

CLOSURE REPORT

Property:

Lateral 2B-1 (05/03/24) Unit Letter F, S21 T27N R11W San Juan County, New Mexico

New Mexico EMNRD OCD Incident ID No. NAPP2412451499

July 15, 2024

Ensolum Project No. 05A1226316

Prepared for:

Enterprise Field Services, LLC

614 Reilly Avenue Farmington, NM 87401 Attn: Mr. Thomas Long

Prepared by:

Landon Daniell Staff Geologist

Kyle Summers

Senior Managing Geologist

urming

Lateral 2B-1 (05/03/24)

TABLE OF CONTENTS

1.0	1.1	Site	UCTION					
2.0	CLO	LOSURE CRITERIA1						
3.0	SOII	L RE	MEDIATION ACTIVITIES					
4.0	SOII	L SA	MPLING PROGRAM					
5.0	SOII	L LA	BORATORY ANALYTICAL METHODS4					
6.0	SOII	L DA	TA EVALUATION4					
7.0	REC	LAN	MATION					
8.0	FINE	DING	S AND RECOMMENDATION					
9.0	9.1 9.2	Star Lim	ARDS OF CARE, LIMITATIONS, AND RELIANCE 5 Indard of Care 5 itations 5 itance 5					
			LIST OF APPENDICES					
Appe	ndix <i>i</i>	A –	Figures Figure 1: Topographic Map Figure 2: Site Vicinity Map Figure 3: Site Map with Soil Analytical Results					
Appe	ndix	В-	Siting Figures and Documentation Figure A: 1.0 Mile Radius Water Well/POD Location Map Figure B: Cathodic Protection Well Recorded Depth to Water Figure C: 300 Foot Radius Watercourse and Drainage Identification Figure D: 300 Foot Radius Occupied Structure Identification Figure E: Water Well and Natural Spring Location Figure F: Wetlands Figure G: Mines, Mills, and Quarries Figure H: 100-Year Flood Plain Map					
Appe	ndix(C –	Executed C-138 Solid Waste Acceptance Form					
Appe	ndix	D –	Photographic Documentation					
Appendix E –		E –	Regulatory Correspondence					
Appendix F –		F –	Table 1 - Soil Analytical Summary					
Appe	ndix (G –	Laboratory Data Sheets & Chain of Custody Documentation					

1.0 INTRODUCTION

1.1 Site Description & Background

Operator:	Enterprise Field Services, LLC / Enterprise Products Operating LLC (Enterprise)
Site Name:	Lateral 2B-1 (05/03/24) (Site)
NM EMNRD OCD Incident ID No.	NAPP2412451499
Location:	36.56086° North, 108.00953° West Unit Letter F, Section 21, Township 27 North, Range 11 West San Juan County, New Mexico
Property:	Navajo Nation
Regulatory:	Navajo Nation Environmental Protection Agency (NNEPA) and New Mexico (NM) Energy, Minerals and Natural Resources Department (EMNRD) Oil Conservation Division (OCD)

On May 3, 2024, Enterprise personnel identified a release of natural gas and associated pipeline liquids from the Lateral 2B-1 pipeline. Enterprise subsequently isolated and locked the pipeline out of service. On May 3, 2024, Enterprise initiated activities to repair the pipeline and remediate petroleum hydrocarbon impact. Enterprise determined the release was "reportable" due to the potential volume of impacted soil. The NM EMNRD OCD and the NNEPA were subsequently notified.

A **Topographic Map** depicting the location of the Site is included as **Figure 1**, and a **Site Vicinity Map** is included as **Figure 2** in **Appendix A**.

1.2 Project Objective

The primary objective of the closure activities was to reduce constituent of concern (COC) concentrations in the on-site soils to below the applicable NM EMNRD OCD closure criteria.

2.0 CLOSURE CRITERIA

The Site is subject to regulatory oversight by the NNEPA and NM EMNRD OCD. During the evaluation and remediation of the Site, Ensolum, LLC (Ensolum) referenced New Mexico Administrative Code (NMAC) 19.15.29 *Releases*, which establishes investigation and abatement action requirements for oil and gas release sites that are subject to reporting and/or corrective action. The appropriate closure criteria for sites are determined using the siting requirements outlined in Paragraph (4) of Subsection C of 19.15.29.12 NMAC. Ensolum utilized the general site characteristics and information available from NM state agency databases and federal agency geospatial databases to determine the appropriate closure criteria for the Site. Supporting figures and documentation associated with the following Siting bullets are provided in **Appendix B**.

• The NM Office of the State Engineer (OSE) tracks the usage and assignment of water rights and water well installations and records this information in the Water Rights Reporting System (WRRS) database. Water wells and other points of diversion (PODs) are each assigned POD numbers in the database (which is searchable and includes an interactive map). No PODs were identified in the same Public Land Survey System (PLSS) section or adjacent PLSS sections. The closest POD (SJ-00077) is approximately 2.2 miles southeast of the site and approximately 124 feet higher in elevation than the Site. The recorded depth to water (DTW) for this POD is 550 feet below grade surface (bgs) (Figure A, Appendix B).

Lateral 2B-1 (05/03/24)

- Six cathodic protection wells (CPWs) were identified in the NM EMNRD OCD imaging database in adjacent PLSS sections. These CPWs are depicted in Figure B (Appendix B). Documentation for the cathodic protection well located near the Angel Peak #3E production pad indicates a depth to water of 30 feet bgs. This cathodic protection well is located approximately 0.74 miles southwest of the Site and is approximately 81 feet lower in elevation than the Site. Documentation for the cathodic protection well located near the Scott E Federal 22 #22 and #32 production pads indicates a depth to water of approximately 95 feet bgs. This cathodic protection well is located approximately 1.23 miles east of the Site and is approximately 39 feet higher in elevation than the Site (CPW elevation was determined using GoogleEarth® due to a likely discrepancy in the OCD documentation). Documentation for the cathodic protection well located near the Angel Peak #2E production pad indicates a depth to water of 30 feet bgs. This cathodic protection well is located approximately 1.38 miles northwest of the Site and is approximately 131 feet lower in elevation than the Site. Documentation for the cathodic protection well located near the Whitley A #2 production pad indicates dampness at 110 feet bgs and depth to water of approximately 230 feet bgs. This cathodic protection well is located approximately 1.47 miles northwest of the Site and is approximately 149 feet lower in elevation than the Site. Documentation for the cathodic protection well located near the Whitley A #100 production pad indicates depth to water of approximately 85 feet bgs. This cathodic protection well is located approximately 1.58 miles northwest of the Site and is approximately 143 feet lower in elevation than the Site. Documentation for the cathodic protection well located near the Fullerton Federal 15 #41 production pad indicates depth to water of approximately 120 feet bgs. This cathodic protection well is located approximately 1.92 miles northeast of the Site and is approximately 20 feet lower in elevation than the Site.
- The Site is not located within 300 feet of a NM EMNRD OCD-defined continuously flowing watercourse or significant watercourse (Figure C, Appendix B).
- The Site is not located within 200 feet of a lakebed, sinkhole, or playa lake.
- The Site is not located within 300 feet of a permanent residence, school, hospital, institution, or church (Figure D, Appendix B).
- No springs, or private domestic freshwater wells used by less than five households for domestic or stock watering purposes were identified within 500 feet of the Site (Figure E, Appendix B).
- No freshwater wells or springs were identified within 1,000 feet of the Site (Figure E, Appendix B).
- The Site is not located within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to New Mexico Statutes Annotated (NMSA) 1978, Section 3-27-3.
- Based on information identified in the U.S. Fish & Wildlife Service National Wetlands Inventory Wetlands Mapper, the Site is not within 300 feet of a wetland (Figure F, Appendix B).
- Based on information identified in the NM Mining and Minerals Division's Geographic Information System (GIS) Maps and Mine Data database, the Site is not within an area overlying a subsurface mine (Figure G, Appendix B).

- The Site is not located within an unstable area per Paragraph (6) of Subsection U of 19.15.2.7 NMAC.
- Based on information provided by the Federal Emergency Management Agency (FEMA)
 National Flood Hazard Layer (NFHL) geospatial database, the Site is not within a 100-year
 floodplain (Figure H, Appendix B).

Based on available information Enterprise estimates the depth to subsurface water at the Site to potentially be less than 50 feet bgs due to extensive pivot irrigation, resulting in a Tier I ranking. The closure criteria for soils remaining in place at the Site include:

Tier I Closure Criteria for Soils Impacted by a Release							
Constituent ¹	Method	Limit					
Chloride	EPA 300.0 or SM4500 CI B	600 mg/kg					
TPH (GRO+DRO+MRO) ²	EPA SW-846 Method 8015	100 mg/kg					
BTEX ³	EPA SW-846 Method 8021 or 8260	50 mg/kg					
Benzene	EPA SW-846 Method 8021 or 8260	10 mg/kg					

¹ – Constituent concentrations are in milligrams per kilogram (mg/kg).

3.0 SOIL REMEDIATION ACTIVITIES

On May 3, 2024, Enterprise initiated activities to repair the pipeline and remediate petroleum hydrocarbon impact resulting from the release. During the remediation and corrective action activities, West States Energy Contractors provided heavy equipment and labor support, while Ensolum provided environmental consulting support.

The excavation measured approximately 18 feet long and 15 feet wide at the maximum extents. The maximum depth of the excavation measured approximately 10 feet bgs. The lithology encountered during the completion of remediation activities consisted primarily of clay loam overlying unconsolidated silty sand.

Approximately 268 cubic yards (yd³) of petroleum hydrocarbon-affected soils were transported to the Envirotech, Inc., (Envirotech) landfarm in San Juan County, NM for disposal/remediation. The executed C-138 solid waste acceptance form is provided in **Appendix C**. The excavation was backfilled with imported fill and then contoured to the surrounding grade.

Figure 3 is a map that identifies approximate soil sample locations and depicts the approximate dimensions of the excavation with respect to the pipeline (**Appendix A**). Photographic documentation of the field activities is included in **Appendix D**.

4.0 SOIL SAMPLING PROGRAM

Ensolum field screened the soil samples from the excavation utilizing a calibrated Dexsil PetroFLAG® hydrocarbon analyzer system and a photoionization detector (PID) fitted with a 10.6 eV lamp to guide excavation extents.

Ensolum's soil sampling program included the collection of six composite soil samples (S-1 through S-6) from the excavation for laboratory analysis. The composite samples were comprised of five aliquots each and represent an estimated 200 square foot (ft²) or less sample area per

² – Total Petroleum Hydrocarbons (TPH). Gasoline Range Organics (GRO). Diesel Range Organics (DRO). Motor Oil/Lube Oil Range Organics (MRO).

³ – Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX).

guidelines outlined in Section D of 19.15.29.12 NMAC. The excavator bucket was utilized to obtain fresh aliquots from each area of the excavation. Regulatory correspondence is provided in **Appendix E**.

Sampling Event

On May 6, 2024, sampling was performed at the Site. The NNEPA was notified of the sampling event although no representative was present during sampling activities. Composite soil samples S-1 (10') and S-5 (10') were collected from the floor of the excavation. Composite soil samples S-2 (0' to 10'), S-3 (0' to 10'), S-4 (0' to 10'), and S-6 (0' to 10') were collected from the walls of the excavation.

All soil samples were collected and placed in laboratory-prepared glassware. The containers were labeled and sealed using the laboratory-supplied labels and custody seals and were stored on ice in a cooler. The samples were relinquished to the courier for Eurofins Environment Testing South Central, LLC (Eurofins) of Albuquerque, NM, under proper chain-of-custody procedures.

5.0 SOIL LABORATORY ANALYTICAL METHODS

The composite soil samples were analyzed for BTEX using Environmental Protection Agency (EPA) SW-846 Method 8021; TPH GRO/DRO/MRO using EPA SW-846 Method 8015; and chlorides using EPA Method 300.0.

The laboratory analytical results are summarized in **Table 1** (**Appendix F**). The laboratory data sheets and executed chain-of-custody forms are provided in **Appendix G**.

6.0 SOIL DATA EVALUATION

Ensolum compared the benzene, BTEX, TPH, and chloride laboratory analytical results or laboratory practical quantitation limits (PQLs) / reporting limits (RLs) associated with the composite soil samples (S-1 through S-6) to the applicable NM EMNRD OCD closure criteria. The laboratory analytical results are summarized in **Table 1** (**Appendix F**).

- The laboratory analytical results for the composite soil samples indicate that benzene is not present at concentrations greater than the laboratory PQLs/RLs, which are less than the NM EMNRD OCD closure criteria of 10 mg/kg.
- The laboratory analytical results for the composite soil samples indicate that total BTEX is not
 present at concentrations greater than the laboratory PQLs/RLs, which are less than the NM
 EMNRD OCD closure criteria of 50 mg/kg.
- The laboratory analytical results for the composite soil samples indicate that total combined TPH GRO/DRO/MRO is not present at concentrations greater than the laboratory PQLs/RLs, which are less than the NM EMNRD OCD closure criteria of 100 mg/kg.
- The laboratory analytical results for the composite soil samples indicate that chloride is not present at concentrations greater than the laboratory PQLs/RLs, which is less than the NM EMNRD OCD closure criteria of 600 mg/kg.

7.0 RECLAMATION

Lateral 2B-1 (05/03/24)

The excavation was backfilled with imported fill and then contoured to the surrounding grade. Once the Site is no longer being used for oil and gas production, final reclamation and revegetation will be addressed in accordance with 19.15.29.13 NMAC.

8.0 FINDINGS AND RECOMMENDATION

- Six composite soil samples were collected from the Site. Based on laboratory analytical results, no benzene, total BTEX, chloride, or total combined TPH GRO/DRO/MRO exceedances were identified in the soils remaining at the Site.
- Approximately 268 yd³ of petroleum hydrocarbon-affected soils were transported to the Envirotech landfarm for disposal/remediation.

Based on field observations and laboratory analytical results, no additional investigation or corrective action appears warranted at this time.

STANDARDS OF CARE, LIMITATIONS, AND RELIANCE 9.0

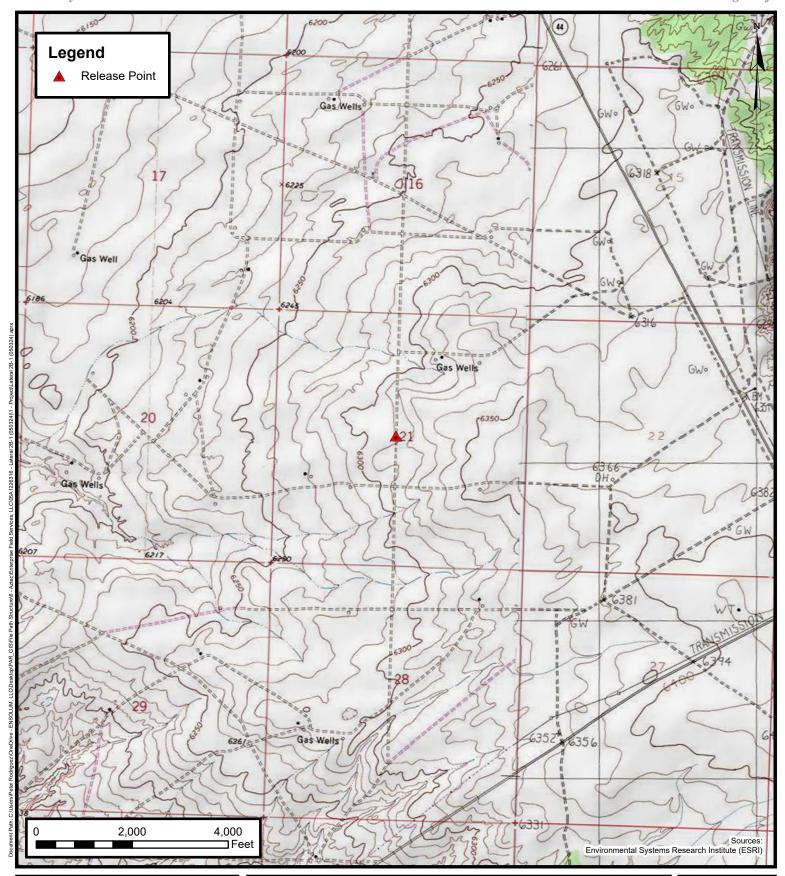
9.1 Standard of Care

Ensolum's services were performed in accordance with standards customarily provided by a firm rendering the same or similar services in the area during the same time period. Ensolum makes no warranties, express or implied, as to the services performed hereunder. Additionally, Ensolum does not warrant the work of third parties supplying information used in the report (e.g., laboratories, regulatory agencies, or other third parties).

9.2 Limitations

Findings, conclusions, and recommendations resulting from these services are based upon information derived from the on-Site activities and other services performed under this scope of work, and it should be noted that this information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, or not present during these services, and Ensolum cannot represent that the Site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during the investigation. Environmental conditions at other areas or portions of the Site may vary from those encountered at actual sample locations. Ensolum's findings and recommendation are based solely upon data available to Ensolum at the time of these services.

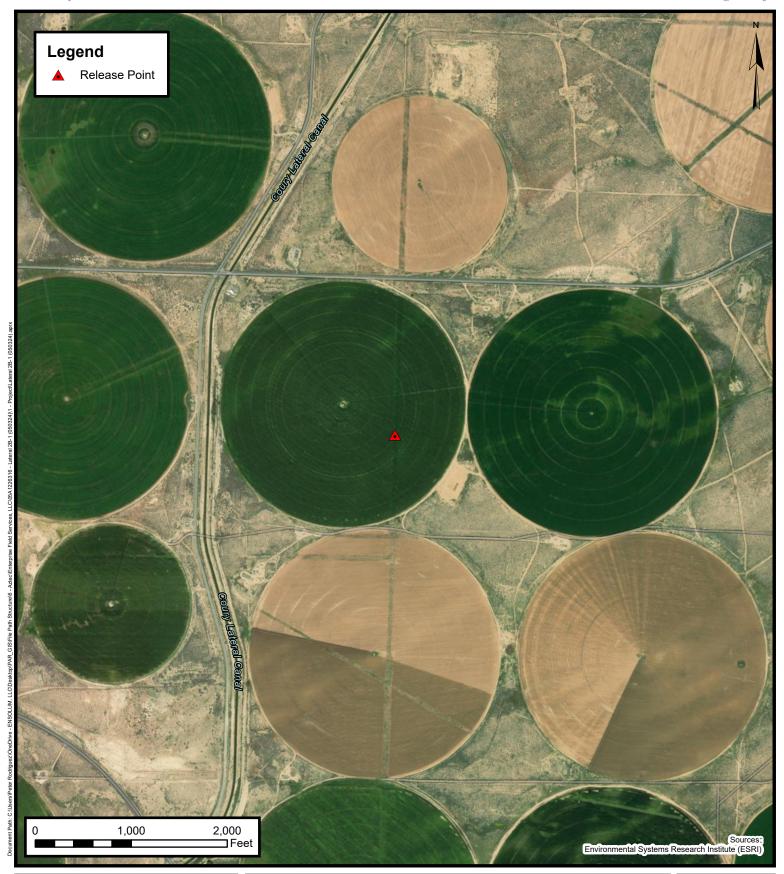
9.3 Reliance


This report has been prepared for the exclusive use of Enterprise, and any authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the Site) is prohibited without the express written authorization of Enterprise and Ensolum. Any unauthorized distribution or reuse is at the client's sole risk. Notwithstanding the foregoing, reliance by authorized parties will be subject to the terms, conditions, and limitations stated in the Report and Ensolum's Master Services Agreement. The limitation of liability defined in the agreement is the aggregate limit of Ensolum's liability to the client.

E N S O L U M

APPENDIX A

Figures

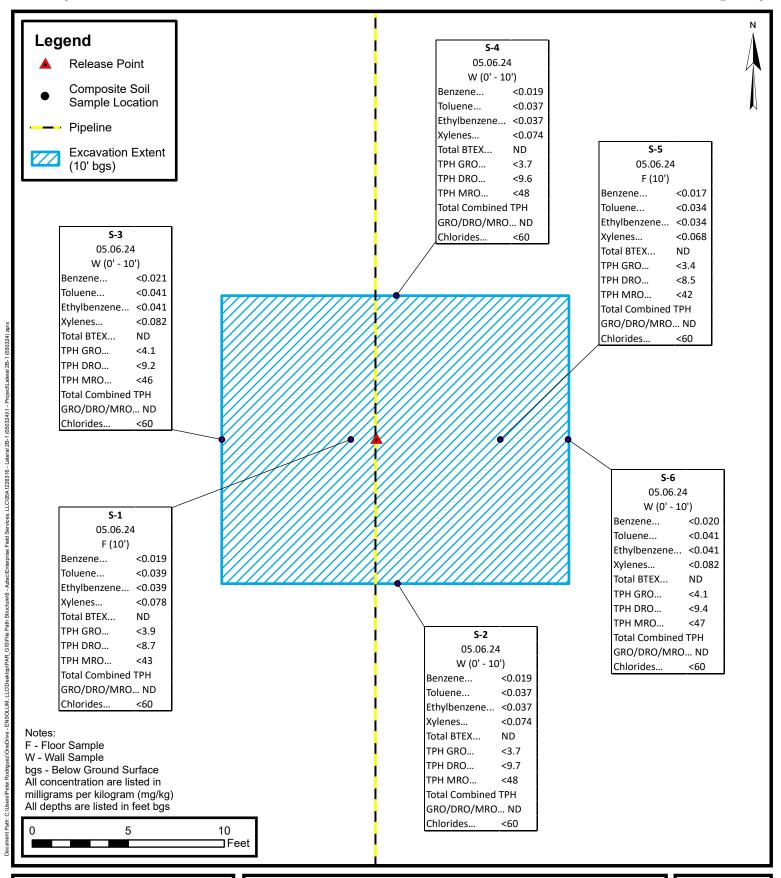

Topographic Map

Enterprise Field Services, LLC Lateral 2B-1 (05/03/24) Project Number: 05A1226316

Unit Letter F, S21 T27N R11W, San Juan County, NM 36.56086, -108.00953

FIGURE

1


Site Vicinity Map

Enterprise Field Services, LLC Lateral 2B-1 (05/03/24) Project Number: 05A1226316

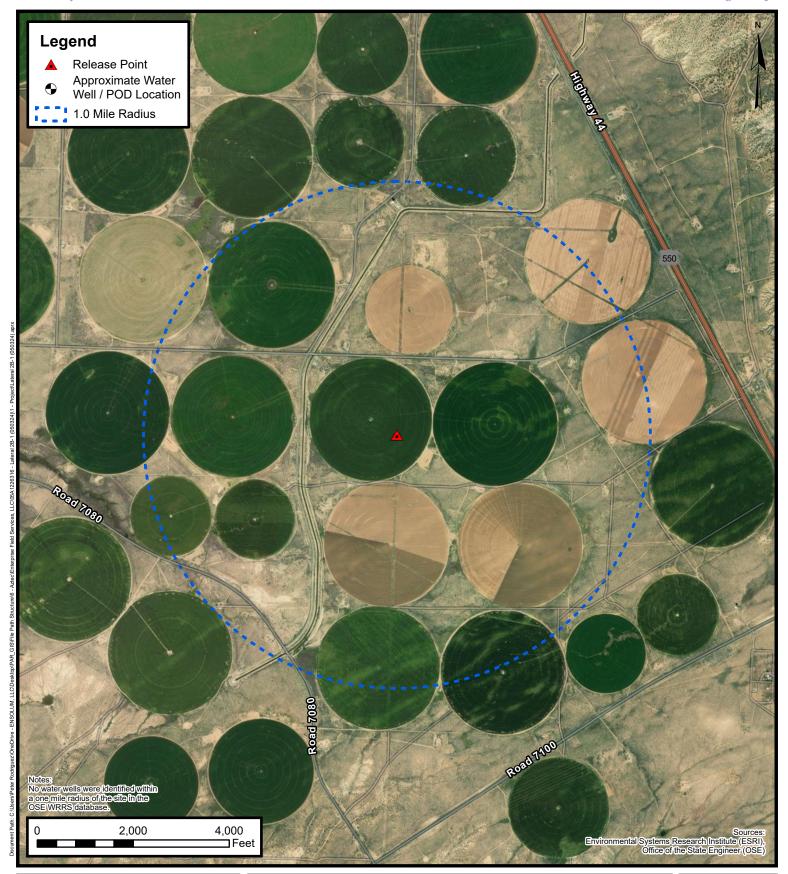
Unit Letter F, S21 T27N R11W, San Juan County, NM 36.56086, -108.00953

2

FIGURE

Site Map with Soil Analytical Results

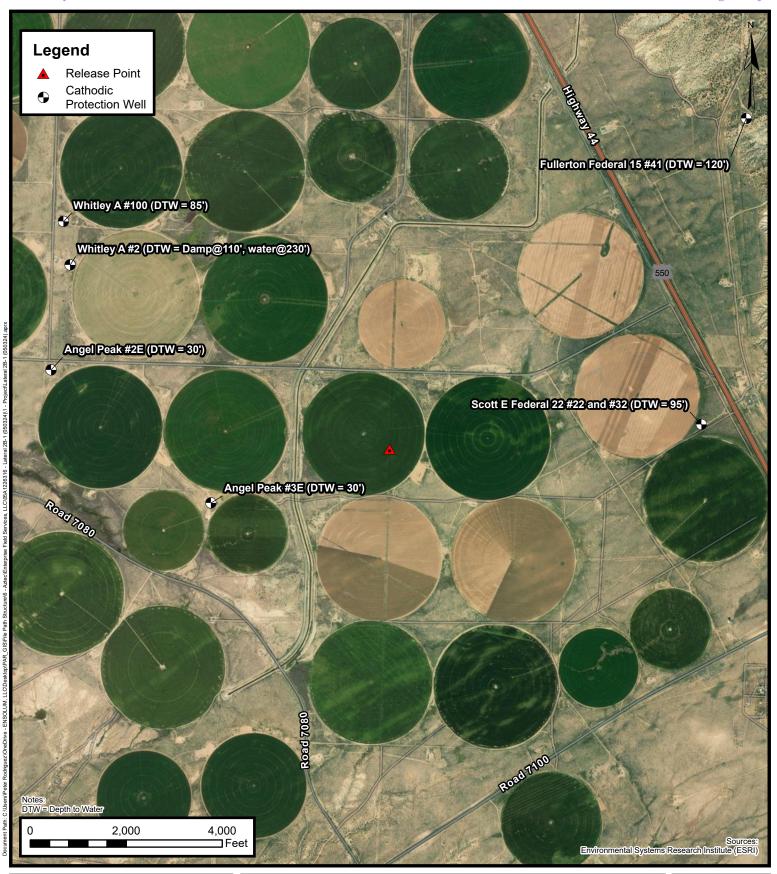
Enterprise Field Services, LLC Lateral 2B-1 (05/03/24) Project Number: 05A1226316


Unit Letter F, S21 T27N R11W, San Juan County, NM 36.56086, -108.00953

FIGURE

APPENDIX B

Siting Figures and Documentation

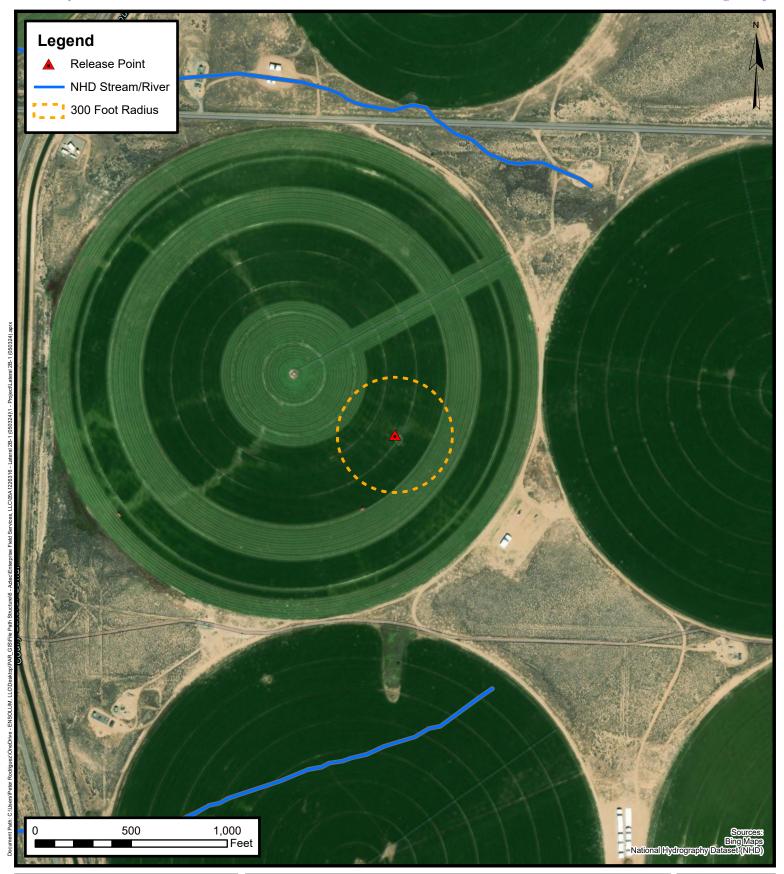


1.0 Mile Radius Water Well / POD Location Map

Enterprise Field Services, LLC Lateral 2B-1 (05/03/24) Project Number: 05A1226316 Unit Letter F, S21 T27N R11W, San Juan County, NM

Unit Letter F, S21 T27N R11W, San Juan County, NN 36.56086, -108.00953

FIGURE

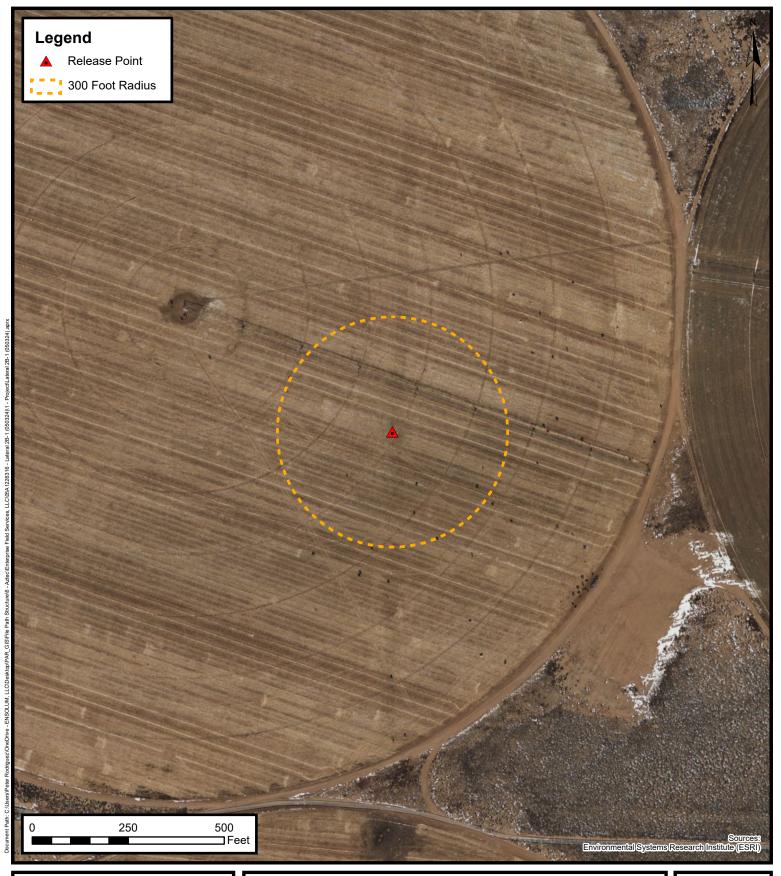


Cathodic Protection Well Recorded Depth to Water

Enterprise Field Services, LLC Lateral 2B-1 (05/03/24) Project Number: 05A1226316

Unit Letter F, S21 T27N R11W, San Juan County, NM 36.56086, -108.00953

FIGURE B

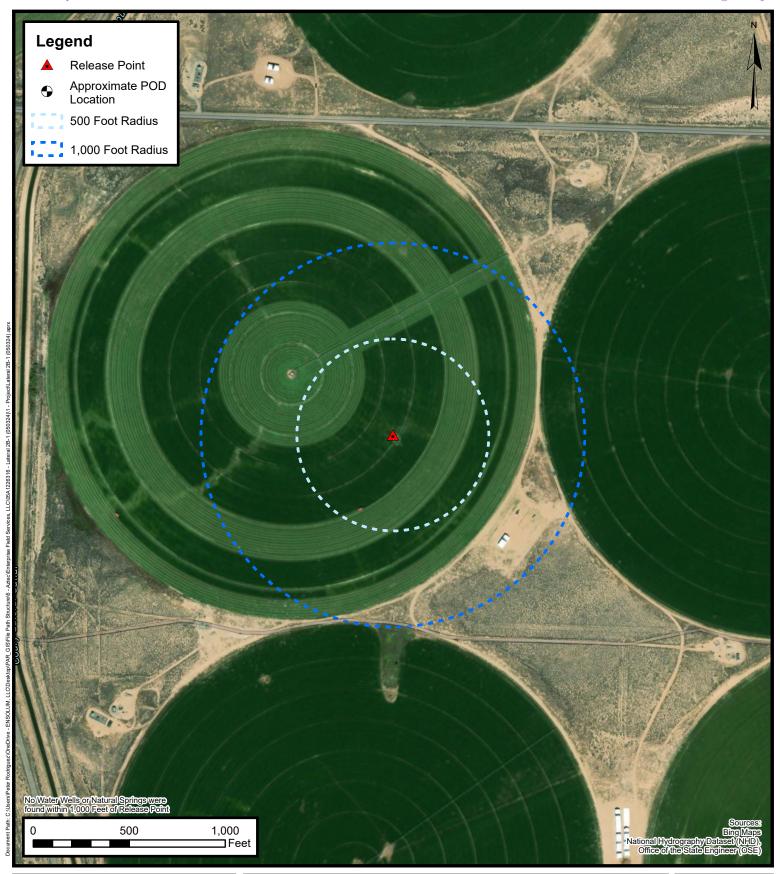


300 Foot Radius Watercourse and Drainage Identification

Enterprise Field Services, LLC Lateral 2B-1 (05/03/24) Project Number: 05A1226316

Unit Letter F, S21 T27N R11W, San Juan County, NM 36.56086, -108.00953

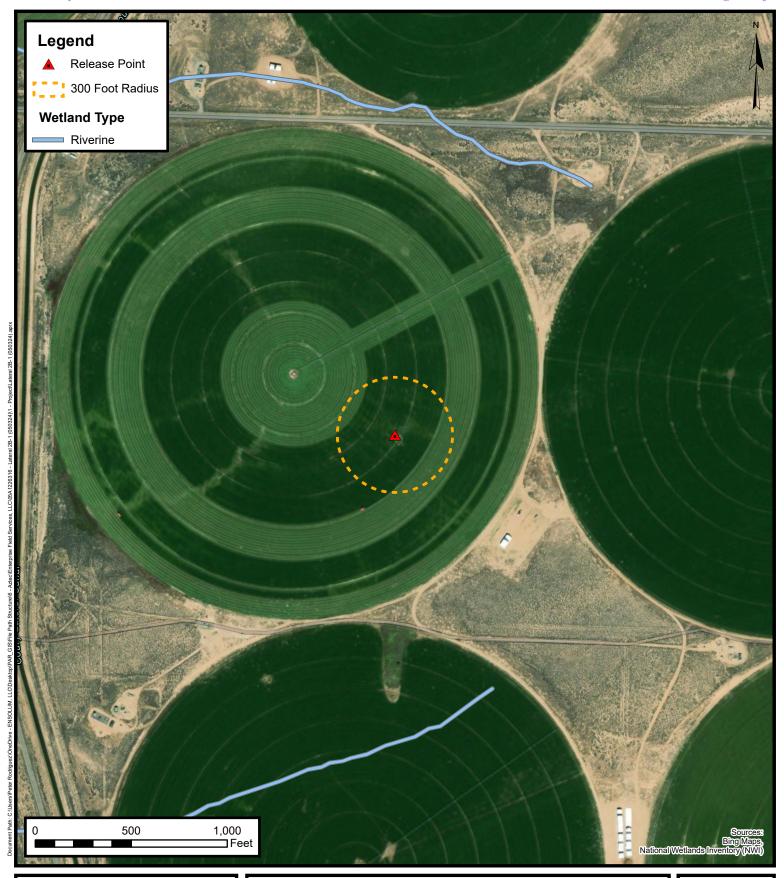
FIGURE



300 Foot Radius Occupied Structure Identification

Enterprise Field Services, LLC Lateral 2B-1 (05/03/24) Project Number: 05A1226316 Unit Letter F, S21 T27N R11W, San Juan County, NM

Unit Letter F, S21 T27N R11W, San Juan County, NM 36.56086, -108.00953 FIGURE

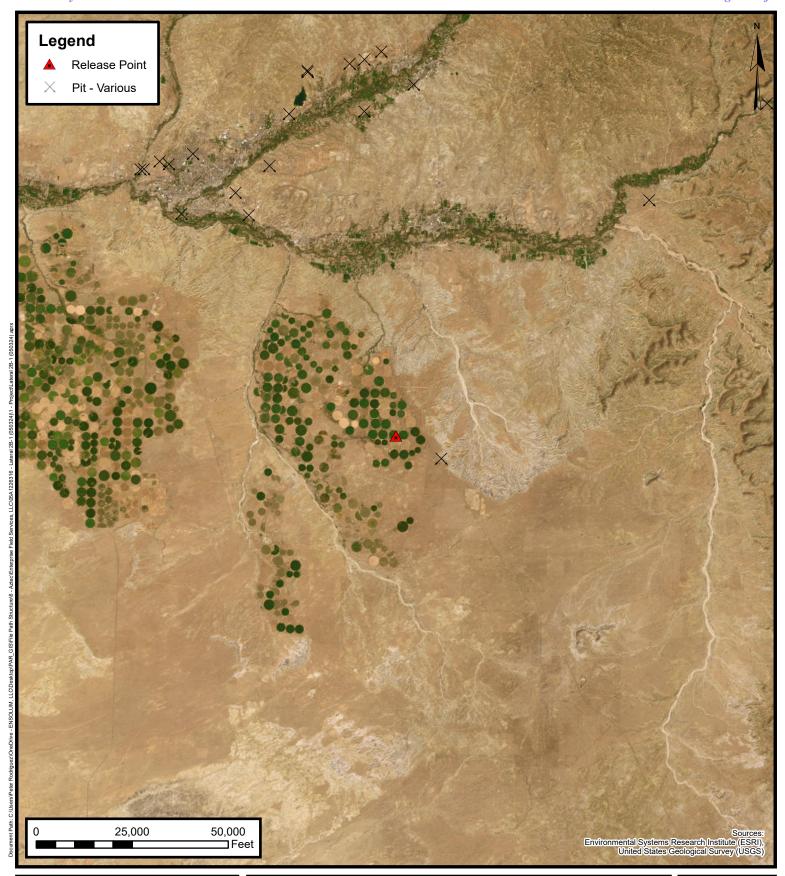

Water Well and Natural Spring Location

Enterprise Field Services, LLC Lateral 2B-1 (05/03/24) Project Number: 05A1226316

Unit Letter F, S21 T27N R11W, San Juan County, NM 36.56086, -108.00953

Ε

FIGURE

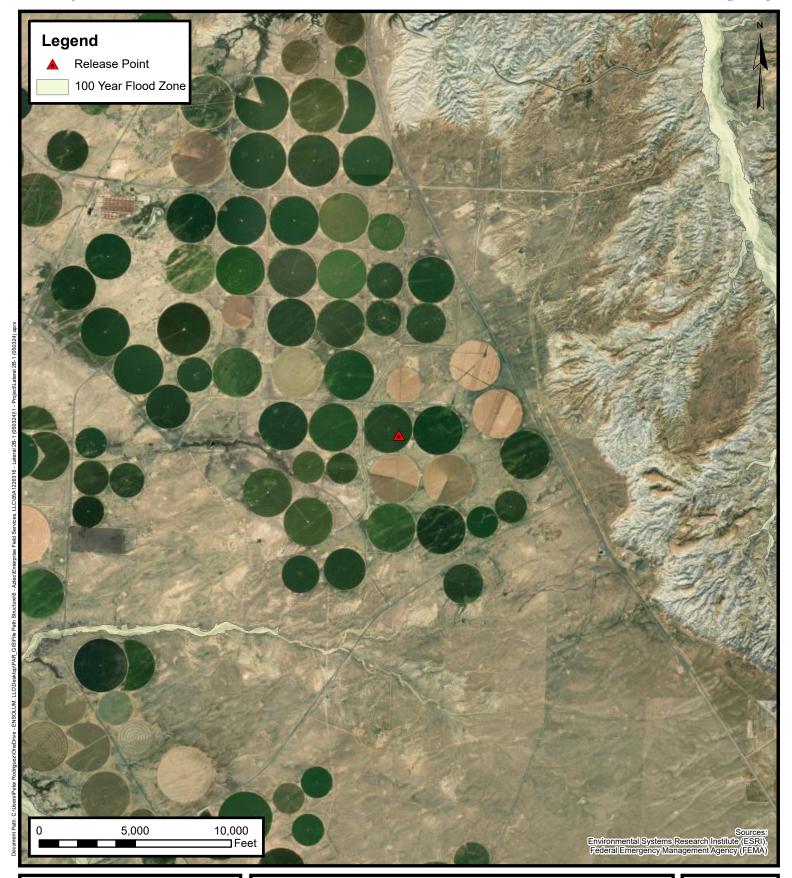


Wetlands

Enterprise Field Services, LLC Lateral 2B-1 (05/03/24) Project Number: 05A1226316

Unit Letter F, S21 T27N R11W, San Juan County, NM 36.56086, -108.00953

FIGURE **F**



Mines, Mills, and Quarries

Enterprise Field Services, LLC Lateral 2B-1 (05/03/24) Project Number: 05A1226316 Unit Letter F, S21 T27N R11W, San Juan County, NM

Jnit Letter F, S21 T27N R11W, San Juan County, NM 36.56086, -108.00953 FIGURE

100-Year Flood Plain Map

Enterprise Field Services, LLC Lateral 2B-1 (05/03/24) Project Number: 05A1226316

Unit Letter F, S21 T27N R11W, San Juan County, NM 36.56086, -108.00953

Н

FIGURE

New Mexico Office of the State Engineer Water Column/Average Depth to Water

No records found.

PLSS Search:

Section(s): 15, 16, 17, 20, **Township:** 27N **Range:** 11W

21, 22, 27, 28,

29

30-045-28425

DATA SHEET FOR DEEP GROUND BED CATHODIC PROTECTION WELLS NORTHWESTERN NEW MEXICO (Submit 3 copies to OCD Aztec Office)

Operator Bonneville Fuels Corp. Location: Unit Sec. 15 Twp 27 Rng //
Name of Well/Wells or Pipeline Serviced Fullerton Fed #15-41
Elevation Completion Date 5-16-9/ Total Depth 300 Land Type* F
Casing, Sizes, Types & Depths NA-None
If Casing is cemented, show amounts & types used NA-None
. Aller an and
If Cement or Bentonite Plugs have been placed, show depths a suggestion and the second
NA-None OIL CON. DIV.
Depths & thickness of water zones with description of water when possible:
Fresh, Clear, Salty, Sulphur, Etc. First ronly strenk of clear
nater at 170' Pepet
Depths gas encountered: NA-None
Type & amount of coke breeze used: CARBO-40-99,9% Carbon - 1,300 LBS
Depths anodes placed: 220, 230, 240, 250, 260 gr 270 Deser
Depths vent pipes placed: O to 300 Peep
Vent pipe perforations: Laser Cut Slots from 140' to 300' Deaps
Remarks: Solid I'dia, PVC (vant) pipe from 0'to 140 Dep.

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

^{*}Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

DATA SHEET NO One (1)

ELL: FULLERTON FED #15 - 4 PIPELINE: DCATION: SEC 15 TWP 27 MGE. 1/ CO. SANSUAN STATE NAM LEV. FT: ROTARY 300/ FT. CABLE TOOL -6 FT: CASING -0 RCUNDBED: DEPTH 300/ FT. DA. 67 N. GAS 300 UBS. ANCDES 1010 STRING ENT. DHILLER'S LOG EXPLORING ANODE NO WITH ANODE DEPTH TOP OF TO STRUCTURE COKE COKE NO. TOP TOP OF TOP	MPAI	NY BONNEVILLE FUERS COR	מי	108	No 75	il-0011B n	ATE.	5-16	-9/
CATION: SEC STWP 27 MAR CO SAUSUAN STATE MARCO	ELL: _	FULLERTON FED#15-41	PIPS	LINE:					
EV						STATE	NI	17	
ROUNDBED: DEPTH 300 FT. DA 67 N CAS 1300 LBS ANDDES LULD STRING PT. DAILLER'S LOG EXPLORING ANDDE NO WITH ANDDE TOP									2-
EXPLORING ANODE NO WITH ANODE TO STRUCTURE COKE NO. ANODE NO. AND									
DRILLER'S LOG FIRST WATER 130	<u> </u>					 			
5D 0.60 5mely 38 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FT.	·	TO		RE	COKE	COKE	No.	TOP OF
\$\frac{1}{5} \text{to} - \text{50} \text{5thto} \text{70} \text{5thto} \			2	· · · · · · · · · · · · · · · · · · ·		I	I		
	50	0.60. SANOY	1			<u> </u>	<u> </u>	1	<u> </u>
			<u>'</u>			<u> </u>		1	<u> </u>
20			<u> </u>				SSS AN	ha == ===	<u>. </u>
10	20		<u>'</u>			id) e u	E	WEIT	1
10			Ī			W			Ĭ.
			1			1116	7 10	01	7
			i	1 4.5		1	6 13	71	1
205 4,8 DIST. 3 205 10 5.0			1	14.6	1	OILC	ON	DIM	
205 US			1		ı				
210 5.0 220 225 230 235 236 235 236 235 236 235 236 235 236 235 236 235 236 235 236 235 236	200		1	14,8	<u> </u>	"	31. 3	1	<u>, </u>
225 226 230 235 235 247 248 248 257 268 277 278 277 288 287 287 288 287 288 288			1	1 45	1		<u> </u>		<u> </u>
220 225 230 230 230 235 240 257 260 277 277 277 277 277 277 277 277 277 27			<u> </u>	15.0	<u> </u>		<u>!</u>	<u> </u>	<u> </u>
225 5,4 5,8 7,0			!	1 4.9	!		<u> </u>	<u> </u>	1
230 235 237 240 247 257 257 260 260 275 276 276 277 277 277 277 277 277 277 277			!_/_	5.3	<u> </u>		<u> </u>		120
235 5.6 70 5.8 70 5.7 70 70 70 70 70 70 70			!/	1 5.9	!		<u> </u>		-
270 275 277 277 278 279 279 279 279 270 277 270 277 270 277 270 278 279 279 279 279 270 278 279 279 279 279 279 270 278 279 279 279 279 279 279 279 279 279 279			!\	128	<u> </u>		!		}/
245			¦} —	120	!		-		+
265 5.7 5.7 21.6 270 25.5 270 275 270 275 270		6-1	!/ -	13.8	1 -	1	1		\
265 5.7 5.7 21.6 270 275		1 206>	'(123			1	- 	:
265 5.7 5.7 21.6 270 25.5 270 275 270 275 270		i married	-/	157	i -		i	-i	i
265 5.7 21.6 270 275 5.6 270 280 5.3			 \	58	i		 		
275 5.6 276 276 276 276 275				157	1	5.2	121,6	,	14
275 5.6 285 295 370			1	15.6	Ī	1	Ī	1	1270
275 5.3 290 295 4.7 300 4.8			1	1 5.6		i		ļ .	1
275 5.3 290 295 4.7 300 4.8	280		1	1'553	1	l			1
300	285		1	15.3		1	j	1	
300	290		1	150	1				<u> </u>
	295	}	1	1 4/1	!		<u> </u>		
	300		<u> </u>	968	 				
			 ,				-{		
				<u> </u>					
					'				+
		 	- 			-i -	- 	- 	-
			\neg		1		1	-i	1
			İ		ī	1	1. ,		
			1	i	T			1	
							1		.:
					1	İ	1		
								<u> </u>	<u>: </u>

(2) YIBROGROUND _____ OHM

DATA SHEET FOR DEEP GROUND BED CATHODIC PROTECTION WELLS NORTHWESTERN NEW MEXICO

Operator Menidian Oil Inc Location: Unitm Sec. 17 Twp > 7Rng 11
Name of Well/Wells or Pipeline Serviced whitley A 2
Elevation 6/7/Completion DateTotal DepthLand Type
Casing Strings, Sizes, Types & Depths Set 99' of 8" PUC.
schedule 40 casing.
If Casing Strings are cemented, show amounts & types used Cementes
with 18 sacks of Type II cement.
If Cement or Bentonite Plugs have been placed, show depths & amounts used
NO
Depths & thickness of water zones with description of water: Fresh, Clear,
Salty, Sulphur, Etc. DAMP 110', WATER AT 230'
Depths gas encountered: No
Ground bed depth with type & amount of coke breeze used: 470 with
6,000 lbs Loresco Type SW
Depths anodes placed: 450, 430, 420, 410, 400, 390, 360, 370, 360, 350, 340, 265
Depths vent pipes placed: 470 210,185,17
Vent pipe perforations: bottom 350' DEG CARA
Remarks: JAN 1 1998
OIL COM. DIV

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

DATA SHEET FOR DEEP GROUND BED CATHODIC. PROTECTION WELLS NORTHWESTERN NEW MEXICO 30-045-28969

Operator Metidian Oil INC. Location: Unit L Sec. 17 Twp 27 Rng 11
Name of Well/Wells.or Pipeline Serviced
WHITley A#100
Elevation Completion Date 9/13/93 Total Depth HHG Land Type I
Casing Strings, Sizes, Types & Depths 9/10 Set 78 Of 8" PVc CASING.
NO GAS, WATER, OF Boulders Were ENCOUNTERED DURING CASING.
If Casing Strings are cemented, show amounts & types used Cemented
WITH 16 SACKS.
If Cement or Bentonite Plugs have been placed, show depths & amounts used
None
Depths & thickness of water zones with description of water: Fresh, Clear,
Salty, Sulphur, Etc. HIT WATER AT 85, And More Fresh WATER
AT 250' A WATER SAMPLE WAS TAKEN.
Depths gas encountered: None
Ground bed depth with type & amount of coke breeze used: HHG Depth,
Used 126 SACKS OF ASbury 218R (6300#)
Depths anodes placed: 418, 41, 404, 397 381, 375, 369 342 335 328, 321 314 307, 278, +271
Depths vent pipes placed: Surface To 446. 11 File 19
Vent pipe perforations: BoTTom 340.
281/ 0 27 i eo i
Remarks: OH CON. DIV.

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

Received by OCD: 7-18-12-0211-8:00:30 My - 645-26246 3935

DATA SHEET FOR DEEP GROUND BED CATHODIC PROTECTION WELLS NORTHWESTERN NEW MEXICO (Submit 3 copies to OCD Aztec Office)

Operator MERIDIAN OIL INC. Location: Unit D Sec. 20 Twp 27 Rng 11
Name of Well/Wells or Pipeline Serviced ANGEL PEAK #2E
cps 1853w
Elevation 6189' Completion Date 11/13/87 Total Depth 300' Land Type* N/A
Casing, Sizes, Types & DepthsN/A
If Casing is cemented, show amounts & types used N/A
If Cement or Bentonite Plugs have been placed, show depths & amounts used
N/A
Depths & thickness of water zones with description of water when possible:
Fresh, Clear, Salty, Sulphur, Etc. 30' NO SAMPLE
Depths gas encountered: N/A
Type & amount of coke breeze used: N/A
Depths anodes placed: 265', 205', 170', 160', 150', 140', 130', 120', 110', 100'
Depths vent pipes placed: N/A RECEIVED
Vent pipe perforations: 260' MAY 31 1991
Remarks: gb #1 OIL CON DIV:
DIST. 3

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

^{*}Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

MERIDIAN OIL INC. F: lington Region

Post Office Box 4289

Farmington, New Mexico 87499 (505) 327-0251

General

FM 57 0225 (Per 15/2)

WELL CASINE

CPS #	Well Nam	e. Line or Plant:		4	Vork Order	,	Static:	:		Ins. Union Check	
	Ar	ngel rea	K 21						1 Nu.		☐ Badi
1853W		<i>O</i> – –								☐ Good	Li Bad
	1			<u> </u>		······································	l		:		
ioration: DZC-27		Anode Size:	Anode Typ		10		Size Bit:	3/4	4		
Depth Drilled	Depth	Logged	Drilling Rug Time	,	Total L	ba. Goke Used	Loss (Circulation	Mat'i Used	No. Sacks Mud U	red
300		95			٠					<u> </u>	
Anode Depth # 2 Anode Output (Amps	705	120	160	i	~~ i	. 1110		Z	150	1110	
# 1 0 00 # 2	705	#3//	× 4	# 5/ E		46/90	#7/		#8/00	79770	# 10 / 2
Anode Output (Amps) $= 1.5$, $= 2$	5.0	1, 20	1 a 62.8	1,57	8	# 5 8/	1 7	2.6	120	5.7	1,106.4
Anode Depth	0,70	+****	+	+ 3/	-		+ / /			1 3 /	10 0
# 11		# 13	[= 14	# 15	f	# 16	# 17		! !≉ 18	¦≈ 19	# 20
Anode Output (Amps		1	 	1					 		
# 11 # 12	!	.¦≠ 13	i= 14	# 15	i	# 16	≠ 17		i= 18	a 19	# 20
Total Circuit Resist	ance ;					No. 8 C.P. Ca	ble Used		<u> </u>	No. 2 C.P. Ca	
Volts 1/19	Am	ps 32	Chms	324	3						
		/1				,	. /				
Remarks: <u>Prij</u>	101	30100°	wate,	<u>ں ہے</u>	45	-7 × 4	10.		s was	ter	
Samp 1	e ic	<u> 2 o 5 7</u>	ake,	. 1.12	7 16	6165	ي ر م	<u> </u>	2014	a ray	eel
ν.						, ,		,			
up to		<u> </u>									
											
					7						
										·	
	112	. 1/	A 299.98							<u> </u>	
Rectifier Size:			11300	0					All Constru	iction Comple	ted
Addn i Deptn	-7 6	5	_ / 5./ /	ستعج	378.9	i 8			,,,,,		
Addn'l Depth Depth Credit: Extra Cable:	-3	0 /	- 9397	0/9	J , -			-1	. D eL	/) - /	/
		0 1	ه کیرا	01				ton	coly the	mith	
Ditch & 1 Cable:_			- 94,3	-01				((\$1	gnature)	
litch & 2 Cab		105		GROUND	BED	LAYOUT SKE	TCH				
25' Neter Pol			_						c 0		
0' Meter Pol		65					✓	mP.	G, B.		_
lO' Stub Pole		<u> </u>	-				•	<u> </u>	-		1
lunction Box:	~	069.90	-		,			1	२०′	•	ı
	~~		اعار	.: -			-	, ,1			
<u> </u>		85.38					105	' '\			
,	'× _フ:	59211						1)			. / !
	5-3	37.55						۱,			j
		- • • • • • • • • • • • • • • • • • • •						ri.			, N
	512	8.38				(» t			ָרָי
	25	4.80				* _	, 🗼	i.			.]
		7 00				1 2	· <u>/</u> 1	1			

Released to Image

CORROSION SYSTEMS, ... IC. BURG

WELL TYPE GROUNDED DATA

DATA SHEET NO.

COMPA	, N Y	14	35 No.	_			
WELL.	ANGER PERM # 2E		JB NO	(DATE: _		
i OCATI	ONL STE	PIPELINE	<u> </u>			·	
	ON: SEG TWP RGE	co		STAT	₹		
	FT: ROTARYFT	: CABLE TO	OL	FT	: CASI	Й С —	
GROUN	DBED: DEPTH FT. DIA	IN. GAB	LB\$.	ANODES			
DEPTH.		EXPLORIN		NO	WITH	DEP'I	н тор
FT.	DRILLER'S LOG	TO STRUC	TURE	COKE	COKE		NODES
5-	PIRST WATER AT 35'		R			<u>, 0N</u>	FT.
10	SAND			 	 		
15)		- 	 -			
20			 -	 			
25							
32							
35							
40			<u> </u>	 	<u> </u>		
45				 	1		
55 55							
60	- /			 			
60	· 3 HACE			 			
70							
75							
80							
35					<u>_</u>		
90				}			
100	·			ļ. <u>.</u>			
5				 			
10			 -	 			
15				 			
20							
25							
30							
35				ļ			
45		- 			!!		
50							
53				╅───			
60							
65							
70							
75							
30 35 40 50 50 55 60 65 70 75 80 85 80 85 200 5	SANO			 			
90		- - -		 			<u> </u>
95				 	<u> </u>		
200	-	- -		 			
5	SHARLE + SAND			 			
10				 			
15							

(2) VIBROGROUND _____ OHN

WELL TYPE GROUNDED DATA

DATA SHEET NO.

		JOB No DATE:								
WELL:		PIPEI	L!NE:							
LOCATIO	N: SEC TWP RGE	co			STAT	=				
ELEV	FT: ROTARY	_FT: CABLE	TOOL		FT	: CASI	ŅG			
	BED: DEPTH FT. DIA									
					$\overline{}$			H TOP		
DEPTH,	DRILLER'S LOG		RING A		COKE	COKE		NODES		
FT.		.0.01	1	R	1	4	NO.			
20	SHALLS YSAND			 		-	,,,,,			
25										
30										
35					<u> </u>					
40										
15			<u> </u>	 	 			<u> </u>		
50		·		<u> </u>	<u> </u>	1				
55			 	 	 			 		
65			<u> </u>	<u> </u>		-				
				 	 					
70			 	<u> </u>	 					
	• •							 -		
35			 	1				 		
90				1				Ĺ		
25										
300										
5			<u> </u>		 	ļ		<u> </u>		
10				<u> </u>		<u> </u>		<u> </u>		
15			<u> </u>	 		<u> </u>		 		
20			 	 	 			 -		
25	•		 	┼	 	 	<u> </u>	 		
30			 	<u> </u>			 	 		
40			 	 	 	 	 	 		
11.	·		-	 	 		 			
50								i i		
55										
60										
65								1		
70	· 293			ļ	<u> </u>	<u> </u>	<u> </u>	\		
75		<u> </u>	 	<u> </u>	<u> </u>	<u> </u>	 	<u> </u>		
80	<u> </u>			<u>!</u>		<u> </u>	ļ	 		
83			 	 		 	 			
70	•		-	 	+	-	 	 		
4/20	•		 	+	+	 	 	+		
5			 	 		+	 			
10			1	1	1.	 	 	 		
15			 	1	 	1				
20				1				1		
60 65 70 75 80 85 90 95 400 5 10 15 20 25										
20										

30-045-26247

DATA SHEET FOR DEEP GROUND BED CATHODIC PROTECTION WELLS NORTHWESTERN NEW MEXICO (Submit 3 copies to OCD Aztec Office)

Operator MERIDIAN OIL INC. L	ocation: Unit I Sec. 20 Twp 27 Rng 11
Name of Well/Wells or Pipeline Service	d ANGEL PEAK #3E
	cps 1858w
Elevation ₆₂₃₉ Completion Date 11/13/87	Total Depth 300' Land Type* N/A
Casing, Sizes, Types & Depths	N/A
If Casing is cemented, show amounts &	types used N/A
If Cement or Bentonite Plugs have beenN/A	placed, show depths & amounts used
Depths & thickness of water zones with	description of water when possible:
Fresh, Clear, Salty, Sulphur, Etc	30' NO SAMPLE
Depths gas encountered: N/A	
Type & amount of coke breeze used:	N/A
Depths anodes placed: 270', 245', 235', 215	
Depths vent pipes placed: N/A	DECEIVED
Vent pipe perforations: 270'	
Remarks: gb #1	OIL CON. DIV.
	VOIST. 3.

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

^{*}Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

MERIDIAN OIL INC. F mington Region Post Office Box 4289

Post Office Box 4239
Farmington, New Mexico 87499
(505) 327-0251

General

(505) 327-0251 WELL CASING CATHODIC PROTECTION CONSTRUCTION REPORT Completion Date 11-13-87 ing Log (Asser Hereto) DAILY LOG Work Order # Well Name, Line or Plant: Ins. Union Check امدة 🗀 8 584 2" x 60" ニコひ・コウ oth Drilled Total Lbs. Goke Used No. Sacks Mud Used 3 80C iode Depth #3 7 35 # 5 DC.S 1 8 / 75 #6195 1 5 6 2 1#6 6.5 node Depth # 14 # 19 # 17 # 18 # 20 node Output (Amps) otal Circuit Resistance Chms water wat 30'. c ectifier Size: 40 V 4399.00 All Construction Completed .ddn'l Depth__ Depth Credit:_ xtra Cable:_ 42.00 V)itch & 1 Cable:_ 148.50 litch & 2 Cable: 165 GROUND BED LAYOUT SKETCH :5' Neter Pole: 10° Heter Pole: .O' Stub Pole: Junction Box:

543C 25 543C 25 5232.38 261.11 5483.49

Released to Imaging: 7/22/2024 7:32:36 AM

11651

6239

BURG. CORROSION SYSTEMS, IC.

P.O. BOX 1359 - PHONE 334-6141 AZTEC, NEW MEXICO 87410

Date 11-13-87

		Λ		0							L GI	ior	JNDBE	D L	OG	,					8					-	
Compa	3ny/ lo	11/e	p-10	ے 'تر کرکیے	y , "	2	1	س.ک			<u>/</u>		- : -22													_	_
Well N	lo	مر در	<u> </u>	Locati	on -	2	ر کوئ ک	22° j	. ૯	ž. /		_/	ے میں جو	r 1	<u>(</u>	Va	lts.	Арр	lied	1 -	<u> </u>		- A	mp	eres	20	<u></u>
5				23	ο [2	4				çamış.	_	455 (2	7	8		<u>O</u>	680	5	5			\perp	工	Į
10	++	+	+	23	-	깈	5	ı	=		3	_	460	(2)	2	4	5	2	<u>رم</u>	685	4	4			4	+	4
15	++	++		24	- 1	24	3	\dashv	_	Щ		_	465 (3	3	5	깄	8	690	1.5	12	Н		-	-	+
20	++-	++	+	24	-	21	<i>4</i>	-4	\subseteq	\mathbb{H}	(Z)	ᅴ		9	5	0	5	2,	5	695	5,	13	_		-	+	+
25	-	++	+	—	۴	<u> </u>	<u>/</u>					\dashv	475	2	7	9	;7 5 ^m	3	<u> </u>	700	٠.	3	\vdash			+	╁
30 2	+	++	╂┈┤	25	Ė	+	H			Н			480	3	1,	5	<u>ک</u>	1	<u> </u>	705	1	5		Н	+	+	+
35 / /		++	╂┈┤	26 26	- t	,		\dashv		\vdash	\dashv	\dashv	485 490	3	7	7	-	3.	/ /	710	7	4		Н	-	+	\dagger
	} 	++	+	27	- 1	7	/				1	ᅱ	490	9	1	6	<u>)</u> 5	3		715	Ž,	5	Н	Н	\dashv	十	+
45 2 9 50 3 7	71-1-	+-+	+	27	H	$\frac{1}{2}$	6	-		Н	<u>. </u>	ᅥ	500	⇤	/	5	-		۷	725	6	0	H	Н	\dashv	十	+
	<u> </u>			28			3			Ш			505	۲	 -	_)		-	7	Ē				_	+	†
55 /, C 60 /. C	3	TT	1	28			11	\dashv		Н	\dashv	\dashv	510		\vdash	Н		一		730		\vdash				十	7
65 // 4	4			29	-	7	5						515	Г				\dashv		740					\top	\top	1
70 7 /	/			29	5	才	7	1	9	8			520							745						十	1
75 7.	7			30	юГ								525							750						7	٦
80 Z. S	5			30	Г								530							755							
85 7 =	2			31	<u> ۰</u> [535							760						\prod	
90 1/5				31	5								540							765							
95 /. 4	é			32	0	\bot							545							770							
100 //	3		\sqcup	32	25							_	550	<u> </u>			Ш			775		<u> </u>			\Box	\bot	_
105 /	<u> </u>		\perp	33	:o _	\downarrow							555						\perp	780		<u> </u>				\bot	_
110 20	44	$\bot \bot$		33	5	4	_						560							785		<u> </u>	Ш		_		_
115 1. 1	4	$\downarrow \downarrow$	$\downarrow \downarrow$	34	- t	4	_					_	565					\Box	\perp	790				Щ		+	_
120 / 5	<u> </u>	++	+	34	· -	ᆛ	\dashv	\dashv	_			_	570	<u> </u>	_	\vdash	_			795	<u> </u>	┡			\vdash	+	_
125 / /	4 +	++	+	35	-	-	_					_	575	<u> </u>	_	Н		\vdash	-	800	_	-			-	+	
130 /. 🥰	4	┦-	+	35		\dashv				H		_	580	<u> </u>	┝	\vdash	Н	\dashv		805	-			Н	-	+	_
135 /. 5	7	+	╅┤	36		\dashv	\dashv	-		H			585	-	ļ			-+	_	810	\vdash			H	\dashv	╫	_
, T	_	++	+	36		┪		\dashv				\dashv	590	\vdash			H	\dashv	+	815	\vdash	┝		Н	\dashv	+	_
	3	++	+	37 37		+	\dashv	\dashv		Н		\dashv	595 600			-	Н	-	+	820 825	\vdash	-		Н		+	_
	_	 	10	36		7	-	-		Н	H		605	\vdash	\vdash		Н	\dashv	+	7	\vdash	┪	\vdash		\vdash	_	-
155 7 160 2, C	<u> </u>	$\uparrow \uparrow$		38		\dashv	\dashv				H	\neg	610					\dashv	_	830		 				\top	_
165 2. 7	7		-0	39		7				П			615							840	厂					1	_
170 2, 3	7			39	- 1-		1			П			620							845							
	<u>4 </u>		3		-								625							850							
180 75				40	5								630							855							
185 2. 8	3 [1	12	41		\Box							635							860					Ш		
190 3. 3				41	5								640							865		$oxed{}$		Ц	\Box	\bot	
195 🚅 🗸		+		42	0			[Ш	Щ]	645	<u></u>				Ц		870					\sqcup	\bot	_
		1		42	5		_	[Щ	Ц		650	<u></u>	<u> </u>	\sqcup			\perp	875	<u> </u>	_	_		\sqcup	\bot	_
200	8 /	1 6	<u> </u>	43	ωL	_				Щ	Щ	_[655	<u> </u>	_	Ļ		\square		880					dash	_	
210				43	5	4	_					_	660	<u> </u>	_		Ш		_	885	_	\vdash			igwdap	+	_
215			2	⁴⁴	o L	4	_	_		Ь		_	665	<u> </u>	_				+	890	-	\vdash	_	_	igwdap	+	_
220 /2 8			\Box	44			_	_		Щ		_	670	\vdash	_			\sqcup	+	895	-	\vdash	1		$\vdash \vdash$	+	
edog Imagin	nk: 7/22	2/2024	7:32	:36 AM	OL.					l			675	1	<u> </u>	1				900	<u> </u>			l .	i_L	L_	

DATA SHEET NO.

COMPA	NY MERIDIAN		_ JOB	No		OATE: _	11-13	-82
WELL:	ANGER PEAK	_ PIPE	LINE					
LOCATI	ION: SEC. <u>20</u> twp. <u>22</u> rae, <u>114</u>	_ co			STAT		m	
ELEV	TT: ROTARY 298 FT:	CABLE	TOOL	-0			No -	
GROUN	IDBEDI DEPTH 298' FT. DIA. 634 IN	. GAB		LBS.	ANODES			
		EXPLO	DRING A	NODE	NO,	WITH	DEPT	H TOP
DEPTH, FT.	DRILLER'S LOG		RUCTUR		COKE		ĺ .	NODES
[FIRST WATOR HT 30'	E		R		4	NO.	FT.
5-		T			1	-	 _	
10 15 20 25 30								
15								
20								
25								
30								
35					<u> </u>			
40								
45	\\					1		
45 20 55								
55				<u> </u>				
60	<u> </u>	<u> </u>		<u></u>				
65	<u> </u>	<u> </u>	<u> </u>		<u> </u>			
20_	<u> </u>	<u> </u>	<u> </u>					
70 75		<u> </u>						
80 85 90 95	<u> </u>		<u> </u>	<u></u>		1		
35		<u> </u>						
90		<u> </u>	<u> </u>		<u> </u>	<u> </u>		
95			<u> </u>		<u></u>	<u> </u>		
100	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>		
100 5	SHALE + SAND	ļ	<u> </u>					
10		 	<u> </u>		ļ		<u> </u>	<u> </u>
/5	 	 	<u> </u>		<u> </u>			
20	<u> </u>	 -			<u> </u>			1
25		 	1		 	!		
30		 	ļ <u>.</u>	ļ	 	 		ļ
55			 -		 	 	<u> </u>	
110		} -	 	 	 	!	<u> </u>	
\$ 95 50 50 50 50 50 50 50 50 50 50 50 50 50				<u> </u>		 	<u> </u>	
43-			 	 	 	 		
Con		┽──~	 	 				<u> </u>
6	SHME	 	 	!	 	}	<u> </u>	1
7/1		 	<u>'</u>	 	 	 		
72		+	}	 	 	'	<u> </u>	
20	•	} -	 	 	 	 	 -	
95			'	 	 	 		
90		╅───	 			 	 	
92	 	 	 	 	1.	 	 	
2000		 	 	 	 	 	 	
200 5		1	 	 	 		 	
10		 	 	 	 	 	 	
10	 	1		 	 	 	 	
	<u> </u>	<u> </u>		<u></u>	<u></u>			

(2) VIBROGROUND _____ DHM

WEL TYPE GROUNDBED DAT

DATA SHEET NO. _____

COMPA	NY		_ JOB	No		ATE: _		
WELL:		PIPEI	-INE:-			<u> </u>		
LOCATI	ON: SEC TWP RGE	co		<u></u>	STATI	T		
ELEV	FT: ROTARYF	T: CABLE	TOOL.		 	: CASI	NG	
	DBED: DEPTH FT. DIA							
I		EXPLO	RING A	NODE	NO	WITH	DEP'II	I TOP
DEPTH, FT.	DRILLER'S LOG	TO ST		COKE		OF ANODES		
		E .		R			, ОИ	FT.
20	SHIPLE-							
25	SAND							
30 35	Cudin							
	SHALE							
40		<u> </u>						
50)			i				
53								
60	SANDYSHHLE							
60 65								
70								
75	-				ļ			
30	•				ļ			
35								
90				<u> </u>	<u> </u>	1		
25	/			 	 			
300					 -			-
5						-		
10				 				
20		- 						*
25		<u> </u>		i				
30	•							
30 35		l						
40								
45								
50				<u> </u>	<u> </u>			
55				!		<u> </u>		-
60			ļ	 	 	!		
50 55 60 65 70 75 80 85 90 95 400 15 20 25	· · · · · · · · · · · · · · · · · · ·		<u> </u>	-		1	<u> </u>	
75								
00				1	-	 	<u> </u>	
85		-	 	i	 		- "	
90	1.		i	 		İ		
95	•				 	İ		
400	·							
5								
10					ŀ			
15						ļ		<u> </u>
20				1	<u> </u>		<u> </u>	
25					ļ	 	<u> </u>	
L.30	1		<u> </u>	1	<u> </u>	<u> </u>	<u>L</u>	<u> </u>

Received by OCD: 7/18/2024 8:00:30AM 30-045-30898

32-30-045-28257

DATA SHEET FOR DEEP GROUND BED CATHODIC PROTECTION WELLS
NORTHWESTERN NEW MEXICO
(Submit 3 copies to OCD Aztec Office)

Operator Bonneville Fuels Corp, Location: Unit NEsec. 77 Twp 27 Rng //
Name of Well/Wells and Pipeline Serviced Scott "Fed, #22-32+ #22-22
1780 FNL \$ 1480 FEL
Elevation Completion Date 5-14-9/ Total Depth 300 Land Type* F Casing, Sizes, Types & Depths PVC Casing 8" I.D., 8 18"0, D.
Casing, Sizes, Types & Depths PVC Casing 8" I.D., 8 18"0, D.
Schedule 40, B.E. to 25' Deep.
If Casing is cemented, show amounts & types used NA-None
If Cement or Bentonite Plugs have been placed, show depths & amounts used
NA-None
Depths & thickness of water zones with description of water when possible:
Fresh, Clear, Salty, Sulphur, Etc. First + only Water (Clear) Strenk
at 95 Foot Depth.
Depths gas encountered: <u>NA-None</u>
Type & amount of coke breeze used: CARBO 40, 99,9% Carbon, 1,500 LBS, Depths anodes placed: 200, 210, 220, 230, 240 and 250 Deep.
Depths vent pipes placed: 0'to 300' Peep.
Vent pipe perforations: Laser Cut Slots from 100' to 300' Deeps
Remarks: Solid !! diameter PVC (vent) pipe from 0'to 100'
Deep.
The new of the phase date is separable to the first terms of the first terms.

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

*Land Type may be shown: F-Federal; I-Indian; S-State; P-Federal or Indian, add Lease Number.

EGEIVE

MAY281991

OIL CON. DIV.

DATA SHEET FOR DEEP GROUND BED CATHODIC PROTECTION WELLS NORTHWESTERN NEW MEXICO (Submit 3 copies to OCD Aztec Office)

Operator Bonneville Fuels Corp. Location Unit NEsec. 77 Twp 27 Rng //
Name of Well/Wells and Pipeline Serviced Scott E Fed. #22-32+ #22-22
1780 FNL ! 1480 FEZ
Elevation 7 Completion Date 5-14-9/ Total Depth 300 Land Type* F
Casing, Sizes, Types & Depths PVC Casing 8"I.P., 8 8 0.D.
Schedule 40, B.E. to 25 Peep.
If Casing is cemented, show amounts & types used NA-None
If Cement or Bentonite Plugs have been placed, show depths & amounts used
NA-None
Depths & thickness of water zones with description of water when possible:
Fresh, Clear, Salty, Sulphur, Etc. First tonly Water (Clear) Strenk
at 95 Foot Depth-
Depths gas encountered: <u>NA=None</u>
Type & amount of coke breeze used: CARBO 40, 99,9% Carbon, 1,500 LBS,
Depths anodes placed: 200, 210, 229, 230, 240 and 250 Deep.
Depths vent pipes placed: O to 300 perp.
Vent pipe perforations: Laser Cut Slots from 100 to 300 Deeps
Remarks: Solid I' diameter PVC (vent) pipe from 0'to 100'
Deep_
If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should
be submitted when available. Unplugged abandoned wells are to be included.

*Land Type may be shown: F-Federal; I-Indian; S-State; P-FeDIF Federal or Indian, add Lease Number.

OIL CON. DIV

MAY2 8 1991

DATA SHEET FOR DEEP GROUND BED CATHODIC PROTECTION WELLS NORTHWESTERN NEW MEXICO (Submit 3 copies to OCD Aztec Office)

Operator Bonneville Fuels Corp. Location Unit NE Sec. 27 Twp 27 Rng //
Name of Well/Wells and Pipeline Serviced Scott "E" Fed. #22-32+ #22-22
, 1780 FNL \$ 1480 FEL
Elevation & Completion Date 5-14-9/ Total Depth 300 Land Type* F
Casing, Sizes, Types & Depths PVC Casing 8" I.D., 8 18"0, D.,
Schedule 40, B.E. to 25' Deep.
If Casing is cemented, show amounts & types used NA-None
If Cement or Bentonite Plugs have been placed, show depths & amounts used
NA-None
Depths & thickness of water zones with description of water when possible:
Fresh, Clear, Salty, Sulphur, Etc. First + only Water (Clear) Strenk
at 95 Foot Depth-
Depths gas encountered: NA-None
Type & amount of coke breeze used: CARBO40, 99,9% Carbon, 1,500 LBS,
Depths anodes placed: 200, 210, 220, 230, 240 and 250 Deep.
Depths vent pipes placed: 0 to 300 Deep.
Vent pipe perforations: Laser Cut Slots from 100' to 300' Deeps
Vent pipe perforations: Laser Cut Slots from 100' to 300' Deeps. Remarks: Solid !! diameter PVC (vent) pipe from 0' to 100'
Deep.
If any of the above data is unavailable, please indicate so. Copies of all

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

*Land Type may be shown: F-Federal; I-Indian; S-State; P-Federal or Indian, add Lease Number.

ECEIVE

MAY2 8 1991

OIL CON. DIV

APPENDIX C

Executed C-138 Solid Waste Acceptance Form

Received by OCD: 7/18/2024 8:00:30 AM

1625 N. French Dr., Hobbs, NM 88240

1301 W. Grand Avenue, Artesia, NM 88210

<u>District III</u> 1000 Rio Brazos Road, Aztec, NM 87410 District IV State of New Mexico
Energy Minerals and Natural Resources
Oil Conservation Division
1220 South St. Francis Dr.

Page 40 of 82 Form C-138 Revised 08/01/11

*Surface Waste Management Facility Operator and Generator shall maintain and make this documentation available for Division inspection.

1220	S. St. Francis Dr., Santa Fe, NM 87505 Santa Fe,	NM 8/505	97057-1125
	REQUEST FOR APPROVAL	TO ACCEPT SOL	LID WASTE
	Generator Name and Address: erprise Field Services, LLC, 614 Reilly Ave, Farmington NM	87401	PayKey:AM14058 PM: ME Eddleman AFE: Pending
	Originating Site: Lateral 2B-1		
3.	Location of Material (Street Address, City, State or ULSTR): UL F Section 32 T27N R11W; 36.560860, -108.009530		May 2024
Sou	Source and Description of Waste: arce: Remediation activities associated with a natural gas pipe cription: Hydrocarbon/Condensate impacted soil associated natural gas pipe cription: Hydrocarbon/Condensate impacted soil associated natural gas pipe cription: Hydrocarbon/Condensate impacted soil associated natural gas pipe cription: Hydrocarbon/Condensate impacted soil associated natural gas pipe cription: Material Research (1998) A condensate impacted soil associated natural gas pipe cription: Hydrocarbon/Condensate impacted soil associated natural gas pipe cription with the cription of	ral gas pipeline release. by the operator at the end of the	ne haul) $\frac{268}{\sqrt{y}} \left(\frac{y}{y} \right)^3 / \text{ bbls}$
5.	GENERATOR CERTIFICATION	STATEMENT OF WASTE	STATUS
certi	homas Long, representative or authorized agent for Ent Generator Signature ify that according to the Resource Conservation and Recovery Aculatory determination, the above described waste is: (Check the ag	t (RCRA) and the US Environ	
	RCRA Exempt: Oil field wastes generated from oil and gas exempt waste. **Operator Use Only: Waste Acceptance Frequency Control of the Indian Control of t	exploration and production op uency Monthly Wee	perations and are not mixed with non- kly Per Load
	RCRA Non-Exempt: Oil field waste which is non-hazardou characteristics established in RCRA regulations, 40 CFR 261.21 subpart D, as amended. The following documentation is attache the appropriate items)	-261.24, or listed hazardous w	aste as defined in 40 CFR, part 261,
	MSDS Information RCRA Hazardous Waste Analysis	Process Knowledge	her (Provide description in Box 4)
	GENERATOR 19.15.36.15 WASTE TESTING CERT	IFICATION STATEMENT	FOR LANDFARMS
the 1	homas Long 5-2-2024, representative for Enterprise P Generator Signature required testing/sign the Generator Waste Testing Certification.	roducts Operating authorizes	Envirotech, Inc. to complete
repr have of th	resentative samples of the oil field waste have been subjected to the been found to conform to the specific requirements applicable to the representative samples are attached to demonstrate the above-conformation of the specific requirements applicable to the representative samples are attached to demonstrate the above-conformation of the specific requirements applicable to the representative samples are attached to demonstrate the above-conformation of the specific requirements applicable to the specific requirements ap	o landfarms pursuant to Section	or chloride content and that the samples on 15 of 19.15.36 NMAC. The results
5.	Transporter: TBD West States, LaL		
	D Permitted Surface Waste Management Facility		
A	Name and Facility Permit #: Envirotech Inc. Soil Remediation Address of Facility: Hilltop, NM Method of Treatment and/or Disposal:	Facility * Permit #: NM 01-	

PRINT NAME: Greg Crabbre TITLE: Enviro Manager DATE: 5/3/24
SIGNATURE: TELEPHONE NO.:

☐ Evaporation ☐ Injection ☐ Treating Plant ☐ Landfarm ☐ Landfill ☐ Other

Surface Waste Management Facility Authorized Agent 505-632-0615

APPENDIX D

Photographic Documentation

Closure Report Enterprise Field Services, LLC Lateral 2B-1 (05/03/24) Ensolum Project No. 05A1226316

Photograph 1

Photograph Description: View of the inprocess excavation activities.

Photograph 2

Photograph Description: View of the inprocess excavation activities.

Photograph 3

Photograph Description: View of final excavation.

SITE PHOTOGRAPHS

Closure Report Enterprise Field Services, LLC Lateral 2B-1 (05/03/24) Ensolum Project No. 05A1226316

Photograph 4

Photograph Description: View of final excavation.

Photograph 4

Photograph Description: View of the site after initial restoration.

APPENDIX E

Regulatory Correspondence

From: Long, Thomas <tjlong@eprod.com> Sent: Monday, May 6, 2024 8:47 AM

To: Velez, Nelson, EMNRD < Nelson. Velez@emnrd.nm.gov>

Cc: Stone, Brian

 bmstone@eprod.com>

Subject: [EXTERNAL] Lateral 2B-1 - UL F Section 32 T27N R11W; 36.560860, -108.009530 - NMOCD

Incident # nAPP2412451499

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Nelson,

The email is a notification and a variance request for the Lateral 2B-1, NMOCD Incident # nAPP2412451499. Enterprise is requesting a variance for required 48 hour notification per 19.15.29.12D (1a) NMAC. Enterprise would like to collect closure samples tomorrow May 7, 2024 at 9:00 a.m. Please acknowledge acceptance of this variance request. If you have any questions, please call or email.

Thomas J. Long
Senior Environmental Scientist
Enterprise Products Company
614 Reilly Ave.
Farmington, New Mexico 87401
505-599-2286 (office)
505-215-4727 (Cell)
tilong@eprod.com

This message (including any attachments) is confidential and intended for a specific individual and purpose. If you are not the intended recipient, please notify the sender immediately and delete this message.

From: OCDOnline@state.nm.us

To: Long, Thomas

Subject: [EXTERNAL] The Oil Conservation Division (OCD) has accepted the application, Application ID: 341028

Date: Monday, May 6, 2024 8:49:48 AM

[Use caution with links/attachments]

To whom it may concern (c/o Thomas Long for Enterprise Field Services, LLC),

The OCD has received the submitted *Notification for (Final) Sampling of a Release* (C-141N), for incident ID (n#) nAPP2412451499.

The sampling event is expected to take place:

When: 05/07/2024 @ 09:00

Where: F-21-27N-11W 0 FNL 0 FEL (36.56086,-108.00953)

Additional Information: Ensolum, LLC

Additional Instructions: 36.56086,-108.00953

An OCD representative may be available onsite at the date and time reported. In the absence or presence of an OCD representative, sampling pursuant to 19.15.29.12.D NMAC is required. Sampling must be performed following an approved sampling plan or pursuant to 19.15.29.12.D.(1).(c) NMAC. Should there be a change in the scheduled date and time of the sampling event, then another notification should be resubmitted through OCD permitting as soon as possible.

• Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted.

If you have any questions regarding this application, or don't know why you have received this email, please contact us.

New Mexico Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, NM 87505 From: nnepawq@frontiernet.net

To: Long, Thomas

Subject: RE: [EXTERNAL] RE: Lateral 2B-1 - UL F Section 32 T27N R11W; 36.560860, -108.009530 - NMOCD Incident #

nAPP2412451499

Date: Monday, May 6, 2024 11:24:58 AM

[Use caution with links/attachments]

Hi Tom,

That'll be okay.

--Steve

Steve Austin Senior Hydrologist NNEPA WQ/NPDES Program 505-368-1037

----Original Message-----

From: Long, Thomas <tjlong@eprod.com> Sent: Monday, May 6, 2024 11:06 AM

To: nnepawq@frontiernet.net

Subject: Re: [EXTERNAL] RE: Lateral 2B-1 - UL F Section 32 T27N R11W; 36.560860, -108.009530 - NMOCD

Incident # nAPP2412451499

Steve,

I just got word, we are actually will be ready to sample today. Is that acceptable?

Tom Long

On May 6, 2024, at 10:55 AM, nnepawq@frontiernet.net wrote:

[Use caution with links/attachments]

Tom,

Your request for a variance on the 48 hour notification to sample at the Lateral 2B-1 release location (NMOCD Incident #NAPP2412451499) is approved.

--Steve

Steve Austin Senior Hydrologist NNEPA WQ/NPDES Program 505-368-1037

From: Long, Thomas <tjlong@eprod.com> Sent: Monday, May 6, 2024 9:24 AM To: nnepawq@frontiernet.net

Subject: RE: [EXTERNAL] RE: Lateral 2B-1 - UL F Section 32 T27N R11W; 36.560860, -108.009530 - NMOCD

Incident # nAPP2412451499

Steve,

It is in the title of the email.

Thomas J. Long
Senior Environmental Scientist
Enterprise Products Company
614 Reilly Ave.
Farmington, New Mexico 87401
505-599-2286 (office)
505-215-4727 (Cell)
tilong@eprod.com<mailto:tjlong@eprod.com>

<image001.jpg>

From: nnepawq@frontiernet.net<<u>mailto:nnepawq@frontiernet.net</u>> <nnepawq@frontiernet.net<<u>mailto:nnepawq@frontiernet.net</u>>>

Sent: Monday, May 6, 2024 9:24 AM

To: Long, Thomas <tjlong@eprod.com<<u>mailto:tjlong@eprod.com</u>>>

Subject: [EXTERNAL] RE: Lateral 2B-1 - UL F Section 32 T27N R11W; 36.560860, -108.009530 - NMOCD

Incident # nAPP2412451499

[Use caution with links/attachments]

Hi Tom,

I never received notification of this incident. Do you have a location?

--Steve

Steve Austin Senior Hydrologist NNEPA WQ/NPDES Program 505-368-1037

From: Long, Thomas <tjlong@eprod.com<<u>mailto:tjlong@eprod.com</u>>>

Sent: Monday, May 6, 2024 8:55 AM

To: nnepawq@frontiernet.net<mailto:nnepawq@frontiernet.net>

Subject: Lateral 2B-1 - UL F Section 32 T27N R11W; 36.560860, -108.009530 - NMOCD Incident #

nAPP2412451499

Steve,

The email is a notification and a variance request for the Lateral 2B-1, NMOCD Incident # nAPP2412451499. Enterprise had a release of natural gas and natural gas liquids on the Lateral 2B-1 pipeline on April 30, 2024. No fire nor injuries occurred. No washes were affected. Repairs and remediation began May 3, 2024.

Enterprise is requesting a variance for required 48 hour notification per 19.15.29.12D (1a) NMAC. Enterprise would like to collect closure samples tomorrow May 7, 2024 at 9:00 a.m. Please acknowledge acceptance of this variance request. If you have any questions, please call or email.

Thomas J. Long
Senior Environmental Scientist
Enterprise Products Company
614 Reilly Ave.
Farmington, New Mexico 87401
505-599-2286 (office)
505-215-4727 (Cell)
tjlong@eprod.com<mailto:tjlong@eprod.com>

<image001.jpg></image001.jpg>

This message (including any attachments) is confidential and intended for a specific individual and purpose. If you are not the intended recipient, please notify the sender immediately and delete this message.

 From:
 Velez, Nelson, EMNRD

 To:
 Long, Thomas

 Co:
 Stone, Prior

Cc: Stone, Brian
Subject: Re: [EXTERN

Re: [EXTERNAL] Lateral 2B-1 - UL F Section 32 T27N R11W; 36.560860, -108.009530 - NMOCD Incident #

nAPP2412451499

Date: Tuesday, May 7, 2024 7:13:13 AM

Attachments: Outlook-jepstwmj.pnq

[Use caution with links/attachments]

Good morning Tom,

Sorry for the delay, was not at work yesterday. Thank you for the notice. Your variance request specifically addressing 19.15.29.12D (1a) NMAC is approved.

If an OCD representative is not on-site on the date &/or time given, please sample per 19.15.29 NMAC or from an OCD pre-approved sampling plan. For whatever reason, if the sampling timeframe is altered, please notify the OCD as soon as possible so we may adjust our schedule(s). Failure to notify the OCD of this change may result in the closure sample(s) not being accepted.

Please keep a copy of this communication for inclusion within the appropriate report submittal.

The OCD requires a copy of all correspondence relative to remedial activities be included in all proposals and/or final closure reports. Correspondence required to be included in reports may include, but not limited to, notifications for liner inspections, sample events, spill/release/fire, and request for time extensions or variances.

Regards,

Nelson Velez • Environmental Specialist - Adv Environmental Bureau | EMNRD - Oil Conservation Division 1000 Rio Brazos Road | Aztec, NM 87410 (505) 469-6146 | nelson.velez@emnrd.nm.gov http://www.emnrd.state.nm.us/OCD/

APPENDIX F

Table 1 – Soil Analytical Summary

ENSOLUM

TABLE 1 Lateral 2B-1 (05/03/24) SOIL ANALYTICAL SUMMARY Sample I.D. TPH **Total Combined** Chloride Date Sample Type Sample Benzene Toluene Ethylbenzen Xylenes TPH TPH Total BTEX1 GRO DRO Depth MRO TPH (GRO/DRO/MRO)1 C- Composite (feet) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) G - Grab New Mexico Energy, Mineral & Natural Resources Department NE NE 10 NE NE 50 NE NE 100 600 Oil Conservation Division Closure Criteria (Tier I) **Excavation Composite Soil Samples** S-1 05.06.24 С 10 < 0.019 < 0.039 <0.078 <43 ND <60 < 0.039 ND <3.9 <8.7 S-2 05.06.24 С 0 to 10 < 0.019 < 0.037 < 0.037 < 0.074 ND <3.7 <9.7 <48 ND <60 S-3 05.06.24 С 0 to 10 < 0.021 < 0.041 < 0.041 < 0.082 ND <4.1 <9.2 <46 ND <60 S-4 05.06.24 С 0 to 10 < 0.019 < 0.037 < 0.037 < 0.074 ND <3.7 <9.6 <48 ND S-5 05.06.25 С 10 < 0.017 < 0.034 < 0.034 <0.068 ND <3.4 <8.5 <42 ND <60 05.06.24 < 0.020 < 0.041 < 0.041 <4.1 <9.4 <47 <60 S-6 С 0 to 10 < 0.082 ND ND

Note: Concentrations in bold and yellow exceed the applicable NM EMNRD Closure Criteria

ND = Not Detected above the Practical Quantitation Limits (PQLs) or Reporting Limits (RLs)

NE = Not established

mg/kg = milligrams per kilogram

BTEX = Benzene, Toluene, Ethylbenzene, and Xylenes

TPH = Total Petroleum Hydrocarbons

GRO = Gasoline Range Organics

DRO = Diesel Range Organics

MRO = Motor Oil/Lube Oil Range Organics

^{1 =} Total combined concentrations are rounded to two (2) significant figures to match the laboratory resolution of the individual constituents.

APPENDIX G

Laboratory Data Sheets & Chain of Custody Documentation

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Kyle Summers Ensolum 606 S Rio Grande Suite A Aztec, New Mexico 87410

Generated 5/9/2024 9:53:00 AM

JOB DESCRIPTION

Lateral 2B-1 (4/30/24)

JOB NUMBER

885-3962-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Generated 5/9/2024 9:53:00 AM

Authorized for release by John Caldwell, Project Manager john.caldwell@et.eurofinsus.com (505)345-3975

Page 2 of 21 5/9/2024

_

3

4

5

6

8

9

10

4 4

Client: Ensolum Laboratory Job ID: 885-3962-1

Project/Site: Lateral 2B-1 (4/30/24)

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	12
QC Association Summary	15
Lab Chronicle	17
Certification Summary	19
Chain of Custody	20
Racaint Chacklists	21

2

3

4

6

8

9

10

Minimum Level (Dioxin) Most Probable Number

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Not Detected at the reporting limit (or MDL or EDL if shown)

Not Calculated

Negative / Absent

Positive / Present

Presumptive Quality Control

Definitions/Glossary

Client: Ensolum Job ID: 885-3962-1

Project/Site: Lateral 2B-1 (4/30/24)

Glossary

ML

NC

ND

NEG

POS

PQL

PRES

QC RER

RL

RPD TEF

TEQ

TNTC

MPN MQL

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit

11

Case Narrative

Client: Ensolum Job ID: 885-3962-1

Project: Lateral 2B-1 (4/30/24)

Job ID: 885-3962-1

Eurofins Albuquerque

Job Narrative 885-3962-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 5/7/2024 7:40 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.7°C.

Gasoline Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: Ensolum Job ID: 885-3962-1

Project/Site: Lateral 2B-1 (4/30/24)

Client Sample ID: S-1 Lab Sample ID: 885-3962-1

Date Collected: 05/06/24 09:40 Matrix: Solid

Date Received: 05/07/24 07:40

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		3.9	mg/Kg		05/07/24 09:32	05/07/24 11:54	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		15 - 244			05/07/24 09:32	05/07/24 11:54	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	MD		0.019	mg/Kg		05/07/24 09:32	05/07/24 11:54	1
Ethylbenzene	ND		0.039	mg/Kg		05/07/24 09:32	05/07/24 11:54	1
Toluene	ND		0.039	mg/Kg		05/07/24 09:32	05/07/24 11:54	1
Xylenes, Total	ND		0.078	mg/Kg		05/07/24 09:32	05/07/24 11:54	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		39 - 146			05/07/24 09:32	05/07/24 11:54	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		8.7	mg/Kg		05/07/24 08:53	05/07/24 10:56	1
Motor Oil Range Organics [C28-C40]	ND		43	mg/Kg		05/07/24 08:53	05/07/24 10:56	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	92		62 - 134			05/07/24 08:53	05/07/24 10:56	1

Method: EPA 300.0 - Anions, Ion C	hromatography						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND	60	mg/Kg		05/07/24 10:09	05/07/24 18:36	20

Client: Ensolum Job ID: 885-3962-1

Project/Site: Lateral 2B-1 (4/30/24)

Client Sample ID: S-2 Lab Sample ID: 885-3962-2

. Matrix: Solid

Date Collected: 05/06/24 09:45 Date Received: 05/07/24 07:40

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		3.7	mg/Kg		05/07/24 09:32	05/07/24 12:15	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		15 - 244			05/07/24 09:32	05/07/24 12:15	

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.019	mg/Kg		05/07/24 09:32	05/07/24 12:15	1
Ethylbenzene	ND		0.037	mg/Kg		05/07/24 09:32	05/07/24 12:15	1
Toluene	ND		0.037	mg/Kg		05/07/24 09:32	05/07/24 12:15	1
Xylenes, Total	ND		0.074	mg/Kg		05/07/24 09:32	05/07/24 12:15	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		39 - 146			05/07/24 09:32	05/07/24 12:15	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.7	mg/Kg		05/07/24 08:53	05/07/24 11:08	1
Motor Oil Range Organics [C28-C40]	ND		48	mg/Kg		05/07/24 08:53	05/07/24 11:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	96	-	62 - 134			05/07/24 08:53	05/07/24 11:08	1

Method: EPA 300.0 - Anions, Ion Cl	hromatography						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND ND	60	mg/Kg		05/07/24 10:09	05/07/24 18:51	20

Eurofins Albuquerque

5

0

8

10

11

Client: Ensolum Job ID: 885-3962-1

Project/Site: Lateral 2B-1 (4/30/24)

Client Sample ID: S-3 Lab Sample ID: 885-3962-3

Date Collected: 05/06/24 09:50 Matrix: Solid Date Received: 05/07/24 07:40

Method: SW846 8015D - Gasoline	e Range Orgar	nics (GRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		4.1	mg/Kg		05/07/24 09:32	05/07/24 12:37	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		15 - 244			05/07/24 09:32	05/07/24 12:37	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.021	mg/Kg		05/07/24 09:32	05/07/24 12:37	1
Ethylbenzene	ND		0.041	mg/Kg		05/07/24 09:32	05/07/24 12:37	1
Toluene	ND		0.041	mg/Kg		05/07/24 09:32	05/07/24 12:37	1
Xylenes, Total	ND		0.082	mg/Kg		05/07/24 09:32	05/07/24 12:37	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		39 - 146			05/07/24 09:32	05/07/24 12:37	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.2	mg/Kg		05/07/24 08:53	05/07/24 11:20	1
Motor Oil Range Organics [C28-C40]	ND		46	mg/Kg		05/07/24 08:53	05/07/24 11:20	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	90		62 - 134			05/07/24 08:53	05/07/24 11:20	1

Method: EPA 300.0 - Anions, Ion C	hromatography						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND	60	mg/Kg		05/07/24 10:09	05/07/24 19:06	20

Client: Ensolum Job ID: 885-3962-1

Project/Site: Lateral 2B-1 (4/30/24)

Client Sample ID: S-4 Lab Sample ID: 885-3962-4 Date Collected: 05/06/24 09:55

Matrix: Solid

Date Received: 05/07/24 07:40

Method: SW846 8015D - Gasoline	e Range Organ	ics (GRO) ((GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		3.7	mg/Kg		05/07/24 09:32	05/07/24 12:59	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		15 - 244			05/07/24 09:32	05/07/24 12:59	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.019	mg/Kg		05/07/24 09:32	05/07/24 12:59	1
Ethylbenzene	ND		0.037	mg/Kg		05/07/24 09:32	05/07/24 12:59	1
Toluene	ND		0.037	mg/Kg		05/07/24 09:32	05/07/24 12:59	1
Xylenes, Total	ND		0.074	mg/Kg		05/07/24 09:32	05/07/24 12:59	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		39 - 146			05/07/24 09:32	05/07/24 12:59	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.6	mg/Kg		05/07/24 08:53	05/07/24 11:33	1
Motor Oil Range Organics [C28-C40]	ND		48	mg/Kg		05/07/24 08:53	05/07/24 11:33	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	93		62 - 134			05/07/24 08:53	05/07/24 11:33	1

Method: EPA 300.0 - Anions, Ion C	hromatography						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND	60	mg/Kg		05/07/24 10:09	05/07/24 19:21	20

Eurofins Albuquerque

Released to Imaging: 7/22/2024 7:32:36 AM

Client: Ensolum Job ID: 885-3962-1

Project/Site: Lateral 2B-1 (4/30/24)

Released to Imaging: 7/22/2024 7:32:36 AM

Client Sample ID: S-5 Lab Sample ID: 885-3962-5

Date Collected: 05/06/24 12:50 Matrix: Solid

Date Received: 05/07/24 07:40

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		3.4	mg/Kg		05/07/24 09:32	05/07/24 13:21	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		15 - 244			05/07/24 09:32	05/07/24 13:21	

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.017	mg/Kg		05/07/24 09:32	05/07/24 13:21	1
Ethylbenzene	ND		0.034	mg/Kg		05/07/24 09:32	05/07/24 13:21	1
Toluene	ND		0.034	mg/Kg		05/07/24 09:32	05/07/24 13:21	1
Xylenes, Total	ND		0.068	mg/Kg		05/07/24 09:32	05/07/24 13:21	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		39 - 146			05/07/24 09:32	05/07/24 13:21	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		8.5	mg/Kg		05/07/24 08:53	05/07/24 11:45	1
Motor Oil Range Organics [C28-C40]	ND		42	mg/Kg		05/07/24 08:53	05/07/24 11:45	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	93		62 - 134			05/07/24 08:53	05/07/24 11:45	1

Method: EPA 300.0 - Anions, Ion C	hromatography						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND	60	mg/Kg		05/07/24 10:09	05/07/24 19:36	20

Client: Ensolum Job ID: 885-3962-1

Project/Site: Lateral 2B-1 (4/30/24)

Client Sample ID: S-6

Lab Sample ID: 885-3962-6

Matrix: Solid

Date Collected: 05/06/24 12:55 Date Received: 05/07/24 07:40

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		4.1	mg/Kg		05/07/24 09:32	05/07/24 13:42	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		15 - 244			05/07/24 09:32	05/07/24 13:42	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.020	mg/Kg		05/07/24 09:32	05/07/24 13:42	1
Ethylbenzene	ND		0.041	mg/Kg		05/07/24 09:32	05/07/24 13:42	1
Toluene	ND		0.041	mg/Kg		05/07/24 09:32	05/07/24 13:42	1
Xylenes, Total	ND		0.082	mg/Kg		05/07/24 09:32	05/07/24 13:42	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		39 - 146			05/07/24 09:32	05/07/24 13:42	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.4	mg/Kg		05/07/24 08:53	05/07/24 11:57	1
Motor Oil Range Organics [C28-C40]	ND		47	mg/Kg		05/07/24 08:53	05/07/24 11:57	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	93		62 - 134			05/07/24 08:53	05/07/24 11:57	1

Method: EPA 300.0 - Anions, Ion C	hromatography						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND	60	mg/Kg		05/07/24 10:09	05/07/24 19:52	20

Job ID: 885-3962-1

Prep Type: Total/NA

Prep Batch: 4477

Dil Fac

Dil Fac

Client Sample ID: Method Blank

Analyzed

05/07/24 11:32

Analyzed

05/07/24 11:32

Project/Site: Lateral 2B-1 (4/30/24)

Method: 8015D - Gasoline Range Organics (GRO) (GC)

Lab Sample ID: MB 885-4477/1-A

Analysis Batch: 4529

Gasoline Range Organics [C6 - C10]

Lab Sample ID: LCS 885-4477/2-A

Client: Ensolum

Matrix: Solid

мв мв Analyte Result Qualifier

MB MB Surrogate 4-Bromofluorobenzene (Surr)

%Recovery 108

ND

Qualifier

Limits 15 - 244

RL

5.0

Unit

mg/Kg

D

Prepared

05/07/24 09:32

Prepared

05/07/24 09:32

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client Sample ID: S-1

Prep Type: Total/NA

Prep Batch: 4477

Prep Batch: 4477

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits 25.0 23.6 94 mg/Kg 70 - 130Gasoline Range Organics [C6 -

Spike

Added

194

Spike

Added

Limits 15 - 244

19.4

MS MS

Qualifier

Qualifier

Unit

Unit

mg/Kg

mg/Kg

D

%Rec

%Rec

92

92

Limits

70 - 130

%Rec

Limits

Result

17.9

MSD MSD

17.8

Result

C10]

LCS LCS

Sample Sample

Sample Sample

ND

MSD MSD

210

%Recovery

Result Qualifier

Qualifier

%Recovery Qualifier Limits Surrogate 221 15 - 244 4-Bromofluorobenzene (Surr)

Lab Sample ID: 885-3962-1 MS

Matrix: Solid

Matrix: Solid

Analysis Batch: 4529

Analysis Batch: 4529

Result Qualifier Analyte Gasoline Range Organics [C6 -ND C10]

Surrogate 4-Bromofluorobenzene (Surr)

MS MS %Recovery 221

Qualifier Limits 15 - 244

Lab Sample ID: 885-3962-1 MSD

Matrix: Solid

Analysis Batch: 4529

Analyte Gasoline Range Organics [C6 -C10]

Surrogate 4-Bromofluorobenzene (Surr)

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 885-4477/1-A

Matrix: Solid

Analysis Batch: 4530

Analyte

Benzene ND Ethylbenzene ND Toluene

0.025 0.050 ND

MB MB Result Qualifier RL

0.050

Unit D mg/Kg mg/Kg mg/Kg

05/07/24 09:32 05/07/24 09:32 05/07/24 09:32

Prepared Analyzed 05/07/24 11:32 05/07/24 11:32

05/07/24 11:32

Eurofins Albuquerque

Client Sample ID: S-1 Prep Type: Total/NA

Prep Batch: 4477

RPD RPD Limit

70 - 130

20

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 4477

Dil Fac

Client: Ensolum

Job ID: 885-3962-1

Project/Site: Lateral 2B-1 (4/30/24)

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 885-4477/1-A **Matrix: Solid**

Analysis Batch: 4530

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 4477

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND		0.10	mg/Kg		05/07/24 09:32	05/07/24 11:32	1

MR MR

MR MR

%Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 94 39 - 146 05/07/24 09:32 05/07/24 11:32

Client Sample ID: Lab Control Sample

70 - 130

70 - 130

90

92

84

Prep Type: Total/NA

Prep Batch: 4477

Analysis Batch: 4530 LCS LCS %Rec Spike Analyte Added Result Qualifier Unit %Rec Limits Benzene 1.00 0.881 mg/Kg 88 70 - 130 Ethylbenzene 1.00 0.914 mg/Kg 91 70 - 130

0.895

2.77

MS MS

Qualifier

Result

0.611

0.627

0.623

1.87

mg/Kg

mg/Kg

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

1.00

3.00

Spike

Added

0.742

0.742

0.742

2.23

LCS LCS

Sample

Qualifier

Sample

Result

ND

ND

ND

ND

%Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 39 - 146 96

Lab Sample ID: 885-3962-2 MS

Lab Sample ID: LCS 885-4477/3-A

Matrix: Solid

Analyte

Benzene

Toluene

Ethylbenzene

Xylenes, Total

Matrix: Solid

Toluene

Xylenes, Total

Analysis Batch: 4530

Client Sample ID: S-2 Prep Type: Total/NA Prep Batch: 4477

%Rec %Rec Limits 82 70 - 130 84 70 - 130 84 70 - 130

70 - 130

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	85	-	39 - 146

Lab Sample ID: 885-3962-2 MSD

Matrix: Solid

Analysis Batch: 4530

Client Sample ID: S-2 Prep Type: Total/NA

Prep Batch: 4477

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		0.742	0.622		mg/Kg		84	70 - 130	2	20
Ethylbenzene	ND		0.742	0.630		mg/Kg		85	70 - 130	1	20
Toluene	ND		0.742	0.628		mg/Kg		85	70 - 130	1	20
Xylenes, Total	ND		2.23	1.88		mg/Kg		84	70 - 130	0	20

MSD MSD

%Recovery Qualifier Surrogate Limits 39 - 146 4-Bromofluorobenzene (Surr) 84

Client: Ensolum Job ID: 885-3962-1

Project/Site: Lateral 2B-1 (4/30/24)

Method: 8015D - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 885-4470/1-A Client Sample ID: Method Blank **Matrix: Solid**

Analysis Batch: 4522

MB MB Result Qualifier RL Unit

Analyte	Result	Qu
Diesel Range Organics [C10-C28]	ND	
Motor Oil Range Organics [C28-C40]	ND	

MB MB

Surrogate	%Recovery Qualifier	Limits
Di-n-octyl phthalate (Surr)	93	62 - 134

10

50

43.6

Prepared 05/07/24 08:53

D

mg/Kg

%Rec

87

Prepared

05/07/24 08:53

05/07/24 08:53

D

mg/Kg

mg/Kg

05/07/24 10:31

Analyzed

05/07/24 10:31

05/07/24 10:31

Analyzed

Limits

60 - 135

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 4470

Dil Fac

Dil Fac

Prep Batch: 4470

Spike LCS LCS Result Qualifier Analyte Added Unit

Diesel Range Organics [C10-C28]

Di-n-octyl phthalate (Surr)

Analysis Batch: 4522

Matrix: Solid

LCS LCS %Recovery Qualifier

108

Limits 62 - 134

50.0

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 885-4483/1-A

Lab Sample ID: LCS 885-4470/2-A

Matrix: Solid

Surrogate

Analysis Batch: 4548

Analyte

Chloride

Lab Sample ID: LCS 885-4483/2-A **Matrix: Solid**

Analysis Batch: 4548

Analyte

Chloride

Result Qualifier

ND

RL 1.5

Spike

Added

15.0

Unit mg/Kg

Unit

mg/Kg

LCS LCS

Qualifier

Result

13.8

D Prepared 05/07/24 10:09

D

Analyzed 05/07/24 14:46

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 4483

Dil Fac

Prep Batch: 4483

%Rec %Rec Limits 92 90 - 110

QC Association Summary

Client: Ensolum Job ID: 885-3962-1

Project/Site: Lateral 2B-1 (4/30/24)

GC VOA

Prep Batch: 4477

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-3962-1	S-1	Total/NA	Solid	5035	
885-3962-2	S-2	Total/NA	Solid	5035	
885-3962-3	S-3	Total/NA	Solid	5035	
885-3962-4	S-4	Total/NA	Solid	5035	
885-3962-5	S-5	Total/NA	Solid	5035	
885-3962-6	S-6	Total/NA	Solid	5035	
MB 885-4477/1-A	Method Blank	Total/NA	Solid	5035	
LCS 885-4477/2-A	Lab Control Sample	Total/NA	Solid	5035	
LCS 885-4477/3-A	Lab Control Sample	Total/NA	Solid	5035	
885-3962-1 MS	S-1	Total/NA	Solid	5035	
885-3962-1 MSD	S-1	Total/NA	Solid	5035	
885-3962-2 MS	S-2	Total/NA	Solid	5035	
885-3962-2 MSD	S-2	Total/NA	Solid	5035	

Analysis Batch: 4529

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-3962-1	S-1	Total/NA	Solid	8015D	4477
885-3962-2	S-2	Total/NA	Solid	8015D	4477
885-3962-3	S-3	Total/NA	Solid	8015D	4477
885-3962-4	S-4	Total/NA	Solid	8015D	4477
885-3962-5	S-5	Total/NA	Solid	8015D	4477
885-3962-6	S-6	Total/NA	Solid	8015D	4477
MB 885-4477/1-A	Method Blank	Total/NA	Solid	8015D	4477
LCS 885-4477/2-A	Lab Control Sample	Total/NA	Solid	8015D	4477
885-3962-1 MS	S-1	Total/NA	Solid	8015D	4477
885-3962-1 MSD	S-1	Total/NA	Solid	8015D	4477

Analysis Batch: 4530

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-3962-1	S-1	Total/NA	Solid	8021B	4477
885-3962-2	S-2	Total/NA	Solid	8021B	4477
885-3962-3	S-3	Total/NA	Solid	8021B	4477
885-3962-4	S-4	Total/NA	Solid	8021B	4477
885-3962-5	S-5	Total/NA	Solid	8021B	4477
885-3962-6	S-6	Total/NA	Solid	8021B	4477
MB 885-4477/1-A	Method Blank	Total/NA	Solid	8021B	4477
LCS 885-4477/3-A	Lab Control Sample	Total/NA	Solid	8021B	4477
885-3962-2 MS	S-2	Total/NA	Solid	8021B	4477
885-3962-2 MSD	S-2	Total/NA	Solid	8021B	4477

GC Semi VOA

Prep Batch: 4470

Released to Imaging: 7/22/2024 7:32:36 AM

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
885-3962-1	S-1	Total/NA	Solid	SHAKE	_
885-3962-2	S-2	Total/NA	Solid	SHAKE	
885-3962-3	S-3	Total/NA	Solid	SHAKE	
885-3962-4	S-4	Total/NA	Solid	SHAKE	
885-3962-5	S-5	Total/NA	Solid	SHAKE	
885-3962-6	S-6	Total/NA	Solid	SHAKE	
MB 885-4470/1-A	Method Blank	Total/NA	Solid	SHAKE	

Eurofins Albuquerque

Page 15 of 21

QC Association Summary

Client: Ensolum Job ID: 885-3962-1

Project/Site: Lateral 2B-1 (4/30/24)

GC Semi VOA (Continued)

Prep Batch: 4470 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 885-4470/2-A	Lab Control Sample	Total/NA	Solid	SHAKE	

Analysis Batch: 4522

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-3962-1	S-1	Total/NA	Solid	8015D	4470
885-3962-2	S-2	Total/NA	Solid	8015D	4470
885-3962-3	S-3	Total/NA	Solid	8015D	4470
885-3962-4	S-4	Total/NA	Solid	8015D	4470
885-3962-5	S-5	Total/NA	Solid	8015D	4470
885-3962-6	S-6	Total/NA	Solid	8015D	4470
MB 885-4470/1-A	Method Blank	Total/NA	Solid	8015D	4470
LCS 885-4470/2-A	Lab Control Sample	Total/NA	Solid	8015D	4470

HPLC/IC

Prep Batch: 4483

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-3962-1	S-1	Total/NA	Solid	300_Prep	
885-3962-2	S-2	Total/NA	Solid	300_Prep	
885-3962-3	S-3	Total/NA	Solid	300_Prep	
885-3962-4	S-4	Total/NA	Solid	300_Prep	
885-3962-5	S-5	Total/NA	Solid	300_Prep	
885-3962-6	S-6	Total/NA	Solid	300_Prep	
MB 885-4483/1-A	Method Blank	Total/NA	Solid	300_Prep	
LCS 885-4483/2-A	Lab Control Sample	Total/NA	Solid	300_Prep	

Analysis Batch: 4548

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-3962-1	S-1	Total/NA	Solid	300.0	4483
885-3962-2	S-2	Total/NA	Solid	300.0	4483
885-3962-3	S-3	Total/NA	Solid	300.0	4483
885-3962-4	S-4	Total/NA	Solid	300.0	4483
885-3962-5	S-5	Total/NA	Solid	300.0	4483
885-3962-6	S-6	Total/NA	Solid	300.0	4483
MB 885-4483/1-A	Method Blank	Total/NA	Solid	300.0	4483
LCS 885-4483/2-A	Lab Control Sample	Total/NA	Solid	300.0	4483

Eurofins Albuquerque

Released to Imaging: 7/22/2024 7:32:36 AM

2

5

_

9

10

11

Client Sample ID: S-1

Client: Ensolum

Date Collected: 05/06/24 09:40 Date Received: 05/07/24 07:40 Lab Sample ID: 885-3962-1

	Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			4477	JP	EET ALB	05/07/24 09:32
Total/NA	Analysis	8015D		1	4529	JP	EET ALB	05/07/24 11:54
Total/NA	Prep	5035			4477	JP	EET ALB	05/07/24 09:32
Total/NA	Analysis	8021B		1	4530	JP	EET ALB	05/07/24 11:54
Total/NA	Prep	SHAKE			4470	PD	EET ALB	05/07/24 08:53
Total/NA	Analysis	8015D		1	4522	JU	EET ALB	05/07/24 10:56
Total/NA	Prep	300_Prep			4483	RC	EET ALB	05/07/24 10:09
Total/NA	Analysis	300.0		20	4548	RC	EET ALB	05/07/24 18:36

Lab Sample ID: 885-3962-2

Date Collected: 05/06/24 09:45

Date Received: 05/07/24 07:40

Client Sample ID: S-2

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			4477	JP	EET ALB	05/07/24 09:32
Total/NA	Analysis	8015D		1	4529	JP	EET ALB	05/07/24 12:15
Total/NA	Prep	5035			4477	JP	EET ALB	05/07/24 09:32
Total/NA	Analysis	8021B		1	4530	JP	EET ALB	05/07/24 12:15
Total/NA	Prep	SHAKE			4470	PD	EET ALB	05/07/24 08:53
Total/NA	Analysis	8015D		1	4522	JU	EET ALB	05/07/24 11:08
Total/NA	Prep	300_Prep			4483	RC	EET ALB	05/07/24 10:09
Total/NA	Analysis	300.0		20	4548	RC	EET ALB	05/07/24 18:51

Client Sample ID: S-3 Lab Sample ID: 885-3962-3

Date Collected: 05/06/24 09:50 Date Received: 05/07/24 07:40 **Matrix: Solid**

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			4477	JP	EET ALB	05/07/24 09:32
Total/NA	Analysis	8015D		1	4529	JP	EET ALB	05/07/24 12:37
Total/NA	Prep	5035			4477	JP	EET ALB	05/07/24 09:32
Total/NA	Analysis	8021B		1	4530	JP	EET ALB	05/07/24 12:37
Total/NA	Prep	SHAKE			4470	PD	EET ALB	05/07/24 08:53
Total/NA	Analysis	8015D		1	4522	JU	EET ALB	05/07/24 11:20
Total/NA	Prep	300_Prep			4483	RC	EET ALB	05/07/24 10:09
Total/NA	Analysis	300.0		20	4548	RC	EET ALB	05/07/24 19:06

Client Sample ID: S-4 Lab Sample ID: 885-3962-4

Date Collected: 05/06/24 09:55 Date Received: 05/07/24 07:40 **Matrix: Solid**

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			4477	JP	EET ALB	05/07/24 09:32
Total/NA	Analysis	8015D		1	4529	JP	EET ALB	05/07/24 12:59

Client: Ensolum

Lab Sample ID: 885-3962-4

Matrix: Solid

Date Collected: 05/06/24 09:55 Date Received: 05/07/24 07:40

Client Sample ID: S-4

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			4477	JP	EET ALB	05/07/24 09:32
Total/NA	Analysis	8021B		1	4530	JP	EET ALB	05/07/24 12:59
Total/NA	Prep	SHAKE			4470	PD	EET ALB	05/07/24 08:53
Total/NA	Analysis	8015D		1	4522	JU	EET ALB	05/07/24 11:33
Total/NA	Prep	300_Prep			4483	RC	EET ALB	05/07/24 10:09
Total/NA	Analysis	300.0		20	4548	RC	EET ALB	05/07/24 19:21

Lab Sample ID: 885-3962-5

Matrix: Solid

Client Sample ID: S-5 Date Collected: 05/06/24 12:50

Date Received: 05/07/24 07:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			4477	JP	EET ALB	05/07/24 09:32
Total/NA	Analysis	8015D		1	4529	JP	EET ALB	05/07/24 13:21
Total/NA	Prep	5035			4477	JP	EET ALB	05/07/24 09:32
Total/NA	Analysis	8021B		1	4530	JP	EET ALB	05/07/24 13:21
Total/NA	Prep	SHAKE			4470	PD	EET ALB	05/07/24 08:53
Total/NA	Analysis	8015D		1	4522	JU	EET ALB	05/07/24 11:45
Total/NA	Prep	300_Prep			4483	RC	EET ALB	05/07/24 10:09
Total/NA	Analysis	300.0		20	4548	RC	EET ALB	05/07/24 19:36

Client Sample ID: S-6

Date Collected: 05/06/24 12:55

Date Received: 05/07/24 07:40

_ab Sample	e ID: 88	5-3962-6
------------	----------	----------

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			4477	JP	EET ALB	05/07/24 09:32
Total/NA	Analysis	8015D		1	4529	JP	EET ALB	05/07/24 13:42
Total/NA	Prep	5035			4477	JP	EET ALB	05/07/24 09:32
Total/NA	Analysis	8021B		1	4530	JP	EET ALB	05/07/24 13:42
Total/NA	Prep	SHAKE			4470	PD	EET ALB	05/07/24 08:53
Total/NA	Analysis	8015D		1	4522	JU	EET ALB	05/07/24 11:57
Total/NA	Prep	300_Prep			4483	RC	EET ALB	05/07/24 10:09
Total/NA	Analysis	300.0		20	4548	RC	EET ALB	05/07/24 19:52

Laboratory References:

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Accreditation/Certification Summary

Client: Ensolum Job ID: 885-3962-1

Project/Site: Lateral 2B-1 (4/30/24)

Laboratory: Eurofins Albuquerque

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Oregon	NELAP	NM100001	02-26-25

Login Sample Receipt Checklist

Client: Ensolum Job Number: 885-3962-1

SDG Number:

Login Number: 3962 List Source: Eurofins Albuquerque

List Number: 1

Creator: McQuiston, Steven

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

2

A

5

0

9

10

11

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS

Action 365159

QUESTIONS

Operator:	OGRID:		
Enterprise Field Services, LLC	241602		
PO Box 4324	Action Number:		
Houston, TX 77210	365159		
	Action Type:		
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)		

QUESTIONS

Prerequisites			
Incident ID (n#)	nAPP2412451499		
Incident Name	NAPP2412451499 LATERAL 2B-1 @ 0		
Incident Type	Natural Gas Release		
Incident Status	Remediation Closure Report Received		

Location of Release Source				
Please answer all the questions in this group.				
Site Name	LATERAL 2B-1			
Date Release Discovered	05/03/2024			
Surface Owner	Navajo			

Incident Details				
Please answer all the questions in this group.				
Incident Type	Natural Gas Release			
Did this release result in a fire or is the result of a fire	No			
Did this release result in any injuries	No			
Has this release reached or does it have a reasonable probability of reaching a watercourse	No			
Has this release endangered or does it have a reasonable probability of endangering public health	No			
Has this release substantially damaged or will it substantially damage property or the environment	No			
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No			

Nature and Volume of Release	
Material(s) released, please answer all that apply below. Any calculations or specific justifications fo	or the volumes provided should be attached to the follow-up C-141 submission.
Crude Oil Released (bbls) Details	Not answered.
Produced Water Released (bbls) Details	Not answered.
Is the concentration of chloride in the produced water >10,000 mg/l	No
Condensate Released (bbls) Details	Cause: Corrosion Pipeline (Any) Condensate Released: 5 BBL Recovered: 0 BBL Lost: 5 BBL.
Natural Gas Vented (Mcf) Details	Cause: Corrosion Pipeline (Any) Natural Gas Vented Released: 17 MCF Recovered: 0 MCF Lost: 17 MCF.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170 <u>District IV</u> 1220 S. St Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 2

Action 365159

Phone:(505) 476-3470 Fax:(505) 476-3462	
QUEST	IONS (continued)
Operator: Enterprise Field Services, LLC PO Box 4324 Houston, TX 77210	OGRID: 241602 Action Number: 365159 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)
QUESTIONS	[O TT] Tomodalish Global C Nequebre 7 T (O TTT 4 Global O)
Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	Yes, according to supplied volumes this will be treated as a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No
Reasons why this would be considered a submission for a notification of a major release	Unavailable.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.	e. gas only) are to be submitted on the C-129 form.
Initial Response The responsible party must undertake the following actions immediately unless they could create a	safety hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	ilation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative o ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of evaluation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for rele the OCD does not relieve the operator of liability should their operations have failed to	knowledge and understand that pursuant to OCD rules and regulations all operators are required asses which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface rt does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Thomas Long Title: Sr Field Environmental Scientist

Email: tjlong@eprod.com Date: 05/09/2024

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 3

Action 365159

QUESTIONS (continued)

Operator:	OGRID:
Enterprise Field Services, LLC	241602
PO Box 4324	Action Number:
Houston, TX 77210	365159
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Site Characterization	
Please answer all the questions in this group (only required when seeking remediation plan approva release discovery date.	l and beyond). This information must be provided to the appropriate district office no later than 90 days after the
What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 26 and 50 (ft.)
What method was used to determine the depth to ground water	OCD Imaging Records Lookup
Did this release impact groundwater or surface water	No
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:	
A continuously flowing watercourse or any other significant watercourse	Between 1000 (ft.) and ½ (mi.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Greater than 5 (mi.)
An occupied permanent residence, school, hospital, institution, or church	Between 1 and 5 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Greater than 5 (mi.)
Any other fresh water well or spring	Between 1 and 5 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Between 1000 (ft.) and ½ (mi.)
A subsurface mine	Greater than 5 (mi.)
An (non-karst) unstable area	Greater than 5 (mi.)
Categorize the risk of this well / site being in a karst geology	None
A 100-year floodplain	Greater than 5 (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	Yes

Remediation Plan	
Please answer all the questions that apply or are indicated. This information must be provided	d to the appropriate district office no later than 90 days after the release discovery date.
Requesting a remediation plan approval with this submission	Yes
Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamina	ation associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.
Have the lateral and vertical extents of contamination been fully delineated	Yes
Was this release entirely contained within a lined containment area	No
Soil Contamination Sampling: (Provide the highest observable value for each, in	n milligrams per kilograms.)
Chloride (EPA 300.0 or SM4500 Cl B)	60
TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M)	0.1
GRO+DRO (EPA SW-846 Method 8015M)	13.5
BTEX (EPA SW-846 Method 8021B or 8260B)	0.1
Benzene (EPA SW-846 Method 8021B or 8260B)	0.1
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes compl which includes the anticipated timelines for beginning and completing the remediation.	leted efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,
On what estimated date will the remediation commence	05/03/2024
On what date will (or did) the final sampling or liner inspection occur	05/06/2024
On what date will (or was) the remediation complete(d)	05/07/2024
What is the estimated surface area (in square feet) that will be reclaimed	270
What is the estimated volume (in cubic yards) that will be reclaimed	268
What is the estimated surface area (in square feet) that will be remediated	270
What is the estimated volume (in cubic yards) that will be remediated	268
These estimated dates and measurements are recognized to be the best guess or calculation a	at the time of submission and may (be) change(d) over time as more remediation efforts are completed.
The OCD recognizes that proposed remediation measures may have to be minimally adjusted	d in accordance with the physical realities encountered during remediation. If the responsible party has any need to

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 **District II**

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 **District III**

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170 **District IV**

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462 State of New Mexico
Energy, Minerals and Natural Resources
Oil Conservation Division
1220 S. St Francis Dr.
Santa Fe, NM 87505

QUESTIONS, Page 4

Action 365159

QUESTIONS (continued)

Operator:	OGRID:
Enterprise Field Services, LLC	241602
PO Box 4324	Action Number:
Houston, TX 77210	365159
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Remediation Plan (continued)		
Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants:		
(Select all answers below that apply.)		
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes	
Which OCD approved facility will be used for off-site disposal	ENVIROTECH LANDFARM #1 [fEEM0112334691]	
OR which OCD approved well (API) will be used for off-site disposal	Not answered.	
OR is the off-site disposal site, to be used, out-of-state	Not answered.	
OR is the off-site disposal site, to be used, an NMED facility	Not answered.	
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.	
(In Situ) Soil Vapor Extraction	Not answered.	
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.	
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.	
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.	
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.	
OTHER (Non-listed remedial process)	Not answered.	

Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

I hereby agree and sign off to the above statement

Name: Thomas Long

Title: Sr Field Environmental Scientist Email: tjlong@eprod.com

Date: 07/18/2024

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Released to Imaging: 7/22/2024 7:32:36 AM

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 5

Action 365159

QUESTIONS (continued)

Operator:	OGRID:
Enterprise Field Services, LLC	241602
PO Box 4324	Action Number:
Houston, TX 77210	365159
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Deferral Requests Only Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation. Requesting a deferral of the remediation closure due date with the approval of this No submission

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

Phone:(5/5) /48-1283 Fax:(5/5) /48-9/20 <u>District III</u> 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

<u>District IV</u> 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462 State of New Mexico
Energy, Minerals and Natural Resources
Oil Conservation Division
1220 S. St Francis Dr.
Santa Fe, NM 87505

QUESTIONS, Page 6

Action 365159

QUESTIONS (continued)

Operator:	OGRID:
Enterprise Field Services, LLC	241602
PO Box 4324	Action Number:
Houston, TX 77210	365159
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	341028
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	05/07/2024
What was the (estimated) number of samples that were to be gathered	5
What was the sampling surface area in square feet	200

Remediation Closure Request	
Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.	
Requesting a remediation closure approval with this submission	Yes
Have the lateral and vertical extents of contamination been fully delineated	Yes
Was this release entirely contained within a lined containment area	No
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes
What was the total surface area (in square feet) remediated	270
What was the total volume (cubic yards) remediated	268
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes
What was the total surface area (in square feet) reclaimed	270
What was the total volume (in cubic yards) reclaimed	268
Summarize any additional remediation activities not included by answers (above)	None

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (in .pdf format) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Name: Thomas Long
Title: Sr Field Environmental Scientist
Email: tjlong@eprod.com
Date: 07/18/2024

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 7

Action 365159

QUESTIONS	(continued)
QUESTIONS:	COHUHUCU <i>1</i>

Operator:	OGRID:
Enterprise Field Services, LLC	241602
PO Box 4324	Action Number:
Houston, TX 77210	365159
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Reclamation Report	
Only answer the questions in this group if all reclamation steps have been completed.	
Requesting a reclamation approval with this submission	No

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 365159

CONDITIONS

Operator:	OGRID:
Enterprise Field Services, LLC	241602
PO Box 4324	Action Number:
Houston, TX 77210	365159
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

CONDITIONS

Created By	Condition	Condition Date
scwells	Incident occurred on tribal land. App ID 365159 accepted for record.	7/22/2024