NINTH ANNUAL GROUNDWATER MONITORING REPORT CHESAPEAKE ENERGY CORPORATION INCIDENT # NCS2215955789 STATE M LEASE (AP-72) LEA COUNTY, NEW MEXICO

Prepared for:

Chesapeake Energy Corporation

6100 North Western Avenue Oklahoma City, Oklahoma 73118 (405) 935-3938

Prepared by:

Equus Environmental, LLC

1323 East 71st Street, Suite 200 Tulsa, Oklahoma 74136 (918) 921-5331

May 9, 2023

TABLE OF CONTENTS

LIST (OF TAE	BLES	ii
LIST	OF FIG	URES	ii
LIST	OF APF	PENDICES	ii
1.0	INTRO	DDUCTION	1
2.0	REME	EDIATION	3
	2.1	SVE SYSTEM	3
	2.2	MW-1R LNAPL RECOVERY	5
3.0	QUAF	RTERLY GROUNDWATER MONITORING	6
	3.1	GROUNDWATER MONITORING METHODOLOGYERROR! BOOKMARK	NOT
		DEFINED.	
	3.2	TWENTY-FIFTH QUARTERLY GROUNDWATER SAMPLING RESULTS	7
	3.3	TWENTY-SIXTH QUARTERLY GROUNDWATER SAMPLING RESULTS	7
	3.4	TWENTY-SEVENTH QUARTERLY GROUNDWATER SAMPLING RESULTS	7
	3.5	TWENTY-EIGHTH QUARTERLY GROUNDWATER SAMPLING RESULTS	8
4.0	CONC	CLUSIONS	9
5.0	RECC	DMMENDATIONS	.10

LIST OF TABLES

- 1 Summary of SVE System Field Readings
- 2 Summary of Laboratory Analytical Results for Discharge Air Samples
- 3 Summary of Liquid Level Measurements
- 4 Summary of Laboratory Analytical Results for Chloride in Groundwater Samples
- 5 Summary of Laboratory Analytical Results for BTEX in Groundwater Samples

LIST OF FIGURES

- 1 Site Location and Topographic Features
- 2 Site Base Map
- 3 SVE System VOC Discharge Concentrations Versus Time
- 4 Groundwater Potentiometric Surface, March 7, 2023
- 5 Isopleth of Chloride Concentrations in Groundwater, March 7, 2023
- 6 Chloride Concentration Trend Graphs

LIST OF APPENDICES

(All Appendices on CD in bound copy)

- A Stage 2 Abatement Plan
- B NMOCD Approval of Stage 2 Abatement Plan
- C Laboratory Analytical Reports and Chain-of-Custody Documentation

NINTH ANNUAL GROUNDWATER MONITORING REPORT CHESAPEAKE ENERGY CORPORATION STATE M LEASE (AP-72) LEA COUNTY, NEW MEXICO MAY 9, 2023

1.0 INTRODUCTION

Chesapeake Energy Corporation (Chesapeake) has retained Equus Environmental, LLC (Equus), to perform impacted groundwater monitoring and light non-aqueous phase liquid (LNAPL) hydrocarbon remediation at Chesapeake's former State M Lease site (Site) located in Lea County, New Mexico. The Site is located approximately 8 miles south-southwest of Lovington, New Mexico in the SE-SW-SE of Section 18, Township 17 South, Range 36 East, Lea County, New Mexico (coordinates 32.828061° latitude, -103.391012° longitude). The Site location and topographic features are shown on **Figure 1**. A production tank battery for oil and gas was formerly located at the Site. Chesapeake purchased the Site in 2004, but never operated the tank battery. Chesapeake began abandonment and environmental investigation activities at the Site in 2007.

Initial Site investigation activities were conducted in May 2007. These investigation activities consisted of conducting EM-31 and EM-34 ground conductivity surveys, the collection of soil samples from nine boreholes, and the installation and sampling of seven groundwater monitoring wells. Following the investigation in August 2007, Chesapeake submitted to the New Mexico Oil Conservation Division (NMOCD) a Stage 1 Abatement Plan for the Site. In May 2010, the NMOCD responded to Chesapeake that the agency was not adequately staffed to review the abatement plan in a timely manner and advised Chesapeake that they could proceed with abatement operations at risk. In July 2010, Chesapeake notified the NMOCD of their intent to proceed with the Stage 1 Abatement activities. On March 20, 2012, following implementation of these activities, Chesapeake submitted the Stage 1 Abatement Report for the Site.

On March 27, 2012, Chesapeake submitted to the NMOCD the *Stage 2 Abatement Plan* (Plan) for the Site. A copy of the Plan is provided in **Appendix A**. In this Plan, Chesapeake proposed the following abatement activities at the Site:

 Excavate and remove the near-surface soils at the Site containing concentrations of chloride exceeding 1,000 milligrams per kilogram (mg/kg),

- Excavate and remove the near-surface soils at the Site containing concentrations of TPH exceeding 1,000 mg/kg,
- Install clay liners in areas where chloride and/or TPH concentrations exceed
 1,000 mg/kg at depths greater than five feet below ground level (bgl),
- Install one additional groundwater monitoring well downgradient of the Site,
- Monitor the groundwater at the Site until the concentrations of chloride and benzene are below the New Mexico Water Quality Control Commission standards.

On March 7, 2013, NMOCD notified Chesapeake that the Plan was administratively complete and that Chesapeake should proceed with public notice of the Plan. On March 30, 2013, Chesapeake published a notice of the proposed activities in the Albuquerque Journal, the Hobbs-Daily News Sun and the Lovington Leader. In addition, written notification of the Plan submittal was sent to all surface owners of record within a 1-mile radius of the Site. On June 27, 2013 upon completion of the notification activities, the NMOCD approved the Plan for the Site. A copy of the NMOCD correspondence approving the Plan is included in **Appendix B**.

The soil remediation activities outlined in the Plan were conducted at the Site during the period January 15, 2014 through March 27, 2014. The soil remediation activities were summarized in the document titled **Soil Remediation Summary Report**, submitted to the NMOCD on August 6, 2014.

This *Ninth Annual Groundwater Monitoring Report* (Report) summarizes the groundwater monitoring activities conducted at the Site during the following quarterly sampling events:

- Thirty-Third Event June 21, 2022,
- Thirty-Fourth September 13, 2022,
- Thirty-Fifth Event December 7, 2022,
- Thirty-Sixth Event March 7, 2023.

2.0 REMEDIATION

2.1 SVE SYSTEM

As documented in the *First Annual Groundwater Monitoring Report*, dated May 19, 2015, during the period May 12-14, 2014, a soil vapor extraction (SVE) remediation system (System) was installed and made operational at the Site. The System is comprised of 8 SVE wells connected through a manifold system constructed of two- and three-inch Schedule 80 PVC piping and plumbed to a 10-horsepower 3-phase SVE Regenerative Blower housed within the System Building. The location of the SVE wells and the System Building are shown on attached *Figure*2. Within the System, soil vapor from the SVE wells is drawn through a moisture knock out/separator and a particulate filter prior to reaching the blower. An air-flow meter is installed downstream of the blower in the air-exhaust line and an air sample port is located on the air-exhaust line at a location upstream of its exit from the System Building.

System start-up was conducted on June 6, 2014. Routine checks of the System are conducted to record the blower run times, discharge rate and volatile organic compounds (VOC) concentration of the discharge-air stream. VOC concentrations are measured with a photo-ionization detector (PID) data in the field. These PID data are then entered into to a spreadsheet to calculate both the VOC discharge rate and approximate total pounds of VOCs removed by the System. The approximate total VOC discharges for each quarter are then summed to provide a cumulative VOC discharge total. These data are summarized in **Table 1**. Through March 7, 2023, the field PID data suggest that approximately 9,210 pounds of VOCs have been removed from the subsurface and discharged from the System.

In addition to the collection of field data, discharged-air samples are collected quarterly using laboratory provided Suma canisters and shipped under chain-of-custody control to Eurofins TestAmerica, Pittsburgh, Pennsylvania. Discharged-air samples are then analyzed for VOC compounds and total VOCs as hexane by Method TO-15. The discharged-air analytical data are used to compute a correlation factor for the field PID readings to more accurately calculate the total VOCs discharged.

During the thirty-third quarter, discharge-air sample 20220621 M-1 was collected on June 22, 2022. On this date, the System had been running for a total of 62,966 hours, was operating at 261 ACFM and had a field reading of 23.7 PPM from the discharge air stream. Laboratory analytical results for this discharge-air sample indicated a total VOC as Hexane concentration of 10,000 PPB V/V (10.0 PPM V/V).

During the thirty-fourth quarter, discharge-air sample 202209 M-1 was collected on September 13, 2022. On this date, the System had been running for a total of 64,976 hours, was operating at 233 ACFM and had a field reading of 60 PPM from the discharge air stream. Laboratory analytical results for this discharge-air sample indicated a total VOC as Hexane concentration of 14 PPB V/V (0.014 PPM V/V).

During the thirty-fifth quarter, discharge-air sample 20221207 M-1 was collected on December 7, 2022. On this date, the System had been running for approximately 67,017 hours, was operating at 224 ACFM and had a field reading of 17.2 PPM from the discharge air stream. Laboratory analytical results for this discharge-air sample indicated a total VOC as Hexane concentration of 8,800 PPB V/V (8.8 PPM V/V).

During the thirty-sixth quarter, discharge-air sample 20230307 M-1 was collected on March 7, 2023. On this date, the System had been running for a total of 69,176 hours, was operating at 250 ACFM and had a field reading of 23.7 PPM from the discharge air stream. Laboratory analytical results for this discharge-air sample indicated a total VOC as Hexane concentration of 17,000 PPB V/V (17.0 PPM V/V).

A summary of the laboratory analytical results for the discharged-air samples is presented in **Table 2**, and complete copies of the laboratory analytical reports and chain-of-custody documentation are provided in **Appendix C**.

Field PID instrument readings are typically lower than laboratory analysis for total VOCs. To compensate for the low field PID readings, a correlation factor is calculated based upon the ratio of the laboratory analytical value versus the field PID value. The correlation factor is then used to multiply the field PID readings and calculate the total pounds of VOCs discharged from the System. To accurately reflect the total pounds of VOCs discharged from the System <u>during a given period</u>, **Table 1** also includes the unique correlation factor calculated for each quarterly air-discharge sampling event. This unique correlation factor is then utilized to calculate the total pounds of VOCs discharged from the System for the period in which that particular air-discharge sample was collected. Utilizing the noted correlation factors, approximately 14,793 pounds (7.48 tons) of VOCs have been removed from the subsurface at the Site.

Figure 3 presents a graph of the VOC concentrations observed in the discharge air stream versus time. As can be seen on this figure, the levels of VOC observed in the air discharge stream have decreased dramatically since startup. These data indicate that the System is effective at

removing hydrocarbon vapors from the subsurface. Removal of hydrocarbon vapors coupled with the influx of oxygen drawn into the impacted area by the System enhances biodegradation of the hydrocarbon impacts observed in this area.

2.2 MW-1R LNAPL RECOVERY

As documented in the *First Annual Groundwater Monitoring Report*, dated May 19, 2015, to enhance LNAPL recovery in the MW-1R area, 2-inch diameter monitoring well MW-1 was plugged and replaced with 4-inch diameter monitoring well MW-1R. On June 5, 2014, a QED Environmental Genie LNAPL recovery pump was placed and made operational in monitoring well MW-1R. The Genie LNAPL recovery pump is an air-actuated bladder pump with a floating intake (skimmer), set at a depth that produces the maximum amount of LNAPL recovery per cycle. Air is provided to the Genie LNAPL recovery pump from a compressor located within the System Building.

The observed LNAPL thicknesses in MW-1R during this reporting period ranged from 0.05-feet to 0.30-feet. At this time, LNAPL thicknesses are still outside of the recovery range for the LNAPL recovery pump. To facilitate further LNAPL recovery, Chesapeake has deployed a hydrophobic LNAPL absorption sock within MW-1, which is changed out as necessary.

During the operation of the Genie LNAPL recovery pump, a total of approximately 15 drums (822.5 gallons) of LNAPL have been removed from the subsurface.

3.0 QUARTERLY GROUNDWATER MONITORING

This Report describes the findings from four quarterly groundwater sampling events conducted at the Site from June 21, 2022 through March 7, 2023. As specified in the Plan, chloride is the primary constituent of concern (COC) at the Site until the LNAPL has been adequately eliminated from monitoring well MW-1R. When the LNAPL has been adequately eliminated from monitoring well MW-1R, the groundwater within this well will be monitored for benzene, toluene, ethylbenzene and total xylenes (BTEX). Each of the four BTEX constituents will be considered as separate COCs.

It should be noted that Chesapeake did collect BTEX groundwater samples from monitoring well MW-1R during each of the quarterly monitoring events during this reporting period. As noted in **Section 2.2** above, the apparent LNAPL thicknesses measured in monitoring well MW-1R are on a downward trend, with some measurements presenting as a film.

3.1 DEPTH-TO-GROUNDWATER MEASUREMENTS

Prior to collecting groundwater samples during each quarterly event, Equus gauged all 8 monitoring wells (MW-1R through MW-8) at the Site using an electronic interface probe to determine the depth-to-water (DTW) and LNAPL thickness within each well. The locations of these monitoring wells are shown on **Figure 2**. DTWs were measured from the surveyed top-of-casing (TOC) of each well and converted to elevations relative to mean sea level. These data are presented in **Table 3**. A potentiometric surface map was constructed utilizing groundwater elevation data from the March 7, 2023 monitoring event to illustrate the groundwater flow direction within the shallow groundwater system beneath the Site. This potentiometric surface map is presented on **Figures 4**. As can be seen on **Figure 4**, groundwater flow at the Site is, in general, from the northwest to the southeast.

3.2 GROUNDWATER SAMPLING METHODS

Upon completion of DTW measurement activities, Equus field personnel collected groundwater samples per the Plan. Groundwater samples were collected from monitoring wells MW-4 for chloride and MW-1R for BTEX utilizing EPA approved low-flow purging/sampling methodologies. Field parameters consisting of pH, specific conductivity, temperature, and dissolved oxygen (DO) were measured during field activities utilizing a multi-parameter meter and air-tight flow-through cell. Upon stabilization of the field parameters, the groundwater sample was collected into laboratory prepared containers, labeled as to source and contents, placed on ice for preservation, placed under chain-of-custody control and shipped via overnight courier to the analytical

laboratory (Eurofins, Edison, New Jersey). As per the Plan, groundwater samples collected from these monitoring wells were analyzed for chloride by EPA Method 300.0. A summary of the laboratory analytical results for chloride analyses is presented in **Table 4**, and complete copies of the laboratory analytical reports and chain-of-custody documentation is provided in **Appendix C**.

3.3 GROUNDWATER LABORATORY ANALYTICAL RESULTS

The laboratory analytical results for chloride and BTEX from these sampling events are screened against *the New Mexico Administrative Code (NMAC) 20.6.2, Standards for Groundwater of 10,000 mg/L TDS Concentration or Less*. The applicable cleanup standards presented in *NMAC 20.6.2* consists of the following: chloride (250 mg/L), benzene (5 µg/L), toluene (1,000 µg/L), ethylbenzene (700 µg/L), and total xylenes (620 µg/L), herein referenced to as the Limit(s). According to the remediation goals set in the Plan, each Site monitoring well is required to exhibit eight consecutive monitoring events where chloride is below the Limit. In addition, the same applies for BTEX constituents in monitoring well MW-1R, only. When these remediation goals are met, Chesapeake will cease groundwater sampling activities for all groundwater COCs.

3.4 THIRTY-THIRD QUARTERLY GROUNDWATER SAMPLING RESULTS

The thirty-third groundwater sampling event was conducted at the Site on June 21, 2022. As can be seen in **Table 4**, the groundwater sample collected from monitoring well MW-4 (414 mg/L) exhibited a concentration of chloride that exceeds the Limit of 250 mg/L.

During the thirty-third quarterly groundwater sampling event, LNAPL was observed in monitoring well MW-1R at a thickness of 0.05 feet.

3.5 THIRTY-FOURTH GROUNDWATER SAMPLING RESULTS

The thirty-fourth quarterly groundwater sampling event was conducted at the Site from September 13, 2022. As can be seen in **Table 4**, the groundwater sample collected from monitoring well MW-4 (412 mg/L) exhibited a concentration of chloride that exceeds the Limit of 250 mg/L.

During the thirty-fourth quarterly groundwater sampling event, LNAPL was observed in monitoring well MW-1R at a thickness of 0.30 feet.

3.6 THIRTY-FIFTH QUARTERLY GROUNDWATER SAMPLING RESULTS

The thirty-fifth quarterly groundwater sampling event was conducted at the Site on December 7, 2022. As can be seen in **Table 4**, the groundwater sample collected from monitoring well MW-4 (398 mg/L) exhibited a concentration of chloride that exceeds the Limit of 250 mg/L.

During the thirty-fifth quarterly groundwater sampling event, LNAPL was observed in monitoring well MW-1R at a thickness of 0.14 feet.

3.7 THIRTY-SIXTH QUARTERLY GROUNDWATER SAMPLING RESULTS

The thirty-sixth quarterly groundwater sampling event was conducted at the Site on March 2, 2021. As can be seen in **Table 4**, the groundwater sample collected from monitoring well MW-4 (376 mg/L) exhibited a chloride concentration that exceeds the Limit of 250 mg/L.

During the thirty-sixth quarterly groundwater sampling event, LNAPL was observed in monitoring well MW-1R at a thickness of 0.08 feet.

Figure 5 presents an isopleth map depicting chloride concentrations in groundwater at the Site. The data used to prepare this isopleth map includes the most recent chloride concentration detected in monitoring well MW-4 (March 7, 2023), and chloride concentrations from the last reported sampling date for each of the remaining site monitoring wells. As can be seen in **Figure 5**, a relatively small footprint of chloride impacted groundwater remains at concentrations greater than 250 mg/L cleanup level.

Figure 6 presents chloride concentration trend graphs for each of the monitoring wells sampled at the Site. A review of this figure and the decreasing indicates that the soil remediation activities conducted in the first quarter of 2014 have removed the continuing source of chloride impacts to the groundwater at the Site. Source removal has facilitated the physical natural attenuation mechanisms of dispersion and dilution on remnant chloride concentrations present in Site groundwater.

4.0 CONCLUSIONS

Based upon the data presented herein, the following conclusions are presented:

- Groundwater beneath the Site is encountered at depths ranging from approximately 47 to 49 feet from the surveyed top-of-casing of the Site monitoring wells.
- The direction of groundwater flow at the Site is, in general, from the northwest to the southeast.
- Monitoring well MW-4 is the only remaining well exhibiting concentrations of chloride greater than the Limit of 250 mg/L. During this latest reporting period, chloride concentrations in monitoring well MW-4 ranged from 376 mg/L to 414 mg/L.
- The SVE System is operating as designed and has removed approximately 14,793 pounds of VOCs since start-up on June 6, 2014.
- During the reporting period, a measurable quantity of LNAPL was not recovered from monitoring well MW-1R. The lack of recovery is attributed to the decreasing LNAPL thicknesses observed within MW-1R (0.05-feet to 0.30-feet) during the reporting period. LNAPL thicknesses this thin are outside the effective operating capabilities of the skimmer-pump technology deployed within monitoring well MW-1R.

5.0 RECOMMENDATIONS

Based upon a review of the data presented within this report, the following recommendations have been developed:

- Operation of the LNAPL skimmer-pump within monitoring well MW-1R has been stopped
 as the LNAPL thickness observed within this well is too thin to be recovered utilizing this
 technology. A hydrophobic LNAPL absorbent sock will be deployed within monitoring well
 MW-1R to continue LNAPL removal.
- As specified in the Plan, LNAPL recovery within monitoring well MW-1R should be continued until the LNAPL observed within this well has been adequately eliminated.
- As specified in the Plan, when the LNAPL has been adequately eliminated from monitoring
 well MW-1R, the groundwater within this well should be monitored for BTEX until the levels
 of these constituents fall below the Limits of 0.01 mg/L, 0.75 mg/L, 0.75 mg/L and 0.62
 mg/L, respectively, for eight consecutive quarters.
- Concentrations of chloride in monitoring well MW-8 have exhibited levels below the New Mexico Water Quality Control Commission standard of 250 mg/L for eleven consecutive events. Based on this milestone and the NMOCD-approved Stage 2 Abatement Plan, chloride monitoring will no longer be conducted from monitoring well MW-8.
- The groundwater within monitoring well MW-4 should continue to be monitored on a
 quarterly basis for chloride until eight consecutive quarterly sampling events result in
 chloride levels less than the New Mexico Water Quality Control Commission standards.
 The next groundwater monitoring event at the Site is scheduled to be conducted in
 June 2022.

TABLES

		Run	Operating	Hours	Discharge	Readings		VOC Disch	narge		Calculated
Date	Time	Time	since					lbs since last	Tot	tal	Correlation
		Reading	last reading	Total	PPM	CFM	lbs/Hr	Reading	lbs	Tons	Factor
06/07/14	8:00	4131.73	19.73	20	596	519	2.281	44.99	44.99	0.02	
06/08/14	7:10	4154.69	22.96	43	398	483	1.416	32.50	77.50	0.04	
06/08/14	9:15	4156.94	2.25	45	5000	489	18.021	40.55	118.05	0.06	
06/12/14	12:40	4256.45	99.51	144	1817	120	1.607	159.92	277.96	0.14	
06/12/14	12:43	4259.65	3.20	148	1561	117	1.346		282.27	0.14	
06/13/14	7:15	4274.90	18.45	163	1804	122	1.622	29.93	307.89	0.15	
06/13/14	7:17	4276.27	1.37	164	3390	121	3.023		312.03	0.16	
06/13/14	7:18	4277.08	0.81	165	2301	120	2.035	1.65	313.68	0.16	
06/19/14	12:05	4422.02	144.94	310	1153	120	1.020		461.49	0.23	
06/19/14	13:30	4423.74	1.72	312	1117	107	0.881	1.52	463.00	0.23	
06/19/14	16:00	4426.00	2.26	314	1448	121	1.291	2.92	465.92	0.23	
06/24/14	12:05	4543.27	117.27	431	1440	120	1.274		615.28	0.31	0.98
06/26/14	12:40	4591.01	165.01	479	1970	127	1.844		919.56	0.46	
06/26/14	12:42	4593.20	2.19	481	1968	120	1.741	3.81	923.37	0.46	
07/03/14	9:35	4755.92	162.72	644	1650	126	1.532	249.34	1172.71	0.59	
07/03/14	9:37	4757.95	2.03	646	1318	126	1.224		1175.20	0.59	
07/09/14	11:40	4901.77	143.82	790	875	126	0.812		1292.00	0.65	
07/09/14	11:42	4903.69	1.92	792	795	124	0.727	1.40	1293.39	0.65	
07/17/14	12:33	5094.48	190.79	982	790	124	0.722	137.75	1431.15	0.72	
07/17/14	12:34	5095.13	0.65	983	790	127	0.722	0.48	1431.63	0.72	
07/17/14	12:36	5097.75	2.62	986	790	127	0.739	1.94	1433.56	0.72	
08/01/14	11:00	5452.10	354.35	1,340	1078	139	1.104		1824.91	0.72	
08/01/14	11:42	5454.03	1.93	1,342	938	150	1.037	2.00	1826.91	0.91	
08/01/14	11:42	5456.32	2.29	1,344	2314	14	0.239	0.55	1827.46	0.91	
10/10/14	13:00	7118.38	1662.06	3,006	130	51	0.239	81.70	1909.16	0.91	
10/10/14	13:02	7110.38	1.77	3,008	216	58	0.043	0.16	1909.10	0.95	1.86
10/10/14	13:00	7622.85	502.70	3,511	161	48	0.053	28.63	1909.32	0.93	1.00
10/31/14											
	13:04	7624.49 8607.53	1.64 983.04	3,512	78 352	121	0.031	0.05 334.10	1938.00 2272.11	0.97	
12/11/14	13:50			4,496		131				1.14	
01/15/15	10:11	9441.32	833.79	5,329	47	131	0.045	37.60	2309.70	1.15	
01/15/15	10:12	9442.31	0.99	5,330	173	152	0.194		2309.89	1.15	
01/15/15	10:15	9445.26	2.95	5,333	388	136	0.389	1.15	2311.04	1.16	
01/29/15	11:50	9778.04	332.78	5,666	240	54	0.095		2342.53	1.17	0.21
01/29/15	11:52	9780.13	2.09	5,668	239	50	0.088		2342.72	1.17	
02/26/15	11:00	10448.98	668.85	6,337	72	137	0.073	48.63	2391.35	1.20	
02/26/15	11:02	10450.10	1.12	6,338	178	155	0.204		2391.57	1.20	
03/12/15	10:15	10780.66		6,669	483	155	0.552		2573.97	1.29	
04/28/15	8:30	11901.34	1120.68	7,789	126	114	0.106		2692.84	1.35	
04/28/15	8:36	11907.42	6.08	7,795	132	126	0.123	0.75	2693.58	1.35	
05/14/15	9:05	12285.12	377.70	8,173	96	55	0.039	14.68	2708.26	1.35	1.10
05/14/15	9:10	12290.05	4.93	8,178	105	58	0.045	0.22	2708.48	1.35	
05/28/15	11:30	12623.70	333.65	8,512	6	150	0.006		2710.55	1.36	
06/11/15	10:39	12650.70	27.00	8,539	318	172	0.403	10.88	2721.43	1.36	
07/02/15	11:00	13154.04	503.34	9,042	85	112	0.070		2756.75	1.38	0.76
09/03/15	8:00	14662.17	1508.13	10,550	249	104	0.191	287.85	3044.60	1.52	
12/10/15	13:00	17015.28	2353.11	12,903	162	95	0.113	266.92	3311.52	1.66	0.86

Date 03/10/16	Time	Time						Calculated			
03/10/16		THILE	since					lbs since last	Tot	:al	Correlation
03/10/16		Reading	last reading	Total	PPM	CFM	lbs/Hr	Reading	lbs	Tons	Factor
	12:00	17899.58	884.30	13,788	209	105	0.162	143.03	3454.55	1.73	1.78
06/29/16	8:00	20558.59	2659.01	16,447	156	101	0.116	309.58	3764.13	1.88	3.77
07/27/16	12:30	21232.43	673.84	17,120	126	103	0.095	64.20	3828.33	1.91	
08/25/16	11:00	21927.96	695.53	17,816	115	270	0.229	159.45	3987.78	1.99	1.55
09/22/16	10:20	22596.81	668.85	18,485	169	220	0.274	183.07	4170.85	2.09	
12/08/16	9:30	24443.73	1846.92	20,332	109	220	0.177	327.03	4497.88	2.25	6.59
01/10/17	12:23	24758.20	314.47	20,646	173	233	0.297	93.37	4591.25	2.30	
01/25/17	10:56	25115.43	357.23	21,003	206	179	0.271	96.95	4688.20	2.34	3.06
02/22/17	10:35	25786.27	670.84	21,674	248	214	0.391	262.30	4950.50	2.48	3.00
03/09/17	11:04	26146.82	360.55	22,035	321	209	0.495	178.51	5129.01	2.56	
04/05/17	11:55	26792.33	645.51	22,680	454	113	0.378	244.08	5373.09	2.69	
05/16/17	7:00	26967.77	175.44	22,856	61	198	0.089	15.69	5388.79	2.69	5.78
06/07/17	13:00	27495.83	528.06	23,384	54	221	0.087	46.02	5434.80	2.72	
09/07/17	11:36	29698.50	2202.67	25,587	62	200	0.091	201.31	5636.11	2.82	
09/22/17	11:30	30057.43	358.93	25,945	56	211	0.087	31.26	5667.37	2.83	
10/04/17	10:15	30344.40	286.97	26,232	57	198	0.083	23.87	5691.24	2.85	0.81
11/02/17	13:00	31042.78	698.38	26,931	58	185	0.079	55.23	5746.48	2.87	0.02
12/01/17	12:30	31739.31	696.53	27,627	59	192	0.083	58.16	5804.63	2.90	
12/06/17	12:40	31859.62	120.31	27,748	6	270	0.011	1.36	5806.00	2.90	
12/18/17	15:00	32149.36	289.74	28,037	60	208	0.092	26.65	5832.65	2.92	
01/09/18	10:00	32672.25	522.89	28,560	52	189	0.072	37.88	5870.52	2.94	
01/26/18	10:15	33080.48	408.23	28,968	48	172	0.061	24.84	5895.36	2.95	
02/09/18	13:10	33416.85	336.37	29,305	32	220	0.052	17.45	5912.82	2.96	0.19
02/23/18	11:15	33753.60	336.75	29,642	34	186	0.047	15.70	5928.51	2.96	
03/07/18	10:55	34040.75	287.15	29,929	52	227	0.087	24.98	5953.50	2.98	
03/16/18	13:03	34251.67	210.92	30,140	48	195	0.069	14.55	5968.05	2.98	
04/13/18	9:15	34970.90	719.23	30,859	46	200	0.068	48.77	6016.82	3.01	
04/30/18	13:16	35332.87	361.97	31,221	46	200	0.068	24.54	6041.36	3.02	
05/15/18	13:34	35692.17	359.30	31,580	48	200	0.071	25.42	6066.78	3.03	0.65
05/29/18	14:20	36028.04	335.87	31,916	48	200	0.071	23.77	6090.55	3.05	0.65
06/04/18	16:30	36169.50	141.46	32,058	71	200	0.105	14.81	6105.35	3.05	
06/20/18 07/03/18	14:30 10:30	36556.30	386.80 308.83	32,444	48 56	200 520	0.071	27.37 66.28	6132.72 6199.01	3.07	
07/03/18	10:30	36865.13 37249.27		32,753	46	486	0.215				
08/09/18	10:40	37249.27	384.14 505.70	33,137 33,643	58	386	0.165	63.30 83.45	6262.30 6345.75	3.13	
08/09/18	12.30	37734.37	303.70	33,043	36	300	0.105	03.43	0343.73	3.17	2.13
09/00/18	12:00	38730.31	975.34	34,618	46	405	0.137	133.93	6479.67	3.24	
10/04/18	15:30	39093.45	363.14	34,981	73	403	0.137	82.47	6562.14	3.24	
10/04/18	13:00	39428.14	334.69	35,316	42	261	0.227	27.04	6589.19	3.29	
10/31/18	13:40	39716.90	288.76	35,605	52	317	0.081	35.08	6624.27	3.23	
11/16/18	8:00	39983.80	266.90	35,872	68	156	0.121	20.87	6645.14	3.32	1.19
11/16/18	9:54	39985.70	1.90	35,872	77	264	0.149	0.28	6645.42	3.32	1.13
12/11/18	14:20	40585.95	600.25	36,474	90	150	0.149	59.53	6704.95	3.35	
1//11/10	13:40	40365.57	379.62	36,854	72	310	0.099	62.45	6767.40	3.38	

		Run	Operating	Hours	Discharge Readings			VOC Discharge			Calculated
Date	Time	Time	since					lbs since last	Tot	al	Correlation
		Reading	last reading	Total	PPM	CFM	lbs/Hr	Reading	lbs	Tons	Factor
01/24/19	14:58	41636.05	670.48	37,524	63	275	0.128	85.62	6853.01	3.43	
02/05/19	12:02	41919.95	283.90	37,808	48	251	0.088	25.08	6878.09	3.44	
02/21/19	12:00	42303.95	384.00	38,192	26	218	0.042	16.10	6894.20	3.45	
03/07/19	7:00	42632.85	328.90	38,521	80	208	0.122	40.29	6934.48	3.47	0.97
03/22/19	11:09	42986.51	353.66	38,875	47	177	0.062	21.78	6956.26	3.48	
04/03/19	15:00	43277.65	291.14	39,166	58	440	0.186	54.29	7010.55	3.51	
04/18/19	12:00	43634.32	356.67	39,522	105	450	0.348	124.21	7134.76	3.57	
05/17/19	13:30	44330.99	696.67	40,219	39	365	0.104	72.34	7207.11	3.60	
06/12/19	17:00	44952.75	621.76	40,841	6	170	0.008		7211.78	3.61	
06/25/19	11:00	45283.69	330.94	41,172	23	445	0.075		7236.75	3.62	
07/09/19	13:30	45573.87	290.18	41,462	27	360	0.072		7257.53	3.63	
07/22/19	14:00	45906.56	332.69	41,795	27	425	0.083		7285.15	3.64	0.87
08/05/19	11:30	46239.45	332.89	42,127	37	462	0.126		7327.09	3.66	
08/19/19	11:00	46575.01	335.56	42,463	23	533	0.090		7357.41	3.68	
09/03/19	15:15	46937.77	362.76	42,826	31	455	0.104		7395.12	3.70	
09/05/19	7:30	46980.41	42.64	42,868	79	227	0.133		7400.77	3.70	
09/16/19	11:30	47242.95	262.54	43,131	21	372	0.058		7415.89	3.71	
09/30/19	11:00	47576.43	333.48	43,464	24	355	0.063		7436.83	3.72	
10/16/19	12:00	47958.94	382.51	43,847	22	280	0.045		7454.20	3.73	
10/28/19	11:45	48246.61	287.67	44,135	16	326	0.038		7465.26	3.73	
11/11/19	11:00	48581.38	334.77	44,469	35	488	0.127		7507.82	3.75	
11/11/19	12:10	48582.46	1.08	44,470	27	188	0.037		7507.86	3.75	0.88
11/26/19	11:20	48916.78	334.32	44,805	16	284	0.033		7518.82	3.76	
11/26/19	11:50	48917.34	0.56	44,805	26	472	0.089		7518.87	3.76	
12/11/19	10:30	49294.17	376.83	45,182	30	214	0.047		7536.65	3.77	
12/22/19	11:00	49558.50	264.33	45,447	16	462	0.054		7551.05	3.78	
12/30/19	14:00	49631.20	72.70	45,519	30	462	0.102		7558.48	3.78	
01/12/20	13:00	49682.50	51.30	45,571	19	282	0.039		7560.49	3.78	
02/10/20	11:00	49806.20	123.70	45,694	19	145	0.021		7563.04	3.78	
03/05/20	12:40	50000.00	193.80	45,888	38	197	0.055		7573.71	3.79	0.69
03/09/20	12:10	50070.44	70.44	45,958	23	250	0.041		7576.62	3.79	0.03
03/23/20	11:45	50083.25	12.81	45,971	25	323	0.060		7577.39	3.79	
04/06/20	10:30	50139.34	56.09	46,027	26	316	0.060		7580.73	3.79	
04/20/20	10:30	50225.20	85.86	46,113	19	408	0.056		7585.57	3.79	
05/05/20	11:00	50540.55	315.35	46,429	61	311	0.030		7629.74	3.79	1.06
05/03/20	12:30	50840.55	300.00	46,729	36	506	0.140		7669.46	3.83	1.00
06/06/20	10:10	51279.56	439.01	47,168	47	340	0.132		7721.16	3.86	
06/20/20	13:20	51616.41	336.85	47,504	34	322	0.118		7748.35	3.87	
07/06/20	10:44	51998.22	381.81	47,886	0.5	425	0.081		7748.94	3.87	
07/06/20	11:10	52309.12	310.90	48,197	29	470	0.002		7779.75	3.89	
08/09/20	17:30	52819.74	510.62	48,708	28	470	0.099		7824.20	3.91	0.51
08/09/20	18:30	52819.74	660.26	49,368	25	428	0.087		7874.40	3.91	
09/14/20	13:20	53703.31	223.31	49,591	47	410	0.076		7906.25	3.94	
11/15/20 12/11/20	13:00 8:27	54664.23 55250.13	960.92 585.90	50,552 51,138	38 67	418 380	0.116 0.187		8017.86 8127.48	4.01 4.06	1.36

		Run	Operating	Hours	Discharge	Readings		VOC Disc	harge		Calculated
Date	Time	Time	since					lbs since last	To	tal	Correlation
		Reading	last reading	Total	PPM	CFM	lbs/Hr	Reading	lbs	Tons	Factor
02/28/21	10:00	56876.10	1625.97	52,764	37	410	0.112	181.80	8309.28	4.15	0.36
03/02/21	14:05	56926.31	50.21	52,814	6.4	355	0.017	0.84	8310.12	4.16	0.50
04/21/21	14:11	58101.61	1175.30	53,990	2.9	391	0.008	9.82	8319.94	4.16	
05/13/21	13:42	58654.06	552.45	54,542	3.2	490	0.012	6.38	8326.32	4.16	0.07
06/08/21	12:30	59275.70	621.64	55,164	31.0	460	0.105	65.34	8391.66	4.20	
09/09/21	12:50	60240.17	964.47	56,128	91.7	422	0.285	275.08	8666.74	4.33	1.53
09/24/21	12:30	60600.84	360.67	56,489	28.4	415	0.087	31.33	8698.07	4.35	1.55
10/24/21	14:20	61323.92	723.08	57,212	23.7	312	0.055	39.41	8737.48	4.37	
11/19/21	14:11	61946.79	622.87	57,835	26.1	402	0.077	48.17	8785.65	4.39	0.27
12/07/21	12:30	62377.93	431.14	58,266	6.0	350	0.015	6.67	8792.32	4.40	
01/23/22	10:49	63503.18	1125.25	59,391	15.4	295	0.033	37.68	8830.00	4.42	
02/16/22	11:30	64080.45	577.27	59,968	17.2	396	0.050	28.98	8858.98	4.43	1.38
03/09/22	12:01	64561.31	480.86	60,449	16.7	383	0.047	22.67	8881.65	4.44	1.50
03/27/22	9:05	65012.44	451.13	60,900	17.4	372	0.048	21.52	8903.17	4.45	
04/24/22	11:59	65684.16	671.72	61,572	14.1	317	0.033	22.13	8925.30	4.46	
05/23/22	7:45	66388.40	704.24	62,276	17.1	205	0.026	18.20	8943.50	4.47	0.42
06/21/22	12:15	67077.58	689.18	62,966	23.7	261	0.046	31.42	8974.92	4.49	
07/28/22	7:45	67970.01	892.43	63,858	16.5	217	0.026	23.55	8998.47	4.50	
08/28/22	9:11	68705.43	735.42	64,593	18.3	248	0.033	24.60	9023.07	4.51	0.0002
09/13/22	9:26	69088.00	382.57	64,976	60.0	233	0.103	39.42	9062.49	4.53	
09/15/22	8:23	69135.64	47.64	65,024	14.2	241	0.025	1.20	9063.69	4.53	
10/29/22	11:02	70194.13	1058.49	66,082	19.2	240	0.034	35.95	9099.64	4.55	0.51
11/27/22	11:11	70889.70	695.57	66,778	18.2	265	0.036		9124.37	4.56	0.51
12/07/22	11:40	71129.09	239.39	67,017	17.2	224	0.028	6.80	9131.16	4.57	
01/29/23	11:00	72398.93	1509.23	68,287	16.5	255	0.031	46.80	9177.97	4.59	0.72
03/07/23	11:15	73288.13	889.20	69,176	23.7	250	0.044	38.83	9216.80	4.61	0.72
							Correc	ted Total:	14,793.01	7.48	

- 1. Color shading indicates air sampling period with a unique correlation factor.
- 2. During the June 24 & July 17, 2014 site visit the field readings were not recorded. The italicized values presented above for these dates are conservative estimated values based upon last known readings.

Table 2 : Summary of Laboratory Analytical Results for Discharge Air Samples
Chesapeake Energy Corporation, State M Lease (AP-72)
Lea County, New Mexico

		SVE	Canister #34000823 Serial	CANISTER	Canister #8408 2015-06-11 Air	Canister #5451 Batch #320-	#34000512 BATCH ID #320-	STATE M-1	20160629 M	20160922 M	20161208 M	20170309 M	20170607M	20170907 M	20171206 -M-	20180307-M-	20180604-M-	20180906-M-
	Sample ID:		C8528 2014-12-11	#C8522	Sample	14155 9-3-15	15930	LEASE	SVE	SVE	SVE	SVE	SVE	SVE	SVE	SVE	SVE	SVE
Parameters	Sample Date:	1-Aug-14	11-Dec-14	12-Mar-15	11-Jun-15	3-Sep-15	10-Dec-15	10-Mar-16	29-Jun-16	22-Sep-16	8-Dec-16	9-Mar-17	7-Jun-17	7-Sep-17	6-Dec-17	7-Mar-18	4-Jun-18	6-Sep-18
Volatile Organic Compounds by 1	ΓΟ-15																	
Acetone	ppb v/v	<2000	<615	<965	<860	<615	<370	<915	<280	<175	<106	<203	<76.0	<116	<20.0	5.67	<78.0	<124
Benzene	ppb v/v	8,820	2,960	533	3,630	312	194	1,070	2,600	853	373	550	180	143	1.77	24.5	87.9	112
Benzyl chloride	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8
Bromodichloromethane	ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	103.5	<6.33	<12.2	<4.56	<6.93	<1.20	<0.300	<4.68	<7.43
Bromoform	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91
Bromomethane	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8
2-Butanone (MEK)	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4	<12.2	178	<3.20	<0.800	<12.5	<19.8
Carbon disulfide	ppb v/v	1,800	272	<154	<138	<98.4	<59.2	<146	177	<27.9	<16.9	<32.4	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8
Carbon tetrachloride	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8
Chlorobenzene	ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	<10.5	<6.33	<12.2	<4.56	<6.93	<1.20	<0.300	<4.68	<7.43
Dibromochloromethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91
Chloroethane	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8
Chloroform	ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	<10.5	<6.33	<12.2	<4.56	<6.93	<1.20	<0.300	<4.68	<7.43
Chloromethane	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8
1,2-Dibromoethane	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8
1,2-Dichlorobenzene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91
1,3-Dichlorobenzene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91
1,4-Dichlorobenzene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91
Dichlorodifluoromethane	ppb v/v	1,980	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91
1,1-Dichloroethane	ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	<10.5	<6.33	<12.2	<4.56	<6.93	<1.20	<0.300	<4.68	<7.43
1,2-Dichloroethane	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4	<12.2	<18.5	<3.20	0.881	<12.5	<19.8
1,1-Dichloroethene	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8
cis-1,2-Dichloroethene	ppb v/v	<160	<49.2	84.5	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91
trans-1,2-Dichloroethene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91
1,2-Dichloropropane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91
cis-1,3-Dichloropropene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91
trans-1,3-Dichloropropene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91
Ethylbenzene	ppb v/v	13,500	3,830	799	2,890	731	723	446	2,530	1,390	531	908	229	219	4.75	25.4	250	334
4-Ethyltoluene	ppb v/v	974	533	164	299	256	186	<73.2	660	497	135	263	58.5	45.1	2.38	3.74	42.7	89.2
Hexachlorobutadiene	ppb v/v	<800	<246	<386	<344	<246	<148	<366	<112	<69.8	<42.2	<81.0	<30.4	<46.2	<8.00	<2.00	<31.2	<49.5
2-Hexanone	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400	<4.68	<9.91
Methylene Chloride	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	0.540	<6.24	<9.91
4-Methyl-2-pentanone	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91
Styrene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91
1,1,2,2-Tetrachloroethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	41.1	<14.0	<8.44	20.0	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91
Tetrachloroethene	ppb v/v	<160	71.9	<77.2	<68.8	<49.2	<29.6	92.9	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91
Toluene	ppb v/v	4,020	1,040	228	1,480	<49.2	<29.6	120	975	380	164	193	68.4	49.2	<1.60	6.92	34.4	44.3
1,2,4-Trichlorobenzene	ppb v/v	<800	<246	<386	<344	<246	<148	<366	<112	<69.8	<42.2	<81.0	<30.4	<46.2	<8.00	<2.00	<31.2	<49.5
1,1,1-Trichloroethane	ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	<10.5	<6.33	<12.2	<4.56	<6.93	<1.20	<0.300	<4.68	<7.43
1,1,2-Trichloroethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<10.5	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91
Trichloroethene		<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91
Trichlorofluoromethane	ppb v/v	<160	<49.2 <49.2	<77.2	<68.8	<49.2 <49.2	<29.6	<73.2 <73.2	<22.4	<14.0	<8.44 <8.44	<16.2	<6.08	<9.24 <9.24	<1.60	<0.400	<6.24 <6.24	<9.91 <9.91
	ppb v/v	<160	<49.2 <49.2															
1,1,2-Trichloro-1,2,2-trifluoroethane	ppb v/v			<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91
1,2,4-Trimethylbenzene	ppb v/v	2,020	648	299	774	<98.4	355	<146	968	740	228	411	85.9	50.3	7.35	9.05	71.3	134
1,3,5-Trimethylbenzene	ppb v/v	821	385	172	353	73.0	247	<73.2	727	541	192	397	53.6	45.5	6.18	5.81	46.2	88.6
Vinyl oblorido	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8
Vinyl chloride	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.8	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91
m,p-Xylene	ppb v/v	12,700	4,680	1,110	3,920	1,140	1,380	609	5,050	2,550	870	1,510	322	330	10.3	48.7	376	501
o-Xylene Total VOC as Hexane (C6-C12)	ppb v/v ppb v/v	4,520 1,060,000	1,190 655,000	286 99,400	1,120 351,000	164 190,000	194 140,000	107 371,000	720 590,000	419 262,000	177 117,000	337 167,000	98.4 54,500	96.4 40,900	2.54 4,630	15.6 9,930	107 46,500	133 76,600

Table 2 : Summary of Laboratory Analytical Results for Discharge Air Samples
Chesapeake Energy Corporation, State M Lease (AP-72)
Lea County, New Mexico

Volatile Organic Compounds by TO Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene	Sample ID: Sample Date:	2018121-M-SVE 11-Dec-18 <178 137 <28.4 <10.7 <14.2 <28.4 <28.4 <28.4 <10.7 <14.2	20190307 M SVE 7-Mar-19 <22.3 40.1 <3.56 <1.34 <1.78 <3.56 5.97 <3.56 <3.56 <1.34	20190905 M SVE 5-Sep-19 <84 140 <8.4 <8.4 <8.4 <84 <34 <34	20200122 M1- SVE 22-Jan-20 <17 3.7 <1.7 <1.7 <1.7 <1.7 <6.7	<pre>20200305 M SVE 5-Mar-20 <78 42 <7.8 <7.8 <7.8 <7.8</pre>	20200606-M-SVE 6-Jun-20 <34 48 <8.4 <8.4 <8.4	20200924M1 SVE 24-Sep-20 <29 18 <2.9 <2.9	20201211 M- 1 11-Dec-20 <110 80 <11	20210302 M-1 2-Mar-21 <7.8 <0.78	20210608 M- 1 8-Jun-21 16 <0.71		20211207M-1 7-Dec-21 8.6 <0.75	20220308 M- 1 8-Mar-22 30 <1.6	20220621 M- 1 21-Jun-22 <74 <7.4	202209M- 1 13-Sep-22 <7.1 <0.71	7-Dec-22	1 7-Mar-23 <32
Volatile Organic Compounds by TO Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene	ppb v/v	<178 137 <28.4 <10.7 <14.2 <28.4 <28.4 <28.4 <28.4 <28.4 <10.7	<22.3 40.1 <3.56 <1.34 <1.78 <3.56 5.97 <3.56 <3.56 <3.56	5-Sep-19 <84 140 <8.4 <8.4 <8.4 <8.4 <84 <34	<17 3.7 <1.7 <1.7 <1.7 <1.7 <1.7	<78 42 <7.8 <7.8 <7.8	<34 48 <8.4 <8.4	<pre><29 18 <2.9</pre>	<110 80	2-Mar-21 <7.8	16	9-Sep-21 92	7-Dec-21	30	<74	<7.1	<7.0	<32
Volatile Organic Compounds by TO Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene	ppb v/v	<178 137 <28.4 <10.7 <14.2 <28.4 <28.4 <28.4 <28.4 <10.7	<22.3 40.1 <3.56 <1.34 <1.78 <3.56 5.97 <3.56 <3.56	<84 140 <8.4 <8.4 <8.4 <84 <34	<17 3.7 <1.7 <1.7 <1.7 <1.7	<78 42 <7.8 <7.8 <7.8	<34 48 <8.4 <8.4	<29 18 <2.9	<110 80	<7.8	16	92	8.6	30	<74	<7.1	<7.0	<32
Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene	ppb v/v	137 <28.4 <10.7 <14.2 <28.4 <28.4 <28.4 <28.4 <10.7	40.1 <3.56 <1.34 <1.78 <3.56 5.97 <3.56 <3.56	140 <8.4 <8.4 <8.4 <84 <34	3.7 <1.7 <1.7 <1.7 <17	42 <7.8 <7.8 <7.8	48 <8.4 <8.4	18 <2.9	80									
Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene	ppb v/v	137 <28.4 <10.7 <14.2 <28.4 <28.4 <28.4 <28.4 <10.7	40.1 <3.56 <1.34 <1.78 <3.56 5.97 <3.56 <3.56	140 <8.4 <8.4 <8.4 <84 <34	3.7 <1.7 <1.7 <1.7 <17	42 <7.8 <7.8 <7.8	48 <8.4 <8.4	18 <2.9	80									
Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene	ppb v/v	137 <28.4 <10.7 <14.2 <28.4 <28.4 <28.4 <28.4 <10.7	40.1 <3.56 <1.34 <1.78 <3.56 5.97 <3.56 <3.56	140 <8.4 <8.4 <8.4 <84 <34	3.7 <1.7 <1.7 <1.7 <17	42 <7.8 <7.8 <7.8	48 <8.4 <8.4	18 <2.9	80									
Benzyl chloride Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene	ppb v/v	<28.4 <10.7 <14.2 <28.4 <28.4 <28.4 <28.4 <10.7	<3.56 <1.34 <1.78 <3.56 5.97 <3.56 <3.56	<8.4 <8.4 <8.4 <84 <34	<1.7 <1.7 <1.7 <17	<7.8 <7.8 <7.8	<8.4 <8.4	<2.9		<u> </u>				\ \1.0	\7.4		1 1 1	<3.2
Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene	ppb v/v	<10.7 <14.2 <28.4 <28.4 <28.4 <28.4 <10.7	<1.34 <1.78 <3.56 5.97 <3.56 <3.56	<8.4 <8.4 <84 <34	<1.7 <1.7 <17	<7.8 <7.8	<8.4			<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	1.1 <0.70	<3.2
Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene	ppb v/v	<14.2 <28.4 <28.4 <28.4 <28.4 <10.7	<1.78 <3.56 5.97 <3.56 <3.56	<8.4 <84 <34	<1.7 <17	<7.8		72.5	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	<0.70	<3.2
Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene	ppb v/v	<28.4 <28.4 <28.4 <28.4 <10.7	<3.56 5.97 <3.56 <3.56	<84 <34	<17		-0.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	<0.70	<3.2
2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene	ppb v/v ppb v/v ppb v/v ppb v/v ppb v/v ppb v/v	<28.4 <28.4 <28.4 <10.7	5.97 <3.56 <3.56	<34	-	170	<34	<29	<110	<7.8	<7.1	<8.0	<7.5	<16	<74	<7.1	<7.0	<32
Carbon disulfide Carbon tetrachloride Chlorobenzene	ppb v/v ppb v/v ppb v/v ppb v/v	<28.4 <28.4 <10.7	<3.56 <3.56		-0.7	<31	<34	<11	<43	<3.1	<2.8	11	<3.0	<6.2	<29	<2.8	<2.8	<13
Carbon tetrachloride Chlorobenzene	ppb v/v ppb v/v ppb v/v	<28.4 <10.7	<3.56	101	<6.7	<31	<34	<11	<43	<3.1	<2.8	11	<3.0	<6.2	<29	<2.8	<2.8	<13
Chlorobenzene	ppb v/v	<10.7		<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	<0.70	<3.2
	ppb v/v		<1.34	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	0.71	<0.70	<3.2
Dibromochloromethane			<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	<0.70	<3.2
Chloroethane	ppb v/v	<28.4	<3.56	<34	<6.7	<31	<34	<11	<43	<3.1	<2.8	<3.2	<3.0	<6.2	<29	<2.8	<2.8	<13
Chloroform	ppb v/v	<10.7	<1.34	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	<0.70	<3.2
Chloromethane	ppb v/v	<28.4	<3.56	<84	<17	<78	<34	<29	<110	<7.8	<7.1	<8.0	<7.5	<16	<74	<7.1	<7.0	<32
1,2-Dibromoethane	ppb v/v	<28.4	<3.56	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	<0.70	<3.2
1,2-Dichlorobenzene	ppb v/v	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	<0.70	<3.2
1.3-Dichlorobenzene	ppb v/v	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	<0.70	<3.2
1,4-Dichlorobenzene	ppb v/v	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	<0.70	<3.2
Dichlorodifluoromethane	ppb v/v	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	<0.70	<3.2
1,1-Dichloroethane	ppb v/v	<10.7	<1.76	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	<0.70	<3.2
1,1-Dichloroethane	ppb v/v	<28.4	<3.56	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	<0.70	<3.2
1,1-Dichloroethene	ppb v/v	<28.4	<3.56	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	<0.70	<3.2
cis-1,2-Dichloroethene	ppb v/v	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	<0.70	<3.2
trans-1,2-Dichloroethene	ppb v/v	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	<0.70	<3.2
1,2-Dichloropropane	ppb v/v	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	<0.70	<3.2
cis-1,3-Dichloropropene	ppb v/v	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	<0.70	<3.2
trans-1,3-Dichloropropene	ppb v/v	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	<0.70	<3.2
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ppb v/v	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	<0.70	<3.2
Ethylbenzene	ppb v/v	363	284	270	33	120	150	56	180	<0.78	<0.71	88	<0.75	5.2	<7.4	<0.71	<0.70	<3.2
4-Ethyltoluene	ppb v/v	76.7	167	180	25	100	130	64	170	0.82	<0.71	140	<0.75	27	31	<0.71	7.9	18
Hexachlorobutadiene	ppb v/v	<71.0	<8.90	<34	<6.7	<31	<34	<11	<43	<3.1	<2.8	<3.2	<3.0	<6.2	<29	<2.8	<2.8	<13
2-Hexanone	ppb v/v	<14.2	<1.78	<34	<6.7	<31	<34	<11	<43	<3.1	<2.8	<3.2	<3.0	<6.2	<29	<2.8	<2.8	<13
Methylene Chloride	ppb v/v	<14.2	<1.78	<84	<17	<78	<34	<29	<110	<7.8	<7.1	<8.0	<7.5	<16	<74	<7.1	<7.0	<32
4-Methyl-2-pentanone	ppb v/v	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	<0.70	<3.2
Styrene	ppb v/v	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	<0.70	<3.2
1,1,2,2-Tetrachloroethane	ppb v/v	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	<0.70	<3.2
Tetrachloroethene	ppb v/v	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	<0.70	<3.2
Toluene	ppb v/v	41.0	38.8	30	3.1	<7.8	11	3.1	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	0.70	<6.5
1,2,4-Trichlorobenzene		<71.0	<8.90	<34	<6.7	<31	<34	<11	<43	<3.1	<2.8	<3.2	<3.0	<6.2	<29	<2.8	<2.8	<13
1,1,1-Trichloroethane	ppb v/v ppb v/v	<10.7	<1.34	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	<0.70	<3.2
1,1,2-Trichloroethane	ppb v/v	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	<0.70	<3.2
Trichloroethene	ppb v/v	<14.2	<1.78	<8.4	<1.7	20	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6	<7.4	<0.71	<0.70	<3.2
		<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78		<0.80	<0.75	<1.6	<7.4	<0.71	<0.70	<3.2
Trichlorofluoromethane 1,1,2-Trichloro-1,2,2-trifluoroethane	ppb v/v	<14.2	<1.78	<8.4 <8.4	<1.7	<7.8 <7.8	<8.4 <8.4	<2.9	<11	<0.78	<0.71 <0.71	<0.80	<0.75	<1.6	<7.4 <7.4	<0.71	<0.70	<3.2
1,1,2-1 richloro-1,2,2-trifluoroethane	ppb v/v	124	83.0	<8.4 75	10	< 7.8 59	60	38	79	<0.78		<0.80 100	<0.75 0.80	9.7		<0.71		
1,3,5-Trimethylbenzene	ppb v/v	102	67.0	69	-			38	79	1.0	<0.71 1.3	110	1.3	14	19 16	<0.71	6.1 6.5	11
	ppb v/v	<28.4	<3.56	<8.4	9.1 <6.7	43 <31	50 <34	<11	<43	<3.1	<2.8	<3.2	<3.0	<6.2	<29	<0.71	6.5 <2.8	<13
Vinyl acetate Vinyl chloride	ppb v/v	<14.2	< 1.78	<8.4 <8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78			<0.75		<7.4		<0.70	
-	ppb v/v	<14.2 544	<1.78 442	<8.4 440	-	210	<8.4 280	110	380	<0.78	<0.71	<0.80 260	<0.75	<1.6	7.9	<2.8		<3.2
m,p-Xylene	ppb v/v		137		66						<0.71			20		<0.71	2.1	5.8
o-Xylene Total VOC as Hexane (C6-C12)	ppb v/v ppb v/v	158 107,000	77,900	120 69,000	55 14,000	50 26,000	63 50,000	25 24,000	91,000	<0.78 2,300	<0.71 2,100	55 140,000	<0.75 1,600	4.0 24,000	<7.4 10,000	<0.71 14	<0.70 8,800	<3.2 17,000

Monitoring	Top of Casing Elevation	Depth to Liquid Measurement	Depth to LNAPL	Depth to Groundwater	LNAPL Thickness	Groundwate Elevation
Well	(AMSL-Feet)	Date	(Feet-TOC)	(Feet-TOC)	(Feet)	(AMSL-Feet)
MW-1R	3888.97	06/03/14	44.57	49.89	5.32	3839.08
	3888.97	09/22/14	44.87	48.91	4.04	3840.06
	3888.97	12/10/14	45.80	46.30	0.50	3842.67
	3888.97	03/11/15	45.12	46.83	1.71	3842.14
	3888.97	06/10/15	45.54	46.31	0.77	3842.66
	3888.97	09/02/15	45.81	47.37	1.56	3841.60
	3888.97	12/09/15	45.22	49.07	3.85	3839.90
	3888.97	03/09/16	45.30	47.18	1.88	3841.79
	3888.97	06/28/16	45.75	47.02	1.27	3841.95
	3888.97	09/21/16	46.10	46.38	0.28	3842.59
	3888.97	12/07/16	46.13	46.88	0.75	3842.09
	3888.97	03/08/17	46.14	46.57	0.43	3842.40
	3888.97	06/06/17	45.82	48.86	3.04	3840.11
	3888.97	09/08/17	46.30	46.63	0.33	3842.34
	3888.97	12/04/17	46.36	46.77	0.41	3842.20
	3888.97	03/05/18	46.47	46.81	0.34	3842.16
	3888.97	06/05/18	46.56	46.93	0.37	3842.04
	3888.97	09/05/18	46.31	48.81	2.50	3840.16
	3888.97	12/11/18	46.34	49.11	2.77	3839.86
	3888.97	03/06/19	46.48	49.20	2.72	3839.77
	3888.97	06/04/19	46.58	48.84	2.26	3840.13
	3888.97	09/04/19	47.88	48.67	0.79	3840.30
	3888.97	12/06/19	47.13	47.43	0.30	3841.54
	3888.97	03/05/20	47.11	47.68	0.57	3841.29
	3888.97	06/06/20	47.21	47.45	0.24	3841.52
	3888.97	09/24/20	47.44	47.60	0.16	3841.37
	3888.97	12/10/20	47.51	47.69	0.18	3841.28
	3888.97	03/02/21	47.48	47.58	0.10	3841.39
	3888.97	06/08/21	47.52	48.30	0.78	3840.67
	3888.97	09/08/21	47.73	48.00	0.27	3840.97
	3888.97	12/07/21	47.87	48.03	0.16	3840.94
	3888.97	03/08/22	47.84	47.98	0.14	3840.99
	3888.97	06/21/22	48.06	48.11	0.05	3840.86
	3888.97	09/13/22	48.23	48.53	0.30	3840.44
	3888.97	12/07/22	48.38	48.52	0.14	3840.45
	3888.97	03/07/23	48.44	48.52	0.08	3840.45
MW-2	3890.51	06/03/14		47.23		3843.28
-	3890.51	09/22/14		46.37		3844.14
	3890.51	12/10/14		45.91		3844.60
	3890.51	03/11/15		46.03		3844.48
	3890.51	06/10/15		46.38		3844.13
	3890.51	09/02/15		46.44		3844.07
	3890.51	12/09/15		46.51		3844.00
	3890.51	03/09/16		46.61		3843.90
	3890.51	06/28/16		46.70		3843.81
	3890.51	09/21/16		46.80		3843.71
	3890.51	12/07/16		46.82		3843.69
	3890.51	03/08/17		46.88		3843.63
	3890.51	06/06/17		46.98		3843.53
	3890.51	09/08/17		47.06		3843.45
	3890.51	12/04/17		47.11		3843.40
	3890.51	03/05/18		47.22		3843.29

	Top of Casing	Depth to Liquid	Depth to	Depth to	LNAPL	Groundwater
Monitoring Well	Elevation (AMSL-Feet)	Measurement Date	LNAPL (Feet-TOC)	Groundwater (Feet-TOC)	Thickness (Feet)	Elevation (AMSL-Feet)
MW-2	3890.51	06/05/18		47.31		3843.20
(con't)	3890.51	09/05/18		47.36		3843.15
(3890.51	12/11/18		47.46		3843.05
	3890.51	03/06/19		47.51		3843.00
	3890.51	06/04/19		47.61		3842.90
	3890.51	09/04/19		47.76		3842.75
	3890.51	12/06/19		47.81		3842.70
	3890.51	03/05/20		47.91		3842.60
	3890.51	06/06/20		49.98		3840.53
	3890.51	09/24/20		48.14		3842.37
	3890.51	12/10/20		48.21		3842.30
	3890.51	03/02/21		48.25		3842.26
	3890.51	06/08/21		48.31		3842.20
	3890.51	09/08/21		48.41		3842.10
	3890.51	12/07/21		48.51		3842.00
	3890.51	03/08/22		48.58		3841.93
	3890.51	06/21/22		48.72		3841.79
	3890.51	09/13/22		48.82		3841.69
	3890.51	12/07/22		48.90		3841.61
	3890.51	03/07/23		49.00		3841.51
MW-3	3889.34	06/03/14		46.35		3842.99
10100-5	3889.34	09/22/14		46.49		3842.85
	3889.34	12/10/14		46.08		3843.26
	3889.34	03/11/15		46.28		3843.06
	3889.34	06/10/15		46.51		3842.83
	3889.34	09/02/15		46.60		3842.74
						
	3889.34	12/09/15		46.68		3842.66 3842.62
	3889.34	03/09/16		46.72		
	3889.34	06/28/16		46.85		3842.49
	3889.34	09/21/16		46.96		3842.38
	3889.34	12/07/16		47.02		3842.32
	3889.34	03/08/17		47.11		3842.23
	3889.34	06/06/17		47.13		3842.21
	3889.34	09/08/17		47.23		3842.11
	3889.34	12/04/17		47.28		3842.06
	3889.34	03/05/18		47.44		3841.90
	3889.34	06/05/18		47.48		3841.86
	3889.34	09/05/18		47.55		3841.79
	3889.34	12/11/18		47.60		3841.74
	3889.34	03/06/19		47.68		3841.66
	3889.34	06/04/19		47.80		3841.54
	3889.34	09/04/19		47.95		3841.39
	3889.34	12/06/19		48.00		3841.34
	3889.34	03/05/20		48.03		3841.31
	3889.34	06/06/20		48.16		3841.18
	3889.34	09/24/20		48.34		3841.00
	3889.34	12/10/20		48.42		3840.92
	3889.34	03/02/21		48.42		3840.92
	3889.34	06/08/21		48.50		3840.84
	3889.34	09/08/21		48.60		3840.74
	3889.34	12/07/21		48.71		3840.63
	3889.34	03/08/22		48.74		3840.60
	3889.34	06/21/22		48.89		3840.45
	3889.34	09/13/22		49.02		3840.32
	3889.34	12/07/22		49.10		3840.24
	3889.34	03/07/23		49.22		3840.12

Monitoring	Top of Casing Elevation	Depth to Liquid Measurement	Depth to LNAPL	Depth to Groundwater	LNAPL Thickness	Groundwate Elevation
Well	(AMSL-Feet)	Date	(Feet-TOC)	(Feet-TOC)	(Feet)	(AMSL-Feet
MW-4	3888.90	06/03/14		46.38		3842.52
	3888.90	09/22/14		46.50		3842.40
	3888.90	12/10/14		46.14		3842.76
	3888.90	03/11/15		46.35		3842.55
	3888.90	06/10/15		46.49		3842.41
	3888.90	09/02/15		46.57		3842.33
	3888.90	12/09/15		46.68		3842.22
	3888.90	03/09/16		46.75		3842.15
	3888.90	06/28/16		46.87		3842.03
	3888.90	09/21/16		46.94		3841.96
	3888.90	12/07/16		47.03		3841.87
	3888.90	03/08/17		47.08		3841.82
	3888.90	06/06/17		47.15		3841.75
	3888.90	09/08/17		47.24		3841.66
	3888.90	12/04/17		47.29		3841.61
	3888.90	03/05/18		47.38		3841.52
	3888.90	06/05/18		47.50		3841.40
	3888.90	09/05/18		47.53		3841.37
	3888.90	12/11/18		47.62		3841.28
	3888.90	03/06/19		47.72		3841.18
	3888.90	06/04/19		47.80		3841.10
	3888.90	09/04/19		47.98		3840.92
	3888.90	12/06/19		48.00		3840.90
	3888.90	03/05/20		48.07		3840.83
	3888.90	06/06/20		48.20		3840.70
	3888.90	09/24/20		48.32		3840.58
	3888.90	12/10/20		48.39		3840.51
	3888.90	03/02/21		48.44		3840.46
	3888.90	06/08/21		48.55		3840.35
	3888.90	09/08/21		48.60		3840.30
	3888.90	12//07/21		48.72		3840.18
	3888.90	03/08/22		48.80		3840.10
	3888.90	06/21/22		48.92		3839.98
	3888.90	09/13/22		49.02		3839.88
	3888.90	12/07/22		49.06		3839.84
	3888.90	03/07/23		49.17		3839.73
MW-5	3890.41	06/03/14		46.56		3843.85
	3890.41	09/22/14		46.70		3843.71
	3890.41	12/10/14		46.29		3844.12
	3890.41	03/11/15		46.44		3843.97
	3890.41	06/10/15		46.69		3843.72
	3890.41	09/02/15		46.79		3843.62
	3890.41	12/09/15		46.85		3843.56
	3890.41	03/09/16		46.90		3843.51
	3890.41	06/28/16		47.08		3843.33
	3890.41	09/21/16		47.13		3843.28
	3890.41	12/07/16		47.14		3843.27
	3890.41	03/08/17		47.14		3843.18
	3890.41	06/06/17		47.32		3843.09
	3890.41	09/08/17		47.40		3843.01
	3890.41	12/04/17		47.40		3843.14
	3890.41	03/05/18		47.54		3843.14

Monitorior	Top of Casing	Depth to Liquid	Depth to	Depth to Groundwater	LNAPL	Groundwate
Monitoring Well	Elevation (AMSL-Feet)	Measurement Date	(Feet-TOC)	(Feet-TOC)	Thickness (Feet)	Elevation (AMSL-Feet
MW-5	3890.41	06/05/18		47.66		3842.75
(con't)	3890.41	09/05/18		47.72		3842.69
()	3890.41	12/11/18		47.80		3842.61
	3890.41	03/06/19		47.85		3842.56
	3890.41	06/04/19		47.98		3842.43
	3890.41	09/04/19		48.15		3842.26
	3890.41	12/06/19		48.17		3842.24
	3890.41	03/05/20		48.23		3842.18
	3890.41	06/06/20		48.33		3842.08
	3890.41	09/24/20		48.51		3841.90
	3890.41	12/10/20		48.60		3841.81
	3890.41	03/02/21		48.60		3841.81
	3890.41	06/08/21		48.66		3841.75
	3890.41	09/08/21		48.76		3841.65
	3890.41	12/07/21		48.90		3841.51
	3890.41	03/08/22		48.90		3841.51
	3890.41	06/21/22		49.09		3841.32
	3890.41	09/13/22		49.19		3841.22
	3890.41	12/07/22		49.28		3841.13
	3890.41	03/07/23		49.38		3841.03
MW-6	3888.25	06/03/14		46.25		3842.00
	3888.25	09/22/14		46.39		3841.86
	3888.25	12/10/14		46.09		3842.16
	3888.25	03/11/15		46.23		3842.02
	3888.25	06/10/15		46.32		3841.93
	3888.25	09/02/15		46.48		3841.77
	3888.25	12/09/15		46.57		3841.68
	3888.25	03/09/16		46.62		3841.63
	3888.25	06/28/16		46.74		3841.51
	3888.25	09/21/16		46.81		3841.44
	3888.25	12/07/16		46.90		3841.35
	3888.25	03/08/17		46.93		3841.32
	3888.25	06/06/17		47.08		3841.17
	3888.25	09/08/17		47.12		3841.13
	3888.25	12/04/17		47.21		3841.04
	3888.25	03/05/18		47.30		3840.95
	3888.25	06/05/18		47.36		3840.89
	3888.25	09/05/18		47.43		3840.82
	3888.25	12/11/18		47.52		3840.73
	3888.25	03/06/19		47.60		3840.65
	3888.25	06/04/19		47.71		3840.54
	3888.25	09/04/19		47.81		3840.44
	3888.25	12/06/19		47.90		3840.35
	3888.25	03/05/20		47.98		3840.27
	3888.25	06/06/20		48.08		3840.17
	3888.25	09/24/20		48.23		3840.02
	3888.25	12/10/20		48.28		3839.97
	3888.25	03/02/21		48.33		3839.92
	3888.25	06/08/21		48.48		3839.77
	3888.25	09/08/21		48.50		3839.75
	3888.25	12/07/21		48.60		3839.65
	3888.25	03/08/22		48.67		3839.58
	3888.25	06/21/22		48.82		3839.43
	3888.25	09/13/22		48.91		3839.34
	3888.25	12/07/22		49.01		3839.24
	3888.25	03/07/23		49.06		3839.19

	Top of Casing	Depth to Liquid	Depth to	Depth to	LNAPL	Groundwate
Monitoring Well	Elevation (AMSL-Feet)	Measurement Date	LNAPL (Feet-TOC)	Groundwater (Feet-TOC)	Thickness (Feet)	Elevation (AMSL-Feet
MW-7	3889.23	06/03/14		45.94		3843.29
	3889.23	09/22/14		46.08		3843.15
	3889.23	12/10/14		45.70		3843.53
	3889.23	03/11/15		45.36		3843.87
	3889.23	06/10/15		46.08		3843.15
	3889.23	09/02/15		46.14		3843.09
	3889.23	12/09/15		46.24		3842.99
	3889.23	03/09/16		46.30		3842.93
	3889.23	06/28/16		46.42		3842.81
	3889.23	09/21/16		46.52		3842.71
	3889.23	12/07/16		46.59		3842.64
	3889.23	03/08/17		46.65		3842.58
	3889.23	06/06/17		46.73		3842.50
	3889.23	09/08/17		46.80		3842.43
	3889.23	12/04/17		46.88		3842.35
	3889.23	03/05/18		46.96		3842.27
	3889.23	06/05/18		47.04		3842.19
	3889.23	09/05/18		47.11		3842.12
	3889.23	12/11/18		47.20		3842.03
	3889.23	03/06/19		47.27		3841.96
	3889.23	06/04/19		47.37		3841.86
	3889.23	09/04/19		47.50		3841.73
	3889.23	12/06/19		47.58		3841.65
	3889.23	03/05/20		47.66		3841.57
	3889.23	06/06/20		47.72		3841.51
	3889.23	09/24/20		47.90		3841.33
	3889.23	12/10/20		47.96		3841.27
	3889.23	03/02/21		48.02		3841.21
	3889.23	06/08/21		48.06		3841.17
	3889.23	09/08/21		48.14		3841.09
	3889.23	12/07/21		48.26		3840.97
	3889.23	03/08/22		48.33		3840.90
	3889.23	06/21/22		48.44		3840.79
	3889.23	09/13/22		48.58		3840.65
	3889.23	12/07/22		48.70		3840.53
	3889.23	03/07/23		48.75		3840.48
MW-8	3887.06	06/03/14		44.94		3842.12
	3887.06	09/22/14		45.11		3841.95
	3887.06	12/10/14		44.79		3842.27
	3887.06	03/11/15		44.94		3842.12
	3887.06	06/10/15		45.22		3841.84
	3887.06	09/02/15		45.21		3841.85
	3887.06	12/09/15		45.29		3841.77
	3887.06	03/09/16		45.35		3841.71
	3887.06	06/28/16		45.56		3841.50
	3887.06	09/21/16		45.67		3841.39
	3887.06	12/07/16		45.64		3841.42
	3887.06	03/08/17		45.68		3841.38
	3887.06	06/06/17		45.78		3841.28
	3887.06	09/08/17		45.82		3841.24
	3887.06	12/04/17		45.91		3841.15
	3887.06	03/05/18		46.03		3841.03

Monitoring Well	Top of Casing Elevation (AMSL-Feet)	Depth to Liquid Measurement Date	Depth to LNAPL (Feet-TOC)	Depth to Groundwater (Feet-TOC)	LNAPL Thickness (Feet)	Groundwater Elevation (AMSL-Feet)
MW-8	3887.06	06/05/18		46.12		3840.94
(con't)	3887.06	09/05/18		46.16		3840.90
	3887.06	12/11/18		46.26		3840.80
	3887.06	03/06/19		46.33		3840.73
	3887.06	06/04/19		46.42		3840.64
	3887.06	09/04/19		46.53		3840.53
	3887.06	12/06/19		46.62		3840.44
	3887.06	03/05/20		46.71		3840.35
	3887.06	06/06/20		46.79		3840.27
	3887.06	09/24/20		46.95		3840.11
	3887.06	12/10/20		47.02		3840.04
	3887.06	03/02/21		47.06		3840.00
	3887.06	06/08/21		47.21		3839.85
	3887.06	09/08/21		47.25		3839.81
	3887.06	12/07/21		47.36		3839.70
	3887.06	03/08/22		47.41		3839.65
	3887.06	06/21/22		47.55		3839.51
	3887.06	09/13/22		47.66		3839.40
	3887.06	12/07/22		47.75		3839.31
	3887.06	03/07/23		47.82		3839.24

- TOC : Measured from top of casing.
 LNAPL : Light non-aqueous phase liquid.
 -- : Denotes not measured.
- 4. AMSL: Denotes above mean sea level (AMSL).

Received by OCD: 6/7/2024 11:12:29 AM

Table 4: Summary of Laboratory Analytical Results for Chloride in Groundwater Samples

Chesapeake Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

		Chloride (mg/L)																
	June 2014	Sept. 2014	Dec. 2014	March 2015	June 2015	Sept. 2015	Dec. 2015	March 2016	June 2016	Sept. 2016	Dec. 2016	March 2017	June 2017	Sept. 2017	Dec. 2017	March 2018	June 2018	Sept. 2018
MW-1R		51.4	116	39.0	24.6	21.6	23.5	34.8	24.9	28.5	44.8	32.0	28.6	29.3	29.0	33.7		
MW-2	17.7	17.4	18.3	16.6	16.8	16.6	15.4 *	13.5	18.9	17.6	18.2	15.0	15.9	15.2	16.2	16.6		
MW-3	59.7	59.7	58.9	57.0	57.1	56.3	50.5 *	49.3	51.5	52.0	55.1	50.0	53.7	49.5	58.1	64.3		
MW-4	586	534	535	543	556	567	546 *	525	527	569	605	500	493	465	492	484	413	387
MW-5	28.6	27.3	27.9	26.1	26.2	25.8	22.4 *	22.4	26.1	26.2	27.8	23.1	24.7	20.4	25.4	25.9		
MW-6	282	263	268	261	253	277	197 *	150	128	128	125	94.4	86.3	79.3	71.8	64.7		
MW-7	42.7	29.6	36.0	39.7	36.2	35.2	28.8 *	27.7	36.0	38.2	39.6	24.2	23.8	24.0	27.7	31.6		
MW-8	409	442	463	485	558	327	499	504	539	490	768	489	531	573	570	587	539	398

- 1. mg/L: milligrams per liter.
- 2. < : Analyte not detected at the laboratory reporting limit.
- 3. All analyses performed by TestAmerica Laboratories in Nashville, Tennessee.
- 4. Cells shaded in blue indicate results that are above the laboratory Reporting Limit (RL).
- 5. Cells with text **bolded** indicate results that exceed the New Mexico Administrative Code (NMAC) 20.6.2.3103, Standards for Groundwater of 10,000 milligrams per liter (mg/L) total dissolved solids (TDS) Concentration or Less: chloride (250.0 mg/L).
- 6. --- : Analysis not performed.
- 7. * : Analysis performed outside of holding time.
- 8. December 2016 results for MW-1R and MW-8 were confirmed by laboratory reanalysis.
- 9. Sample MW-1R was collected in December 2017 under sample ID MW-R1 as shown on the COC and in the field book.
- 10. Beginning with the September 2019 sampling event, Eurofins (Edison, NJ) became the Project Laboratory.

Received by OCD: 6/7/2024 11:12:29 AM Page 28 of 22

Table 4: Summary of Laboratory Analytical Results for Chloride in **Groundwater Samples**

Chesapeake Energy Corporation, State M Lease (AP-72)

Lea County, New Mexico

	Chloride (mg/L)																	
	Dec. 2018	March 2019	June 2019	Sept. 2019	Dec. 2019	March 2020	June 2020	Sept. 2020	Dec. 2020	March 2021	June 2021	Sept. 2021	Dec. 2021	March 2022	June 2022	Sept. 2022	Dec. 2022	March 2023
MW-1R																		
MW-2																		
MW-3																		
MW-4	373	617	392	404	421	443	429	430	475	437	528	438	404	387	414	412	398	376
MW-5																		
MW-6																		
MW-7																		
MW-8	474	308	283	223	198	118	97.4	88.8	73.5	63.9	92.5	65.4	56.2	29.6				

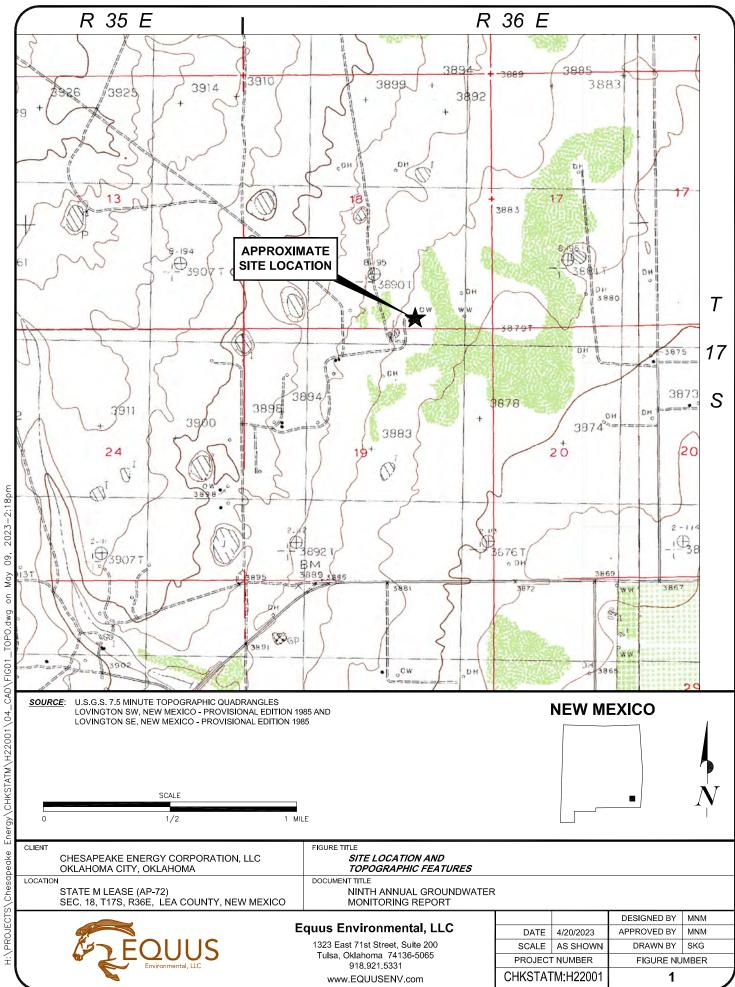
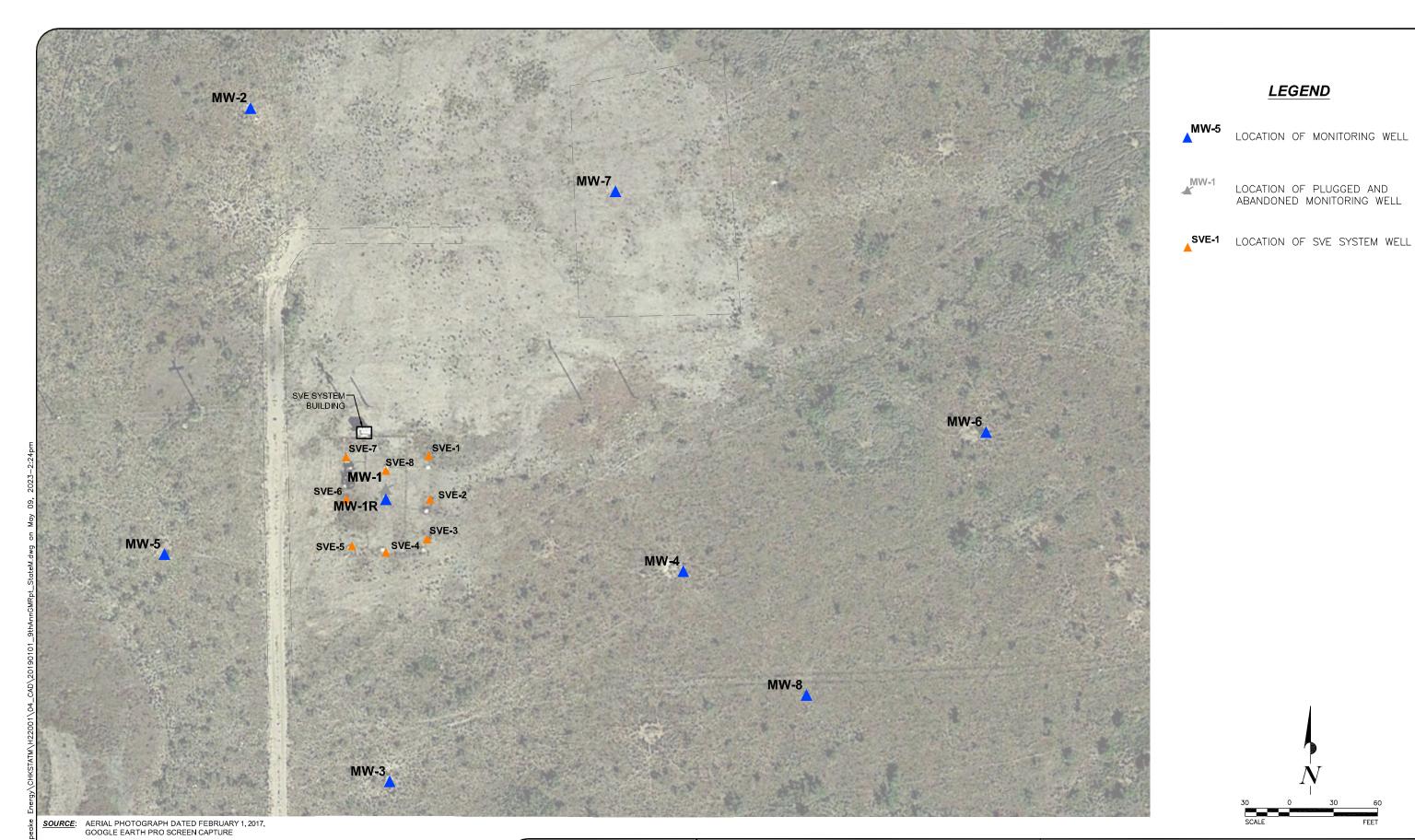

- 1. mg/L: milligrams per liter.
- 2. < : Analyte not detected at the laboratory reporting limit.
- 3. All analyses performed by TestAmerica Laboratories in Nashville, Tennessee.
- 4. Cells shaded in blue indicate results that are above the laboratory reporting limit.
- 5. Cells with text bolded indicate results that exceed the New Mexico Administrative Code (NMAC) 20.6.2.3103, Standards for Groundwater of 10,000 milligrams per liter (mg/L) total dissolved solids (TDS) Concentration or Less: chloride (250.0 mg/L).
- 6. --- : Analysis not performed.
- 7. * : Analysis performed outside of holding time.
- 8. December 2016 results for MW-1R and MW-8 were confirmed by laboratory. reanalysis.
- 9. Sample MW-1R was collected in December 2017 under sample ID MW-R1 as shown on the COC and in the field book.
- 10. Beginning with the September 2019 sampling event, Eurofins TestAmerica (Edison, NJ) became the Project Laboratory.

Table 5: Summary of Laboratory Analytical Results for Groundwater Samples Chesapeake Energy Corporation, State M Lease Lea County, New Mexico

	Cleanup		MW-1R	MW-1R	MW-1R	MW-1R
Parameters	Levels	Sample Date:	21-Jun-22	13-Sep-22	7-Dec-22	7-Mar-23
Volatile Organic Compounds (VOCs)		Units				
Benzene	5	μg/L	3.71	3.80	2.55	1.59
Toluene	1000	μg/L	0.902	0.955	<0.500	<0.500
Ethylbenzene	700	μg/L	215	211	75.4	23.0
Xylenes, Total	620	μg/L	261	235	76.0	18.2

- 1. μg/L : micrograms per liter.
- 2. All analyses performed by Eurofins (formerly TestAmerica Laboratories).
- 3. < : Analyte not detected at the laboratory Reporting Limit (RL).
- ${\it 4. } \ \ {\it Cells shaded in blue indicate results that are above the laboratory Reporting Limit (RL).}$
- 5. Cleanup Criteria obtained from New Mexico Administrative Code (NMAC) 20.6.2.3103, Standards for Groundwater of 10,000 milligrams per liter (mg/L) Concentration or Less: benzene (5 μ g/L), toluene (1000 mg/L), ethylbenzene (700 mg/L), and xylenes (620 mg/L).


FIGURES

LEGEND

LOCATION OF MONITORING WELL

LOCATION OF PLUGGED AND ABANDONED MONITORING WELL

1323 East 71st Street, Suite 200 Tulsa, Oklahoma 74136-5065 918.921.5331

www.EQUUSENV.com

NINTH ANNUAL GROUNDWATER MONITORING REPORT

FIGURE TITLE
SITE BASE MAP

CHESAPEAKE ENERGY CORPORATION				PROJECT NUMBER	FIGURE NUMBER		
OKLAHOMA CITY, OKLAHOMA	DESIGNED BY	MNM			T TOOLOT HOMBER	TIGGILE NOWDER	
LOCATION STATE M LEASE (AP-72)	APPROVED BY	MNM	SCALE	1"= 60'	CHKSTATM:H22001	2	
SEC. 18, T17S, R36E, LEA COUNTY, NEW MEXICO	DRAWN BY	SKG\SMK	DATE	4/20/2023		_	

Page 33 of 228

LEGEND MW-5 LOCATION OF MONITORING WELL AND 3839.19 GROUNDWATER ELEVATION 3/8/2022, FEET AMSL **MW-7** 3840.48 LOCATION OF PLUGGED AND ABANDONED MONITORING WELL 3839.50 GROUNDWATER POTENTIOMETRIC SURFACE SVE SYSTEM— BUILDING **MW-6** 3839.19 MW-MW-1Ř 3840.45 **MW-5** 3841.03 **MW-4** 3839.73 ▲ **MW-8** 3839.24 **MW-3** 3840.12 ▲

www.EQUUSENV.com

OCUMENT TITLE	
NINTH	ANNUAL GROUNDWATER
MONIT	ORING REPORT

FIGURE TITLE

GROUNDWATER POTENTIOMETRIC

SURFACE, MARCH 8, 2022

	CONTACL, MANCHO, 2012							
CHESAPEAKE ENERGY CORPORATION				PROJECT NUMBER	FIGURE NUMBER			
OKLAHOMA CITY, OKLAHOMA	DESIGNED BY	MNM				TIOONE HOMBER		
LOCATION STATE M LEASE (AP-72)	APPROVED BY	MNM	SCALE	1"= 60'	CHKSTATM:H22001	4		
SEC. 18, T17S, R36E, LEA COUNTY, NEW MEXICO	DRAWN BY	SKG\SMK	DATE	4/20/2023		-		

MW-2 16.6

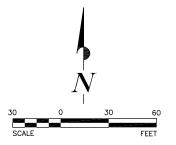
(3/5/2018)

MW-7 31.6 (3/5/2018)

MW-4 376

MW-8 29.6 (3/7/2022)

LEGEND


MW-4 LOCATION OF MONITORING WELL AND CONCENTRATION OF CHLORIDE IN GROUNDWATER 3/8/2022, mg/L

LOCATION OF PLUGGED AND ABANDONED MONITORING WELL

CONTOUR LINE SHOWING EQUAL CONCENTRATIONS OF CHLORIDE IN GROUNDWATER, mg/L. (DASHED WHERE INFERRED)

MW-6 64.7 ▲ (3/5/2018)

Tulsa, Oklahoma 74136-5065 918.921.5331 www.EQUUSENV.com

NINTH ANNUAL GROUNDWATER MONITORING REPORT

ISOPLETH OF CHLORIDE CONCENTRATIONS
IN GROUNDWATER, MARCH 8, 2022

		in encondimination of 2022								
CHESAPEAKE ENERGY CORPORATION				PROJECT NUMBER	FIGURE NUMBER					
OKLAHOMA CITY, OKLAHOMA	DESIGNED BY	MNM								
LOCATION STATE M LEASE (AP-72)	APPROVED BY	MNM	SCALE	1"= 60'	CHKSTATM:H22001	5				
SEC. 18, T17S, R36E, LEA COUNTY, NEW MEXICO	DRAWN BY	SKG\SMK	DATE	4/20/2023						

1323 East 71st Street, Suite 200 Tulsa, Oklahoma 74136-5065 918.921.5331 www.EQUUSENV.com NINTH ANNUAL GROUNDWATER
MONITORING REPORT

FIGURE TITLE

CHLORIDE CONCENTRATION TREND GRAPHS

CHESAPEAKE ENERGY CORPORATION				PROJECT NUMBER	FIGURE NUMBER		
OKLAHOMA CITY, OKLAHOMA	DESIGNED BY	CNA			TROCEST NOMBER	I IGONE NOMBER	
LOCATION STATE M LEASE (AP-72)	APPROVED BY	MNM	SCALE	NTS	CHKSTATM:H22001	6	
SEC. 18, T17S, R36E, LEA COUNTY, NEW MEXICO	DRAWN BY	SKG\SMK	DATE	4/20/2023		_	

APPENDICES

- A Stage 2 Abatement Plan
- B NMOCD Approval of Stage 2 Abatement Plan
- C Laboratory Analytical Reports and Chain-of-Custody Documentation

APPENDIX A STAGE 2 ABATEMENT PLAN

Mr. Glenn Von Gonten
New Mexico Oil Conservation Division
1220 South St. Francis Drive
Santa Fe, New Mexico 87505

ENVIRONMENT

Fax 432 687 5401

www.arcadis-us.com

ARCADIS U.S., Inc.

Suite 300 Midland Texas 79701 Tel 432 687 5400

1004 North Big Spring Street

Subject:

State M-1 AP-072 Stage 2 Abatement Plan

Dear Mr. Von Gonten:

On behalf of Chesapeake Energy Corporation, ARCCADIS U.S. Inc. respectfully submits the enclosed Stage 2 Abatement plan for the State M-1 site (AP-072). A Stage 1 Abatement Plan Report was submitted on March 20, 2012. Your review and approval of this Abatement Plan will be appreciated. The landowner, Darr Angell, is anxious for us to complete soil remediation at this site.

If you have any questions please do not hesitate to contact Bradley Blevins at (575) 391-1462 or via e-mail at bblevins@chkenergy or me at (432) 687-5400, e-mail address shall@aracdis-us.com.

Date:

March 27, 2012

Contact:

Sharon Hall

Phone:

432 687-5400

Email:

shall@aracdis-us.com

Our ref:

MT001088

ARCADIS U.S., Inc.

TX Engineering License # F-533

Sincerely,

ARCADIS U.S., Inc.

Sham E. Hall

Sharon E. Hall

Associate Vice President

Copies

Bradley Blevins- Chesapeake, Hobbs

Imagine the result

g:\aproject\chesapeake\m-1 stage 2 plan\transmitall letter.doc

Imagine the result

Chesapeake Energy Corporation

State M-1 AP-072 Stage 2 Abatement Plan Proposal

Hobbs, New Mexico

March 27, 2012

Sharon Hall Associate Vice President

State M-1 AP-072

Stage 2 Abatement Plan Proposal

Prepared for: Chesapeake Energy Corporation Hobbs, New Mexico

Prepared by: ARCADIS U.S., Inc. 1004 North Big Spring Street Suite 300 Midland Texas 79701 Tel 432 687 5400 Fax 432 687 5401

Our Ref.: MT001088.0001.00001

Date: March 27, 2012

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Table of Contents

1.	INTRO	DUCTIO	ON	1			
2.	SUMM	SUMMARY OF STAGE 1 ABATEMENT ACTIVITIES					
3.	STAGE 2 ABATEMENT PLAN PROPOSAL						
	3.1	Soil Re	emediation	2			
	3.2	Ground	dwater Remediation and Monitoring	3			
		3.2.1	Chlorides	4			
		3.2.2	Hydrocarbons	4			
4.	PUBLIC	C NOTII	FICATION	4			
5.	REMED	OITAI	N WORK SCHEDULE	4			
6.	REFER	ENCES	3	5			

Figures

Figure 1 Soil and Groundwater Analyte Concentrations

Figure 2 Proposed Excavation

Appendices

Appendix A Multi-Med Model Inputs and Outputs

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

1. INTRODUCTION

The subject site is a former tank battery site located east of Buckeye, New Mexico. The site was purchased by Chesapeake Energy Corporation (Chesapeake) in April 2004. Chesapeake did not operate the tank battery or the associated well field and began the process of facility abandonment in 2007.

Seven monitor wells and nine soil borings have been drilled at the site. Elevated chloride concentrations and limited hydrocarbon compounds were detected in soil samples collected from soil borings and monitoring wells. Elevated chlorides were detected in the down gradient monitor wells and light non-aqueous phase liquid (LNAPL) occurs in monitoring well MW-1. LNAPL recovery activities have been piloted at the site and will commence again upon completion of surface reclamation activities.

2. SUMMARY OF STAGE 1 ABATEMENT ACTIVITIES

Initial site investigation activities were conducted in May of 2007 following abandonment of the tank battery. Stage 1 Abatement activities were conducted during the period of May 2007 through September 2011. Stage 1 Abatement activities included drilling and soil sampling of nine boreholes, drilling and sampling of seven monitor wells, EM 31 and EM 34 surveys, conversion of one monitoring well into a recovery well and recovery of phase-separated hydrocarbons from the recovery well.

New Mexico Oil Conservation Division (NMOCD) was notified of impacts to groundwater at the site via e-mail on May 30, 2007. NMOCD notified Chesapeake in a letter dated June 19, 2007 that a Stage 1 Abatement Plan was required for the site in accordance with Rule 19.

The Stage 1 Abatement Plan was submitted to NMOCD on August 22, 2007. The plan summarized site activities taken to date. The plan proposed the drilling and sampling of a minimum of three additional soil borings and installation and sampling of nine groundwater monitoring wells.

BBC contacted NMOCD via email on April 24, 2010 to inquire about the status of the Stage 1 Abatement Plan approval and Chesapeake's desire to conduct the proposed Stage 1 Abatement Plan activities. On May 27, 2010, NMOCD responded via email that the State was not staffed to review the Abatement Plans (APs) in a timely manner. On June 23, 2010, BBC contacted NMOCD via email to request a waiver of the Public Notice requirement and inform NMOCD that Chesapeake and the landowner were

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

anxious to move forward with the proposed AP activities. NMOCD replied via email on June 23, 2010 stating they were still understaffed to review the AP and could not waive the Public Notice requirement. They advised BBC that Chesapeake could proceed "at risk." On July 12, 2010 BBC informed NMOCD by registered letter that Chesapeake was planning to start the Stage 1 Assessment on or about August 23, 2010. They further informed NMOCD they would be submitting the required Public Notices, a copy of which was attached to the letter. NMOCD did not respond to the registered letter.

The public notices were published in the Hobbs News-Sun and Lovington Leader on July 22, 2010 and the Albuquerque Journal on July 24, 2010. No comments were received from the public or NMOCD during the 30-day comment period and Chesapeake proceeded with the proposed Stage 1 Abatement Plan activities on August 26, 2010. Copies of correspondence and Public Notice are included in Appendix A.

A detailed description of site activities and results can be found in the report submitted to NMOCD dated March 20, 2012 entitled State M-1 AP-072, Stage 1 Abatement Report (Site Assessment Investigation). Analytical results for soil and groundwater sampling are summarized on Figure 1.

3. STAGE 2 ABATEMENT PLAN PROPOSAL

After review of various remedial options, we propose the following Stage 2 Abatement Plan. The plan addresses soil and groundwater remediation.

3.1 Soil Remediation

The selected remedial option will be the excavation of near-surface soils and installation of clay liners. The anticipated extent and depth of excavation is based on assessment activities (laboratory analysis and visual observation) and is shown in Figure 2. Near surface soils (to a depth of 5 feet below ground surface) with chloride concentrations in excess of 1,000 milligrams per kilogram (mg/kg) and a Total Petroleum Hydrocarbons (TPH) concentration in excess of 1,000 mg/kg will be excavated and disposed. Excavated soils will be disposed at Lea Land Landfill.

Areas where chloride or TPH concentrations are expected to exceed 1,000 mg/kg at depths greater than 5 feet below ground surface soils will be excavated to a depth of 5

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

feet below ground surface. Soils will be screened in the field for chlorides using chloride field test kits and for TPH using a photoionization. Critical samples (samples used to delineate the excavations) will be submitted for laboratory analysis of chlorides and/or TPH. Following excavation, a 12-inch compacted clay layer that meets or exceeds a permeability of equal to or less than 1 x 10⁻⁸ centimeters per second will be installed in the excavations. The lined excavations will be backfilled with four feet of locally obtained native soil. All of the excavated areas will be re-seeded with native vegetation. Areas that are supporting vegetation will not be disturbed.

Use of the USEPA Multi-Med model demonstrates that the clay liners will mitigate the leaching of chlorides to groundwater. The model predicts that after 7000 years of infiltration through the liner the maximum concentration of chlorides in groundwater will be 221.8 milligrams per liter (mg/L). The Multi-Med inputs and outputs are included in Appendix A.

3.2 Groundwater Remediation and Monitoring

One additional groundwater monitoring well will be installed downgradient of the site. The monitoring well will be designated MW-8.

Groundwater samples will be collected from all of the monitoring wells and analyzed for chlorides using USEPA method 9056 for each of four quarters. Based on sample results for one year (four quarters), sampling frequency will be reviewed and may be revised.

Sampling will be discontinued when eight quarters of sample results indicate chloride concentrations are below New Mexico Water Quality Control Commission, Title 20, Chapter 6, Part 2 standards. Sample results will be submitted to the NMOCD annually on June 15.

Following removal of LNAPL from MW-1, groundwater samples will be collected from MW-1 and analyzed for benzene, toluene ethylbenzene and xylenes (BTEX) using USEPA method 8260B for each of four quarters. Based on sample results for one year (four quarters), sampling frequency will be reviewed and may be revised.

Sampling of MW-1 for BTEX will be discontinued when eight quarters of sample results indicate BTEX concentrations are below New Mexico Water Quality Control Commission, Title 20, Chapter 6, Part 2 standards. Sample results will be submitted to

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

the NMOCD annually on June 15. Proposed groundwater remediation is presented in Sections 3.2.1 and 3.2.2.

3.2.1 Chlorides

Chloride concentrations in groundwater exceed New Mexico Water Quality Control Commission standards in two wells (MW-1 411mg/L and MW-4 472mg/L).

Removal of near-surface soils that are a potential source of chlorides and BTEX in groundwater and lining of excavations with chloride and TPH concentrations in excess of 1,000 mg/kg will mitigate leaching of chlorides to groundwater. Considering the relatively low concentrations of chlorides in groundwater and the fact that soil removal and clay liner infiltration barrier installation will be conducted at this site, we propose monitoring the site for a period of two years before considering pumping of groundwater at this site. With the proposed source removal and mitigation and the severe drought conditions being experienced in this area, we believe it prudent to evaluate if chloride mass removal by pumping is warranted at this site.

3.2.2 Hydrocarbons

A pilot LNAPL recovery test will take place over a three week period and will be used to develop long-term recovery procedures. LNAPL will be recovered from MW-1 and disposed in a NMOCD approved facility. Additionally, two soil vent borings equipped with wind turbines will be installed in the area near MW-1.

4. PUBLIC NOTIFICATION

Written notification of submittal of the Stage 2 Abatement Plan Proposal and site activities will be sent to all surface owners of record within a one-mile radius of the site. NMOCD will be supplied with a list of parties to be notified. Publication of notice of activities will be published in a state-wide circulated newspaper, the Albuquerque Journal, and two county newspapers, the Hobbs-Daily News Sun and the Lovington Leader.

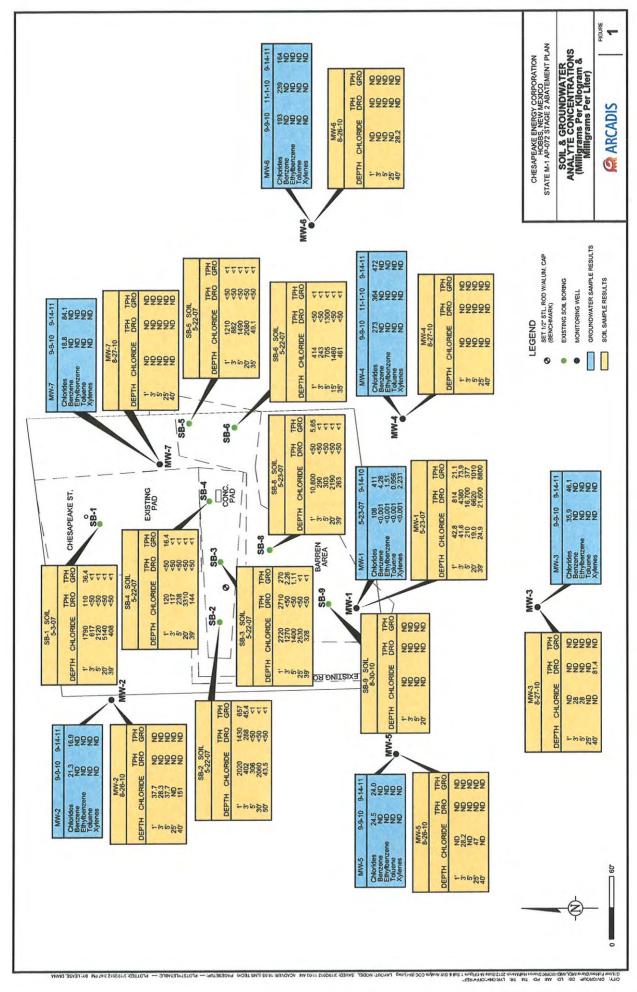
5. REMEDIATION WORK SCHEDULE

Soil remediation activities are expected to be completed in 15 working days (Monday through Friday). Groundwater remediation activities will be ongoing. An estimated completion date for groundwater remediation is not available.

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

6. REFERENCES


Groundwater Handbook; United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Research Information; 1992

New Mexico Water Quality Control Commission, Title 20 Chapter 6, Part 2, Subpart I

State M-1 AP-072 Stage 1 Abatement Report (Site Assessment Investigation); ARCADIS; March 2012

State M-1Salt Water Disposal Tank Battery, Stage 1 Abatement Plan (Ap-072), BBC International; August 2007

New Mexico Water Quality Control Commission, Title 20 Chapter 6, Part 2, Subpart I

Appendix A

Multi-Med Model Inputs and Outputs

Chesapeake State M-1 Chesapeake Energy Corporation Buckeye, Lea County, New Mexico Multimed Model Input and Output (With Liner)

MOD	MODEL	RANGE				
<i>I</i>	IPUT PAF	RAMETERS	3		Minimum	Maximum
	U	nsaturated	Zone Flo	w Parameters		
Depth of Unsaturated Zone	m	45	feet	13.7 m	0.000000001	None
Hydraulic Conductivity	cm/hr	2	ft/day	2.54 cm/hr	0.00000000001	10,000
Unsaturated Zone Porosity	fraction	0.05	fraction	0.05 fraction	0.000000001	0.99
Residual Water Content	fraction	0.01	fraction	0.010 fraction	0.000000001	1
	Uns	aturated Z	one Trans	port Parameters		
Thickness of Layer	m	45	feet	13.7 m	0.000000001	None
Percent of Organic Matter	%	2.6	%	2.6 %	0	100
Bulk Density	g/cm ³	1.35	g/cm ³	1.35 g/cm ³	0.01	5
Biological Decay Coefficient	1/yr	0	1/yr	0 1/yr	0	None
		Aqu	ifer Paran	neters		
Aquifer Porosity	fraction	0.25	fraction	0.25 fraction	0.000000001	0.99
Bulk Density	g/cm ³	1.35	g/cm ³	1.35 g/cm ³	0.01	5
Aguifer Thickness	m	50	ft	15.24 m	0.000000001	100,000
Hydraulic Conductivity	m/yr	2	ft/day	223 m/yr	0.0000001	100,000,000
Hydraulic Gradient	m/m	0.007	m/m	0.007 m/m	0.00000001	None
Organic Carbon Content	fraction	0.00315	fraction	0.00315 fraction	0.000001	1
Temperature of Aquifer	ů	14.4	°C	14.4 °C	0.00000001	None
рH		6.2		6.2	0.3	14
x-distance Radial Distance from						
Site to Receptor	m	1	m	1 m	11	None
			rce Param			
Infiltration Rate from the Facility	m/yr	0.124	in/yr	0.00315 m/yr	0.0000000001	10,000,000,000
Area of Waste Disposal Unit	m ²	46,800	ft ²	4348 m ²	0.01	None
Length Scale of Facility	m	240	feet	73.2 m	0.000000001	10,000,000,000
Width Scale of Facility	m	195	feet	59.4 m	0.000000001	10,000,000,000
Recharge Rate into the Plume	m/yr	16.71	in/yr	0.4244 m/yr	0	10,000,000,000
Duration of Pulse	yr	8,000	yr	8000 yr	0.000000001	None
Initial Concentration at Landfill	mg/L	6,000	mg/L	6,000 mg/L	0	None
		Addit	ional Para	meters		
Method				Gaussian	Gaussian	Patch
Name of Chemical Specified				Chloride		

MODEL	OUTPUT		
Final Concentration at Landfill	ma/L	221.8	ma/L

MODEL OUTPUT							
Concentration at Landfill	0.0 mg/L	Time	1 yr				
	0.0 mg/L		10 yr				
	0.0 mg/L		20 yr				
	18.9 mg/L		50 yr				
	36.6 mg/L		70 yr				
	45.4 mg/L		80 yr				
	61.8 mg/L		100 yr				
	123.4 mg/L		200 yr				
	154.1 mg/L		300 yr				
	166.3 mg/L		400 yr				
	178.5 mg/L		500 yr				
	190.7 mg/L		600 yr				
	204.8 mg/L		800 yr				
	211.1 mg/L		1,000 yr				
	220.4 mg/L		2,000 yr				
	221.6 mg/L		3,000 yr				
	221.8 mg/L		4,000 yr				
	221.8 mg/L		5,000 yr				
	221.8 mg/L		6,000 yr				
	221.8 mg/L		7,000 yr				

Chesapeake State M-1 Chesapeake Energy Corporation Buckeye, Lea County, New Mexico

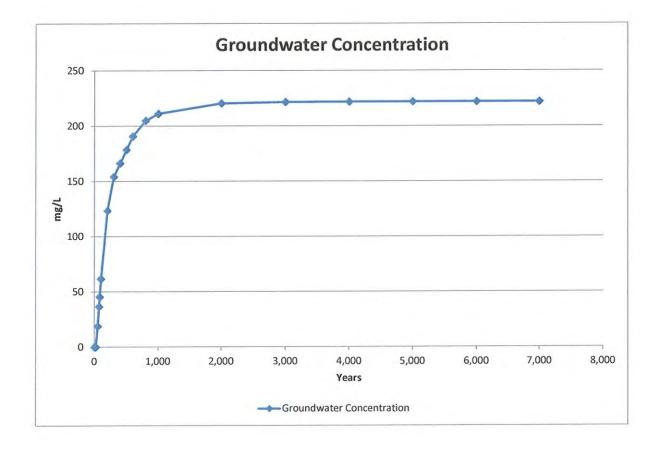


TABLE 6-3. TOTAL POROSITY OF VARIOUS MATERIALS

	No. of		Arithmetic
Material	Analyses	Range	Mean
Igneous Rocks			
Weathered granite	8	0.34-0.57	0.45
Weathered gabbro	4	0.42-0.45	0.43
Basalt	94	0.03-0.35	0.17
Sedimentary Materials			
Sandstone	65	0.14-0.49	0.34
Siltstone	7	0.21-0.41	0.35
Sand (fine)	243	0.26-0.53	0.43
Sand (coarse)	26	0.31-0.46	0.39
Gravel (fine)	38	0.25-0.38	0.34
Gravel (coarse)	15	0.24-0.36	0.28
Silt	281	0.34-0.61	0.46
Clay	74	0.34-0.57	0.42
Limestone	74	0.07-0.56	0.3
Metamorphic Rocks			
Schist	18	0.04-0.49	0.38

Sources: From Mercer et al. (1982), McWhorter and Sunada (1977),

Original reference Morris and Johnson, (1967).

Texture	Bulk Density g/cm^3	Average Wilting Point	Plant Available Water Inches/Ft
Sandy loam	1.6	0.057	1.66
Silt Loam	1.45	0.119	2
Loam	1.5	0.097	2.4
Sandy clay loam	1.45	0.137	1.66
Clay loam	1.45	0.157	1.9

TABLE 6-8. MEAN BULK DENSITY (g/cm3) FOR FIVE SOIL TEXTURAL CLASSIFICATIONSa,b

Soil Texture	Mean Value	Range Reported	
Silt Loams	1.32	0.86 - 1.67	
Clay and Clay Loams	1.3	0.94 - 1.54	
Sandy Loams	1.49	1.25 - 1.76	
Gravelly Silt Loams	1.22	1.02 - 1.58	
Loams	1.42	1.16 - 1.58	
All Soils	1.35	0.86 - 1.76	

a Baes, C.F., III and R.D. Sharp. 1983. A Proposal for Estimation of Soil Leaching Constants for Use in Assessment Models. J. Environ. Qual. 12(1):17-28 (Original reference).

b From Dean et al. (1989)

TABLE 6-2. DESCRIPTIVE STATISTICS FOR SATURATED HYDRAULIC CONDUCTIVITY (cm hr-1)

	Hydraulic (Conductivity	/ (Ks)*			
Soil Type	×	S	CV	n		
Clay**	0.2	0.42	210.3	114	cm/hr	17.52
Clay Loam	0.26	0.7	267.2	345	cm/hr	22.776
Loam	1.04	1.82	174.6	735	cm/hr	91.104
Loamy Sand	14,59	11.36	77.9	315	cm/hr	1278.084
Silt	0.25	0.33	129.9	88	cm/hr	21.9
Silt Loam	0.45	1.23	275.1	1093	cm/hr	39.42
Silty Clay	0.02	0.11	453.3	126	cm/hr	1.752
Sifty Clay Loam	0.07	0.19	288.7	592	cm/hr	6.132
Sand	29.7	15.6	52.4	246	cm/hr	2601.72
Sandy Clay	0.12	0.28	234.1	46	cm/hr	10.512
Sandy Clay Loam	1.31	2.74	208.6	214	cm/hr	114.756
Sandy Loam	4.42	5.63	127	1183	cm/hr	387.192

^{*} n = Sample size, = Mean, s = Standard deviation, CV = Coefficient of variation (percent)

Sources: From Dean et al. (1989),

Original reference Carsel and Parrish (1988).

^{**} Agricultural soil, less than 60 percent clay

Saturated water content is the maximum volumetric amount of water in the soil when all pores are filled with water. Very often it is assumed that saturated water content equals the porosity n. However, in many cases qS is smaller than n due to the fact that small amounts of air will be trapped in very small pores. Residual water content can be defined as the asymptote of the pF-curve when h gets very high negative values. Usually qR is very small - on the order of 0.001--0.02 for coarse soils but gets as high values as 0.15..0.25 for heavy clay soils. Air entry point ha is

Soil texture. Fine-textured soils can hold much more organic matter than sandy soils for two reasons. First, clay particles form electrochemical bonds that hold organic compounds. Second, decomposition occurs faster in well-aerated sandy soils. A sandy loam rarely holds more than 2% organic matter.

The recharge rate in this model is the net amount of water that percolates directly into the aquifer system outside of the land disposal facility. The recharge is assumed to have no contamination and hence dilutes the groundwater contaminant plume. The recharge rate into the plume can be calculated in a variety of ways. One possibility is to use a model, such as HELP (Hydrologic Evaluation of Landfill Performance) (Schroeder et al., 1984), without any engineering controls (leachate collection system or a liner) to simulate the water balance for natural conditions.

The infiltration rate is the net amount of leachate that percolates into the aquifer system from a land disposal facility. Because of the use of engineering controls and the presence of non-native porous materials in the landfill facility, the infiltration rate will typically be different than the recharge rate. However, it can be estimated by similar

Most soils contain 2-10 percent organic matter. The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production. http://www.fao.org

APPENDIX B

NMOCD APPROVAL OF STAGE 2 ABATEMENT PLAN

From: Chase Acker

To: Bruce McKenzie

Subject: FW: Stage 2 Abatement Plan Approval: AP-72 Former State M-1 Tank Battery located in Unit Letter O of Section

18 in Township 17 South, Range 36 East, NMPM in Lea County, NM

Date: Monday, April 14, 2014 1:56:01 PM

From: Griswold, Jim, EMNRD [mailto:Jim.Griswold@state.nm.us]

Sent: Thursday, June 27, 2013 5:14 PM

To: Larry Wooten

Cc: Hall, Sharon; Chase Acker

Subject: Stage 2 Abatement Plan Approval: AP-72 Former State M-1 Tank Battery located in Unit Letter

O of Section 18 in Township 17 South, Range 36 East, NMPM in Lea County, NM

Mr. Wooten,

The Oil Conservation Division (OCD) has reviewed the Stage 2 Abatement Plan for the above-referenced site submitted on your behalf by Arcadis and dated 3/27/12. That plan has substantially met the requirements of 19.15.30 NMAC and is hereby approved. Please proceed with field activities.

Be advised this approval does not relieve Chesapeake of responsibility should the situation continue to pose a threat to groundwater, surface water, human health, or the environment. Furthermore, this approval does not relieve your responsibility for compliance with any federal, state, or local laws and/or regulations. Please retain a copy of this email for your files, as no hardcopy will be sent. If you have any questions, please feel free to contact me at any time.

Jim Griswold

Senior Hydrologist
EMNRD/Oil Conservation Division
1220 South St. Francis Drive
Santa Fe, New Mexico 87505

505.476.3465

email: jim.griswold@state.nm.us

This email (and attachments if any) is intended only for the use of the individual or entity to which it is addressed, and may contain information that is confidential or privileged and exempt from disclosure under applicable law. If the reader of this email is not the intended recipient, or the employee or agent responsible for delivering this message to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender immediately by return email and destroy all copies of the email (and attachments if any).

APPENDIX C

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

ANALYTICAL REPORT

Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-140223-1

Laboratory Sample Delivery Group: Property ID: 891077

Client Project/Site: State M-1

Revision: 1

For:

eurofins 🔆

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Chase Acker

CathyGartner

Authorized for release by: 7/20/2022 2:55:24 PM Cathy Gartner, Project Manager II (615)301-5041 Cathy.Gartner@et.eurofinsus.com

Designee for

Ken Hayes, Project Manager II (615)301-5035 Ken.Hayes@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

Client: Chesapeake Energy Corporation Project/Site: State M-1

Laboratory Job ID: 180-140223-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Sample Summary	5
Method Summary	6
Subcontract Data	7
Chain of Custody	21
Receipt Checklists	22

2

3

4

6

8

Q

Case Narrative

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-140223-1 SDG: Property ID: 891077

Job ID: 180-140223-1

Laboratory: Eurofins Pittsburgh

Narrative

Job Narrative 180-140223-1

Revised Report

Subcontract COC was added.

This replaces the report generated on 7/15/2022.

Receipt

The sample was received on 6/23/2022 9:52 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Subcontract Work

Method TO 15: This method was subcontracted to Eurofins Air Toxics. The subcontract laboratory certification is different from that of the facility issuing the final report.

Eurofins Pittsburgh 7/20/2022 (Rev. 1)

Definitions/Glossary

Client: Chesapeake Energy Corporation

Job ID: 180-140223-1 Project/Site: State M-1 SDG: Property ID: 891077

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac **Dilution Factor** Detection Limit (DoD/DOE) DL DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision Level Concentration (Radiochemistry) EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry) Method Detection Limit

MDL MI Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive **Quality Control** 0C

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Pittsburgh

Sample Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-140223-1

SDG: Property ID: 891077

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-140223-1	20220621 M-1	Air	06/21/22 12:30	06/23/22 09:52

Method Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-140223-1

SDG: Property ID: 891077

Method	Method Description	Protocol	Laboratory
TO-15	TO-15	EPA	Eurofins

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

Eurofins = Eurofins Air Toxics, 180 Blue Ravine Road, Suite B, Folsom, CA 95630

7/6/2022

Mr. Ken Hayes Eurofins Test America 500 Wilson Pike Circle Suite 100

Brentwood TN 37027

Project Name: CHK STATE M

Project #: CHKSTATM Workorder #: 2206535

Dear Mr. Ken Hayes

The following report includes the data for the above referenced project for sample(s) received on 6/22/2022 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Brian Whittaker

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Brian Whittaker at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Brian Whittaker

Project Manager

Air Toxics

WORK ORDER #: 2206535

Work Order Summary

CLIENT: Mr. Ken Hayes **BILL TO:** Accounts Payable

Eurofins Environment Testing

Eurofins Environment Testing

500 Wilson Pike Circle Suite 100

4104 Shuffel St NW North Canton, OH 44720

Brentwood, TN 37027

FAX:

PHONE:

615-726-3404

180-140223

P.O. #

800-765-0980

PROJECT # CHKSTATM CHK STATE M

DATE RECEIVED:

06/22/2022

CONTACT: Brian Whittaker

DATE COMPLETED: 07/06/2022

FRACTION#	NAME	<u>TEST</u>	RECEIPT VAC./PRES.	FINAL PRESSURE
FRACTION #	IVAIVIE	<u>ILSI</u>	VAC./I RES.	IKESSUKE
01A	20220621M-1	TO-15	7.3 "Hg	1.7 psi
02A	Lab Blank	TO-15	NA	NA
03A	CCV	TO-15	NA	NA
04A	LCS	TO-15	NA	NA
04AA	LCSD	TO-15	NA	NA

CERTIFIED BY:

07/06/22 DATE:

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP - E87680, LA NELAP - 02089, NH NELAP - 209221, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-21-17, UT NELAP - CA009332021-13, VA NELAP - 10615, WA NELAP - C935

Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-015, Effective date: 10/18/2021, Expiration date: 10/17/2022.

Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 351-8279

> Page 2 of 14 Page 8 of 22

LABORATORY NARRATIVE **EPA Method TO-15 Eurofins Test America Workorder# 2206535**

One 6 Liter Summa Canister sample was received on June 22, 2022. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

TVOC (Total Volatile Organic Compounds) referenced to Hexane includes area counts for peaks that elute from Hexane minus 0.08 minutes to Naphthalene plus 0.08 minutes and quantitating the area based on the response factor of Hexane.

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page. Target compound non-detects in the samples that are associated with high bias in QC analyses have not been flagged.

Dilution was performed on sample 20220621M-1 due to matrix interference.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.
 - M Reported value may be biased due to apparent matrix interferences.
 - CN See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: 20220621M-1

Lab ID#: 2206535-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
4-Ethyltoluene	7.4	31	36	150
1,2,4-Trimethylbenzene	7.4	19	36	95
1,3,5-Trimethylbenzene	7.4	16	36	82
m,p-Xylene	7.4	7.9	32	34
TVOC Ref. to Hexane	150	10000	520	35000

Client Sample ID: 20220621M-1 Lab ID#: 2206535-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p063023	Date of Collection: 6/21/22 12:30:00 PM		
Dil. Factor:	14.7	Date of Analysis: 7/1/22 12:46 AM		
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)

	14.7		of Analysis: 7/1/2	Z 12.40 AW
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	74	Not Detected	170	Not Detected
Benzene	7.4	Not Detected	23	Not Detected
alpha-Chlorotoluene	7.4	Not Detected	38	Not Detected
Bromodichloromethane	7.4	Not Detected	49	Not Detected
Bromoform	7.4	Not Detected	76	Not Detected
Bromomethane	74	Not Detected	280	Not Detected
2-Butanone (Methyl Ethyl Ketone)	29	Not Detected	87	Not Detected
Carbon Disulfide	29	Not Detected	92	Not Detected
Carbon Tetrachloride	7.4	Not Detected	46	Not Detected
Chlorobenzene	7.4	Not Detected	34	Not Detected
Dibromochloromethane	7.4	Not Detected	63	Not Detected
Chloroethane	29	Not Detected	78	Not Detected
Chloroform	7.4	Not Detected	36	Not Detected
Chloromethane	74	Not Detected	150	Not Detected
1,2-Dibromoethane (EDB)	7.4	Not Detected	56	Not Detected
1,2-Dichlorobenzene	7.4	Not Detected	44	Not Detected
1,3-Dichlorobenzene	7.4	Not Detected	44	Not Detected
1,4-Dichlorobenzene	7.4	Not Detected	44	Not Detected
1,1-Dichloroethane	7.4	Not Detected	30	Not Detected
Freon 12	7.4	Not Detected	36	Not Detected
1,2-Dichloroethane	7.4	Not Detected	30	Not Detected
1,1-Dichloroethene	7.4	Not Detected	29	Not Detected
cis-1,2-Dichloroethene	7.4	Not Detected	29	Not Detected
trans-1,2-Dichloroethene	7.4	Not Detected	29	Not Detected
1,2-Dichloropropane	7.4	Not Detected	34	Not Detected
cis-1,3-Dichloropropene	7.4	Not Detected	33	Not Detected
trans-1,3-Dichloropropene	7.4	Not Detected	33	Not Detected
Freon 114	7.4	Not Detected	51	Not Detected
Ethyl Benzene	7.4	Not Detected	32	Not Detected
4-Ethyltoluene	7.4	31	36	150
Hexachlorobutadiene	29	Not Detected	310	Not Detected
2-Hexanone	29	Not Detected	120	Not Detected
Methylene Chloride	74	Not Detected	260	Not Detected
4-Methyl-2-pentanone	7.4	Not Detected	30	Not Detected
Styrene	7.4	Not Detected	31	Not Detected
1,1,2,2-Tetrachloroethane	7.4	Not Detected	50	Not Detected
Tetrachloroethene	7.4	Not Detected	50	Not Detected
Toluene	7.4	Not Detected	28	Not Detected
1,2,4-Trichlorobenzene	29	Not Detected	220	Not Detected
1,1,1-Trichloroethane	7.4	Not Detected	40	Not Detected
1,1,2-Trichloroethane	7.4	Not Detected	40	Not Detected
· ·	7.4	Not Detected	40	Not Detected

File Name:

Vinyl Chloride

TVOC Ref. to Hexane

m,p-Xylene

o-Xylene

Date of Collection: 6/21/22 12:30:00 PM

Not Detected

34

Not Detected

35000

19

32

32

520

Client Sample ID: 20220621M-1 Lab ID#: 2206535-01A

EPA METHOD TO-15 GC/MS FULL SCAN

p063023

7.4

7.4

7.4

150

Dil. Factor:	14.7	Date of Analysis: 7/1/22 12:46 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	7.4	Not Detected	41	Not Detected
Freon 113	7.4	Not Detected	56	Not Detected
1,2,4-Trimethylbenzene	7.4	19	36	95
1,3,5-Trimethylbenzene	7.4	16	36	82
Vinyl Acetate	29	Not Detected	100	Not Detected

Not Detected

7.9

Not Detected

10000

Container Type: 6 Liter Summa Canister

7,		Method Limits	
Surrogates	%Recovery		
Toluene-d8	105	70-130	
1,2-Dichloroethane-d4	120	70-130	
4-Bromofluorobenzene	106	70-130	

Client Sample ID: Lab Blank Lab ID#: 2206535-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p063011a 1.00	Date of Collection: NA Date of Analysis: 6/30/22 04:48 PM		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Acetone	5.0	Not Detected	12	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Freon 12	0.50	Not Detected	2.5	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
	3.00	2 3.00.00		20.00.00

Ę

6

8

5

Client Sample ID: Lab Blank Lab ID#: 2206535-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p063011a Dil. Factor: 1.00		Date of Collection: NA Date of Analysis: 6/30/22 04:48 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.50	Not Detected	2.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
TVOC Ref. to Hexane	10	Not Detected	35	Not Detected

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	96	70-130	
1,2-Dichloroethane-d4	119	70-130	
4-Bromofluorobenzene	107	70-130	

Air Toxics

Client Sample ID: CCV Lab ID#: 2206535-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p063006 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 6/30/22 01:58 PM

Compound	%Recovery	
Acetone	82	
Benzene	86	
alpha-Chlorotoluene	117	
Bromodichloromethane	117	
Bromoform	129	
Bromomethane	76	
2-Butanone (Methyl Ethyl Ketone)	73	
Carbon Disulfide	79	
Carbon Tetrachloride	131 Q	
Chlorobenzene	95	
Dibromochloromethane	122	
Chloroethane	82	
Chloroform	95	
Chloromethane	122	
1,2-Dibromoethane (EDB)	108	
1,2-Dichlorobenzene	124	
1,3-Dichlorobenzene	123	
1,4-Dichlorobenzene	123	
1,1-Dichloroethane	96	
Freon 12	116	
1,2-Dichloroethane	124	
1,1-Dichloroethene	88	
cis-1,2-Dichloroethene	94	
trans-1,2-Dichloroethene	89	
1,2-Dichloropropane	98	
cis-1,3-Dichloropropene	97	
trans-1,3-Dichloropropene	108	
Freon 114	109	
Ethyl Benzene	98	
4-Ethyltoluene	115	
Hexachlorobutadiene	132 Q	
2-Hexanone	104	
Methylene Chloride	97	
4-Methyl-2-pentanone	98	
Styrene	109	
1,1,2,2-Tetrachloroethane	93	
Tetrachloroethene	118	
Toluene	92	
1,2,4-Trichlorobenzene	118	
1,1,1-Trichloroethane	116	
1,1,2-Trichloroethane	102	
Trichloroethene	100	

Air Toxics

Client Sample ID: CCV Lab ID#: 2206535-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p063006 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 6/30/22 01:58 PM

Compound	%Recovery	
Freon 11	121	
Freon 113	102	
1,2,4-Trimethylbenzene	122	
1,3,5-Trimethylbenzene	106	
Vinyl Acetate	94	
Vinyl Chloride	82	
m,p-Xylene	97	
o-Xylene	98	
TVOC Ref. to Hexane	100	

Q = Exceeds Quality Control limits.

Container Type: NA - Not Applicable

Surrogates	%Recovery	Method Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	118	70-130
4-Bromofluorobenzene	113	70-130

Client Sample ID: LCS Lab ID#: 2206535-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p063007	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 6/30/22 02:26 PM

Dil. Factor:	1.00 Date of Analysi	is: 6/30/22 02:26 PM
Compound	%Recovery	Method Limits
Acetone	82	70-130
Benzene	85	70-130
alpha-Chlorotoluene	117	70-130
Bromodichloromethane	115	70-130
Bromoform	129	70-130
Bromomethane	 77	70-130
2-Butanone (Methyl Ethyl Ketone)	78	70-130
Carbon Disulfide	81	70-130
Carbon Tetrachloride	131 Q	70-130
Chlorobenzene	97	70-130
Dibromochloromethane	122	70-130
Chloroethane	83	70-130
Chloroform	94	70-130
Chloromethane	118	70-130
1,2-Dibromoethane (EDB)	108	70-130
1,2-Dichlorobenzene	121	70-130
1,3-Dichlorobenzene	120	70-130
1,4-Dichlorobenzene	118	70-130
1,1-Dichloroethane	96	70-130
Freon 12	115	70-130
1,2-Dichloroethane	122	70-130
1,1-Dichloroethene	87	70-130
cis-1,2-Dichloroethene	96	70-130
trans-1,2-Dichloroethene	92	70-130
1,2-Dichloropropane	95	70-130
cis-1,3-Dichloropropene	100	70-130
trans-1,3-Dichloropropene	110	70-130
Freon 114	108	70-130
Ethyl Benzene	99	70-130
4-Ethyltoluene	116	70-130
Hexachlorobutadiene	127	70-130
2-Hexanone	108	70-130
Methylene Chloride	94	70-130
4-Methyl-2-pentanone	98	70-130
Styrene	109	70-130
1,1,2,2-Tetrachloroethane	96	70-130
Tetrachloroethene	118	70-130
Toluene	92	70-130
1,2,4-Trichlorobenzene	109	70-130
1,1,1-Trichloroethane	119	70-130
1,1,2-Trichloroethane	100	
	102 100	70-130

***** eurofins **Air Toxics**

> Client Sample ID: LCS Lab ID#: 2206535-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p063007	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 6/30/22 02:26 PM

		Method
Compound	%Recovery	Limits
Freon 11	121	70-130
Freon 113	102	70-130
1,2,4-Trimethylbenzene	121	70-130
1,3,5-Trimethylbenzene	106	70-130
Vinyl Acetate	109	70-130
Vinyl Chloride	84	70-130
m,p-Xylene	98	70-130
o-Xylene	96	70-130
TVOC Ref. to Hexane	Not Spiked	

Q = Exceeds Quality Control limits. **Container Type: NA - Not Applicable**

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	99	70-130	
1,2-Dichloroethane-d4	117	70-130	
4-Bromofluorobenzene	111	70-130	

eurofins

Client Sample ID: LCSD Lab ID#: 2206535-04AA

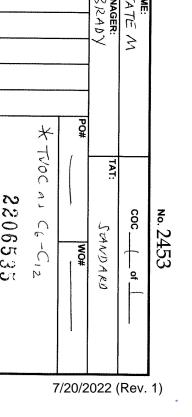
Air Toxics

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p063008	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 6/30/22 02:54 PM

Dil. Factor:	1.00 Date of Analysi	6/30/22 02:54 PM	
Compound	%Recovery	Method Limits	
Acetone	84	70-130	
Benzene	85	70-130 70-130	
alpha-Chlorotoluene	118	70-130 70-130	
Bromodichloromethane	114	70-130 70-130	
Bromoform	130	70-130 70-130	
Bromomethane		70-130	
2-Butanone (Methyl Ethyl Ketone)	80	70-130 70-130	
Carbon Disulfide	84	70-130 70-130	
Carbon Tetrachloride	135 Q	70-130 70-130	
Chlorobenzene	96	70-130 70-130	
Dibromochloromethane		70-130	
Chloroethane	86	70-130 70-130	
Chloroform	98	70-130 70-130	
Chloromethane	120	70-130 70-130	
1,2-Dibromoethane (EDB)	108	70-130 70-130	
1,2-Discombemane (EDB) 1,2-Dichlorobenzene		70-130 70-130	
1,3-Dichlorobenzene	121	70-130 70-130	
1,4-Dichlorobenzene	120	70-130 70-130	
1,1-Dichloroethane	100	70-130 70-130	
Freon 12	118	70-130	
1,2-Dichloroethane		70-130	
1,1-Dichloroethene	90	70-130 70-130	
cis-1,2-Dichloroethene	98	70-130	
trans-1,2-Dichloroethene	95	70-130	
1,2-Dichloropropane	95	70-130	
cis-1,3-Dichloropropene	 99	70-130	
trans-1,3-Dichloropropene	111	70-130	
Freon 114	112	70-130	
Ethyl Benzene	99	70-130	
4-Ethyltoluene	115	70-130	
Hexachlorobutadiene		70-130	
2-Hexanone	110	70-130	
Methylene Chloride	97	70-130	
4-Methyl-2-pentanone	98	70-130	
Styrene	110	70-130	
1,1,2,2-Tetrachloroethane	97	70-130	
Tetrachloroethene	120	70-130	
Toluene	90	70-130	
1,2,4-Trichlorobenzene	126	70-130	
1,1,1-Trichloroethane	120	70-130	
1,1,2-Trichloroethane	105	70-130	
Trichloroethene	100	70-130	

Client Sample ID: LCSD Lab ID#: 2206535-04AA


EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p063008	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 6/30/22 02:54 PM

	0/5	Method
Compound	%Recovery	Limits
Freon 11	124	70-130
Freon 113	106	70-130
1,2,4-Trimethylbenzene	122	70-130
1,3,5-Trimethylbenzene	106	70-130
Vinyl Acetate	116	70-130
Vinyl Chloride	86	70-130
m,p-Xylene	99	70-130
o-Xylene	98	70-130
TVOC Ref. to Hexane	Not Spiked	

Q = Exceeds Quality Control limits. **Container Type: NA - Not Applicable**

Surrogates	%Recovery	Method Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	120	70-130
4-Bromofluorobenzene	112	70-130

	CHAIN OF COSTODI NEI	CCRC	CC#27 '9N
	PROJECT NUMBER:	PROJECT NAME: $CH \mid \langle STATI = M \rangle$	COC of
Environmental, LLC (918) 921-5331	SHIPPED TO: AIR TOXICS		TAT: STANDARD
SAMPLER'S PRINTED NAME:	iners		PO# WO#
SAMPLERS/SIGNATURE:	Conta		X TVOC 41 C6-C12
Date Time Sample ID	Sample f Sample 0-15		2206535
	.7		REMARKS
ON 6-21-22 1230 2022062 1M-1	ANR IXX		TAG # 6-2094
	DARRAM TRANSPORTATION AND REAL TRANSPORTATION OF THE PROPERTY	A CONTRACTOR OF THE CONTRACTOR	
	7		
		Cust	Sustody Seal Intact:
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	None Temp!V/T
-	azirkontagalagi tala dajahadililari siski anadalajalanda siski sanvaziranya interangalaranasanasanasanasanasan	distributational modernatespee ontracts and see supplies of the second modern of the second s	
TOTAL NUMBER OF CONTAINERS			
	TIME / LOO RECEIVED BY:	DATE ()	olu/b
RELINQUISHED BY:	TIME RECEIVED BY:	DATE	
METHOD OF SHIPMENT HED (FX	AIRBILL NUMBER:		
RECEIVED IN LABORATORY BY:		Send PDF, EDD, and INVOICE (if applicable) to:	
LABORATORY CONTACT:	TIME QAQC@EquusEnv.com	@EquusEnv.com	
	TABORA OX ACOXIII		
	180 BLUE	RAVINE RD. STEB FOLIOM,	1, CA 95630
White: Receiving Lab Yellow: Equus Environmental Project File Pink: Equus QA/QC	s QA/QC		

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Job Number: 180-140223-1

SDG Number: Property ID: 891077
List Source: Eurofins Pittsburgh

Login Number: 140223

List Number: 1

Creator: Gartner, Cathy

1

Answer

Comment

Radioactivity wasn't checked or is </= background as measured by a survey

meter.

Question

The cooler's custody seal, if present, is intact.

Sample custody seals, if present, are intact.

The cooler or samples do not appear to have been compromised or

tampered with.

Samples were received on ice.

Cooler Temperature is acceptable.

Cooler Temperature is recorded.

COC is present.

COC is filled out in ink and legible.

COC is filled out with all pertinent information.

Is the Field Sampler's name present on COC?

There are no discrepancies between the containers received and the COC.

Samples are received within Holding Time (excluding tests with immediate

HTs)

Sample containers have legible labels.

Containers are not broken or leaking.

Sample collection date/times are provided.

Appropriate sample containers are used.

Sample bottles are completely filled.

Sample Preservation Verified.

There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs

IVIO/IVIOD3

Containers requiring zero headspace have no headspace or bubble is

<6mm (1/4").

Multiphasic samples are not present.

Samples do not require splitting or compositing.

Residual Chlorine Checked.

8

C

ANALYTICAL REPORT

Eurofins Pittsburgh 301 Alpha Drive **RIDC Park** Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-144803-1

Laboratory Sample Delivery Group: Property ID: 891077

Client Project/Site: CHK STATE M

Revision: 1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Chase Acker

Authorized for release by: 10/12/2022 4:14:17 PM

Kuntll Hay

Ken Hayes, Project Manager II (615)301-5035

Ken.Hayes@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

Expert

Released to Imaging: 6/11/2024 3:27:47 PM

Visit us at:

www.eurofinsus.com/Env

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Laboratory Job ID: 180-144803-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Sample Summary	5
Method Summary	6
Subcontract Data	7
Chain of Custody	21
Receipt Checklists	22

Case Narrative

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 180-144803-1 SDG: Property ID: 891077

Job ID: 180-144803-1

Laboratory: Eurofins Pittsburgh

Narrative

Job Narrative 180-144803-1

Revision

The report being provided is a revision of the original report sent on 10/12/2022. The report (revision 1) is being revised due to: Sample ID was entered incorrectly in the initial report.

Comments

No additional comments.

Receipt

The sample was received on 9/21/2022 9:06 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Subcontract Work

Method TO 15: This method was subcontracted to Eurofins Air Toxics. The subcontract laboratory certification is different from that of the facility issuing the final report.

Eurofins Pittsburgh 10/12/2022 (Rev. 1)

Definitions/Glossary

Client: Chesapeake Energy Corporation

Job ID: 180-144803-1 Project/Site: CHK STATE M SDG: Property ID: 891077

Glossary

MCL

MDA

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac **Dilution Factor** Detection Limit (DoD/DOE) DL DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision Level Concentration (Radiochemistry) EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDC Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit MI Minimum Level (Dioxin) MPN Most Probable Number

MQL Method Quantitation Limit NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Activity (Radiochemistry)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive **Quality Control** 0C

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Sample Summary

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 180-144803-1

SDG: Property ID: 891077

Lab Sample ID Received Client Sample ID Matrix Collected 180-144803-1 09/13/22 09:45 09/21/22 09:06 202209 M-1 Air

Method Summary

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 180-144803-1

SDG: Property ID: 891077

Method	Method Description	Protocol	Laboratory
TO-15	TO-15	EPA	Eurofins

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

Eurofins = Eurofins Air Toxics, 180 Blue Ravine Road, Suite B, Folsom, CA 95630

Eurofins Pittsburgh

9/27/2022

Mr. Ken Hayes Eurofins Environment Testing 500 Wilson Pike Circle Suite 100

Brentwood TN 37027

Project Name: CHKSTATM
Project #: CHKSTATM
Workorder #: 2209338

Dear Mr. Ken Hayes

The following report includes the data for the above referenced project for sample(s) received on 9/14/2022 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Brian Whittaker

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Brian Whittaker at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Brian Whittaker

Project Manager

Air Toxics

WORK ORDER #: 2209338

Work Order Summary

CLIENT: Mr. Ken Hayes

BILL TO: Accounts Payable

Eurofins Environment Testing

Eurofins Environment Testing

500 Wilson Pike Circle Suite 100 Brentwood, TN 37027

4104 Shuffel St NW North Canton, OH 44720

PHONE: 800-765-0980

P.O. # 180-144803-1

FAX: 615-726-3404

PROJECT # CHKSTATM CHKSTATM

DATE RECEIVED: 09/14/2022 **DATE COMPLETED:** 09/27/2022

CONTACT: Brian Whittaker

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	202209M-1	TO-15	6.0 "Hg	2 psi
02A	Lab Blank	TO-15	NA	NA
03A	CCV	TO-15	NA	NA
04A	LCS	TO-15	NA	NA
04AA	LCSD	TO-15	NA	NA

CERTIFIED BY:

Julian July

DATE: 09/27/22

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP - 209221, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-21-17, UT NELAP – CA009332021-13, VA NELAP - 10615, WA NELAP - C935

Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-015, Effective date: 10/18/2021, Expiration date: 10/17/2022.

Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 351-8279

Page 2 of 14 Page 8 of 22

LABORATORY NARRATIVE EPA Method TO-15 Eurofins Environment Testing Workorder# 2209338

One 6 Liter Summa Canister sample was received on September 14, 2022. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

Receiving Notes

Sample identification for sample 202209_M-1 was not provided on the sample tag. Therefore the information on the Chain of Custody was used to process and report the sample.

Analytical Notes

TVOC (Total Volatile Organic Compounds) referenced to Hexane includes area counts for peaks that elute from Hexane minus 0.08 minutes to Naphthalene plus 0.08 minutes and quantitating the area based on the response factor of Hexane.

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page. Target compound non-detects in the samples that are associated with high bias in QC analyses have not been flagged.

Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.
 - M Reported value may be biased due to apparent matrix interferences.
 - CN See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

3

6

8

9

eurofins Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: 202209_M-1

Lab ID#: 2209338-01A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
TVOC Ref. to Hexane	14	250	50	880

File Name:

Client Sample ID: 202209_M-1 Lab ID#: 2209338-01A

EPA METHOD TO-15 GC/MS FULL SCAN

Date of Collection: 9/13/22

p091913

Dil. Factor:	1.42	Date	of Analysis: 9/19/	/22 04:46 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	7.1	Not Detected	17	Not Detected
Benzene	0.71	Not Detected	2.3	Not Detected
alpha-Chlorotoluene	0.71	Not Detected	3.7	Not Detected
Bromodichloromethane	0.71	Not Detected	4.8	Not Detected
Bromoform	0.71	Not Detected	7.3	Not Detected
Bromomethane	7.1	Not Detected	28	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.8	Not Detected	8.4	Not Detected
Carbon Disulfide	2.8	Not Detected	8.8	Not Detected
Carbon Tetrachloride	0.71	Not Detected	4.5	Not Detected
Chlorobenzene	0.71	Not Detected	3.3	Not Detected
Dibromochloromethane	0.71	Not Detected	6.0	Not Detected
Chloroethane	2.8	Not Detected	7.5	Not Detected
Chloroform	0.71	Not Detected	3.5	Not Detected
Chloromethane	7.1	Not Detected	15	Not Detected
1,2-Dibromoethane (EDB)	0.71	Not Detected	5.4	Not Detected
1,2-Dichlorobenzene	0.71	Not Detected	4.3	Not Detected
1,3-Dichlorobenzene	0.71	Not Detected	4.3	Not Detected
1,4-Dichlorobenzene	0.71	Not Detected	4.3	Not Detected
1,1-Dichloroethane	0.71	Not Detected	2.9	Not Detected
Freon 12	0.71	Not Detected	3.5	Not Detected
1,2-Dichloroethane	0.71	Not Detected	2.9	Not Detected
1,1-Dichloroethene	0.71	Not Detected	2.8	Not Detected
cis-1,2-Dichloroethene	0.71	Not Detected	2.8	Not Detected
trans-1,2-Dichloroethene	0.71	Not Detected	2.8	Not Detected
1,2-Dichloropropane	0.71	Not Detected	3.3	Not Detected
cis-1,3-Dichloropropene	0.71	Not Detected	3.2	Not Detected
trans-1,3-Dichloropropene	0.71	Not Detected	3.2	Not Detected
Freon 114	0.71	Not Detected	5.0	Not Detected
Ethyl Benzene	0.71	Not Detected	3.1	Not Detected
4-Ethyltoluene	0.71	Not Detected	3.5	Not Detected
Hexachlorobutadiene	2.8	Not Detected	30	Not Detected
	0.0	N O O	40	N. D. C.

Not Detected

12

25

2.9

3.0

4.9

4.8

2.7

21

3.9

3.9

3.8

2.8

7.1

0.71

0.71

0.71

0.71

0.71

2.8

0.71

0.71

0.71

Not Detected

Not Detected

Not Detected Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

2-Hexanone

Styrene

Toluene

Methylene Chloride 4-Methyl-2-pentanone

Tetrachloroethene

1,1,2,2-Tetrachloroethane

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichloroethene

File Name:

***** eurofins **Air Toxics**

Client Sample ID: 202209_M-1 Lab ID#: 2209338-01A

EPA METHOD TO-15 GC/MS FULL SCAN

Date of Collection: 9/13/22

p091913

Dil. Factor:	1.42	Date	of Analysis: 9/19/	22 04:46 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.71	Not Detected	4.0	Not Detected
Freon 113	0.71	Not Detected	5.4	Not Detected
1,2,4-Trimethylbenzene	0.71	Not Detected	3.5	Not Detected
1,3,5-Trimethylbenzene	0.71	Not Detected	3.5	Not Detected
Vinyl Acetate	2.8	Not Detected	10	Not Detected
Vinyl Chloride	0.71	Not Detected	1.8	Not Detected
m,p-Xylene	0.71	Not Detected	3.1	Not Detected
o-Xylene	0.71	Not Detected	3.1	Not Detected
TVOC Ref. to Hexane	14	250	50	880

Container Type: 6 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	103	70-130
1,2-Dichloroethane-d4	100	70-130
4-Bromofluorobenzene	104	70-130

Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2209338-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p091906g	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/19/22 12:10 PM

Compound Rpt. Limit (ppbv) Amount (ug/m3) Amount (ug/m3) Acetone 5.0 Not Detected 12 Not Detected alpha-Chlorotoluene 0.50 Not Detected 1.6 Not Detected alpha-Chlorotoluene 0.50 Not Detected 2.6 Not Detected alpha-Chlorotoluene 0.50 Not Detected 2.6 Not Detected Bromoform 0.50 Not Detected 5.2 Not Detected Bromoform 0.50 Not Detected 5.2 Not Detected Bromoform 5.0 Not Detected 5.9 Not Detected Carbon Closer 6.2 Not Detected Carbon Disutified 2.0 Not Detected 6.2 Not Detected Carbon Disutified 2.0 Not Detected 6.2 Not Detected Carbon Tetrachloride 0.50 Not Detected 3.1 Not Detected Carbon Tetrachloride 0.50 Not Detected 3.1 Not Detected Chlorobenzene 0.50 Not Detected Chlorobenzene 0.50 Not Detected Chlorobenzene 3.0 Not Detected Chlorobenzene 2.0 N	Dil. Factor:	1.00	Date of Analysis: 9/19/22 12:10 PM		
Acetone		Rpt. Limit	Amount	Rpt. Limit	Amount
Benzene	Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
alpha-Chlorotoluene 0.50 Not Detected 3.4 Not Detected Bromodichloromethane 0.50 Not Detected 3.4 Not Detected Bromomethane 5.0 Not Detected 1.9 Not Detected Bromomethane 5.0 Not Detected 1.9 Not Detected 2-Butanone (Methyl Ethyl Ketone) 2.0 Not Detected 6.2 Not Detected Carbon Disulfide 0.50 Not Detected 6.2 Not Detected Carbon Disulfide 0.50 Not Detected 3.1 Not Detected Chiorobenzene 0.50 Not Detected 3.1 Not Detected Chiorosthane 2.0 Not Detected 4.2 Not Detected Chlorosthane 2.0 Not Detected 5.3 Not Detected Chlorosthane 5.0 Not Detected 5.3 Not Detected Chlorosthane 5.0 Not Detected 3.8 Not Detected 1,2-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,2	Acetone	5.0	Not Detected	12	Not Detected
Bromodichloromethane 0.50 Not Detected 3.4 Not Detected Bromonform 0.50 Not Detected 5.2 Not Detected Bromomethane 5.0 Not Detected 1.9 Not Detected 2-Butanone (Methyl Ethyl Ketone) 2.0 Not Detected 5.9 Not Detected Carbon Tetrachloride 0.50 Not Detected 3.1 Not Detected Carbon Tetrachloride 0.50 Not Detected 3.1 Not Detected Chiorobenzene 0.50 Not Detected 2.3 Not Detected Chloroform 0.50 Not Detected 4.2 Not Detected Chloroform 0.50 Not Detected 2.4 Not Detected Chloromethane 5.0 Not Detected 1.0 Not Detected Chloromethane (EDB) 0.50 Not Detected 3.8 Not Detected L2-Dischlorobenzene 0.50 Not Detected 3.0 Not Detected 1,2-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected	Benzene	0.50	Not Detected	1.6	Not Detected
Bromoform 0.50 Not Detected 5.2 Not Detected Bromomethane 5.0 Not Detected 19 Not Detected 2-Butanone (Methyl Ethyl Ketone) 2.0 Not Detected 5.9 Not Detected Carbon Disulfide 2.0 Not Detected 6.2 Not Detected Carbon Tetrachloride 0.50 Not Detected 2.3 Not Detected Chlorobenzene 0.50 Not Detected 2.3 Not Detected Chlorobethane 0.50 Not Detected 4.2 Not Detected Chlororethane 0.50 Not Detected 5.3 Not Detected Chloromethane 0.50 Not Detected 2.4 Not Detected Chloromethane (EDB) 0.50 Not Detected 3.8 Not Detected Chloromethane (EDB) 0.50 Not Detected 3.0 Not Detected 1,2-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,3-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected	alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
Bromomethane	Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
2-Butanone (Methyl Ethyl Ketone) 2.0 Not Detected 5.9 Not Detected Carbon Disulfide 2.0 Not Detected 3.1 Not Detected Carbon Terrachloride 0.50 Not Detected 3.1 Not Detected Chlorobenzene 0.50 Not Detected 2.3 Not Detected Chloroethane 0.50 Not Detected 4.2 Not Detected Chloroform 0.50 Not Detected 5.3 Not Detected Chloromethane 5.0 Not Detected 1.4 Not Detected Chloromethane (EDB) 0.50 Not Detected 1.0 Not Detected Chloromethane (EDB) 0.50 Not Detected 3.8 Not Detected Chloromethane (EDB) 0.50 Not Detected 3.0 Not Detected 1,2-Dichloroebrazene 0.50 Not Detected 3.0 Not Detected 1,4-Dichloroebrazene 0.50 Not Detected 3.0 Not Detected 1,1-Dichloroebrazene 0.50 Not Detected 2.0 Not Detected	Bromoform	0.50	Not Detected	5.2	Not Detected
Carbon Disulfide 2.0 Not Detected 6.2 Not Detected Carbon Tetrachloride 0.50 Not Detected 3.1 Not Detected Chlorobenzene 0.50 Not Detected 2.3 Not Detected Dibromochloromethane 0.50 Not Detected 4.2 Not Detected Chlorosethane 2.0 Not Detected 5.3 Not Detected Chloroform 0.50 Not Detected 2.4 Not Detected Chloromethane 5.0 Not Detected 1.0 Not Detected 1,2-Dichlorobenzene 0.50 Not Detected 3.8 Not Detected 1,2-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,2-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,4-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,4-Dichlorobenzene 0.50 Not Detected 2.0 Not Detected 1,4-Dichlorobenzene 0.50 Not Detected 2.0 Not Detected	Bromomethane	5.0	Not Detected	19	Not Detected
Carbon Tetrachloride 0.50 Not Detected 3.1 Not Detected Chlorobenzene 0.50 Not Detected 2.3 Not Detected Dibromochloromethane 0.50 Not Detected 4.2 Not Detected Chlorosthane 2.0 Not Detected 4.2 Not Detected Chloromethane 5.0 Not Detected 2.4 Not Detected Chloromethane 5.0 Not Detected 1.0 Not Detected Chloromethane (EDB) 0.50 Not Detected 3.8 Not Detected 1,2-Dibromoethane (EDB) 0.50 Not Detected 3.0 Not Detected 1,2-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,3-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,4-Dichlorobenzene 0.50 Not Detected 2.0 Not Detected 1,2-Dichlorobenthane 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropthane 0.50 Not Detected 2.0 Not Detected	2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
Chlorobenzene 0.50 Not Detected 2.3 Not Detected Dibromochloromethane 0.50 Not Detected 4.2 Not Detected Chloroethane 2.0 Not Detected 5.3 Not Detected Chloroform 0.50 Not Detected 2.4 Not Detected Chloromethane 5.0 Not Detected 10 Not Detected 1,2-Dichlorobenzene 0.50 Not Detected 3.8 Not Detected 1,2-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,3-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,4-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,4-Dichlorobenzene 0.50 Not Detected 2.0 Not Detected 1,1-Dichloroethane 0.50 Not Detected 2.5 Not Detected 1,2-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethane 0.50 Not Detected 2.0 Not Detected	Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
Dibromochloromethane 0.50 Not Detected 4.2 Not Detected Chloroform 0.50 Not Detected 2.4 Not Detected Chloroform 0.50 Not Detected 2.4 Not Detected Chloromethane 5.0 Not Detected 1.0 Not Detected 1,2-Dibromoethane (EDB) 0.50 Not Detected 3.8 Not Detected 1,2-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,3-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,4-Dichloroethane 0.50 Not Detected 3.0 Not Detected 1,1-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethane 0.50 Not Detected 2.5 Not Detected 1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected	Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
Chloroethane 2.0 Not Detected 5.3 Not Detected Chloroform 0.50 Not Detected 2.4 Not Detected Chloromethane 5.0 Not Detected 10 Not Detected 1,2-Dibromoethane (EDB) 0.50 Not Detected 3.8 Not Detected 1,2-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,4-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,4-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,4-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethane 0.50 Not Detected 2.5 Not Detected 1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropropane 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropropane 0.50 Not Detected 2.3 Not Detected	Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Chloroform 0.50 Not Detected 2.4 Not Detected Chloromethane 5.0 Not Detected 10 Not Detected 1,2-Dichlorobenzene 0.50 Not Detected 3.8 Not Detected 1,2-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,3-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,4-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,1-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropropane 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropropane 0.50 Not Detected 2.3 Not Detected	Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
Chloromethane 5.0 Not Detected 1.0 Not Detected 1,2-Dibriomoethane (EDB) 0.50 Not Detected 3.8 Not Detected 1,2-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,3-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,4-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,1-Dichloroethane 0.50 Not Detected 2.5 Not Detected 1,2-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropropane 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropropane 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropropene 0.50 Not Detected 2.3 Not Detected 1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected	Chloroethane	2.0	Not Detected	5.3	Not Detected
1,2-Dibromoethane (EDB) 0.50 Not Detected 3.8 Not Detected 1,2-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,4-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,4-Dichlorobenzene 0.50 Not Detected 2.0 Not Detected 1,1-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroptene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropropane 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropropene 0.50 Not Detected 2.3 Not Detected 1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected 1,2-Dichloropropene 0.50 Not Detected 2.3 Not Det	Chloroform	0.50	Not Detected	2.4	Not Detected
1,2-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,3-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,4-Dichlorobenzene 0.50 Not Detected 2.0 Not Detected 1,1-Dichloroethane 0.50 Not Detected 2.5 Not Detected 1,2-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,1-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropropane 0.50 Not Detected 2.3 Not Detected 1,2-Dichloropropene 0.50 Not Detected 2.3 Not Detected 1,2-Dichloropropene 0.50 Not Detected 2.3 Not Detected	Chloromethane	5.0	Not Detected	10	Not Detected
1,3-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,4-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,1-Dichloroethane 0.50 Not Detected 2.0 Not Detected Freon 12 0.50 Not Detected 2.5 Not Detected 1,2-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,1-Dichloroethene 0.50 Not Detected 2.0 Not Detected cis-1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropropane 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropropane 0.50 Not Detected 2.3 Not Detected <td>1,2-Dibromoethane (EDB)</td> <td>0.50</td> <td>Not Detected</td> <td>3.8</td> <td>Not Detected</td>	1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
1,4-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,1-Dichloroethane 0.50 Not Detected 2.0 Not Detected Freon 12 0.50 Not Detected 2.5 Not Detected 1,2-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,1-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropropene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropropane 0.50 Not Detected 2.3 Not Detected 1,2-Dichloropropene 0.50 Not Detected 2.3 Not Detected	1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,1-Dichloroethane 0.50 Not Detected 2.0 Not Detected Freon 12 0.50 Not Detected 2.5 Not Detected 1,2-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,1-Dichloroethene 0.50 Not Detected 2.0 Not Detected cis-1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected trans-1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected trans-1,2-Dichloropropane 0.50 Not Detected 2.0 Not Detected trans-1,3-Dichloropropane 0.50 Not Detected 2.3 Not Detected trans-1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected trans-1,2-Dichloroprop	1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
Freon 12 0.50 Not Detected 2.5 Not Detected 1,2-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,1-Dichloroethene 0.50 Not Detected 2.0 Not Detected cis-1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected trans-1,2-Dichloropropene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropropane 0.50 Not Detected 2.3 Not Detected cis-1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected trans-1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected Freon 114 0.50 Not Detected 3.5 Not Detected Ethyl Benzene 0.50 Not Detected 3.5 Not Detected 4-Ethyltoluene 0.50 Not Detected 2.2 Not Detected 4-Ethyltoluene 2.0 Not Detected 2.1 Not Detected 4-Hexanone 2.0 Not Detected 3.2 Not Detected	1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2-Dichloroethane0.50Not Detected2.0Not Detected1,1-Dichloroethene0.50Not Detected2.0Not Detectedcis-1,2-Dichloroethene0.50Not Detected2.0Not Detectedtrans-1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloropropane0.50Not Detected2.3Not Detectedcis-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not DetectedErron 1140.50Not Detected2.3Not DetectedEthyl Benzene0.50Not Detected3.5Not Detected4-Ethyltoluene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not DetectedHexachlorobutadiene2.0Not Detected2.1Not Detected2-Hexanone2.0Not Detected8.2Not Detected4-Methyl-2-pentanone0.50Not Detected1.7Not DetectedStyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected1,2,4-Trichlorobenzene0.50Not Detected1.9Not Detected1,2,4-Trichloroethane0.50Not Detected2	1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
1,1-Dichloroethene0.50Not Detected2.0Not Detectedcis-1,2-Dichloroethene0.50Not Detected2.0Not Detectedtrans-1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloropropane0.50Not Detected2.3Not Detectedcis-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not DetectedFreon 1140.50Not Detected3.5Not DetectedEthyl Benzene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not DetectedHexachlorobutadiene2.0Not Detected2.1Not Detected2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not DetectedStyrene0.50Not Detected2.0Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not Detected1,2,4-Trichlorobenzene2.0Not Detected1.9Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7<	Freon 12	0.50	Not Detected	2.5	Not Detected
cis-1,2-Dichloroethene0.50Not Detected2.0Not Detectedtrans-1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloropropane0.50Not Detected2.3Not Detectedcis-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not DetectedFreon 1140.50Not Detected3.5Not DetectedEthyl Benzene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not DetectedHexachlorobutadiene2.0Not Detected2.1Not Detected2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not DetectedStyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not Detected1,2,4-Trichloroethane0.50Not Detected1.9Not Detected1,2,4-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7 <td>1,2-Dichloroethane</td> <td>0.50</td> <td>Not Detected</td> <td>2.0</td> <td>Not Detected</td>	1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
trans-1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropropane 0.50 Not Detected 2.3 Not Detected cis-1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected trans-1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected trans-1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected Ethyl Benzene 0.50 Not Detected 3.5 Not Detected Ethyl Benzene 0.50 Not Detected 2.2 Not Detected 4-Ethyltoluene 0.50 Not Detected 2.4 Not Detected 4-Ethyltoluene 0.50 Not Detected 2.4 Not Detected 4-Ethyltoluene 2.0 Not Detected 2.1 Not Detected 4-Hexachlorobutadiene 2.0 Not Detected 2.1 Not Detected 4-Methylene Chloride 5.0 Not Detected 1.7 Not Detected 4-Methyl-2-pentanone 0.50 Not Detected 2.0 Not Detected 5tyrene 0.50 Not Detected 2.1 Not Detected 1.1,1,2,2-Tetrachloroethane 0.50 Not Detected 3.4 Not Detected 1.1,1,2,2-Tetrachloroethane 0.50 Not Detected 1.9 Not Detected 1.2,4-Trichloroethane 0.50 Not Detected 1.5 Not Detected 1.1,1,2-Trichloroethane 0.50 Not Detected 2.7 No	1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
1,2-Dichloropropane0.50Not Detected2.3Not Detectedcis-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not DetectedFreon 1140.50Not Detected3.5Not DetectedEthyl Benzene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not DetectedHexachlorobutadiene2.0Not Detected2.1Not Detected2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not DetectedStyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not DetectedToluene0.50Not Detected1.9Not Detected1,2,4-Trichlorobenzene2.0Not Detected1.5Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
cis-1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected trans-1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected Freon 114 0.50 Not Detected 3.5 Not Detected Ethyl Benzene 0.50 Not Detected 2.2 Not Detected 4-Ethyltoluene 0.50 Not Detected 2.4 Not Detected 4-Ethyltoluene 0.50 Not Detected 2.4 Not Detected 2-Hexanchorobutadiene 2.0 Not Detected 2.1 Not Detected 2-Hexanchor 2.0 Not Detected 8.2 Not Detected Methylene Chloride 5.0 Not Detected 17 Not Detected 4-Methyl-2-pentanone 0.50 Not Detected 2.0 Not Detected 3.4 Not Detected 3.1,1,2,2-Tetrachloroethane 0.50 Not Detected 3.4 Not Detected 1,1,2,2-Tetrachloroethane 0.50 Not Detected 3.4 Not Detected 1,2,4-Trichlorobenzene 2.0 Not Detected 1.9 Not Detected 1,2,4-Trichloroethane 0.50 Not Detected 2.7 Not Detected 1,1,1-Trichloroethane 0.50 Not Detected 2.7 Not Detected 1,1,1,2-Trichloroethane 0.50 Not Detected 2.7 Not Detect	trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
trans-1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected Freon 114 0.50 Not Detected 3.5 Not Detected Ethyl Benzene 0.50 Not Detected 2.2 Not Detected 4-Ethyltoluene 0.50 Not Detected 2.4 Not Detected 4-Ethyltoluene 0.50 Not Detected 2.4 Not Detected 2-Hexanone 2.0 Not Detected 2.1 Not Detected 2-Hexanone 2.0 Not Detected 3.2 Not Detected Methylene Chloride 5.0 Not Detected 17 Not Detected 4-Methyl-2-pentanone 0.50 Not Detected 2.0 Not Detected 3.4 Not Detected 3.1 Not Detected 3.1,1,2,2-Tetrachloroethane 0.50 Not Detected 3.4 Not Detected 1,1,2,2-Tetrachloroethane 0.50 Not Detected 3.4 Not Detected 1,2,4-Trichlorobenzene 2.0 Not Detected 1.9 Not Detected 1,2,4-Trichloroethane 0.50 Not Detected 1.9 Not Detected 1,1,1-Trichloroethane 0.50 Not Detected 2.7 Not Detected 1,1,1,2-Trichloroethane 0.50 Not	1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
Freon 114 0.50 Not Detected 3.5 Not Detected Ethyl Benzene 0.50 Not Detected 2.2 Not Detected 4-Ethyltoluene 0.50 Not Detected 2.4 Not Detected 4-Ethyltoluene 0.50 Not Detected 2.4 Not Detected Ethyltoluene 2.0 Not Detected 2.4 Not Detected 2-Hexachlorobutadiene 2.0 Not Detected 8.2 Not Detected Methylene Chloride 5.0 Not Detected 17 Not Detected 4-Methyl-2-pentanone 0.50 Not Detected 2.0 Not Detected 5tyrene 0.50 Not Detected 2.1 Not Detected 1,1,2,2-Tetrachloroethane 0.50 Not Detected 3.4 Not Detected 1,1,2,2-Tetrachloroethane 0.50 Not Detected 3.4 Not Detected 1,2,4-Trichlorobenzene 2.0 Not Detected 1.9 Not Detected 1,2,4-Trichloroethane 0.50 Not Detected 2.7 Not Detected 1,1,1-Trichloroethane 0.50 Not Detected 2.7 Not Detected 1,1,1-Trichloroethane 0.50 Not Detected 2.7 Not Detected 1,1,1-Trichloroethane 0.50 Not Detected 2.7 Not Detected 1,1,1,2-Trichloroethane 0.50 Not Detected 2.7 Not Detected 1,1,1,2,2-Trichloroethane 0.50 Not Detected 2.7 Not Detected 1,1,1,2,2-Trichloroethane 0.50 Not Detected 2.7 Not Detected 1,1,1,2,2-Trichloroethane 0.50 Not Detected 2.7 Not Detected 1,1,1	cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not DetectedHexachlorobutadiene2.0Not Detected21Not Detected2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not DetectedStyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not DetectedToluene0.50Not Detected1.9Not Detected1,2,4-Trichlorobenzene2.0Not Detected1.5Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Ethyltoluene0.50Not Detected2.4Not DetectedHexachlorobutadiene2.0Not Detected21Not Detected2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not DetectedStyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not DetectedToluene0.50Not Detected1.9Not Detected1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	Freon 114	0.50	Not Detected	3.5	Not Detected
Hexachlorobutadiene2.0Not Detected21Not Detected2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not DetectedStyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not DetectedToluene0.50Not Detected1.9Not Detected1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not DetectedStyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not DetectedToluene0.50Not Detected1.9Not Detected1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
Methylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not DetectedStyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not DetectedToluene0.50Not Detected1.9Not Detected1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
4-Methyl-2-pentanone0.50Not Detected2.0Not DetectedStyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not DetectedToluene0.50Not Detected1.9Not Detected1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	2-Hexanone	2.0	Not Detected	8.2	Not Detected
Styrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not DetectedToluene0.50Not Detected1.9Not Detected1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	Methylene Chloride	5.0	Not Detected	17	Not Detected
1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not DetectedToluene0.50Not Detected1.9Not Detected1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Tetrachloroethene0.50Not Detected3.4Not DetectedToluene0.50Not Detected1.9Not Detected1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	Styrene	0.50	Not Detected	2.1	Not Detected
Toluene0.50Not Detected1.9Not Detected1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	Toluene	0.50	Not Detected	1.9	Not Detected
1,1,2-Trichloroethane 0.50 Not Detected 2.7 Not Detected	1,2,4-Trichlorobenzene	2.0	Not Detected		Not Detected
	1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Trichloroethene 0.50 Not Detected 2.7 Not Detected	1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
	Trichloroethene	0.50	Not Detected	2.7	Not Detected

***** eurofins **Air Toxics**

> Client Sample ID: Lab Blank Lab ID#: 2209338-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p091906g 1.00	Date of Collection: NA Date of Analysis: 9/19/22 12:10 PM		/22 12:10 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.50	Not Detected	2.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
TVOC Ref. to Hexane	10	Not Detected	35	Not Detected

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	100	70-130	
1,2-Dichloroethane-d4	101	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: CCV Lab ID#: 2209338-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p091902 **Date of Collection: NA** Dil. Factor: Date of Analysis: 9/19/22 09:47 AM 1.00

Compound	%Recovery
Acetone	100
Benzene	108
alpha-Chlorotoluene	106
Bromodichloromethane	113
Bromoform	122
Bromomethane	112
2-Butanone (Methyl Ethyl Ketone)	101
Carbon Disulfide	105
Carbon Tetrachloride	112
Chlorobenzene	105
Dibromochloromethane	115
Chloroethane	104
Chloroform	108
Chloromethane	140 Q
1,2-Dibromoethane (EDB)	109
1,2-Dichlorobenzene	111
1,3-Dichlorobenzene	112
1,4-Dichlorobenzene	112
1,1-Dichloroethane	110
Freon 12	112
1,2-Dichloroethane	113
1,1-Dichloroethene	100
cis-1,2-Dichloroethene	104
trans-1,2-Dichloroethene	103
1,2-Dichloropropane	103
cis-1,3-Dichloropropene	106
trans-1,3-Dichloropropene	111
Freon 114	118
Ethyl Benzene	104
4-Ethyltoluene	107
Hexachlorobutadiene	119
2-Hexanone	103
Methylene Chloride	108
4-Methyl-2-pentanone	103
Styrene	106
1,1,2,2-Tetrachloroethane	107
Tetrachloroethene	117
Toluene	106
1,2,4-Trichlorobenzene	110
1,1,1-Trichloroethane	99
1,1,2-Trichloroethane	107
Trichloroethene	106

***** eurofins **Air Toxics**

> **Client Sample ID: CCV** Lab ID#: 2209338-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p091902	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/19/22 09:47 AM

Compound	%Recovery	
Freon 11	112	_
Freon 113	109	
1,2,4-Trimethylbenzene	105	
1,3,5-Trimethylbenzene	106	
Vinyl Acetate	106	
Vinyl Chloride	102	
m,p-Xylene	105	
o-Xylene	103	
TVOC Ref. to Hexane	100	

Q = Exceeds Quality Control limits. **Container Type: NA - Not Applicable**

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	100	70-130	
1,2-Dichloroethane-d4	102	70-130	
4-Bromofluorobenzene	113	70-130	

eurofins

Client Sample ID: LCS Lab ID#: 2209338-04A

Air Toxics

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p091903	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/19/22 10:13 AM

Dil. Factor:	1.00 Date of Analysi	9/19/22 10:13 AM	
		Method	
Compound	%Recovery	Limits	
Acetone	101	70-130	
Benzene	110	70-130	
alpha-Chlorotoluene	105	70-130	
Bromodichloromethane	114	70-130	
Bromoform	123	70-130	
Bromomethane	114	70-130	
2-Butanone (Methyl Ethyl Ketone)	103	70-130	
Carbon Disulfide	109	70-130	
Carbon Tetrachloride	117	70-130	
Chlorobenzene	108	70-130	
Dibromochloromethane	117	70-130	
Chloroethane	108	70-130	
Chloroform	110	70-130	
Chloromethane	139 Q	70-130	
1,2-Dibromoethane (EDB)	112	70-130	
1,2-Dichlorobenzene	111	70-130	
1,3-Dichlorobenzene	112	70-130	
1,4-Dichlorobenzene	110	70-130	
1,1-Dichloroethane	113	70-130	
Freon 12	118	70-130	
1,2-Dichloroethane	116	70-130	
1,1-Dichloroethene	101	70-130	
cis-1,2-Dichloroethene	105	70-130	
trans-1,2-Dichloroethene	108	70-130	
1,2-Dichloropropane	104	70-130	
cis-1,3-Dichloropropene	109	70-130	
trans-1,3-Dichloropropene	115	70-130	
Freon 114	98	70-130	
Ethyl Benzene	108	70-130	
4-Ethvltoluene	109	70-130	
Hexachlorobutadiene	125	70-130	
2-Hexanone	103	70-130	
Methylene Chloride	109	70-130	
4-Methyl-2-pentanone	102	70-130	
Styrene	106	70-130	
1,1,2,2-Tetrachloroethane	110	70-130	
Tetrachloroethene	119	70-130	
Toluene	107	70-130	
1,2,4-Trichlorobenzene	113	70-130	
1,1,1-Trichloroethane	105	70-130	
1,1,2-Trichloroethane	113	70-130	
1, 1,4-11101110106111a116	110	70-130	

Client Sample ID: LCS Lab ID#: 2209338-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p091903	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/19/22 10:13 AM

		Method
Compound	%Recovery	Limits
Freon 11	116	70-130
Freon 113	110	70-130
1,2,4-Trimethylbenzene	106	70-130
1,3,5-Trimethylbenzene	107	70-130
Vinyl Acetate	Not Spiked	
Vinyl Chloride	116	70-130
m,p-Xylene	107	70-130
o-Xylene	104	70-130
TVOC Ref. to Hexane	Not Spiked	

Q = Exceeds Quality Control limits.

Container Type: NA - Not Applicable

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	100	70-130	
1,2-Dichloroethane-d4	105	70-130	
4-Bromofluorobenzene	109	70-130	

Client Sample ID: LCSD Lab ID#: 2209338-04AA

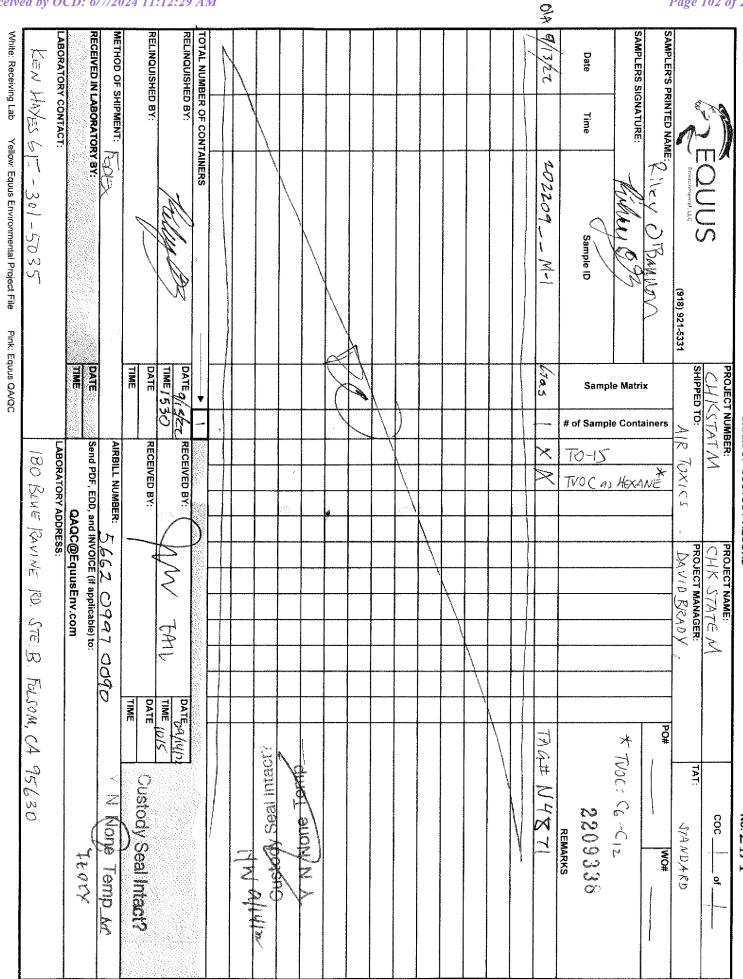
EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p091904	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/19/22 10:40 AM

Dil. Factor:	1.00 Date of Analysi	s: 9/19/22 10:40 AM
		Method
Compound	%Recovery	Limits
Acetone	104	70-130
Benzene	107	70-130
alpha-Chlorotoluene	103	70-130
Bromodichloromethane	110	70-130
Bromoform	120	70-130
Bromomethane	109	70-130
2-Butanone (Methyl Ethyl Ketone)	105	70-130
Carbon Disulfide	109	70-130
Carbon Tetrachloride	113	70-130
Chlorobenzene	106	70-130
Dibromochloromethane	114	70-130
Chloroethane	108	70-130
Chloroform	110	70-130
Chloromethane	139 Q	70-130
1,2-Dibromoethane (EDB)	109	70-130
1,2-Dichlorobenzene	109	70-130
1,3-Dichlorobenzene	110	70-130
1,4-Dichlorobenzene	108	70-130
1,1-Dichloroethane	113	70-130
Freon 12	118	70-130
1,2-Dichloroethane	113	70-130
1,1-Dichloroethene	103	70-130
cis-1,2-Dichloroethene	108	70-130
trans-1,2-Dichloroethene	109	70-130
1,2-Dichloropropane	102	70-130
cis-1,3-Dichloropropene	105	70-130
trans-1,3-Dichloropropene	112	70-130
Freon 114	98	70-130
Ethyl Benzene	106	70-130
4-Ethyltoluene	106	70-130
Hexachlorobutadiene		70-130
2-Hexanone	101	70-130
Methylene Chloride	109	70-130
4-Methyl-2-pentanone	100	70-130
Styrene	105	70-130
1,1,2,2-Tetrachloroethane	1 08	70-130
Tetrachloroethene	115	70-130
Toluene	104	70-130
1,2,4-Trichlorobenzene	122	70-130
1,1,1-Trichloroethane	104	70-130
1,1,2-Trichloroethane		70-130
Trichloroethene	108	70-130

***** eurofins **Air Toxics**

> **Client Sample ID: LCSD** Lab ID#: 2209338-04AA


EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p091904	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/19/22 10:40 AM

		Method	
Compound	%Recovery	Limits	
Freon 11	116	70-130	
Freon 113	112	70-130	
1,2,4-Trimethylbenzene	103	70-130	
1,3,5-Trimethylbenzene	104	70-130	
Vinyl Acetate	Not Spiked		
Vinyl Chloride	118	70-130	
m,p-Xylene	105	70-130	
o-Xylene	103	70-130	
TVOC Ref. to Hexane	Not Spiked		

Q = Exceeds Quality Control limits. **Container Type: NA - Not Applicable**

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	99	70-130	
1,2-Dichloroethane-d4	104	70-130	
4-Bromofluorobenzene	109	70-130	

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation Job Number: 180-144803-1

SDG Number: Property ID: 891077 **List Source: Eurofins Pittsburgh**

Login Number: 144803

List Number: 1 Creator: Hayes, Ken

Answer Comment Question

Radioactivity wasn't checked or is </= background as measured by a survey meter.

The cooler's custody seal, if present, is intact.

Sample custody seals, if present, are intact.

The cooler or samples do not appear to have been compromised or tampered with.

Samples were received on ice.

Cooler Temperature is acceptable.

Cooler Temperature is recorded.

COC is present.

COC is filled out in ink and legible.

COC is filled out with all pertinent information.

Is the Field Sampler's name present on COC?

There are no discrepancies between the containers received and the COC.

Samples are received within Holding Time (excluding tests with immediate HTs)

Sample containers have legible labels.

Containers are not broken or leaking.

Sample collection date/times are provided.

Appropriate sample containers are used.

Sample bottles are completely filled.

Sample Preservation Verified.

There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Multiphasic samples are not present.

Samples do not require splitting or compositing.

Residual Chlorine Checked.

Environment Testing

ANALYTICAL REPORT

2

2

4

5

6

۹ Q

PREPARED FOR

Attn: Chase Acker Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Generated 2/7/2023 10:52:44 AM

JOB DESCRIPTION

CHK STATE M SDG NUMBER Property ID: 891077

JOB NUMBER

180-149988-1

Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh PA 15238

Eurofins Pittsburgh

Job Notes

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing Northeast, LLC Pittsburgh and its client. All questions regarding this report should be directed to the Eurofins Environment Testing Northeast, LLC Pittsburgh Project Manager or designee who has signed this report.

PA Lab ID: 02-00416

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Pittsburgh Project Manager.

Authorization

Generated 2/7/2023 10:52:44 AM

Authorized for release by Ken Hayes, Project Manager II Ken.Hayes@et.eurofinsus.com (615)301-5035

Kuntll Hage

Eurofins Pittsburgh is a laboratory within Eurofins Environment Testing Northeast LLC, a company within Eurofins Environment Testing Group of Companies

Page 2 of 27

Released to Imaging: 6/11/2024 3:27:47 PM

2/7/2023

,

-

А

_

6

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Laboratory Job ID: 180-149988-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Definitions/Glossary	5
Sample Summary	6
Method Summary	7
Subcontract Data	
Chain of Custody	22
Receipt Checklists	2

Case Narrative

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 180-149988-1

SDG: Property ID: 891077

Job ID: 180-149988-1

Laboratory: Eurofins Pittsburgh

Narrative

Job Narrative 180-149988-1

Comments

No additional comments.

The sample was received on 12/8/2022 10:50 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Subcontract Work

Method TO 15: This method was subcontracted to Eurofins Air Toxics. The subcontract laboratory certification is different from that of the facility issuing the final report.

Definitions/Glossary

Client: Chesapeake Energy Corporation Job ID: 180-149988-1 Project/Site: CHK STATE M SDG: Property ID: 891077

Glossary

MDA

MDC

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

Minimum Detectable Activity (Radiochemistry)

Minimum Detectable Concentration (Radiochemistry)

NEG Negative / Absent POS Positive / Present PQL Practical Quantitation Limit

PRES Presumptive Quality Control QC

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Sample Summary

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 180-149988-1

SDG: Property ID: 891077

Lab Sample ID Client Sample ID Collected Received Matrix 180-149988-1 20221207__M-1 Air 12/07/22 11:55 12/08/22 10:50

Method Summary

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 180-149988-1

SDG: Property ID: 891077

Method	Method Description	Protocol	Laboratory
TO-15	TO-15	EPA	Eurofins

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

Eurofins = Eurofins Air Toxics, 180 Blue Ravine Road, Suite B, Folsom, CA 95630

12/27/2022

Mr. Ken Hayes
Eurofins Environment Testing
500 Wilson Pike Circle Suite 100

Brentwood TN 37027

Project Name: CHK STATE M

Project #: CHKSTATM Workorder #: 2212275

Dear Mr. Ken Hayes

The following report includes the data for the above referenced project for sample(s) received on 12/8/2022 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Brian Whattaker

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Brian Whittaker at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Brian Whittaker

Project Manager

Air Toxics

WORK ORDER #: 2212275

Work Order Summary

CLIENT: Mr. Ken Hayes BILL TO: Accounts Payable

Eurofins Environment Testing

Eurofins Environment Testing

500 Wilson Pike Circle Suite 100

4104 Shuffel St NW North Canton, OH 44720

Brentwood, TN 37027

PHONE: FAX:

800-765-0980

P.O. # 23737

615-726-3404

PROJECT#

CHKSTATM CHK STATE M

DECEIDT

ETNIAT

DATE RECEIVED: DATE COMPLETED: 12/08/2022 12/27/2022

CONTACT: Brian Whittaker

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	20221207 M-1	TO-15	6.5 "Hg	1.5 psi
02A	Lab Blank	TO-15	NA	NA
03A	CCV	TO-15	NA	NA
04A	LCS	TO-15	NA	NA
04AA	LCSD	TO-15	NA	NA

CERTIFIED BY:

12/27/22 DATE:

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP - E87680, LA NELAP - 02089, NH NELAP - 209221, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-21-17, UT NELAP - CA009332021-13, VA NELAP - 10615, WA NELAP - C935

Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-015, Effective date: 10/18/2021, Expiration date: 10/17/2022.

Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 351-8279

LABORATORY NARRATIVE **EPA Method TO-15 Eurofins Environment Testing** Workorder# 2212275

One 6 Liter Summa Canister sample was received on December 08, 2022. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

A single point calibration for TVOC (Total Volatile Organic Compounds) referenced to Hexane was performed for each daily analytical batch. Recovery is reported as 100% in the associated results for each CCV.

TVOC (Total Volatile Organic Compounds) referenced to Hexane includes area counts for peaks that elute from Hexane minus 0.08 minutes to Naphthalene plus 0.08 minutes and quantitating the area based on the response factor of Hexane.

Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.
 - M Reported value may be biased due to apparent matrix interferences.
 - CN See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

Released to Imaging: 6/11/2024 3:27:47 PM

- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Page 3 of 14

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: 20221207 M-1

Lab ID#: 2212275-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	0.70	1.1	2.2	3.4
4-Ethyltoluene	0.70	7.9	3.5	39
Toluene	0.70	0.94	2.6	3.5
1,2,4-Trimethylbenzene	0.70	6.1	3.5	30
1,3,5-Trimethylbenzene	0.70	6.5	3.5	32
m,p-Xylene	0.70	2.1	3.1	9.1
TVOC Ref. to Hexane	14	8800	50	31000

Client Sample ID: 20221207 M-1 Lab ID#: 2212275-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3122228 1.41		of Collection: 12/ of Analysis: 12/23	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	7.0	Not Detected	17	Not Detected
Benzene	0.70	1.1	2.2	3.4
alpha-Chlorotoluene	0.70	Not Detected	3.6	Not Detected
Bromodichloromethane	0.70	Not Detected	4.7	Not Detected
Bromoform	0.70	Not Detected	7.3	Not Detected
Bromomethane	7.0	Not Detected	27	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.8	Not Detected	8.3	Not Detected
Carbon Disulfide	2.8	Not Detected	8.8	Not Detected
Carbon Tetrachloride	0.70	Not Detected	4.4	Not Detected
Chlorobenzene	0.70	Not Detected	3.2	Not Detected
Dibromochloromethane	0.70	Not Detected	6.0	Not Detected
Chloroethane	2.8	Not Detected	7.4	Not Detected
Chloroform	0.70	Not Detected	3.4	Not Detected
Chloromethane	7.0	Not Detected	14	Not Detected
1,2-Dibromoethane (EDB)	0.70	Not Detected	5.4	Not Detected
1,2-Dichlorobenzene	0.70	Not Detected	4.2	Not Detected
1,3-Dichlorobenzene	0.70	Not Detected	4.2	Not Detected
1,4-Dichlorobenzene	0.70	Not Detected	4.2	Not Detected
1,1-Dichloroethane	0.70	Not Detected	2.8	Not Detected
Freon 12	0.70	Not Detected	3.5	Not Detected
1,2-Dichloroethane	0.70	Not Detected	2.8	Not Detected
1,1-Dichloroethene	0.70	Not Detected	2.8	Not Detected
cis-1,2-Dichloroethene	0.70	Not Detected	2.8	Not Detected
trans-1,2-Dichloroethene	0.70	Not Detected	2.8	Not Detected
1,2-Dichloropropane	0.70	Not Detected	3.2	Not Detected
cis-1,3-Dichloropropene	0.70	Not Detected	3.2	Not Detected
trans-1,3-Dichloropropene	0.70	Not Detected	3.2	Not Detected
Freon 114	0.70	Not Detected	4.9	Not Detected
Ethyl Benzene	0.70	Not Detected	3.1	Not Detected
4-Ethyltoluene	0.70	7.9	3.5	39
Hexachlorobutadiene	2.8	Not Detected	30	Not Detected
2-Hexanone	2.8	Not Detected	12	Not Detected
Methylene Chloride	7.0	Not Detected	24	Not Detected
4-Methyl-2-pentanone	0.70	Not Detected	2.9	Not Detected
Styrene	0.70	Not Detected	3.0	Not Detected
1,1,2,2-Tetrachloroethane	0.70	Not Detected	4.8	Not Detected
Tetrachloroethene	0.70	Not Detected	4.8	Not Detected
Toluene	0.70	0.94	2.6	3.5
1,2,4-Trichlorobenzene	2.8	Not Detected	21	Not Detected
1,1,1-Trichloroethane	0.70	Not Detected	3.8	Not Detected
1,1,2-Trichloroethane	0.70	Not Detected	3.8	Not Detected
Trichloroethene	0.70	Not Detected	3.8	Not Detected

Air Toxics

Client Sample ID: 20221207 M-1 Lab ID#: 2212275-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3122228	Date of Collection: 12/7/22 11:55:00 AM
Dil. Factor:	1.41	Date of Analysis: 12/23/22 01:16 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.70	Not Detected	4.0	Not Detected
Freon 113	0.70	Not Detected	5.4	Not Detected
1,2,4-Trimethylbenzene	0.70	6.1	3.5	30
1,3,5-Trimethylbenzene	0.70	6.5	3.5	32
Vinyl Acetate	2.8	Not Detected	9.9	Not Detected
Vinyl Chloride	0.70	Not Detected	1.8	Not Detected
m,p-Xylene	0.70	2.1	3.1	9.1
o-Xylene	0.70	Not Detected	3.1	Not Detected
TVOC Ref. to Hexane	14	8800	50	31000

Container Type: 6 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	109	70-130	
1,2-Dichloroethane-d4	104	70-130	
4-Bromofluorobenzene	99	70-130	

Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2212275-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3122205e	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/22/22 11:56 AM

Dil. Factor:	1.00	Date of Analysis: 12/22/22 11:56 AM		2/22 11:56 AM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Acetone	5.0	Not Detected	12	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Freon 12	0.50	Not Detected	2.5	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected

Client Sample ID: Lab Blank Lab ID#: 2212275-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3122205e 1.00		of Collection: NA of Analysis: 12/22	2/22 11:56 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.50	Not Detected	2.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
TVOC Ref. to Hexane	10	Not Detected	35	Not Detected

Container Type: NA - Not Applicable

Surrogates	%Recovery	Method Limits	
Toluene-d8	92	70-130	
1,2-Dichloroethane-d4	102	70-130	
4-Bromofluorobenzene	100	70-130	

eurofins Air Toxics

Client Sample ID: CCV Lab ID#: 2212275-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3122202	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/22/22 10:36 AM

Compound	%Recovery	
Acetone	87	
Benzene	94	
alpha-Chlorotoluene	101	
Bromodichloromethane	101	
Bromoform	103	
Bromomethane	100	
2-Butanone (Methyl Ethyl Ketone)	88	
Carbon Disulfide	86	
Carbon Tetrachloride	100	
Chlorobenzene	95	
Dibromochloromethane	101	
Chloroethane	86	
Chloroform	93	
Chloromethane	94	
1,2-Dibromoethane (EDB)	94	
1,2-Dichlorobenzene	100	
1,3-Dichlorobenzene	100	
1,4-Dichlorobenzene	100	
1,1-Dichloroethane	90	
Freon 12	100	
1,2-Dichloroethane	98	
1,1-Dichloroethene	93	
cis-1,2-Dichloroethene	95	
trans-1,2-Dichloroethene	92	
1,2-Dichloropropane	93	
cis-1,3-Dichloropropene	101	
trans-1,3-Dichloropropene	95	
Freon 114	95	
Ethyl Benzene	97	
4-Ethyltoluene	102	
Hexachlorobutadiene	108	
2-Hexanone	93	
Methylene Chloride	93	
4-Methyl-2-pentanone	94	
Styrene	101	
1,1,2,2-Tetrachloroethane	92	
Tetrachloroethene	100	
Toluene	98	
1,2,4-Trichlorobenzene	100	
1,1,1-Trichloroethane	94	
1,1,2-Trichloroethane	94	
	99	

eurofins | Air Toxics

Client Sample ID: CCV Lab ID#: 2212275-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3122202	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/22/22 10:36 AM

Compound	%Recovery	
Freon 11	102	_
Freon 113	94	
1,2,4-Trimethylbenzene	101	
1,3,5-Trimethylbenzene	100	
Vinyl Acetate	98	
Vinyl Chloride	87	
m,p-Xylene	97	
o-Xylene	100	
TVOC Ref. to Hexane	100	

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	105	70-130	
1,2-Dichloroethane-d4	101	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: LCS Lab ID#: 2212275-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3122203	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/22/22 11:02 AM

Dil. Factor:	1.00 Date of Analysi	: 12/22/22 11:02 AM	
Compound	%Recovery	Method Limits	
Acetone	87	70-130	
Benzene	84	70-130	
alpha-Chlorotoluene	106	70-130	
Bromodichloromethane	90	70-130	
Bromoform	109	70-130	
Bromomethane		70-130	
2-Butanone (Methyl Ethyl Ketone)	90	70-130	
Carbon Disulfide	89	70-130	
Carbon Tetrachloride	104	70-130	
Chlorobenzene	99	70-130	
Dibromochloromethane	106	70-130	
Chloroethane	95	70-130	
Chloroform	96	70-130	
Chloromethane	101	70-130	
1,2-Dibromoethane (EDB)	98	70-130	
1,2-Dichlorobenzene	106	70-130	
1,3-Dichlorobenzene	105	70-130	
1,4-Dichlorobenzene	105	70-130	
1,1-Dichloroethane	93	70-130	
Freon 12	104	70-130	
1,2-Dichloroethane	87	70-130	
1,1-Dichloroethene	96	70-130	
cis-1,2-Dichloroethene	99	70-130	
trans-1,2-Dichloroethene	97	70-130	
1,2-Dichloropropane	83	70-130	
cis-1,3-Dichloropropene	90	70-130	
trans-1,3-Dichloropropene	99	70-130	
Freon 114	99	70-130	
Ethyl Benzene	102	70-130	
4-Ethyltoluene	107	70-130	
Hexachlorobutadiene	126	70-130	
2-Hexanone	100	70-130	
Methylene Chloride	93	70-130	
4-Methyl-2-pentanone	85	70-130	
Styrene	106	70-130	
1,1,2,2-Tetrachloroethane	99	70-130	
Tetrachloroethene	105	70-130	
Toluene	87	70-130	
1,2,4-Trichlorobenzene	117	70-130	
1,1,1-Trichloroethane	101	70-130	
1,1,2-Trichloroethane	102	70-130	
Trichloroethene	90	70-130	

eurofins

Air Toxics Client Sample ID: LCS

Lab ID#: 2212275-04A

EPA	METHOD	TO-15	GC/MS	FULL SCAN

File Name:	3122203	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/22/22 11:02 AM

		Method
Compound	%Recovery	Limits
Freon 11	107	70-130
Freon 113	98	70-130
1,2,4-Trimethylbenzene	107	70-130
1,3,5-Trimethylbenzene	104	70-130
Vinyl Acetate	Not Spiked	
Vinyl Chloride	104	70-130
m,p-Xylene	103	70-130
o-Xylene	103	70-130
TVOC Ref. to Hexane	Not Spiked	

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	90	70-130	
1,2-Dichloroethane-d4	101	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: LCSD Lab ID#: 2212275-04AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3122204	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/22/22 11:27 AM

DII. Factor: 1.00	Date of Analys	nalysis: 12/22/22 11:27 AM	
Compound	%Recovery	Method Limits	
Acetone	87	70-130	
Benzene	98	70-130	
alpha-Chlorotoluene	105	70-130	
Bromodichloromethane	103	70-130	
Bromoform	108	70-130	
Bromomethane	<u>1</u> 03	70-130	
2-Butanone (Methyl Ethyl Ketone)	91	70-130	
Carbon Disulfide	89	70-130	
Carbon Tetrachloride	104	70-130	
Chlorobenzene	98	70-130	
Dibromochloromethane		70-130	
Chloroethane	92	70-130	
Chloroform	95	70-130	
Chloromethane	98	70-130	
1,2-Dibromoethane (EDB)	98	70-130	
1,2-Dichlorobenzene	105	70-130	
1,3-Dichlorobenzene	104	70-130	
1,4-Dichlorobenzene	104	70-130	
1,1-Dichloroethane	93	70-130	
Freon 12	104	70-130	
1,2-Dichloroethane	100	70-130	
1,1-Dichloroethene	95	70-130	
cis-1,2-Dichloroethene	101	70-130	
trans-1,2-Dichloroethene	96	70-130	
1,2-Dichloropropane	96	70-130	
cis-1,3-Dichloropropene	104	70-130	
trans-1,3-Dichloropropene	97	70-130	
Freon 114	97	70-130	
Ethyl Benzene	101	70-130	
4-Ethyltoluene	106	70-130	
Hexachlorobutadiene	125	70-130	
2-Hexanone	100	70-130	
Methylene Chloride	91	70-130	
4-Methyl-2-pentanone	99	70-130	
Styrene	105	70-130	
1,1,2,2-Tetrachloroethane	98	70-130	
Tetrachloroethene	105	70-130	
Toluene	101	70-130	
1,2,4-Trichlorobenzene	118	70-130	
1,1,1-Trichloroethane	101	70-130	
1,1,2-Trichloroethane	101	70-130	
Trichloroethene	104	70-130	

***** eurofins

Δ

5

7

Air Toxics

Client Sample ID: LCSD Lab ID#: 2212275-04AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3122204	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/22/22 11:27 AM

		Method
Compound	%Recovery	Limits
Freon 11	105	70-130
Freon 113	98	70-130
1,2,4-Trimethylbenzene	106	70-130
1,3,5-Trimethylbenzene	102	70-130
Vinyl Acetate	Not Spiked	
Vinyl Chloride	103	70-130
m,p-Xylene	102	70-130
o-Xylene	102	70-130
TVOC Ref. to Hexane	Not Spiked	

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	105	70-130	
1,2-Dichloroethane-d4	102	70-130	
4-Bromofluorobenzene	101	70-130	

Eurofins Air Toxics Sample Receipt Confirmation Cover Page

Thank you for choosing Eurofins Air Toxics (EATL). We have received your samples and have listed any Sample Receipt Descrepancies below.

In order to expedite analysis and reporting, please review the attached information for accuracy.

For corrections call: Air Toxics, Ltd. at 916-985-1000

EATL will proceed with the analysis as specified on the Chain of Custody (COC) and Sample Receipt Summary page.

Please note: The Sample Receipt Confirmation, including the total workorder charge, is subject to change upon secondary review. Our aim is to provide a confirmation to you in a timely manner. Sample Receipt Discrepancies, if any, may not include discrepancies regarding sample receipt pressure(s). Additionally, the COC will be provided with the final report.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630

(916) 985-1000 .FAX (916) 985-1020 Hours 6:30 A.M to 5:30 P.M. PST 1

2

4

5

8

O

SAMPLE RECEIPT SUMMARY

WORKORDER 2212275

500 Wilson Pike Circle Suite 100

Date Promised: 12/21/22 Client **Phone**

Date Completed: Mr. Ken Hayes

800-765-0980 **Date Received:** 12/8/22 **Eurofins Environment Testing PO#:**

Fax

Brentwood, TN 37027 Project#: CHKSTATM CHK STATE M 615-726-3404

Total \$: \$ 140.00 Sales Rep: TA

Logged By: KCB

Fraction Sample # **Analysis Collected** Amount\$ 01A 20221207 M-1 TO-15 12/7/2022 \$120.00

Misc. Charges 6 Liter Summa Canister (1) @ \$20.00 each., Shipment 145264 \$20.00

Note: Samples received after 3 P.M. PST are considered to be received on the following work day.

Atlas Project Name/Profile#: EQUUS/23738

Accounts Payable **BILL TO:**

Eurofins Environment Testing

4104 Shuffel St NW Analysis Code: TO-14A

North Canton, OH 44720

TERMS:

Reporting Method: TO-15 (Sp)-Eurofins TA (CEC, OK)

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

> Page 1 Page 23 of 27

4

5

8

Method: TO-15 (Sp)-Eurofins TA (CEC, OK)

CAS Number	Compound	Rpt. Limit (ppbv)
67-64-1	Acetone	5.0
71-43-2	Benzene	0.50
100-44-7	alpha-Chlorotoluene	0.50
75-27-4	Bromodichloromethane	0.50
75-25-2	Bromoform	0.50
74-83-9	Bromomethane	5.0
78-93-3	2-Butanone (Methyl Ethyl Ketone)	2.0
75-15-0	Carbon Disulfide	2.0
56-23-5	Carbon Tetrachloride	0.50
108-90-7	Chlorobenzene	0.50
124-48-1	Dibromochloromethane	0.50
75-00-3	Chloroethane	2.0
67-66-3	Chloroform	0.50
74-87-3	Chloromethane	5.0
106-93-4	1,2-Dibromoethane (EDB)	0.50
95-50-1	1,2-Dichlorobenzene	0.50
541-73-1	1,3-Dichlorobenzene	0.50
106-46-7	1,4-Dichlorobenzene	0.50
75-34-3	1,1-Dichloroethane	0.50
75-71-8	Freon 12	0.50
107-06-2	1,2-Dichloroethane	0.50
75-35-4	1,1-Dichloroethene	0.50
156-59-2	cis-1,2-Dichloroethene	0.50
156-60-5	trans-1,2-Dichloroethene	0.50
78-87-5	1,2-Dichloropropane	0.50
10061-01-5	cis-1,3-Dichloropropene	0.50
10061-02-6	trans-1,3-Dichloropropene	0.50
76-14-2	Freon 114	0.50
100-41-4	Ethyl Benzene	0.50
622-96-8	4-Ethyltoluene	0.50
87-68-3	Hexachlorobutadiene	2.0
591-78-6	2-Hexanone	2.0
75-09-2	Methylene Chloride	5.0
108-10-1	4-Methyl-2-pentanone	0.50
100-42-5	Styrene	0.50
79-34-5	1,1,2,2-Tetrachloroethane	0.50
127-18-4	Tetrachloroethene	0.50
108-88-3	Toluene	0.50
120-82-1	1,2,4-Trichlorobenzene	2.0
71-55-6	1,1,1-Trichloroethane	0.50

5

7

8

5

eurofins | Air Toxics

Method: TO-15 (Sp)-Eurofins TA (CEC, OK)

CAS Number	Compound	Rpt. Limit (ppbv)
79-00-5	1,1,2-Trichloroethane	0.50
79-01-6	Trichloroethene	0.50
75-69-4	Freon 11	0.50
76-13-1	Freon 113	0.50
95-63-6	1,2,4-Trimethylbenzene	0.50
108-67-8	1,3,5-Trimethylbenzene	0.50
108-05-4	Vinyl Acetate	2.0
75-01-4	Vinyl Chloride	0.50
108-38-3	m,p-Xylene	0.50
95-47-6	o-Xylene	0.50
9999-9999-500	TVOC Ref. to Hexane	10

CAS Number	Surrogate	Method Limits	
2037-26-5	Toluene-d8	70-130	
17060-07-0	1,2-Dichloroethane-d4	70-130	
460-00-4	4-Bromofluorobenzene	70-130	

2/7/2023

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Job N

Job Number: 180-149988-1 SDG Number: Property ID: 891077

....

Login Number: 149988 List Source: Eurofins Pittsburgh

List Number: 1

Creator: Abernathy, Eric L

Greator: Apernatny, Eric L		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

e 130 0j 220

Environment Testing

ANALYTICAL REPORT

1

2

S

PREPARED FOR

Attn: Chase Acker Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Generated 3/21/2023 8:22:39 PM

JOB DESCRIPTION

CHK STATE M SDG NUMBER Property ID: 891077

JOB NUMBER

180-153824-1

Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh PA 15238

Eurofins Pittsburgh

Job Notes

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing Northeast, LLC Pittsburgh and its client. All questions regarding this report should be directed to the Eurofins Environment Testing Northeast, LLC Pittsburgh Project Manager or designee who has signed this report.

PA Lab ID: 02-00416

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Pittsburgh Project Manager.

Authorization

Generated 3/21/2023 8:22:39 PM

Authorized for release by Ken Hayes, Project Manager II Ken.Hayes@et.eurofinsus.com (615)301-5035

Kuth Hage

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Laboratory Job ID: 180-153824-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Definitions/Glossary	5
Sample Summary	6
Subcontract Data	7
Chain of Custody	22
Receipt Checklists	26

Case Narrative

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 180-153824-1

SDG: Property ID: 891077

Job ID: 180-153824-1

Laboratory: Eurofins Pittsburgh

Narrative

Job Narrative 180-153824-1

Comments

No additional comments.

Receipt

The sample was received on 3/8/2023 9:53 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Method TO 15: This method was subcontracted to Eurofins Air Toxics. The subcontract laboratory certification is different from that of the facility issuing the final report.

3

Definitions/Glossary

Client: Chesapeake Energy Corporation

Limit of Quantitation (DoD/DOE)

Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

EPA recommended "Maximum Contaminant Level"

Job ID: 180-153824-1 Project/Site: CHK STATE M SDG: Property ID: 891077

Glossary

LOQ

MCL

TEQ

TNTC

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac **Dilution Factor** Detection Limit (DoD/DOE) DL DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision Level Concentration (Radiochemistry) **EDL** Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit MI Minimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit NC Not Calculated Not Detected at the reporting limit (or MDL or EDL if shown) ND NEG Negative / Absent POS Positive / Present **PQL Practical Quantitation Limit PRES** Presumptive **Quality Control** 0C**RER** Relative Error Ratio (Radiochemistry) RL Reporting Limit or Requested Limit (Radiochemistry) **RPD** Relative Percent Difference, a measure of the relative difference between two points TEF Toxicity Equivalent Factor (Dioxin)

Sample Summary

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Job ID: 180-153824-1

SDG: Property ID: 891077

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-153824-1	20230307M-1	Air	03/07/23 00:01	03/08/23 09:53

Analytical Report

3/21/2023
Mr. Ken Hayes
Eurofins Environment Testing
500 Wilson Pike Circle Suite 100

Brentwood TN 37027

Project Name: STATE M Project #: CHKSTATM Workorder #: 2303318

Dear Mr. Ken Hayes

The following report includes the data for the above referenced project for sample(s) received on 3/8/2023 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Brian Whattaker

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Brian Whittaker at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Brian Whittaker

Project Manager

Air Toxics

WORK ORDER #: 2303318

Work Order Summary

CLIENT: Mr. Ken Hayes

BILL TO: Accounts Payable

Eurofins Environment Testing

Eurofins Environment Testing

500 Wilson Pike Circle Suite 100

180 S Van Buren Ave. Barberton, OH 44203

Brentwood, TN 37027

P.O. # 180-153824-1

PHONE: FAX:

800-765-0980 615-726-3404

PROJECT # CHKSTATM STATE M

DATE RECEIVED:

03/08/2023

CONTACT: Brian Whittaker

DATE COMPLETED: 03/21/2023

		-	RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	<u>PRESSURE</u>
01A	20230307M-1	TO-15	9.0 "Hg	2 psi
02A	Lab Blank	TO-15	NA	NA
03A	CCV	TO-15	NA	NA
04A	LCS	TO-15	NA	NA
04AA	LCSD	TO-15	NA	NA

CERTIFIED BY:

ment junge

DATE: 03/21/23

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP – 209222, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP – T104704434-22-18, UT NELAP – CA009332022-14, VA NELAP - 12240, WA ELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) CA300005-017 Eurofins Environment Testing Northern California, LLC certifies that the test results contained in this report meet all requirements of the 2016 TNI Standard.

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630

(916) 985-1000 . (800) 985-5955 . FAX (916) 351-8279

LABORATORY NARRATIVE EPA Method TO-15 Eurofins Environment Testing Workorder# 2303318

One 6 Liter Summa Canister sample was received on March 08, 2023. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

Receiving Notes

The Chain of Custody was missing method assignment in the 'Requested Analyses' checkboxes for the associated samples. EATL proceeded with the analysis as per the original contract or verbal agreement.

Analytical Notes

A single point calibration for TVOC (Total Volatile Organic Compounds) referenced to Hexane was performed for each daily analytical batch. Recovery is reported as 100% in the associated results for each CCV.

TVOC (Total Volatile Organic Compounds) referenced to Hexane includes area counts for peaks that elute from Hexane minus 0.08 minutes to Naphthalene plus 0.08 minutes and quantitating the area based on the response factor of Hexane.

Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page. Target compound non-detects in the samples that are associated with high bias in QC analyses have not been flagged.

Dilution was performed on sample 20230307M-1 due to the presence of high level target species.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.
 - M Reported value may be biased due to apparent matrix interferences.
 - CN See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates

3/21/2023

as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Page 4 of 15 Page 10 of 26

3

Δ

5

7

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: 20230307M-1

Lab ID#: 2303318-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
4-Ethyltoluene	3.2	18	16	91
1,2,4-Trimethylbenzene	3.2	11	16	56
1,3,5-Trimethylbenzene	3.2	17	16	82
m,p-Xylene	3.2	5.8	14	25
TVOC Ref. to Hexane	65	17000	230	60000

Air Toxics

Client Sample ID: 20230307M-1 Lab ID#: 2303318-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j031715	Date of Collection: 3/7/23 11:50:00 AM
Dil. Factor:	6.49	Date of Analysis: 3/17/23 04:41 PM

Dil. Factor:	6.49	Date of Analysis: 3/17/23 04:41 PM		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Acetone	32	Not Detected	77	Not Detected
Benzene	3.2	Not Detected	10	Not Detected
alpha-Chlorotoluene	3.2	Not Detected	17	Not Detected
Bromodichloromethane	3.2	Not Detected	22	Not Detected
Bromoform	3.2	Not Detected	34	Not Detected
Bromomethane	32	Not Detected	130	Not Detected
2-Butanone (Methyl Ethyl Ketone)	13	Not Detected	38	Not Detected
Carbon Disulfide	13	Not Detected	40	Not Detected
Carbon Tetrachloride	3.2	Not Detected	20	Not Detected
Chlorobenzene	3.2	Not Detected	15	Not Detected
Dibromochloromethane	3.2	Not Detected	28	Not Detected
Chloroethane	13	Not Detected	34	Not Detected
Chloroform	3.2	Not Detected	16	Not Detected
Chloromethane	32	Not Detected	67	Not Detected
1,2-Dibromoethane (EDB)	3.2	Not Detected	25	Not Detected
1,2-Dichlorobenzene	3.2	Not Detected	20	Not Detected
1,3-Dichlorobenzene	3.2	Not Detected	20	Not Detected
1,4-Dichlorobenzene	3.2	Not Detected	20	Not Detected
1,1-Dichloroethane	3.2	Not Detected	13	Not Detected
Freon 12	3.2	Not Detected	16	Not Detected
1,2-Dichloroethane	3.2	Not Detected	13	Not Detected
1,1-Dichloroethene	3.2	Not Detected	13	Not Detected
cis-1,2-Dichloroethene	3.2	Not Detected	13	Not Detected
trans-1,2-Dichloroethene	3.2	Not Detected	13	Not Detected
1,2-Dichloropropane	3.2	Not Detected	15	Not Detected
cis-1,3-Dichloropropene	3.2	Not Detected	15	Not Detected
trans-1,3-Dichloropropene	3.2	Not Detected	15	Not Detected
Freon 114	3.2	Not Detected	23	Not Detected
Ethyl Benzene	3.2	Not Detected	14	Not Detected
4-Ethyltoluene	3.2	18	16	91
Hexachlorobutadiene	13	Not Detected	140	Not Detected
2-Hexanone	13	Not Detected	53	Not Detected
Methylene Chloride	32	Not Detected	110	Not Detected
4-Methyl-2-pentanone	3.2	Not Detected	13	Not Detected
Styrene	3.2	Not Detected	14	Not Detected
1,1,2,2-Tetrachloroethane	3.2	Not Detected	22	Not Detected
Tetrachloroethene	3.2	Not Detected	22	Not Detected
Toluene	6.5	Not Detected	24	Not Detected
1,2,4-Trichlorobenzene	13	Not Detected	96	Not Detected
1,1,1-Trichloroethane	3.2	Not Detected	18	Not Detected
1,1,2-Trichloroethane	3.2	Not Detected	18	Not Detected
Trichloroethene	3.2	Not Detected	17	Not Detected

***** eurofins **Air Toxics**

Client Sample ID: 20230307M-1 Lab ID#: 2303318-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j031715	Dat	te of Collection: 3/7/2	23 11:50:00 AM
Dil. Factor:	6.49	Dat	te of Analysis: 3/17/2	3 04:41 PM
•	Rpt. Limit	Amount	Rpt. Limit	Amount

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	3.2	Not Detected	18	Not Detected
Freon 113	3.2	Not Detected	25	Not Detected
1,2,4-Trimethylbenzene	3.2	11	16	56
1,3,5-Trimethylbenzene	3.2	17	16	82
Vinyl Acetate	13	Not Detected	46	Not Detected
Vinyl Chloride	3.2	Not Detected	8.3	Not Detected
m,p-Xylene	3.2	5.8	14	25
o-Xylene	3.2	Not Detected	14	Not Detected
TVOC Ref. to Hexane	65	17000	230	60000

Container Type: 6 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	107	70-130	
1,2-Dichloroethane-d4	104	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: Lab Blank Lab ID#: 2303318-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j031708 1.00	Date of Collection: NA Date of Analysis: 3/17/23 11:23 AM		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Acetone	5.0	Not Detected	12	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Freon 12	0.50	Not Detected	2.5	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
Toluene	1.0	Not Detected	3.8	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected

m,p-Xylene

TVOC Ref. to Hexane

o-Xylene

Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2303318-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j031708 1.00	Date of Collection: NA Date of Analysis: 3/17/23 11:23 AM		23 11:23 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.50	Not Detected	2.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected

Not Detected

Not Detected

Not Detected

2.2

2.2

35

Not Detected

Not Detected

Not Detected

0.50

0.50

10

Container Type: NA - Not Applicable

X F		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	103	70-130	
1,2-Dichloroethane-d4	110	70-130	
4-Bromofluorobenzene	99	70-130	

eurofins | Air Toxics

Client Sample ID: CCV Lab ID#: 2303318-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: j031703 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/17/23 06:12 AM

Compound	%Recovery
Acetone	101
Benzene	96
alpha-Chlorotoluene	109
Bromodichloromethane	95
Bromoform	99
Bromomethane	101
2-Butanone (Methyl Ethyl Ketone)	106
Carbon Disulfide	102
Carbon Tetrachloride	105
Chlorobenzene	94
Dibromochloromethane	97
Chloroethane	99
Chloroform	104
Chloromethane	114
1,2-Dibromoethane (EDB)	99
1,2-Dichlorobenzene	104
1,3-Dichlorobenzene	104
1,4-Dichlorobenzene	103
1,1-Dichloroethane	99
Freon 12	107
1,2-Dichloroethane	98
1,1-Dichloroethene	100
cis-1,2-Dichloroethene	109
trans-1,2-Dichloroethene	105
1,2-Dichloropropane	90
cis-1,3-Dichloropropene	96
trans-1,3-Dichloropropene	100
Freon 114	101
Ethyl Benzene	102
4-Ethyltoluene	113
Hexachlorobutadiene	96
2-Hexanone	100
Methylene Chloride	103
4-Methyl-2-pentanone	102
Styrene	112
1,1,2,2-Tetrachloroethane	96
Tetrachloroethene	94
Toluene	94
1,2,4-Trichlorobenzene	101
1,1,1-Trichloroethane	105
1,1,2-Trichloroethane	97
Trichloroethene	97

***** eurofins

Lab ID#: 2303318-03A **EPA METHOD TO-15 GC/MS FULL SCAN**

Client Sample ID: CCV

Air Toxics

File Name: j031703 **Date of Collection: NA** Dil. Factor: 1.00 Date of Analysis: 3/17/23 06:12 AM

Compound	%Recovery	
Freon 11	103	
Freon 113	97	
1,2,4-Trimethylbenzene	110	
1,3,5-Trimethylbenzene	109	
Vinyl Acetate	106	
Vinyl Chloride	100	
m,p-Xylene	108	
o-Xylene	111	
TVOC Ref. to Hexane	100	

Container Type: NA - Not Applicable

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	100	70-130	
1,2-Dichloroethane-d4	105	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: LCS Lab ID#: 2303318-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: j031704 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/17/23 06:45 AM

		Method
Compound	%Recovery	Limits
Acetone	99	70-130
Benzene	96	70-130
alpha-Chlorotoluene	105	70-130
Bromodichloromethane	94	70-130
Bromoform	99	70-130
Bromomethane	104	70-130
2-Butanone (Methyl Ethyl Ketone)	106	70-130
Carbon Disulfide	101	70-130
Carbon Tetrachloride	103	70-130
Chlorobenzene	94	70-130
Dibromochloromethane	98	70-130
Chloroethane	100	70-130
Chloroform	102	70-130
Chloromethane	115	70-130
1,2-Dibromoethane (EDB)	101	70-130
1,2-Dichlorobenzene	102	70-130
1,3-Dichlorobenzene	100	70-130
1,4-Dichlorobenzene	99	70-130
1,1-Dichloroethane	98	70-130
Freon 12	105	70-130
1,2-Dichloroethane	96	70-130
1,1-Dichloroethene	100	70-130
cis-1,2-Dichloroethene	109	70-130
trans-1,2-Dichloroethene	106	70-130
1,2-Dichloropropane	88	70-130
cis-1,3-Dichloropropene	100	70-130
trans-1,3-Dichloropropene	103	70-130
Freon 114	98	70-130
Ethyl Benzene	106	70-130
4-Ethyltoluene	113	70-130
Hexachlorobutadiene	96	70-130
2-Hexanone	110	70-130
Methylene Chloride	101	70-130
4-Methyl-2-pentanone	107	70-130
Styrene	115	70-130
1,1,2,2-Tetrachloroethane	97	70-130
Tetrachloroethene	98	70-130
Toluene	94	70-130
1,2,4-Trichlorobenzene	103	70-130
1,1,1-Trichloroethane	106	70-130
1,1,2-Trichloroethane	102	70-130
Trichloroethene	98	70-130

Air Toxics

Client Sample ID: LCS Lab ID#: 2303318-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: j031704 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/17/23 06:45 AM

		Method
Compound	%Recovery	Limits
Freon 11	102	70-130
Freon 113	96	70-130
1,2,4-Trimethylbenzene	110	70-130
1,3,5-Trimethylbenzene	109	70-130
Vinyl Acetate	125	70-130
Vinyl Chloride	102	70-130
m,p-Xylene	109	70-130
o-Xylene	112	70-130
TVOC Ref. to Hexane	Not Spiked	

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	97	70-130	
1,2-Dichloroethane-d4	102	70-130	
4-Bromofluorobenzene	101	70-130	

eurofins Air Toxics

Client Sample ID: LCSD Lab ID#: 2303318-04AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j031705	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 3/17/23 07:17 AM

Dil. Factor:	1.00 Date of Analysi	: 3/17/23 07:17 AM	
Compound	9/ Pagayary	Method Limits	
Compound	%Recovery		
Acetone	100	70-130	
Benzene	96	70-130	
alpha-Chlorotoluene	105	70-130	
Bromodichloromethane	95	70-130	
Bromoform		70-130	
Bromomethane	102	70-130	
2-Butanone (Methyl Ethyl Ketone)	105	70-130	
Carbon Disulfide	101	70-130	
Carbon Tetrachloride	103	70-130	
Chlorobenzene	94	70-130	
Dibromochloromethane	96	70-130	
Chloroethane	101	70-130	
Chloroform	101	70-130	
Chloromethane	115	70-130	
1,2-Dibromoethane (EDB)	101	70-130	
1,2-Dichlorobenzene	101	70-130	
1,3-Dichlorobenzene	99	70-130	
1,4-Dichlorobenzene	100	70-130	
1,1-Dichloroethane	99	70-130	
Freon 12	105	70-130	
1,2-Dichloroethane	94	70-130	
1,1-Dichloroethene	101	70-130	
cis-1,2-Dichloroethene	109	70-130	
trans-1,2-Dichloroethene	104	70-130	
1,2-Dichloropropane	89	70-130	
cis-1,3-Dichloropropene	101	70-130	
trans-1,3-Dichloropropene	102	70-130	
Freon 114	98	70-130	
Ethyl Benzene	105	70-130	
4-Ethyltoluene	111	70-130	
Hexachlorobutadiene	98	70-130	
2-Hexanone	108	70-130	
Methylene Chloride	100	70-130	
4-Methyl-2-pentanone	110	70-130	
Styrene	113	70-130	
1,1,2,2-Tetrachloroethane	97	70-130	
Tetrachloroethene	97	70-130	
Toluene	93	70-130	
1,2,4-Trichlorobenzene	107	70-130	
1,1,1-Trichloroethane	106	70-130	
1,1,2-Trichloroethane	101	70-130	
Trichloroethene	99	70-130	

Client Sample ID: LCSD Lab ID#: 2303318-04AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j031705	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 3/17/23 07:17 AM

Compound	%Recovery	Method Limits
Freon 11	101	70-130
Freon 113	97	70-130
1,2,4-Trimethylbenzene	110	70-130
1,3,5-Trimethylbenzene	107	70-130
Vinyl Acetate	131 Q	70-130
Vinyl Chloride	103	70-130
m,p-Xylene	108	70-130
o-Xylene	110	70-130
TVOC Ref. to Hexane	Not Spiked	

Q = Exceeds Quality Control limits. **Container Type: NA - Not Applicable**

2/5	Method
%Recovery	Limits
97	70-130
102	70-130
101	70-130
	102

Eurofins Air Toxics Sample Receipt Confirmation Cover Page

Thank you for choosing Eurofins Air Toxics (EATL). We have received your samples and have listed any Sample Receipt Descrepancies below.

In order to expedite analysis and reporting, please review the attached information for accuracy.

For corrections call: Air Toxics, Ltd. at 916-985-1000

EATL will proceed with the analysis as specified on the Chain of Custody (COC) and Sample Receipt Summary page.

Please note: The Sample Receipt Confirmation, including the total workorder charge, is subject to change upon secondary review. Our aim is to provide a confirmation to you in a timely manner. Sample Receipt Discrepancies, if any, may not include discrepancies regarding sample receipt pressure(s). Additionally, the COC will be provided with the final report.

The following discrepancy has been observed:

The Chain of Custody was missing method assignment in the 'Requested Analyses' checkboxes for the associated samples. EATL will proceed with the analysis as per the original contract or verbal agreement unless otherwise notified.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630

(916) 985-1000 .FAX (916) 985-1020 Hours 6:30 A.M to 5:30 P.M. PST

	CS	
PID: Workorder #:	Analysis Request /C:	
	anister Chain of Custody	

Air Toxics

Method: TO-15 (Sp)-Eurofins TA (CEC, OK)

CAS Number	Compound	Rpt. Limit (ppbv)
67-64-1	Acetone	5.0
71-43-2	Benzene	0.50
100-44-7	alpha-Chlorotoluene	0.50
75-27-4	Bromodichloromethane	0.50
75-25-2	Bromoform	0.50
74-83-9	Bromomethane	5.0
78-93-3	2-Butanone (Methyl Ethyl Ketone)	2.0
75-15-0	Carbon Disulfide	2.0
56-23-5	Carbon Tetrachloride	0.50
108-90-7	Chlorobenzene	0.50
124-48-1	Dibromochloromethane	0.50
75-00-3	Chloroethane	2.0
67-66-3	Chloroform	0.50
74-87-3	Chloromethane	5.0
106-93-4	1,2-Dibromoethane (EDB)	0.50
95-50-1	1,2-Dichlorobenzene	0.50
541-73-1	1,3-Dichlorobenzene	0.50
106-46-7	1,4-Dichlorobenzene	0.50
75-34-3	1,1-Dichloroethane	0.50
75-71-8	Freon 12	0.50
107-06-2	1,2-Dichloroethane	0.50
75-35-4	1,1-Dichloroethene	0.50
156-59-2	cis-1,2-Dichloroethene	0.50
156-60-5	trans-1,2-Dichloroethene	0.50
78-87-5	1,2-Dichloropropane	0.50
10061-01-5	cis-1,3-Dichloropropene	0.50
10061-02-6	trans-1,3-Dichloropropene	0.50
76-14-2	Freon 114	0.50
100-41-4	Ethyl Benzene	0.50
622-96-8	4-Ethyltoluene	0.50
87-68-3	Hexachlorobutadiene	2.0
591-78-6	2-Hexanone	2.0
75-09-2	Methylene Chloride	5.0
108-10-1	4-Methyl-2-pentanone	0.50
100-42-5	Styrene	0.50
79-34-5	1,1,2,2-Tetrachloroethane	0.50
127-18-4	Tetrachloroethene	0.50
108-88-3	Toluene	1.0
120-82-1	1,2,4-Trichlorobenzene	2.0
71-55-6	1,1,1-Trichloroethane	0.50

Air Toxics

Method: TO-15 (Sp)-Eurofins TA (CEC, OK)

CAS Number	Compound	Rpt. Limit (ppbv)	
79-00-5	1,1,2-Trichloroethane	0.50	
79-01-6	Trichloroethene	0.50	
75-69-4	Freon 11	0.50	
76-13-1	Freon 113	0.50	
95-63-6	1,2,4-Trimethylbenzene	0.50	
108-67-8	1,3,5-Trimethylbenzene	0.50	
108-05-4	Vinyl Acetate	2.0	
75-01-4	Vinyl Chloride	0.50	
108-38-3	m,p-Xylene	0.50	
95-47-6	o-Xylene	0.50	
9999-9999-500	TVOC Ref. to Hexane	10	

CAS Number	Surrogate	Method Limits	
2037-26-5	Toluene-d8	70-130	
17060-07-0	1,2-Dichloroethane-d4	70-130	
460-00-4	4-Bromofluorobenzene	70-130	

3/21/2023

Client: Chesapeake Energy Corporation

Login Number: 153824

List Number: 1 Creator: Hayes, Ken

Job Number: 180-153824-1 SDG Number: Property ID: 891077

List Source: Eurofins Pittsburgh

Answer Comment Question

Radioactivity wasn't checked or is </= background as measured by a survey meter.

The cooler's custody seal, if present, is intact.

Sample custody seals, if present, are intact.

The cooler or samples do not appear to have been compromised or tampered with.

Samples were received on ice.

Cooler Temperature is acceptable.

Cooler Temperature is recorded.

COC is present.

COC is filled out in ink and legible.

COC is filled out with all pertinent information.

Is the Field Sampler's name present on COC?

There are no discrepancies between the containers received and the COC.

Samples are received within Holding Time (excluding tests with immediate HTs)

Sample containers have legible labels.

Containers are not broken or leaking.

Sample collection date/times are provided.

Appropriate sample containers are used.

Sample bottles are completely filled.

Sample Preservation Verified.

There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

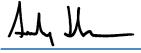
Multiphasic samples are not present.

Samples do not require splitting or compositing.

Residual Chlorine Checked.

Environment Testing America

ANALYTICAL REPORT


Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-140235-1 Client Project/Site: State M-1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Dana Drury

Authorized for release by: 7/8/2022 4:28:43 PM Andy Johnson, Manager of Project Management (615)301-5045 Andy.Johnson@et.eurofinsus.com

Designee for

Ken Hayes, Project Manager II (615)301-5035 Ken.Hayes@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

2

4

5

6

Q

9

11

12

Client: Chesapeake Energy Corporation Project/Site: State M-1

Laboratory Job ID: 180-140235-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Certification Summary	5
Sample Summary	6
Method Summary	7
Lab Chronicle	8
Client Sample Results	9
QC Sample Results	10
QC Association Summary	12
Chain of Custody	13
Receint Checklists	15

Job ID: 180-140235-1

Case Narrative

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-140235-1

Laboratory: Eurofins Pittsburgh

Narrative

Job Narrative 180-140235-1

Comments

No additional comments.

Receipt

The samples were received on 6/23/2022 9:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 5.9° C.

Receipt Exceptions

The following sample was submitted for analysis; however, it was not listed on the Chain-of-Custody (COC): EQ Blank (180-140235-4)

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Definitions/Glossary

Client: Chesapeake Energy Corporation Job ID: 180-140235-1

Project/Site: State M-1

Glossary

AbbreviationThese commonly used abbreviations may or may not be present in this report.Image: Listed under the "D" column to designate that the result is reported on a dry weight basisImage: WR Percent RecoveryCFL Contains Free LiquidCFU Colony Forming UnitCNF Contains No Free LiquidDER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Accreditation/Certification Summary

Client: Chesapeake Energy Corporation Job ID: 180-140235-1

Project/Site: State M-1

Laboratory: Eurofins Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Connecticut	State	PH-0200	09-30-22
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	01-01-23
Massachusetts	State	M-NJ312	06-30-23
New Jersey	NELAP	12028	07-01-23
New York	NELAP	11452	04-01-23
Pennsylvania	NELAP	68-00522	02-28-23
Rhode Island	State	LAO00376	12-31-22
USDA	US Federal Programs	P330-20-00244	11-03-23

-1

3

F

6

8

9

11

12

Sample Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-140235-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-140235-1	MW-4	Water	06/21/22 09:38	06/23/22 09:00
180-140235-2	Dup	Water	06/21/22 00:00	06/23/22 09:00
180-140235-3	MW-1R	Water	06/21/22 11:30	06/23/22 09:00
180-140235-4	EQ Blank	Water	06/21/22 07:40	06/23/22 09:00

3

4

O

8

11

12

Method Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-140235-1

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	TAL EDI
300.0	Anions, Ion Chromatography	MCAWW	TAL EDI
5030C	Purge and Trap	SW846	TAL EDI

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL EDI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Eurofins Pittsburgh

3

4

5

8

9

11

12

1,

Lab Chronicle

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Lab Sample ID: 180-140235-1

Matrix: Water

Matrix: Water

Job ID: 180-140235-1

Date Collected: 06/21/22 09:38 Date Received: 06/23/22 09:00

Client Sample ID: MW-4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10			852004	06/25/22 16:51	OXG	TAL EDI
	Instrument	· ID· IC 1								

Client Sample ID: Dup Lab Sample ID: 180-140235-2 **Matrix: Water**

Date Collected: 06/21/22 00:00 Date Received: 06/23/22 09:00

_										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10			852004	06/25/22 17:06	OXG	TAL EDI

Lab Sample ID: 180-140235-3 Client Sample ID: MW-1R

Date Collected: 06/21/22 11:30

Instrument ID: IC 1

Date Received: 06/23/22 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	852286	06/28/22 03:02	SZD	TAL EDI
	Instrumer	nt ID: CVOAMS17								

Client Sample ID: EQ Blank Lab Sample ID: 180-140235-4 **Matrix: Water**

Date Collected: 06/21/22 07:40 Date Received: 06/23/22 09:00

Prep Type Total/NA	Batch Type Analysis	Batch Method 300.0	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 854032	Prepared or Analyzed 07/07/22 11:57	Analyst OXG	Lab TAL EDI
	Instrumer	t ID: IC 2								

Laboratory References:

TAL EDI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Analyst References:

Lab: TAL EDI Batch Type: Analysis OXG = Olivia Guerrero

SZD = Saurab Desai

Matrix: Water

Matrix: Water

Client: Chesapeake Energy Corporation Project/Site: State M-1

Lab Sample ID: 180-140235-1 Client Sample ID: MW-4 Date Collected: 06/21/22 09:38

Matrix: Water

Date Received: 06/23/22 09:00

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 10.0 06/25/22 16:51 Chloride 414 mg/L

Client Sample ID: Dup Lab Sample ID: 180-140235-2

Date Collected: 06/21/22 00:00

Date Received: 06/23/22 09:00

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chloride 413 10.0 mg/L 06/25/22 17:06 10

Client Sample ID: MW-1R Lab Sample ID: 180-140235-3

Date Collected: 06/21/22 11:30

Date Received: 06/23/22 09:00

Method: 8260D - Volatile Organic Compounds by GC/MS Result Qualifier Analyte RL MDL Unit D Dil Fac Prepared Analyzed Benzene 3.71 0.500 06/28/22 03:02 ug/L 06/28/22 03:02 Ethylbenzene 215 0.500 ug/L **Toluene** 0.902 0.500 ug/L 06/28/22 03:02 **Xylenes, Total** 1.00 ug/L 06/28/22 03:02 261

%Recovery Qualifier Dil Fac Surrogate Limits Prepared Analyzed 80 - 120 06/28/22 03:02 Toluene-d8 (Surr) 109 4-Bromofluorobenzene 100 76 - 120 06/28/22 03:02 77 - 124 Dibromofluoromethane (Surr) 108 06/28/22 03:02 1,2-Dichloroethane-d4 (Surr) 107 70 - 128 06/28/22 03:02

Client Sample ID: EQ Blank Lab Sample ID: 180-140235-4 **Matrix: Water**

Date Collected: 06/21/22 07:40 Date Received: 06/23/22 09:00

Method: 300.0 - Anions, Ion Chromatography

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chloride 11.0 1.00 mg/L 07/07/22 11:57

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-140235-1

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 460-852286/8

Matrix: Water

Analysis Batch: 852286

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MR						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.500	ug/L			06/27/22 20:07	1
Ethylbenzene	ND		0.500	ug/L			06/27/22 20:07	1
Toluene	ND		0.500	ug/L			06/27/22 20:07	1
Xylenes, Total	ND		1.00	ug/L			06/27/22 20:07	1

MB MB %Recovery Qualifier Surrogate Limits Prepared Dil Fac Analyzed Toluene-d8 (Surr) 80 - 120 06/27/22 20:07 106 4-Bromofluorobenzene 95 76 - 120 06/27/22 20:07 109 Dibromofluoromethane (Surr) 77 - 124 06/27/22 20:07 1,2-Dichloroethane-d4 (Surr) 109 70 - 128 06/27/22 20:07

Lab Sample ID: LCS 460-852286/3

Matrix: Water

Analysis Batch: 852286

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

10

	Spike	LUS	LUS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	20.0	19.04		ug/L		95	71 - 126	
Ethylbenzene	20.0	16.62		ug/L		83	78 - 120	
Toluene	20.0	17.45		ug/L		87	78 - 120	
Xylenes, Total	40.0	32.61		ug/L		82	78 - 120	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	109		80 - 120
4-Bromofluorobenzene	98		76 - 120
Dibromofluoromethane (Surr)	105		77 - 124
1,2-Dichloroethane-d4 (Surr)	107		70 - 128

Lab Sample ID: LCSD 460-852286/4

Matrix: Water

Analysis Batch: 852286

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	20.0	20.55		ug/L		103	71 - 126	8	30	
Ethylbenzene	20.0	17.96		ug/L		90	78 - 120	8	30	
Toluene	20.0	18.91		ug/L		95	78 - 120	8	30	
Xylenes, Total	40.0	36.14		ug/L		90	78 - 120	10	30	

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	108		80 - 120
4-Bromofluorobenzene	96		76 - 120
Dibromofluoromethane (Surr)	106		77 - 124
1,2-Dichloroethane-d4 (Surr)	106		70 - 128

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-140235-1

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 460-852004/3 Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 852004

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac D Prepared 1.00 06/25/22 10:09 Chloride ND mg/L

Lab Sample ID: LCS 460-852004/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 852004

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Chloride 3.20 2.902 90 - 110 mg/L 91

Lab Sample ID: LCSD 460-852004/6 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 852004

Spike LCSD LCSD %Rec **RPD** Added Result Qualifier Limits **RPD** Limit **Analyte** Unit %Rec Chloride 3.20 2.908 91 90 - 110 15 mg/L

Lab Sample ID: MB 460-854032/14 Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 854032

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Chloride $\overline{\mathsf{ND}}$ 1.00 07/07/22 13:12 mg/L

Lab Sample ID: LCS 460-854032/16 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 854032

LCS LCS Spike %Rec Analyte Added Result Qualifier Limits Unit %Rec Chloride 3.20 3.054 95 90 - 110 mg/L

Lab Sample ID: LCSD 460-854032/17 Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 854032

RPD Spike LCSD LCSD %Rec Analyte Added Result Qualifier Limits **RPD** Limit Unit D %Rec 3.20 3.042 Chloride mg/L 95 90 - 110

Eurofins Pittsburgh

Prep Type: Total/NA

QC Association Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-140235-1

GC/MS VOA

Analysis Batch: 852286

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-140235-3	MW-1R	Total/NA	Water	8260D	
MB 460-852286/8	Method Blank	Total/NA	Water	8260D	
LCS 460-852286/3	Lab Control Sample	Total/NA	Water	8260D	
LCSD 460-852286/4	Lab Control Sample Dup	Total/NA	Water	8260D	

HPLC/IC

Analysis Batch: 852004

Lab Sample ID 180-140235-1	Client Sample ID MW-4	Prep Type Total/NA	Matrix Water	Method 300.0	Prep Batch
180-140235-2	Dup	Total/NA	Water	300.0	
MB 460-852004/3	Method Blank	Total/NA	Water	300.0	
LCS 460-852004/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 460-852004/6	Lab Control Sample Dup	Total/NA	Water	300.0	

Analysis Batch: 854032

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-140235-4	EQ Blank	Total/NA	Water	300.0	
MB 460-854032/14	Method Blank	Total/NA	Water	300.0	
LCS 460-854032/16	Lab Control Sample	Total/NA	Water	300.0	
LCSD 460-854032/17	Lab Control Sample Dup	Total/NA	Water	300.0	

**************************************	S	CHAIN OF CUSTODY RECORD	CORD	No. 2437	Nec
	PROJECT NUMBER:	IMBER: IT M	PROJECT NAME: CHK STATE M	ooo	
SOOD II	SHIPPED TO:		PROJECT MANAGER:	TAT:	Т
(918) 921-5331		TA-ED150N	DAVID BRADY	57	\neg
SAMPLER'S PRINTED NAME: Terry FISHER		CIANN	#0d	#0M ##	
SAMPLERS SIGNATURE:	aitisM e				
Date Time Sample ID		X278		REMARKS	
6-21-22 938 MW-4	LW/Alter	X		Five PHASE IN MW-1R	
0.0	Late	X			
6-21-22/1130 MW-1K	C Jahr	· ×			
					_
					l
	d				
			180-140235 Chain of Custody		T
	THE PARTY AND TH	relativamente provincia de la companio de la compa	- -		
TOTAL NUMBER OF CONTAINERS	↑				
RELINQUISHED BY:	DATE-21-22	RECEIVED BY:	DATE C/2	3/12	
RELINQUISHED BY:	TIME 1600	RECEIVED BY:	C CTA P(H TIME ?	00	
7	TIME				
метнор оf SHIPMENT: $f_{ extstyle \mathcal{L}} \mathcal{E}_{ extstyle \mathcal{X}}$		AIRBILL NUMBER: 5-173	13 0448 4647		
RECEIVED IN LABORATORY BY:	DATE	Send PDF, EDD, and	Send PDF, EDD, and INVOICE (if applicable) to: QAQC@EquusEnv.com		
LABORATORY CONTACT:		LABORATORY ADDR	LABORATORY ADDRESS:		T
CATHY 615-301-5041		777 NEW DURHAMRD	150 N, NJ	41880	
					, 1

Page 13 of 16

Pink Equus QA/QC

Yellow Equus Environmental Project File

White Receiving Lab

1

2

3

5

5

ر ا

10

12

1:

Interf information (Sub Contract Lab)	Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Phone: 412-963-7058 Fax: 412-963-2468	O	hain c	Chain of Custody Record	tody R	ecol	ō					💸 eurofins	15 Environment Testing America
Environment Testing Nichtbeach Service of Colors Service of	Slient Information (Sub Contract Lab)	Sampler:			Lab P Haye	M. is, Ken				Carrier Tracking N	:(s)o	COC No: 180-464296.	1
Environment Tealing Northeast, Durkheast, Durkheast	Xient Contact: Shipping/Receiving	Phone:			E-Mai Ken	Hayes@	et euro	finsus.co	ے	State of Origin: New Mexico		Page: Page 1 of 1	
The Date Requested (Gays); The Regular (Gays); The	Sompany: Eurofins Environment Testing Northeast,					Accredita	ions Req	uired (See	ote):			Job #:	-
1722-549-3679(Fax) 1722-54	ddress. 777 New Durham Road,	Due Date Requeste	ij.					*	nalvsis	Reguested		Preservation	Sode
1	Sity Edison Siate, Zip A.I. OR817	TAT Requested (da	ys):									A - HCL B - NaOH C - Zn Acetate D - Nitric Acid	
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	hone. '32-549-3900(Tel) 732-549-3679(Fax)	PO #:				(c					-	F - MeOH G - Amchlor H - Ascorbic Ac	70
Sample Family Sample Sample Mutrix Sample Mutrix Sample Mutrix Sample Cereon C	mail:	# OM					epino						
Sample Identification Citent ID (Lab ID) Sample Date Sample Mutrix S	roject Name: .itate M-1	Project #: 49014811											VV - pri 4-5 Y - Trizma Z - other (specify)
Sample General Carlot Ca	ite	SSOW#											
W4 (180-140235-1)	ample identification . Cliant ID (1 ab ID)	Samula Data	Sample		Matrix (w=water, S=solid, O=waste/oll,								
W4 (180-140235-1) 602102 Mountain Water X 1 Up (180-140235-2) 602102 Mountain Water X 1 W-1R (180-140235-2) 602102 11:30 Water X 1 W-1R (180-140235-2) 602102 10:30 Water X 1 W-1R (180-140235-2) 602102 10:30 Water X 1 W-1R (180-140235-2) 602102 10:30 Water X 1 W-1R (180-140235-2) 602102 10:40 Water X X 1 W-1R (180-140235-2) 602102 10:40 Water X X 1 1 Mountle (1000000000000000000000000000000000000				ש ה	ion Code:								II INSTRUCTIONS/NOTE:
Water (180-140235-2) Water (180-140235-3)	W-4 (180-140235-1)	6/21/22	09:38 Mountain		Water		×					-	
W-TR (180-140235-3) Water (180-140235-4) Water X X X X X X X X X X X X X X X X X X X	up (180-140235-2)	6/21/22	Mountain		Water		×					1	
	W-1R (180-140235-3)	6/21/22	11:30 Mountain		Water		×					3	
e. Since laboratory accreditations are subject to change, Eurofins Pitisbuigh places the ownership of method, analyte & accreditation compliance upon out subcontract laboratorys. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently nain accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins Pitisbuigh laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Pitisbuigh. Subject Hazard Identification Sonifirmed Sonifirmed Worth's Special Instructions/QC Requirements: Inne Time Time	- 140255-4 ER	6-21-22	7540		3		~					5	
e Since laboratory accreditations are subject to change. Eurofins Pitisburgh places the ownership of method, analyte & accreditation compliance upon out subcontract laboratorial state of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Pitisburgh laboratory or other matructions will be provided. Any changes to accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Pitisburgh. Sable Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Sonfirmed Sample Disposal By Lab Archive For Months Disposal by ITime													
e Since laboratory accreditations are subject to change, Eurofins Pittsburgh places the ownership of method, analyte & accreditation compliance upon out subcontract laboratory accreditations are subject to change. Eurofins Pittsburgh places the ownership of method, analyte & accreditation compliance upon out subcontract laboratory accreditation in the State of Origin listed above for analysis/test/marix being analyzed, the samples must be shipped back to the Eurofins Pittsburgh aboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Pittsburgh into minediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins Pittsburgh aboratory or other instructions will be provided. Any changes to accreditation before the formation of Custody attesting to said complicance to Eurofins Pittsburgh aboratory or other instructions provided. Any changes to accreditation are currently date instructions provided. Any changes to accreditation the accreditation are currently date in the laboratory does not currently the laboratory are supplied to accreditation and all any page. Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Software the may be assessed if samples are retained longer than 1 month) Software the may be assessed if samples are retained longer than 1 month) Special Instructions/QC Requirements: Time Time													
e. Since laboratory accreditations are subject to change, Eurofins Pittsburgh places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently nation and state of Origin listed above for analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins Pittsburgh hard accreditation are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins Pittsburgh. Sample Mazard Identification Sonfirmed Sonfirmed Return 10 Client Disposal (A fee may be assessed if samples are retained longer than 1 month) Worths Worths Date: Time:							+						
e. Since blootation acceptations are subject to change, Eurofins Pittsburgh places the ownership of method, analyte & accreditation compliance upon out subcontract laboratorias. This sample shipmed broad manages to accreditation status should be brought to Eurofins Pittsburgh is an adversarial and state of Origin islad above for analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins Pittsburgh island accreditation status should be brought to Eurofins Pittsburgh into immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins Pittsburgh. Sable Hazard Identification Softimed Special Instructions/QC Requirements: Date: Dat													
Sample Disposal (A fee may be assessed if samples are retained longer than 1 mo V, Other (specify) Primary Deliverable Rank: 2 Special Instructions/QC Requirements: Archive For Time: Time:	 Since laboratory accreditations are subject to change, Eurofins Pittsburgh p ntain accreditation in the State of Origin listed above for analysis/fiests/matrix t ntion immediately. If all requested accreditations are current to date, return th 	places the ownership o being analyzed, the sa ne signed Chain of Cus	if method, anal imples must be stody attesting	yte & accreditat s shipped back to to said complica	ion compliance to the Eurofins ance to Eurofin	upon out Pittsburgh s Pittsburg	subconfra laborator jh.	act laborato y or other ii	ies. This sar istructions wi	nple shipment is forwan I be provided. Any chai	ded under chain nges to accredite	of-custody. If the lab tion status should be	oratory does not currently brought to Eurofins Pittsburgh
equested: I, III, IV, Other (specify) Primary Deliverable Rank: 2 Special Instructions/QC Requirements:	ssible Hazard Identification					Sam	ple Dis	posal (A	fee may	e assessed if sar	nples are re	ained longer tha	in 1 month)
Date:	confirmed inversible Requested: I, II, III, IV, Other (specify)	Primary Delivera	able Rank: 2			Spe	Retur	n To Clie uctions/C	C Require	─ Disposal By Lat ments:		Archive For	Months
	pty Kit Relinguished by:		Date			Time:				Tree			

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation Job Number: 180-140235-1

List Source: Eurofins Pittsburgh Login Number: 140235

List Number: 1

Creator: Watson, Debbie

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Received extra samples not listed on COC.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation Job Number: 180-140235-1

Login Number: 140235 **List Source: Eurofins Edison** List Creation: 06/24/22 11:53 AM List Number: 2

Creator: Armbruster, Chris

orcator. Armbruster, omis		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.7°C IR9
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Environment Testing America

ANALYTICAL REPORT

Eurofins Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

Laboratory Job ID: 460-265842-1 Client Project/Site: CHK STATE M

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Dana Drury

Authorized for release by:

9/30/2022 6:16:18 PM

Ken Hayes, Project Manager II (615)301-5035

Ken.Hayes@et.eurofinsus.com

····· Links ·····

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env
Released to Imaging: 6/11/2024 3:27:47 PM

Results relate only to the items tested and the sample(s) as received by the laboratory.

3

4

6

0

a

IU

12

15

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Laboratory Job ID: 460-265842-1

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	10
Lab Chronicle	11
Certification Summary	12
Method Summary	13
Sample Summary	14
Chain of Custody	15
Receint Checklists	17

2

3

4

6

8

10

11

13

14

Definitions/Glossary

Client: Chesapeake Energy Corporation

Job ID: 460-265842-1 Project/Site: CHK STATE M

Qualifiers

HPLC/IC

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) **DER**

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Eurofins Edison

Case Narrative

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 460-265842-1

Job ID: 460-265842-1

Laboratory: Eurofins Edison

Narrative

Job Narrative 460-265842-1

Comments

No additional comments.

Receipt

The samples were received on 9/16/2022 10:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 5.4° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

-

4

5

6

Q

9

10

12

IR

Detection Summary

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 460-265842-1

Client Sample ID: Field Blank

Lab Sample ID: 460-265842-1

No Detections.

Client Sample ID: MW-4 Lab Sample ID: 460-265842-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Chloride	412	10.0	mg/L	10	300.0	Total/NA

Client Sample ID: DUP-1 Lab Sample ID: 460-265842-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Chloride	412	10.0	mg/L	10 300.0	Total/NA

Client Sample ID: MW-1R Lab Sample ID: 460-265842-4

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Benzene	3.80	0.500	ug/L	1	8260D	Total/NA
Ethylbenzene	211	0.500	ug/L	1	8260D	Total/NA
Toluene	0.955	0.500	ug/L	1	8260D	Total/NA
Xylenes, Total	235	1.00	ug/L	1	8260D	Total/NA

This Detection Summary does not include radiochemical test results.

Job ID: 460-265842-1

Matrix: Water

Matrix: Water

Client Sample Results

Client: Chesapeake Energy Corporation

Client Sample ID: Field Blank

Project/Site: CHK STATE M

Lab Sample ID: 460-265842-1

Date Collected: 09/13/22 10:25 **Matrix: Water** Date Received: 09/16/22 10:00

Method: 300.0 - Anions, Ion Chromatography

Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Chloride ND 1.00 09/30/22 09:19 mg/L

Client Sample ID: MW-4 Lab Sample ID: 460-265842-2

Date Collected: 09/13/22 12:10 Date Received: 09/16/22 10:00

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Chloride 412 10.0 mg/L 09/30/22 12:45

Client Sample ID: DUP-1 Lab Sample ID: 460-265842-3

Date Collected: 09/13/22 00:00 Date Received: 09/16/22 10:00

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL MDL Unit Prepared Dil Fac Analyzed Chloride 412 10.0 mg/L 09/30/22 13:00 10

Client Sample ID: MW-1R Lab Sample ID: 460-265842-4

Date Collected: 09/13/22 13:30 **Matrix: Water**

Date Received: 09/16/22 10:00

Method: 8260D - Volatile Organic Compounds by GC/MS Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 0.500 09/21/22 12:12 Benzene 3.80 ug/L ug/L Ethylbenzene 211 0.500 09/21/22 12:12 0.500 ug/L 09/21/22 12:12 **Toluene** 0.955 09/21/22 12:12 **Xylenes, Total** 235 1.00 ug/L

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	99	76 - 120		09/21/22 12:12	1
Dibromofluoromethane (Surr)	101	77 - 124		09/21/22 12:12	1
1,2-Dichloroethane-d4 (Surr)	101	70 - 128		09/21/22 12:12	1
Toluene-d8 (Surr)	107	80 - 120		09/21/22 12:12	1

Eurofins Edison

Surrogate Summary

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 460-265842-1

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

BFB DBFM DCA TOL Lab Sample ID Client Sample ID (76-120) (77-124) (70-128) (80-120)
100,005040.4
460-265842-4 MW-1R 99 101 101 107
LCS 460-867400/4 Lab Control Sample 99 101 100 106
LCSD 460-867400/5 Lab Control Sample Dup 101 103 101 108
MB 460-867400/9 Method Blank 99 105 103 107

Surrogate Legend

BFB = 4-Bromofluorobenzene

DBFM = Dibromofluoromethane (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Eurofins Edison

2

1

O

7

8

9

11

13

14

QC Sample Results

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 460-265842-1

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 460-867400/9

Matrix: Water

Analysis Batch: 867400

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MR						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.500	ug/L			09/21/22 08:43	1
Ethylbenzene	ND		0.500	ug/L			09/21/22 08:43	1
Toluene	ND		0.500	ug/L			09/21/22 08:43	1
Xylenes, Total	ND		1.00	ug/L			09/21/22 08:43	1

MB MB Qualifier Limits Prepared Dil Fac Surrogate %Recovery Analyzed 76 - 120 4-Bromofluorobenzene 99 09/21/22 08:43 105 77 - 124 09/21/22 08:43 Dibromofluoromethane (Surr) 1,2-Dichloroethane-d4 (Surr) 103 70 - 128 09/21/22 08:43 Toluene-d8 (Surr) 107 80 - 120 09/21/22 08:43

Lab Sample ID: LCS 460-867400/4

Matrix: Water

Analysis Batch: 867400

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	20.0	24.22		ug/L		121	71 - 126	
Ethylbenzene	20.0	21.79		ug/L		109	78 - 120	
Toluene	20.0	21.77		ug/L		109	78 - 120	
Xylenes, Total	40.0	41.25		ug/L		103	78 - 120	

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene 99 76 - 120 Dibromofluoromethane (Surr) 101 77 - 124 1,2-Dichloroethane-d4 (Surr) 100 70 - 128 106 80 - 120 Toluene-d8 (Surr)

Lab Sample ID: LCSD 460-867400/5

Matrix: Water

Analysis Batch: 867400

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Spike LCSD LCSD %Rec **RPD** RPD **Analyte** Added Result Qualifier Unit D %Rec Limits Limit Benzene 20.0 23.45 ug/L 117 71 - 126 3 30 Ethylbenzene 20.0 20.65 ug/L 103 78 - 120 5 30 20.0 21.20 106 30 Toluene ug/L 78 - 120 3 Xylenes, Total 40.0 40.47 101 78 - 120 30 ug/L

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	101		76 - 120
Dibromofluoromethane (Surr)	103		77 - 124
1,2-Dichloroethane-d4 (Surr)	101		70 - 128
Toluene-d8 (Surr)	108		80 - 120

Dil Fac

QC Sample Results

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 460-265842-1

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

RPD

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

%Rec

Limits

90 - 110

%Rec

Limits

Client Sample ID: Lab Control Sample

Analyzed

09/30/22 05:37

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 460-869166/22

Matrix: Water

Analysis Batch: 869166

MB MB

ND

Analyte Result Qualifier RL **MDL** Unit D **Prepared** Chloride 1.00

Spike

Added

3.20

Spike

Added

3.20

Lab Sample ID: LCS 460-869166/24

Matrix: Water

Analysis Batch: 869166

Analyte

Chloride

Lab Sample ID: LCSD 460-869166/25 **Matrix: Water**

Analysis Batch: 869166

Analyte

Lab Sample ID: MRL 460-869166/23

Matrix: Water

Chloride

Analysis Batch: 869166

Spike Added Analyte Chloride 0.160

MRL MRL

Result Qualifier 0.1495 J

LCS LCS

LCSD LCSD

Result Qualifier

3.014

2.976

Result Qualifier

Unit mg/L

Unit

mg/L

Unit

mg/L

mg/L

%Rec 93

D %Rec

%Rec

93

94

Client Sample ID: Lab Control Sample Dup

%Rec Limits 50 - 150

RPD

Limit

QC Association Summary

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 460-265842-1

GC/MS VOA

Analysis Batch: 867400

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-265842-4	MW-1R	Total/NA	Water	8260D	
MB 460-867400/9	Method Blank	Total/NA	Water	8260D	
LCS 460-867400/4	Lab Control Sample	Total/NA	Water	8260D	
LCSD 460-867400/5	Lab Control Sample Dup	Total/NA	Water	8260D	

HPLC/IC

Analysis Batch: 869166

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-265842-1	Field Blank	Total/NA	Water	300.0	
460-265842-2	MW-4	Total/NA	Water	300.0	
460-265842-3	DUP-1	Total/NA	Water	300.0	
MB 460-869166/22	Method Blank	Total/NA	Water	300.0	
LCS 460-869166/24	Lab Control Sample	Total/NA	Water	300.0	
LCSD 460-869166/25	Lab Control Sample Dup	Total/NA	Water	300.0	
MRL 460-869166/23	Lab Control Sample	Total/NA	Water	300.0	

1

9

10

10

13

14

Lab Chronicle

Client: Chesapeake Energy Corporation

Client Sample ID: Field Blank

Project/Site: CHK STATE M

Lab Sample ID: 460-265842-1

Matrix: Water

Job ID: 460-265842-1

Matrix: Water

Matrix: Water

Matrix: Water

Date Collected: 09/13/22 10:25
Date Received: 09/16/22 10:00

Batch Dilution Batch Batch Prepared Method Number Analyst or Analyzed **Prep Type** Type Run **Factor** Lab 09/30/22 09:19 Total/NA Analysis 300.0 869166 OXG EET EDI

Client Sample ID: MW-4 Lab Sample ID: 460-265842-2

Date Collected: 09/13/22 12:10 Date Received: 09/16/22 10:00

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run Factor **Number Analyst** Lab or Analyzed Total/NA Analysis 300.0 10 869166 OXG EET EDI 09/30/22 12:45

Client Sample ID: DUP-1 Lab Sample ID: 460-265842-3

Date Collected: 09/13/22 00:00 Date Received: 09/16/22 10:00

Batch Batch Dilution Batch Prepared or Analyzed **Prep Type** Method **Factor Number Analyst** Type Run Lab 09/30/22 13:00 EET EDI Total/NA Analysis 300.0 10 869166 OXG

Client Sample ID: MW-1R Lab Sample ID: 460-265842-4

Date Collected: 09/13/22 13:30

Date Received: 09/16/22 10:00

Batch Batch Dilution Batch **Prepared Prep Type** Method Run Factor **Number Analyst** or Analyzed Type Lab Analysis 8260D 867400 SZD EET EDI 09/21/22 12:12 Total/NA

Laboratory References:

EET EDI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Eurofins Edison

1

_

3

5

6

8

9 10

12

1 A

Accreditation/Certification Summary

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 460-265842-1

Laboratory: Eurofins Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Connecticut	State	PH-0200	09-30-22
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	01-01-23
Massachusetts	State	M-NJ312	06-30-23
New Jersey	NELAP	12028	06-30-23
New York	NELAP	11452	04-01-23
Pennsylvania	NELAP	68-00522	02-28-23
Rhode Island	State	LAO00376	12-31-22
USDA	US Federal Programs	P330-20-00244	11-03-23

2

4

5

8

9

11

12

14

Method Summary

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 460-265842-1

rotocol Laboratory

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET EDI
300.0	Anions, Ion Chromatography	MCAWW	EET EDI
5030C	Purge and Trap	SW846	EET EDI

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET EDI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Eurofins Edison

9

3

4

5

7

8

40

11

13

14

Sample Summary

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Job ID: 460-265842-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
460-265842-1	Field Blank	Water	09/13/22 10:25	09/16/22 10:00
460-265842-2	MW-4	Water	09/13/22 12:10	09/16/22 10:00
460-265842-3	DUP-1	Water	09/13/22 00:00	09/16/22 10:00
460-265842-4	MW-1R	Water	09/13/22 13:30	09/16/22 10:00

No. 2473 マイナメイン	coc of	TAT: \$ TANDARD	PO# WO#	M M M M	Distriction .									A61-265842 Chain of Custody			DATE	IIME	AME.				- 08817	
CHAIN OF CUSTODY REC	NUMBER: STATM	TA- ED/SON DAVID		# of Sample	X X	×	XX X	X X				6				7	RECEIVED BY:	BECEIVED BY:		AIRBILL NUMBER:	Send PDF, EDD, and INVOICE (if applicable) to:	QAQC@EquusEnv.com	TTT NEW DURHAM RD. EDIJON D.T	
	PROJECT CH K	Environmental, Lt.C (918) 921-5331	- Iley O'Benna	Date Time Sample ID S	1 9/13/2-11025 Field Pland	4/3/2 1210 MW/4	2 9/3/2 are DuP.1	4 g/3/2 1330 MWIR	29/3/2 0000 Temp Blank							CONTAINERS	RELINQUISHED BY:	RELINQUISHED BY:		X	RECEIVED IN LABORATORY BY:	LABORATORY CONTACT:	KEN HAYES 615-301-5035	White: Receiving Lab Yellow: Equus Environmental Project File Pink: Equus QA/QC

Frequency Cooler #4: Cooler #4: Cooler #4: Cooler #4: Cooler #4: Cooler #4: Cooler #6: Cool	Job Number:	265843	d		Ž	receipt remperature and pri Log			2	S)						
11	Number of Coolers:		1	표	# ung		7	X	9							
Commonia COD Nitrate Nitrate	Cooler	T BWM	C C		00000	er #4:	S S S S S S S S S S S S S S S S S S S	C C C C		0 0 0	ooler #7: ooler #8:		CORRECTED CORRECTED			
If pH adjuster lame/Conc	ALS Sample Number	Ammonia (DH<2)							henols	Sulfide	TKN	TOC	Total Cyanide	Total Phos	Other	Other
Freservative Name/Conc.: Expiration Date: Exp			\vdash	\vdash	\vdash	\vdash	-	-		6	(5.11d)	(7)	(31 (4)	(2)		
Freservative (s):																
Freservative (s):																
Freservative Name/Conc. Expiration Date: Expi																
Figure 1 Figure 1 Figure 2 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 6																
Figure 1 Figure 1 Figure 2 Figure 3 Figure 3 Figure 4 Figure 4 Figure 5 Figure 5 Figure 5 Figure 6 Figure 6																
Figure 1 Figure 1 Figure 1 Figure 2 Figure 3 Figure 3 Figure 4 Figure 4																
Figure 1 Figure 1 Figure 1 Figure 1 Figure 2 Figure 2 Figure 3 Figure 4 Figure 4 Figure 4 Figure 6 Figure 6																
Figure 1 Figure 1																
The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted. Preservative(s): The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted.																
Figure 1 Figure 1 Figure 1 Figure 2 Figure 3 Figure 3																
If pH adjustments are required record the information below: Sample No(s). adjusted: Preservative Name/Conc.: Expiration Date: Expiration Date: The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted.																
Sample No(s). adjustments are required record the information below: Sample No(s). adjusted: Preservative Name/Conc.: Lot # of Preservative(s): The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted.																
Preservative Name/Conc.: Volume of Preservative used (ml):	Sample No.	If pH adjus	tments are	required	record th	e informa	ation belo	:wc								
Lot # of Preservative(s): The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted.	Preservative A	Vame/Conc.:					Volume	e of Prese	rvative us	(ml):						
The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted.	ot # of Dre								[]							
	:	The	appropriate	Project Ma	anager an	d Depart	nent Man	ager shou	uld be not	oli Date. ified abou	it the sam	oles which	n were pH	adjusted.		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			\	,											

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation Job Number: 460-265842-1

List Source: Eurofins Edison Login Number: 265842

List Number: 1

Creator: Sgro, Angela M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Dana Drury Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Generated 12/21/2022 8:50:43 AM

JOB DESCRIPTION

CHK STATE M SDG NUMBER CHSTATM

JOB NUMBER

460-271253-1

Eurofins Edison 777 New Durham Road Edison NJ 08817

Eurofins Edison

Job Notes

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing Northeast, LLC Edison and its client. All questions regarding this report should be directed to the Eurofins Environment Testing Northeast, LLC Edison Project Manager or designee who has signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Generated 12/21/2022 8:50:43 AM

Authorized for release by Ken Hayes, Project Manager II Ken.Hayes@et.eurofinsus.com (615)301-5035

Kuth Hay

4

5

7

Ŏ

10

40

13

14

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Laboratory Job ID: 460-271253-1 SDG: CHSTATM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	12
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receint Checklists	19

Eurofins Edison 12/21/2022

Definitions/Glossary

Client: Chesapeake Energy Corporation

Job ID: 460-271253-1 Project/Site: CHK STATE M

SDG: CHSTATM

Qualifiers

HPLC/IC

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery

CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) **DER**

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) LOQ

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Case Narrative

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 460-271253-1

SDG: CHSTATM

Job ID: 460-271253-1

Laboratory: Eurofins Edison

Narrative

Job Narrative 460-271253-1

Comments

No additional comments.

Receipt

The samples were received on 12/8/2022 10:30 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.2° C.

Receipt Exceptions

Per laboratory policy the Trip Blank sample date/time was added to reflect the latest sample date/time of the sampling event. Trip (460-271253-5)

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Client Sample ID: Eq Blank

Job ID: 460-271253-1

SDG: CHSTATM

Lab Sample ID: 460-271253-1

No Detections.

Client Sample ID: MW-4 Lab Sample ID: 460-271253-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Chloride	398	10.0	mg/L	10	300.0	Total/NA

Lab Sample ID: 460-271253-3 **Client Sample ID: Dup**

Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Chloride	414		10.0	mg/L	10	300.0	Total/NA

Client Sample ID: MW-1R Lab Sample ID: 460-271253-4

Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Benzene	2.55		0.500	ug/L	1	8260D	Total/NA
Ethylbenzene	75.4		0.500	ug/L	1	8260D	Total/NA
Xylenes, Total	76.0		1.00	ug/L	1	8260D	Total/NA

Client Sample ID: Trip Lab Sample ID: 460-271253-5

No Detections.

This Detection Summary does not include radiochemical test results.

Client Sample Results

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 460-271253-1 SDG: CHSTATM

Client Sample ID: Eq Blank

Date Collected: 12/07/22 08:00 Date Received: 12/08/22 10:30

Lab Sample ID: 460-271253-1

Matrix: Water

Matrix: Water

12/17/22 12:51

Method: MCAWW 300.0 - Anions, Ion Chromatography

Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Chloride ND 1.00 12/17/22 11:48 mg/L

Client Sample ID: MW-4 Lab Sample ID: 460-271253-2 Date Collected: 12/07/22 09:15 **Matrix: Water**

Date Received: 12/08/22 10:30

Method: MCAWW 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Chloride 398 10.0 mg/L 12/17/22 12:04

Client Sample ID: Dup Lab Sample ID: 460-271253-3

Date Collected: 12/07/22 00:00 Date Received: 12/08/22 10:30

Method: MCAWW 300.0 - Anions, Ion Chromatography Analyte Result Qualifier **MDL** Unit Dil Fac RL Prepared Analyzed

Client Sample ID: MW-1R Lab Sample ID: 460-271253-4

10.0

mg/L

414

Date Collected: 12/07/22 10:30 **Matrix: Water**

Date Received: 12/08/22 10:30

Chloride

Method: SW846 8260D - Volatile Organic Compounds by GC/MS Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 0.500 12/18/22 21:30 Benzene 2.55 ug/L Ethylbenzene 75.4 0.500 ug/L 12/18/22 21:30 Toluene ND 0.500 ug/L 12/18/22 21:30 **Xylenes, Total** 76.0 1.00 ug/L 12/18/22 21:30

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	107	76 - 120		12/18/22 21:30	1
Dibromofluoromethane (Surr)	108	77 - 124		12/18/22 21:30	1
1,2-Dichloroethane-d4 (Surr)	113	70 - 128		12/18/22 21:30	1
Toluene-d8 (Surr)	101	80 - 120		12/18/22 21:30	1

Client Sample ID: Trip Lab Sample ID: 460-271253-5

Date Received: 12/08/22 10:30

Date Collected: 12/07/22 10:30 **Matrix: Water**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.500		ug/L			12/17/22 21:09	1
Ethylbenzene	ND		0.500		ug/L			12/17/22 21:09	1
Toluene	ND		0.500		ug/L			12/17/22 21:09	1
Xylenes, Total	ND		1.00		ug/L			12/17/22 21:09	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	108	76 - 120		12/17/22 21:09	1
Dibromofluoromethane (Surr)	112	77 - 124		12/17/22 21:09	1
1,2-Dichloroethane-d4 (Surr)	113	70 - 128		12/17/22 21:09	1
Toluene-d8 (Surr)	98	80 - 120		12/17/22 21:09	1

Eurofins Edison

Surrogate Summary

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 460-271253-1

SDG: CHSTATM

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		BFB	DBFM	DCA	TOL
Lab Sample ID	Client Sample ID	(76-120)	(77-124)	(70-128)	(80-120)
460-271253-4	MW-1R	107	108	113	101
460-271253-5	Trip	108	112	113	98
LCS 460-883816/3	Lab Control Sample	107	104	108	98
LCS 460-883960/5	Lab Control Sample	109	102	100	96
LCSD 460-883816/4	Lab Control Sample Dup	108	106	104	96
LCSD 460-883960/6	Lab Control Sample Dup	108	101	98	98
MB 460-883816/8	Method Blank	109	116	114	96
MB 460-883960/9	Method Blank	108	102	108	96

BFB = 4-Bromofluorobenzene

DBFM = Dibromofluoromethane (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

QC Sample Results

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 460-271253-1

SDG: CHSTATM

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 460-883816/8

Matrix: Water

Analysis Batch: 883816

Client S	Sample	ID:	Metho	d B	lank
	Pr	ep ⁻	Type: 7	Гota	I/NA

	MB MB						
Analyte	Result Quali	ifier RL	MDL Unit	D F	Prepared	Analyzed	Dil Fac
Benzene	ND ND	0.500	ug/L			12/17/22 20:47	1
Ethylbenzene	ND	0.500	ug/L			12/17/22 20:47	1
Toluene	ND	0.500	ug/L			12/17/22 20:47	1
Xylenes, Total	ND	1.00	ug/L			12/17/22 20:47	1

	MB	MB			
Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene	109		76 - 120	12/17/22 20:47	1
Dibromofluoromethane (Surr)	116		77 - 124	12/17/22 20:47	1
1,2-Dichloroethane-d4 (Surr)	114		70 - 128	12/17/22 20:47	1
Toluene-d8 (Surr)	96		80 - 120	12/17/22 20:47	1

Lab Sample ID: LCS 460-883816/3

Matrix: Water

Analysis Batch: 883816

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS			%Rec	
Analyte	Added	Result	Qualifier U	nit D	%Rec	Limits	
Benzene	20.0	19.52	uç	g/L	98	71 - 126	
Ethylbenzene	20.0	19.88	uç	g/L	99	78 - 120	
Toluene	20.0	19.39	uç	g/L	97	78 - 120	
Xylenes, Total	40.0	38.94	uç	g/L	97	78 - 120	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	107		76 - 120
Dibromofluoromethane (Surr)	104		77 - 124
1,2-Dichloroethane-d4 (Surr)	108		70 - 128
Toluene-d8 (Surr)	98		80 - 120

Lab Sample ID: LCSD 460-883816/4

Matrix: Water

Analysis Batch: 883816

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD L	LCSD				%Rec		RPD
Analyte	Added	Result C	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	20.0	19.17		ug/L		96	71 - 126	2	30
Ethylbenzene	20.0	20.67		ug/L		103	78 - 120	4	30
Toluene	20.0	19.11		ug/L		96	78 - 120	1	30
Xylenes, Total	40.0	39.67		ug/L		99	78 - 120	2	30

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	108		76 - 120
Dibromofluoromethane (Surr)	106		77 - 124
1,2-Dichloroethane-d4 (Surr)	104		70 - 128
Toluene-d8 (Surr)	96		80 - 120

QC Sample Results

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 460-271253-1

SDG: CHSTATM

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 460-883960/9

Matrix: Water Analysis Batch: 883960 Client Sample ID: Method Blank Prep Type: Total/NA

D Dil Fac

MB MB Result Qualifier RL **MDL** Unit Analyzed Analyte Prepared Benzene ND 0.500 ug/L 12/18/22 20:25 Ethylbenzene ND 0.500 ug/L 12/18/22 20:25 ND Toluene 0.500 ug/L 12/18/22 20:25 ND ug/L 12/18/22 20:25 Xylenes, Total 1.00

MB MB Qualifier Dil Fac Limits Prepared Surrogate %Recovery Analyzed 4-Bromofluorobenzene 108 76 - 120 12/18/22 20:25 102 77 - 124 Dibromofluoromethane (Surr) 12/18/22 20:25 108 70 - 128 1,2-Dichloroethane-d4 (Surr) 12/18/22 20:25 Toluene-d8 (Surr) 96 80 - 120 12/18/22 20:25

Lab Sample ID: LCS 460-883960/5

Matrix: Water

Analysis Batch: 883960

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene 109 76 - 120 102 77 - 124 Dibromofluoromethane (Surr) 100 70 - 128 1,2-Dichloroethane-d4 (Surr) 80 - 120 Toluene-d8 (Surr) 96

Lab Sample ID: LCSD 460-883960/6

Matrix: Water

Analysis Batch: 883960

Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

Spike LCSD LCSD %Rec **RPD Analyte** Added Result Qualifier Unit D %Rec Limits **RPD** I imit Benzene 20.0 19.81 ug/L 99 71 - 126 3 30 Ethylbenzene 20.0 20.74 ug/L 104 78 - 120 6 30 20.0 Toluene 20.15 ug/L 101 78 - 120 3 30 40.0 41.27 103 78 - 120 30 Xylenes, Total ug/L

LCSD LCSD %Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene 108 76 - 120 Dibromofluoromethane (Surr) 101 77 - 124 1,2-Dichloroethane-d4 (Surr) 98 70 - 128 Toluene-d8 (Surr) 98 80 - 120

QC Sample Results

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 460-271253-1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample

SDG: CHSTATM

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 460-883778/3

Matrix: Water

Analysis Batch: 883778

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac D **Prepared** 1.00 12/17/22 10:28 Chloride ND mg/L

Lab Sample ID: LCS 460-883778/5

Matrix: Water

Analysis Batch: 883778

Spike LCS LCS %Rec Analyte Added Result Qualifier D %Rec Limits Unit Chloride 3.20 2.883 90 - 110 mg/L 90

Lab Sample ID: LCSD 460-883778/6

Matrix: Water

Analysis Batch: 883778

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Limits RPD Limit Unit %Rec Chloride 3.20 2.939 92 90 - 110 mg/L

Lab Sample ID: MRL 460-883778/4

Matrix: Water

Analysis Batch: 883778

Spike MRL MRL %Rec Added Analyte Result Qualifier Unit %Rec Limits

Chloride 0.160 0.1658 J 50 - 150 mg/L 104

QC Association Summary

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 460-271253-1 SDG: CHSTATM

GC/MS VOA

Analysis Batch: 883816

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-271253-5	Trip	Total/NA	Water	8260D	
MB 460-883816/8	Method Blank	Total/NA	Water	8260D	
LCS 460-883816/3	Lab Control Sample	Total/NA	Water	8260D	
LCSD 460-883816/4	Lab Control Sample Dup	Total/NA	Water	8260D	

Analysis Batch: 883960

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-271253-4	MW-1R	Total/NA	Water	8260D	
MB 460-883960/9	Method Blank	Total/NA	Water	8260D	
LCS 460-883960/5	Lab Control Sample	Total/NA	Water	8260D	
LCSD 460-883960/6	Lab Control Sample Dup	Total/NA	Water	8260D	

HPLC/IC

Analysis Batch: 883778

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-271253-1	Eq Blank	Total/NA	Water	300.0	
460-271253-2	MW-4	Total/NA	Water	300.0	
460-271253-3	Dup	Total/NA	Water	300.0	
MB 460-883778/3	Method Blank	Total/NA	Water	300.0	
LCS 460-883778/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 460-883778/6	Lab Control Sample Dup	Total/NA	Water	300.0	
MRL 460-883778/4	Lab Control Sample	Total/NA	Water	300.0	

Lab Chronicle

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

SDG: CHSTATM

Job ID: 460-271253-1

Client Sample ID: Eq Blank

Date Collected: 12/07/22 08:00 Date Received: 12/08/22 10:30

Lab Sample ID: 460-271253-1

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	300.0		1	883778	OXG	EET EDI	12/17/22 11:48

Client Sample ID: MW-4 Lab Sample ID: 460-271253-2

Date Collected: 12/07/22 09:15 **Matrix: Water**

Date Received: 12/08/22 10:30

	Batch	Batch		Dilution	Batch		Prepared
Prep Type	Type	Method	Run	Factor	Number Anal	yst Lab	or Analyzed
Total/NA	Analysis	300.0	 -	10	883778 OXG	EET EDI	12/17/22 12:04

Lab Sample ID: 460-271253-3 **Client Sample ID: Dup**

Date Collected: 12/07/22 00:00 **Matrix: Water**

Date Received: 12/08/22 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	300.0		10	883778	OXG	EET EDI	12/17/22 12:51

Lab Sample ID: 460-271253-4

Client Sample ID: MW-1R

Date Collected: 12/07/22 10:30 Date Received: 12/08/22 10:30

Batch **Batch** Dilution Batch **Prepared Prep Type** Type Method Run **Factor Number Analyst** or Analyzed Lab Total/NA Analysis 8260D 883960 KLB EET EDI 12/18/22 21:30

Lab Sample ID: 460-271253-5 Client Sample ID: Trip

Date Collected: 12/07/22 10:30 **Matrix: Water**

Date Received: 12/08/22 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	883816	KLB	EET EDI	12/17/22 21:09

Laboratory References:

EET EDI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Eurofins Edison

Matrix: Water

Accreditation/Certification Summary

Client: Chesapeake Energy Corporation

Job ID: 460-271253-1 Project/Site: CHK STATE M SDG: CHSTATM

Laboratory: Eurofins Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Connecticut	State	PH-0200	11-10-22 *
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	01-01-23
Massachusetts	State	M-NJ312	06-30-23
New Jersey	NELAP	12028	06-30-23
New York	NELAP	11452	04-01-23
Pennsylvania	NELAP	68-00522	02-28-23
Rhode Island	State	LAO00376	12-31-22
USDA	US Federal Programs	P330-20-00244	11-03-23

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 460-271253-1

SDG: CHSTATM

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET EDI
300.0	Anions, Ion Chromatography	MCAWW	EET EDI
5030C	Purge and Trap	SW846	EET EDI

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET EDI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Sample Summary

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Job ID	: 460-2 <i>1</i>	1253-1
S	DG: CH	STATIV

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
460-271253-1	Eq Blank	Water	12/07/22 08:00	12/08/22 10:30
460-271253-2	MW-4	Water	12/07/22 09:15	12/08/22 10:30
460-271253-3	Dup	Water	12/07/22 00:00	12/08/22 10:30
460-271253-4	MW-1R	Water	12/07/22 10:30	12/08/22 10:30
460-271253-5	Trip	Water	12/07/22 10:30	12/08/22 10:30

CANTE CA PORTE

5 6

> 9 10

13

RGun# Cooler fures	R Const Cooler #8:	Roun # Cooler Temperatures Cooler #8: C Coole	Job Number:	68 HORILE		Vel Short 120		Receipt	Receipt Temperature and pH Log	comins resonnence curson eceipt Temperature and pH Lo	ind pH I	60-					P 20	5
Color #8: Colo	Cooler #1: Coo	Cooler #4: Coo	Number of Coolers:	-			R Gun #		5									
11. C. 2 C C COOLET #8: C C C COOLET #8: C C C COOLET #8: C C COOLET #8: C C COOLET #8: C C C COOLET #8: C C C C C C C C COOLET #8: C C C C C C C C C C C C C C C C C C C	11	11: C. To Cooler #1: C Cooler #1: C C C C C C C C C C C C C C C C C C C		RAW	CORRECTED			ပို	oler Te	mpera	tures			DAM.	Conscience			
12	12 C C Cooler #8; C C Cooler #8; C C C C C C C C C	12 C C Cooler #8; C C Cooler #8; C C C C C C C C C	Cooler	-	270		ŏ	oler #4:		ρ		8	ooler #7:	٤				
Ammonia COD Nitrate	Content Cont	Physical Contents Physical Physical Contents Physical Physical Physical Contents Physical	Cooler		ه ا ه		ŏ ö	oler #5:	8 8	8 8		0 0	ooler #8:	S 8				
Commons CoD Nitrate Metals Hardness Pest CoAM Phenols Sulfide TKN TOC Cyanide Phos Other	COD Nitrate Nitrate	Commonia CoD Nutrite Metals Hardwass Peat CoAM Phenols Sulfide TKN TOC Cyanide Phos Phos			٥		3		٥	١		3	ooler #9:	2				
(pH<2) (pH<2) (pH<2) (pH<2) (pH<2) (pH<2) (pH>3) (pH<2) (pH>12) (pH=12) (pH=12	(pH<2) (pH<2) (p	(pH<2) (pH<2) (p		Ammonia	COD	Nitrate Nitrite	Metals	Hardness	Pest	EPH or QAM	Phenois	Sulfide	TKN	100	Total Cyanide	Total Phos	Other	Other
Istments are required record the information	Istments are	Istments are appropriate Sampless	ALS Sample Numbe	(pH<2)	- 1	(pH<2)	(pH<2)	(pH<2)	(pH 5-9)	(pH<2)	(pH<2)	(6 <hd)< td=""><td>(pH<2)</td><td>(pH<2)</td><td>(pH>12)</td><td>(pH<2)</td><td></td><td></td></hd)<>	(pH<2)	(pH<2)	(pH>12)	(pH<2)		
Istments are required record the information	Istments are	Istments are sampropriate Sampless																
Istments are required record the information	Istments are	Istments are appropriate Sampless																
Istments are required record the information	istments are	ustments are appropriate Sampless																
istments are required record the informati	istments are	ustments are appropriate Sampless																
istments are required record the informati	Istments are	Istments are appropriate Sampless																
Istments are required record the information	ustments are	Istments are appropriate Sampless																
Istments are required record the information	ustments are	Istments are appropriate																
istments are required record the informati	istments are	ustments are																
istments are required record the informati	istments are	ustments are																
istments are required record the informati	Istments are	istments are appropriate																
istments are required record the informati	Istments are	istments are appropriate Sampless																
istments are required record the informati	Istments are	Istments are																
istments are required record the informati	istments are	istments are									4							
	ie appropriate	e appropriate Samples		п рн аајиѕ	tments a	re requir	ed record	the infor	mation be	∍low:								
	ne appropriate	re appropriate Samples	Sample No	(s). adjusted:														
	e appropriate	appropriate Samples	Preservative	Name/Conc.:					Volur	me of Pre	servative	used (ml):						
	e appropriate	s appropriate Samples	Lot # of Pre	eservative(s):							Expira	tion Date:						
<u> </u>	2						1					. 27 3	· · · ·	1				

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation Job Number: 460-271253-1 SDG Number: CHSTATM

Login Number: 271253 **List Source: Eurofins Edison**

List Number: 1

Creator: Rivera, Kenneth

oroator: Mivora, Morniotti		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	1872340
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Released to Imaging: 6/11/2024 3:27:47 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Dana Drury Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Generated 3/20/2023 4:34:21 PM

JOB DESCRIPTION

CHK STATE M

JOB NUMBER

460-276114-1

Eurofins Edison 777 New Durham Road Edison NJ 08817

Eurofins Edison

Job Notes

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing Northeast, LLC Edison and its client. All questions regarding this report should be directed to the Eurofins Environment Testing Northeast, LLC Edison Project Manager or designee who has signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Generated 3/20/2023 4:34:21 PM

Authorized for release by Ken Hayes, Project Manager II Ken.Hayes@et.eurofinsus.com (615)301-5035

Kuth Hay

Eurofins Edison is a laboratory within Eurofins Environment Testing Northeast LLC, a company within Eurofins Environment Testing Group of Companies

Page 2 of 19

3/20/2023

Laboratory Job ID: 460-276114-1

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	12
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receint Checklists	19

2

4

6

8

46

11

12

1/

3

Definitions/Glossary

Client: Chesapeake Energy Corporation

Job ID: 460-276114-1 Project/Site: CHK STATE M

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac **Dilution Factor** Detection Limit (DoD/DOE) DL DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MI Minimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Job ID: 460-276114-1

Case Narrative

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 460-276114-1

Laboratory: Eurofins Edison

Narrative

Job Narrative 460-276114-1

Comments

No additional comments.

Receipt

The samples were received on 3/8/2023 10:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.2° C.

GC/MS VOA

Method 8260D: Internal standard (ISTD) response for TBA-d9 for the following CCVIS in analytical batch 460-897564 was outside acceptance criteria: (CCVIS 460-897564/4). This ISTD does not correspond to any of the requested target compounds reported from this analytical batch; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 460-276114-1

Client Sample ID: Equipment Blank

Lab Sample ID: 460-276114-1

No Detections.

Client Sample ID: MW-4 Lab Sample ID: 460-276114-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac I	O Method	Prep Type
Chloride	376	10.0	mg/L	10	300.0	Total/NA

Client Sample ID: MW-1R Lab Sample ID: 460-276114-3

Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Benzene	1.59		0.500	ug/L	1	8260D	Total/NA
Ethylbenzene	23.0		0.500	ug/L	1	8260D	Total/NA
Xylenes, Total	18.2		1.00	ug/L	1	8260D	Total/NA

Client Sample ID: Dup Lab Sample ID: 460-276114-4

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Chloride	373	10.0	mg/L	10	300.0	Total/NA

Client Sample ID: Trip Blank Lab Sample ID: 460-276114-5

No Detections.

This Detection Summary does not include radiochemical test results.

Job ID: 460-276114-1

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Lab Sample ID: 460-276114-1 Client Sample ID: Equipment Blank

Date Received: 03/08/23 10:00

Date Collected: 03/07/23 07:30 **Matrix: Water**

Method: EPA 300.0 - Anions, Ion Chromatography Result Qualifier RL **MDL** Unit Analyte D Prepared Analyzed Dil Fac Chloride ND 1.00 03/17/23 22:29 mg/L

Client Sample ID: MW-4 Lab Sample ID: 460-276114-2 Date Collected: 03/07/23 09:20 **Matrix: Water**

Date Received: 03/08/23 10:00

Method: EPA 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Chloride 376 10.0 mg/L 03/17/23 22:45 10

Client Sample ID: MW-1R Lab Sample ID: 460-276114-3

Date Collected: 03/07/23 10:55 Date Received: 03/08/23 10:00

Xylenes, Total

Toluene-d8 (Surr)

Method: SW846 8260D - Volatile Organic Compounds by GC/MS Result Qualifier **MDL** Unit Dil Fac Analyte RL D Prepared Analyzed Benzene 1.59 0.500 03/14/23 13:31 ug/L 03/14/23 13:31 Ethylbenzene 23.0 0.500 ug/L Toluene ND 0.500 ug/L 03/14/23 13:31

%Recovery Qualifier Dil Fac Surrogate Limits Prepared Analyzed 4-Bromofluorobenzene 98 76 - 120 03/14/23 13:31 Dibromofluoromethane (Surr) 94 77 - 124 03/14/23 13:31 91 03/14/23 13:31 1,2-Dichloroethane-d4 (Surr) 70 - 128

1.00

18.2

97

ug/L

Client Sample ID: Dup Lab Sample ID: 460-276114-4 Date Collected: 03/07/23 00:00 **Matrix: Water**

80 - 120

Date Received: 03/08/23 10:00

Method: EPA 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chloride 373 10.0 mg/L 03/17/23 23:01

Client Sample ID: Trip Blank Lab Sample ID: 460-276114-5

Date Collected: 03/07/23 00:00 Date Received: 03/08/23 10:00

Method: SW846 8260D - Volatile Organic Compounds by GC/MS Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac D Prepared Benzene ND 0.500 ug/L 03/13/23 20:25 Ethylbenzene ND 0.500 ug/L 03/13/23 20:25 Toluene ND 0.500 ug/L 03/13/23 20:25 Xylenes, Total ND 1.00 ug/L 03/13/23 20:25

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	95	76 - 120		03/13/23 20:25	1
Dibromofluoromethane (Surr)	93	77 - 124		03/13/23 20:25	1
1,2-Dichloroethane-d4 (Surr)	88	70 - 128		03/13/23 20:25	1
Toluene-d8 (Surr)	96	80 - 120		03/13/23 20:25	1

Eurofins Edison

Matrix: Water

Matrix: Water

03/14/23 13:31

03/14/23 13:31

Surrogate Summary

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 460-276114-1

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

		DED			ogate Reco
		BFB	DBFM	DCA	TOL
Lab Sample ID	Client Sample ID	(76-120)	(77-124)	(70-128)	(80-120)
460-276114-3	MW-1R	98	94	91	97
460-276114-5	Trip Blank	95	93	88	96
LCS 460-897412/3	Lab Control Sample	99	93	89	98
LCS 460-897564/5	Lab Control Sample	100	97	91	98
LCSD 460-897412/4	Lab Control Sample Dup	94	92	88	96
LCSD 460-897564/17	Lab Control Sample Dup	100	98	94	96
MB 460-897412/8	Method Blank	95	91	89	97
MB 460-897564/9	Method Blank	97	97	93	94

BFB = 4-Bromofluorobenzene

DBFM = Dibromofluoromethane (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

QC Sample Results

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 460-276114-1

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 460-897412/8

Matrix: Water

Analysis Batch: 897412

Client Sample ID: Method Blank **Prep Type: Total/NA**

MB MB Result Qualifier RL **MDL** Unit D Dil Fac Analyte Prepared Analyzed Benzene ND 0.500 ug/L 03/13/23 19:19 Ethylbenzene ND 0.500 ug/L 03/13/23 19:19 ND Toluene 0.500 ug/L 03/13/23 19:19 ND ug/L 03/13/23 19:19 Xylenes, Total 1.00

MB MB Qualifier Dil Fac %Recovery Limits Prepared Surrogate Analyzed 4-Bromofluorobenzene 95 76 - 120 03/13/23 19:19 91 77 - 124 Dibromofluoromethane (Surr) 03/13/23 19:19 89 70 - 128 1,2-Dichloroethane-d4 (Surr) 03/13/23 19:19 Toluene-d8 (Surr) 97 80 - 120 03/13/23 19:19

Lab Sample ID: LCS 460-897412/3

Matrix: Water

Analysis Batch: 897412

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LUS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	20.0	18.22		ug/L		91	71 - 126	
Ethylbenzene	20.0	20.04		ug/L		100	78 - 120	
Toluene	20.0	19.20		ug/L		96	78 - 120	
Xylenes, Total	40.0	41.85		ug/L		105	78 - 120	

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene 99 76 - 120 93 77 - 124 Dibromofluoromethane (Surr) 89 70 - 128 1,2-Dichloroethane-d4 (Surr) 80 - 120 Toluene-d8 (Surr) 98

Lab Sample ID: LCSD 460-897412/4

Matrix: Water

Analysis Batch: 897412

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Spike LCSD LCSD %Rec **RPD Analyte** Added Result Qualifier Unit D %Rec Limits **RPD** I imit Benzene 20.0 18.17 ug/L 91 71 - 126 0 30 Ethylbenzene 20.0 19.99 ug/L 100 78 - 120 0 30 20.0 30 Toluene 19.26 ug/L 96 78 - 120 40.0 104 78 - 120 30 Xylenes, Total 41.45 ug/L

LCSD LCSD %Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene 94 76 - 120 Dibromofluoromethane (Surr) 92 77 - 124 1,2-Dichloroethane-d4 (Surr) 88 70 - 128 Toluene-d8 (Surr) 96 80 - 120

Eurofins Edison

QC Sample Results

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 460-276114-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 460-897564/9

Matrix: Water

Analysis Batch: 897564

Client	Sample	ID:	Metho	od Blank	
	Pr	ep ⁻	Type:	Total/NA	

	MB I	MB					
Analyte	Result (Qualifier RL	MDL Unit	t D	Prepared	Analyzed	Dil Fac
Benzene	ND	0.500	ug/L	-		03/14/23 11:19	1
Ethylbenzene	ND	0.500	ug/L	=		03/14/23 11:19	1
Toluene	ND	0.500	ug/L	=		03/14/23 11:19	1
Xylenes, Total	ND	1.00	ug/L	-		03/14/23 11:19	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	97		76 - 120		03/14/23 11:19	1
Dibromofluoromethane (Surr)	97		77 - 124		03/14/23 11:19	1
1,2-Dichloroethane-d4 (Surr)	93		70 - 128		03/14/23 11:19	1
Toluene-d8 (Surr)	94		80 - 120		03/14/23 11:19	1

Lab Sample ID: LCS 460-897564/5

Matrix: Water

Analysis Batch: 897564

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Бріке	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	20.0	17.81		ug/L		89	71 - 126	
Ethylbenzene	20.0	19.23		ug/L		96	78 - 120	
Toluene	20.0	19.02		ug/L		95	78 - 120	
Xylenes, Total	40.0	40.48		ug/L		101	78 - 120	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	100		76 - 120
Dibromofluoromethane (Surr)	97		77 - 124
1,2-Dichloroethane-d4 (Surr)	91		70 - 128
Toluene-d8 (Surr)	98		80 - 120

Lab Sample ID: LCSD 460-897564/17

Matrix: Water

Analysis Batch: 897564

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	20.0	17.43		ug/L		87	71 - 126	2	30
Ethylbenzene	20.0	18.90		ug/L		94	78 - 120	2	30
Toluene	20.0	17.81		ug/L		89	78 - 120	7	30
Xylenes, Total	40.0	38.75		ug/L		97	78 - 120	4	30

	LCSD	LCSD	SD		
Surrogate	%Recovery	Qualifier	Limits		
4-Bromofluorobenzene	100		76 - 120		
Dibromofluoromethane (Surr)	98		77 - 124		
1,2-Dichloroethane-d4 (Surr)	94		70 - 128		
Toluene-d8 (Surr)	96		80 - 120		

Eurofins Edison

QC Sample Results

RL

1.00

Spike

3.20

Added

MDL Unit

LCS LCS

3.201

3.282

mg/L

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 460-276114-1

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 460-898323/3

Matrix: Water

Analysis Batch: 898323

MB MB

Analyte Result Qualifier

Chloride ND

Lab Sample ID: LCS 460-898323/5 **Matrix: Water**

Analysis Batch: 898323

Analyte

Chloride

Lab Sample ID: LCSD 460-898323/6 **Matrix: Water**

Analysis Batch: 898323

Analyte

Spike Added Chloride 3.20 **Client Sample ID: Method Blank**

Prep Type: Total/NA

D Analyzed Dil Fac **Prepared** 03/17/23 14:16

Client Sample ID: Lab Control Sample

%Rec

Prep Type: Total/NA

Result Qualifier Unit D %Rec Limits 100 90 - 110 mg/L

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD %Rec RPD Result Qualifier

Limits RPD Limit Unit %Rec 103 90 - 110 15 mg/L

QC Association Summary

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 460-276114-1

GC/MS VOA

Analysis Batch: 897412

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	460-276114-5	Trip Blank	Total/NA	Water	8260D	
	MB 460-897412/8	Method Blank	Total/NA	Water	8260D	
	LCS 460-897412/3	Lab Control Sample	Total/NA	Water	8260D	
١	LCSD 460-897412/4	Lab Control Sample Dup	Total/NA	Water	8260D	

Analysis Batch: 897564

Lab Sample ID 460-276114-3	Client Sample ID MW-1R	Prep Type Total/NA	Matrix Water	Method 8260D	Prep Batch
MB 460-897564/9	Method Blank	Total/NA	Water	8260D	
LCS 460-897564/5	Lab Control Sample	Total/NA	Water	8260D	
LCSD 460-897564/17	Lab Control Sample Dup	Total/NA	Water	8260D	

HPLC/IC

Analysis Batch: 898323

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-276114-1	Equipment Blank	Total/NA	Water	300.0	
460-276114-2	MW-4	Total/NA	Water	300.0	
460-276114-4	Dup	Total/NA	Water	300.0	
MB 460-898323/3	Method Blank	Total/NA	Water	300.0	
LCS 460-898323/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 460-898323/6	Lab Control Sample Dup	Total/NA	Water	300.0	

Eurofins Edison

2

5

7

9

10

12

4 4

15

Job ID: 460-276114-1

Client Sample ID: Equipment Blank

Date Collected: 03/07/23 07:30 Date Received: 03/08/23 10:00

Lab Sample ID: 460-276114-1

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	300.0		1	898323	OXG	EET EDI	03/17/23 22:29

Client Sample ID: MW-4 Lab Sample ID: 460-276114-2 **Matrix: Water**

Date Collected: 03/07/23 09:20 Date Received: 03/08/23 10:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	300.0		10	898323	OXG	EET EDI	03/17/23 22:45

Client Sample ID: MW-1R Lab Sample ID: 460-276114-3

Date Collected: 03/07/23 10:55 Date Received: 03/08/23 10:00

Matrix: Water

Batch Batch Dilution Batch Prepared or Analyzed **Prep Type** Method **Factor Number Analyst** Type Run Lab 03/14/23 13:31 EET EDI Total/NA Analysis 8260D 897564 MZS

Client Sample ID: Dup Lab Sample ID: 460-276114-4

Date Collected: 03/07/23 00:00

Matrix: Water

Date Received: 03/08/23 10:00

Batch Batch Dilution Batch **Prepared**

Prep Type Method Run Factor **Number Analyst** or Analyzed Type Lab Total/NA Analysis 300.0 10 898323 OXG EET EDI 03/17/23 23:01

Client Sample ID: Trip Blank Lab Sample ID: 460-276114-5 Date Collected: 03/07/23 00:00 **Matrix: Water**

Date Received: 03/08/23 10:00

Batch Batch Dilution Batch Prepared Method Туре Factor Number Analyst or Analyzed **Prep Type** Run Lab 03/13/23 20:25 Total/NA Analysis 8260D 897412 MZS EET EDI

Laboratory References:

EET EDI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Eurofins Edison

10

Accreditation/Certification Summary

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 460-276114-1

Laboratory: Eurofins Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Connecticut	State	PH-0818	01-30-24
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	01-01-24
Georgia	State	12028 (NJ)	06-30-23
Massachusetts	State	M-NJ312	06-30-23
New Jersey	NELAP	12028	06-30-23
New York	NELAP	11452	04-01-23
Pennsylvania	NELAP	68-00522	03-01-24
Rhode Island	State	LAO00376	12-30-23
USDA	US Federal Programs	P330-20-00244	11-03-23

3

4

6

Q

9

11

12

14

15

Method Summary

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 460-276114-1

Protocol Laboratory SW846 EET EDI

EPA **EET EDI** SW846 **EET EDI**

Protocol References:

Method

8260D

300.0

5030C

EPA = US Environmental Protection Agency

Purge and Trap

Method Description

Anions, Ion Chromatography

Volatile Organic Compounds by GC/MS

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET EDI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Eurofins Edison

Sample Summary

Client: Chesapeake Energy Corporation

Project/Site: CHK STATE M

Job ID: 460-276114-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
460-276114-1	Equipment Blank	Water	03/07/23 07:30	03/08/23 10:00
460-276114-2	MW-4	Water	03/07/23 09:20	03/08/23 10:00
460-276114-3	MW-1R	Water	03/07/23 10:55	03/08/23 10:00
460-276114-4	Dup	Water	03/07/23 00:00	03/08/23 10:00
460-276114-5	Trip Blank	Water	03/07/23 00:00	03/08/23 10:00

											 			 			-							- oj 2
No. 2732	o	TAT STANDARD	MO#	27,111	REMARKS	-118 1		~	7	5					Ap	ojsno	0) 10	Chain	ÞÍIS	09†				
CORD	PROJECT NAME CHK STATE M	T MANAGER	#04			38										egiptimise and interesting the second		278723	0	1881 4554 138	to	UAGC@EquusEnv.com	777 NEW DWRHAM RD EDWON, NJOBBIT	28,9 120 1120°
CHAIN OF CUSTODY RECORD	PROJECT NUMBER CH KSTAT M	SHIPPED TO TA-ED/SON	erenistn	1017	MES 10#	×	× - ×	w 3 X	× - 3	W 2 X						And the second s	1	1/23	DATE RECEIVED BY	AIRBILL NUMBER	DATE Send PDF, EDD, and II		777 NEW DU	Pink Equus QA/QC
		Env comental LLC (918) 921-5331	žK		Sample ID	Eguipment Blank	mw-4	mm. 118	0-0	TR,0			1				INTAINERS			KOK	ORY BY:		615-301-5035	Yellow Equus Environmental Project File Pink
			SAMPLER'S PRINTED NAME $\int \mathcal{E} \mathcal{R} \mathcal{R} \stackrel{f}{\vee} \stackrel{f}{\not\sim} \mathcal{H} \mathcal{E} \mathcal{R}$ SAMPLERS SIGNATURE	Sy Si	Date Time	3-7-23 730	3-7-23 920	3-7-23 1055	3.7-23	**************************************							TOTAL NUMBER OF CONTAINERS	RELINQUISHED BY	RELINQUISHED BY	METHOD OF SHIPMENT	RECEIVED IN LABORATORY BY:	LABORATORY CONTACT	KEN HAYES	White Receiving Lab

Page of

Receipt Temperature and pH Log **Eurofins TestAmerica Edison**

276114

Job Number:

EDS-WI-038, Rev 4 1 10/22/2019

Other Other The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted (pH<2) Total Phos Samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis Total Cyanide (PH>12) (pH<2) **T**0C Date 38 22 Cooler #7: Cooler #8: (pH<2) X Expiration Date Volume of Preservative used (ml) Phenols Sulfide (pH>9) (pH<2) Cooler Temperatures υ (pH<2) EPH or QAM If pH adjustments are required record the information below: (pH 5-9) ρ Pest σ Cooler #6: Cooler #5: Initials: Bholy Sh Metals Hardness (pH<2) IR Gun # (pH<2) (pH<2) Nitrate Nitrite ψ μ Cooler#1: \-\2 c \-\ 1.7 E (pH<2) 000 þ Sample No(s). adjusted: Preservative Name/Conc. Lot # of Preservative(s) (pH<2) Ammonia Cooler #3; Cooler #2: TALS Sample Number Number of Coolers:

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation Job Number: 460-276114-1

List Source: Eurofins Edison Login Number: 276114

List Number: 1 Creator: Hall, Alonzo

,,		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

Released to Imaging: 6/11/2024 3:27:47 PM

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 352079

CONDITIONS

Operator:	OGRID:
CHESAPEAKE OPERATING, INC.	147179
6100 NORTH WESTERN AVE	Action Number:
OKC, OK 73118	352079
	Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created By	Condition	Condition Date
michael.buchana	The 9th Annual Groundwater Monitoring Report for State M Lease has been accepted for the record.	6/11/2024