Date Received: 02/09/24 08:54

Sample Depth: 0.5'

Method: SW846 8021B -	Volatile Organic	Compounds	(GC)	(Continued)	

Surrogate	%Recovery Qu	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	101	70 - 130	02/15/24 12:35	02/19/24 13:45	1

Method: TAL SOP	Total RTFX - Total	RTFX Calculation
Mictiliou. IAL OOI	TOTAL DIEX - TOTAL	DIEA Galcalation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00399	U	0.00399	mg/Kg			02/19/24 13:45	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.5	U	50.5	mg/Kg			02/16/24 13:58	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.5	U	50.5	mg/Kg		02/12/24 14:51	02/16/24 13:58	1
Diesel Range Organics (Over C10-C28)	<50.5	U	50.5	mg/Kg		02/12/24 14:51	02/16/24 13:58	1
OII Range Organics (Over C28-C36)	<50.5	U	50.5	mg/Kg		02/12/24 14:51	02/16/24 13:58	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	94	70 - 130	02/12/24 14:51	02/16/24 13:58	1
o-Terphenyl	100	70 - 130	02/12/24 14:51	02/16/24 13:58	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	70.7		5.03	mg/Kg			02/12/24 19:21	1

Client Sample ID: BH 24 - 09 0'

Date Collected: 02/07/24 13:30 Date Received: 02/09/24 08:54

Sample Depth: 0'

l				
Method: SW	846 8021B	- Volatile Orga	anic Compound	s (GC)

Welliou. Syvo40 602 IB - Voial	ne Organic Comp	ounus (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		02/15/24 12:35	02/19/24 14:05	1
Toluene	< 0.00199	U	0.00199	mg/Kg		02/15/24 12:35	02/19/24 14:05	1
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		02/15/24 12:35	02/19/24 14:05	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		02/15/24 12:35	02/19/24 14:05	1
o-Xylene	< 0.00199	U	0.00199	mg/Kg		02/15/24 12:35	02/19/24 14:05	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		02/15/24 12:35	02/19/24 14:05	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130			02/15/24 12:35	02/19/24 14:05	1
1 4-Difluorobenzene (Surr)	105		70 - 130			02/15/24 12:35	02/19/24 14:05	1

Mothod: TAI	SOP Total RTFY	- Total RTFY	Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	ma/Ka			02/19/24 14:05	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8	mg/Kg			02/16/24 14:21	1

Eurofins Carlsbad

2

3

4

6

9

11

13

Lab Sample ID: 890-6150-3

02/12/24 19:25

Lab Sample ID: 890-6150-4

Matrix: Solid

Client Sample Results

Client: Vertex Job ID: 890-6150-1 Project/Site: PLU 342 SDG: 023 - E - 06066

Client Sample ID: BH 24 - 09

Date Collected: 02/07/24 13:30 Date Received: 02/09/24 08:54

Sample Depth: 0'

<49.8	11				Prepared	Analyzed	Dil Fac
	U	49.8	mg/Kg		02/12/24 14:51	02/16/24 14:21	1
<49.8	U	49.8	mg/Kg		02/12/24 14:51	02/16/24 14:21	1
<49.8	U	49.8	mg/Kg		02/12/24 14:51	02/16/24 14:21	1
%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
105		70 - 130			02/12/24 14:51	02/16/24 14:21	1
107		70 - 130			02/12/24 14:51	02/16/24 14:21	1
	-			_	_		Dil Fac
	<49.8 %Recovery 105 107 romatograp	107	<49.8 U	<49.8 U	49.8 U 49.8 mg/Kg **Recovery Qualifier Limits 105 70 - 130 107 70 - 130 **romatography - Soluble	<49.8 U	<49.8 U 49.8 mg/Kg 02/12/24 14:51 02/16/24 14:21 %Recovery Qualifier Limits Prepared Analyzed 105 70 - 130 02/12/24 14:51 02/16/24 14:21 107 70 - 130 02/12/24 14:51 02/16/24 14:21 Promatography - Soluble

4.99

110

mg/Kg

Client Sample ID: BH 24 - 09 0.5'

Date Collected: 02/07/24 13:40

Date Received: 02/09/24 08:54

Sample Depth: 0.5'

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		02/15/24 12:35	02/19/24 14:26	1
Toluene	<0.00198	U	0.00198	mg/Kg		02/15/24 12:35	02/19/24 14:26	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		02/15/24 12:35	02/19/24 14:26	1
m-Xylene & p-Xylene	<0.00396	U	0.00396	mg/Kg		02/15/24 12:35	02/19/24 14:26	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		02/15/24 12:35	02/19/24 14:26	1
Xylenes, Total	<0.00396	U	0.00396	mg/Kg		02/15/24 12:35	02/19/24 14:26	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130			02/15/24 12:35	02/19/24 14:26	1
1,4-Difluorobenzene (Surr)	103		70 - 130			02/15/24 12:35	02/19/24 14:26	1
Method: TAL SOP Total BTEX - 1	otal BTEX Cald	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396	mg/Kg			02/19/24 14:26	1
- -								
Method: SW846 8015 NM - Diese	•	, , ,	•					
Analyte	Result	Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
	•	Qualifier	•	<mark>Unit</mark> mg/Kg	D	Prepared	Analyzed 02/16/24 15:05	Dil Fac
Analyte		Qualifier U			<u>D</u>	Prepared		Dil Fac
Analyte Total TPH	Result <50.0	Qualifier U			<u>D</u>	Prepared Prepared		Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies	Result <50.0	Qualifier U nics (DRO) Qualifier	RL 50.0	mg/Kg			02/16/24 15:05	1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10	Result <50.0 sel Range Orga Result	Qualifier U nics (DRO) Qualifier	RL 50.0 (GC)	mg/Kg		Prepared	02/16/24 15:05 Analyzed	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <50.0 sel Range Orga Result	Qualifier U nics (DRO) Qualifier U	RL 50.0 (GC)	mg/Kg		Prepared	02/16/24 15:05 Analyzed	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.0 sel Range Orga Result <50.0 <50.0	Qualifier U nics (DRO) Qualifier U	RL 50.0 (GC) RL 50.0 50.0	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/12/24 14:51 02/12/24 14:51	02/16/24 15:05 Analyzed 02/16/24 15:05 02/16/24 15:05	1 Dil Fac 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10	Result <50.0 sel Range Orga Result <50.0	Qualifier U nics (DRO) Qualifier U	RL 50.0 (GC) RL 50.0	mg/Kg Unit mg/Kg		Prepared 02/12/24 14:51	02/16/24 15:05 Analyzed 02/16/24 15:05	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.0 sel Range Orga Result <50.0 <50.0	Qualifier U nics (DRO) Qualifier U U	RL 50.0 (GC) RL 50.0 50.0	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/12/24 14:51 02/12/24 14:51	02/16/24 15:05 Analyzed 02/16/24 15:05 02/16/24 15:05	1 Dil Fac 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result	Qualifier U nics (DRO) Qualifier U U	RL 50.0 (GC) RL 50.0 50.0 50.0	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/12/24 14:51 02/12/24 14:51	02/16/24 15:05 Analyzed 02/16/24 15:05 02/16/24 15:05 02/16/24 15:05	1 Dil Fac 1 1

Client Sample Results

 Client: Vertex
 Job ID: 890-6150-1

 Project/Site: PLU 342
 SDG: 023 - E - 06066

Client Sample ID: BH 24 - 09 0.5'

Lab Sample ID: 890-6150-4

Date Collected: 02/07/24 13:40

Matrix: Solid

Date Received: 02/09/24 08:54 Sample Depth: 0.5'

	Method: EPA 300.0 - Anions, Ion C	hromatograp	hy - Solubl	e					
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Į	Chloride	92.5		4.99	mg/Kg			02/12/24 19:30	1

5

_

a

10

12

13

DFBZ = 1,4-Difluorobenzene (Surr)

Surrogate Summary

Client: Vertex Job ID: 890-6150-1 Project/Site: PLU 342 SDG: 023 - E - 06066

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		BFB1	DFBZ1	Percent Surrogate Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-39150-A-1-C MS	Matrix Spike	107	104	
880-39150-A-1-D MSD	Matrix Spike Duplicate	109	100	
890-6150-1	BH 24 - 08 0'	102	104	
890-6150-2	BH 24 - 08 0.5'	96	101	
890-6150-3	BH 24 - 09 0'	100	105	
890-6150-4	BH 24 - 09 0.5'	95	103	
LCS 880-73256/1-A	Lab Control Sample	102	96	
LCSD 880-73256/2-A	Lab Control Sample Dup	102	101	
MB 880-73256/5-A	Method Blank	76	100	
Surrogate Legend				

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Prep Type: Total/NA **Matrix: Solid**

				Percent Surrogate Recovery (Acceptance Limit
		1CO1	OTPH1	
b Sample ID	Client Sample ID	(70-130)	(70-130)	
0-6149-A-1-C MS	Matrix Spike	80	79	
0-6149-A-1-D MSD	Matrix Spike Duplicate	79	77	
0-6150-1	BH 24 - 08 0'	99	106	
0-6150-2	BH 24 - 08 0.5'	94	100	
0-6150-3	BH 24 - 09 0'	105	107	
0-6150-4	BH 24 - 09 0.5'	108	114	
S 880-72934/2-A	Lab Control Sample	94	99	
SD 880-72934/3-A	Lab Control Sample Dup	94	99	
3 880-72934/1-A	Method Blank	235 S1+	266 S1+	

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Client: Vertex Job ID: 890-6150-1 Project/Site: PLU 342 SDG: 023 - E - 06066

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-73256/5-A

Matrix: Solid

Analysis Batch: 73431

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 73256

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/15/24 12:35	02/19/24 11:18	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/15/24 12:35	02/19/24 11:18	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/15/24 12:35	02/19/24 11:18	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		02/15/24 12:35	02/19/24 11:18	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/15/24 12:35	02/19/24 11:18	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		02/15/24 12:35	02/19/24 11:18	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	76		70 - 130	02/15/24 12:35	02/19/24 11:18	1
1,4-Difluorobenzene (Surr)	100		70 - 130	02/15/24 12:35	02/19/24 11:18	1

Lab Sample ID: LCS 880-73256/1-A

Matrix: Solid

Analysis Batch: 73431

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 73256

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.1088 mg/Kg 109 70 - 130 Toluene 0.100 0.08862 mg/Kg 89 70 - 130 0.100 0.09229 92 Ethylbenzene mg/Kg 70 - 130 0.200 0.1871 94 70 - 130 m-Xylene & p-Xylene mg/Kg 0.100 0.09409 70 - 130 o-Xylene mg/Kg

LCS LCS

Surrogate	%Recovery (Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		70 - 130
1,4-Difluorobenzene (Surr)	96		70 - 130

Lab Sample ID: LCSD 880-73256/2-A

Matrix: Solid

Analysis Batch: 73431

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 73256

LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Benzene 0.100 0.1244 mg/Kg 124 70 - 130 13 35 Toluene 0.100 0.09492 mg/Kg 95 70 - 130 35 Ethylbenzene 0.100 0.09559 mg/Kg 96 70 - 130 35 m-Xylene & p-Xylene 0.200 0.1906 mg/Kg 95 70 - 130 35 0.100 0.09616 o-Xylene mg/Kg 96 70 - 130 35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		70 - 130
1.4-Difluorobenzene (Surr)	101		70 - 130

Lab Sample ID: 880-39150-A-1-C MS

Matrix: Solid

Analysis Batch: 73431

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 73256

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U	0.100	0.09297		mg/Kg		93	70 - 130	
Toluene	< 0.00199	U	0.100	0.07823		mg/Kg		78	70 - 130	

Eurofins Carlsbad

Page 11 of 24

Prep Batch: 73256

Prep Type: Total/NA

Prep Batch: 72934

QC Sample Results

Client: Vertex Job ID: 890-6150-1 Project/Site: PLU 342 SDG: 023 - E - 06066

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-39150-A-1-C MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 73431

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00199	U	0.100	0.07720		mg/Kg		77	70 - 130	
m-Xylene & p-Xylene	<0.00398	U	0.200	0.1558		mg/Kg		78	70 - 130	
o-Xylene	<0.00199	U	0.100	0.07821		mg/Kg		78	70 - 130	

MS MS

Surrogate	%Recovery Quali	ifier Limits
4-Bromofluorobenzene (Surr)	107	70 - 130
1,4-Difluorobenzene (Surr)	104	70 - 130

Lab Sample ID: 880-39150-A-1-D MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 73431

Prep Batch: 73256 Sample Sample Spike MSD MSD RPD Result Qualifier Added Result Qualifier RPD Limit Analyte Unit %Rec Limits 0.101 Benzene <0.00199 U 0.1063 mg/Kg 106 70 - 130 13 35 Toluene <0.00199 U 0.08653 0.101 mg/Kg 86 70 - 130 10 35 Ethylbenzene <0.00199 U 0.101 0.08534 mg/Kg 85 70 - 130 10 35 <0.00398 U 0.201 0.1708 85 70 - 130 9 35 m-Xylene & p-Xylene mg/Kg <0.00199 U 0.101 0.08596 85 70 - 130 9 o-Xylene mg/Kg

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	109		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-72934/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 73312

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		02/12/24 14:51	02/16/24 07:45	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		02/12/24 14:51	02/16/24 07:45	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		02/12/24 14:51	02/16/24 07:45	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	235	S1+	70 - 130	02/12/24 14:51	02/16/24 07:45	1
o-Terphenyl	266	S1+	70 - 130	02/12/24 14:51	02/16/24 07:45	1

Lab Sample ID: LCS 880-72934/2-A

Matrix: Solid

Analysis Batch: 73312							Prep E	Batch: 72934
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	977.0		mg/Kg		98	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	883.1		mg/Kg		88	70 - 130	
C10-C28)								

Eurofins Carlsbad

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Job ID: 890-6150-1

SDG: 023 - E - 06066

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

LCS LCS

Sample Sample

Lab Sample ID: LCS 880-72934/2-A

Matrix: Solid

Client: Vertex

Project/Site: PLU 342

Analysis Batch: 73312

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 72934

Surrogate %Recovery Qualifier

Limits 1-Chlorooctane 94 70 - 130 o-Terphenyl 99 70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 72934

Lab Sample ID: LCSD 880-72934/3-A **Matrix: Solid**

Analysis Batch: 73312

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit 1000 996.1 100 70 - 1302 20 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 866.9 mg/Kg 87 70 - 1302 20 C10-C28)

LCSD LCSD

Surrogate %Recovery Qualifier Limits 70 - 130 1-Chlorooctane 94 99 70 - 130 o-Terphenyl

Lab Sample ID: 890-6149-A-1-C MS Client Sample ID: Matrix Spike

MS MS

Matrix: Solid

Analysis Batch: 73312

Prep Type: Total/NA Prep Batch: 72934

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Gasoline Range Organics <49.6 U 1010 1148 mg/Kg 109 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over 52.9 1010 768.5 mg/Kg 71 70 - 130

Spike

C10-C28)

MS MS %Recovery Qualifier Surrogate Limits 70 - 130 1-Chlorooctane 80 o-Terphenyl 79 70 - 130

Lab Sample ID: 890-6149-A-1-D MSD Client Sample ID: Matrix Spike Duplicate

Analysis Batch: 73312

Matrix: Solid

MSD MSD RPD Sample Sample Spike %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit U 1010 1248 Gasoline Range Organics <49.6 mg/Kg 119 70 - 130 8 20 (GRO)-C6-C10 Diesel Range Organics (Over 52.9 1010 769.2 mg/Kg 71 70 - 130 20

C10-C28)

MSD MSD %Recovery Qualifier Surrogate Limits 1-Chlorooctane 79 70 - 130 77 70 - 130 o-Terphenyl

Eurofins Carlsbad

Prep Type: Total/NA

Prep Batch: 72934

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client Sample ID: BH 24 - 08

Client Sample ID: BH 24 - 08 0'

Prep Type: Soluble

 Client: Vertex
 Job ID: 890-6150-1

 Project/Site: PLU 342
 SDG: 023 - E - 06066

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-72897/1-A

Matrix: Solid

Analysis Batch: 72942

MB MB

 Analyte
 Result Chloride
 Qualifier
 RL Unit
 Unit mg/Kg
 D Prepared Prepared
 Analyzed O2/12/24 18:53
 Dil Fac O2/12/24 18:53

Lab Sample ID: LCS 880-72897/2-A

Matrix: Solid

Analysis Batch: 72942

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Chloride 250 234.4 mg/Kg 94 90 - 110

Lab Sample ID: LCSD 880-72897/3-A

Matrix: Solid

Analysis Batch: 72942

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 250 236.1 90 - 110 mg/Kg

Lab Sample ID: 890-6150-1 MS

Matrix: Solid

Analysis Batch: 72942

MS MS Sample Sample Spike %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 66.0 251 319.3 101 90 - 110 mg/Kg

Lab Sample ID: 890-6150-1 MSD

Matrix: Solid

Analysis Batch: 72942

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 251 66.0 320.1 mg/Kg 101 90 - 110 20

QC Association Summary

 Client: Vertex
 Job ID: 890-6150-1

 Project/Site: PLU 342
 SDG: 023 - E - 06066

GC VOA

Prep Batch: 73256

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6150-1	BH 24 - 08 0'	Total/NA	Solid	5035	
890-6150-2	BH 24 - 08 0.5'	Total/NA	Solid	5035	
890-6150-3	BH 24 - 09 0'	Total/NA	Solid	5035	
890-6150-4	BH 24 - 09 0.5'	Total/NA	Solid	5035	
MB 880-73256/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-73256/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-73256/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-39150-A-1-C MS	Matrix Spike	Total/NA	Solid	5035	
880-39150-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 73431

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6150-1	BH 24 - 08 0'	Total/NA	Solid	8021B	73256
890-6150-2	BH 24 - 08 0.5'	Total/NA	Solid	8021B	73256
890-6150-3	BH 24 - 09 0'	Total/NA	Solid	8021B	73256
890-6150-4	BH 24 - 09 0.5'	Total/NA	Solid	8021B	73256
MB 880-73256/5-A	Method Blank	Total/NA	Solid	8021B	73256
LCS 880-73256/1-A	Lab Control Sample	Total/NA	Solid	8021B	73256
LCSD 880-73256/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	73256
880-39150-A-1-C MS	Matrix Spike	Total/NA	Solid	8021B	73256
880-39150-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	73256

Analysis Batch: 73615

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6150-1	BH 24 - 08 0'	Total/NA	Solid	Total BTEX	
890-6150-2	BH 24 - 08 0.5'	Total/NA	Solid	Total BTEX	
890-6150-3	BH 24 - 09 0'	Total/NA	Solid	Total BTEX	
890-6150-4	BH 24 - 09 0.5'	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 72934

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6150-1	BH 24 - 08 0'	Total/NA	Solid	8015NM Prep	
890-6150-2	BH 24 - 08 0.5'	Total/NA	Solid	8015NM Prep	
890-6150-3	BH 24 - 09 0'	Total/NA	Solid	8015NM Prep	
890-6150-4	BH 24 - 09 0.5'	Total/NA	Solid	8015NM Prep	
MB 880-72934/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-72934/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-72934/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-6149-A-1-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-6149-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 73312

Released to Imaging: 6/11/2024 11:36:10 AM

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6150-1	BH 24 - 08 0'	Total/NA	Solid	8015B NM	72934
890-6150-2	BH 24 - 08 0.5'	Total/NA	Solid	8015B NM	72934
890-6150-3	BH 24 - 09 0'	Total/NA	Solid	8015B NM	72934
890-6150-4	BH 24 - 09 0.5'	Total/NA	Solid	8015B NM	72934
MB 880-72934/1-A	Method Blank	Total/NA	Solid	8015B NM	72934
LCS 880-72934/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	72934

QC Association Summary

 Client: Vertex
 Job ID: 890-6150-1

 Project/Site: PLU 342
 SDG: 023 - E - 06066

GC Semi VOA (Continued)

Analysis Batch: 73312 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-72934/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	72934
890-6149-A-1-C MS	Matrix Spike	Total/NA	Solid	8015B NM	72934
890-6149-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	72934

Analysis Batch: 73554

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6150-1	BH 24 - 08 0'	Total/NA	Solid	8015 NM	
890-6150-2	BH 24 - 08 0.5'	Total/NA	Solid	8015 NM	
890-6150-3	BH 24 - 09 0'	Total/NA	Solid	8015 NM	
890-6150-4	BH 24 - 09 0.5'	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 72897

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6150-1	BH 24 - 08 0'	Soluble	Solid	DI Leach	_
890-6150-2	BH 24 - 08 0.5'	Soluble	Solid	DI Leach	
890-6150-3	BH 24 - 09 0'	Soluble	Solid	DI Leach	
890-6150-4	BH 24 - 09 0.5'	Soluble	Solid	DI Leach	
MB 880-72897/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-72897/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-72897/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-6150-1 MS	BH 24 - 08 0'	Soluble	Solid	DI Leach	
890-6150-1 MSD	BH 24 - 08 0'	Soluble	Solid	DI Leach	

Analysis Batch: 72942

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6150-1	BH 24 - 08 0'	Soluble	Solid	300.0	72897
890-6150-2	BH 24 - 08 0.5'	Soluble	Solid	300.0	72897
890-6150-3	BH 24 - 09 0'	Soluble	Solid	300.0	72897
890-6150-4	BH 24 - 09 0.5'	Soluble	Solid	300.0	72897
MB 880-72897/1-A	Method Blank	Soluble	Solid	300.0	72897
LCS 880-72897/2-A	Lab Control Sample	Soluble	Solid	300.0	72897
LCSD 880-72897/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	72897
890-6150-1 MS	BH 24 - 08 0'	Soluble	Solid	300.0	72897
890-6150-1 MSD	BH 24 - 08 0'	Soluble	Solid	300.0	72897

EET MID

Client: Vertex Project/Site: PLU 342

Job ID: 890-6150-1 SDG: 023 - E - 06066

02/12/24 19:07 CH

72942

Client Sample ID: BH 24 - 08 0' Date Collected: 02/07/24 13:10

Lab Sample ID: 890-6150-1 Matrix: Solid

Lab Sample ID: 890-6150-3

Lab Sample ID: 890-6150-4

Matrix: Solid

Date Received: 02/09/24 08:54

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	73256	02/15/24 12:35	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73431	02/19/24 13:24	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			73615	02/19/24 13:24	MNR	EET MID
Total/NA	Analysis	8015 NM		1			73554	02/16/24 13:36	SM	EET MID
Total/NA	Prep	8015NM Prep			9.92 g	10 mL	72934	02/12/24 14:51	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73312	02/16/24 13:36	SM	EET MID
Soluble	Leach	DI Leach			4.99 a	50 mL	72897	02/12/24 12:49	SA	EET MID

Client Sample ID: BH 24 - 08 0.5' Lab Sample ID: 890-6150-2 Matrix: Solid

Date Collected: 02/07/24 13:20

Analysis

300.0

Soluble

Date Received: 02/09/24 08:54

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	73256	02/15/24 12:35	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73431	02/19/24 13:45	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			73615	02/19/24 13:45	MNR	EET MID
Total/NA	Analysis	8015 NM		1			73554	02/16/24 13:58	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	72934	02/12/24 14:51	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73312	02/16/24 13:58	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	72897	02/12/24 12:49	SA	EET MID
Soluble	Analysis	300.0		1			72942	02/12/24 19:21	CH	EET MID

Client Sample ID: BH 24 - 09

Date Collected: 02/07/24 13:30

Date Received: 02/09/24 08:54

ate Neceiveu	. 02/03/24 00.5	*								
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	73256	02/15/24 12:35	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73431	02/19/24 14:05	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			73615	02/19/24 14:05	MNR	EET MID
Total/NA	Analysis	8015 NM		1			73554	02/16/24 14:21	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	72934	02/12/24 14:51	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73312	02/16/24 14:21	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	72897	02/12/24 12:49	SA	EET MID
Soluble	Analysis	300.0		1			72942	02/12/24 19:25	CH	EET MID

Client Sample ID: BH 24 - 09 0.5'

Date Collected: 02/07/24 13:40

Date Received: 02/09/24 08:54

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	73256	02/15/24 12:35	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73431	02/19/24 14:26	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			73615	02/19/24 14:26	MNR	EET MID

Eurofins Carlsbad

Page 17 of 24

Matrix: Solid

Lab Chronicle

 Client: Vertex
 Job ID: 890-6150-1

 Project/Site: PLU 342
 SDG: 023 - E - 06066

Client Sample ID: BH 24 - 09 0.5'

Date Collected: 02/07/24 13:40 Date Received: 02/09/24 08:54 Lab Sample ID: 890-6150-4

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			73554	02/16/24 15:05	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	72934	02/12/24 14:51	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73312	02/16/24 15:05	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	72897	02/12/24 12:49	SA	EET MID
Soluble	Analysis	300.0		1			72942	02/12/24 19:30	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

10

12

13

Accreditation/Certification Summary

 Client: Vertex
 Job ID: 890-6150-1

 Project/Site: PLU 342
 SDG: 023 - E - 06066

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date
Texas	NELAP		T104704400-23-26	06-30-24
	are included in this report, bu	it the laboratory is not certif	fied by the governing authority. This lis	t may include analytes
Analysis Method	Prep Method	Matrix	Analyte	
8015 NM		Solid	Total TPH	
Total BTEX		Solid	Total BTEX	

4

5

7

9

10

12

Method Summary

Client: Vertex Job ID: 890-6150-1 Project/Site: PLU 342

SDG: 023 - E - 06066

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Vertex

Project/Site: PLU 342

Job ID: 890-6150-1

SDG: 023 - E - 06066

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-6150-1	BH 24 - 08 0'	Solid	02/07/24 13:10	02/09/24 08:54	0'
890-6150-2	BH 24 - 08 0.5'	Solid	02/07/24 13:20	02/09/24 08:54	0.5'
890-6150-3	BH 24 - 09 0'	Solid	02/07/24 13:30	02/09/24 08:54	0'
890-6150-4	BH 24 - 09 0.5'	Solid	02/07/24 13:40	02/09/24 08:54	0.5'

Entricon ment Testing Name of Color (2000) Note that the color (2000) Note the color (2000)

Login Sample Receipt Checklist

Client: Vertex Job Number: 890-6150-1 SDG Number: 023 - E - 06066

List Source: Eurofins Carlsbad

Login Number: 6150

List Number: 1

Creator: Bruns, Shannon

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

1 0j 172

1

4

_

8

10

12

13

Login Sample Receipt Checklist

Client: Vertex Job Number: 890-6150-1 SDG Number: 023 - E - 06066

Login Number: 6150 **List Source: Eurofins Midland** List Number: 2

List Creation: 02/12/24 08:17 AM

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

<6mm (1/4").

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Chance Dixon Vertex 3101 Boyd Dr Carlsbad, New Mexico 88220

Generated 2/20/2024 12:03:50 PM

JOB DESCRIPTION

PLU 342 23 - 06066

JOB NUMBER

890-6149-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 2/20/2024 12:03:50 PM

Authorized for release by Jessica Kramer, Project Manager <u>Jessica.Kramer@et.eurofinsus.com</u> (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Client: Vertex Laboratory Job ID: 890-6149-1 Project/Site: PLU 342 SDG: 23 - 06066

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	17
Lab Chronicle	20
Certification Summary	22
Method Summary	23
Sample Summary	24
Chain of Custody	25
Racaint Chacklists	26

	٧	

W.

Definitions/Glossary

 Client: Vertex
 Job ID: 890-6149-1

 Project/Site: PLU 342
 SDG: 23 - 06066

06066

Qualifiers

GC VOA

Qualifier Description

U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier Qualifier Description

S1+ Surrogate recovery exceeds control limits, high biased.
U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier Qualifier Description

F1 MS and/or MSD recovery exceeds control limits.
U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this repo	ort.
Abbicviation	These commonly asea appreviations may or may not be present in this rep	Oit.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Carlsbad

3

4

6

7

8

11

Case Narrative

Client: Vertex Job ID: 890-6149-1 Project: PLU 342

Eurofins Carlsbad Job ID: 890-6149-1

Job Narrative 890-6149-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 2/9/2024 8:54 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.0°C.

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: BH 24 - 10 0' (890-6149-1), BH 24 - 10 1' (890-6149-2), BH 24 - 12 0' (890-6149-3), BH 24 - 12 0.5' (890-6149-4), BH 24 - 13 0' (890-6149-5) and BH 24 - 13 0.5' (890-6149-6).

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-72934 and analytical batch 880-73312 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300 ORGFM 28D - Soluble: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-72850 and analytical batch 880-72906 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Lab Sample ID: 890-6149-1

Client Sample Results

 Client: Vertex
 Job ID: 890-6149-1

 Project/Site: PLU 342
 SDG: 23 - 06066

Client Sample ID: BH 24 - 10 0'

Date Collected: 02/08/24 10:00 Date Received: 02/09/24 08:54

Sample Depth: 0

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/15/24 15:04	02/20/24 02:06	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/15/24 15:04	02/20/24 02:06	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/15/24 15:04	02/20/24 02:06	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		02/15/24 15:04	02/20/24 02:06	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/15/24 15:04	02/20/24 02:06	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		02/15/24 15:04	02/20/24 02:06	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	127		70 - 130			02/15/24 15:04	02/20/24 02:06	1
1,4-Difluorobenzene (Surr)	105		70 - 130			02/15/24 15:04	02/20/24 02:06	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			02/20/24 02:06	1
Method: SW846 8015 NM - Diese			•	l lmi4		Duamanad	Amalumad	DUE
Analyte	Result	Qualifier	RL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed	
Analyte Total TPH	Result 52.9	Qualifier	RL 49.6	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 02/16/24 10:18	
Analyte Total TPH Method: SW846 8015B NM - Dies	Result 52.9 sel Range Orga	Qualifier nics (DRO)	RL 49.6	mg/Kg			02/16/24 10:18	1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte	Result 52.9 sel Range Orga Result	Qualifier nics (DRO) Qualifier	RL 49.6 (GC)	mg/Kg	<u>D</u>	Prepared	02/16/24 10:18 Analyzed	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies	Result 52.9 sel Range Orga	Qualifier nics (DRO) Qualifier	RL 49.6	mg/Kg			02/16/24 10:18	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	Result 52.9 sel Range Orga Result	Qualifier nics (DRO) Qualifier	RL 49.6 (GC)	mg/Kg		Prepared	02/16/24 10:18 Analyzed	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result 52.9 sel Range Orga Result <49.6	Qualifier nics (DRO) Qualifier U	RL 49.6 (GC) RL 49.6	mg/Kg Unit mg/Kg		Prepared 02/12/24 14:51	02/16/24 10:18 Analyzed 02/16/24 10:18	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result 52.9 sel Range Orga Result <49.6 52.9	Qualifier nics (DRO) Qualifier U	RL 49.6 (GC) RL 49.6 49.6	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/12/24 14:51 02/12/24 14:51	02/16/24 10:18 Analyzed 02/16/24 10:18 02/16/24 10:18	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result 52.9 sel Range Orga Result < 49.6 52.9 49.6	Qualifier nics (DRO) Qualifier U	RL 49.6 (GC) RL 49.6 49.6 49.6 49.6	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/12/24 14:51 02/12/24 14:51	02/16/24 10:18 Analyzed 02/16/24 10:18 02/16/24 10:18 02/16/24 10:18	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result	Qualifier nics (DRO) Qualifier U	RL 49.6 (GC) RL 49.6 49.6 49.6 Limits	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/12/24 14:51 02/12/24 14:51 02/12/24 14:51 Prepared	02/16/24 10:18 Analyzed 02/16/24 10:18 02/16/24 10:18 02/16/24 10:18 Analyzed	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result	Qualifier nics (DRO) Qualifier U Qualifier	RL 49.6 (GC) RL 49.6 49.6 49.6 Limits 70 - 130 70 - 130	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/12/24 14:51 02/12/24 14:51 02/12/24 14:51 Prepared 02/12/24 14:51	02/16/24 10:18 Analyzed 02/16/24 10:18 02/16/24 10:18 02/16/24 10:18 Analyzed 02/16/24 10:18	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier nics (DRO) Qualifier U Qualifier	RL 49.6 (GC) RL 49.6 49.6 49.6 Limits 70 - 130 70 - 130	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/12/24 14:51 02/12/24 14:51 02/12/24 14:51 Prepared 02/12/24 14:51	02/16/24 10:18 Analyzed 02/16/24 10:18 02/16/24 10:18 02/16/24 10:18 Analyzed 02/16/24 10:18	Dil Fac 1 Dil Fac 1 Dil Fac 1 Dil Fac

Client Sample ID: BH 24 - 10 1'

Date Collected: 02/08/24 10:10 Date Received: 02/09/24 08:54

Sample Depth: 1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		02/15/24 15:04	02/20/24 02:27	1
Toluene	<0.00199	U	0.00199	mg/Kg		02/15/24 15:04	02/20/24 02:27	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		02/15/24 15:04	02/20/24 02:27	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		02/15/24 15:04	02/20/24 02:27	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		02/15/24 15:04	02/20/24 02:27	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		02/15/24 15:04	02/20/24 02:27	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	126		70 - 130			02/15/24 15:04	02/20/24 02:27	1

Eurofins Carlsbad

Lab Sample ID: 890-6149-2

Matrix: Solid

2

3

4

7

4.0

11

Lab Sample ID: 890-6149-2

Lab Sample ID: 890-6149-3

Matrix: Solid

Client: Vertex Job ID: 890-6149-1 Project/Site: PLU 342 SDG: 23 - 06066

Client Sample ID: BH 24 - 10 1'

Date Collected: 02/08/24 10:10 Date Received: 02/09/24 08:54

Sample Depth: 1

Method: SW846 8021B - Volati	e Organic Compounds	(GC) (Continued)
------------------------------	---------------------	------------------

Surrogate	%Recovery Qual	lifier Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	106	70 - 130	02/15/24 15:04	02/20/24 02:27	1

Mathad: TAI	COD Total DTEV	Total DTCV	Calaulatian
Wethod: IAL	SOP Total BTEX	- IOIAI DIEA	Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg		_	02/20/24 02:27	1

Analyte	Result Qu	alifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.3 U	50.3	mg/Kg			02/16/24 11:25	1

Method: SW846 8015B NM - Diesel Range Or	ganics (DRO)	(GC)
Michiga Offoro Colod Min - Dieser Range Of	garries (Dito)	(00)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.3	U	50.3	mg/Kg		02/12/24 14:51	02/16/24 11:25	1
Diesel Range Organics (Over C10-C28)	<50.3	U	50.3	mg/Kg		02/12/24 14:51	02/16/24 11:25	1
Oll Range Organics (Over C28-C36)	<50.3	U	50.3	mg/Kg		02/12/24 14:51	02/16/24 11:25	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	105	70 - 130	02/12/24 14:51	02/16/24 11:25	1
o-Terphenyl	110	70 - 130	02/12/24 14:51	02/16/24 11:25	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	643		5.02	mg/Kg			02/12/24 15:38	1

Client Sample ID: BH 24 - 12 0'

Date Collected: 02/08/24 10:40 Date Received: 02/09/24 08:54

Sample Depth: 0

Method: SW846 8021B -	M-1-4!1- O	0 (00)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		02/15/24 15:04	02/20/24 02:47	1
Toluene	<0.00198	U	0.00198	mg/Kg		02/15/24 15:04	02/20/24 02:47	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		02/15/24 15:04	02/20/24 02:47	1
m-Xylene & p-Xylene	<0.00396	U	0.00396	mg/Kg		02/15/24 15:04	02/20/24 02:47	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		02/15/24 15:04	02/20/24 02:47	1
Xylenes, Total	<0.00396	U	0.00396	mg/Kg		02/15/24 15:04	02/20/24 02:47	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	118		70 - 130			02/15/24 15:04	02/20/24 02:47	1
4.4.Diff	400		70 400			00/45/04 45:04	00/00/04 00:47	

4-Bromofluorobenzene (Surr)	118	70 - 130	02/15/24 15:04	02/20/24 02:47	1
1,4-Difluorobenzene (Surr)	103	70 - 130	02/15/24 15:04	02/20/24 02:47	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00396	U	0.00396	mg/Kg			02/20/24 02:47	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7	mg/Kg		_	02/16/24 11:47	1

Lab Sample ID: 890-6149-3

Lab Sample ID: 890-6149-4

Matrix: Solid

Client: Vertex Job ID: 890-6149-1 Project/Site: PLU 342 SDG: 23 - 06066

Client Sample ID: BH 24 - 12 0'

Date Collected: 02/08/24 10:40 Date Received: 02/09/24 08:54

Sample Depth: 0

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7	mg/Kg		02/12/24 14:51	02/16/24 11:47	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.7	U	49.7	mg/Kg		02/12/24 14:51	02/16/24 11:47	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.7	U	49.7	mg/Kg		02/12/24 14:51	02/16/24 11:47	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	114		70 - 130			02/12/24 14:51	02/16/24 11:47	1
o-Terphenyl	120		70 - 130			02/12/24 14:51	02/16/24 11:47	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
riidiyto								

Client Sample ID: BH 24 - 12 0.5'

Date Collected: 02/08/24 10:50

Date Received: 02/09/24 08:54

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		02/15/24 15:04	02/20/24 03:08	1
Toluene	<0.00202	U	0.00202	mg/Kg		02/15/24 15:04	02/20/24 03:08	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		02/15/24 15:04	02/20/24 03:08	1
m-Xylene & p-Xylene	<0.00403	U	0.00403	mg/Kg		02/15/24 15:04	02/20/24 03:08	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		02/15/24 15:04	02/20/24 03:08	1
Xylenes, Total	<0.00403	U	0.00403	mg/Kg		02/15/24 15:04	02/20/24 03:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	117		70 - 130			02/15/24 15:04	02/20/24 03:08	1
1,4-Difluorobenzene (Surr)	103		70 - 130			02/15/24 15:04	02/20/24 03:08	1
Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403	mg/Kg			02/20/24 03:08	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7	mg/Kg			02/16/24 12:09	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.7	U	49.7	mg/Kg		02/12/24 14:51	02/16/24 12:09	1
Diesel Range Organics (Over C10-C28)	<49.7	U	49.7	mg/Kg		02/12/24 14:51	02/16/24 12:09	1
Oll Range Organics (Over C28-C36)	<49.7	U	49.7	mg/Kg		02/12/24 14:51	02/16/24 12:09	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	100		70 - 130			02/12/24 14:51	02/16/24 12:09	1

Eurofins Carlsbad

2/20/2024

Matrix: Solid

Lab Sample ID: 890-6149-4

Lab Sample ID: 890-6149-5

Job ID: 890-6149-1 SDG: 23 - 06066

Client Sample ID: BH 24 - 12 0.5'

Date Collected: 02/08/24 10:50 Date Received: 02/09/24 08:54

Sample Depth: 0.5

Project/Site: PLU 342

Client: Vertex

Method: EPA 300.0 - Anions, Ion C	hromatograp	hy - Solubl	е					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	77.6		5.01	mg/Kg			02/12/24 15:47	1

Client Sample ID: BH 24 - 13 0'

Method: TAL SOP Total BTEX - Total BTEX Calculation

Date Collected: 02/08/24 11:00 Date Received: 02/09/24 08:54

Sample Depth: 0

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/15/24 15:04	02/20/24 04:58	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/15/24 15:04	02/20/24 04:58	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/15/24 15:04	02/20/24 04:58	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		02/15/24 15:04	02/20/24 04:58	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/15/24 15:04	02/20/24 04:58	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		02/15/24 15:04	02/20/24 04:58	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130			02/15/24 15:04	02/20/24 04:58	1
1,4-Difluorobenzene (Surr)	100		70 - 130			02/15/24 15:04	02/20/24 04:58	1

Analyte Total BTEX	<0.00401	Qualifier U		Unit mg/Kg	_ <u>D</u> -	Prepared	Analyzed 02/20/24 04:58	Dil Fac
Method: SW846 8015 NM - Diesel Ra Analyte	•	ics (DRO) (G Qualifier	iC)	Unit	D	Prepared	Analyzed	Dil Fac

• • •								
Total TPH	<49.6	U	49.6	mg/Kg			02/16/24 12:31	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.6	U	49.6	mg/Kg		02/12/24 14:51	02/16/24 12:31	1
Diesel Range Organics (Over C10-C28)	<49.6	U	49.6	mg/Kg		02/12/24 14:51	02/16/24 12:31	1
OII Range Organics (Over C28-C36)	<49.6	U	49.6	mg/Kg		02/12/24 14:51	02/16/24 12:31	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	117		70 - 130			02/12/24 14:51	02/16/24 12:31	1
o-Terphenyl	125		70 - 130			02/12/24 14:51	02/16/24 12:31	1

Method: EPA 300.0 - Anions, Ion	Chromatography - Solubl	e					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	66.0	5.01	mg/Kg			02/12/24 15:52	1

Lab Sample ID: 890-6149-6

 Client: Vertex
 Job ID: 890-6149-1

 Project/Site: PLU 342
 SDG: 23 - 06066

Client Sample ID: BH 24 - 13 0.5'

Date Collected: 02/08/24 11:10 Date Received: 02/09/24 08:54

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		02/15/24 15:04	02/20/24 05:18	1
Toluene	< 0.00199	U	0.00199	mg/Kg		02/15/24 15:04	02/20/24 05:18	1
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		02/15/24 15:04	02/20/24 05:18	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		02/15/24 15:04	02/20/24 05:18	1
o-Xylene	< 0.00199	U	0.00199	mg/Kg		02/15/24 15:04	02/20/24 05:18	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		02/15/24 15:04	02/20/24 05:18	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130			02/15/24 15:04	02/20/24 05:18	1
1,4-Difluorobenzene (Surr)	110		70 - 130			02/15/24 15:04	02/20/24 05:18	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			02/20/24 05:18	1
: Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					
Method: SW846 8015 NM - Diese Analyte	el Range Organ Result	ics (DRO) (C	GC)	Unit	D	Prepared	Analyzed	Dil Fac
: Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (C	GC)		<u>D</u>	Prepared		
Method: SW846 8015 NM - Diese Analyte	Result <50.3	ics (DRO) (Country of the Country of	RL 50.3	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH	el Range Organ Result <50.3 sel Range Organ	ics (DRO) (Country of the Country of	RL 50.3	Unit	<u>D</u>	Prepared Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics	el Range Organ Result <50.3 sel Range Organ	Qualifier Unics (DRO) Qualifier	RL 50.3	Unit mg/Kg	<u> </u>		Analyzed 02/16/24 12:53	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	el Range Organ Result <50.3 sel Range Organ Result	Qualifier U nics (DRO) Qualifier U u U	GC) RL 50.3 (GC) RL	Unit mg/Kg	<u> </u>	Prepared	Analyzed 02/16/24 12:53 Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte	el Range Organ Result <50.3 sel Range Orga Result <50.3	cos (DRO) (On Qualifier Unics (DRO) Qualifier Unics (DRO) Qualifier U	(GC) RL 50.3 (GC) RL 50.3	Unit mg/Kg Unit mg/Kg	<u> </u>	Prepared 02/12/24 14:51	Analyzed 02/16/24 12:53 Analyzed 02/16/24 12:53	Dil Fac Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Organ Result Result Sel Range Orga Result <50.3 <50.3	cos (DRO) (Control of the control of	GC) RL 50.3 (GC) RL 50.3 50.3	Unit mg/Kg Unit mg/Kg mg/Kg	<u> </u>	Prepared 02/12/24 14:51 02/12/24 14:51	Analyzed 02/16/24 12:53 Analyzed 02/16/24 12:53 02/16/24 12:53	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	el Range Organ Result <50.3 sel Range Orga Result <50.3 <50.3 <50.3	cos (DRO) (On Qualifier Unics (DRO) Qualifier Unics (DRO) Qualifier Unics Unic	GC) RL 50.3 (GC) RL 50.3 50.3 50.3	Unit mg/Kg Unit mg/Kg mg/Kg	<u> </u>	Prepared 02/12/24 14:51 02/12/24 14:51 02/12/24 14:51	Analyzed 02/16/24 12:53 Analyzed 02/16/24 12:53 02/16/24 12:53 02/16/24 12:53	Dil Fac Dil Fac 1 1 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	el Range Organ Result <50.3 sel Range Orga Result <50.3 <50.3 <50.3 %Recovery	cos (DRO) (On Qualifier Unics (DRO) Qualifier Unics (DRO) Qualifier Unics Unic	GC) RL 50.3 (GC) RL 50.3 50.3 Limits	Unit mg/Kg Unit mg/Kg mg/Kg	<u> </u>	Prepared 02/12/24 14:51 02/12/24 14:51 02/12/24 14:51 Prepared	Analyzed 02/16/24 12:53 Analyzed 02/16/24 12:53 02/16/24 12:53 02/16/24 12:53 Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Range Organ Result	Control (Control (Con	GC) RL 50.3 (GC) RL 50.3 50.3 50.3 Limits 70 - 130 70 - 130	Unit mg/Kg Unit mg/Kg mg/Kg	<u> </u>	Prepared 02/12/24 14:51 02/12/24 14:51 02/12/24 14:51 Prepared 02/12/24 14:51	Analyzed 02/16/24 12:53 Analyzed 02/16/24 12:53 02/16/24 12:53 Analyzed 02/16/24 12:53	Dil Fac Dil Fac 1 Dil Fac 1 1 Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	el Range Organ Result <50.3 Sel Range Organ Result <50.3 <50.3 <50.3 <50.3 <80.3 %Recovery 118 125 Chromatograp	Control (Control (Con	GC) RL 50.3 (GC) RL 50.3 50.3 50.3 Limits 70 - 130 70 - 130	Unit mg/Kg Unit mg/Kg mg/Kg	<u> </u>	Prepared 02/12/24 14:51 02/12/24 14:51 02/12/24 14:51 Prepared 02/12/24 14:51	Analyzed 02/16/24 12:53 Analyzed 02/16/24 12:53 02/16/24 12:53 Analyzed 02/16/24 12:53	Dil Fac 1 Dil Fac 1 1 Dil Fac 1

Surrogate Summary

 Client: Vertex
 Job ID: 890-6149-1

 Project/Site: PLU 342
 SDG: 23 - 06066

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-6143-A-1-E MS	Matrix Spike	116	99	
890-6143-A-1-F MSD	Matrix Spike Duplicate	116	97	
890-6149-1	BH 24 - 10 0'	127	105	
890-6149-2	BH 24 - 10 1'	126	106	
890-6149-3	BH 24 - 12 0'	118	103	
890-6149-4	BH 24 - 12 0.5'	117	103	
890-6149-5	BH 24 - 13 0'	99	100	
890-6149-6	BH 24 - 13 0.5'	108	110	
LCS 880-73277/1-A	Lab Control Sample	105	102	
LCSD 880-73277/2-A	Lab Control Sample Dup	103	97	
MB 880-73254/5-A	Method Blank	128	119	
MB 880-73277/5-A	Method Blank	130	118	
Currente Lenend				
Surrogate Legend	27070 (C.177)			
BFB = 4-Bromofluorober DFBZ = 1,4-Difluorobenz	izerie (Surr)			

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-6149-1	BH 24 - 10 0'	97	107	
390-6149-1 MS	BH 24 - 10 0'	80	79	
890-6149-1 MSD	BH 24 - 10 0'	79	77	
890-6149-2	BH 24 - 10 1'	105	110	
390-6149-3	BH 24 - 12 0'	114	120	
390-6149-4	BH 24 - 12 0.5'	100	107	
390-6149-5	BH 24 - 13 0'	117	125	
390-6149-6	BH 24 - 13 0.5'	118	125	
_CS 880-72934/2-A	Lab Control Sample	94	99	
_CSD 880-72934/3-A	Lab Control Sample Dup	94	99	
MB 880-72934/1-A	Method Blank	235 S1+	266 S1+	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Client: Vertex Job ID: 890-6149-1 SDG: 23 - 06066 Project/Site: PLU 342

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-73254/5-A

Matrix: Solid

Analysis Batch: 73429

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 73254

1

Dil Fac

	МВ	MB								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac		
Benzene	<0.00200	U	0.00200	mg/Kg		02/15/24 12:30	02/19/24 11:56			
Toluene	<0.00200	U	0.00200	mg/Kg		02/15/24 12:30	02/19/24 11:56			
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/15/24 12:30	02/19/24 11:56			
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		02/15/24 12:30	02/19/24 11:56			
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/15/24 12:30	02/19/24 11:56			
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		02/15/24 12:30	02/19/24 11:56			

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed
4-Bromofluorobenzene (Surr)	128		70 - 130	02/15/24 12:30	02/19/24 11:56
1,4-Difluorobenzene (Surr)	119		70 - 130	02/15/24 12:30	02/19/24 11:56

Lab Sample ID: MB 880-73277/5-A

Matrix: Solid

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 73277

Analysis Batch: 73429

мв мв

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/15/24 15:04	02/19/24 23:35	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/15/24 15:04	02/19/24 23:35	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/15/24 15:04	02/19/24 23:35	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		02/15/24 15:04	02/19/24 23:35	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/15/24 15:04	02/19/24 23:35	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		02/15/24 15:04	02/19/24 23:35	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Pre	pared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	130		70 - 130	02/15/2	24 15:04	02/19/24 23:35	1
1,4-Difluorobenzene (Surr)	118		70 - 130	02/15/.	24 15:04	02/19/24 23:35	1

Lab Sample ID: LCS 880-73277/1-A

Matrix: Solid

Analysis Batch: 73429

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 73277

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1135		mg/Kg		113	70 - 130	
Toluene	0.100	0.1013		mg/Kg		101	70 - 130	
Ethylbenzene	0.100	0.1133		mg/Kg		113	70 - 130	
m-Xylene & p-Xylene	0.200	0.2121		mg/Kg		106	70 - 130	
o-Xylene	0.100	0.1034		mg/Kg		103	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	105	70 _ 130
1.4-Difluorobenzene (Surr)	102	70 - 130

Lab Sample ID: LCSD 880-73277/2-A

Matrix: Solid

Analyte

Benzene

Analysis Batch: 73429

Client Sample ID: Lab Control Sample Dup
Prep Type: Total/NA
Prep Batch: 73277

Spike LCSD LCSD %Rec RPD Result Qualifier Added Unit %Rec Limits RPD Limit 0.100 0.1122 mg/Kg 112 70 - 130

Client: Vertex Job ID: 890-6149-1 Project/Site: PLU 342 SDG: 23 - 06066

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-73277/2-A

Matrix: Solid Analysis Batch: 73429 Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 73277

Spike LCSD LCSD %Rec **RPD** Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Toluene 0.100 0.1014 70 - 130 35 mg/Kg 101 0 Ethylbenzene 0.100 0.1118 mg/Kg 112 70 - 130 35 0.200 m-Xylene & p-Xylene 0.2009 mg/Kg 100 70 - 130 35 5 o-Xylene 0.100 0.09643 mg/Kg 96 70 - 130 35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	103		70 - 130
1,4-Difluorobenzene (Surr)	97		70 - 130

Lab Sample ID: 890-6143-A-1-E MS

Matrix: Solid

Analysis Batch: 73429

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 73277

MS MS %Rec Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.1042 <0.00199 mg/Kg 104 70 - 130 Toluene <0.00199 U 0.100 0.09708 96 70 - 130 mg/Kg Ethylbenzene <0.00199 U 0.100 0.1075 107 70 - 130 mg/Kg 0.200 m-Xylene & p-Xylene <0.00398 U 0.2091 104 70 - 130 mg/Kg o-Xylene <0.00199 U 0.100 0.1096 mg/Kg 109 70 - 130

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	116	70 - 130
1,4-Difluorobenzene (Surr)	99	70 - 130

Lab Sample ID: 890-6143-A-1-F MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 73429

Prep Type: Total/NA Prep Batch: 73277

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00199	U	0.101	0.1057		mg/Kg		105	70 - 130	1	35
Toluene	< 0.00199	U	0.101	0.1028		mg/Kg		102	70 - 130	6	35
Ethylbenzene	<0.00199	U	0.101	0.1106		mg/Kg		110	70 - 130	3	35
m-Xylene & p-Xylene	<0.00398	U	0.201	0.2262		mg/Kg		112	70 - 130	8	35
o-Xylene	< 0.00199	U	0.101	0.1090		mg/Kg		108	70 - 130	1	35

MSD MSD

Surrogate	76Recovery	Qualifier	LIIIIII
4-Bromofluorobenzene (Surr)	116		70 - 130
1,4-Difluorobenzene (Surr)	97		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-72934/1-A

Matrix: Solid

Analysis Batch: 73312

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 72934

мв мв Analyte Result Qualifier RL Unit Prepared <50.0 U 50.0 mg/Kg 02/12/24 14:51 02/16/24 07:45 Gasoline Range Organics (GRO)-C6-C10

Client: Vertex Job ID: 890-6149-1 SDG: 23 - 06066 Project/Site: PLU 342

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-72934/1-A

Lab Sample ID: LCS 880-72934/2-A

Matrix: Solid

Analysis Batch: 73312

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 72934

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		02/12/24 14:51	02/16/24 07:45	1
C10-C28)								
OII Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		02/12/24 14:51	02/16/24 07:45	1

MB MB

MB MB

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1-Chlorooctane	235	S1+	70 - 130	02/12/24 14:51	02/16/24 07:45	1
Į	o-Terphenyl	266	S1+	70 - 130	02/12/24 14:51	02/16/24 07:45	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 72934

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	977.0		mg/Kg	_	98	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	883.1		mg/Kg		88	70 - 130	
C10-C28)								

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	94		70 - 130
o-Terphenyl	99		70 - 130

Lab Sample ID: LCSD 880-72934/3-A

Matrix: Solid

Analyte

C10-C28)

(GRO)-C6-C10

Matrix: Solid

Analysis Batch: 73312

Analysis Batch: 73312

Gasoline Range Organics

Diesel Range Organics (Over

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

70 - 130

Prep Batch: 72934

2

20

%Rec RPD %Rec Limits RPD Limit 100 70 - 130 20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	94		70 - 130
o-Terphenyl	99		70 - 130

Lab Sample ID: 890-6149-1 MS Client Sample ID: BH 24 - 10 0'

Spike

Added

1000

1000

LCSD LCSD

996.1

866.9

Result Qualifier

Unit

mg/Kg

mg/Kg

D

87

Matrix: Solid

Analysis Batch: 73312

Prep Type: Total/NA Prep Batch: 72934

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	<49.6	U	1010	1148		mg/Kg		109	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	52.9		1010	768.5		mg/Kg		71	70 - 130	
C10-C28)										

C10-C28)

	IVIS	IVIS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	80		70 - 130
o-Terphenyl	79		70 - 130

Client: Vertex Job ID: 890-6149-1 SDG: 23 - 06066 Project/Site: PLU 342

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-6149-1 MSD Client Sample ID: BH 24 - 10 0'

Matrix: Solid

Analysis Batch: 73312

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Prep Batch: 72934

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.6	U	1010	1248		mg/Kg		119	70 - 130	8	20
Diesel Range Organics (Over	52.9		1010	769.2		mg/Kg		71	70 - 130	0	20

C10-C28)

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	79		70 - 130
o-Terphenyl	77		70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-72850/1-A Client Sample ID: Method Blank **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 72906

мв мв

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00 U	5.00	mg/Kg			02/12/24 13:37	1

Lab Sample ID: LCS 880-72850/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble**

Analysis Batch: 72906

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	250	235.0	-	mg/Kg		94	90 - 110	

Lab Sample ID: LCSD 880-72850/3-A

Matrix: Solid

Analysis Batch: 72906

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	250	234.9		mg/Kg		94	90 - 110	0	20	

Lab Sample ID: 890-6143-A-1-B MS

Matrix: Solid

Analysis Batch: 72906

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	86.6		251	335.6		ma/Ka		99	90 - 110	

Lab Sample ID: 890-6143-A-1-C MSD

Matrix: Solid

Analysis Batch: 72906

Alialysis Datcii. 12300											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	86.6		251	337.8		mg/Kg		100	90 - 110	1	20

QC Sample Results

Client: Vertex Job ID: 890-6149-1 Project/Site: PLU 342 SDG: 23 - 06066

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 890-6145-A-5-B MS Client Sample ID: Matrix Spike **Prep Type: Soluble**

Matrix: Solid Analysis Batch: 72906

674 F1

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	674	F1	2520	2869	F1	mg/Kg		87	90 - 110	

Lab Sample ID: 890-6145-A-5-C MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 72906

Chloride

Sample Sample Spike MSD MSD %Rec RPD Result Qualifier RPD Added Result Qualifier Limits Limit Analyte Unit D %Rec

2875 F1

mg/Kg

88

90 - 110

0

2520

QC Association Summary

 Client: Vertex
 Job ID: 890-6149-1

 Project/Site: PLU 342
 SDG: 23 - 06066

GC VOA

Prep Batch: 73254

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-73254/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 73277

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6149-1	BH 24 - 10 0'	Total/NA	Solid	5035	_
890-6149-2	BH 24 - 10 1'	Total/NA	Solid	5035	
890-6149-3	BH 24 - 12 0'	Total/NA	Solid	5035	
890-6149-4	BH 24 - 12 0.5'	Total/NA	Solid	5035	
890-6149-5	BH 24 - 13 0'	Total/NA	Solid	5035	
890-6149-6	BH 24 - 13 0.5'	Total/NA	Solid	5035	
MB 880-73277/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-73277/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-73277/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-6143-A-1-E MS	Matrix Spike	Total/NA	Solid	5035	
890-6143-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 73429

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6149-1	BH 24 - 10 0'	Total/NA	Solid	8021B	73277
890-6149-2	BH 24 - 10 1'	Total/NA	Solid	8021B	73277
890-6149-3	BH 24 - 12 0'	Total/NA	Solid	8021B	73277
890-6149-4	BH 24 - 12 0.5'	Total/NA	Solid	8021B	73277
890-6149-5	BH 24 - 13 0'	Total/NA	Solid	8021B	73277
890-6149-6	BH 24 - 13 0.5'	Total/NA	Solid	8021B	73277
MB 880-73254/5-A	Method Blank	Total/NA	Solid	8021B	73254
MB 880-73277/5-A	Method Blank	Total/NA	Solid	8021B	73277
LCS 880-73277/1-A	Lab Control Sample	Total/NA	Solid	8021B	73277
LCSD 880-73277/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	73277
890-6143-A-1-E MS	Matrix Spike	Total/NA	Solid	8021B	73277
890-6143-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	73277

Analysis Batch: 73678

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6149-1	BH 24 - 10 0'	Total/NA	Solid	Total BTEX	
890-6149-2	BH 24 - 10 1'	Total/NA	Solid	Total BTEX	
890-6149-3	BH 24 - 12 0'	Total/NA	Solid	Total BTEX	
890-6149-4	BH 24 - 12 0.5'	Total/NA	Solid	Total BTEX	
890-6149-5	BH 24 - 13 0'	Total/NA	Solid	Total BTEX	
890-6149-6	BH 24 - 13 0.5'	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 72934

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6149-1	BH 24 - 10 0'	Total/NA	Solid	8015NM Prep	
890-6149-2	BH 24 - 10 1'	Total/NA	Solid	8015NM Prep	
890-6149-3	BH 24 - 12 0'	Total/NA	Solid	8015NM Prep	
890-6149-4	BH 24 - 12 0.5'	Total/NA	Solid	8015NM Prep	
890-6149-5	BH 24 - 13 0'	Total/NA	Solid	8015NM Prep	
890-6149-6	BH 24 - 13 0.5'	Total/NA	Solid	8015NM Prep	
MB 880-72934/1-A	Method Blank	Total/NA	Solid	8015NM Prep	

Eurofins Carlsbad

2

4

5

9

11

12

QC Association Summary

Client: Vertex Job ID: 890-6149-1 Project/Site: PLU 342 SDG: 23 - 06066

GC Semi VOA (Continued)

Prep Batch: 72934 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 880-72934/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-72934/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-6149-1 MS	BH 24 - 10 0'	Total/NA	Solid	8015NM Prep	
890-6149-1 MSD	BH 24 - 10 0'	Total/NA	Solid	8015NM Prep	

Analysis Batch: 73312

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6149-1	BH 24 - 10 0'	Total/NA	Solid	8015B NM	72934
890-6149-2	BH 24 - 10 1'	Total/NA	Solid	8015B NM	72934
890-6149-3	BH 24 - 12 0'	Total/NA	Solid	8015B NM	72934
890-6149-4	BH 24 - 12 0.5'	Total/NA	Solid	8015B NM	72934
890-6149-5	BH 24 - 13 0'	Total/NA	Solid	8015B NM	72934
890-6149-6	BH 24 - 13 0.5'	Total/NA	Solid	8015B NM	72934
MB 880-72934/1-A	Method Blank	Total/NA	Solid	8015B NM	72934
LCS 880-72934/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	72934
LCSD 880-72934/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	72934
890-6149-1 MS	BH 24 - 10 0'	Total/NA	Solid	8015B NM	72934
890-6149-1 MSD	BH 24 - 10 0'	Total/NA	Solid	8015B NM	72934

Analysis Batch: 73553

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6149-1	BH 24 - 10 0'	Total/NA	Solid	8015 NM	
890-6149-2	BH 24 - 10 1'	Total/NA	Solid	8015 NM	
890-6149-3	BH 24 - 12 0'	Total/NA	Solid	8015 NM	
890-6149-4	BH 24 - 12 0.5'	Total/NA	Solid	8015 NM	
890-6149-5	BH 24 - 13 0'	Total/NA	Solid	8015 NM	
890-6149-6	BH 24 - 13 0.5'	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 72850

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6149-1	BH 24 - 10 0'	Soluble	Solid	DI Leach	
890-6149-2	BH 24 - 10 1'	Soluble	Solid	DI Leach	
890-6149-3	BH 24 - 12 0'	Soluble	Solid	DI Leach	
890-6149-4	BH 24 - 12 0.5'	Soluble	Solid	DI Leach	
890-6149-5	BH 24 - 13 0'	Soluble	Solid	DI Leach	
890-6149-6	BH 24 - 13 0.5'	Soluble	Solid	DI Leach	
MB 880-72850/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-72850/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-72850/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-6143-A-1-B MS	Matrix Spike	Soluble	Solid	DI Leach	
890-6143-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
890-6145-A-5-B MS	Matrix Spike	Soluble	Solid	DI Leach	
890-6145-A-5-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 72906

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6149-1	BH 24 - 10 0'	Soluble	Solid	300.0	72850
890-6149-2	BH 24 - 10 1'	Soluble	Solid	300.0	72850
890-6149-3	BH 24 - 12 0'	Soluble	Solid	300.0	72850

Eurofins Carlsbad

Page 18 of 27

QC Association Summary

 Client: Vertex
 Job ID: 890-6149-1

 Project/Site: PLU 342
 SDG: 23 - 06066

HPLC/IC (Continued)

Analysis Batch: 72906 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6149-4	BH 24 - 12 0.5'	Soluble	Solid	300.0	72850
890-6149-5	BH 24 - 13 0'	Soluble	Solid	300.0	72850
890-6149-6	BH 24 - 13 0.5'	Soluble	Solid	300.0	72850
MB 880-72850/1-A	Method Blank	Soluble	Solid	300.0	72850
LCS 880-72850/2-A	Lab Control Sample	Soluble	Solid	300.0	72850
LCSD 880-72850/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	72850
890-6143-A-1-B MS	Matrix Spike	Soluble	Solid	300.0	72850
890-6143-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	72850
890-6145-A-5-B MS	Matrix Spike	Soluble	Solid	300.0	72850
890-6145-A-5-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	72850

1

5

6

8

9

10

12

<u> 13</u>

Job ID: 890-6149-1

Client: Vertex Project/Site: PLU 342 SDG: 23 - 06066

Client Sample ID: BH 24 - 10 0'

Lab Sample ID: 890-6149-1 Date Collected: 02/08/24 10:00 Matrix: Solid Date Received: 02/09/24 08:54

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	73277	02/15/24 15:04	MNR	EET MIC
Total/NA	Analysis	8021B		1	5 mL	5 mL	73429	02/20/24 02:06	MNR	EET MIC
Total/NA	Analysis	Total BTEX		1			73678	02/20/24 02:06	SM	EET MI
Total/NA	Analysis	8015 NM		1			73553	02/16/24 10:18	SM	EET MI
Total/NA	Prep	8015NM Prep			10.09 g	10 mL	72934	02/12/24 14:51	TKC	EET MIC
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73312	02/16/24 10:18	SM	EET MIC
Soluble	Leach	DI Leach			5.02 g	50 mL	72850	02/12/24 10:30	SA	EET MIC
Soluble	Analysis	300.0		10			72906	02/12/24 15:33	CH	EET MID

Client Sample ID: BH 24 - 10 1' Lab Sample ID: 890-6149-2

Date Collected: 02/08/24 10:10 Matrix: Solid

Date Received: 02/09/24 08:54

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	73277	02/15/24 15:04	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73429	02/20/24 02:27	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			73678	02/20/24 02:27	SM	EET MID
Total/NA	Analysis	8015 NM		1			73553	02/16/24 11:25	SM	EET MID
Total/NA	Prep	8015NM Prep			9.95 g	10 mL	72934	02/12/24 14:51	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73312	02/16/24 11:25	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	72850	02/12/24 10:30	SA	EET MID
Soluble	Analysis	300.0		1			72906	02/12/24 15:38	CH	EET MID

Client Sample ID: BH 24 - 12 0' Lab Sample ID: 890-6149-3

Date Collected: 02/08/24 10:40 Date Received: 02/09/24 08:54

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	73277	02/15/24 15:04	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73429	02/20/24 02:47	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			73678	02/20/24 02:47	SM	EET MID
Total/NA	Analysis	8015 NM		1			73553	02/16/24 11:47	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	72934	02/12/24 14:51	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73312	02/16/24 11:47	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	72850	02/12/24 10:30	SA	EET MID
Soluble	Analysis	300.0		1			72906	02/12/24 15:43	CH	EET MID

Client Sample ID: BH 24 - 12 0.5' Lab Sample ID: 890-6149-4

Date Collected: 02/08/24 10:50 Date Received: 02/09/24 08:54

Г										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	73277	02/15/24 15:04	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73429	02/20/24 03:08	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			73678	02/20/24 03:08	SM	EET MID

Eurofins Carlsbad

Matrix: Solid

Matrix: Solid

Client: Vertex Job ID: 890-6149-1 Project/Site: PLU 342 SDG: 23 - 06066

Client Sample ID: BH 24 - 12 0.5'

Date Collected: 02/08/24 10:50 Date Received: 02/09/24 08:54

Lab Sample ID: 890-6149-4

Lab Sample ID: 890-6149-5

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			73553	02/16/24 12:09	SM	EET MID
Total/NA	Prep	8015NM Prep			10.07 g	10 mL	72934	02/12/24 14:51	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73312	02/16/24 12:09	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	72850	02/12/24 10:30	SA	EET MID
Soluble	Analysis	300.0		1			72906	02/12/24 15:47	CH	EET MID

Client Sample ID: BH 24 - 13 0'

Date Collected: 02/08/24 11:00

Date Received: 02/09/24 08:54

Soluble

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	73277	02/15/24 15:04	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73429	02/20/24 04:58	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			73678	02/20/24 04:58	SM	EET MID
Total/NA	Analysis	8015 NM		1			73553	02/16/24 12:31	SM	EET MID
Total/NA	Prep	8015NM Prep			10.09 g	10 mL	72934	02/12/24 14:51	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73312	02/16/24 12:31	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	72850	02/12/24 10:30	SA	EET MID

Client Sample ID: BH 24 - 13 0.5'

Analysis

300.0

Date Collected: 02/08/24 11:10 Date Received: 02/09/24 08:54

Lab	Sample	ID:	890-6149-6	
			Matrix: Solid	

CH

02/12/24 15:52

72906

EET MID

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	73277	02/15/24 15:04	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73429	02/20/24 05:18	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			73678	02/20/24 05:18	SM	EET MID
Total/NA	Analysis	8015 NM		1			73553	02/16/24 12:53	SM	EET MID
Total/NA	Prep	8015NM Prep			9.94 g	10 mL	72934	02/12/24 14:51	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73312	02/16/24 12:53	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	72850	02/12/24 10:30	SA	EET MID
Soluble	Analysis	300.0		1			72906	02/12/24 15:56	CH	EET MID

1

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Accreditation/Certification Summary

 Client: Vertex
 Job ID: 890-6149-1

 Project/Site: PLU 342
 SDG: 23 - 06066

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date	
Texas	NELAP		T104704400-23-26	06-30-24	
The following analytes	are included in this report, bu	it the laboratory is not certif	fied by the governing authority. This lis	t mav include analyte	
for which the agency de	oes not offer certification.				
for which the agency do Analysis Method	oes not offer certification . Prep Method	Matrix	Analyte		
ů ,		Matrix Solid	Analyte Total TPH		

2

4

6

Q

4.0

11

13

Method Summary

 Client: Vertex
 Job ID: 890-6149-1

 Project/Site: PLU 342
 SDG: 23 - 06066

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

9

4

9

10

. .

13

Sample Summary

 Client: Vertex
 Job ID: 890-6149-1

 Project/Site: PLU 342
 SDG: 23 - 06066

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-6149-1	BH 24 - 10 0'	Solid	02/08/24 10:00	02/09/24 08:54	0
890-6149-2	BH 24 - 10 1'	Solid	02/08/24 10:10	02/09/24 08:54	1
890-6149-3	BH 24 - 12 0'	Solid	02/08/24 10:40	02/09/24 08:54	0
890-6149-4	BH 24 - 12 0.5'	Solid	02/08/24 10:50	02/09/24 08:54	0.5
890-6149-5	BH 24 - 13 0'	Solid	02/08/24 11:00	02/09/24 08:54	0
890-6149-6	BH 24 - 13 0 5'	Solid	02/08/24 11:10	02/09/24 08:54	0.5

3

4

9

10

12

13

Login Sample Receipt Checklist

 Client: Vertex
 Job Number: 890-6149-1

 SDG Number: 23 - 06066
 SDG Number: 23 - 06066

Login Number: 6149 List Source: Eurofins Carlsbad

List Number: 1

Creator: Bruns, Shannon

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

.

3

4

6

8

10

46

13

Login Sample Receipt Checklist

Client: Vertex Job Number: 890-6149-1 SDG Number: 23 - 06066

Login Number: 6149 **List Source: Eurofins Midland** List Number: 2 List Creation: 02/12/24 08:17 AM

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

<6mm (1/4").

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Ms. Sally Carter Vertex 3101 Boyd Dr Carlsbad, New Mexico 88220

Generated 3/26/2024 9:39:58 PM

JOB DESCRIPTION

XTO PLU 342

JOB NUMBER

885-1475-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Generated 3/26/2024 9:39:58 PM

Authorized for release by Andy Freeman, Business Unit Manager andy.freeman@et.eurofinsus.com (505)345-3975

2

5

6

8

9

Client: Vertex
Laboratory Job ID: 885-1475-1
Project/Site: XTO PLU 342

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	
Client Sample Results	6
QC Sample Results	7
QC Association Summary	10
Lab Chronicle	11
Certification Summary	12
Method Summary	13
Chain of Custody	
Receipt Checklists	15

3

4

6

8

10

11

Definitions/Glossary

Client: Vertex Job ID: 885-1475-1

Project/Site: XTO PLU 342

Qualifiers

GC Semi VOA

Qualifier Description

S1+ Surrogate recovery exceeds control limits, high biased.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Vertex Job ID: 885-1475-1

Project: XTO PLU 342

Job ID: 885-1475-1 **Eurofins Albuquerque**

Job Narrative 885-1475-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 3/20/2024 8:00 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.3°C.

GC VOA

Method 8021B: The method blank for preparation batch 880-76266 and analytical batch 880-76263 contained Benzene above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, reextraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-76189 and analytical batch 880-76256 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: Vertex Job ID: 885-1475-1

Project/Site: XTO PLU 342

o-Terphenyl

Lab Sample ID: 885-1475-1 Client Sample ID: BH24-03 0'

Date Collected: 03/15/24 10:30 **Matrix: Solid**

Date Received: 03/20/24 08:00								
Method: SW846 8021B - Volat	tile Organic	Compoun	ds (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		0.0020	mg/Kg		03/21/24 16:32	03/23/24 03:23	
Toluene	ND		0.0020	mg/Kg		03/21/24 16:32	03/23/24 03:23	
Ethylbenzene	ND		0.0020	mg/Kg		03/21/24 16:32	03/23/24 03:23	
Xylenes, Total	ND		0.0040	mg/Kg		03/21/24 16:32	03/23/24 03:23	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	80		70 - 130			03/21/24 16:32	03/23/24 03:23	
1,4-Difluorobenzene (Surr)	92		70 - 130			03/21/24 16:32	03/23/24 03:23	
Method: SW846 8015B NM - D	Diesel Range	Organics	(DRO) (GC)					
Analyte	_	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	ND		50	mg/Kg		03/21/24 10:51	03/22/24 17:08	
Diesel Range Organics (Over C10-C28)	ND		50	mg/Kg		03/21/24 10:51	03/22/24 17:08	
Oll Range Organics (Over C28-C36)	ND		50	mg/Kg		03/21/24 10:51	03/22/24 17:08	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	84		70 - 130			03/21/24 10:51	03/22/24 17:08	

Method: EPA 300.0 - Anions,	Ion Chromatography - So	oluble					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	73	5.0	mg/Kg			03/21/24 16:17	1

70 - 130

83

03/21/24 10:51 03/22/24 17:08

Client: Vertex Job ID: 885-1475-1

Project/Site: XTO PLU 342

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-76244/5-A

Matrix: Solid

Analysis Batch: 76263

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 76244

	IVI CIVI	D					
Analyte	Result Qu	ualifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	0.0020	mg/Kg		03/21/24 16:32	03/22/24 22:14	1
Toluene	ND	0.0020	mg/Kg		03/21/24 16:32	03/22/24 22:14	1
Ethylbenzene	ND	0.0020	mg/Kg		03/21/24 16:32	03/22/24 22:14	1
Xylenes, Total	ND	0.0040	mg/Kg		03/21/24 16:32	03/22/24 22:14	1

MB MB

MD MD

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	75		70 - 130	03/21/24 16:32	03/22/24 22:14	1
1,4-Difluorobenzene (Surr)	97		70 - 130	03/21/24 16:32	2 03/22/24 22:14	1

Lab Sample ID: LCS 880-76244/1-A

Matrix: Solid

Analysis Batch: 76263

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 76244

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.0910		mg/Kg		91	70 - 130	
Toluene	0.100	0.0936		mg/Kg		94	70 - 130	
Ethylbenzene	0.100	0.105		mg/Kg		105	70 - 130	
m-Xylene & p-Xylene	0.200	0.207		mg/Kg		104	70 - 130	
o-Xylene	0.100	0.102		mg/Kg		102	70 - 130	

LCS LCS

Surrogate	%Recovery Qu	alifier Limits
4-Bromofluorobenzene (Surr)	108	70 - 130
1,4-Difluorobenzene (Surr)	115	70 - 130

Lab Sample ID: LCSD 880-76244/2-A

Matrix: Solid

Analysis Batch: 76263

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 76244

	Spike	LCSD I	LCSD				%Rec		RPD
Analyte	Added	Result (Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.0943		mg/Kg		94	70 - 130	4	35
Toluene	0.100	0.0945		mg/Kg		95	70 - 130	1	35
Ethylbenzene	0.100	0.106		mg/Kg		106	70 - 130	1	35
m-Xylene & p-Xylene	0.200	0.214		mg/Kg		107	70 - 130	3	35
o-Xylene	0.100	0.106		mg/Kg		106	70 - 130	3	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	111		70 - 130
1,4-Difluorobenzene (Surr)	115		70 - 130

Lab Sample ID: MB 880-76266/5-A

Matrix: Solid

Analysis Batch: 76263

Client Sample ID: Method Blank
Prep Type: Total/NA

Prep Batch: 76266

	MB	MR						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0020	mg/Kg		03/22/24 09:04	03/22/24 11:39	1
Toluene	ND		0.0020	mg/Kg		03/22/24 09:04	03/22/24 11:39	1
Ethylbenzene	ND		0.0020	mg/Kg		03/22/24 09:04	03/22/24 11:39	1
Xylenes, Total	ND		0.0040	mg/Kg		03/22/24 09:04	03/22/24 11:39	1
Xylenes, lotal	ND		0.0040	mg/Kg		03/22/24 09:04	03/22/24 11:39	1

Eurofins Albuquerque

Page 7 of 16

QC Sample Results

Client: Vertex Job ID: 885-1475-1

Project/Site: XTO PLU 342

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	71	70 - 130	03/22/24 09:04	03/22/24 11:39	1
1,4-Difluorobenzene (Surr)	100	70 - 130	03/22/24 09:04	03/22/24 11:39	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-76189 Matrix: Solid Analysis Batch: 76256	9/1-A					•	le ID: Method Prep Type: To Prep Batch:	otal/NA
-	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	ND		50	mg/Kg		03/21/24 10:51	03/22/24 07:39	1
Diesel Range Organics (Over C10-C28)	ND		50	mg/Kg		03/21/24 10:51	03/22/24 07:39	1
Oll Range Organics (Over C28-C36)	ND		50	mg/Kg		03/21/24 10:51	03/22/24 07:39	1
	MB	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	175	S1+	70 - 130			03/21/24 10:51	03/22/24 07:39	1
o-Terphenyl	188	S1+	70 - 130			03/21/24 10:51	03/22/24 07:39	1

Lab Sample ID: LCS 880-76189/2-A	Client Sample ID: Lab Control Sample
Matrix: Solid	Prep Type: Total/NA

Δnal	eie.	Ratch:	76256
Allal	7313	Dattii.	10230

	Sį	oike LCS	S LCS			%Rec	
Analyte	Ad	ded Resul	t Qualifier	Unit D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10		000 108	0	mg/Kg	108	70 - 130	
Diesel Range Organics (Over C10-C28)	1	000 101	0	mg/Kg	101	70 - 130	

	LCS LCS	
Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	112	70 - 130
o-Terphenyl	127	70 - 130

Released to Imaging: 6/11/2024 11:36:10 AM

Matrix: Solid

Analysis Batch: 76256						Prep Batch: 76189		
	Spil	e LCSD	LCSD			%Rec		RPD
Analyte	Adde	d Result	Qualifier	Unit D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	100	1160		mg/Kg	116	70 - 130	8	20
(GRO)-C6-C10								
Diesel Range Organics (Over	100	0 1020		mg/Kg	102	70 - 130	1	20
C10-C28)								

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	110		70 - 130
o-Terphenyl	124		70 - 130

Eurofins Albuquerque

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Prep Batch: 76189

Prep Type: Soluble

QC Sample Results

Client: Vertex Job ID: 885-1475-1

Project/Site: XTO PLU 342

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-76153/1-A **Client Sample ID: Method Blank**

Matrix: Solid Analysis Batch: 76212

MB MB Analyte Result Qualifier RL Unit Analyzed Dil Fac **Prepared** Chloride 5.0 03/21/24 13:52 ND mg/Kg

Lab Sample ID: LCS 880-76153/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble**

Analysis Batch: 76212

LCS LCS Spike %Rec **Analyte** Added Result Qualifier Unit D %Rec Limits Chloride 250 239 95 90 - 110 mg/Kg

Lab Sample ID: LCSD 880-76153/3-A Client Sample ID: Lab Control Sample Dup **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 76212

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Limits RPD Limit Unit %Rec Chloride 250 238 95 90 - 110 20 mg/Kg

Client: Vertex

Project/Site: XTO PLU 342

Job ID: 885-1475-1

GC VOA

Prep Batch: 76244

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1475-1	BH24-03 0'	Total/NA	Solid	5035	
MB 880-76244/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-76244/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-76244/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Analysis Batch: 76263

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1475-1	BH24-03 0'	Total/NA	Solid	8021B	76244
MB 880-76244/5-A	Method Blank	Total/NA	Solid	8021B	76244
MB 880-76266/5-A	Method Blank	Total/NA	Solid	8021B	76266
LCS 880-76244/1-A	Lab Control Sample	Total/NA	Solid	8021B	76244
LCSD 880-76244/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	76244

Prep Batch: 76266

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
L	MB 880-76266/5-A	Method Blank	Total/NA	Solid	5035	

GC Semi VOA

Prep Batch: 76189

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1475-1	BH24-03 0'	Total/NA	Solid	8015NM Prep	
MB 880-76189/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-76189/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-76189/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Analysis Batch: 76256

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1475-1	BH24-03 0'	Total/NA	Solid	8015B NM	76189
MB 880-76189/1-A	Method Blank	Total/NA	Solid	8015B NM	76189
LCS 880-76189/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	76189
LCSD 880-76189/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	76189

HPLC/IC

Leach Batch: 76153

Lab Sample ID 885-1475-1	Client Sample ID BH24-03 0'	Prep Type Soluble	Matrix Solid	Method DI Leach	Prep Batch
MB 880-76153/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-76153/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-76153/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Analysis Batch: 76212

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1475-1	BH24-03 0'	Soluble	Solid	300.0	76153
MB 880-76153/1-A	Method Blank	Soluble	Solid	300.0	76153
LCS 880-76153/2-A	Lab Control Sample	Soluble	Solid	300.0	76153
LCSD 880-76153/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	76153

Eurofins Albuquerque

3

4

6

0

4.6

Lab Chronicle

Client: Vertex Job ID: 885-1475-1

Project/Site: XTO PLU 342

Lab Sample ID: 885-1475-1 Client Sample ID: BH24-03 0' Date Collected: 03/15/24 10:30

Matrix: Solid

Date Received: 03/20/24 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			76244	MNR	EET MID	03/21/24 16:32
Total/NA	Analysis	8021B		1	76263	MNR	EET MID	03/23/24 03:23
Total/NA	Prep	8015NM Prep			76189	TKC	EET MID	03/21/24 10:51
Total/NA	Analysis	8015B NM		1	76256	SM	EET MID	03/22/24 17:08
Soluble	Leach	DI Leach			76153	SA	EET MID	03/21/24 08:27
Soluble	Analysis	300.0		1	76212	SMC	EET MID	03/21/24 16:17

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Vertex Job ID: 885-1475-1

Project/Site: XTO PLU 342

Laboratory: Eurofins Midland

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Texas	NELAP	T104704400-23-26	06-30-24

0j 172

3

7

_

10

11

Method Summary

Client: Vertex

Project/Site: XTO PLU 342

Job ID: 885-1475-1

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
3015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Center #: 1081591001, Incident #: nAPP2334849928 CC.Sally Cattar (scattar@vertex.ca) for Final Report. REMARKS: Direct Bill to XTO Energy, Inc., Cost

6.3-0-03

885-1475 COC

Chain of Custody

Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1295

Environment Testing

.. eurofins

Хепсо

CC: SCattar@vertex.ca for Final Report

Hobbs, NM (575) 392-7550 Carlsbad NM (575) 988-3199 Midland TX (432) 704-5440 San Antonio, TX (210) 509-3334

Project Manager	Colli Conton 100	The state of the s	Anna Joseph		Rill to Alfabour	Harant	No.	100	2.53					WWW. A	www.xerico.com	aña L	5	-
	Sally Cattar (SCattar a vertex ca)	attara	veries, ca)		DIII O (II O	(majan)	×	X LO Energy, Inc.	nc.						Work Order Comments	omments		17
y Name	Vertex Resource Services	e Service	cs			Name	LX	XTO Energy, Inc.	nc.			Pro	Program: UST/PST	PR _P	Brrynfields	RR □	Superfind	С
	3101 Boyd Drive	9			Address		310	3104 E. Greene St	e St			Stat	State of Project:	1)	1	ì]
City, State ZIP	Carlsbad NM. 88220	8220			City, State	ZIP	Ca	Carlshad NM. 88220	88220			Rep	Reporting Level II	LEGEI III	PSIMIST	TRR	Leve	
Phone	575,725,5001			Email	CC. scan	ara ven	ex ca fo	Email CC. scattar a vertex ca for Final Report	THE			Deli	Deliverables EDD		ADaPT		Other	
Project Name	XTO PLU 342			Turn	Turn Around						ANALYSIS	ANALYSIS REQUEST				Pres	Preservative Codes	
Project Number	23E-06066			Routine	Rush	ā	Pres.	L	-							None NO	DI Water H.D	O'H
Project Location				Due Date	2	V.			+							Cool Cool	MeOH Me	Ae
Sampler's Name	Deusavan Costa			TAT starts the day received lab. if received by 4:30pm	ay received	by the	1,1									HCL HC		z
SAMPLE RECEIPT	Temp Blank	, Ye	Yes No	Wel Ice	Yes N	9	Z08.	d/C	-							H2504 H2	NaOH. Na	e e
Samples Received Infact	Yes	No	Thermometer ID	0		Ī	A	(O)	əpu							NAHSO, NABIS	ABIS	
Cooler Custody Seals	Yes No	N/A	Correction Factor	or		2101		DIC	ojų.							Na-S.O. NaSO	ISSO	_
Sample Custody Seals	Yes No	N/A	Temperature Reading	eading		1		\$10	Ď							Zn Acetate	Zn Acetate+NaOH Zn	
Total Containers:			Corrected Temperature	perature		Para		1:80								NADB+ Asc	NATION ASSOCIATE REIG SAME	
Sample Identification	ion	Matrix	Date Sampled Time	Time	Depth (ft)	Grab/ # of	# of Cont	(d.L								Sam	Sample Comments	
0.00 10110			+		1	1	+	1	+		1	1	-	1	-			
BH24-03 0		Sori	03.15.24	10:30	0	Grah		1	,									
						1	+	1	1		-	-		1				T
							+	1	-									
						1	+	1	+			-		1				
						1	+		+		1			1				
							+		+									
							+		+		F							
							+											
															1/			
Total 200.7 / 6010	200.8 / 6020:		8R(BRCRA 13PPM Texas 11	Texas 11	AI Sb	As Ba	Be B Cd C	S C	Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K	nMg Mn		Se Ag SiO ₂ N	Na Sr Ti	TI Sh U V Zh			1
Circle Method(s) and Metal(s) to be analyzed	etal(s) to be analy	/zed		TCLP / SPLP 6010 BRCRA	6010 8F	CRA S	As B	Be Cd Ci	3	Sh As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Ti	Ni Se A	D IT 6			Hg: 1631 / 245 1 / 7470 / 7471	45.1 / 7470	17471	
Notice: Signature of this document and reinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors, it assigns atendered terms and conditions of samples and shall not assume any responsibility for any losses or expenses insurred by the client if such losses are due to circumstances beyond the control of Eurofins Xenco, but not explicate of 356 00 will be applied to each profess and a pharma of 55 to seak a mind a sharman desire of 356 00 will be applied to each profess and a pharma of 55 to seak a mind a sharman desire of 356 00 will be applied to each profess and a pharma of 55 to seak a mind a sharman of 50 to 10	ent and relinquishmer be liable only for the a observe of \$85.00 will be	nt of sample lost of sample a spoled s	ples and shall not a	is purchase order	sibility for any	mpany to E	xpenses in	soo, its affiliates	and subac	ompany to Eurofins Xeneo, its affiliates and subcontractors. It assigns atandard terms and conditions by losses or expenses incurred by the client if such losses are due to circumstances beyond the control submitted to Euroffice Standard but not amilized. These standard industry enviously be appointed to the control of the submitted of the subm	to organisans	terms and con	ditions					
Relinquished by. (Signature)	hature)		Received	Received by (Signature)	(6)		Da	Date/Time	_	Relinquished by (Signature)	by (Signal	ure)		eived by	Received by (Signature)		Date/Time	a
Jew Me	4		(M) WWWWW	ans		, 2	3/6/18	08:6 h	C4 4	Eremon	3		3	4	Cam		Steoley	7 000
						1												

Login Sample Receipt Checklist

Client: Vertex Job Number: 885-1475-1

Login Number: 1475 List Source: Eurofins Albuquerque

List Number: 1

Creator: Proctor, Nancy

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

2

3

5

7

9

10

10

Login Sample Receipt Checklist

Client: Vertex Job Number: 885-1475-1

Login Number: 1475
List Source: Eurofins Midland
List Number: 2
List Creation: 03/21/24 10:45 AM

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

2

J

6

8

10

11

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Ms. Sally Carttar Vertex 3101 Boyd Dr Carlsbad, New Mexico 88220

Generated 5/24/2024 11:09:02 AM

JOB DESCRIPTION

PLU 342

JOB NUMBER

885-4188-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Generated 5/24/2024 11:09:02 AM

Authorized for release by Andy Freeman, Business Unit Manager andy.freeman@et.eurofinsus.com (505)345-3975

3

4

5

7

8

3

. .

Client: Vertex
Laboratory Job ID: 885-4188-1
Project/Site: PLU 342

Table of Contents

Cover Page	1
Table of Contents	
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	9
QC Association Summary	12
Lab Chronicle	14
Certification Summary	15
Chain of Custody	16
Receipt Checklists	17

3

4

6

8

9

10

. .

Definitions/Glossary

Client: Vertex Job ID: 885-4188-1

Project/Site: PLU 342

Qualifiers

GC VOA

Qualifier Description

S1+ Surrogate recovery exceeds control limits, high biased.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Vertex

Job ID: 885-4188-1

Project: PLU 342

Job ID: 885-4188-1 Eurofins Albuquerque

Job Narrative 885-4188-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 5/9/2024 7:45 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.6°C.

Gasoline Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Albuquerque

•

J

4

0

9

10

Client Sample Results

Client: Vertex Job ID: 885-4188-1

Project/Site: PLU 342

Client Sample ID: BH24-02 2'

Method: SW846 8015D - Gasoline Range Organics (GRO) (GC)

Result Qualifier

ND

Date Collected: 05/07/24 09:45 Date Received: 05/09/24 07:45

Gasoline Range Organics [C6 - C10]

Lab Sample ID: 885-4188-1

Matrix: Solid

Prepared	Analyzed	Dil Fac	Ę
5/09/24 15:25	05/10/24 22:32		
700721 10.20	00/10/2122.02	·	

 Surrogate
 %Recovery
 Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fac

 4-Bromofluorobenzene (Surr)
 98
 35 - 166
 05/09/24 15:25
 05/10/24 22:32
 1

RL

5.0

Unit

mg/Kg

					_			
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		05/09/24 15:25	05/10/24 22:32	1
Ethylbenzene	ND		0.050	mg/Kg		05/09/24 15:25	05/10/24 22:32	1
Toluene	ND		0.050	mg/Kg		05/09/24 15:25	05/10/24 22:32	1
Xylenes, Total	ND		0.099	mg/Kg		05/09/24 15:25	05/10/24 22:32	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		48 - 145			05/09/24 15:25	05/10/24 22:32	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.5	mg/Kg		05/10/24 08:59	05/10/24 11:41	1
Motor Oil Range Organics [C28-C40]	ND		47	mg/Kg		05/10/24 08:59	05/10/24 11:41	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	95		62 - 134			05/10/24 08:59	05/10/24 11:41	1

Method: EPA 300.0 - Anions, Ion Cl	hromatography						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND ND	60	mg/Kg		05/10/24 08:04	05/10/24 17:22	20

Client Sample Results

Client: Vertex Job ID: 885-4188-1

Project/Site: PLU 342

Client Sample ID: BH24-02 4'

Date Received: 05/09/24 07:45

Lab Sample ID: 885-4188-2 Date Collected: 05/07/24 09:50

Matrix: Solid

Method: SW846 8015D - Gasoline Range Organics (GRO) (GC)										
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac		
Gasoline Range Organics [C6 - C10]	ND		4.8	mg/Kg		05/09/24 15:25	05/10/24 23:42	1		
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac		
4-Bromofluorobenzene (Surr)	99		35 - 166			05/09/24 15:25	05/10/24 23:42	1		

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.024	mg/Kg		05/09/24 15:25	05/10/24 23:42	1
Ethylbenzene	ND		0.048	mg/Kg		05/09/24 15:25	05/10/24 23:42	1
Toluene	ND		0.048	mg/Kg		05/09/24 15:25	05/10/24 23:42	1
Xylenes, Total	ND		0.096	mg/Kg		05/09/24 15:25	05/10/24 23:42	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		48 - 145			05/09/24 15:25	05/10/24 23:42	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.9	mg/Kg		05/10/24 08:59	05/10/24 11:52	1
Motor Oil Range Organics [C28-C40]	ND		50	mg/Kg		05/10/24 08:59	05/10/24 11:52	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	105		62 - 134			05/10/24 08:59	05/10/24 11:52	1

Method: EPA 300.0 - Anions, Ion C	hromatography						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND	60	mg/Kg		05/10/24 08:04	05/10/24 17:38	20

Client Sample Results

Client: Vertex Job ID: 885-4188-1

Project/Site: PLU 342

Client Sample ID: BH24-10 2'

Date Collected: 05/07/24 10:00 Date Received: 05/09/24 07:45 Lab Sample ID: 885-4188-3

Matrix: Solid

Method: SW846 8015D - Gasoline	e Range Organ	nics (GRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		4.7	mg/Kg		05/09/24 15:25	05/11/24 00:52	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		35 - 166			05/09/24 15:25	05/11/24 00:52	

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	MD		0.024	mg/Kg		05/09/24 15:25	05/11/24 00:52	1
Ethylbenzene	ND		0.047	mg/Kg		05/09/24 15:25	05/11/24 00:52	1
Toluene	ND		0.047	mg/Kg		05/09/24 15:25	05/11/24 00:52	1
Xylenes, Total	ND		0.094	mg/Kg		05/09/24 15:25	05/11/24 00:52	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		48 - 145			05/09/24 15:25	05/11/24 00:52	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.2	mg/Kg		05/10/24 08:59	05/10/24 12:02	1
Motor Oil Range Organics [C28-C40]	ND		46	mg/Kg		05/10/24 08:59	05/10/24 12:02	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	94		62 - 134			05/10/24 08:59	05/10/24 12:02	1

Method: EPA 300.0 - Anions, ion Chromatography									
	Analyte	Result (Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	ND		60	mg/Kg		05/10/24 08:04	05/10/24 18:23	20

Job ID: 885-4188-1

Project/Site: PLU 342

Client: Vertex

Method: 8015D - Gasoline Range Organics (GRO) (GC)

Client Sample ID: Method Blank Lab Sample ID: MB 885-4694/1-A

Matrix: Solid

Analysis Batch: 4841

Prep Type: Total/NA Prep Batch: 4694 MB MB

Analyte Result Qualifier RLUnit D Prepared Analyzed Dil Fac Gasoline Range Organics [C6 - C10] ND 5.0 mg/Kg 05/09/24 15:25 05/10/24 11:35

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 106 35 - 166 05/09/24 15:25 05/10/24 11:35

Lab Sample ID: LCS 885-4694/2-A Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 4841

Prep Batch: 4694 Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits 25.0 23.2 93 70 - 130 Gasoline Range Organics [C6 mg/Kg

C10]

LCS LCS %Recovery Qualifier Surrogate

Limits 198 S1+ 35 - 166 4-Bromofluorobenzene (Surr)

Lab Sample ID: 885-4188-1 MS Client Sample ID: BH24-02 2' Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 4841 Prep Batch: 4694 Sample Sample Spike MS MS Result Qualifier Added Result Qualifier Unit D %Rec Limits

Analyte 24.6 105 70 - 130 Gasoline Range Organics [C6 -ND 25.8 mg/Kg

C10]

MS MS

%Recovery Qualifier Limits Surrogate 217 S1+

4-Bromofluorobenzene (Surr) 35 - 166

Lab Sample ID: 885-4188-1 MSD

Matrix: Solid Analysis Batch: 4841

Sample Sample MSD MSD Spike %Rec Result Qualifier Added Qualifier RPD Limit Analyte Result %Rec Limits Unit Gasoline Range Organics [C6 -ND 24.6 25.3 mg/Kg 103 70 - 130

C10]

MSD MSD

%Recovery Qualifier Surrogate Limits 212 S1+ 35 - 166 4-Bromofluorobenzene (Surr)

Method: 8021B - Volatile Organic Compounds (GC)

Released to Imaging: 6/11/2024 11:36:10 AM

Lab Sample ID: MB 885-4694/1-A Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA **Analysis Batch: 4843** Prep Batch: 4694 мв мв

Analyzed Analyte Result Qualifier RL Unit Dil Fac D Prepared 0.025 Benzene ND mg/Kg 05/09/24 15:25 05/10/24 11:35 Ethylbenzene ND 0.050 mg/Kg 05/09/24 15:25 05/10/24 11:35 ND 0.050 Toluene 05/09/24 15:25 05/10/24 11:35 mg/Kg

Eurofins Albuquerque

Client Sample ID: BH24-02 2' Prep Type: Total/NA

Prep Batch: 4694

RPD

Client: Vertex Job ID: 885-4188-1

Project/Site: PLU 342

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 885-4694/1-A **Matrix: Solid**

Analysis Batch: 4843

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 4694

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND		0.10	mg/Kg		05/09/24 15:25	05/10/24 11:35	1

MR MR

MB MB

%Recovery Qualifier Limits Prepared Analyzed 4-Bromofluorobenzene (Surr) 99 48 - 145 05/09/24 15:25 05/10/24 11:35

Lab Sample ID: LCS 885-4694/3-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 4843

Prep Type: Total/NA

Prep Batch: 4694

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	1.00	0.958		mg/Kg		96	70 - 130	
Ethylbenzene	1.00	0.923		mg/Kg		92	70 - 130	
m,p-Xylene	2.00	1.89		mg/Kg		95	70 - 130	
o-Xylene	1.00	0.925		mg/Kg		92	70 - 130	
Toluene	1.00	0.912		mg/Kg		91	70 - 130	

LCS LCS

%Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene (Surr) 102 48 - 145

Lab Sample ID: 885-4188-2 MS Client Sample ID: BH24-02 4'

Matrix: Solid

Analysis Batch: 4843

Prep Type: Total/NA

Prep Batch: 4694

•	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	ND		0.956	0.921		mg/Kg		96	70 - 130
Ethylbenzene	ND		0.956	0.902		mg/Kg		94	70 - 130
m,p-Xylene	ND		1.91	1.83		mg/Kg		95	70 - 130
o-Xylene	ND		0.956	0.904		mg/Kg		95	70 - 130
Toluene	ND		0.956	0.891		mg/Kg		93	70 - 130
	MS	MS							

Surrogate %Recovery Qualifier Limits 48 - 145 4-Bromofluorobenzene (Surr) 99

Lab Sample ID: 885-4188-2 MSD Client Sample ID: BH24-02 4'

Matrix: Solid

Analysis Batch: 4843

Prep Type: Total/NA

Prep Batch: 4694

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		0.968	0.970		mg/Kg		100	70 - 130	5	20
Ethylbenzene	ND		0.968	0.959		mg/Kg		99	70 - 130	6	20
m,p-Xylene	ND		1.94	1.93		mg/Kg		99	70 - 130	5	20
o-Xylene	ND		0.968	0.955		mg/Kg		99	70 - 130	6	20
Toluene	ND		0.968	0.928		mg/Kg		96	70 - 130	4	20

MSD MSD

%Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 99 48 - 145

Eurofins Albuquerque

Job ID: 885-4188-1

Project/Site: PLU 342

Client: Vertex

Method: 8015D - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 885-4729/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 4816

	Prep Type: Total/NA
	Prep Batch: 4729
MB MB	

mg/Kg

Dil Fac Analyte Result Qualifier RL Unit D Prepared Analyzed Diesel Range Organics [C10-C28] ND 10 mg/Kg 05/10/24 08:59 05/10/24 11:09 Motor Oil Range Organics [C28-C40] ND 50 mg/Kg 05/10/24 08:59 05/10/24 11:09

MB MB

%Recovery Qualifier Limits Prepared Dil Fac Surrogate Analyzed Di-n-octyl phthalate (Surr) 91 62 - 134 05/10/24 08:59 05/10/24 11:09

> Client Sample ID: Lab Control Sample Prep Type: Total/NA

> > Prep Batch: 4729

Prep Type: Total/NA

Prep Type: Total/NA

90 - 110

Prep Batch: 4723

Lab Sample ID: LCS 885-4729/2-A **Matrix: Solid**

Analysis Batch: 4816

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier U	Jnit	D	%Rec	Limits
Diesel Range Organics	50.0	45.6	n	ng/Kg	_	91	60 - 135

[C10-C28]

LCS LCS

%Recovery Qualifier Surrogate Limits Di-n-octyl phthalate (Surr) 114 62 - 134

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 885-4723/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 4796

мв мв

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND ND	3.0	mg/Kg		05/10/24 08:04	05/10/24 10:32	1

Lab Sample ID: LCS 885-4723/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Chloride

Analysis Batch: 4796			Prep Batch: 4723
	Spike	LCS LCS	%Rec
Analyte	hahhΔ	Result Qualifier Unit	D %Rec Limits

Eurofins Albuquerque

Client: Vertex
Project/Site: PLU 342

Job ID: 885-4188-1

GC VOA

Prep Batch: 4694

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-4188-1	BH24-02 2'	Total/NA	Solid	5030C	
885-4188-2	BH24-02 4'	Total/NA	Solid	5030C	
885-4188-3	BH24-10 2'	Total/NA	Solid	5030C	
MB 885-4694/1-A	Method Blank	Total/NA	Solid	5030C	
LCS 885-4694/2-A	Lab Control Sample	Total/NA	Solid	5030C	
LCS 885-4694/3-A	Lab Control Sample	Total/NA	Solid	5030C	
885-4188-1 MS	BH24-02 2'	Total/NA	Solid	5030C	
885-4188-1 MSD	BH24-02 2'	Total/NA	Solid	5030C	
885-4188-2 MS	BH24-02 4'	Total/NA	Solid	5030C	
885-4188-2 MSD	BH24-02 4'	Total/NA	Solid	5030C	

Analysis Batch: 4841

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-4188-1	BH24-02 2'	Total/NA	Solid	8015D	4694
885-4188-2	BH24-02 4'	Total/NA	Solid	8015D	4694
885-4188-3	BH24-10 2'	Total/NA	Solid	8015D	4694
MB 885-4694/1-A	Method Blank	Total/NA	Solid	8015D	4694
LCS 885-4694/2-A	Lab Control Sample	Total/NA	Solid	8015D	4694
885-4188-1 MS	BH24-02 2'	Total/NA	Solid	8015D	4694
885-4188-1 MSD	BH24-02 2'	Total/NA	Solid	8015D	4694

Analysis Batch: 4843

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-4188-1	BH24-02 2'	Total/NA	Solid	8021B	4694
885-4188-2	BH24-02 4'	Total/NA	Solid	8021B	4694
885-4188-3	BH24-10 2'	Total/NA	Solid	8021B	4694
MB 885-4694/1-A	Method Blank	Total/NA	Solid	8021B	4694
LCS 885-4694/3-A	Lab Control Sample	Total/NA	Solid	8021B	4694
885-4188-2 MS	BH24-02 4'	Total/NA	Solid	8021B	4694
885-4188-2 MSD	BH24-02 4'	Total/NA	Solid	8021B	4694

GC Semi VOA

Prep Batch: 4729

Lab Sample ID 885-4188-1	Client Sample ID BH24-02 2'	Prep Type Total/NA	Matrix Solid	Method SHAKE	Prep Batch
885-4188-2	BH24-02 4'	Total/NA	Solid	SHAKE	
885-4188-3	BH24-10 2'	Total/NA	Solid	SHAKE	
MB 885-4729/1-A	Method Blank	Total/NA	Solid	SHAKE	
LCS 885-4729/2-A	Lab Control Sample	Total/NA	Solid	SHAKE	

Analysis Batch: 4816

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-4188-1	BH24-02 2'	Total/NA	Solid	8015D	4729
885-4188-2	BH24-02 4'	Total/NA	Solid	8015D	4729
885-4188-3	BH24-10 2'	Total/NA	Solid	8015D	4729
MB 885-4729/1-A	Method Blank	Total/NA	Solid	8015D	4729
LCS 885-4729/2-A	Lab Control Sample	Total/NA	Solid	8015D	4729

Eurofins Albuquerque

Released to Imaging: 6/11/2024 11:36:10 AM

<u>5</u>

5

7

Q

10

11

QC Association Summary

Client: Vertex Job ID: 885-4188-1

Project/Site: PLU 342

HPLC/IC

Prep Batch: 4723

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-4188-1	BH24-02 2'	Total/NA	Solid	300_Prep	
885-4188-2	BH24-02 4'	Total/NA	Solid	300_Prep	
885-4188-3	BH24-10 2'	Total/NA	Solid	300_Prep	
MB 885-4723/1-A	Method Blank	Total/NA	Solid	300_Prep	
LCS 885-4723/2-A	Lab Control Sample	Total/NA	Solid	300_Prep	

Analysis Batch: 4796

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-4188-1	BH24-02 2'	Total/NA	Solid	300.0	4723
885-4188-2	BH24-02 4'	Total/NA	Solid	300.0	4723
885-4188-3	BH24-10 2'	Total/NA	Solid	300.0	4723
MB 885-4723/1-A	Method Blank	Total/NA	Solid	300.0	4723
LCS 885-4723/2-A	Lab Control Sample	Total/NA	Solid	300.0	4723

8

9

10

1,0

Client Sample ID: BH24-02 2'

Lab Sample ID: 885-4188-1

Date Collected: 05/07/24 09:45 Date Received: 05/09/24 07:45

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			4694	JP	EET ALB	05/09/24 15:25
Total/NA	Analysis	8015D		1	4841	JP	EET ALB	05/10/24 22:32
Total/NA	Prep	5030C			4694	JP	EET ALB	05/09/24 15:25
Total/NA	Analysis	8021B		1	4843	JP	EET ALB	05/10/24 22:32
Total/NA	Prep	SHAKE			4729	JU	EET ALB	05/10/24 08:59
Total/NA	Analysis	8015D		1	4816	JU	EET ALB	05/10/24 11:41
Total/NA	Prep	300_Prep			4723	JT	EET ALB	05/10/24 08:04
Total/NA	Analysis	300.0		20	4796	RC	EET ALB	05/10/24 17:22

Client Sample ID: BH24-02 4' Lab Sample ID: 885-4188-2

Date Collected: 05/07/24 09:50 **Matrix: Solid**

Date Received: 05/09/24 07:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			4694	JP	EET ALB	05/09/24 15:25
Total/NA	Analysis	8015D		1	4841	JP	EET ALB	05/10/24 23:42
Total/NA	Prep	5030C			4694	JP	EET ALB	05/09/24 15:25
Total/NA	Analysis	8021B		1	4843	JP	EET ALB	05/10/24 23:42
Total/NA	Prep	SHAKE			4729	JU	EET ALB	05/10/24 08:59
Total/NA	Analysis	8015D		1	4816	JU	EET ALB	05/10/24 11:52
Total/NA	Prep	300_Prep			4723	JT	EET ALB	05/10/24 08:04
Total/NA	Analysis	300.0		20	4796	RC	EET ALB	05/10/24 17:38

Client Sample ID: BH24-10 2' Lab Sample ID: 885-4188-3

Date Collected: 05/07/24 10:00 **Matrix: Solid** Date Received: 05/09/24 07:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			4694	JP	EET ALB	05/09/24 15:25
Total/NA	Analysis	8015D		1	4841	JP	EET ALB	05/11/24 00:52
Total/NA	Prep	5030C			4694	JP	EET ALB	05/09/24 15:25
Total/NA	Analysis	8021B		1	4843	JP	EET ALB	05/11/24 00:52
Total/NA	Prep	SHAKE			4729	JU	EET ALB	05/10/24 08:59
Total/NA	Analysis	8015D		1	4816	JU	EET ALB	05/10/24 12:02
Total/NA	Prep	300_Prep			4723	JT	EET ALB	05/10/24 08:04
Total/NA	Analysis	300.0		20	4796	RC	EET ALB	05/10/24 18:23

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Eurofins Albuquerque

Laboratory References:

Accreditation/Certification Summary

Client: Vertex Job ID: 885-4188-1

Project/Site: PLU 342

Laboratory: Eurofins Albuquerque

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Progi	ram	Identification Number	Expiration Date
ew Mexico	State		NM9425, NM0901	02-26-25
• •	• •	ut the laboratory is not certif	ied by the governing authority. This lis	t may include analytes
Analysis Method	pes not offer certification. Prep Method	Matrix	Analyte	
300.0	300_Prep	Solid	Chloride	
8015D	5030C	Solid	Gasoline Range Organics	[C6 - C10]
8015D	SHAKE	Solid	Diesel Range Organics [C	10-C28]
8015D	SHAKE	Solid	Motor Oil Range Organics	[C28-C40]
8021B	5030C	Solid	Benzene	
8021B	5030C	Solid	Ethylbenzene	
8021B	5030C	Solid	Toluene	
8021B	5030C	Solid	Xylenes, Total	
egon	NELA	·Ρ	NM100001	02-26-25

HALL ENVIRONMENTAL 885-4188 COC i necessary, samples submitted to Hall Environmental may be subcontracted by other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report ANALYSIS LABOR Scartlar @ vrovtch. Co 4901 Hawkins NE - Albuquerque, NM 871 Fax 505-345-4107 www.hallenvironmental.com prease omail rosults to Analysis Request Fotal Coliform (Present/Absent) (AOV-imac) 07S8 (AOV) 09S8 NO2, PO4, SO4 NO³ CDF, Br, Tel. 505-345-3975 SISTEM 8 Metals 2MI20728 to 0188 yd aHA9 EDB (Method 504.1) 8081 Pesticides/8082 PCB's PH:8015D(GRO / DRO / MRO) MTBE / TMB's (8021) (C) **の**(で) せるろ 2 Time HEAL No. Project #: 23E - 0606 U Rush / Preservative Type S. Carttan 100% 38 MMMMMM Cooler Temp(Including CF): □-Yes Via, Project Manager: □ Standard Project Name: # of Coolers: 2, HOP (W Sampler: 🗡 Type and # Received by: Container Received by. On Ice: 2 1 □ Level 4 (Full Validation) Chain-of-Custody Record Matrix | Sample Name BH24-02 RH24-[0 BH24-02 PARAMANA Client: VENTEX (VTO) Az Compliance Relinquished by: □ Other 51-124 G:45 501 Mailing Address: 10:00 9:50 QA/QC Package: Time (4m) \$ 5 email or Fax#: EDD (Type) Accreditation: □ Standard O NELAC Phone #: **答** Date

Page 16 of 17

Turn-Around Time:

Login Sample Receipt Checklist

Client: Vertex Job Number: 885-4188-1

Login Number: 4188 List Source: Eurofins Albuquerque

List Number: 1

Creator: McQuiston, Steven

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

2

3

А

6

ا

11

ATTACHMENT 5

OSE Wells 0.5 mile

3/31/2024, 11:47:01 AM

Override 1 OSE District Boundary NHD Flowlines
GIS WATERS PODs Water Right Regulations Artificial Path
Pending Artesian Planning Area Connector
Plugged New Mexico State Trust Lands Stream River

Both Estates

1:18,056 0 0.17 0.35 0.7 mi 0 0.28 0.55 1.1 km

Esri, HERE, iPC, Esri, HERE, Garmin, iPC, Maxar

DSE DIT JAN 24 2022 PM3:00

	OSE POD NO. (WELL NO	1)		WELL TAG ID NO	2		OSE FILE NO((2			
Z	POD1 (BH		.,		n/a	J .		C-4575	3).			
Ĕ	WELL OWNER	NAME(S)					PHONE (OPTIO	ONAL)			
OC	XTO Energy	(Kyle	Littrell)									
E	WELL OWNER							CITY		STATE		ZIP
WE	6401 Holida	y Hill D	r.					Midland		TX	79707	
GENERAL AND WELL LOCATION	WELL		DI	EGREES 32	MINUTES 12	12 38.03		* ACCUBACY	REQUIRED: ONE TEN	TU OF A SEC	OMB	
RAL	LOCATION (FROM GPS)		TITUDE	103	50	58.7	N		QUIRED: WGS 84	IN OF A SEC	OND	
ENE	DESCRIPTION		NGITUDE NG WELL LOCATION TO					S (SECTION TO	WNSUIID BANGE) WU	EDE AVAII	ADIE	
1.6			IS R30E, NMPM	JUNEAU ADD	KESS AND COMMO	A LANDING	INIO-120	s (SECTION, TO	WINDER, KANOE, WE	EKE AVAILA	ADLL.	
	LICENSE NO.		NAME OF LICENSED						NAME OF WELL DR			
	1249				Jackie D. Atkin	S			Atkins Eng	gineering As	ssociates, In	nc.
	DRILLING STA		DRILLING ENDED 1-4-2022		OMPLETED WELL (LE DEPTH (FT) 105	DEPTH WATER FIR	ST ENCOUNT n/a	TERED (FT)	
	1 1 20.		1-4-2022	tempe	temporary well material 10			105	STATIC WATER LEV		DI ETEN WE	LL (PT)
7	COMPLETED	WELL IS:	ARTESIAN	✓ DRY HO	LE SHALL	OW (UNCOM	IFINED)		STATIC WATERLEY	n/a	LEIED WE	LL (FI)
TIO	DRILLING FLU	ID:	☐ AIR	☐ MUD	ADDITI	VES - SPEC	IFY:					
RMA	DRILLING FLUID: AIR DRILLING METHOD: ROTARY DEPTH (feet bgl) BORE HOLE FROM TO DIAM (inches) 0 105 ±8.5			П намме	R CABLE	TOOL	✓ OTHE	R - SPECIFY:	Hollo	w Stem A	uger	
VFO.				CASING	MATERIAL AN	D/OR		0.00	CASING	- Cumus		
Ğ	FROM TO		DIAM		(include each easing string and			ASING NECTION			CASING WALL SL THICKNESS SI	
ASI			(inches)	note	sections of screen	g, and	(add coup	TYPE ling diameter)	(inches)	(inc	hes)	(inches)
80	0	105	±8.5		Boring- HSA			-		-		
ING												
E						-						
2. DI						-						
			-									
د ا	DEPTH (f	eet bgl)	BORE HOLE DIAM. (inches)	2 00 00	IST ANNULAR S				AMOUNT		METHO	
ANNULAR MATERIAL	FROM	TO	DIAM. (inches)	GRA	VEL PACK SIZI	E-RANGE	BYINTE	SRVAL	(cubic feet)	_	PLACEM	IENI
ATE										-		_
RM		-						_		-		
J.F.A.												
N												
3. A												
	OSE INTERN	AL USE	7-						WELL RECORD	& LOG (Ve	ersion 06/3	0/17)
	NO.	40	(+)	C.3 N	PODN	0.		TRN	10 1	14		
1 LOC	CATION	-1-	1 / U	7-1	P 41/2		- 1	WELL TAG I	ONO _		PAGE	I OF 2

	DEPTH (feet bgl)	1 1	COLOR AND TYPE OF MATERIAL ENCOUNTERED		WAT		2 PM3;00 ESTIMATED
	FROM TO	THICKNESS (feet)	INCLUDE WATER-BEARING CAVITIES OR FRACTURE Zo (attach supplemental sheets to fully describe all units)	N 7 5	BEARI (YES /	NG?	YIELD FOR WATER- BEARING ZONES (gpm)
	0 1	1	Caliche, White, Dry		Y	✓ N	
	1 20	19	Sand, very fine grained, well graded, with caliche, Reddish Brown-Li	ght Brown	Y	N	
	20 30	20	Caliche, consolidated with silt and some gravel, Off-White, I	ry	Y	√ N	
	30 50	20	Sand, very fine grained, well graded, with gravel, Light Brow	vn	Y	√ N	
	50 75	25	Sand, very fine grained, well graded, with gravel, Reddish Brown, sl	ight moist	Y	√ N	
,	75 105	30	Sand, very fine grained, poorly graded, Reddish Brown, slight	noist	Y	√N	
ME.					Y	N	
5					Y	N	
3					Y	N	
2					Y	N	
3					Y	N	
5					Y	N	
Į					Y	N	
HIDROGEOLOGIC LOG OF WELL					Y	N	
4					Y	N	
					Y	N	
					Y	N	
					Y	N	
					Y	N	
					Y	N	
					Y	N	
	METHOD USED TO	ESTIMATE YIEL	O OF WATER-BEARING STRATA:	тот	AL ESTIM	ATED	
_	PUMP]AIR LIFT [BAILER OTHER – SPECIFY:	WEI	L YIELD	(gpm):	0.00
- 1			FACH A COPY OF DATA COLLECTED DURING WELL TESTING IME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN				иетнор,
5	ST			OVER TH	E TESTIN	G PERIO	D.
, NIO SULER VISION	SI	1	emporary well materials removed and the soil boring backfilled the below ground surface, then hydrated bentonite chips from teach adapted from WSP on-site geologist.	using dril	l cuttings	from tot	al depth to ten
. 1E31; KIG SUFEKVISION	MISCELLANEOUS	I	eet below ground surface, then hydrated bentonite chips from te	l using dril n feet belo	l cuttings w ground	from tot surface	tal depth to ter to surface.
S. LEST; KIU SUFERVISION	MISCELLANEOUS	I F DRILL RIG SUPF	cet below ground surface, then hydrated bentonite chips from te ogs adapted from WSP on-site geologist. RVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL	l using dril n feet belo	l cuttings w ground	from tot surface	tal depth to ter to surface.
	PRINT NAME(S) OF Shane Eldridge, Carthe Undersigne Correct Record AND THE PERMIT	F DRILL RIG SUPE meron Pruitt, Carr D HEREBY CERT D OF THE ABOVE HOLDER WITHIN	cet below ground surface, then hydrated bentonite chips from te ogs adapted from WSP on-site geologist. RVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL	l using dril n feet belo CONSTRUCE	l cuttings w ground CTION OT	from tot surface THER TH	tal depth to ter to surface. AN LICENSEE S A TRUE AN
6. SIGNATURE 5. TEST; RIG SUPERVISION	PRINT NAME(S) OF Shane Eldridge, Can	F DRILL RIG SUPE meron Pruitt, Carr D HEREBY CERT D OF THE ABOVE HOLDER WITHIN	RVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL nelo Trevino FIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WE	l using dril n feet belo CONSTRUCE	l cuttings w ground CTION OT HE FOREG	from tot surface THER TH	tal depth to tent to surface. AN LICENSEE S A TRUE ANI
	PRINT NAME(S) OF Shane Eldridge, Can THE UNDERSIGNE CORRECT RECORD AND THE PERMIT	F DRILL RIG SUPE meron Pruitt, Carr D HEREBY CERT D OF THE ABOVE HOLDER WITHIN	RVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL melo Trevino FIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WE 30 DAYS AFTER COMPLETION OF WELL DRILLING:	l using dril n feet belo CONSTRUCE	l cuttings w ground CTION OT THE FOREA RD WITH	from tot surface THER TH GOING I	tal depth to tent to surface. AN LICENSEE S A TRUE ANI
6. SIGNALORE	PRINT NAME(S) OF Shane Eldridge, Can THE UNDERSIGNE CORRECT RECORD AND THE PERMIT	F DRILL RIG SUPF meron Pruitt, Carr D HEREBY CERT D OF THE ABOVE HOLDER WITHIN	RVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL nelo Trevino FIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WE 30 DAYS AFTER COMPLETION OF WELL DRILLING: Jackie D. Atkins ER / PRINT SIGNEE NAME	using dril n feet belo CONSTRUC BELIEF, T	l cuttings w ground CTION OT HE FORER RD WITH	from tot surface THER THE THE STA	tal depth to ter to surface. AN LICENSEE S A TRUE AN

OSE_Well Record and Log_-forsign

Final Audit Report

2022-01-22

Created:

2022-01-21

By:

Lucas Middleton (lucas@atkinseng.com)

Status:

Signed

Transaction ID:

CBJCHBCAABAAHFW29aZiQH1D931B0LxyAz3o1wYi88ri

"OSE_Well Record and Log_-forsign" History

Document created by Lucas Middleton (lucas@atkinseng.com) 2022-01-21 - 10:47:34 PM GMT- IP address: 69.21.248.123

OSE 011 JAN 24 2022 PX3:00

- Document emailed to Jack Atkins (jack@atkinseng.com) for signature 2022-01-21 10:48:19 PM GMT
- Email viewed by Jack Atkins (jack@atkinseng.com) 2022-01-21 10:49:13 PM GMT- IP address: 64.90.153.232
- Document e-signed by Jack Atkins (jack@atkinseng.com)
 Signature Date: 2022-01-22 0:16:23 AM GMT Time Source: server- IP address: 64.90.153.232
- Agreement completed. 2022-01-22 - 0:16:23 AM GMT

Received by OCD: 5/29/2024 2:31:30 BW Mexico Office of the State Engineer

Water Right Summary

WR File Number: C 04575

Subbasin: CUB

Subfile:

Cross Reference: -

Primary Purpose: MON

MONITORING WELL

Primary Status:

PMT

PERMIT

Total Acres:

Header: -

Total Diversion:

Cause/Case:

Agent:

XTO ENERGY INC ADRIAN BAKER

Contact: User:

WSP USA

Contact:

KALEI JENNINGS

Documents on File

				Sta	atus		From/			
	Trn#	Doc	File/Act	1	2	Transaction Desc.	To	Acres	Diversion	Consumptive
tes	709414	EXPL	2021-10-06	PMT	LOG	C 04575 POD1	T	0	0	

Current Points of Diversion

(NAD83 UTM in meters)

POD Number C 04575 POD1

Well Tag Source 64Q16Q4Sec Tws Rng

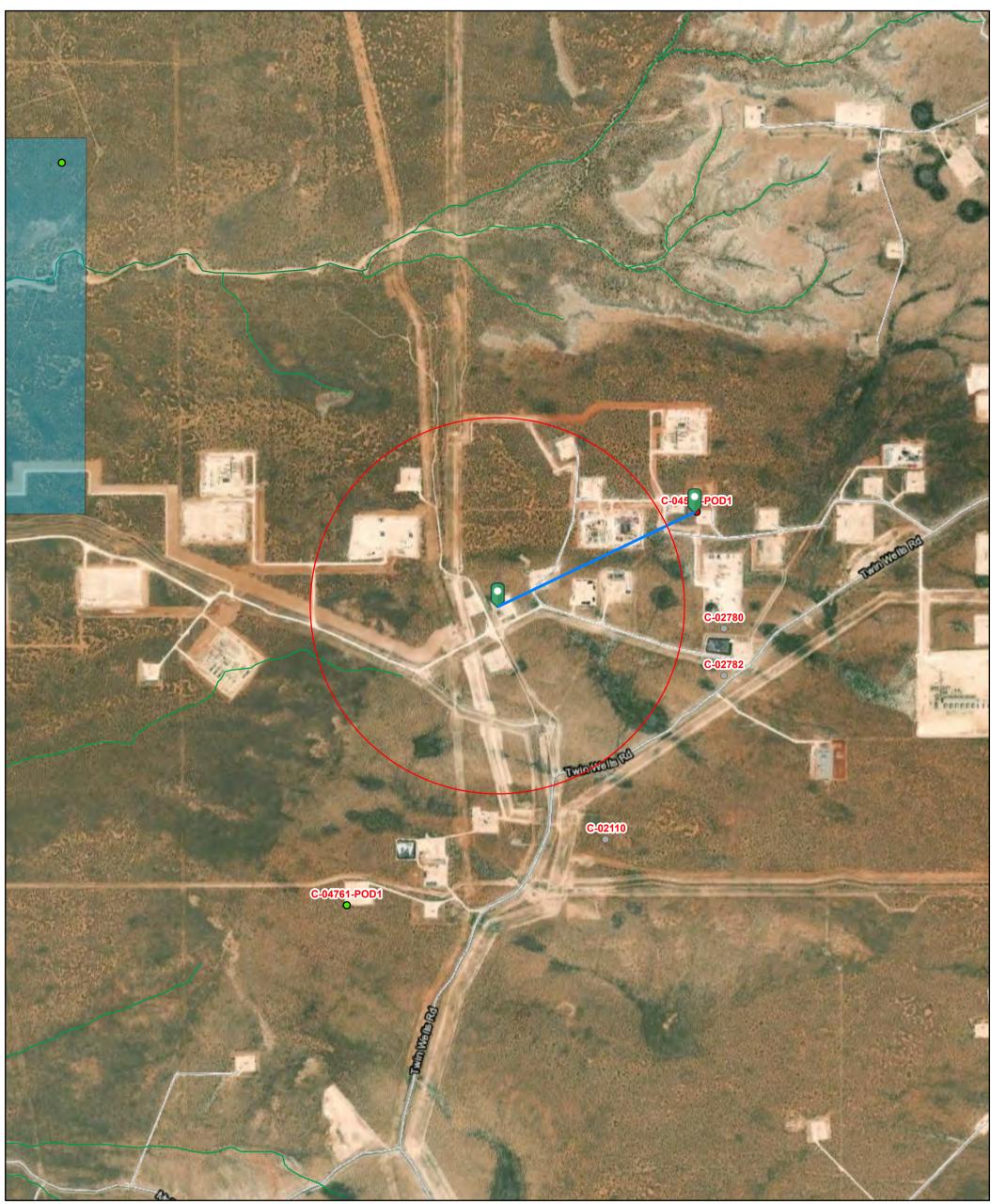
Q

X

Other Location Desc

NA

1 1 2 23 24S 30E


608412 3564355

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

1/16/24 3:08 PM

WATER RIGHT SUMMARY

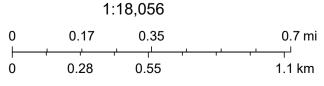
OSE POD Location Map

1/16/2024, 4:39:00 PM

Override 1 **GIS WATERS PODs**

Pending

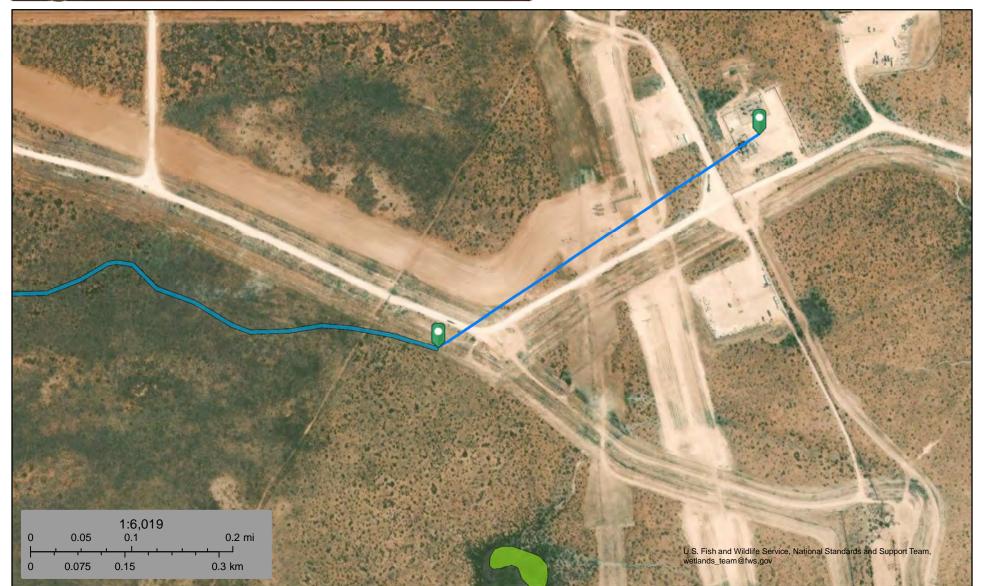
Plugged


New Mexico State Trust Lands

Both Estates

NHD Flowlines

Artificial Path


Stream River

Esri, HERE, iPC, Esri, HERE, Garmin, iPC, Maxar

PLU342 R45BJ 1743FT

January 16, 2024

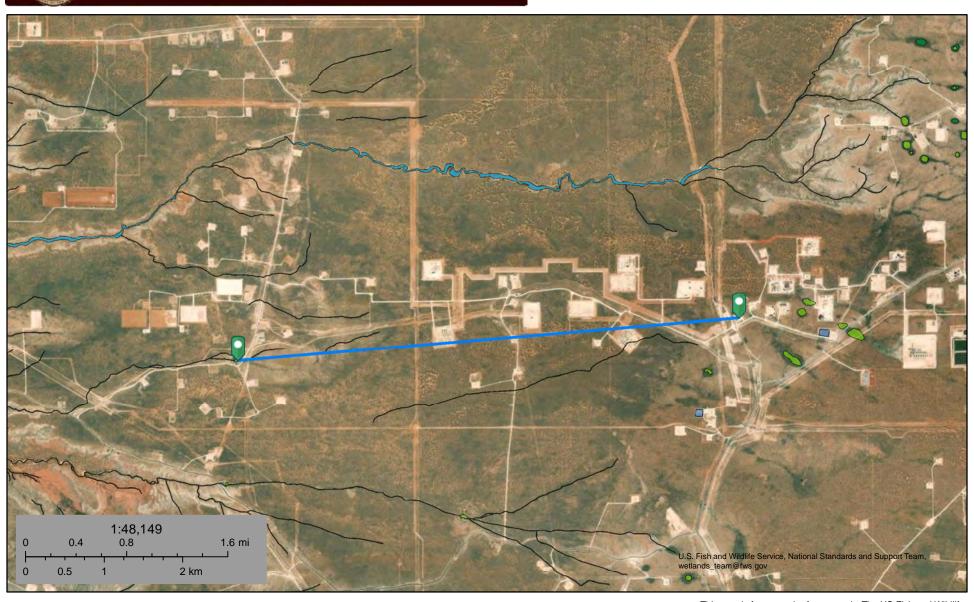
Wetlands

Estuarine and Marine Deepwater

Estuarine and Marine Wetland

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland


Freshwater Pond

Lake

Other

Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

January 16, 2024

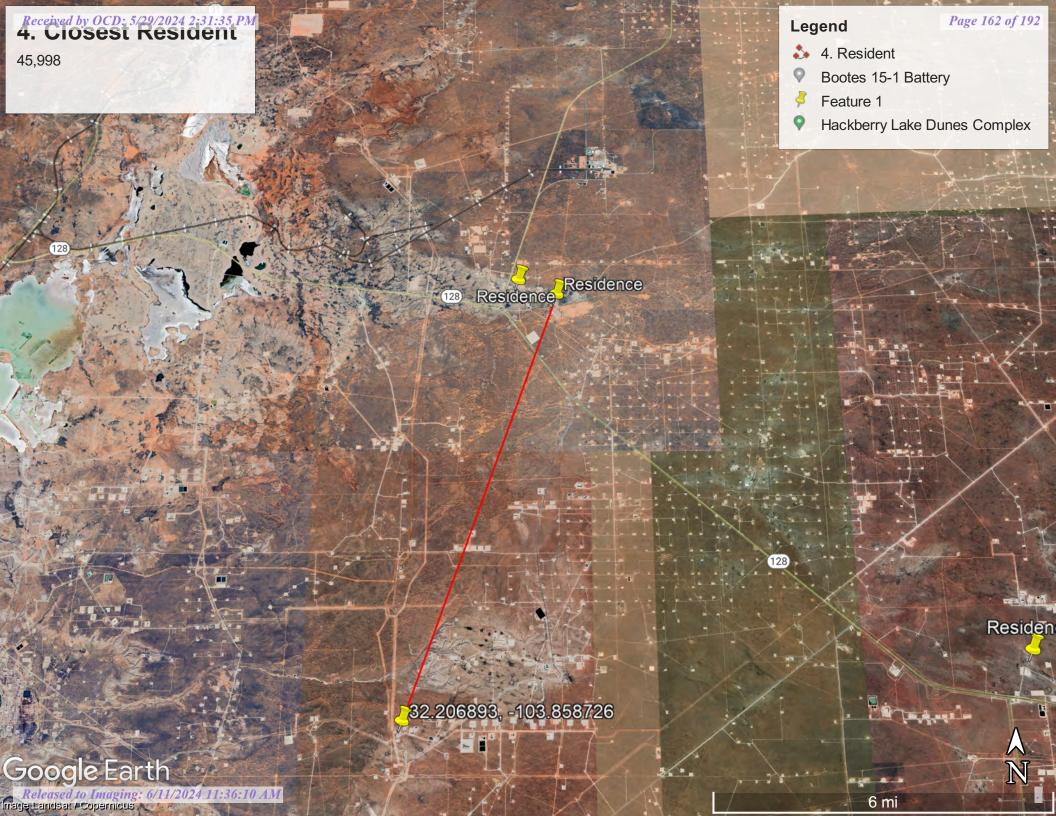
Wetlands

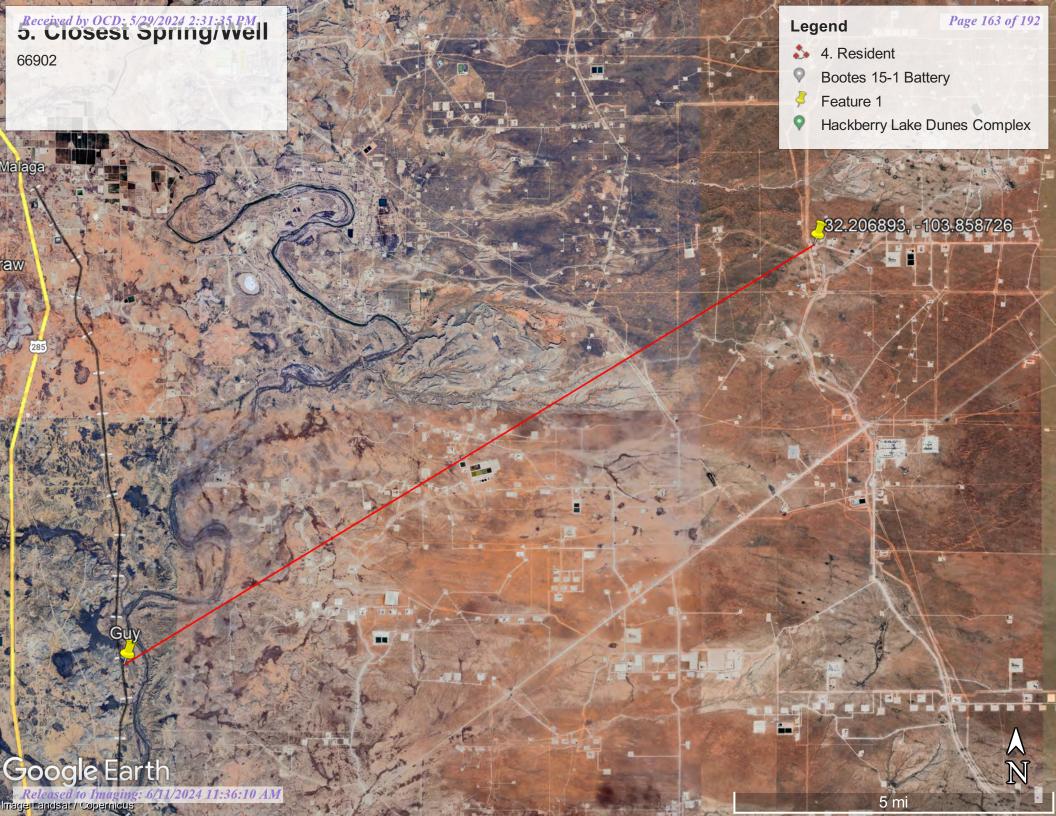
Estuarine and Marine Deepwater

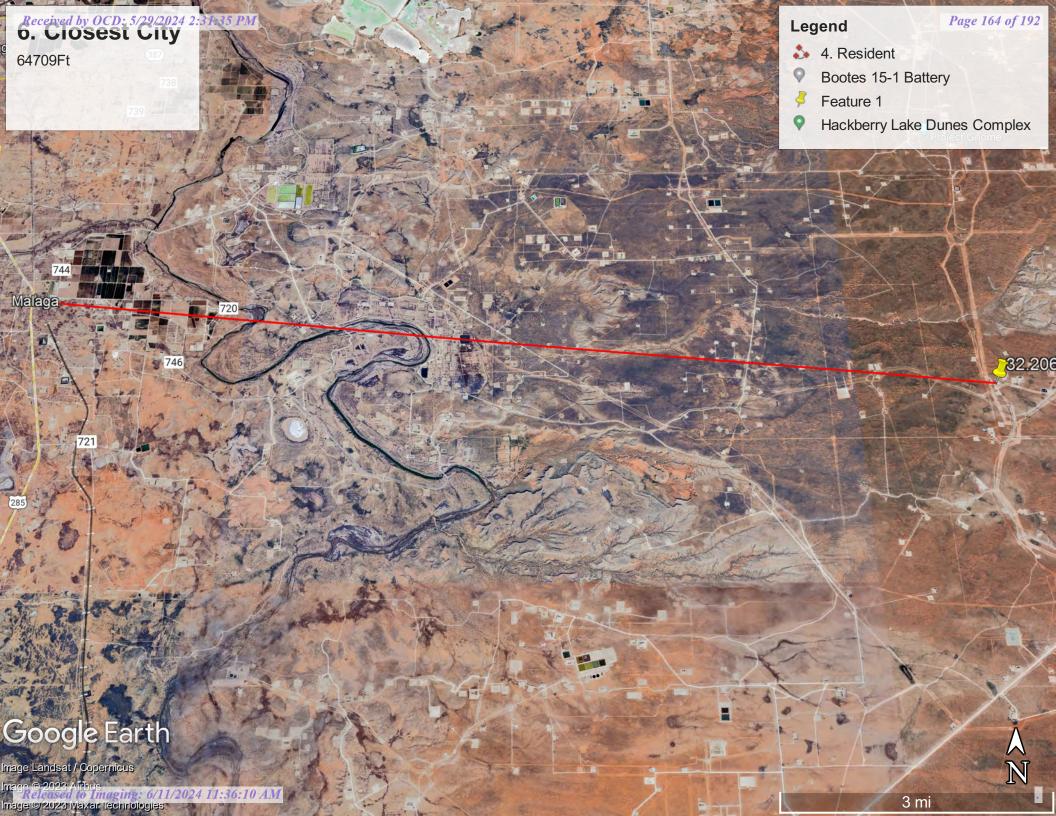
Estuarine and Marine Wetland

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland


Freshwater Pond


Lake


Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

PLU342 PEMJ1 2323

January 16, 2024

Wetlands

Estuarine and Marine Deepwater

Estuarine and Marine Wetland

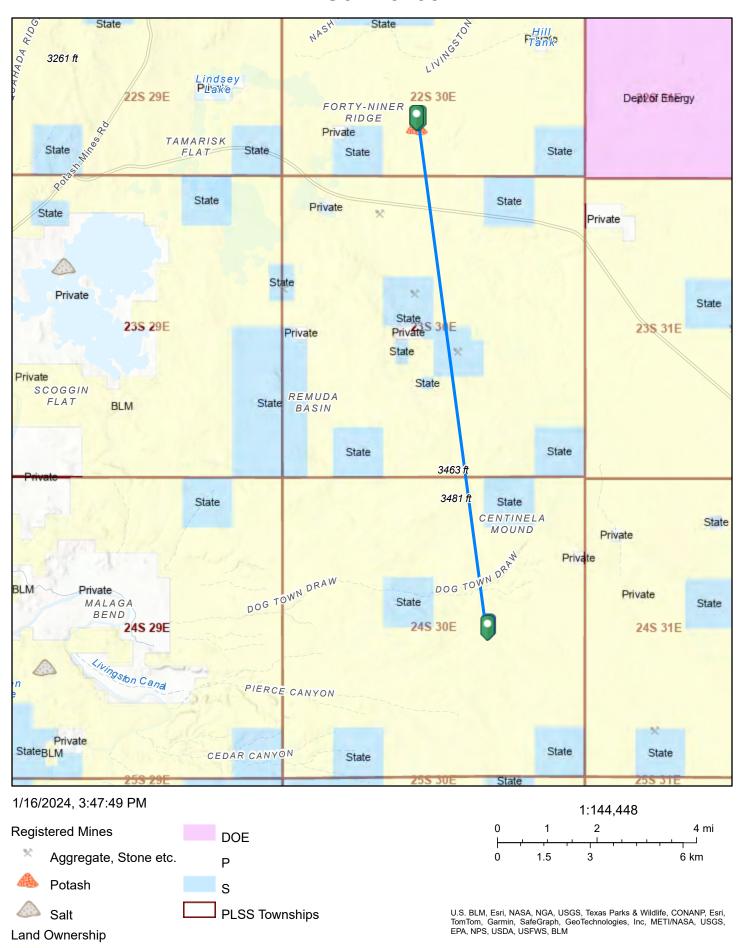
Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland

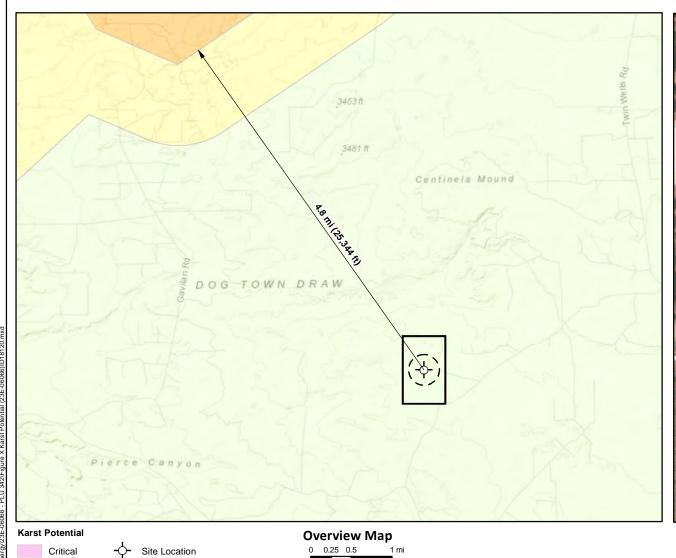
Freshwater Pond

Lake

Lake



Riverine


This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

BLM

PLU342 54384

Received by OCD: 5/29/2024 2:31:35 PM

High

Medium

Low

Map Center: Lat/Long 32.225441, -103.876631

NAD 1983 UTM Zone 13N Date: Apr 05/24

Karst Potential Map Poker Lake Unit 342 Battery FIGURE:

0 150 300 600 ft

Geospatial data presented in this figure may be derived from external sources and Vertex does not assume any liability for inaccuracies. This figure is intended for reference use only and is not certified for legal, survey, or engineering purposes.

__ | Site Buffer (1000 ft.)

Note: Inset Map, Esri 2023; Overview Map: Esri World Topographic. Karst potential data sourced from Roswell Field Office, Bureau of Land Management, 2020 or United States Department of the Interior, Bureau of Land Management. (2018). Karst Potential.

National Flood Hazard Layer FIRMette

Legend SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS Regulatory Floodway 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X **Future Conditions 1% Annual** Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF Area with Flood Risk due to Levee Zone D FLOOD HAZARD NO SCREEN Area of Minimal Flood Hazard Zone X Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D - - - Channel, Culvert, or Storm Sewer **GENERAL** STRUCTURES | LILLIL Levee, Dike, or Floodwall

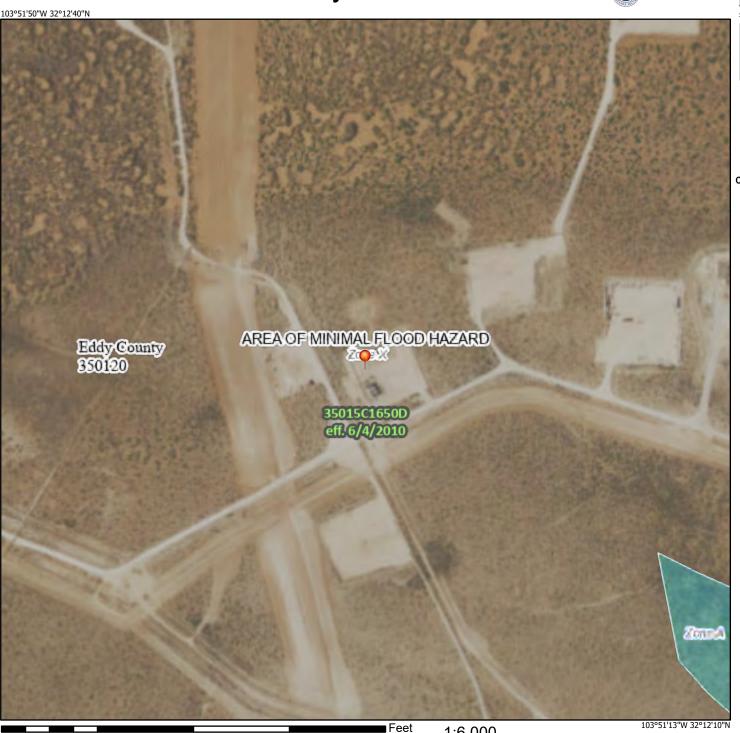
> Water Surface Elevation **Coastal Transect** Base Flood Elevation Line (BFE) Limit of Study Jurisdiction Boundary **Coastal Transect Baseline** OTHER **Profile Baseline FEATURES** Hydrographic Feature

20.2 Cross Sections with 1% Annual Chance

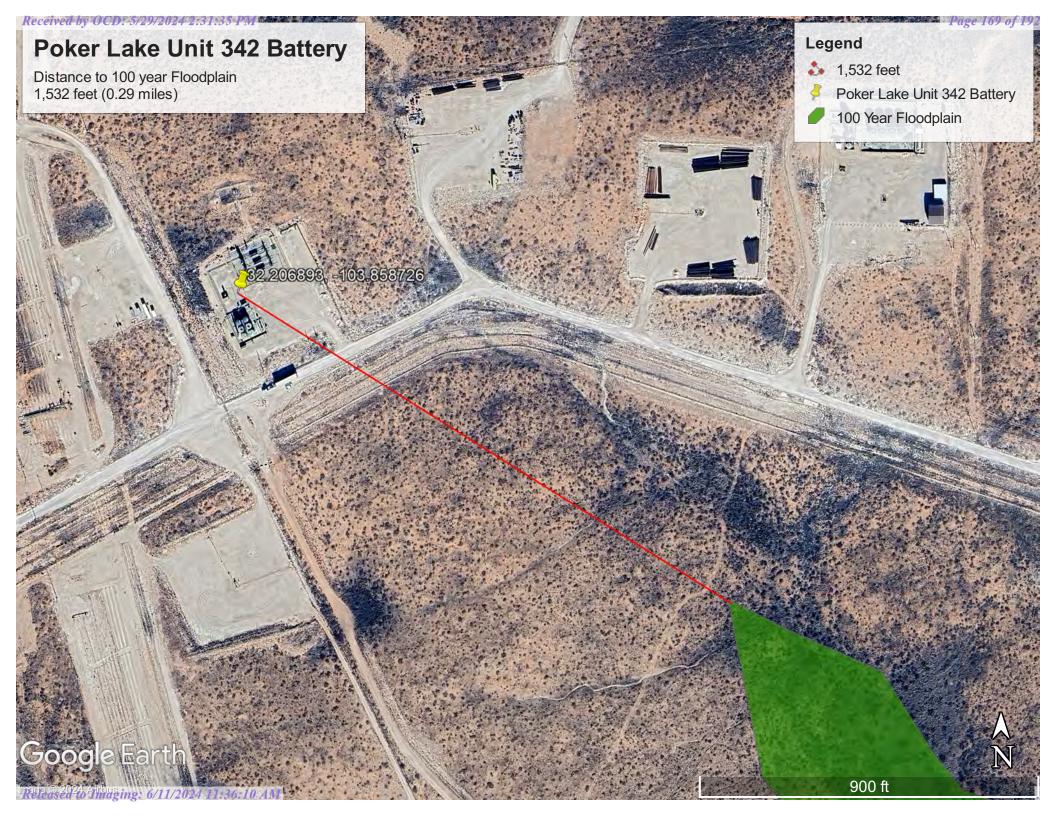
The pin displayed on the map is an approximate point selected by the user and does not represent

Digital Data Available No Digital Data Available Unmapped

MAP PANELS


accuracy standards

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap


an authoritative property location.

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 1/16/2024 at 5:50 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

2,000

VRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Eddy Area, New Mexico

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

-

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

ဖ

Blowout

 \boxtimes

Borrow Pit

Ж

Clay Spot

 \Diamond

Closed Depression

Š

Gravel Pit

...

Gravelly Spot

0

Landfill

٨.

Lava Flow

Marsh or swamp

尕

Mine or Quarry

0

Miscellaneous Water
Perennial Water

0

Rock Outcrop

+

Saline Spot

...

Sandy Spot
Severely Eroded Spot

_

Sinkhole

Ø.

Sodic Spot

Slide or Slip

8

Spoil Area Stony Spot

M

Very Stony Spot

7

Wet Spot Other

Δ.

Special Line Features

Water Features

__

Streams and Canals

Transportation

ransp

Rails

~

Interstate Highways

US Routes

 \sim

Major Roads Local Roads

 \sim

Background

100

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 19, Sep 7, 2023

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Feb 7, 2020—May 12, 2020

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI								
SM	Simona-Bippus complex, 0 to 5 percent slopes	3.0	100.0%								
Totals for Area of Interest		3.0	100.0%								

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Eddy Area, New Mexico

SM—Simona-Bippus complex, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 1w5x Elevation: 1,800 to 5,000 feet

Mean annual precipitation: 8 to 24 inches

Mean annual air temperature: 57 to 70 degrees F

Frost-free period: 180 to 230 days

Farmland classification: Not prime farmland

Map Unit Composition

Simona and similar soils: 55 percent Bippus and similar soils: 30 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Simona

Setting

Landform: Plains, alluvial fans

Landform position (three-dimensional): Rise

Down-slope shape: Convex, linear

Across-slope shape: Linear

Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 19 inches: gravelly fine sandy loam

H2 - 19 to 23 inches: indurated

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 7 to 20 inches to petrocalcic

Drainage class: Well drained Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 1.0

Available water supply, 0 to 60 inches: Very low (about 2.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D

Ecological site: R070BD002NM - Shallow Sandy

Hydric soil rating: No

Description of Bippus

Setting

Landform: Flood plains, alluvial fans

Landform position (three-dimensional): Talf, rise

Down-slope shape: Convex, linear Across-slope shape: Linear Parent material: Mixed alluvium

Typical profile

H1 - 0 to 37 inches: silty clay loam H2 - 37 to 60 inches: clay loam

Properties and qualities

Slope: 0 to 5 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: Occasional Frequency of ponding: None

Calcium carbonate, maximum content: 40 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 1.0

Available water supply, 0 to 60 inches: Moderate (about 8.7 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: B

Ecological site: R070BC017NM - Bottomland

Hydric soil rating: No

Minor Components

Simona

Percent of map unit: 8 percent

Ecological site: R070BD002NM - Shallow Sandy

Hydric soil rating: No

Bippus

Percent of map unit: 7 percent

Ecological site: R070BC017NM - Bottomland

Hydric soil rating: No

Ecological site R070BD002NM Shallow Sandy

Accessed: 01/16/2024

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

Associated sites

R070BD004NM	Sandy	Ì
	Sandy sites often occur in association or in a complex with Shallow Sandy Sites.	

Similar sites

R070BD004NM	Sandy
	Sandy ecological sites are similar to Shallow Sandy sites in species composition and Transition pathways.

Table 1. Dominant plant species

Tree	Not specified	
Shrub	Not specified	
Herbaceous	Not specified	

Physiographic features

This site occures on plains, alluvial fans, uplands, or fan piedmonts. The parent material consists of mixed loamy alluvium or eolian material derived from igneous and sedimentory bedrock. The petrocalcic layer is at a depth of 10 to 25 inches and undulating.

Slopes are nearly level to undulating, usually less than 9 percent. Elevations range from 2,842 to 4,500 feet.

Table 2. Representative physiographic features

Landforms	(1) Plain(2) Fan piedmont(3) Alluvial fan	
Elevation	2,842-4,500 ft	
Slope	1–9%	
Aspect	Aspect is not a significant factor	

Climatic features

The average annual precipitation ranges from 8 to 13 inches. Variations of 5 inches, more or less, are common.

Over 80 percent of the precipitation falls from April through October. Most of the summer precipitation comes in the form of high intensity – short duration thunderstorms.

Temperatures are characterized by distinct seasonal changes and large annual and diurnal temperature changes. The average annual temperature is 61 degrees with extremes of 25 degrees below zero in the winter to 112 degrees in the summer.

The average frost-free season is from 207 to 220 days. The last killing frost is in late March or early April, and the first killing frost is in late October or early November.

Temperature and rainfall both favor warm season perennial plant growth. In years of abundant spring moisture, annual forbs and cool season grasses can make up an important component of the site. The vegetation of this site can take advantage of the moisture and the time it falls. Because of the soil profile, little moisture can be stored in the soil for any length of time. Moisture is readily available to the plants from the time it falls. Strong winds from the southwest blow from January through June which rapidly dries out the soil profile during a critical period for plant growth.

Climate data was obtained from http://www.wrcc.sage.dri.edu/summary/climsmnm.html web site using 50% probability for freeze-free and frost-free seasons using 28.5 degrees F and 32.5 degrees F respectively.

Table 3. Representative climatic features

Frost-free period (average)	221 days
Freeze-free period (average)	240 days
Precipitation total (average)	13 in

Influencing water features

This site is not influenced from water from wetlands or streams.

Soil features

Soils are very shallow to shallow, less than 20 inches in depth. Surface and subsurface textures are gravelly loamy sand, gravelly fine sandy loam or fine sandy loam.

An indurated calache layer occurs at depths of 6 to 25 inches and is at an average of 15 inches from the surface. Underlying material textures are very gravelly fine sandy loam, very gravelly sandy loam, gravelly fine sandy loam. Gravels are calcium carbonate concretions, calcium carbonate content ranges from 30 to 65 percent.

The indurated caliche layer typically holds water up in the profile for short periods within the root zone of plants. These soils will blow if left unprotected by vegetation.

Minimum and maximum values listed below represent the characteristic soils for this site.

Characteristic soils are:

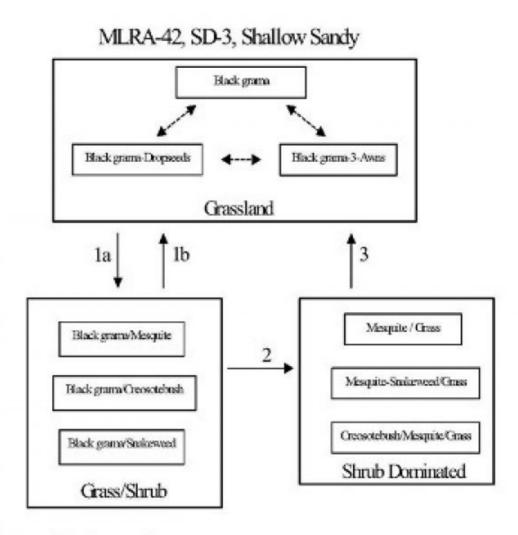
Simona

Jerag

Table 4. Representative soil features

Surface texture	(1) Fine sandy loam (2) Loamy fine sand (3) Gravelly fine sandy loam	
Family particle size	(1) Loamy	
Drainage class	Well drained to moderately well drained	
Permeability class	Moderately slow to moderate	

Soil depth	7–24 in
Surface fragment cover <=3"	5–25%
Surface fragment cover >3"	0%
Available water capacity (0-40in)	1–2 in
Calcium carbonate equivalent (0-40in)	5–15%
Electrical conductivity (0-40in)	0–4 mmhos/cm
Sodium adsorption ratio (0-40in)	0
Soil reaction (1:1 water) (0-40in)	7.4–8
Subsurface fragment volume <=3" (Depth not specified)	5–25%
Subsurface fragment volume >3" (Depth not specified)	0%


Ecological dynamics

Overview

The Shallow Sandy site occurs on upland plains, and tops of low ridges and mesas, associated with Sandy, Loamy Sand, and Shallow sites. Coarse to moderately coarse soil surface textures, shallow depth (<20 inches) to an indurated caliche layer (petrocalcic horizon), and an overwhelming dominance by black grama help to distinguish this site. The historic plant community of the Shallow Sandy site is a black grama dominated grassland sparsely dotted with shrubs. Shrubs, especially mesquite and creosotebush can increase or colonize due to the dispersal of shrub seeds by livestock or wildlife. This increase in mesquite and colonization of creosotebush may be enhanced by proximity to areas with existing high shrub densities. Fire suppression, and the loss of grass cover due to overgrazing or drought may facilitate the increase and encroachment of shrubs. Persistent loss of grass cover, competition for resources by shrubs, and periods of climate with increased winter precipitation and dry summers, may initiate the transition to a shrub-dominated state.

State and transition model

Plant Communities and Transitional Pathways (diagram)

Seed dispersal, drought, overgrazing, fire suppression.

- Prescribed fire, brush control, prescribed grazing.
- Persistent loss of grass cover, resource competition, increased winter precipitation.
- Brush control, range seeding, prescribed grazing.

State 1 Historic Climax Plant Community

Community 1.1 Historic Climax Plant Community

Grassland: This site responds well to management and is resistant to state change, due to the shallow depth to petrocalcic horizon and sandy surface textures. The sandy surface textures allow rapid water infiltration and the petrocalcic horizon helps to keep water perched and available to shallow rooted grasses. Black grama is the dominant species in the historic plant community, averaging 50 to 60 percent of the total production for this site. Bush muhly, blue grama, and dropseeds are present as sub-dominants. Typically, yucca, javalinabush, range ratany, prickly pear, and mesquite are sparsely dotted across the landscape. Leatherweed croton, cutleaf

happlopappus, wooly groundsel, and threadleaf groundsel are common forbs. Continuous heavy grazing or extended periods of drought will cause a loss of grass cover characterized by a decrease in black grama, bush muhly, blue and sideoats grama, plains bristlegrass, and Arizona cottontop. Dropseeds and or threeawns may increase and become sub-dominant to black grama. Continued loss of grass cover in conjunction with dispersal of shrub seeds and fire suppression is believed to cause the transition to a state with increased amounts of shrubs (Grass/Shrub state). Diagnosis: Black grama is the dominant grass species. Grass cover uniformly distributed. Shrubs are a minor component averaging only two to five percent canopy cover. Litter cover is high (40-50 percent of area), and litter movement is limited to smaller size class litter and short distances (<. 5m). Other grasses that could appear on this site would include: six-weeks grama, fluffgrass, false-buffalograss, hairy grama, little bluestem, bristle panicum, cane bluestem, Indian ricegrass, tridens spp., and red lovegrass. Other woody plants include: pricklypear, cholla, fourwing saltbush, catclaw mimosa, winterfat, American tarbush and mesquite. Other forbs include: globemallow, verbena, desert holly, senna, plains blackfoot, trailing fleabane, fiddleneck, deerstongue, wooly Indianwheat, and locoweed.

Table 5. Annual production by plant type

Plant Type	Low (Lb/Acre)	Representative Value (Lb/Acre)	
Grass/Grasslike	474	652	830
Forb	78	107	136
Shrub/Vine	48	66	84
Total	600	825	1050

Table 6. Ground cover

Tree foliar cover	0%
Shrub/vine/liana foliar cover	0%
Grass/grasslike foliar cover	30-35%
Forb foliar cover	0%
Non-vascular plants	0%
Biological crusts	0%
Litter	40-50%
Surface fragments >0.25" and <=3"	0%
Surface fragments >3"	0%
Bedrock	0%
Water	0%
Bare ground	15-25%

Figure 5. Plant community growth curve (percent production by month). NM2802, R042XC002NM-Shallow Sandy-HCPC. SD-3 Shallow Sandy - Warm season plant community.

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	3	5	10	10	25	30	12	5	0	0

State 2 Grass/Shrub

Community 2.1 Grass/Shrub

Grass/Shrub: This state is characterized by the notable presence of shrubs, especially mesquite, broom snakeweed, and/or creosotebush, however grasses remain as the dominant species. Black grama is the dominant

grass species. Threeawns and or dropseeds are sub-dominant. The susceptibility of the Shallow Sandy site to shrub encroachment may be higher when located adjacent to other sites with high densities of mesquite or creosotebush. Retrogression within this site is characterized by decreases in grass cover and increasing densities of shrubs. Diagnosis: Black grama remains as the dominant grass species. Grass cover varies in response to the amount of shrub increase, ranging from uniform to patchy. Shrubs are found at increased densities relative to the grassland state, especially mesquite, creosotebush, or broom snakeweed. Transition to Grass/Shrub (1a) Historically fire may have kept mesquite and other shrubs in check by completely killing some species and disrupting seed production cycles and suppressing the establishment of shrub seedlings in others. Fire suppression combined with seed dispersal by livestock and wildlife is believed to be the factors responsible for the establishment and increase in shrubs.1, 3 Loss of grass cover due to overgrazing, prolonged periods of drought, or their combination, reduces fire fuel loads and increases the susceptibility of the site to shrub establishment. Key indicators of approach to transition: Increase in the relative abundance of dropseeds and threeawns Presence of shrub seedlings Loss of organic matter—evidenced by an increase in physical soil crusts 8 Transition back to Grassland (1b) Brush control is necessary to initiate the transition back to the grassland state. If adequate fuel loads remain, possibly the reintroduction of fire as a management tool will assist in the transition back, however, mixed results have been observed concerning the effects of fire on black grama grasslands.6 Prescribed grazing will help ensure adequate rest following brush control and will assist in the establishment and maintenance of grass cover capable of sustaining fire.

State 3 Shrub Dominated

Community 3.1 Shrub Dominated

Shrub-Dominated: Across the range of soil types included in the Shallow Sandy site, mesquite is typically the dominant shrub, but it does occur as a co-dominant or sub-dominant species with creosotebush or broom snakeweed. Mesquite tends to dominate when the Shallow Sandy site occurs as part of a complex or in association with Sandy or Loamy Sand sites. Creosotebush tends to dominate on Shallow Sandy sites that occur as part of, or adjacent to Shallow Sites. Broom snakeweed increases in response to heavy grazing, but tends to cycle in and out depending on timing of rainfall. However, once the site is dominated by shrubs and snakeweed becomes well established, it tends to remain as a major component in the shrub dominated state. Diagnosis: Mesquite, creosotebush, or snakeweed cover is high, exceeding that of grasses. Grass cover is patchy with large connected bare areas present. Black grama, threeawns, or dropseeds may be the dominant grass. Evidence of accelerated wind erosion in the form of pedestalling of plants, and soil deposition around shrub bases may be common. Transition to Shrub-Dominated (2) Persistent loss of grass cover and the resulting increased competition between shrubs and remaining grasses for dwindling resources (especially soil moisture) may drive this transition.5 Additionally periods of increased winter precipitation may facilitate periodic episodes of shrub expansion and establishment. 4 Key indicators of approach to transition: Increase in size and frequency of bare patches. Loss of grass cover in shrub interspaces. Increased signs of erosion, evidenced by pedestalling of plants, and soil and litter deposition on leeward side of plants. 7 Transition back to Grassland (3) Brush control is necessary to reduce competition from shrubs and reestablish grasses. Range seeding may be necessary if insufficient grasses remain, The benefits, and costs, will vary depending upon the degree of site degradation, and adequate precipitation following seeding.

Additional community tables

Table 7. Community 1.1 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Lb/Acre)	Foliar Cover (%)
Grass	/Grasslike				
1	Warm Season			413–495	
	black grama	BOER4	Bouteloua eriopoda	413–495	_
2	Warm Season			41–83	
	bush muhly	MUPO2	Muhlenbergia porteri	41–83	_
3	Warm Season			41–83	

				1	
	blue grama	BOGR2	Bouteloua gracilis	41–83	_
4	Warm Season			25–41	
	sideoats grama	BOCU	Bouteloua curtipendula	25–41	-
5	Warm Season			41–83	
	spike dropseed	SPCO4	Sporobolus contractus	41–83	-
	sand dropseed	SPCR	Sporobolus cryptandrus	41–83	_
	mesa dropseed	SPFL2	Sporobolus flexuosus	41–83	1
6	Warm Season			17–41	
	threeawn	ARIST	Aristida	17–41	_
7	Warm Season			41–83	
	Arizona cottontop	DICA8	Digitaria californica	41–83	_
	plains bristlegrass	SEVU2	Setaria vulpiseta	41–83	1
8	Warm Season			41–83	
	mat sandbur	CELO3	Cenchrus longispinus	41–83	_
	hooded windmill grass	CHCU2	Chloris cucullata	41–83	ı
9	Other Perennial Grasses	-		25–41	
	Grass, perennial	2GP	Grass, perennial	25–41	ı
Shru	b/Vine				
10	Shrub			8–25	
	javelina bush	COER5	Condalia ericoides	8–25	_
11	Shrub	-	-	8–25	
	yucca	YUCCA	Yucca	8–25	_
12	Shrub			8–25	
	jointfir	EPHED	Ephedra	8–25	_
	littleleaf ratany	KRER	Krameria erecta	8–25	_
13	Shrub	_ -	•	8–25	
	featherplume	DAFO	Dalea formosa	8–25	_
14	Shrub			8–25	
	broom snakeweed	GUSA2	Gutierrezia sarothrae	8–25	_
15	Other Shrubs			25–41	
	Shrub (>.5m)	2SHRUB	Shrub (>.5m)	25–41	_
Forb					
16	Forb			17–41	
	leatherweed	CRPOP	Croton pottsii var. pottsii	17–41	_
	Goodding's tansyaster	MAPIG2	Machaeranthera pinnatifida ssp. gooddingii var. gooddingii	17–41	_
17	Forb	-		17–41	
	woolly groundsel	PACA15	Packera cana	17–41	-
	threadleaf ragwort	SEFLF	Senecio flaccidus var. flaccidus	17–41	_
18	Forb			8–25	
	whitest evening primrose	OEAL	Oenothera albicaulis	8–25	-
19	Other Forbs	1		8–25	
	Forb (herbaceous, not grass nor grass-like)	2FORB	Forb (herbaceous, not grass nor grass-like)	8–25	_
	•	•	•	•	

Animal community

This site provides habitats which support a resident animal community that is characterized by pronghorn antelope, swift fox, black-tailed jackrabbit, spotted ground squirrel, Ord's kangaroo rat, northern grasshopper mouse, coyote, horned lark, meadowlark, lark bunting, scaled quail, morning dove, side-blotched lizard, round-tailed horned lizard, marbled whiptail, prairie rattlesnake and ornate box turtle.

Hydrological functions

The runoff curve numbers are determined by field investigations using hydraulic cover conditions and hydrologic soil groups.

Hydrologic Interpretations Soil Series Hydrologic Group Jarag D Simona D

Recreational uses

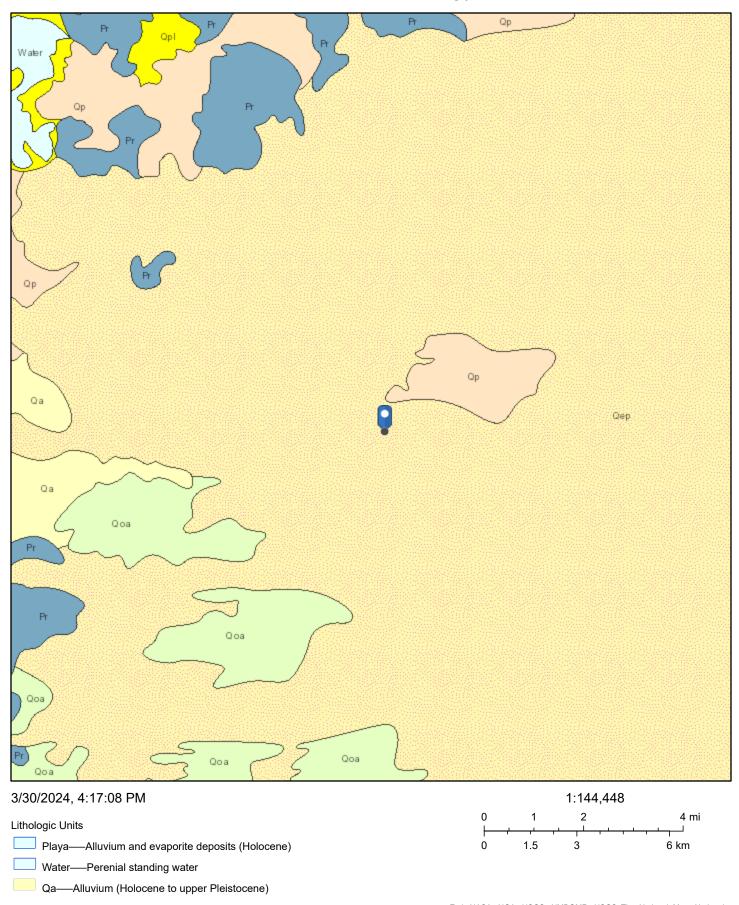
This site offers recreation for hiking, horseback riding, nature observation and photography, and quail and dove hunting. During years of abundant spring moisture, this site displays a riot of color from wildflowers during May and June. A few summer and fall flowers also occur.

Wood products

The natural potential plant community of this site affords little or no wood products. Where the site has been invaded by mesquite or cholla cactus the roots and stems of these plants provide attractive material for a variety of curiosities, such as lamps and small furniture.

Other products

This site is suitable for grazing by all kinds and classes of livestock during all seasons of the year. Because of the sandy textures and shallow profile, this site will respond rapidly to management. As this site deteriorates, plants such as black grama, bush muhly, blue and sideoats grama, plains bristlegrass and Arizona cottontop, will decrease and be replaced by plants such as threeawns, mesquite, creosote bush, and broom snakeweed. This also causes a decrease in ground cover, leaving the soil to blow. This site responds best to a system of management that rotates the season of use.


Other information

Guide to Suggested Initial Stocking Rate Acres per Animal Unit Month Similarity Index Ac/AUM $100 - 76 \ 2.5 - 3.5$ $75 - 51 \ 3.2 - 4.6$ $50 - 26 \ 4.5 - 7.5$ $25 - 0 \ 7.6 +$

Inventory data references

Data collection for this site was done in conjunction with the progressive soil surveys within the Southern Desertic Basins, Plains and Mountains, Major Land Resource Areas of New Mexico. This site has been mapped and correlated with soils in the following soil surveys. Eddy County, Lea County, and Chaves County.

PLU 342 - Geology

Esri, NASA, NGA, USGS, NMBGMR, USGS The National Map: National Boundaries Dataset, 3DEP Elevation Program, Geographic Names Information System, National Hydrography Dataset, National Land Cover Database, National Structures Dataset, and National Transportation Dataset; USGS Global Ecosystems; U.S. Census Bureau TIGER/Line data; USFS

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS

Action 348931

QUESTIONS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	348931
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Prerequisites		
Incident ID (n#)	nAPP2334849928	
Incident Name	NAPP2334849928 POKER LAKE UNIT 342 BATTERY @ 0	
Incident Type	Produced Water Release	
Incident Status	Remediation Plan Received	

Location of Release Source	
Please answer all the questions in this group.	
Site Name	Poker Lake Unit 342 Battery
Date Release Discovered	12/07/2023
Surface Owner	Federal

Incident Details		
Please answer all the questions in this group.		
Incident Type	Produced Water Release	
Did this release result in a fire or is the result of a fire	No	
Did this release result in any injuries	No	
Has this release reached or does it have a reasonable probability of reaching a watercourse	No	
Has this release endangered or does it have a reasonable probability of endangering public health	No	
Has this release substantially damaged or will it substantially damage property or the environment	No	
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No	

Nature and Volume of Release				
Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.				
Crude Oil Released (bbls) Details	Not answered.			
Produced Water Released (bbls) Details	Cause: Equipment Failure Pump Produced Water Released: 15 BBL Recovered: 15 BBL Lost: 0 BBL.			
Is the concentration of chloride in the produced water >10,000 mg/l	Yes			
Condensate Released (bbls) Details	Not answered.			
Natural Gas Vented (Mcf) Details	Not answered.			
Natural Gas Flared (Mcf) Details	Not answered.			
Other Released Details	Not answered.			
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.			

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

<u>District IV</u> 1220 S. St Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 2

Action 348931

Phone:(505) 476-3470 Fax:(505) 476-3462	
QUESTI	ONS (continued)
Operator: XTO ENERGY, INC 6401 Holiday Hill Road Midland, TX 79707	OGRID:
QUESTIONS	
Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No
Reasons why this would be considered a submission for a notification of a major release	Unavailable.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e.	e. gas only) are to be submitted on the C-129 form.
Initial Response The responsible party must undertake the following actions immediately unless they could create a s	afety hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of led or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for releathe OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required asses which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or

Name: Melanie Collins Title: Regulatory Analyst

Date: 12/14/2023

Email: Melanie.Collins@exxonmobil.com

I hereby agree and sign off to the above statement

District III

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 3

Action 348931

QUESTIONS (continued)

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	348931
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Site Characterization		
Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 100 and 500 (ft.)	
What method was used to determine the depth to ground water	NM OSE iWaters Database Search	
Did this release impact groundwater or surface water	No	
What is the minimum distance, between the closest lateral extents of the release ar	nd the following surface areas:	
A continuously flowing watercourse or any other significant watercourse	Between ½ and 1 (mi.)	
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between 1 and 5 (mi.)	
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)	
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Greater than 5 (mi.)	
Any other fresh water well or spring	Greater than 5 (mi.)	
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)	
A wetland	Between ½ and 1 (mi.)	
A subsurface mine	Greater than 5 (mi.)	
An (non-karst) unstable area	Between 1 and 5 (mi.)	
Categorize the risk of this well / site being in a karst geology	Low	
A 100-year floodplain	Between ½ and 1 (mi.)	
Did the release impact areas not on an exploration, development, production, or storage site	No	

Remediation Plan	
Please answer all the questions that apply or are indicated. This information must be pro	ovided to the appropriate district office no later than 90 days after the release discovery date.
Requesting a remediation plan approval with this submission	Yes
Attach a comprehensive report demonstrating the lateral and vertical extents of soil conta	amination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.
Have the lateral and vertical extents of contamination been fully delineated	Yes
Was this release entirely contained within a lined containment area	No
Soil Contamination Sampling: (Provide the highest observable value for each	h, in milligrams per kilograms.)
Chloride (EPA 300.0 or SM4500 Cl B)	5550
TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M)	53
GRO+DRO (EPA SW-846 Method 8015M)	53
BTEX (EPA SW-846 Method 8021B or 8260B)	0
Benzene (EPA SW-846 Method 8021B or 8260B)	0
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes contained which includes the anticipated timelines for beginning and completing the remediation.	ompleted efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC
On what estimated date will the remediation commence	06/01/2024
On what date will (or did) the final sampling or liner inspection occur	08/31/2024
On what date will (or was) the remediation complete(d)	08/31/2024
What is the estimated surface area (in square feet) that will be reclaimed	2918
What is the estimated volume (in cubic yards) that will be reclaimed	85
What is the estimated surface area (in square feet) that will be remediated	2918
What is the estimated volume (in cubic yards) that will be remediated	85
These estimated dates and measurements are recognized to be the best guess or calculate	tion at the time of submission and may (be) change(d) over time as more remediation efforts are completed.
The OCD recognizes that proposed remediation measures may have to be minimally adju	isted in accordance with the physical realities encountered during remediation. If the responsible party has any need to

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 **District II**

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 **District III**

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462 State of New Mexico
Energy, Minerals and Natural Resources
Oil Conservation Division
1220 S. St Francis Dr.
Santa Fe, NM 87505

QUESTIONS, Page 4

Action 348931

QUESTIONS (continued)

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	348931
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Remediation Plan (continued)	
Please answer all the questions that apply or are indicated. This information must be provided to the	appropriate district office no later than 90 days after the release discovery date.
This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants:	
(Select all answers below that apply.)	
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes
Which OCD approved facility will be used for off-site disposal	HALFWAY DISPOSAL AND LANDFILL [fEEM0112334510]
OR which OCD approved well (API) will be used for off-site disposal	Not answered.
OR is the off-site disposal site, to be used, out-of-state	Not answered.
OR is the off-site disposal site, to be used, an NMED facility	Not answered.
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.
(In Situ) Soil Vapor Extraction	Not answered.
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.
OTHER (Non-listed remedial process)	Not answered.

Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

I hereby agree and sign off to the above statement

Name: Alan Romero Title: Regulatory Analyst

Email: alan.romero1@exxonmobil.com

Date: 05/29/2024

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 5

Action 348931

QUESTIONS	(continued)
QUESTIONS:	COHUHUCU <i>i</i>

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	348931
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Deferral Requests Only Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation. Requesting a deferral of the remediation closure due date with the approval of this No submission

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 6

Action 348931

\sim	IECTIONIC	(continued)	
C.JL	1621111112	s (contini lea)	

Operator: XTO ENERGY, INC 6401 Holiday Hill Road	OGRID: 5380 Action Number:
Midland, TX 79707	348931
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)
QUESTIONS	
Sampling Event Information	
Last sampling notification (C-141N) recorded	{Unavailable.}
Remediation Closure Request	
Only answer the questions in this group if seeking remediation closure for this release because all re	emediation steps have been completed.
Requesting a remediation closure approval with this submission	No

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 348931

CONDITIONS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	348931
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

CONDITIONS

Created I	By Condition	Condition Date
scwell	None	6/11/2024