

# **DEFERRAL REQUEST REPORT**

Benson Shugart Waterflood Unit #3
Eddy County, New Mexico
Incident Number nAPP2216550022

Prepared For: Chevron USA, Inc. 6301 Deauville Blvd. Midland, TX 79706

Carlsbad ● Houston ● Midland ● San Antonio ● Lubbock ● Hobbs ● Lafayette

#### **SYNOPSIS**

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of Chevron USA, Inc. (Chevron), presents the following Deferral Request Report (DRR) detailing corrective actions and subsequent soil sampling events as proposed in an approved Remediation Work Plan (RWP), for an inadvertent release of crude oil and produced water at the Benson Shugart Water Flood Unit #3 (Site). Based on completed remedial actions and laboratory analytical results from recent soil sampling events, Chevron is requesting No Further Action (NFA) until the Site undergoes major deconstruction or plugging and abandonment (P&A), whichever comes first.

#### SITE LOCATION AND BACKGROUND

The Site is located in Unit J, Section 25, Township 18 South, Range 30 East, in Eddy County, New Mexico (32.71306 ° N, 103.9192° W) and is associated with oil and gas exploration and production operations on Federal Land managed by the Bureau of Land Management (BLM) (**Figure 1** in **Appendix A**).

On June 9, 2022, a pinhole on the bottom of a heater caused the release of approximately 11.75 barrels (bbls) of crude oil and 23.9 bbls of produced water onto the well pad surface. Approximately 9.6 bbls of crude oil were successfully recovered. Chevron reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Corrective Action Form C-141 (Form C-141), which was received by the NMOCD on June 14, 2022, and was subsequently assigned Incident Number nAPP2216550022. **Figure 2** in **Appendix A** depicts the observed release area, hereafter referred to as the Area of Concern (AOC).

On June 28, 2022, Etech conducted site assessment and delineation activities to assess the presence and/or absence of impacts at the Site. A RWP was prepared to address residual impacts based on laboratory analytical results from delineation activities that exceeded the Site Closure Criteria. The RWP was conditionally approved by the NMOCD on November 21, 2022, with the following conditions:

- Samples must be analyzed for all constituents listed in Table I of 19.15.29.12 NMAC. Floor confirmation samples should be delineated/excavated to meet closure criteria standards for site assessment/characterization/proven depth to water determination. Sidewall samples should be delineated/excavated to 600 mg/kg for chlorides and 100 mg/kg for TPH to define the edge of the release. Confirmation samples should be collected every 200 ft2. The work will need to occur in 90 days after the work plan has been approved.

#### SITE CHARACTERIZATION AND CLOSURE CRITERIA

As previously described in the approved RWP, the Site was characterized according to Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC) considering depth to groundwater and the proximity to:

- Any continuously flowing watercourse or any other significant watercourse;
- Any lakebed, sinkhole or playa lake (measured from the ordinary high-water mark);
- An occupied permanent residence, school, hospital, institution or church;
- A spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes;
- Any freshwater well or spring;
- Incorporated municipal boundaries or a defined municipal fresh water well field covered under a municipal ordinance;
- A wetland;
- A subsurface mine;
- An unstable area (i.e. high karst potential); and
- A 100-year floodplain.

Depth to groundwater at the Site is estimated to be greater than 100 feet below ground surface (bgs), based on regional groundwater data. The closest well with data is the United States Geological Survey (USGS) well 32424113561201, located approximately 1.07 miles west of the Site. The well has a reported depth to groundwater of 204.6 feet below ground surface bgs from 1968. The location of the USGS well and other regional groundwater well locations are shown in **Figure 1A** in **Appendix A**. All well records referenced for depth to groundwater determination are included in **Appendix B**.

Based on the desktop review of the current BLM Carlsbad Field Office (CFO) karst cave potential map, this Site is located in a medium potential karst area. All other potential receptors are not within the established buffers in NMAC 19.15.29.12. Receptor details and sources used for the site characterization are included in **Figure 1B** and **Figure 1C** in **Appendix A**.

Based on the results from the desktop review for estimated depth to groundwater at the Site, surrounding wells are greater than 0.5-mile from the Site which resulted in the application of the following Closure Criteria as per the NMOCD use of eligible water wells for determination for groundwater depth requirements.

| Constituents of Concern (COCs)                          | Laboratory Analytical Method                   | Closure Criteria <sup>†</sup>       |
|---------------------------------------------------------|------------------------------------------------|-------------------------------------|
| Chloride                                                | (Environmental Protection Agency)<br>EPA 300.0 | 600 milligrams per kilogram (mg/kg) |
| Total Petroleum Hydrocarbon (TPH)                       | EPA 8015 M/D                                   | 100 mg/kg                           |
| Benzene                                                 | EPA 8021B                                      | 10 mg/kg                            |
| Benzene, Toluene, Ethylbenzene,<br>Total Xylenes (BTEX) | EPA 8021B                                      | 50 mg/kg                            |

<sup>&</sup>lt;sup>†</sup>The reclamation concentration requirements of 600 mg/kg chloride and 100 mg/kg TPH apply to the top 4 feet of areas to be immediately reclaimed following remediation pursuant to NMAC 19.15.17.13.

#### **DELINEATION SOIL SAMPLING ACTIVITIES**

Between May 31, 2023, and November 11, 2023, Etech personnel conducted delineation activities to assist with further characterizing residual impacted soil as proposed in the RWP. Eight delineation soil sampling locations (Auger Hole 1 through Auger Hole 8) were advanced via hand auger within and around AOC. A minimum of two soil samples were collected from each delineation soil sampling location. Delineation soil samples were placed directly into lab provided pre-cleaned glass jars, packaged with minimal void space, labeled, and immediately placed on ice. The soil samples were transported under strict chain-of-custody procedures and submitted to Permian Basin Environmental Laboratory (PBELAB) in Midland, Texas for analysis of COCs. The locations of the delineation soil samples are shown in **Figure 2** in **Appendix A**. Photographic documentation of delineation activities is included in **Appendix D**.

#### **DELINEATION LABORATORY ANALYTICAL RESULTS**

Laboratory analytical results for three delineation soil samples located in the northern and western areas outside of the AOC (Auger Hole 4, Auger Hole 5 and Auger Hole 7) indicated one or more of the concentrations of the COCs exceeded the Site Closure Criteria. Laboratory analytical results for delineation soil samples collected within the AOC (Auger 2 and Auger Hole 3) indicated one or more of the concentrations of the COCs exceeded the Site Closure Criteria.

Laboratory analytical results for delineation soil samples collected within and around the the AOC (Auger Hole 1, Auger Hole 6, and Auger Hole 8) indicated concentrations of the COCs were below the Site Closure Criteria and assisted with horizontal delineation and characterization of residual impact boundaries. Laboratory analytical results are summarized in **Table 1** included in **Appendix D**.

### **EXCAVATION AND SOIL SAMPLING ACTIVITIES**

Concurrently with delineation soil sampling activities, Etech began excavating residual impacts identified within the AOC, verified information provided on the Form C-141, and visual observations via mechanical equipment to the Maximum Extent Practical (MEP). The MEP was limited by the presence of multiple active surface production equipment and surface and/or subsurface utilities, where further excavation was unable to be advanced adjacent to nor beneath equipment and/or utilities.

Following the removal of residual soil impacts, Etech collected 5-point composite confirmation excavation soil samples at a sampling frequency of 200 square feet from the excavation floor and sidewalls. The 5-point composite samples were comprised of five equivalent aliquots homogenized in a 1-gallon, resealable plastic bag. The soil samples were then handled and analyzed for BTEX, TPH and chloride as previously described. The soil samples were transported under strict chain-of-custody procedures to Permian Basin Environmental Laboratory (PBELAB) in Midland, Texas, and Eurofins Environment Testing (Eurofins) in Midland, Texas for analysis of COCs.

On February 12, 2024, Etech resumed excavation activities to remove accessible residual soil impacts identified within the proximity of Auger Hole 5, and Auger Hole 7 via mechanical equipment. Exceedances of COCs were likely due to a potential overspray of the release. Following the removal of impacted soil, Etech collected 5-point composite floor soil samples and sidewall soil samples at a sampling frequency of 200 square feet from the excavation floor and sidewalls. The soil samples were collected, handled, and analyzed as previously described.

Approximately 100 cubic yards (CY) of impacted soil was excavated and stockpiled onsite on a plastic liner temporarily until it can be transported to a licensed and approved New Mexico landfill facility under Chevron approved waste manifests. The excavation will be backfilled with clean, locally sourced soil and the Site will be restored to "as close to its original state" as possible upon NMOCD approval of this DDR. Photographic documentation of excavation activities is included in **Appendix C**.

#### LABORATORY ANALYTICAL RESULTS

Laboratory analytical results indicated that concentrations of COCs for all final confirmation excavation soil samples associated with the excavation of Auger Hole 5 and Auger Hole 7 were below the applicable Site Closure Criteria.

Laboratory analytical results for final confirmation excavation soil samples collected within the AOC indicated concentrations of COCs were below the Site Closure Criteria, except soil sample North Wall and North Side Wall #1 which is characterized by TPH concentrations ranging from 574 mg/kg to 7,960 mg/kg and represent residual impacts left in place existing from ground surface up to 2 feet bgs. Laboratory analytical results are summarized in **Table 1** included in **Appendix D**. The executed chain-of-custody forms and laboratory analytical reports are provided in **Appendix E**.

#### DEFERRAL REQUEST

Based on laboratory analytical results, Chevron believes that residual soil impacts associated with the inadvertent release have been sufficiently vertically and horizontally delineated (based on data presented in the RWP and in this DRR), excavated to the MEP, and removed from the Site. Residual soil impacts above the Closure Criteria appear to solely reside below and directly adjacent to active production equipment and utilities within the earthen berm containment, based on the delineation and final confirmation excavation soil samples in the vicinity of areas that could not be safely excavated at this time (**Figure 4** in **Appendix A**).

Areas associated with sampling locations Auger Hole 2, Auger Hole 4, North Wall and North Side Wall #1, were unable to be safely excavated to protect the structural integrity of active production equipment, which are characterized by concentrations of TPH between 146 mg/kg and 15,000 mg/kg within the top 4 feet

bgs. Vertical delineation was achieved through delineation soil sample location Auger Hole 3 and final confirmation excavation soil samples Bottom Hole 1 through Bottom Hole 3 within the top 4 feet bgs. Horizontal delineation of the AOC was identified through final excavation soil samples North Sidewall, East Sidewall, South Sidewall, West Sidewall, East Sidewall #1, East Sidewall #2, East Sidewall #3, and South Sidewall #1 and supplemented by delineation soil sampling locations Auger Hole 1, Auger Hole 6, Auger Hole 8.

Chevron believes the completed remedial actions have mitigated impacts at the Site and meets the requirements set forth in NMAC regulations in order to be protective of human health, the environment and groundwater. As such, Chevron respectfully requests approval of this DRR associated with Incident Number nAPP2216550022 until the Site undergoes major facility deconstruction or plugging and abandonment, whichever comes first.

If you have any questions or comments, please do not hesitate to contact Joseph Hernandez at (432) 305-6413 or <a href="mailto:joseph@etechenv.com">joseph@etechenv.com</a> or Erick Herrera at (432) 305-6416 or <a href="mailto:erick@etechenv.com">erick@etechenv.com</a>. Appendix F provides correspondence email notification receipts associated with the subject release. Previous remediation activities and soil sample analytical results for the subject release can be referenced in the approved RWP in Appendix G.

Sincerely,

Etech Environmental and Safety Solutions, Inc.

Erick Herrera Project Geologist

Ericl &

Joseph S. Hernandez Senior Managing Geologist

Joseph Stoh

cc: Amy Barnhill, Chevron

New Mexico Oil Conservation Division

**Bureau of Land Management** 

#### Appendices:

**Appendix A**: Figure 1: Site Map

Figure 1A: Site Characterization Map - Groundwater

Figure 1B: Site Characterization Map – Surficial Receptors

Figure 1C: Site Characterization Map – Karst Potential

Figure 2: Delineation Soil Sample Locations

Figure 3: Excavation Soil Sample Locations

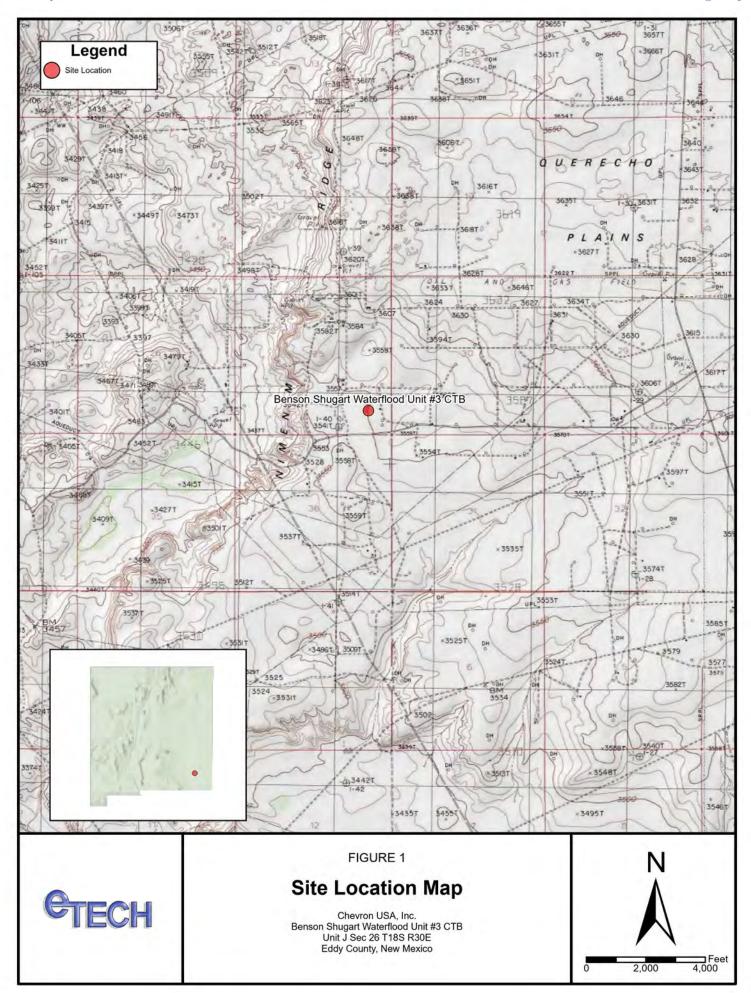
Figure 4: Deferral Area

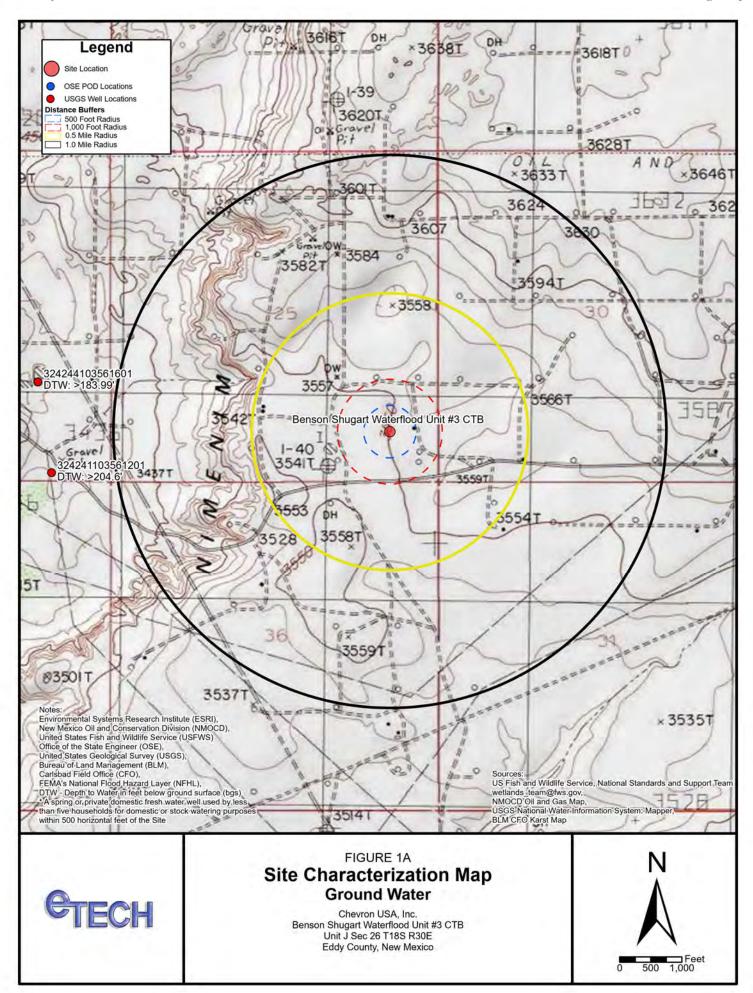
**Appendix B**: Referenced Well Records

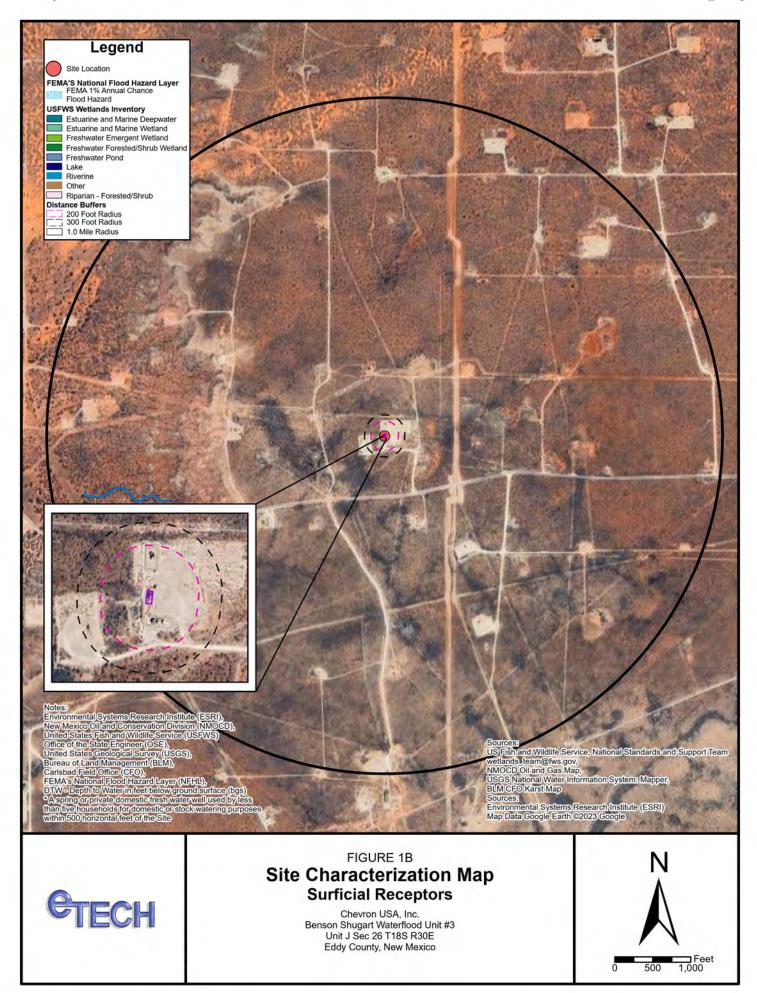
Appendix C: Photographic Log

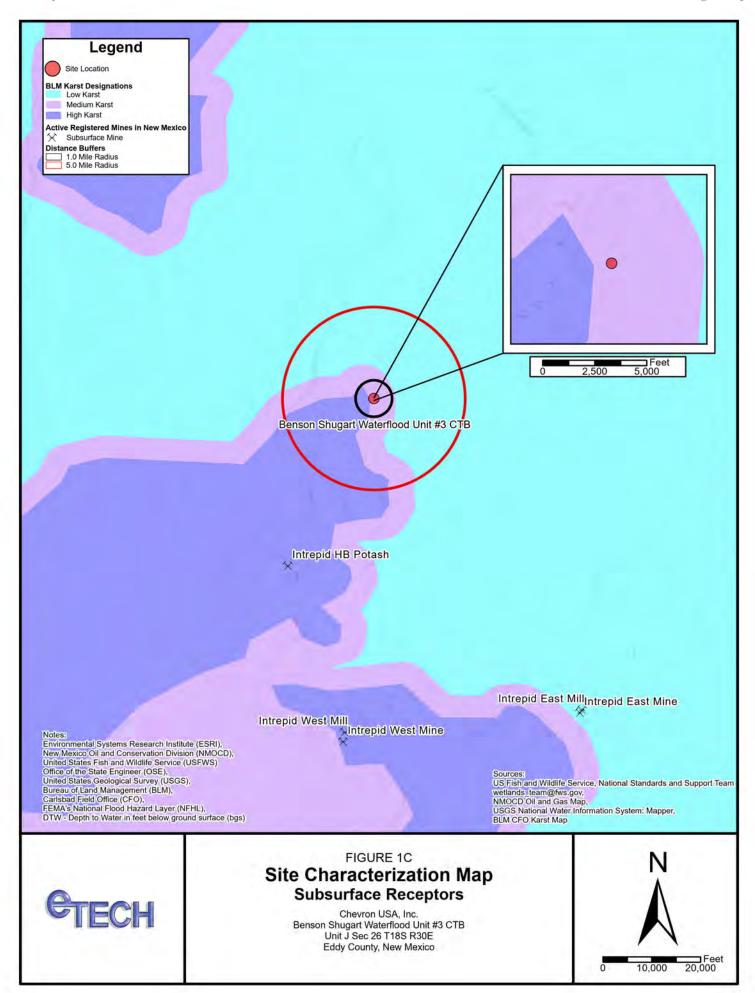
Appendix D: Tables

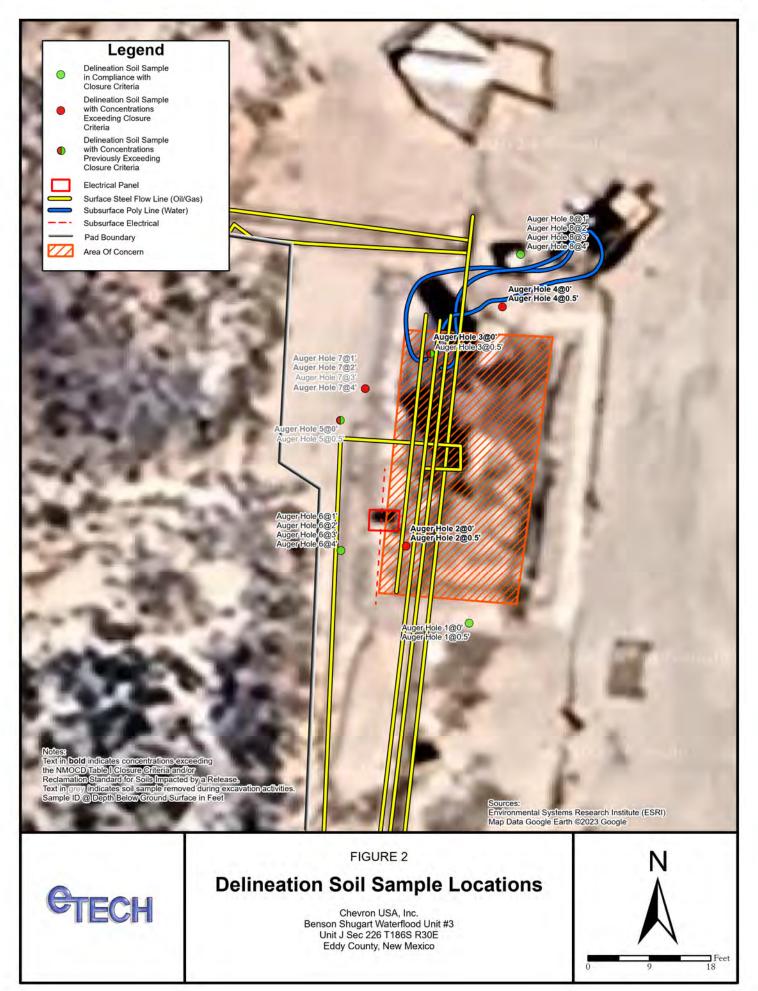
**Appendix E**: Laboratory Analytical Reports & Chain-of-Custody Documentation

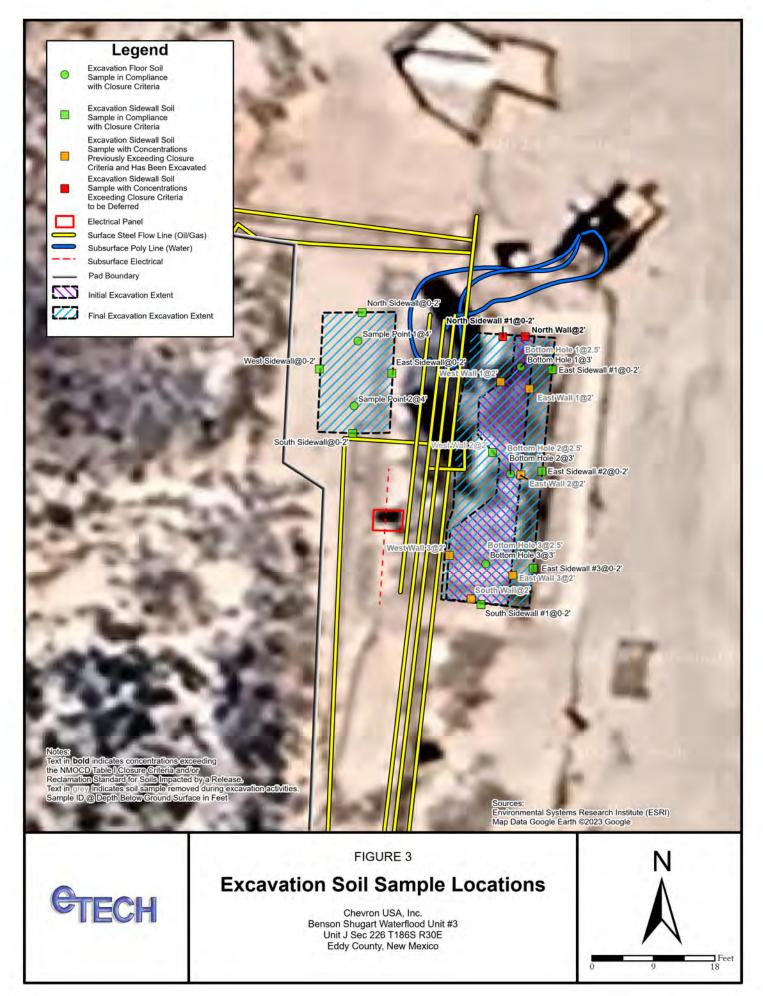

**Appendix F**: Email Notifications **Appendix G**: Archived Reports

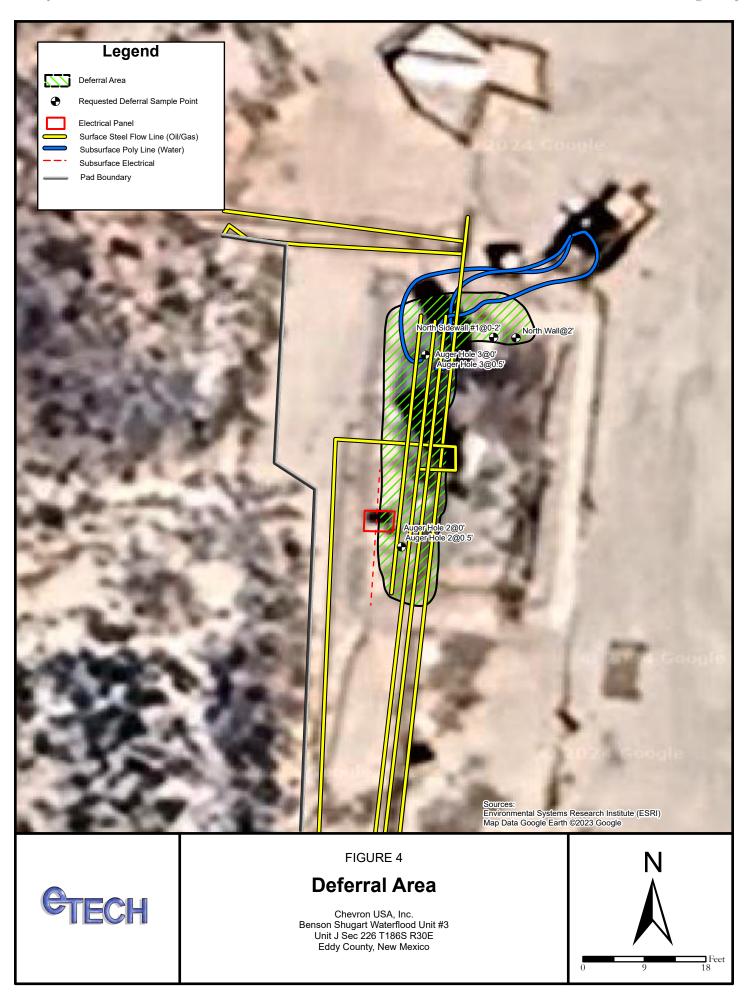

# **APPENDIX A**


**Figures** 


P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213














# **APPENDIX B**

Referenced Well Records

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213





USGS Home Contact USGS Search USGS

**National Water Information System: Web Interface** 

**USGS** Water Resources

Data Category: Geographic Area:

Groundwater ✓ United States ✓ GO

#### Click to hideNews Bulletins

- Explore the NEW <u>USGS National Water Dashboard</u> interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔝

Groundwater levels for the Nation

Important: <u>Next Generation Monitoring Location Page</u>

#### Search Results -- 1 sites found

Agency code = usgs site\_no list =

• 324241103561201

#### Minimum number of levels = 1

Save file of selected sites to local disk for future upload

#### USGS 324241103561201 18S.30E.26.4140

Eddy County, New Mexico
Latitude 32°42'41", Longitude 103°56'12" NAD27
Land-surface elevation 3,432 feet above NAVD88
The depth of the well is 230 feet below land surface.
This well is completed in the Other aquifers (N9999OTHER) national aquifer.
This well is completed in the Chinle Formation (231CHNL) local aquifer.

**Output formats** 

| Table of data      |  |
|--------------------|--|
| Tab-separated data |  |
| Graph of data      |  |
| Reselect period    |  |
|                    |  |

| Date       | Time | ? Water- level date- time accuracy | ?<br>Parameter<br>code | Water<br>level,<br>feet<br>below<br>land<br>surface | Water<br>level,<br>feet<br>above<br>specific<br>vertical<br>datum | Referenced<br>vertical<br>datum | ?<br>Status | ?<br>Method of<br>measurement | ?<br>Measuring<br>agency | ?<br>Source (measure |
|------------|------|------------------------------------|------------------------|-----------------------------------------------------|-------------------------------------------------------------------|---------------------------------|-------------|-------------------------------|--------------------------|----------------------|
|            |      |                                    |                        |                                                     |                                                                   |                                 |             |                               |                          |                      |
| 1968-03-07 |      | D                                  | 62610                  |                                                     | 3225.86                                                           | NGVD29                          | 1           |                               | Z                        |                      |
| 1968-03-07 |      | D                                  | 62611                  |                                                     | 3227.40                                                           | NAVD88                          | 1           | 2                             | Z                        |                      |
| 1968-03-07 |      | D                                  | 72019                  | 204.60                                              |                                                                   |                                 | 1           |                               | Z                        |                      |

| Explan | ation |
|--------|-------|
|--------|-------|

| Section                     | Code | Description                                               |
|-----------------------------|------|-----------------------------------------------------------|
| Source of measurement       |      | Not determined                                            |
| Water-level approval status | Α    | Approved for publication Processing and review completed. |

**Questions or Comments** Automated retrievals <u>Help</u> **Data Tips** Explanation of terms Subscribe for system changes <u>News</u>

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for USA: Water Levels

URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u>

Page Last Modified: 2024-06-10 12:15:41 EDT 0.31 0.27 nadww01



# **APPENDIX C**

Photographic Log

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

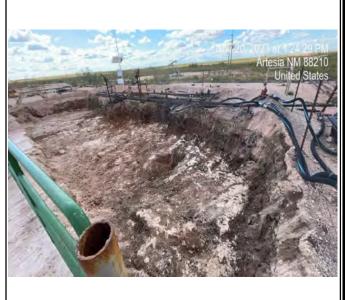




#### **PHOTOGRAPHIC LOG**

Chevron USA, Inc.
Benson Shugart Waterflood Unit #3 CTB
Incident Number nAPP2216550022




**Photograph 1** Date: 05/31/2023 Description: Southeast view of initial excavation activities.



Photograph 3 Date: 11/20/2023 Description: Northwest view of final excavation extent.



**Photograph 2 Date:** 05/31/2023 Description: Southwest view of initial excavation activities.



**Photograph 4 Date:** 11/20/2023 Description: Southwest view of final excavation extent.



#### **PHOTOGRAPHIC LOG**

Chevron USA, Inc.
Benson Shugart Waterflood Unit #3 CTB
Incident Number nAPP2216550022



Photograph 5 Date: 02/08/2024 Description: Northeastern view of areas within proximity of Auger Hole 5 and Auger Hole 7.



Photograph 7 Date: 02/13/2024 Description: Southwestern view during excavation activities within proximity of Auger Hole 5 and Auger Hole 7.



Photograph 6 Date: 02/08/2024 Description: Northwestern view of areas within proximity of Auger Hole 5 and Auger Hole 7.



**Photograph 8**Date: 02/13/2024

Description: Southern view during excavation activities within proximity of Auger Hole 5 and Auger Hole 7.

# APPENDIX D

**Tables** 

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213





# Table 1 SOIL SAMPLE ANALYTICAL RESULTS Chevron USA, Inc. Benson Shugart Waterflood Unit #3 CTB Eddy County, New Mexico

| Sample I.D.                                   | Sample<br>Date | Sample Depth<br>(feet bgs) | Sample Depth<br>(inches bgs) | Benzene<br>(mg/kg) | Total BTEX<br>(mg/kg)    | TPH GRO<br>(mg/kg)  | TPH DRO<br>(mg/kg) | TPH ORO<br>(mg/kg) | Total TPH<br>(mg/kg) | Chloride<br>(mg/kg) |
|-----------------------------------------------|----------------|----------------------------|------------------------------|--------------------|--------------------------|---------------------|--------------------|--------------------|----------------------|---------------------|
| IMOCD Table I Closur<br>Release (NMAC 19.15.2 |                | s Impacted by a            |                              | 10                 | 50                       | NE                  | NE                 | NE                 | 100                  | 600                 |
|                                               |                |                            |                              | Delineation So     | oil Samples - Incident I | Number nAPP22165500 | 22                 |                    |                      |                     |
| Auger Hole 1                                  | 05/31/2023     | 0                          | 0                            | <0.00101           | <0.00202                 | <25.3               | <25.3              | <25.3              | <25.3                | 13.4                |
| Auger Hole 1                                  | 05/31/2023     | 0.5                        | 6                            | <0.00103           | <0.00206                 | <25.8               | <25.8              | <25.8              | <25.8                | 3.67                |
| Auger Hole 2                                  | 05/31/2023     | 0                          | 0                            | <0.00105           | <0.00211                 | 36.8                | 5,360              | 2,390              | 7,790                | 38.7                |
| Auger Hole 2                                  | 05/31/2023     | 0.5                        | 6                            | <0.00108           | 0.00230                  | 47.8                | 4,810              | 1,970              | 6,830                | 57.9                |
| Auger Hole 3                                  | 05/31/2023     | 0                          | 0                            | <0.00102           | <0.00204                 | <25.5               | 82.2               | 63.8               | 146                  | 496                 |
| Auger Hole 3                                  | 05/31/2023     | 0.5                        | 6                            | <0.00104           | <0.00208                 | <26.0               | 57.9               | 35.9               | 93.8                 | 335                 |
| Auger Hole 4                                  | 05/31/2023     | 0                          | 0                            | 0.00458            | 0.5380                   | 1,020               | 9,110              | 2,380              | 12,500               | 790                 |
| Auger Hole 4                                  | 05/31/2023     | 0.5                        | 6                            | 0.00262            | 0.2890                   | 609                 | 11,100             | 3,270              | 15,000               | 655                 |
| Auger Hole 5                                  | 05/31/2023     | 0                          | 0                            | <0.00105           | <0.00211                 | <26.3               | 134                | 84.5               | 219                  | 16.9                |
| Auger Hole 5                                  | 05/31/2023     | 0.5                        | 6                            | <0.00111           | <0.00222                 | <27.8               | 45.2               | <27.8              | 45.2                 | 1.9                 |
| Auger Hole 6                                  | 11/20/2023     | 1                          | 12                           | <0.00109           | <0.00217                 | <27.2               | 29.4               | <27.2              | 29.4                 | 88.0                |
| Auger Hole 6                                  | 11/20/2023     | 2                          | 24                           | <0.00106           | <0.00213                 | <26.6               | <26.6              | <26.6              | <26.6                | 189                 |
| Auger Hole 6                                  | 11/20/2023     | 3                          | 36                           | <0.00105           | <0.00211                 | <26.3               | <26.3              | <26.3              | <26.3                | 155                 |
| Auger Hole 6                                  | 11/20/2023     | 4                          | 48                           | <0.00108           | <0.00215                 | <26.9               | <26.9              | <26.9              | <26.9                | 160                 |
| Auger Hole 7                                  | 11/20/2023     | 1                          | 12                           | <0.00106           | <0.00213                 | <133                | 935                | 171                | 1,110                | 14.4                |
| Auger Hole 7                                  | 11/20/2023     | 2                          | 24                           | <0.00108           | <0.00215                 | <26.9               | 352                | 76                 | 428                  | 37.9                |
| Auger Hole 7                                  | 11/20/2023     | 3                          | 36                           | <0.00104           | <0.00208                 | <26.0               | 38.5               | <26.0              | 38.5                 | 53.3                |
| Auger Hole 7                                  | 11/20/2023     | 4                          | 18                           | <0.00104           | <0.00208                 | <26.0               | 107                | <26.0              | 107                  | 43.5                |
| Auger Hole 8                                  | 11/20/2023     | 1                          | 12                           | <0.00108           | <0.00215                 | <26.9               | <26.9              | <26.9              | <26.9                | 39.2                |
| Auger Hole 8                                  | 11/20/2023     | 2                          | 24                           | <0.00109           | <0.00217                 | <27.2               | <27.2              | <27.2              | <27.2                | 42.0                |
| Auger Hole 8                                  | 11/20/2023     | 3                          | 36                           | <0.00110           | <0.00220                 | <27.5               | <27.5              | <27.5              | <27.5                | 38.5                |
| Auger Hole 8                                  | 11/20/2023     | 4                          | 18                           | <0.00109           | <0.00217                 | <27.2               | <27.2              | <27.2              | <27.2                | 29.6                |
|                                               |                |                            |                              | Excavation So      | oil Samples - Incident N | lumber nAPP22165500 | 22                 |                    |                      |                     |
| Bottom Hole 1                                 | 05/31/2023     | 2.5                        | 30                           | <0.00106           | <0.00213                 | <26.6               | 400                | 244                | 645                  | 199                 |
| Bottom Hole 1                                 | 11/20/2023     | 3                          | 36                           | <0.00108           | <0.00215                 | <26.9               | <26.9              | <26.9              | <26.9                | 209                 |
| Bottom Hole 2                                 | 05/31/2023     | 2.5                        | 30                           | <0.00106           | <0.00213                 | <26.6               | 342                | 215                | 557                  | 182                 |
| Bottom Hole 2                                 | 11/20/2023     | 3                          | 36                           | <0.00108           | <0.00215                 | <26.9               | <26.9              | <26.9              | <26.9                | 210                 |



#### Table 1 SOIL SAMPLE ANALYTICAL RESULTS Chevron USA, Inc. Benson Shugart Waterflood Unit #3 CTB **Eddy County, New Mexico**

| Sample I.D.                                   | Sample<br>Date | Sample Depth<br>(feet bgs) | Sample Depth<br>(inches bgs) | Benzene<br>(mg/kg) | Total BTEX<br>(mg/kg) | TPH GRO<br>(mg/kg) | TPH DRO<br>(mg/kg) | TPH ORO<br>(mg/kg) | Total TPH<br>(mg/kg) | Chloride<br>(mg/kg) |
|-----------------------------------------------|----------------|----------------------------|------------------------------|--------------------|-----------------------|--------------------|--------------------|--------------------|----------------------|---------------------|
| NMOCD Table I Closur<br>Release (NMAC 19.15.2 |                | s Impacted by a            |                              | 10                 | 50                    | NE                 | NE                 | NE                 | 100                  | 600                 |
| Bottom Hole 3                                 | 05/31/2023     | 2.5                        | 30                           | <0.00108           | <0.00215              | <26.9              | 367                | 227                | 595                  | 171                 |
| Bottom Hole 3                                 | 11/20/2023     | 3                          | 36                           | <0.00108           | <0.00215              | <26.9              | <26.9              | <26.9              | <26.9                | 220                 |
| North Wall                                    | 05/31/2023     | 2                          | 24                           | <0.00106           | <0.00213              | <26.6              | 350                | 224                | 574                  | 176                 |
| South Wall                                    | 05/31/2023     | 2                          | 24                           | <0.00106           | <0.00213              | <26.6              | 354                | 229                | 583                  | 191                 |
| East Wall 1                                   | 05/31/2023     | 2                          | 24                           | <0.00105           | <0.00211              | <26.3              | 306                | 196                | 502                  | 179                 |
| East Wall 2                                   | 05/31/2023     | 2                          | 24                           | <0.00105           | <0.00211              | <26.3              | 361                | 232                | 593                  | 192                 |
| East Wall 3                                   | 05/31/2023     | 2                          | 24                           | <0.00104           | <0.00208              | <26.0              | 388                | 250                | 638                  | 191                 |
| West Wall 1                                   | 05/31/2023     | 2                          | 24                           | <0.00106           | <0.00213              | <26.6              | 60.9               | <26.6              | 60.9                 | 875                 |
| West Wall 2                                   | 05/31/2023     | 2                          | 24                           | <0.00106           | <0.00213              | <26.6              | <26.6              | <26.6              | <26.6                | 561                 |
| West Wall 3                                   | 05/31/2023     | 2                          | 24                           | <0.00109           | <0.00217              | <27.2              | 62.5               | <27.2              | 62.5                 | 1,650               |
| North Sidewall # 1                            | 11/20/2023     | 0-2                        | 0-24                         | 0.0176             | 8.96                  | 1,340              | 6,020              | 604                | 7,960                | 134                 |
| South Sidewall # 1                            | 11/20/2023     | 0-2                        | 0-24                         | <0.00108           | <0.00215              | <26.9              | <26.9              | <26.9              | <26.9                | 65.5                |
| East Sidewall # 1                             | 11/20/2023     | 0-2                        | 0-24                         | <0.00106           | <0.00213              | <26.6              | <26.6              | <26.6              | <26.6                | 62.5                |
| East Sidewall # 2                             | 11/20/2023     | 0-2                        | 0-24                         | <0.00109           | <0.00217              | <27.2              | <27.2              | <27.2              | <27.2                | 83.5                |
| East Sidewall # 3                             | 11/20/2023     | 0-2                        | 0-24                         | <0.00108           | <0.00215              | <26.9              | <26.9              | <26.9              | <26.9                | 74.4                |
| Sample Point 1                                | 02/13/2024     | 4                          | 48                           | <0.00201           | <0.00402              | <49.8              | <49.8              | <49.8              | <49.8                | 116                 |
| Sample Point 2                                | 02/13/2024     | 4                          | 48                           | <0.00202           | 0.0106                | <50.1              | <50.1              | <50.1              | <50.1                | 89.6                |
| Northside Wall                                | 02/13/2024     | 0-2                        | 0-24                         | <0.00200           | <0.00399              | <50.4              | <50.4              | <50.4              | <50.4                | 144                 |
| Eastside Wall                                 | 02/13/2024     | 0-2                        | 0-24                         | <0.00198           | <0.00396              | <50.5              | <50.5              | <50.5              | <50.5                | 166                 |
| Southside Wall                                | 02/13/2024     | 0-2                        | 0-24                         | <0.00200           | <0.00400              | <49.9              | <49.9              | <49.9              | <49.9                | 286                 |
| Westside Wall                                 | 02/13/2024     | 0-2                        | 0-24                         | <0.00199           | <0.00398              | <50.0              | <50.0              | <50.0              | <50.0                | 363                 |

Notes:

bgs: below ground surface mg/kg: milligrams per kilogram

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes GRO: Gasoline Range Organics

DRO: Diesel Range Organics

ORO: Oil Range Organics

TPH: Total Petroleum Hydrocarbon

NMOCD: New Mexico Oil Conservation Division

NMAC: New Mexico Administrative Code

Text in ""grey"" represents excavated soil samples

Concentrations in **bold** exceed the NMOCD Table I Closure Criteria and/or Reclamation Standard<sup>†</sup> for Soils Impacted by a Release

The reclamation concentration requirements of 600 mg/kg chloride and 100 mg/kg TPH apply to the top 4 feet of areas to be immediately reclaimed following remediation pursuant to NMAC 19.15.17.13.

# **APPENDIX E**

Laboratory Analytical Reports & Chain-of-Custody Documentation

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213



# PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701



# Analytical Report Rev. 1

## **Prepared for:**

Blake Estep
E Tech Environmental & Safety Solutions, Inc.
13000 West County Road 100
Odessa, TX 79765

Project: BSWU #3C TB Project Number: 16187 Location: None Given

Lab Order Number: 3F02005



**Current Certification** 

Report Date: 06/06/24

E Tech Environmental & Safety Solutions, Inc. Project: BSWU #3C TB

13000 West County Road 100Project Number:16187Odessa TX, 79765Project Manager:Blake Estep

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID           | Laboratory ID | Matrix | Date Sampled   | Date Received    |
|---------------------|---------------|--------|----------------|------------------|
| Bottom Hole 1 @ 30" | 3F02005-01    | Soil   | 05/31/23 13:00 | 06-02-2023 10:37 |
| Bottom Hole 2 @ 30" | 3F02005-02    | Soil   | 05/31/23 13:05 | 06-02-2023 10:37 |
| Bottom Hole 3 @ 30" | 3F02005-03    | Soil   | 05/31/23 13:10 | 06-02-2023 10:37 |
| Northwall           | 3F02005-04    | Soil   | 05/31/23 13:15 | 06-02-2023 10:37 |
| Southwall           | 3F02005-05    | Soil   | 05/31/23 13:13 | 06-02-2023 10:37 |
| East Wall 1         | 3F02005-06    | Soil   | 05/31/23 13:25 | 06-02-2023 10:37 |
| East Wall 2         | 3F02005-07    | Soil   | 05/31/23 13:27 | 06-02-2023 10:37 |
| East Wall 3         | 3F02005-08    | Soil   | 05/31/23 13:30 | 06-02-2023 10:37 |
| West Wall 1         | 3F02005-09    | Soil   | 05/31/23 13:17 | 06-02-2023 10:37 |
| West Wall 2         | 3F02005-10    | Soil   | 05/31/23 13:20 | 06-02-2023 10:37 |
| West Wall 3         | 3F02005-11    | Soil   | 05/31/23 13:22 | 06-02-2023 10:37 |
| Auger Hole 1        | 3F02005-12    | Soil   | 05/31/23 13:25 | 06-02-2023 10:37 |
| Auger Hole 1        | 3F02005-13    | Soil   | 05/31/23 13:28 | 06-02-2023 10:37 |
| Auger Hole 2        | 3F02005-14    | Soil   | 05/31/23 13:31 | 06-02-2023 10:37 |
| Auger Hole 2        | 3F02005-15    | Soil   | 05/31/23 13:34 | 06-02-2023 10:37 |
| Auger Hole 3        | 3F02005-16    | Soil   | 05/31/23 13:37 | 06-02-2023 10:37 |
| Auger Hole 3        | 3F02005-17    | Soil   | 05/31/23 13:40 | 06-02-2023 10:37 |
| Auger Hole 4        | 3F02005-18    | Soil   | 05/31/23 13:43 | 06-02-2023 10:37 |
| Auger Hole 4        | 3F02005-19    | Soil   | 05/31/23 13:46 | 06-02-2023 10:37 |
| Auger Hole 5        | 3F02005-20    | Soil   | 05/31/23 13:49 | 06-02-2023 10:37 |
| Auger Hole 5        | 3F02005-21    | Soil   | 05/31/23 13:52 | 06-02-2023 10:37 |

On 06/05/23 PBELAB Staff were advised to add Chloride and BTEX to this report. This revised report reflects that request.

13000 West County Road 100Project Number:16187Odessa TX, 79765Project Manager:Blake Estep

Bottom Hole 1 @ 30" 3F02005-01 (Soil)

Project: BSWU #3C TB

|                                  | Limit        | Repor   | rting     |           |            |                |                |            |      |
|----------------------------------|--------------|---------|-----------|-----------|------------|----------------|----------------|------------|------|
| Analyte                          | Result       |         | Units     | Dilution  | Batch      | Prepared       | Analyzed       | Method     | Note |
|                                  |              | Po      | ermian B  | asin Envi | onmental L | ab, L.P.       |                |            |      |
| BTEX by 8021B                    |              |         |           |           |            |                |                |            |      |
| Benzene                          | ND (         | 0.00106 | mg/kg dry | 1         | P3F0609    | 06/06/23 11:53 | 06/06/23 20:06 | EPA 8021B  |      |
| Toluene                          | ND (         | 0.00106 | mg/kg dry | 1         | P3F0609    | 06/06/23 11:53 | 06/06/23 20:06 | EPA 8021B  |      |
| Ethylbenzene                     | ND (         | 0.00106 | mg/kg dry | 1         | P3F0609    | 06/06/23 11:53 | 06/06/23 20:06 | EPA 8021B  |      |
| Xylene (p/m)                     | ND (         | 0.00213 | mg/kg dry | 1         | P3F0609    | 06/06/23 11:53 | 06/06/23 20:06 | EPA 8021B  |      |
| Xylene (o)                       | ND (         | 0.00106 | mg/kg dry | 1         | P3F0609    | 06/06/23 11:53 | 06/06/23 20:06 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene  | 90           | 8.0 %   | 80-120    |           | P3F0609    | 06/06/23 11:53 | 06/06/23 20:06 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene   | 1            | 00 %    | 80-120    |           | P3F0609    | 06/06/23 11:53 | 06/06/23 20:06 | EPA 8021B  |      |
| Total Petroleum Hydrocarbons C6- | C35 by EPA   | Method  | 8015M     |           |            |                |                |            |      |
| C6-C12                           | ND           | 26.6    | mg/kg dry | 1         | P3F0205    | 06/02/23 13:09 | 06/04/23 18:06 | TPH 8015M  |      |
| >C12-C28                         | 400          | 26.6    | mg/kg dry | 1         | P3F0205    | 06/02/23 13:09 | 06/04/23 18:06 | TPH 8015M  |      |
| >C28-C35                         | 244          | 26.6    | mg/kg dry | 1         | P3F0205    | 06/02/23 13:09 | 06/04/23 18:06 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane        | 9.           | 5.5 %   | 70-130    |           | P3F0205    | 06/02/23 13:09 | 06/04/23 18:06 | TPH 8015M  |      |
| Surrogate: o-Terphenyl           | 90           | 8.9 %   | 70-130    |           | P3F0205    | 06/02/23 13:09 | 06/04/23 18:06 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon      | 645          | 26.6    | mg/kg dry | 1         | [CALC]     | 06/02/23 13:09 | 06/04/23 18:06 | calc       |      |
| C6-C35                           |              |         |           |           |            |                |                |            |      |
| General Chemistry Parameters by  | EPA / Standa | rd Metl | ıods      |           |            |                |                |            |      |
| Chloride                         | 199          | 1.06    | mg/kg dry | 1         | P3F0709    | 06/07/23 18:08 | 06/08/23 14:04 | EPA 300.0  |      |
| % Moisture                       | 6.0          | 0.1     | %         | 1         | P3F0504    | 06/05/23 08:17 | 06/05/23 08:20 | ASTM D2216 |      |

Project: BSWU #3C TB

13000 West County Road 100

Project Number: 16187 Project Manager: Blake Estep

Odessa TX, 79765

## Bottom Hole 2 @ 30" 3F02005-02 (Soil)

|                                            | Limit        | Repo         | rting           |           |             |                |                |            |       |
|--------------------------------------------|--------------|--------------|-----------------|-----------|-------------|----------------|----------------|------------|-------|
| Analyte                                    | Result       |              | Units           | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Notes |
|                                            |              | D            | aumian D        | agin Envi | ronmental I | ah I D         |                |            |       |
|                                            |              | r            | егинан в        | asın envi | ronmentai 1 | Lab, L.P.      |                |            |       |
| BTEX by 8021B                              |              |              |                 |           |             |                |                |            |       |
| Benzene                                    | ND (         | 0.00106      | mg/kg dry       | 1         | P3F0609     | 06/06/23 11:53 | 06/06/23 20:27 | EPA 8021B  |       |
| Toluene                                    | ND (         | 0.00106      | mg/kg dry       | 1         | P3F0609     | 06/06/23 11:53 | 06/06/23 20:27 | EPA 8021B  |       |
| Ethylbenzene                               | ND (         | 0.00106      | mg/kg dry       | 1         | P3F0609     | 06/06/23 11:53 | 06/06/23 20:27 | EPA 8021B  |       |
| Xylene (p/m)                               | ND (         | 0.00213      | mg/kg dry       | 1         | P3F0609     | 06/06/23 11:53 | 06/06/23 20:27 | EPA 8021B  |       |
| Xylene (o)                                 | ND (         | 0.00106      | mg/kg dry       | 1         | P3F0609     | 06/06/23 11:53 | 06/06/23 20:27 | EPA 8021B  |       |
| Surrogate: 1,4-Difluorobenzene             | 9            | 8.8 %        | 80-120          |           | P3F0609     | 06/06/23 11:53 | 06/06/23 20:27 | EPA 8021B  |       |
| Surrogate: 4-Bromofluorobenzene            | 9            | 1.1 %        | 80-120          |           | P3F0609     | 06/06/23 11:53 | 06/06/23 20:27 | EPA 8021B  |       |
| T-4-1 D-41 Hd                              | C25 b EDA    | M - 41 3     | 001 <i>5</i> N/ |           |             |                |                |            |       |
| Total Petroleum Hydrocarbons C6-<br>C6-C12 | *            |              | mg/kg dry       | 1         | P3F0205     | 06/02/23 13:09 | 06/04/23 18:31 | TPH 8015M  |       |
|                                            | ND           | 26.6         | mg/kg dry       | 1         | P3F0205     | 06/02/23 13:09 | 06/04/23 18:31 | TPH 8015M  |       |
| >C12-C28<br>>C28-C35                       | 342<br>215   | 26.6<br>26.6 | mg/kg dry       | 1         | P3F0205     | 06/02/23 13:09 | 06/04/23 18:31 | TPH 8015M  |       |
|                                            |              |              |                 | 1         | P3F0205     | 06/02/23 13:09 | 06/04/23 18:31 | TPH 8015M  |       |
| Surrogate: 1-Chlorooctane                  |              | 3.1 %        | 70-130          |           |             |                |                |            |       |
| Surrogate: o-Terphenyl                     |              | 6.6 %        | 70-130          |           | P3F0205     | 06/02/23 13:09 | 06/04/23 18:31 | TPH 8015M  |       |
| Total Petroleum Hydrocarbon                | 557          | 26.6         | mg/kg dry       | 1         | [CALC]      | 06/02/23 13:09 | 06/04/23 18:31 | calc       |       |
| C6-C35                                     |              |              |                 |           |             |                |                |            |       |
| <b>General Chemistry Parameters by </b>    | EPA / Standa | ard Metl     | hods            |           |             |                |                |            |       |
| Chloride                                   | 182          | 1.06         | mg/kg dry       | 1         | P3F0709     | 06/07/23 18:08 | 06/08/23 14:18 | EPA 300.0  |       |
| % Moisture                                 | 6.0          | 0.1          | %               | 1         | P3F0504     | 06/05/23 08:17 | 06/05/23 08:20 | ASTM D2216 |       |

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Project: BSWU #3C TB

13000 West County Road 100 Odessa TX, 79765 Project Number: 16187 Project Manager: Blake Estep

> Bottom Hole 3 @ 30" 3F02005-03 (Soil)

| Limit       | Repor                                  | rting                                                                                                                                                                                |                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |
|-------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Result      |                                        | Units                                                                                                                                                                                | Dilution                 | Batch                        | Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analyzed                              | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Notes                                                                                |
|             | D,                                     | armian R                                                                                                                                                                             | ocin Envi                | onmontal I                   | ah I P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |
|             | 1,                                     | Cillian D                                                                                                                                                                            | asın Envi                | Ollinciitai L                | au, L.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |
|             |                                        |                                                                                                                                                                                      |                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |
| ND 0        | 0.00108                                | mg/kg dry                                                                                                                                                                            | 1                        | P3F0609                      | 06/06/23 11:53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 06/06/23 20:48                        | EPA 8021B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |
| ND 0        | 0.00108                                | mg/kg dry                                                                                                                                                                            | 1                        | P3F0609                      | 06/06/23 11:53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 06/06/23 20:48                        | EPA 8021B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |
| ND 0        | 0.00108                                | mg/kg dry                                                                                                                                                                            | 1                        | P3F0609                      | 06/06/23 11:53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 06/06/23 20:48                        | EPA 8021B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |
| ND 0        | 0.00215                                | mg/kg dry                                                                                                                                                                            | 1                        | P3F0609                      | 06/06/23 11:53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 06/06/23 20:48                        | EPA 8021B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |
| ND 0        | 0.00108                                | mg/kg dry                                                                                                                                                                            | 1                        | P3F0609                      | 06/06/23 11:53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 06/06/23 20:48                        | EPA 8021B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |
| 9.          | 1.8 %                                  | 80-120                                                                                                                                                                               |                          | P3F0609                      | 06/06/23 11:53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 06/06/23 20:48                        | EPA 8021B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |
| 98          | 8.5 %                                  | 80-120                                                                                                                                                                               |                          | P3F0609                      | 06/06/23 11:53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 06/06/23 20:48                        | EPA 8021B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |
| 35 by FPA   | Mathad                                 | 8015M                                                                                                                                                                                |                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |
| ND          | 26.9                                   | mg/kg dry                                                                                                                                                                            | 1                        | P3F0205                      | 06/02/23 13:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 06/04/23 18:56                        | TPH 8015M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |
| 367         | 26.9                                   | mg/kg dry                                                                                                                                                                            | 1                        | P3F0205                      | 06/02/23 13:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 06/04/23 18:56                        | TPH 8015M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |
| 227         | 26.9                                   | mg/kg dry                                                                                                                                                                            | 1                        | P3F0205                      | 06/02/23 13:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 06/04/23 18:56                        | TPH 8015M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |
| 92          | 2.6 %                                  | 70-130                                                                                                                                                                               |                          | P3F0205                      | 06/02/23 13:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 06/04/23 18:56                        | TPH 8015M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |
| 97          | 7.9 %                                  | 70-130                                                                                                                                                                               |                          | P3F0205                      | 06/02/23 13:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 06/04/23 18:56                        | TPH 8015M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |
| 595         | 26.9                                   | mg/kg dry                                                                                                                                                                            | 1                        | [CALC]                       | 06/02/23 13:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 06/04/23 18:56                        | calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                      |
|             |                                        |                                                                                                                                                                                      |                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |
| PA / Standa | rd Metl                                | hods                                                                                                                                                                                 |                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |
| 171         | 1.08                                   | mg/kg dry                                                                                                                                                                            | 1                        | P3F0710                      | 06/07/23 18:12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 06/08/23 15:44                        | EPA 300.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |
| 7.0         | 0.1                                    | %                                                                                                                                                                                    | 1                        | P3F0504                      | 06/05/23 08:17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 06/05/23 08:20                        | ASTM D2216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                      |
|             | Result  ND (  ND (  ND (   ND (   ND ( | Result  P  ND 0.00108 ND 0.00108 ND 0.00108 ND 0.00215 ND 0.00108  91.8 % 98.5 %  235 by EPA Method  ND 26.9 367 26.9 227 26.9 92.6 % 97.9 % 595 26.9  PA / Standard Method 171 1.08 | ND   0.00108   mg/kg dry | ND   0.00108   mg/kg dry   1 | ND   0.00108   mg/kg dry   1   P3F0609     ND   0.00215   mg/kg dry   1   P3F0609     ND   0.00108   mg/kg dry   1   P3F0609     ND   0.00108   mg/kg dry   1   P3F0609     ND   0.00108   mg/kg dry   1   P3F0609     91.8 %   80-120   P3F0609     235 by EPA Method 8015M     ND   26.9   mg/kg dry   1   P3F0205     367   26.9   mg/kg dry   1   P3F0205     227   26.9   mg/kg dry   1   P3F0205     92.6 %   70-130   P3F0205     97.9 %   70-130   P3F0205     97.9 %   70-130   P3F0205     595   26.9   mg/kg dry   1   [CALC]     PA / Standard Methods     171   1.08   mg/kg dry   1   P3F0710 | Permian Basin Environmental Lab, L.P. | ND   0.00108   mg/kg dry   1   P3F0609   06/06/23 11:53   06/06/23 20:48     ND   0.00108   mg/kg dry   1   P3F0609   06/06/23 11:53   06/06/23 20:48     ND   0.00108   mg/kg dry   1   P3F0609   06/06/23 11:53   06/06/23 20:48     ND   0.00108   mg/kg dry   1   P3F0609   06/06/23 11:53   06/06/23 20:48     ND   0.00215   mg/kg dry   1   P3F0609   06/06/23 11:53   06/06/23 20:48     ND   0.00108   mg/kg dry   1   P3F0609   06/06/23 11:53   06/06/23 20:48     ND   0.00108   mg/kg dry   1   P3F0609   06/06/23 11:53   06/06/23 20:48     91.8 %   80-120   P3F0609   06/06/23 11:53   06/06/23 20:48     98.5 %   80-120   P3F0609   06/06/23 11:53   06/06/23 20:48     98.5 %   80-120   P3F0609   06/06/23 11:53   06/06/23 20:48     98.5 %   80-120   P3F0609   06/06/23 13:59   06/06/23 20:48     235 by EPA Method 8015M   P3F0205   06/02/23 13:09   06/04/23 18:56     227   26.9   mg/kg dry   1   P3F0205   06/02/23 13:09   06/04/23 18:56     92.6 %   70-130   P3F0205   06/02/23 13:09   06/04/23 18:56     97.9 %   70-130   P3F0205   06/02/23 13:09   06/04/23 18:56     595   26.9   mg/kg dry   1   [CALC]   06/02/23 13:09   06/04/23 18:56     595   26.9   mg/kg dry   1   [CALC]   06/02/23 13:09   06/04/23 18:56     595   26.9   mg/kg dry   1   [CALC]   06/02/23 13:09   06/04/23 18:56     596   70-130   P3F0205   06/02/23 13:09   06/04/23 18:56     595   26.9   mg/kg dry   1   [CALC]   06/02/23 13:09   06/04/23 18:56     595   26.9   mg/kg dry   1   P3F0205   06/02/23 13:09   06/04/23 18:56     596   70-130   P3F0205   06/02/23 13:09   06/04/23 18:56     596   70-130   P3F0205   06/02/23 13:09   06/04/23 18:56     596   70-130   P3F0205   06/02/23 13:09   06/04/23 18:56     597   96   70-130   P3F0205   06/02/23 13:09   06/04/23 18:56     598   26.9   mg/kg dry   1   P3F0205   06/02/23 13:09   06/04/23 18:56     599   70-130   P3F0205   06/02/23 13:09   06/04/23 18:56     590   70-130   P3F0205   06/02/23 13:09   06/04/23 18:56     590   70-130   P3F0205   06/02/23 13:09   06/04/23 18:56     590   70-130   P3F0205   06/02/23 1 | ND   0.00108   mg/kg dry   1   P3F0609   06/06/23 11:53   06/06/23 20:48   EPA 8021B |

Project: BSWU #3C TB

13000 West County Road 100

Project Number: 16187

Odessa TX, 79765

Project Manager: Blake Estep

## Northwall 3F02005-04 (Soil)

|                                    | Limi         | t Repo   | rting     |           |             |                |                |            |      |
|------------------------------------|--------------|----------|-----------|-----------|-------------|----------------|----------------|------------|------|
| Analyte                            | Result       |          | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Note |
|                                    |              | P        | ermian B  | asin Envi | ronmental L | ab, L.P.       |                |            |      |
| BTEX by 8021B                      |              |          |           |           |             |                |                |            |      |
| Benzene                            | ND           | 0.00106  | mg/kg dry | 1         | P3F0609     | 06/06/23 11:53 | 06/06/23 21:08 | EPA 8021B  |      |
| Toluene                            | ND           | 0.00106  | mg/kg dry | 1         | P3F0609     | 06/06/23 11:53 | 06/06/23 21:08 | EPA 8021B  |      |
| Ethylbenzene                       | ND           | 0.00106  | mg/kg dry | 1         | P3F0609     | 06/06/23 11:53 | 06/06/23 21:08 | EPA 8021B  |      |
| Xylene (p/m)                       | ND           | 0.00213  | mg/kg dry | 1         | P3F0609     | 06/06/23 11:53 | 06/06/23 21:08 | EPA 8021B  |      |
| Xylene (o)                         | ND           | 0.00106  | mg/kg dry | 1         | P3F0609     | 06/06/23 11:53 | 06/06/23 21:08 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene    | 9            | 05.0 %   | 80-120    |           | P3F0609     | 06/06/23 11:53 | 06/06/23 21:08 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene     | 9            | 98.3 %   | 80-120    |           | P3F0609     | 06/06/23 11:53 | 06/06/23 21:08 | EPA 8021B  |      |
| Total Petroleum Hydrocarbons C6-   | C35 by EPA   | Method   | 8015M     |           |             |                |                |            |      |
| C6-C12                             | ND           | 26.6     | mg/kg dry | 1         | P3F0205     | 06/02/23 13:09 | 06/04/23 19:22 | TPH 8015M  |      |
| >C12-C28                           | 350          | 26.6     | mg/kg dry | 1         | P3F0205     | 06/02/23 13:09 | 06/04/23 19:22 | TPH 8015M  |      |
| >C28-C35                           | 224          | 26.6     | mg/kg dry | 1         | P3F0205     | 06/02/23 13:09 | 06/04/23 19:22 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane          | 9            | 93.1 %   | 70-130    |           | P3F0205     | 06/02/23 13:09 | 06/04/23 19:22 | TPH 8015M  |      |
| Surrogate: o-Terphenyl             | 9            | 08.3 %   | 70-130    |           | P3F0205     | 06/02/23 13:09 | 06/04/23 19:22 | TPH 8015M  |      |
| <b>Total Petroleum Hydrocarbon</b> | 574          | 26.6     | mg/kg dry | 1         | [CALC]      | 06/02/23 13:09 | 06/04/23 19:22 | calc       |      |
| C6-C35                             |              |          |           |           |             |                |                |            |      |
| General Chemistry Parameters by    | EPA / Standa | ard Metl | hods      |           |             |                |                |            |      |
| Chloride                           | 176          | 1.06     | mg/kg dry | 1         | P3F0710     | 06/07/23 18:12 | 06/08/23 15:58 | EPA 300.0  |      |
| % Moisture                         | 6.0          | 0.1      | %         | 1         | P3F0504     | 06/05/23 08:17 | 06/05/23 08:20 | ASTM D2216 |      |

13000 West County Road 100 Project Number: 16187 Odessa TX, 79765 Project Manager: Blake Estep

Project: BSWU #3C TB

## Southwall 3F02005-05 (Soil)

|                                       | Limi         | t Repor  | rting     |           |             |                |                |            |      |
|---------------------------------------|--------------|----------|-----------|-----------|-------------|----------------|----------------|------------|------|
| Analyte                               | Result       |          | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Note |
|                                       |              | Po       | ermian B  | asin Envi | ronmental L | ab, L.P.       |                |            |      |
| BTEX by 8021B                         |              |          |           |           |             |                |                |            |      |
| Benzene                               | ND           | 0.00106  | mg/kg dry | 1         | P3F0609     | 06/06/23 11:53 | 06/07/23 09:08 | EPA 8021B  |      |
| Toluene                               | ND           | 0.00106  | mg/kg dry | 1         | P3F0609     | 06/06/23 11:53 | 06/07/23 09:08 | EPA 8021B  |      |
| Ethylbenzene                          | ND           | 0.00106  | mg/kg dry | 1         | P3F0609     | 06/06/23 11:53 | 06/07/23 09:08 | EPA 8021B  |      |
| Xylene (p/m)                          | ND           | 0.00213  | mg/kg dry | 1         | P3F0609     | 06/06/23 11:53 | 06/07/23 09:08 | EPA 8021B  |      |
| Xylene (o)                            | ND           | 0.00106  | mg/kg dry | 1         | P3F0609     | 06/06/23 11:53 | 06/07/23 09:08 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene       | 8            | 84.9 %   | 80-120    |           | P3F0609     | 06/06/23 11:53 | 06/07/23 09:08 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene        | 9            | 93.6 %   | 80-120    |           | P3F0609     | 06/06/23 11:53 | 06/07/23 09:08 | EPA 8021B  |      |
| Total Petroleum Hydrocarbons C6-      | C35 by EPA   | Method   | 8015M     |           |             |                |                |            |      |
| C6-C12                                | ND           | 26.6     | mg/kg dry | 1         | P3F0205     | 06/02/23 13:09 | 06/04/23 19:47 | TPH 8015M  |      |
| >C12-C28                              | 354          | 26.6     | mg/kg dry | 1         | P3F0205     | 06/02/23 13:09 | 06/04/23 19:47 | TPH 8015M  |      |
| >C28-C35                              | 229          | 26.6     | mg/kg dry | 1         | P3F0205     | 06/02/23 13:09 | 06/04/23 19:47 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane             | 9            | 01.0 %   | 70-130    |           | P3F0205     | 06/02/23 13:09 | 06/04/23 19:47 | TPH 8015M  |      |
| Surrogate: o-Terphenyl                | 9            | 05.5 %   | 70-130    |           | P3F0205     | 06/02/23 13:09 | 06/04/23 19:47 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon<br>C6-C35 | 583          | 26.6     | mg/kg dry | 1         | [CALC]      | 06/02/23 13:09 | 06/04/23 19:47 | calc       |      |
| General Chemistry Parameters by       | EPA / Standa | ard Metl | nods      |           |             |                |                |            |      |
| Chloride                              | 191          | 1.06     | mg/kg dry | 1         | P3F0710     | 06/07/23 18:12 | 06/08/23 16:13 | EPA 300.0  |      |
| % Moisture                            | 6.0          | 0.1      | %         | 1         | P3F0504     | 06/05/23 08:17 | 06/05/23 08:20 | ASTM D2216 |      |

Project: BSWU #3C TB

13000 West County Road 100

Project Number: 16187

Odessa TX, 79765

Project Manager: Blake Estep

## East Wall 1 3F02005-06 (Soil)

|                                       | Lim         | it Repo | rting     |           |             |                |                |            |      |
|---------------------------------------|-------------|---------|-----------|-----------|-------------|----------------|----------------|------------|------|
| Analyte                               | Result      | 1       | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Note |
|                                       |             | P       | ermian B  | asin Envi | ronmental L | ab, L.P.       |                |            |      |
| BTEX by 8021B                         |             |         |           |           |             |                |                |            |      |
| Benzene                               | ND          | 0.00105 | mg/kg dry | 1         | P3F0609     | 06/06/23 11:53 | 06/07/23 09:29 | EPA 8021B  |      |
| Toluene                               | ND          | 0.00105 | mg/kg dry | 1         | P3F0609     | 06/06/23 11:53 | 06/07/23 09:29 | EPA 8021B  |      |
| Ethylbenzene                          | ND          | 0.00105 | mg/kg dry | 1         | P3F0609     | 06/06/23 11:53 | 06/07/23 09:29 | EPA 8021B  |      |
| Xylene (p/m)                          | ND          | 0.00211 | mg/kg dry | 1         | P3F0609     | 06/06/23 11:53 | 06/07/23 09:29 | EPA 8021B  |      |
| Xylene (o)                            | ND          | 0.00105 | mg/kg dry | 1         | P3F0609     | 06/06/23 11:53 | 06/07/23 09:29 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene        | 9           | 97.1 %  | 80-120    |           | P3F0609     | 06/06/23 11:53 | 06/07/23 09:29 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene       | ě           | 89.2 %  | 80-120    |           | P3F0609     | 06/06/23 11:53 | 06/07/23 09:29 | EPA 8021B  |      |
| Total Petroleum Hydrocarbons C6-      | C35 by EPA  | Method  | 8015M     |           |             |                |                |            |      |
| C6-C12                                | ND          | 26.3    | mg/kg dry | 1         | P3F0405     | 06/04/23 16:26 | 06/04/23 23:11 | TPH 8015M  | •    |
| >C12-C28                              | 306         | 26.3    | mg/kg dry | 1         | P3F0405     | 06/04/23 16:26 | 06/04/23 23:11 | TPH 8015M  |      |
| >C28-C35                              | 196         | 26.3    | mg/kg dry | 1         | P3F0405     | 06/04/23 16:26 | 06/04/23 23:11 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane             | 9           | 97.3 %  | 70-130    |           | P3F0405     | 06/04/23 16:26 | 06/04/23 23:11 | TPH 8015M  |      |
| Surrogate: o-Terphenyl                |             | 103 %   | 70-130    |           | P3F0405     | 06/04/23 16:26 | 06/04/23 23:11 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon<br>C6-C35 | 502         | 26.3    | mg/kg dry | 1         | [CALC]      | 06/04/23 16:26 | 06/04/23 23:11 | calc       |      |
| General Chemistry Parameters by       | EPA / Stand | ard Met | hods      |           |             |                |                |            |      |
| Chloride                              | 179         | 1.05    | mg/kg dry | 1         | P3F0710     | 06/07/23 18:12 | 06/08/23 16:27 | EPA 300.0  |      |
| % Moisture                            | 5.0         | 0.1     | %         | 1         | P3F0504     | 06/05/23 08:17 | 06/05/23 08:20 | ASTM D2216 |      |

Project: BSWU #3C TB

13000 West County Road 100

Project Number: 16187 Project Manager: Blake Estep

Odessa TX, 79765

## East Wall 2 3F02005-07 (Soil)

|                                       | Lim         | it Repo  | rting     |           |             |                |                |            |      |
|---------------------------------------|-------------|----------|-----------|-----------|-------------|----------------|----------------|------------|------|
| Analyte                               | Result      |          | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Note |
|                                       |             | P        | ermian B  | asin Envi | ronmental L | ab, L.P.       |                |            |      |
| BTEX by 8021B                         |             |          |           |           |             |                |                |            |      |
| Benzene                               | ND          | 0.00105  | mg/kg dry | 1         | P3F0609     | 06/06/23 11:53 | 06/07/23 09:50 | EPA 8021B  |      |
| Toluene                               | ND          | 0.00105  | mg/kg dry | 1         | P3F0609     | 06/06/23 11:53 | 06/07/23 09:50 | EPA 8021B  |      |
| Ethylbenzene                          | ND          | 0.00105  | mg/kg dry | 1         | P3F0609     | 06/06/23 11:53 | 06/07/23 09:50 | EPA 8021B  |      |
| Xylene (p/m)                          | ND          | 0.00211  | mg/kg dry | 1         | P3F0609     | 06/06/23 11:53 | 06/07/23 09:50 | EPA 8021B  |      |
| Xylene (o)                            | ND          | 0.00105  | mg/kg dry | 1         | P3F0609     | 06/06/23 11:53 | 06/07/23 09:50 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene       | (           | 87.0 %   | 80-120    |           | P3F0609     | 06/06/23 11:53 | 06/07/23 09:50 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene        |             | 101 %    | 80-120    |           | P3F0609     | 06/06/23 11:53 | 06/07/23 09:50 | EPA 8021B  |      |
| Total Petroleum Hydrocarbons C6-      | C35 by EPA  | Method   | 8015M     |           |             |                |                |            |      |
| C6-C12                                | ND          | 26.3     | mg/kg dry | 1         | P3F0405     | 06/04/23 16:26 | 06/04/23 23:37 | TPH 8015M  |      |
| >C12-C28                              | 361         | 26.3     | mg/kg dry | 1         | P3F0405     | 06/04/23 16:26 | 06/04/23 23:37 | TPH 8015M  |      |
| >C28-C35                              | 232         | 26.3     | mg/kg dry | 1         | P3F0405     | 06/04/23 16:26 | 06/04/23 23:37 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane             |             | 98.4 %   | 70-130    |           | P3F0405     | 06/04/23 16:26 | 06/04/23 23:37 | TPH 8015M  |      |
| Surrogate: o-Terphenyl                |             | 106 %    | 70-130    |           | P3F0405     | 06/04/23 16:26 | 06/04/23 23:37 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon<br>C6-C35 | 593         | 26.3     | mg/kg dry | 1         | [CALC]      | 06/04/23 16:26 | 06/04/23 23:37 | calc       |      |
| General Chemistry Parameters by       | EPA / Stand | ard Metl | nods      |           |             |                |                |            |      |
| Chloride                              | 192         | 1.05     | mg/kg dry | 1         | P3F0710     | 06/07/23 18:12 | 06/08/23 16:41 | EPA 300.0  |      |
| % Moisture                            | 5.0         | 0.1      | %         | 1         | P3F0504     | 06/05/23 08:17 | 06/05/23 08:20 | ASTM D2216 |      |

13000 West County Road 100Project Number:16187Odessa TX, 79765Project Manager:Blake Estep

East Wall 3 3F02005-08 (Soil)

Project: BSWU #3C TB

|                                       | Limit        | t Repor  | rting        |           |             |                |                |            |      |
|---------------------------------------|--------------|----------|--------------|-----------|-------------|----------------|----------------|------------|------|
| Analyte                               | Result       |          | Units        | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Note |
|                                       |              | Po       | ermian B     | asin Envi | ronmental L | ab, L.P.       |                |            |      |
| BTEX by 8021B                         |              |          |              |           |             |                |                |            |      |
| Benzene                               | ND (         | 0.00104  | mg/kg dry    | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 12:55 | EPA 8021B  |      |
| Toluene                               | ND (         | 0.00104  | mg/kg dry    | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 12:55 | EPA 8021B  |      |
| Ethylbenzene                          | ND (         | 0.00104  | mg/kg dry    | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 12:55 | EPA 8021B  |      |
| Xylene (p/m)                          | ND (         | 0.00208  | mg/kg dry    | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 12:55 | EPA 8021B  |      |
| Xylene (o)                            | ND (         | 0.00104  | mg/kg dry    | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 12:55 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene       | 9            | 6.4 %    | 80-120       |           | P3F0610     | 06/06/23 12:44 | 06/07/23 12:55 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene        |              | 101 %    | 80-120       |           | P3F0610     | 06/06/23 12:44 | 06/07/23 12:55 | EPA 8021B  |      |
| Total Petroleum Hydrocarbons C6-      | -C35 by EPA  | Method   | 8015M        |           |             |                |                |            |      |
| C6-C12                                | ND           | 26.0     | mg/kg dry    | 1         | P3F0405     | 06/04/23 16:26 | 06/05/23 00:03 | TPH 8015M  |      |
| >C12-C28                              | 388          | 26.0     | mg/kg dry    | 1         | P3F0405     | 06/04/23 16:26 | 06/05/23 00:03 | TPH 8015M  |      |
| >C28-C35                              | 250          | 26.0     | mg/kg dry    | 1         | P3F0405     | 06/04/23 16:26 | 06/05/23 00:03 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane             |              | 105 %    | 70-130       |           | P3F0405     | 06/04/23 16:26 | 06/05/23 00:03 | TPH 8015M  |      |
| Surrogate: o-Terphenyl                |              | 115 %    | 70-130       |           | P3F0405     | 06/04/23 16:26 | 06/05/23 00:03 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon<br>C6-C35 | 638          | 26.0     | mg/kg dry    | 1         | [CALC]      | 06/04/23 16:26 | 06/05/23 00:03 | calc       |      |
| General Chemistry Parameters by       | EPA / Standa | ard Metl | <u> 10ds</u> |           |             |                |                |            |      |
| Chloride                              | 191          | 1.04     | mg/kg dry    | 1         | P3F0710     | 06/07/23 18:12 | 06/08/23 16:56 | EPA 300.0  |      |
| % Moisture                            | 4.0          | 0.1      | %            | 1         | P3F0504     | 06/05/23 08:17 | 06/05/23 08:20 | ASTM D2216 |      |

Project: BSWU #3C TB

13000 West County Road 100 Odessa TX, 79765 Project Number: 16187 Project Manager: Blake Estep

## West Wall 1 3F02005-09 (Soil)

|                                       | Lin         | nit Repo  | ·         |           |             |                |                |            |      |
|---------------------------------------|-------------|-----------|-----------|-----------|-------------|----------------|----------------|------------|------|
| Analyte                               | Result      |           | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Note |
|                                       |             | P         | ermian B  | asin Envi | ronmental L | ab, L.P.       |                |            |      |
| BTEX by 8021B                         |             |           |           |           |             |                |                |            |      |
| Benzene                               | ND          | 0.00106   | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 13:16 | EPA 8021B  |      |
| Toluene                               | ND          | 0.00106   | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 13:16 | EPA 8021B  |      |
| Ethylbenzene                          | ND          | 0.00106   | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 13:16 | EPA 8021B  |      |
| Xylene (p/m)                          | ND          | 0.00213   | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 13:16 | EPA 8021B  |      |
| Xylene (o)                            | ND          | 0.00106   | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 13:16 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene        |             | 101 %     | 80-120    |           | P3F0610     | 06/06/23 12:44 | 06/07/23 13:16 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene       |             | 105 %     | 80-120    |           | P3F0610     | 06/06/23 12:44 | 06/07/23 13:16 | EPA 8021B  |      |
| Total Petroleum Hydrocarbons C6-      | C35 by EPA  | A Method  | 8015M     |           |             |                |                |            |      |
| C6-C12                                | ND          | 26.6      | mg/kg dry | 1         | P3F0405     | 06/04/23 16:26 | 06/05/23 00:29 | TPH 8015M  |      |
| >C12-C28                              | 60.9        | 26.6      | mg/kg dry | 1         | P3F0405     | 06/04/23 16:26 | 06/05/23 00:29 | TPH 8015M  |      |
| >C28-C35                              | ND          | 26.6      | mg/kg dry | 1         | P3F0405     | 06/04/23 16:26 | 06/05/23 00:29 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane             |             | 104 %     | 70-130    |           | P3F0405     | 06/04/23 16:26 | 06/05/23 00:29 | TPH 8015M  |      |
| Surrogate: o-Terphenyl                |             | 112 %     | 70-130    |           | P3F0405     | 06/04/23 16:26 | 06/05/23 00:29 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon<br>C6-C35 | 60.9        | 26.6      | mg/kg dry | 1         | [CALC]      | 06/04/23 16:26 | 06/05/23 00:29 | calc       |      |
| General Chemistry Parameters by       | EPA / Stand | lard Metl | hods      |           |             |                |                |            |      |
| Chloride                              | 875         | 1.06      | mg/kg dry | 1         | P3F0710     | 06/07/23 18:12 | 06/08/23 17:10 | EPA 300.0  |      |
| % Moisture                            | 6.0         | 0.1       | %         | 1         | P3F0504     | 06/05/23 08:17 | 06/05/23 08:20 | ASTM D2216 |      |

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100Project Number:16187Odessa TX, 79765Project Manager:Blake Estep

West Wall 2 3F02005-10 (Soil)

Project: BSWU #3C TB

|                                       | Limit        | Repo    | rting     |           |             |                |                |            |       |
|---------------------------------------|--------------|---------|-----------|-----------|-------------|----------------|----------------|------------|-------|
| Analyte                               | Result       |         | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Notes |
|                                       |              | P       | ermian B  | asin Envi | ronmental L | ab, L.P.       |                |            |       |
| BTEX by 8021B                         |              |         |           |           |             |                |                |            |       |
| Benzene                               | ND 0         | .00106  | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 13:36 | EPA 8021B  |       |
| Toluene                               | ND 0         | .00106  | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 13:36 | EPA 8021B  |       |
| Ethylbenzene                          | ND 0         | .00106  | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 13:36 | EPA 8021B  |       |
| Xylene (p/m)                          | ND 0         | .00213  | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 13:36 | EPA 8021B  |       |
| Xylene (o)                            | ND 0         | .00106  | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 13:36 | EPA 8021B  |       |
| Surrogate: 1,4-Difluorobenzene        | 99           | 0.9 %   | 80-120    |           | P3F0610     | 06/06/23 12:44 | 06/07/23 13:36 | EPA 8021B  |       |
| Surrogate: 4-Bromofluorobenzene       | 10           | 07 %    | 80-120    |           | P3F0610     | 06/06/23 12:44 | 06/07/23 13:36 | EPA 8021B  |       |
| Total Petroleum Hydrocarbons C6-      | -C35 by EPA  | Method  | 8015M     |           |             |                |                |            |       |
| C6-C12                                | ND           | 26.6    | mg/kg dry | 1         | P3F0405     | 06/04/23 16:26 | 06/05/23 00:55 | TPH 8015M  |       |
| >C12-C28                              | ND           | 26.6    | mg/kg dry | 1         | P3F0405     | 06/04/23 16:26 | 06/05/23 00:55 | TPH 8015M  |       |
| >C28-C35                              | ND           | 26.6    | mg/kg dry | 1         | P3F0405     | 06/04/23 16:26 | 06/05/23 00:55 | TPH 8015M  |       |
| Surrogate: 1-Chlorooctane             | 89           | 0.7 %   | 70-130    |           | P3F0405     | 06/04/23 16:26 | 06/05/23 00:55 | TPH 8015M  |       |
| Surrogate: o-Terphenyl                | 97           | 7.4 %   | 70-130    |           | P3F0405     | 06/04/23 16:26 | 06/05/23 00:55 | TPH 8015M  |       |
| Total Petroleum Hydrocarbon<br>C6-C35 | ND           | 26.6    | mg/kg dry | 1         | [CALC]      | 06/04/23 16:26 | 06/05/23 00:55 | calc       |       |
| General Chemistry Parameters by       | EPA / Standa | rd Metl | hods      |           |             |                |                |            |       |
| Chloride                              | 561          | 1.06    | mg/kg dry | 1         | P3F0710     | 06/07/23 18:12 | 06/08/23 17:24 | EPA 300.0  |       |
| % Moisture                            | 6.0          | 0.1     | %         | 1         | P3F0504     | 06/05/23 08:17 | 06/05/23 08:20 | ASTM D2216 |       |

Project: BSWU #3C TB

13000 West County Road 100 Odessa TX, 79765 Project Number: 16187 Project Manager: Blake Estep

> West Wall 3 3F02005-11 (Soil)

|                                       | Lim         | it Repo   | rting     |           |             |                |                |            |      |
|---------------------------------------|-------------|-----------|-----------|-----------|-------------|----------------|----------------|------------|------|
| Analyte                               | Result      |           | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Note |
|                                       |             | P         | ermian B  | asin Envi | ronmental L | ab, L.P.       |                |            |      |
| BTEX by 8021B                         |             |           |           |           |             |                |                |            |      |
| Benzene                               | ND          | 0.00109   | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 13:57 | EPA 8021B  |      |
| Toluene                               | ND          | 0.00109   | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 13:57 | EPA 8021B  |      |
| Ethylbenzene                          | ND          | 0.00109   | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 13:57 | EPA 8021B  |      |
| Xylene (p/m)                          | ND          | 0.00217   | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 13:57 | EPA 8021B  |      |
| Xylene (o)                            | ND          | 0.00109   | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 13:57 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene        |             | 100 %     | 80-120    |           | P3F0610     | 06/06/23 12:44 | 06/07/23 13:57 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene       |             | 104 %     | 80-120    |           | P3F0610     | 06/06/23 12:44 | 06/07/23 13:57 | EPA 8021B  |      |
| Total Petroleum Hydrocarbons C6-      | C35 by EPA  | Method    | 8015M     |           |             |                |                |            |      |
| C6-C12                                | ND          | 27.2      | mg/kg dry | 1         | P3F0405     | 06/04/23 16:26 | 06/05/23 01:22 | TPH 8015M  |      |
| >C12-C28                              | 62.5        | 27.2      | mg/kg dry | 1         | P3F0405     | 06/04/23 16:26 | 06/05/23 01:22 | TPH 8015M  |      |
| >C28-C35                              | ND          | 27.2      | mg/kg dry | 1         | P3F0405     | 06/04/23 16:26 | 06/05/23 01:22 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane             |             | 86.5 %    | 70-130    |           | P3F0405     | 06/04/23 16:26 | 06/05/23 01:22 | TPH 8015M  |      |
| Surrogate: o-Terphenyl                |             | 94.6 %    | 70-130    |           | P3F0405     | 06/04/23 16:26 | 06/05/23 01:22 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon<br>C6-C35 | 62.5        | 27.2      | mg/kg dry | 1         | [CALC]      | 06/04/23 16:26 | 06/05/23 01:22 | calc       |      |
| General Chemistry Parameters by       | EPA / Stand | lard Metl | nods      |           |             |                |                |            |      |
| Chloride                              | 1650        | 5.43      | mg/kg dry | 5         | P3F0710     | 06/07/23 18:12 | 06/08/23 17:53 | EPA 300.0  |      |
| % Moisture                            | 8.0         | 0.1       | %         | 1         | P3F0504     | 06/05/23 08:17 | 06/05/23 08:20 | ASTM D2216 |      |

Project: BSWU #3C TB

13000 West County Road 100

Project Number: 16187 Project Manager: Blake Estep

Odessa TX, 79765

### Auger Hole 1 3F02005-12 (Soil)

|                                        | Limit        | t Repo   | rting        |              |             |                |                |            |      |
|----------------------------------------|--------------|----------|--------------|--------------|-------------|----------------|----------------|------------|------|
| Analyte                                | Result       |          | Units        | Dilution     | Batch       | Prepared       | Analyzed       | Method     | Note |
|                                        |              | P        | ermian R     | asin Envi    | ronmental L | ah. L.P.       |                |            |      |
|                                        |              | -        | ci iiiiiii D | ugiii Eiivii | ommentur E  | , 2.11         |                |            |      |
| BTEX by 8021B                          |              |          |              |              |             |                |                |            |      |
| Benzene                                | ND (         | 0.00101  | mg/kg dry    | 1            | P3F0610     | 06/06/23 12:44 | 06/07/23 14:17 | EPA 8021B  |      |
| Toluene                                | ND (         | 0.00101  | mg/kg dry    | 1            | P3F0610     | 06/06/23 12:44 | 06/07/23 14:17 | EPA 8021B  |      |
| Ethylbenzene                           | ND (         | 0.00101  | mg/kg dry    | 1            | P3F0610     | 06/06/23 12:44 | 06/07/23 14:17 | EPA 8021B  |      |
| Xylene (p/m)                           | ND (         | 0.00202  | mg/kg dry    | 1            | P3F0610     | 06/06/23 12:44 | 06/07/23 14:17 | EPA 8021B  |      |
| Xylene (o)                             | ND (         | 0.00101  | mg/kg dry    | 1            | P3F0610     | 06/06/23 12:44 | 06/07/23 14:17 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene         | 9            | 8.7 %    | 80-120       |              | P3F0610     | 06/06/23 12:44 | 06/07/23 14:17 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene        | i            | 109 %    | 80-120       |              | P3F0610     | 06/06/23 12:44 | 06/07/23 14:17 | EPA 8021B  |      |
| Total Petroleum Hydrocarbons C6        | 5-C35 by EPA | Method   | 8015M        |              |             |                |                |            |      |
| C6-C12                                 | ND           | 25.3     | mg/kg dry    | 1            | P3F0405     | 06/04/23 16:26 | 06/05/23 01:48 | TPH 8015M  |      |
| >C12-C28                               | ND           | 25.3     | mg/kg dry    | 1            | P3F0405     | 06/04/23 16:26 | 06/05/23 01:48 | TPH 8015M  |      |
| >C28-C35                               | ND           | 25.3     | mg/kg dry    | 1            | P3F0405     | 06/04/23 16:26 | 06/05/23 01:48 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane              | 9            | 6.0 %    | 70-130       |              | P3F0405     | 06/04/23 16:26 | 06/05/23 01:48 | TPH 8015M  |      |
| Surrogate: o-Terphenyl                 | 9            | 8.4 %    | 70-130       |              | P3F0405     | 06/04/23 16:26 | 06/05/23 01:48 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon            | ND           | 25.3     | mg/kg dry    | 1            | [CALC]      | 06/04/23 16:26 | 06/05/23 01:48 | calc       |      |
| C6-C35                                 |              |          |              |              |             |                |                |            |      |
| <b>General Chemistry Parameters by</b> | EPA / Standa | ard Metl | hods         |              |             |                |                |            |      |
| Chloride                               | 13.4         | 1.01     | mg/kg dry    | 1            | P3F0710     | 06/07/23 18:12 | 06/08/23 18:08 | EPA 300.0  |      |
| % Moisture                             | 1.0          | 0.1      | %            | 1            | P3F0504     | 06/05/23 08:17 | 06/05/23 08:20 | ASTM D2216 |      |

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Project Number: 16187

Odessa TX, 79765

Project Manager: Blake Estep

Project: BSWU #3C TB

# Auger Hole 1 3F02005-13 (Soil)

| Analyte                               | Lim         | nit Repo  | •         |           |             |                |                | 36.4.4     | NT . |
|---------------------------------------|-------------|-----------|-----------|-----------|-------------|----------------|----------------|------------|------|
| Anaryte                               | Result      |           | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Note |
|                                       |             | P         | ermian B  | asin Envi | ronmental L | ab, L.P.       |                |            |      |
| BTEX by 8021B                         |             |           |           |           |             |                |                |            |      |
| Benzene                               | ND          | 0.00103   | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 14:38 | EPA 8021B  |      |
| Toluene                               | ND          | 0.00103   | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 14:38 | EPA 8021B  |      |
| Ethylbenzene                          | ND          | 0.00103   | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 14:38 | EPA 8021B  |      |
| Xylene (p/m)                          | ND          | 0.00206   | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 14:38 | EPA 8021B  |      |
| Xylene (o)                            | ND          | 0.00103   | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 14:38 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene       |             | 109 %     | 80-120    |           | P3F0610     | 06/06/23 12:44 | 06/07/23 14:38 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene        |             | 100 %     | 80-120    |           | P3F0610     | 06/06/23 12:44 | 06/07/23 14:38 | EPA 8021B  |      |
| Total Petroleum Hydrocarbons C6       | -C35 by EPA | A Method  | 8015M     |           |             |                |                |            |      |
| C6-C12                                | ND          | 25.8      | mg/kg dry | 1         | P3F0405     | 06/04/23 16:26 | 06/05/23 02:13 | TPH 8015M  |      |
| >C12-C28                              | ND          | 25.8      | mg/kg dry | 1         | P3F0405     | 06/04/23 16:26 | 06/05/23 02:13 | TPH 8015M  |      |
| >C28-C35                              | ND          | 25.8      | mg/kg dry | 1         | P3F0405     | 06/04/23 16:26 | 06/05/23 02:13 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane             |             | 94.2 %    | 70-130    |           | P3F0405     | 06/04/23 16:26 | 06/05/23 02:13 | TPH 8015M  |      |
| Surrogate: o-Terphenyl                |             | 98.3 %    | 70-130    |           | P3F0405     | 06/04/23 16:26 | 06/05/23 02:13 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon<br>C6-C35 | ND          | 25.8      | mg/kg dry | 1         | [CALC]      | 06/04/23 16:26 | 06/05/23 02:13 | calc       |      |
| C0-C33                                |             |           |           |           |             |                |                |            |      |
| General Chemistry Parameters by       | EPA / Stand | lard Metl | nods      |           |             |                |                |            |      |
| Chloride                              | 3.67        | 1.03      | mg/kg dry | 1         | P3F0710     | 06/07/23 18:12 | 06/08/23 18:50 | EPA 300.0  |      |
| % Moisture                            | 3.0         | 0.1       | %         | 1         | P3F0504     | 06/05/23 08:17 | 06/05/23 08:20 | ASTM D2216 |      |

Permian Basin Environmental Lab, L.P.

Project Number: 16187

Project: BSWU #3C TB

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

# **Auger Hole 2** 3F02005-14 (Soil)

|                                       | Limit        | t Repor  | rting     |            |             |                |                |            |      |
|---------------------------------------|--------------|----------|-----------|------------|-------------|----------------|----------------|------------|------|
| Analyte                               | Result       |          | Units     | Dilution   | Batch       | Prepared       | Analyzed       | Method     | Note |
|                                       |              | Po       | ermian B  | asin Envii | ronmental L | ab, L.P.       |                |            |      |
| BTEX by 8021B                         |              |          |           |            |             |                |                |            |      |
| Benzene                               | ND (         | 0.00105  | mg/kg dry | 1          | P3F0610     | 06/06/23 12:44 | 06/07/23 14:59 | EPA 8021B  |      |
| Toluene                               | ND (         | 0.00105  | mg/kg dry | 1          | P3F0610     | 06/06/23 12:44 | 06/07/23 14:59 | EPA 8021B  |      |
| Ethylbenzene                          | ND (         | 0.00105  | mg/kg dry | 1          | P3F0610     | 06/06/23 12:44 | 06/07/23 14:59 | EPA 8021B  |      |
| Xylene (p/m)                          | ND           | 0.00211  | mg/kg dry | 1          | P3F0610     | 06/06/23 12:44 | 06/07/23 14:59 | EPA 8021B  |      |
| Xylene (o)                            | ND (         | 0.00105  | mg/kg dry | 1          | P3F0610     | 06/06/23 12:44 | 06/07/23 14:59 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene       |              | 105 %    | 80-120    |            | P3F0610     | 06/06/23 12:44 | 06/07/23 14:59 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene        |              | 104 %    | 80-120    |            | P3F0610     | 06/06/23 12:44 | 06/07/23 14:59 | EPA 8021B  |      |
| Total Petroleum Hydrocarbons C6-      | C35 by EPA   | Method   | 8015M     |            |             |                |                |            |      |
| C6-C12                                | 36.8         | 26.3     | mg/kg dry | 1          | P3F0405     | 06/04/23 16:26 | 06/05/23 02:39 | TPH 8015M  |      |
| >C12-C28                              | 5360         | 26.3     | mg/kg dry | 1          | P3F0405     | 06/04/23 16:26 | 06/05/23 02:39 | TPH 8015M  |      |
| >C28-C35                              | 2390         | 26.3     | mg/kg dry | 1          | P3F0405     | 06/04/23 16:26 | 06/05/23 02:39 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane             | 8            | 39.6 %   | 70-130    |            | P3F0405     | 06/04/23 16:26 | 06/05/23 02:39 | TPH 8015M  |      |
| Surrogate: o-Terphenyl                | 8            | 34.7 %   | 70-130    |            | P3F0405     | 06/04/23 16:26 | 06/05/23 02:39 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon<br>C6-C35 | 7790         | 26.3     | mg/kg dry | 1          | [CALC]      | 06/04/23 16:26 | 06/05/23 02:39 | calc       |      |
| General Chemistry Parameters by       | EPA / Standa | ırd Metl | 10ds      |            |             |                |                |            |      |
| Chloride                              | 38.7         | 1.05     | mg/kg dry | 1          | P3F0710     | 06/07/23 18:12 | 06/08/23 19:05 | EPA 300.0  |      |
| % Moisture                            | 5.0          | 0.1      | %         | 1          | P3F0504     | 06/05/23 08:17 | 06/05/23 08:20 | ASTM D2216 |      |

Project: BSWU #3C TB

13000 West County Road 100 Odessa TX, 79765 Project Number: 16187 Project Manager: Blake Estep

> Auger Hole 2 3F02005-15 (Soil)

|                                       | Limi                | it Repo        | rting     |            |             |                |                |            |      |
|---------------------------------------|---------------------|----------------|-----------|------------|-------------|----------------|----------------|------------|------|
| Analyte                               | Result              |                | Units     | Dilution   | Batch       | Prepared       | Analyzed       | Method     | Note |
|                                       |                     | P              | ermian B  | asin Envir | ronmental L | ab, L.P.       |                |            |      |
| BTEX by 8021B                         |                     |                |           |            |             |                |                |            |      |
| Benzene                               | ND                  | 0.00108        | mg/kg dry | 1          | P3F0610     | 06/06/23 12:44 | 06/07/23 15:20 | EPA 8021B  |      |
| Toluene                               | ND                  | 0.00108        | mg/kg dry | 1          | P3F0610     | 06/06/23 12:44 | 06/07/23 15:20 | EPA 8021B  |      |
| Ethylbenzene                          | 0.00230             | 0.00108        | mg/kg dry | 1          | P3F0610     | 06/06/23 12:44 | 06/07/23 15:20 | EPA 8021B  |      |
| Xylene (p/m)                          | ND                  | 0.00215        | mg/kg dry | 1          | P3F0610     | 06/06/23 12:44 | 06/07/23 15:20 | EPA 8021B  |      |
| Xylene (o)                            | ND                  | 0.00108        | mg/kg dry | 1          | P3F0610     | 06/06/23 12:44 | 06/07/23 15:20 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene       |                     | 101 %          | 80-120    |            | P3F0610     | 06/06/23 12:44 | 06/07/23 15:20 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene        |                     | 106 %          | 80-120    |            | P3F0610     | 06/06/23 12:44 | 06/07/23 15:20 | EPA 8021B  |      |
| Total Petroleum Hydrocarbons C6       | - <u>C35</u> by EPA | <u>M</u> ethod | 8015M     |            |             |                |                |            |      |
| C6-C12                                | 47.8                | 26.9           | mg/kg dry | 1          | P3F0405     | 06/04/23 16:26 | 06/05/23 03:06 | TPH 8015M  |      |
| >C12-C28                              | 4810                | 26.9           | mg/kg dry | 1          | P3F0405     | 06/04/23 16:26 | 06/05/23 03:06 | TPH 8015M  |      |
| >C28-C35                              | 1970                | 26.9           | mg/kg dry | 1          | P3F0405     | 06/04/23 16:26 | 06/05/23 03:06 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane             | 9                   | 90.8 %         | 70-130    |            | P3F0405     | 06/04/23 16:26 | 06/05/23 03:06 | TPH 8015M  |      |
| Surrogate: o-Terphenyl                | 8                   | 87.4 %         | 70-130    |            | P3F0405     | 06/04/23 16:26 | 06/05/23 03:06 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon<br>C6-C35 | 6830                | 26.9           | mg/kg dry | 1          | [CALC]      | 06/04/23 16:26 | 06/05/23 03:06 | calc       |      |
| General Chemistry Parameters by       | EPA / Standa        | ard Metl       | hods      |            |             |                |                |            |      |
| Chloride                              | 57.9                | 1.08           | mg/kg dry | 1          | P3F0710     | 06/07/23 18:12 | 06/08/23 19:19 | EPA 300.0  |      |
| % Moisture                            | 7.0                 | 0.1            | %         | 1          | P3F0504     | 06/05/23 08:17 | 06/05/23 08:20 | ASTM D2216 |      |

Project: BSWU #3C TB

13000 West County Road 100

Project Number: 16187

Odessa TX, 79765

Project Manager: Blake Estep

# Auger Hole 3 3F02005-16 (Soil)

|                                       | Lim         | it Repo  | rting     |           |             |                |                |            |      |
|---------------------------------------|-------------|----------|-----------|-----------|-------------|----------------|----------------|------------|------|
| Analyte                               | Result      |          | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Note |
|                                       |             | P        | ermian B  | asin Envi | ronmental L | ab, L.P.       |                |            |      |
| BTEX by 8021B                         |             |          |           |           |             |                |                |            |      |
| Benzene                               | ND          | 0.00102  | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 15:40 | EPA 8021B  |      |
| Toluene                               | ND          | 0.00102  | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 15:40 | EPA 8021B  |      |
| Ethylbenzene                          | ND          | 0.00102  | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 15:40 | EPA 8021B  |      |
| Xylene (p/m)                          | ND          | 0.00204  | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 15:40 | EPA 8021B  |      |
| Xylene (o)                            | ND          | 0.00102  | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 15:40 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene       |             | 100 %    | 80-120    |           | P3F0610     | 06/06/23 12:44 | 06/07/23 15:40 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene        |             | 102 %    | 80-120    |           | P3F0610     | 06/06/23 12:44 | 06/07/23 15:40 | EPA 8021B  |      |
| Total Petroleum Hydrocarbons C6-      | C35 by EPA  | Method   | 8015M     |           |             |                |                |            |      |
| C6-C12                                | ND          | 25.5     | mg/kg dry | 1         | P3F0405     | 06/04/23 16:26 | 06/05/23 04:24 | TPH 8015M  |      |
| >C12-C28                              | 82.2        | 25.5     | mg/kg dry | 1         | P3F0405     | 06/04/23 16:26 | 06/05/23 04:24 | TPH 8015M  |      |
| >C28-C35                              | 63.8        | 25.5     | mg/kg dry | 1         | P3F0405     | 06/04/23 16:26 | 06/05/23 04:24 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane             |             | 122 %    | 70-130    |           | P3F0405     | 06/04/23 16:26 | 06/05/23 04:24 | TPH 8015M  |      |
| Surrogate: o-Terphenyl                |             | 130 %    | 70-130    |           | P3F0405     | 06/04/23 16:26 | 06/05/23 04:24 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon<br>C6-C35 | 146         | 25.5     | mg/kg dry | 1         | [CALC]      | 06/04/23 16:26 | 06/05/23 04:24 | calc       |      |
| General Chemistry Parameters by 1     | EPA / Stand | ard Metl | 10ds      |           |             |                |                |            |      |
| Chloride                              | 496         | 1.02     | mg/kg dry | 1         | P3F0710     | 06/07/23 18:12 | 06/08/23 19:33 | EPA 300.0  |      |
| % Moisture                            | 2.0         | 0.1      | %         | 1         | P3F0504     | 06/05/23 08:17 | 06/05/23 08:20 | ASTM D2216 |      |

Project: BSWU #3C TB

13000 West County Road 100

Project Number: 16187 Project Manager: Blake Estep

Odessa TX, 79765

# Auger Hole 3 3F02005-17 (Soil)

|                                  | Limi         | t Repo   |           |           |             |                |                |            |     |
|----------------------------------|--------------|----------|-----------|-----------|-------------|----------------|----------------|------------|-----|
| Analyte                          | Result       |          | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Not |
|                                  |              | P        | ermian B  | asin Envi | ronmental L | ab, L.P.       |                |            |     |
| 3TEX by 8021B                    |              |          |           |           |             |                |                |            |     |
| Benzene                          | ND           | 0.00104  | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 16:01 | EPA 8021B  |     |
| Toluene                          | ND           | 0.00104  | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 16:01 | EPA 8021B  |     |
| Ethylbenzene                     | ND           | 0.00104  | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 16:01 | EPA 8021B  |     |
| Xylene (p/m)                     | ND           | 0.00208  | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 16:01 | EPA 8021B  |     |
| Xylene (o)                       | ND           | 0.00104  | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 16:01 | EPA 8021B  |     |
| Surrogate: 1,4-Difluorobenzene   |              | 101 %    | 80-120    |           | P3F0610     | 06/06/23 12:44 | 06/07/23 16:01 | EPA 8021B  |     |
| Surrogate: 4-Bromofluorobenzene  | 9            | 9.3 %    | 80-120    |           | P3F0610     | 06/06/23 12:44 | 06/07/23 16:01 | EPA 8021B  |     |
| Total Petroleum Hydrocarbons C6- | C35 by EPA   | Method   | 8015M     |           |             |                |                |            |     |
| C6-C12                           | ND           | 26.0     | mg/kg dry | 1         | P3F0405     | 06/04/23 16:26 | 06/05/23 04:51 | TPH 8015M  |     |
| >C12-C28                         | 57.9         | 26.0     | mg/kg dry | 1         | P3F0405     | 06/04/23 16:26 | 06/05/23 04:51 | TPH 8015M  |     |
| >C28-C35                         | 35.9         | 26.0     | mg/kg dry | 1         | P3F0405     | 06/04/23 16:26 | 06/05/23 04:51 | TPH 8015M  |     |
| Surrogate: 1-Chlorooctane        |              | 103 %    | 70-130    |           | P3F0405     | 06/04/23 16:26 | 06/05/23 04:51 | TPH 8015M  |     |
| Surrogate: o-Terphenyl           |              | 109 %    | 70-130    |           | P3F0405     | 06/04/23 16:26 | 06/05/23 04:51 | TPH 8015M  |     |
| Total Petroleum Hydrocarbon      | 93.8         | 26.0     | mg/kg dry | 1         | [CALC]      | 06/04/23 16:26 | 06/05/23 04:51 | calc       |     |
| C6-C35                           |              |          |           |           |             |                |                |            |     |
| General Chemistry Parameters by  | EPA / Standa | ard Metl | hods      |           |             |                |                |            |     |
| Chloride                         | 335          | 1.04     | mg/kg dry | 1         | P3F0710     | 06/07/23 18:12 | 06/08/23 19:48 | EPA 300.0  |     |
| % Moisture                       | 4.0          | 0.1      | %         | 1         | P3F0504     | 06/05/23 08:17 | 06/05/23 08:20 | ASTM D2216 |     |

13000 West County Road 100 Project Number: 16187

Odessa TX, 79765 Project Manager: Blake Estep

# **Auger Hole 4** 3F02005-18 (Soil)

Project: BSWU #3C TB

|                                       | Limi         | it Repor | ting      |            |             |                |                |            |      |
|---------------------------------------|--------------|----------|-----------|------------|-------------|----------------|----------------|------------|------|
| Analyte                               | Result       |          | Units     | Dilution   | Batch       | Prepared       | Analyzed       | Method     | Note |
|                                       |              | Pe       | ermian Ba | asin Envir | ronmental L | ab, L.P.       |                |            |      |
| BTEX by 8021B                         |              |          |           |            |             |                |                |            |      |
| Benzene                               | 0.00458      | 0.00108  | mg/kg dry | 1          | P3F0610     | 06/06/23 12:44 | 06/07/23 17:03 | EPA 8021B  |      |
| Toluene                               | 0.104        | 0.00108  | mg/kg dry | 1          | P3F0610     | 06/06/23 12:44 | 06/07/23 17:03 | EPA 8021B  |      |
| Ethylbenzene                          | 0.174        | 0.00108  | mg/kg dry | 1          | P3F0610     | 06/06/23 12:44 | 06/07/23 17:03 | EPA 8021B  |      |
| Xylene (p/m)                          | 0.156        | 0.00215  | mg/kg dry | 1          | P3F0610     | 06/06/23 12:44 | 06/07/23 17:03 | EPA 8021B  |      |
| Xylene (o)                            | 0.0997       | 0.00108  | mg/kg dry | 1          | P3F0610     | 06/06/23 12:44 | 06/07/23 17:03 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene        | 9            | 96.0 %   | 80-120    |            | P3F0610     | 06/06/23 12:44 | 06/07/23 17:03 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene       |              | 170 %    | 80-120    |            | P3F0610     | 06/06/23 12:44 | 06/07/23 17:03 | EPA 8021B  | S-G  |
| Total Petroleum Hydrocarbons C6       | -C35 by EPA  | Method   | 8015M     |            |             |                |                |            |      |
| C6-C12                                | 1020         | 269      | mg/kg dry | 10         | P3F0405     | 06/04/23 16:26 | 06/05/23 05:17 | TPH 8015M  |      |
| >C12-C28                              | 9110         | 269      | mg/kg dry | 10         | P3F0405     | 06/04/23 16:26 | 06/05/23 05:17 | TPH 8015M  |      |
| >C28-C35                              | 2380         | 269      | mg/kg dry | 10         | P3F0405     | 06/04/23 16:26 | 06/05/23 05:17 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane             |              | 112 %    | 70-130    |            | P3F0405     | 06/04/23 16:26 | 06/05/23 05:17 | TPH 8015M  |      |
| Surrogate: o-Terphenyl                | 9            | 95.6 %   | 70-130    |            | P3F0405     | 06/04/23 16:26 | 06/05/23 05:17 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon<br>C6-C35 | 12500        | 269      | mg/kg dry | 10         | [CALC]      | 06/04/23 16:26 | 06/05/23 05:17 | calc       |      |
| General Chemistry Parameters by       | EPA / Standa | ard Meth | ıods      |            |             |                |                |            |      |
| Chloride                              | 790          | 1.08     | mg/kg dry | 1          | P3F0710     | 06/07/23 18:12 | 06/08/23 20:02 | EPA 300.0  |      |
| % Moisture                            | 7.0          | 0.1      | %         | 1          | P3F0504     | 06/05/23 08:17 | 06/05/23 08:20 | ASTM D2216 |      |

13000 West County Road 100 Odessa TX, 79765 Project: BSWU #3C TB Project Number: 16187

Project Number: 16187
Project Manager: Blake Estep

# Auger Hole 4 3F02005-19 (Soil)

|                                       | T :14             | D       |                |           |             |                |                |            |      |
|---------------------------------------|-------------------|---------|----------------|-----------|-------------|----------------|----------------|------------|------|
| Analyte                               | Limit<br>Result   | Repo    | rting<br>Units | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Note |
| ,                                     | Result            |         | Ollits         | Dilution  | Daten       | Frepared       | Maryzed        | Wichiod    |      |
|                                       |                   | P       | ermian B       | asin Envi | ronmental L | ab, L.P.       |                |            |      |
| BTEX by 8021B                         |                   |         |                |           |             |                |                |            |      |
| Benzene                               | <b>0.00262</b> 0. | .00105  | mg/kg dry      | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 17:23 | EPA 8021B  |      |
| Toluene                               | <b>0.0538</b> 0.  | .00105  | mg/kg dry      | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 17:23 | EPA 8021B  |      |
| Ethylbenzene                          | <b>0.0784</b> 0.  | .00105  | mg/kg dry      | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 17:23 | EPA 8021B  |      |
| Xylene (p/m)                          | <b>0.0832</b> 0.  | .00211  | mg/kg dry      | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 17:23 | EPA 8021B  |      |
| Xylene (o)                            | <b>0.0713</b> 0.  | .00105  | mg/kg dry      | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 17:23 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene        | 98.               | .9 %    | 80-120         |           | P3F0610     | 06/06/23 12:44 | 06/07/23 17:23 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene       | 12                | 25 %    | 80-120         |           | P3F0610     | 06/06/23 12:44 | 06/07/23 17:23 | EPA 8021B  | S-G  |
| Total Petroleum Hydrocarbons Co       | 5-C35 by EPA N    | Method  | 8015M          |           |             |                |                |            |      |
| C6-C12                                | 609               | 263     | mg/kg dry      | 10        | P3F0405     | 06/04/23 16:26 | 06/05/23 05:44 | TPH 8015M  |      |
| >C12-C28                              | 11100             | 263     | mg/kg dry      | 10        | P3F0405     | 06/04/23 16:26 | 06/05/23 05:44 | TPH 8015M  |      |
| >C28-C35                              | 3270              | 263     | mg/kg dry      | 10        | P3F0405     | 06/04/23 16:26 | 06/05/23 05:44 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane             | 10                | 04 %    | 70-130         |           | P3F0405     | 06/04/23 16:26 | 06/05/23 05:44 | TPH 8015M  |      |
| Surrogate: o-Terphenyl                | 91.               | .4 %    | 70-130         |           | P3F0405     | 06/04/23 16:26 | 06/05/23 05:44 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon<br>C6-C35 | 15000             | 263     | mg/kg dry      | 10        | [CALC]      | 06/04/23 16:26 | 06/05/23 05:44 | calc       |      |
| General Chemistry Parameters by       | EPA / Standar     | rd Metl | hods           |           |             |                |                |            |      |
| Chloride                              | 655               | 1.05    | mg/kg dry      | 1         | P3F0710     | 06/07/23 18:12 | 06/08/23 20:16 | EPA 300.0  |      |
| % Moisture                            | 5.0               | 0.1     | %              | 1         | P3F0504     | 06/05/23 08:17 | 06/05/23 08:20 | ASTM D2216 |      |

Project: BSWU #3C TB

13000 West County Road 100

Project Number: 16187 Project Manager: Blake Estep

Odessa TX, 79765

# Auger Hole 5 3F02005-20 (Soil)

|                                  | Limi         | t Repo  | rting     |           |             |                |                |            |      |
|----------------------------------|--------------|---------|-----------|-----------|-------------|----------------|----------------|------------|------|
| Analyte                          | Result       | •       | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Note |
|                                  |              | P       | ermian B  | asin Envi | ronmental L | ab, L.P.       |                |            |      |
| BTEX by 8021B                    |              |         |           |           |             |                |                |            |      |
| Benzene                          | ND           | 0.00105 | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 17:44 | EPA 8021B  |      |
| Toluene                          | ND           | 0.00105 | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 17:44 | EPA 8021B  |      |
| Ethylbenzene                     | ND           | 0.00105 | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 17:44 | EPA 8021B  |      |
| Xylene (p/m)                     | ND           | 0.00211 | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 17:44 | EPA 8021B  |      |
| Xylene (o)                       | ND           | 0.00105 | mg/kg dry | 1         | P3F0610     | 06/06/23 12:44 | 06/07/23 17:44 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene  | 9            | 7.6 %   | 80-120    |           | P3F0610     | 06/06/23 12:44 | 06/07/23 17:44 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene   |              | 100 %   | 80-120    |           | P3F0610     | 06/06/23 12:44 | 06/07/23 17:44 | EPA 8021B  |      |
| Total Petroleum Hydrocarbons C6- | C35 by EPA   | Method  | 8015M     |           |             |                |                |            |      |
| C6-C12                           | ND           | 26.3    | mg/kg dry | 1         | P3F0405     | 06/04/23 16:26 | 06/05/23 06:10 | TPH 8015M  |      |
| >C12-C28                         | 134          | 26.3    | mg/kg dry | 1         | P3F0405     | 06/04/23 16:26 | 06/05/23 06:10 | TPH 8015M  |      |
| >C28-C35                         | 84.5         | 26.3    | mg/kg dry | 1         | P3F0405     | 06/04/23 16:26 | 06/05/23 06:10 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane        |              | 107 %   | 70-130    |           | P3F0405     | 06/04/23 16:26 | 06/05/23 06:10 | TPH 8015M  |      |
| Surrogate: o-Terphenyl           |              | 110 %   | 70-130    |           | P3F0405     | 06/04/23 16:26 | 06/05/23 06:10 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon      | 219          | 26.3    | mg/kg dry | 1         | [CALC]      | 06/04/23 16:26 | 06/05/23 06:10 | calc       |      |
| C6-C35                           |              |         |           |           |             |                |                |            |      |
| General Chemistry Parameters by  | EPA / Standa | ard Met | hods      |           |             |                |                |            |      |
| Chloride                         | 16.9         | 1.05    | mg/kg dry | 1         | P3F0710     | 06/07/23 18:12 | 06/08/23 20:30 | EPA 300.0  |      |
| % Moisture                       | 5.0          | 0.1     | %         | 1         | P3F0504     | 06/05/23 08:17 | 06/05/23 08:20 | ASTM D2216 |      |

Project Number: 16187

Odessa TX, 79765

13000 West County Road 100

Project Manager: Blake Estep

Auger Hole 5 3F02005-21 (Soil)

Project: BSWU #3C TB

|                                       | Limi         | it Repor | rting     |            |             |                |                |            |      |
|---------------------------------------|--------------|----------|-----------|------------|-------------|----------------|----------------|------------|------|
| Analyte                               | Result       |          | Units     | Dilution   | Batch       | Prepared       | Analyzed       | Method     | Note |
|                                       |              | Po       | ermian B  | asin Envii | ronmental L | ab, L.P.       |                |            |      |
| BTEX by 8021B                         |              |          |           |            |             |                |                |            |      |
| Benzene                               | ND           | 0.00111  | mg/kg dry | 1          | P3F0610     | 06/06/23 12:44 | 06/07/23 18:05 | EPA 8021B  |      |
| Toluene                               | ND           | 0.00111  | mg/kg dry | 1          | P3F0610     | 06/06/23 12:44 | 06/07/23 18:05 | EPA 8021B  |      |
| Ethylbenzene                          | ND           | 0.00111  | mg/kg dry | 1          | P3F0610     | 06/06/23 12:44 | 06/07/23 18:05 | EPA 8021B  |      |
| Xylene (p/m)                          | ND           | 0.00222  | mg/kg dry | 1          | P3F0610     | 06/06/23 12:44 | 06/07/23 18:05 | EPA 8021B  |      |
| Xylene (o)                            | ND           | 0.00111  | mg/kg dry | 1          | P3F0610     | 06/06/23 12:44 | 06/07/23 18:05 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene       | 9            | 92.6 %   | 80-120    |            | P3F0610     | 06/06/23 12:44 | 06/07/23 18:05 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene        | 9            | 97.7 %   | 80-120    |            | P3F0610     | 06/06/23 12:44 | 06/07/23 18:05 | EPA 8021B  |      |
| Total Petroleum Hydrocarbons C6-      | C35 by EPA   | Method   | 8015M     |            |             |                |                |            |      |
| C6-C12                                | ND           | 27.8     | mg/kg dry | 1          | P3F0405     | 06/04/23 16:26 | 06/05/23 06:36 | TPH 8015M  |      |
| >C12-C28                              | 45.2         | 27.8     | mg/kg dry | 1          | P3F0405     | 06/04/23 16:26 | 06/05/23 06:36 | TPH 8015M  |      |
| >C28-C35                              | ND           | 27.8     | mg/kg dry | 1          | P3F0405     | 06/04/23 16:26 | 06/05/23 06:36 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane             |              | 109 %    | 70-130    |            | P3F0405     | 06/04/23 16:26 | 06/05/23 06:36 | TPH 8015M  |      |
| Surrogate: o-Terphenyl                |              | 114 %    | 70-130    |            | P3F0405     | 06/04/23 16:26 | 06/05/23 06:36 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon<br>C6-C35 | 45.2         | 27.8     | mg/kg dry | 1          | [CALC]      | 06/04/23 16:26 | 06/05/23 06:36 | calc       |      |
| General Chemistry Parameters by 1     | EPA / Standa | ard Meth | 10ds      |            |             |                |                |            |      |
| Chloride                              | 1.90         | 1.11     | mg/kg dry | 1          | P3F0710     | 06/07/23 18:12 | 06/08/23 20:59 | EPA 300.0  |      |
| % Moisture                            | 10.0         | 0.1      | %         | 1          | P3F0504     | 06/05/23 08:17 | 06/05/23 08:20 | ASTM D2216 |      |

Project: BSWU #3C TB

13000 West County Road 100

Project Number: 16187

Odessa TX, 79765

Project Manager: Blake Estep

# BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

|                                      |        | Reporting |       | Spike      | Source      |          | %REC   |      | RPD   |       |
|--------------------------------------|--------|-----------|-------|------------|-------------|----------|--------|------|-------|-------|
| Analyte                              | Result | Limit     | Units | Level      | Result      | %REC     | Limits | RPD  | Limit | Notes |
| Batch P3F0609 - *** DEFAULT PREP *** |        |           |       |            |             |          |        |      |       |       |
| Blank (P3F0609-BLK1)                 |        |           |       | Prepared & | k Analyzed: | 06/06/23 |        |      |       |       |
| Benzene                              | ND     | 0.00100   | mg/kg |            |             |          |        |      |       |       |
| Toluene                              | ND     | 0.00100   | "     |            |             |          |        |      |       |       |
| Ethylbenzene                         | ND     | 0.00100   | "     |            |             |          |        |      |       |       |
| Xylene (p/m)                         | ND     | 0.00200   | "     |            |             |          |        |      |       |       |
| Xylene (o)                           | ND     | 0.00100   | "     |            |             |          |        |      |       |       |
| Surrogate: 1,4-Difluorobenzene       | 0.114  |           | "     | 0.120      |             | 95.4     | 80-120 |      |       |       |
| Surrogate: 4-Bromofluorobenzene      | 0.116  |           | "     | 0.120      |             | 96.8     | 80-120 |      |       |       |
| LCS (P3F0609-BS1)                    |        |           |       | Prepared & | ն Analyzed: | 06/06/23 |        |      |       |       |
| Benzene                              | 0.116  | 0.00100   | mg/kg | 0.100      |             | 116      | 80-120 |      |       |       |
| Toluene                              | 0.111  | 0.00100   | "     | 0.100      |             | 111      | 80-120 |      |       |       |
| Ethylbenzene                         | 0.117  | 0.00100   | "     | 0.100      |             | 117      | 80-120 |      |       |       |
| Xylene (p/m)                         | 0.216  | 0.00200   | "     | 0.200      |             | 108      | 80-120 |      |       |       |
| Xylene (o)                           | 0.102  | 0.00100   | "     | 0.100      |             | 102      | 80-120 |      |       |       |
| Surrogate: 1,4-Difluorobenzene       | 0.118  |           | "     | 0.120      |             | 98.5     | 80-120 |      |       | -     |
| Surrogate: 4-Bromofluorobenzene      | 0.127  |           | "     | 0.120      |             | 106      | 80-120 |      |       |       |
| LCS Dup (P3F0609-BSD1)               |        |           |       | Prepared & | k Analyzed: | 06/06/23 |        |      |       |       |
| Benzene                              | 0.111  | 0.00100   | mg/kg | 0.100      |             | 111      | 80-120 | 4.31 | 20    |       |
| Toluene                              | 0.107  | 0.00100   | "     | 0.100      |             | 107      | 80-120 | 3.35 | 20    |       |
| Ethylbenzene                         | 0.114  | 0.00100   | "     | 0.100      |             | 114      | 80-120 | 2.66 | 20    |       |
| Xylene (p/m)                         | 0.211  | 0.00200   | "     | 0.200      |             | 105      | 80-120 | 2.27 | 20    |       |
| Xylene (o)                           | 0.0994 | 0.00100   | "     | 0.100      |             | 99.4     | 80-120 | 2.41 | 20    |       |
| Surrogate: 4-Bromofluorobenzene      | 0.129  |           | "     | 0.120      |             | 107      | 80-120 |      |       |       |
| Surrogate: 1,4-Difluorobenzene       | 0.118  |           | "     | 0.120      |             | 98.2     | 80-120 |      |       |       |
| Calibration Blank (P3F0609-CCB1)     |        |           |       | Prepared & | t Analyzed: | 06/06/23 |        |      |       |       |
| Benzene                              | 0.00   |           | ug/kg |            |             |          |        |      |       |       |
| Toluene                              | 0.00   |           | "     |            |             |          |        |      |       |       |
| Ethylbenzene                         | 0.190  |           | "     |            |             |          |        |      |       |       |
| Xylene (p/m)                         | 0.280  |           | "     |            |             |          |        |      |       |       |
| Xylene (o)                           | 0.00   |           | "     |            |             |          |        |      |       |       |
| Surrogate: 1,4-Difluorobenzene       | 0.113  |           | "     | 0.120      |             | 94.3     | 80-120 |      |       |       |
|                                      |        |           |       |            |             |          |        |      |       |       |

Permian Basin Environmental Lab, L.P.

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

90.6

80-120

0.120

0.109

Project: BSWU #3C TB Project Number: 16187

Odessa TX, 79765

13000 West County Road 100

Project Manager: Blake Estep

# BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

| Analogo                              | D14    | Reporting | T.T:4 | Spike       | Source      | 0/DEC       | %REC   | DDD | RPD   | N-4-  |
|--------------------------------------|--------|-----------|-------|-------------|-------------|-------------|--------|-----|-------|-------|
| Analyte                              | Result | Limit     | Units | Level       | Result      | %REC        | Limits | RPD | Limit | Notes |
| Batch P3F0609 - *** DEFAULT PREP *** |        |           |       |             |             |             |        |     |       |       |
| Calibration Blank (P3F0609-CCB2)     |        |           |       | Prepared &  | Analyzed:   | 06/06/23    |        |     |       |       |
| Benzene                              | 0.00   |           | ug/kg |             |             |             |        |     |       |       |
| Toluene                              | 0.00   |           | "     |             |             |             |        |     |       |       |
| Ethylbenzene                         | 0.200  |           | "     |             |             |             |        |     |       |       |
| Xylene (p/m)                         | 0.200  |           | "     |             |             |             |        |     |       |       |
| Xylene (o)                           | 0.00   |           | "     |             |             |             |        |     |       |       |
| Surrogate: 1,4-Difluorobenzene       | 0.114  |           | "     | 0.120       |             | 94.7        | 80-120 |     |       |       |
| Surrogate: 4-Bromofluorobenzene      | 0.108  |           | "     | 0.120       |             | 90.1        | 80-120 |     |       |       |
| Calibration Check (P3F0609-CCV1)     |        |           |       | Prepared &  | Analyzed:   | 06/06/23    |        |     |       |       |
| Benzene                              | 0.0992 | 0.00100   | mg/kg | 0.100       |             | 99.2        | 80-120 |     |       |       |
| Toluene                              | 0.0974 | 0.00100   | "     | 0.100       |             | 97.4        | 80-120 |     |       |       |
| Ethylbenzene                         | 0.0985 | 0.00100   | "     | 0.100       |             | 98.5        | 80-120 |     |       |       |
| Xylene (p/m)                         | 0.192  | 0.00200   | "     | 0.200       |             | 96.1        | 80-120 |     |       |       |
| Xylene (o)                           | 0.0912 | 0.00100   | "     | 0.100       |             | 91.2        | 80-120 |     |       |       |
| Surrogate: 1,4-Difluorobenzene       | 0.117  |           | "     | 0.120       |             | 97.6        | 75-125 |     |       |       |
| Surrogate: 4-Bromofluorobenzene      | 0.125  |           | "     | 0.120       |             | 104         | 75-125 |     |       |       |
| Calibration Check (P3F0609-CCV2)     |        |           |       | Prepared &  | Analyzed:   | 06/06/23    |        |     |       |       |
| Benzene                              | 0.113  | 0.00100   | mg/kg | 0.100       |             | 113         | 80-120 |     |       |       |
| Toluene                              | 0.102  | 0.00100   | "     | 0.100       |             | 102         | 80-120 |     |       |       |
| Ethylbenzene                         | 0.100  | 0.00100   | "     | 0.100       |             | 100         | 80-120 |     |       |       |
| Xylene (p/m)                         | 0.194  | 0.00200   | "     | 0.200       |             | 97.1        | 80-120 |     |       |       |
| Xylene (o)                           | 0.0972 | 0.00100   | "     | 0.100       |             | 97.2        | 80-120 |     |       |       |
| Surrogate: 4-Bromofluorobenzene      | 0.114  |           | "     | 0.120       |             | 94.7        | 75-125 |     |       |       |
| Surrogate: 1,4-Difluorobenzene       | 0.116  |           | "     | 0.120       |             | 97.0        | 75-125 |     |       |       |
| Calibration Check (P3F0609-CCV3)     |        |           |       | Prepared: ( | 06/06/23 Aı | nalyzed: 06 | /07/23 |     |       |       |
| Benzene                              | 0.114  | 0.00100   | mg/kg | 0.100       |             | 114         | 80-120 |     |       |       |
| Toluene                              | 0.109  | 0.00100   | "     | 0.100       |             | 109         | 80-120 |     |       |       |
| Ethylbenzene                         | 0.107  | 0.00100   | "     | 0.100       |             | 107         | 80-120 |     |       |       |
| Xylene (p/m)                         | 0.202  | 0.00200   | "     | 0.200       |             | 101         | 80-120 |     |       |       |
| Xylene (o)                           | 0.0987 | 0.00100   | "     | 0.100       |             | 98.7        | 80-120 |     |       |       |
| Surrogate: 4-Bromofluorobenzene      | 0.125  |           | "     | 0.120       |             | 104         | 75-125 |     |       |       |
| Surrogate: 1,4-Difluorobenzene       | 0.117  |           | "     | 0.120       |             | 97.1        | 75-125 |     |       |       |

Permian Basin Environmental Lab, L.P.

Project: BSWU #3C TB Project Number: 16187

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

# BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

|         |        | Reporting |       | Spike | Source |      | %REC   |     | RPD   |       |
|---------|--------|-----------|-------|-------|--------|------|--------|-----|-------|-------|
| Analyte | Result | Limit     | Units | Level | Result | %REC | Limits | RPD | Limit | Notes |

#### Batch P3F0609 - \*\*\* DEFAULT PREP \*\*\*

| Matrix Spike (P3F0609-MS1)      | Sourc  | e: 3F06007- | -01       | Prepared: 0 | 6/06/23 A | nalyzed: 06 | 5/07/23 |       |
|---------------------------------|--------|-------------|-----------|-------------|-----------|-------------|---------|-------|
| Benzene                         | 0.0987 | 0.00102     | mg/kg dry | 0.102       | ND        | 96.8        | 80-120  |       |
| Toluene                         | 0.0848 | 0.00102     | "         | 0.102       | ND        | 83.1        | 80-120  |       |
| Ethylbenzene                    | 0.0853 | 0.00102     | "         | 0.102       | ND        | 83.6        | 80-120  |       |
| Xylene (p/m)                    | 0.150  | 0.00204     | "         | 0.204       | ND        | 73.5        | 80-120  | QM-05 |
| Xylene (o)                      | 0.0781 | 0.00102     | "         | 0.102       | ND        | 76.5        | 80-120  | QM-05 |
| Surrogate: 4-Bromofluorobenzene | 0.123  |             | "         | 0.122       |           | 101         | 80-120  |       |
| Surrogate: 1,4-Difluorobenzene  | 0.121  |             | "         | 0.122       |           | 99.2        | 80-120  |       |
|                                 |        |             |           |             |           |             |         |       |

| Matrix Spike Dup (P3F0609-MSD1) | Sour   | Source: 3F06007-01 |           |       | Prepared: 06/06/23 Analyzed: 06/07/23 |      |        |      |    |
|---------------------------------|--------|--------------------|-----------|-------|---------------------------------------|------|--------|------|----|
| Benzene                         | 0.108  | 0.00102            | mg/kg dry | 0.102 | ND                                    | 106  | 80-120 | 8.84 | 20 |
| Toluene                         | 0.0983 | 0.00102            | "         | 0.102 | ND                                    | 96.3 | 80-120 | 14.7 | 20 |
| Ethylbenzene                    | 0.0994 | 0.00102            | "         | 0.102 | ND                                    | 97.4 | 80-120 | 15.3 | 20 |
| Xylene (p/m)                    | 0.180  | 0.00204            | "         | 0.204 | ND                                    | 88.1 | 80-120 | 18.1 | 20 |
| Xylene (o)                      | 0.0871 | 0.00102            | "         | 0.102 | ND                                    | 85.4 | 80-120 | 10.9 | 20 |
| Surrogate: 4-Bromofluorobenzene | 0.129  |                    | "         | 0.122 |                                       | 105  | 80-120 |      |    |
| Surrogate: 1,4-Difluorobenzene  | 0.120  |                    | "         | 0.122 |                                       | 97.9 | 80-120 |      |    |

#### Batch P3F0610 - \*\*\* DEFAULT PREP \*\*\*

| Blank (P3F0610-BLK1)            |       | Prepared: 06/06/23 Analyzed: 06/07/23 |       |       |      |        |  |  |  |
|---------------------------------|-------|---------------------------------------|-------|-------|------|--------|--|--|--|
| Benzene                         | ND    | 0.00100                               | mg/kg |       |      |        |  |  |  |
| Toluene                         | ND    | 0.00100                               | "     |       |      |        |  |  |  |
| Ethylbenzene                    | ND    | 0.00100                               | "     |       |      |        |  |  |  |
| Xylene (p/m)                    | ND    | 0.00200                               | "     |       |      |        |  |  |  |
| Xylene (o)                      | ND    | 0.00100                               | "     |       |      |        |  |  |  |
| Surrogate: 1,4-Difluorobenzene  | 0.117 |                                       | "     | 0.120 | 97.6 | 80-120 |  |  |  |
| Surrogate: 4-Bromofluorobenzene | 0.115 |                                       | "     | 0.120 | 95.5 | 80-120 |  |  |  |

Permian Basin Environmental Lab, L.P.

Project: BSWU #3C TB Project Number: 16187

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

# BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

| Analyta                              | D 20114 | Reporting | I Inde | Spike       | Source     | 0/DEC       | %REC   | pnr  | RPD   | Mat   |
|--------------------------------------|---------|-----------|--------|-------------|------------|-------------|--------|------|-------|-------|
| Analyte                              | Result  | Limit     | Units  | Level       | Result     | %REC        | Limits | RPD  | Limit | Notes |
| Batch P3F0610 - *** DEFAULT PREP *** |         |           |        |             |            |             |        |      |       |       |
| LCS (P3F0610-BS1)                    |         |           |        | Prepared: 0 | 6/06/23 Ar | nalyzed: 06 | /07/23 |      |       |       |
| Benzene                              | 0.111   | 0.00100   | mg/kg  | 0.100       |            | 111         | 80-120 |      |       |       |
| Toluene                              | 0.101   | 0.00100   | "      | 0.100       |            | 101         | 80-120 |      |       |       |
| Ethylbenzene                         | 0.102   | 0.00100   | "      | 0.100       |            | 102         | 80-120 |      |       |       |
| Xylene (p/m)                         | 0.179   | 0.00200   | "      | 0.200       |            | 89.5        | 80-120 |      |       |       |
| Xylene (o)                           | 0.0891  | 0.00100   | "      | 0.100       |            | 89.1        | 80-120 |      |       |       |
| Surrogate: 1,4-Difluorobenzene       | 0.118   |           | "      | 0.120       |            | 98.3        | 80-120 |      |       |       |
| Surrogate: 4-Bromofluorobenzene      | 0.120   |           | "      | 0.120       |            | 99.8        | 80-120 |      |       |       |
| LCS Dup (P3F0610-BSD1)               |         |           |        | Prepared: 0 | 6/06/23 Ar | nalyzed: 06 | /07/23 |      |       |       |
| Benzene                              | 0.0972  | 0.00100   | mg/kg  | 0.100       |            | 97.2        | 80-120 | 13.4 | 20    |       |
| Toluene                              | 0.0906  | 0.00100   | "      | 0.100       |            | 90.6        | 80-120 | 11.2 | 20    |       |
| Ethylbenzene                         | 0.0907  | 0.00100   | "      | 0.100       |            | 90.7        | 80-120 | 11.4 | 20    |       |
| Xylene (p/m)                         | 0.164   | 0.00200   | "      | 0.200       |            | 82.0        | 80-120 | 8.79 | 20    |       |
| Xylene (o)                           | 0.0813  | 0.00100   | "      | 0.100       |            | 81.3        | 80-120 | 9.19 | 20    |       |
| Surrogate: 4-Bromofluorobenzene      | 0.126   |           | "      | 0.120       |            | 105         | 80-120 |      |       |       |
| Surrogate: 1,4-Difluorobenzene       | 0.119   |           | "      | 0.120       |            | 99.5        | 80-120 |      |       |       |
| Calibration Blank (P3F0610-CCB1)     |         |           |        | Prepared: 0 | 6/06/23 Ar | nalyzed: 06 | /07/23 |      |       |       |
| Benzene                              | 0.00    |           | ug/kg  |             |            |             |        |      |       |       |
| Toluene                              | 0.00    |           | "      |             |            |             |        |      |       |       |
| Ethylbenzene                         | 0.00    |           | "      |             |            |             |        |      |       |       |
| Xylene (p/m)                         | 0.00    |           | "      |             |            |             |        |      |       |       |
| Xylene (o)                           | 0.00    |           | "      |             |            |             |        |      |       |       |
| Surrogate: 1,4-Difluorobenzene       | 0.112   |           | "      | 0.120       |            | 93.6        | 80-120 |      |       |       |
| Surrogate: 4-Bromofluorobenzene      | 0.109   |           | "      | 0.120       |            | 90.6        | 80-120 |      |       |       |
| Calibration Blank (P3F0610-CCB2)     |         |           |        | Prepared: 0 | 6/06/23 Ar | nalyzed: 06 | /07/23 |      |       |       |
| Benzene                              | 0.00    |           | ug/kg  |             |            |             |        |      |       |       |
| Toluene                              | 0.00    |           | "      |             |            |             |        |      |       |       |
| Ethylbenzene                         | 0.190   |           | "      |             |            |             |        |      |       |       |
| Xylene (p/m)                         | 0.190   |           | "      |             |            |             |        |      |       |       |
| Xylene (o)                           | 0.00    |           | "      |             |            |             |        |      |       |       |
| Surrogate: 1,4-Difluorobenzene       | 0.117   |           | "      | 0.120       |            | 97.3        | 80-120 |      |       |       |
| Surrogate: 4-Bromofluorobenzene      | 0.114   |           | "      | 0.120       |            | 94.6        | 80-120 |      |       |       |

Permian Basin Environmental Lab, L.P.

Project: BSWU #3C TB Project Number: 16187

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

# BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

|                                      |         | Reporting     |           | Spike       | Source      |             | %REC   |     | RPD   |       |
|--------------------------------------|---------|---------------|-----------|-------------|-------------|-------------|--------|-----|-------|-------|
| Analyte                              | Result  | Limit         | Units     | Level       | Result      | %REC        | Limits | RPD | Limit | Notes |
| Batch P3F0610 - *** DEFAULT PREP *** |         |               |           |             |             |             |        |     |       |       |
| Calibration Check (P3F0610-CCV1)     |         |               |           | Prepared: ( | 06/06/23 Aı | nalyzed: 06 | /07/23 |     |       |       |
| Benzene                              | 0.114   | 0.00100       | mg/kg     | 0.100       |             | 114         | 80-120 |     |       |       |
| Toluene                              | 0.109   | 0.00100       | "         | 0.100       |             | 109         | 80-120 |     |       |       |
| Ethylbenzene                         | 0.107   | 0.00100       | "         | 0.100       |             | 107         | 80-120 |     |       |       |
| Xylene (p/m)                         | 0.202   | 0.00200       | "         | 0.200       |             | 101         | 80-120 |     |       |       |
| Xylene (o)                           | 0.0987  | 0.00100       | "         | 0.100       |             | 98.7        | 80-120 |     |       |       |
| Surrogate: 4-Bromofluorobenzene      | 0.125   |               | "         | 0.120       |             | 104         | 75-125 |     |       |       |
| Surrogate: 1,4-Difluorobenzene       | 0.117   |               | "         | 0.120       |             | 97.1        | 75-125 |     |       |       |
| Calibration Check (P3F0610-CCV2)     |         |               |           | Prepared: ( | 06/06/23 Aı | nalyzed: 06 | /07/23 |     |       |       |
| Benzene                              | 0.107   | 0.00100       | mg/kg     | 0.100       |             | 107         | 80-120 |     |       |       |
| Toluene                              | 0.0988  | 0.00100       | "         | 0.100       |             | 98.8        | 80-120 |     |       |       |
| Ethylbenzene                         | 0.0934  | 0.00100       | "         | 0.100       |             | 93.4        | 80-120 |     |       |       |
| Xylene (p/m)                         | 0.172   | 0.00200       | "         | 0.200       |             | 85.9        | 80-120 |     |       |       |
| Xylene (o)                           | 0.0865  | 0.00100       | "         | 0.100       |             | 86.5        | 80-120 |     |       |       |
| Surrogate: 4-Bromofluorobenzene      | 0.117   |               | "         | 0.120       |             | 97.5        | 75-125 |     |       |       |
| Surrogate: 1,4-Difluorobenzene       | 0.120   |               | "         | 0.120       |             | 99.9        | 75-125 |     |       |       |
| Calibration Check (P3F0610-CCV3)     |         |               |           | Prepared: ( | 06/06/23 Aı | nalyzed: 06 | /07/23 |     |       |       |
| Benzene                              | 0.111   | 0.00100       | mg/kg     | 0.100       |             | 111         | 80-120 |     |       |       |
| Toluene                              | 0.103   | 0.00100       | "         | 0.100       |             | 103         | 80-120 |     |       |       |
| Ethylbenzene                         | 0.0996  | 0.00100       | "         | 0.100       |             | 99.6        | 80-120 |     |       |       |
| Xylene (p/m)                         | 0.185   | 0.00200       | "         | 0.200       |             | 92.5        | 80-120 |     |       |       |
| Xylene (o)                           | 0.0939  | 0.00100       | "         | 0.100       |             | 93.9        | 80-120 |     |       |       |
| Surrogate: 4-Bromofluorobenzene      | 0.119   |               | "         | 0.120       |             | 99.6        | 75-125 |     |       |       |
| Surrogate: 1,4-Difluorobenzene       | 0.116   |               | "         | 0.120       |             | 97.1        | 75-125 |     |       |       |
| Matrix Spike (P3F0610-MS1)           | Sou     | ırce: 3F02005 | -08       | Prepared: ( | 06/06/23 Aı | nalyzed: 06 | /07/23 |     |       |       |
| Benzene                              | 0.0161  | 0.00104       | mg/kg dry | 0.104       | ND          | 15.5        | 80-120 |     |       | QM-0  |
| Toluene                              | 0.00200 | 0.00104       | "         | 0.104       | ND          | 1.92        | 80-120 |     |       | QM-0  |
| Ethylbenzene                         | 0.00166 | 0.00104       | "         | 0.104       | ND          | 1.59        | 80-120 |     |       | QM-0  |
| Xylene (p/m)                         | 0.0221  | 0.00208       | "         | 0.208       | ND          | 10.6        | 80-120 |     |       | QM-0  |
| Xylene (o)                           | 0.0218  | 0.00104       | "         | 0.104       | ND          | 20.9        | 80-120 |     |       | QM-0  |
| Surrogate: 1,4-Difluorobenzene       | 0.118   |               | "         | 0.125       |             | 94.4        | 80-120 |     |       |       |
| Surrogate: 4-Bromofluorobenzene      | 0.107   |               | "         | 0.125       |             | 85.4        | 80-120 |     |       |       |

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765

Project Number: 16187 Project Manager: Blake Estep

# BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Project: BSWU #3C TB

|         |        | Reporting |       | Spike | Source |      | %REC   |     | RPD   |       |
|---------|--------|-----------|-------|-------|--------|------|--------|-----|-------|-------|
| Analyte | Result | Limit     | Units | Level | Result | %REC | Limits | RPD | Limit | Notes |

#### Batch P3F0610 - \*\*\* DEFAULT PREP \*\*\*

| Matrix Spike Dup (P3F0610-MSD1) | Sour    | rce: 3F02005- | Prepared: 06/06/23 Analyzed: 06/07/23 |       |    |      |        |       |    |       |
|---------------------------------|---------|---------------|---------------------------------------|-------|----|------|--------|-------|----|-------|
| Benzene                         | 0.0165  | 0.00104       | mg/kg dry                             | 0.104 | ND | 15.8 | 80-120 | 2.17  | 20 | QM-05 |
| Toluene                         | 0.00297 | 0.00104       | "                                     | 0.104 | ND | 2.85 | 80-120 | 39.0  | 20 | QM-05 |
| Ethylbenzene                    | 0.00253 | 0.00104       | "                                     | 0.104 | ND | 2.43 | 80-120 | 41.8  | 20 | QM-05 |
| Xylene (p/m)                    | 0.0219  | 0.00208       | "                                     | 0.208 | ND | 10.5 | 80-120 | 0.995 | 20 | QM-05 |
| Xylene (o)                      | 0.0238  | 0.00104       | "                                     | 0.104 | ND | 22.9 | 80-120 | 8.95  | 20 | QM-05 |
| Surrogate: 1,4-Difluorobenzene  | 0.122   |               | "                                     | 0.125 |    | 97.6 | 80-120 |       |    |       |
| Surrogate: 4-Bromofluorobenzene | 0.109   |               | "                                     | 0.125 |    | 87.0 | 80-120 |       |    |       |

13000 West County Road 100Project Number:16187Odessa TX, 79765Project Manager:Blake Estep

# Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

| Prepared & Analyzed: 06:02/23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |        | Reporting |       | Spike      | Source      |          | %REC   |        | RPD   |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------|-----------|-------|------------|-------------|----------|--------|--------|-------|-------|
| Prepared & Analyzed: 06/02/23   Second Sec | Analyte                          | Result | Limit     | Units | Level      | Result      | %REC     | Limits | RPD    | Limit | Notes |
| CC-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Batch P3F0205 - TX 1005          |        |           |       |            |             |          |        |        |       |       |
| ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Blank (P3F0205-BLK1)             |        |           |       | Prepared & | z Analyzed: | 06/02/23 |        |        |       |       |
| Surrogate: I-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C6-C12                           | ND     | 25.0      | mg/kg |            |             |          |        |        |       |       |
| Surrogate: 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | >C12-C28                         | ND     | 25.0      | "     |            |             |          |        |        |       |       |
| Surrogate: 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | >C28-C35                         | ND     | 25.0      | "     |            |             |          |        |        |       |       |
| Coc.   1170   25.0 mg/kg   1000   117   75-125   1160   25.0 mg/kg   1000   116   75-125   1160   25.0 mg/kg   1000   116   75-125   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160   1160    | Surrogate: 1-Chlorooctane        | 91.4   |           | "     | 100        |             | 91.4     | 70-130 |        |       |       |
| C6-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Surrogate: o-Terphenyl           | 47.7   |           | "     | 50.0       |             | 95.4     | 70-130 |        |       |       |
| Color   Colo | LCS (P3F0205-BS1)                |        |           |       | Prepared & | analyzed:   | 06/02/23 |        |        |       |       |
| Surrogate: 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C6-C12                           | 1170   | 25.0      | mg/kg | 1000       |             | 117      | 75-125 |        |       |       |
| Surrogate: o-Terphenyl   49.2   "   50.0   98.4   70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | >C12-C28                         | 1160   | 25.0      | "     | 1000       |             | 116      | 75-125 |        |       |       |
| Prepared & Analyzed: 06/02/23   Surrogate: 1-Chlorooctane   108   100   114   75-125   2.59   20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Surrogate: 1-Chlorooctane        | 107    |           | "     | 100        |             | 107      | 70-130 |        |       |       |
| C6-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Surrogate: o-Terphenyl           | 49.2   |           | "     | 50.0       |             | 98.4     | 70-130 |        |       |       |
| C12-C28         1160         25.0         "         1000         116         75-125         0.0674         20           Surrogate: I-Chlorooctane         108         "         100         108         70-130           Surrogate: o-Terphenyl         50.2         "         50.0         100         70-130           Calibration Check (P3F0205-CCV1)         Prepared & Analyzed: 06/02/23           C6-C12         462         25.0         mg/kg         500         92.3         85-115           Surrogate: I-Chlorooctane         105         "         100         105         70-130           Surrogate: o-Terphenyl         47.3         "         50.0         94.5         70-130           Calibration Check (P3F0205-CCV2)         Prepared & Analyzed: 06/02/23           C6-C12         464         25.0         mg/kg         500         92.7         85-115           C12-C28         436         25.0         "         500         87.2         85-115           Surrogate: I-Chlorooctane         105         "         100         105         70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LCS Dup (P3F0205-BSD1)           |        |           |       | Prepared & | Analyzed:   | 06/02/23 |        |        |       |       |
| Surrogate: 1-Chlorooctane         108         " 100         108         70-130           Surrogate: o-Terphenyl         50.2         " 50.0         100         70-130           Calibration Check (P3F0205-CCV1)         Prepared & Analyzed: 06/02/23           C6-C12         462         25.0         mg/kg         500         92.3         85-115           >C12-C28         454         25.0         " 500         90.9         85-115           Surrogate: 1-Chlorooctane         105         " 100         105         70-130           Surrogate: o-Terphenyl         47.3         " 50.0         94.5         70-130           Calibration Check (P3F0205-CCV2)         Prepared & Analyzed: 06/02/23           C6-C12         464         25.0         mg/kg         500         92.7         85-115           >C12-C28         436         25.0         " 500         87.2         85-115           Surrogate: 1-Chlorooctane         105         " 500         87.2         85-115           Surrogate: 1-Chlorooctane         105         " 100         105         70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C6-C12                           | 1140   | 25.0      | mg/kg | 1000       |             | 114      | 75-125 | 2.59   | 20    |       |
| Calibration Check (P3F0205-CCV1)         Prepared & Analyzed: 06/02/23           C6-C12         462         25.0 mg/kg         500         92.3 85-115           >C12-C28         454         25.0 " 500         90.9 85-115           Surrogate: 1-Chlorooctane         105 " 100 105 70-130           Surrogate: o-Terphenyl         47.3 " 50.0 94.5 70-130           Calibration Check (P3F0205-CCV2)         Prepared & Analyzed: 06/02/23           C6-C12         464 25.0 mg/kg 500 92.7 85-115           >C12-C28         436 25.0 " 500 87.2 85-115           Surrogate: 1-Chlorooctane         105 " 100 105 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >C12-C28                         | 1160   | 25.0      | "     | 1000       |             | 116      | 75-125 | 0.0674 | 20    |       |
| Calibration Check (P3F0205-CCV1)         Prepared & Analyzed: 06/02/23           C6-C12         462         25.0 mg/kg         500         92.3 85-115           >C12-C28         454         25.0 " 500         90.9 85-115           Surrogate: 1-Chlorooctane         105 " 100 105 70-130           Surrogate: o-Terphenyl         47.3 " 50.0 94.5 70-130           Calibration Check (P3F0205-CCV2)         Prepared & Analyzed: 06/02/23           C6-C12         464 25.0 mg/kg 500 92.7 85-115           >C12-C28         436 25.0 " 500 87.2 85-115           Surrogate: 1-Chlorooctane         105 " 100 105 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Surrogate: 1-Chlorooctane        | 108    |           | "     | 100        |             | 108      | 70-130 |        |       |       |
| C6-C12       462       25.0       mg/kg       500       92.3       85-115         >C12-C28       454       25.0       "       500       90.9       85-115         Surrogate: 1-Chlorooctane       105       "       100       105       70-130         Surrogate: o-Terphenyl       47.3       "       50.0       94.5       70-130         Calibration Check (P3F0205-CCV2)       Prepared & Analyzed: 06/02/23         C6-C12       464       25.0       mg/kg       500       92.7       85-115         >C12-C28       436       25.0       "       500       87.2       85-115         Surrogate: 1-Chlorooctane       105       "       100       105       70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Surrogate: o-Terphenyl           | 50.2   |           | "     | 50.0       |             | 100      | 70-130 |        |       |       |
| C12-C28       454       25.0       " 500       90.9       85-115         Surrogate: I-Chlorooctane       105       " 100       105       70-130         Surrogate: o-Terphenyl       47.3       " 50.0       94.5       70-130         Calibration Check (P3F0205-CCV2)       Prepared & Analyzed: 06/02/23         C6-C12       464       25.0       mg/kg       500       92.7       85-115         >C12-C28       436       25.0       " 500       87.2       85-115         Surrogate: I-Chlorooctane       105       " 100       105       70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Calibration Check (P3F0205-CCV1) |        |           |       | Prepared & | Analyzed:   | 06/02/23 |        |        |       |       |
| Surrogate: 1-Chlorooctane     105     " 100     105     70-130       Surrogate: o-Terphenyl     47.3     " 50.0     94.5     70-130       Calibration Check (P3F0205-CCV2)     Prepared & Analyzed: 06/02/23       C6-C12     464     25.0     mg/kg     500     92.7     85-115       >C12-C28     436     25.0     " 500     87.2     85-115       Surrogate: 1-Chlorooctane     105     " 100     105     70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C6-C12                           | 462    | 25.0      | mg/kg | 500        |             | 92.3     | 85-115 |        |       |       |
| Surrogate: o-Terphenyl       47.3       " 50.0       94.5       70-130         Calibration Check (P3F0205-CCV2)       Prepared & Analyzed: 06/02/23         C6-C12       464       25.0       mg/kg       500       92.7       85-115         >C12-C28       436       25.0       " 500       87.2       85-115         Surrogate: 1-Chlorooctane       105       " 100       105       70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >C12-C28                         | 454    | 25.0      | "     | 500        |             | 90.9     | 85-115 |        |       |       |
| Calibration Check (P3F0205-CCV2)         Prepared & Analyzed: 06/02/23           C6-C12         464         25.0 mg/kg         500         92.7 85-115           >C12-C28         436         25.0 " 500         87.2 85-115           Surrogate: 1-Chlorooctane         105         " 100         105         70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Surrogate: 1-Chlorooctane        | 105    |           | "     | 100        |             | 105      | 70-130 |        |       |       |
| C6-C12     464     25.0 mg/kg     500     92.7 85-115       >C12-C28     436     25.0 " 500     87.2 85-115       Surrogate: 1-Chlorooctane     105     " 100     105 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Surrogate: o-Terphenyl           | 47.3   |           | "     | 50.0       |             | 94.5     | 70-130 |        |       |       |
| >C12-C28 436 25.0 " 500 87.2 85-115 Surrogate: 1-Chlorooctane 105 " 100 105 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Calibration Check (P3F0205-CCV2) |        |           |       | Prepared & | Analyzed:   | 06/02/23 |        |        |       |       |
| Surrogate: 1-Chlorooctane         105         "         100         105         70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C6-C12                           | 464    | 25.0      | mg/kg | 500        |             | 92.7     | 85-115 |        |       |       |
| Surrogate. 1-Cntorooctane 103 100 103 /0-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | >C12-C28                         | 436    | 25.0      | "     | 500        |             | 87.2     | 85-115 |        |       |       |
| Surrogate: o-Terphenyl 47.7 " 50.0 95.4 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Surrogate: 1-Chlorooctane        | 105    |           | "     | 100        |             | 105      | 70-130 |        |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Surrogate: o-Terphenyl           | 47.7   |           | "     | 50.0       |             | 95.4     | 70-130 |        |       |       |

Permian Basin Environmental Lab, L.P.

13000 West County Road 100Project Number:16187Odessa TX, 79765Project Manager:Blake Estep

# Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

|                                  |        | Reporting |       | Spike       | Source      | 0.0775      | %REC   |      | RPD   |       |
|----------------------------------|--------|-----------|-------|-------------|-------------|-------------|--------|------|-------|-------|
| Analyte                          | Result | Limit     | Units | Level       | Result      | %REC        | Limits | RPD  | Limit | Notes |
| Batch P3F0205 - TX 1005          |        |           |       |             |             |             |        |      |       |       |
| Calibration Check (P3F0205-CCV3) |        |           |       | Prepared: ( | 06/02/23 A1 | nalyzed: 06 | /03/23 |      |       |       |
| C6-C12                           | 471    | 25.0      | mg/kg | 500         |             | 94.1        | 85-115 |      |       |       |
| >C12-C28                         | 465    | 25.0      | "     | 500         |             | 93.0        | 85-115 |      |       |       |
| Surrogate: 1-Chlorooctane        | 106    |           | "     | 100         |             | 106         | 70-130 |      |       |       |
| Surrogate: o-Terphenyl           | 48.8   |           | "     | 50.0        |             | 97.7        | 70-130 |      |       |       |
| Batch P3F0405 - TX 1005          |        |           |       |             |             |             |        |      |       |       |
| Blank (P3F0405-BLK1)             |        |           |       | Prepared &  | Analyzed:   | 06/04/23    |        |      |       |       |
| C6-C12                           | ND     | 25.0      | mg/kg |             |             |             |        |      |       |       |
| >C12-C28                         | ND     | 25.0      | "     |             |             |             |        |      |       |       |
| >C28-C35                         | ND     | 25.0      | "     |             |             |             |        |      |       |       |
| Surrogate: 1-Chlorooctane        | 100    |           | "     | 100         |             | 100         | 70-130 |      |       |       |
| Surrogate: o-Terphenyl           | 51.3   |           | "     | 50.0        |             | 103         | 70-130 |      |       |       |
| LCS (P3F0405-BS1)                |        |           |       | Prepared &  | Analyzed:   | 06/04/23    |        |      |       |       |
| C6-C12                           | 1160   | 25.0      | mg/kg | 1000        |             | 116         | 75-125 |      |       |       |
| >C12-C28                         | 1190   | 25.0      | "     | 1000        |             | 119         | 75-125 |      |       |       |
| Surrogate: 1-Chlorooctane        | 115    |           | "     | 100         |             | 115         | 70-130 |      |       |       |
| Surrogate: o-Terphenyl           | 56.4   |           | "     | 50.0        |             | 113         | 70-130 |      |       |       |
| LCS Dup (P3F0405-BSD1)           |        |           |       | Prepared &  | Analyzed:   | 06/04/23    |        |      |       |       |
| C6-C12                           | 1210   | 25.0      | mg/kg | 1000        |             | 121         | 75-125 | 4.00 | 20    |       |
| >C12-C28                         | 1140   | 25.0      | "     | 1000        |             | 114         | 75-125 | 3.69 | 20    |       |
| Surrogate: 1-Chlorooctane        | 116    |           | "     | 100         |             | 116         | 70-130 |      |       |       |
| Surrogate: o-Terphenyl           | 62.2   |           | "     | 50.0        |             | 124         | 70-130 |      |       |       |
| Calibration Check (P3F0405-CCV1) |        |           |       | Prepared &  | Analyzed:   | 06/04/23    |        |      |       |       |
| C6-C12                           | 481    | 25.0      | mg/kg | 500         |             | 96.3        | 85-115 |      |       |       |
| >C12-C28                         | 456    | 25.0      | "     | 500         |             | 91.2        | 85-115 |      |       |       |
| Surrogate: 1-Chlorooctane        | 110    |           | "     | 100         |             | 110         | 70-130 |      |       |       |
| Surrogate: o-Terphenyl           | 49.4   |           | "     | 50.0        |             | 98.7        | 70-130 |      |       |       |

Permian Basin Environmental Lab, L.P.

Project: BSWU #3C TB Project Number: 16187

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

# Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

|                                  |        | Reporting     |           | Spike       | Source     |             | %REC    |      | RPD   |       |
|----------------------------------|--------|---------------|-----------|-------------|------------|-------------|---------|------|-------|-------|
| Analyte                          | Result | Limit         | Units     | Level       | Result     | %REC        | Limits  | RPD  | Limit | Notes |
| Batch P3F0405 - TX 1005          |        |               |           |             |            |             |         |      |       |       |
| Calibration Check (P3F0405-CCV2) |        |               |           | Prepared: ( | 06/04/23 A | nalyzed: 06 | 5/05/23 |      |       |       |
| C6-C12                           | 490    | 25.0          | mg/kg     | 500         |            | 98.0        | 85-115  |      |       |       |
| >C12-C28                         | 499    | 25.0          | "         | 500         |            | 99.8        | 85-115  |      |       |       |
| Surrogate: 1-Chlorooctane        | 109    |               | "         | 100         |            | 109         | 70-130  |      |       |       |
| Surrogate: o-Terphenyl           | 49.5   |               | "         | 50.0        |            | 99.1        | 70-130  |      |       |       |
| Calibration Check (P3F0405-CCV3) |        |               |           | Prepared: ( | 06/04/23 A | nalyzed: 06 | 5/05/23 |      |       |       |
| C6-C12                           | 511    | 25.0          | mg/kg     | 500         |            | 102         | 85-115  |      |       |       |
| >C12-C28                         | 494    | 25.0          | "         | 500         |            | 98.8        | 85-115  |      |       |       |
| Surrogate: 1-Chlorooctane        | 118    |               | "         | 100         |            | 118         | 70-130  |      |       |       |
| Surrogate: o-Terphenyl           | 53.6   |               | "         | 50.0        |            | 107         | 70-130  |      |       |       |
| Duplicate (P3F0405-DUP1)         | Sou    | rce: 3F02005- | 21        | Prepared: ( | 06/04/23 A | nalyzed: 06 | 5/05/23 |      |       |       |
| C6-C12                           | 15.6   | 27.8          | mg/kg dry |             | 11.3       |             |         | 32.1 | 20    | QR-03 |
| >C12-C28                         | 36.3   | 27.8          | "         |             | 45.2       |             |         | 21.6 | 20    | QR-03 |
| Surrogate: 1-Chlorooctane        | 125    |               | "         | 111         |            | 112         | 70-130  |      |       |       |
| Surrogate: o-Terphenyl           | 65.7   |               | "         | 55.6        |            | 118         | 70-130  |      |       |       |

Project: BSWU #3C TB

13000 West County Road 100 Odessa TX, 79765 Project Number: 16187 Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

| Analyte                              | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC                                    | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|--------------------------------------|--------|--------------------|-------|----------------|------------------|-----------------------------------------|----------------|------|--------------|-------|
| Batch P3F0504 - *** DEFAULT PREP *** | 100010 | Ziiiit             | - Cma | 20.01          | Trobait          | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 2              |      | 2            | 1,000 |
| Blank (P3F0504-BLK1)                 |        |                    |       | Prepared &     | A nolyzad.       | 06/05/22                                |                |      |              |       |
| % Moisture                           | ND     | 0.1                | %     | r repared &    | Anaryzeu:        | 00/03/23                                |                |      |              |       |
| 70 Holotaic                          | ND     | 0.1                | 70    |                |                  |                                         |                |      |              |       |
| Blank (P3F0504-BLK2)                 |        |                    |       | Prepared &     | Analyzed:        | 06/05/23                                |                |      |              |       |
| % Moisture                           | 1.0    | 0.1                | %     |                |                  |                                         |                |      |              |       |
| Duplicate (P3F0504-DUP1)             | Sou    | rce: 3F02002-      | 02    | Prepared &     | Analyzed:        | 06/05/23                                |                |      |              |       |
| % Moisture                           | 10.0   | 0.1                | %     |                | 10.0             |                                         |                | 0.00 | 20           |       |
| Duplicate (P3F0504-DUP2)             | Sou    | rce: 3F02005-      | 04    | Prepared &     | : Analyzed:      | 06/05/23                                |                |      |              |       |
| % Moisture                           | 5.0    | 0.1                | %     | -              | 6.0              |                                         |                | 18.2 | 20           |       |
| Duplicate (P3F0504-DUP3)             | Sou    | rce: 3F02005-      | 19    | Prepared &     | Analyzed:        | 06/05/23                                |                |      |              |       |
| % Moisture                           | 5.0    | 0.1                | %     |                | 5.0              |                                         |                | 0.00 | 20           |       |
| Duplicate (P3F0504-DUP4)             | Sou    | rce: 3F02006-      | 08    | Prepared &     | Analyzed:        | 06/05/23                                |                |      |              |       |
| % Moisture                           | 4.0    | 0.1                | %     |                | 3.0              |                                         |                | 28.6 | 20           | R.    |
| Batch P3F0709 - *** DEFAULT PREP *** |        |                    |       |                |                  |                                         |                |      |              |       |
| Blank (P3F0709-BLK1)                 |        |                    |       | Prepared: 0    | 06/07/23 A       | nalyzed: 06                             | 5/08/23        |      |              |       |
| Chloride                             | ND     | 1.00               | mg/kg | •              |                  | •                                       |                |      |              |       |
| LCS (P3F0709-BS1)                    |        |                    |       | Prepared: 0    | 06/07/23 A       | nalyzed: 06                             | 5/08/23        |      |              |       |
| Chloride                             | 20.0   |                    | mg/kg | 20.0           |                  | 99.8                                    | 90-110         |      |              |       |
| LCS Dup (P3F0709-BSD1)               |        |                    |       | Prepared: 0    | 06/07/23 A       | nalyzed: 06                             | 5/08/23        |      |              |       |
| Chloride                             | 19.8   |                    | mg/kg | 20.0           |                  | 98.8                                    | 90-110         | 1.06 | 10           |       |

Project: BSWU #3C TB Project Number: 16187

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

# General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

|                                      |        | Reporting                             |       | Spike       | Source               |               | %REC   |       | RPD   |       |
|--------------------------------------|--------|---------------------------------------|-------|-------------|----------------------|---------------|--------|-------|-------|-------|
| Analyte                              | Result | Limit                                 | Units | Level       | Result               | %REC          | Limits | RPD   | Limit | Notes |
| Batch P3F0709 - *** DEFAULT PREP *** |        |                                       |       |             |                      |               |        |       |       |       |
| Calibration Check (P3F0709-CCV1)     |        |                                       |       | Prepared: 0 | )6/07/23 A           | analyzed: 06/ | /08/23 |       |       |       |
| Chloride                             | 20.2   | · · · · · · · · · · · · · · · · · · · | mg/kg | 20.0        |                      | 101           | 90-110 |       |       |       |
| Calibration Check (P3F0709-CCV2)     |        |                                       |       | Prepared: 0 | )6/07/23 A           | nalyzed: 06   | /08/23 |       |       |       |
| Chloride                             | 19.7   |                                       | mg/kg | 20.0        |                      | 98.3          | 90-110 |       |       |       |
| Matrix Spike (P3F0709-MS1)           | Sourc  | ce: 3F06010-0                         | 03    | Prepared: 0 | ) <u>6/0</u> 7/23 Ai | analyzed: 06/ | /08/23 |       |       |       |
| Chloride                             | 145    | _ <del></del>                         | mg/kg | 100         | 32.6                 | 112           | 80-120 |       |       |       |
| Matrix Spike (P3F0709-MS2)           | Sourc  | ce: 3F07004-0                         | 05    | Prepared: 0 | )6/07/23 Ai          | analyzed: 06/ | /08/23 |       |       |       |
| Chloride                             | 160    |                                       | mg/kg | 100         | 51.9                 | 108           | 80-120 |       |       |       |
| Matrix Spike Dup (P3F0709-MSD1)      | Sourc  | ce: 3F06010-0                         | 03    | Prepared: 0 | )6/07/23 A           | analyzed: 06/ | /08/23 |       |       |       |
| Chloride                             | 144    |                                       | mg/kg | 100         | 32.6                 | 111           | 80-120 | 0.734 | 20    |       |
| Matrix Spike Dup (P3F0709-MSD2)      | Sourc  | ce: 3F07004-0                         | 05    | Prepared: 0 | )6/07/23 A           | analyzed: 06/ | /08/23 |       |       |       |
| Chloride                             | 159    |                                       | mg/kg | 100         | 51.9                 | 107           | 80-120 | 0.543 | 20    |       |
| Batch P3F0710 - *** DEFAULT PREP *** |        |                                       |       |             |                      |               |        |       |       |       |
| Blank (P3F0710-BLK1)                 |        |                                       |       | Prepared: 0 | )6/07/23 A           | analyzed: 06/ | /08/23 |       |       |       |
| Chloride                             | ND     | 1.00                                  | mg/kg |             |                      | -             |        |       |       |       |
| LCS (P3F0710-BS1)                    |        |                                       |       | Prepared: 0 | 16/07/23 A           | analyzed: 06/ | /09/23 |       |       |       |
| Chloride                             | 18.6   |                                       | mg/kg | 20.0        |                      | 92.9          | 90-110 |       |       |       |
|                                      |        |                                       |       |             |                      |               |        |       |       |       |
| LCS Dup (P3F0710-BSD1)               |        |                                       |       | Prepared: 0 | )6/07/23 A           | nalyzed: 06   | /09/23 |       |       |       |

13000 West County Road 100Project Number:16187Odessa TX, 79765Project Manager:Blake Estep

# General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

| Analyte                              | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|--------------------------------------|--------|--------------------|-------|----------------|------------------|-------------|----------------|-----|--------------|-------|
| Batch P3F0710 - *** DEFAULT PREP *** |        |                    |       |                |                  |             |                |     |              |       |
| Calibration Check (P3F0710-CCV1)     |        |                    |       | Prepared: 0    | 06/07/23 A       | nalyzed: 06 | /08/23         |     |              |       |
| Chloride                             | 20.4   |                    | mg/kg | 20.0           | 10/07/23 A       | 102         | 90-110         |     |              |       |
| Calibration Check (P3F0710-CCV2)     |        |                    |       | Prepared: 0    | 06/07/23 A       | nalyzed: 06 | /09/23         |     |              |       |
| Chloride                             | 19.2   |                    | mg/kg | 20.0           |                  | 95.8        | 90-110         |     |              |       |
| Calibration Check (P3F0710-CCV3)     |        |                    |       | Prepared: 0    | 06/07/23 A       | nalyzed: 06 | /08/23         |     |              |       |
| Chloride                             | 18.4   |                    | mg/kg | 20.0           |                  | 91.8        | 90-110         |     |              |       |

13000 West County Road 100Project Number:16187Odessa TX, 79765Project Manager:Blake Estep

#### **Notes and Definitions**

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

ROI Received on Ice

R3 The RPD exceeded the acceptance limit due to sample matrix effects.

QR-03 The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch

accepted based on LCS and/or LCSD recovery and/or RPD values.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were

within acceptance limits showing that the laboratory is in control and the data is acceptable.

NPBEL C( Chain of Custody was not generated at PBELAB

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By:

Date: 6/6/2024

Brent Barron, Laboratory Director/Technical Director

Permian Basin Environmental Lab, L.P.

13000 West County Road 100Project Number:16187Odessa TX, 79765Project Manager:Blake Estep

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

Sampler Signature: Mww.bull

email:

Brandon@etechenv.com

Report Format: STANDARD:□

TRRP:

NPDES:□

□Bill Etech

City/State/Zip:

Midland, Texas 7911

Company Address: P.O. Box 62228

| Company Name: Etech Environmental & Safety Solutions, Inc. | Project Manager: Blake Estep                   | PBBLAB Permian Basin Environmental Lab, LP 100 Rankin Rwy Midland Texas 79701 Phone: 432-636-7235 |
|------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Area:                                                      | Project #: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | CHAIN OF CUSTODY RECORD AND ANALYSIS I  Project Name: BSWU #8C TB                                 |
| PO#:                                                       | Project Loc:                                   | HBC TB                                                                                            |

| ælinquished by:          | Relinquished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | delinguished by:                                                            | special Instructions                                                   | 192          | 13           | 122          | 11                | 10)         | 9           | 9           | _          | 6           | SI.        | _          | 3            | <b>p</b>     | 4             | LAB#(lab use only)                                                                    |                                | RDER #.以下                 | ab use only) |              |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------|--------------|--------------|--------------|-------------------|-------------|-------------|-------------|------------|-------------|------------|------------|--------------|--------------|---------------|---------------------------------------------------------------------------------------|--------------------------------|---------------------------|--------------|--------------|
|                          | politikajaja kun terkumus un terkulika (perjatu kon pauroman) dipunitikajajaja jetu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 128                                                                         | ions: J                                                                | Buder hote a | Aught hole 1 | Pluce hole 1 | West Wall 3       | Mest Mail a | West Wall I | FOST Wall 3 | East wan a | Fast wall 1 | South Mail | Nov thwall | 30Hom Hole 3 | RoHom Hote 2 | BOHTOM HOLE 1 | FIELD CODE                                                                            |                                | (1 <u>a</u> (0)( <b>5</b> |              |              |
| Date                     | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6/1/23                                                                      | -<br>-                                                                 |              |              |              |                   |             |             |             |            |             |            |            |              |              |               | ···                                                                                   |                                |                           |              |              |
| Time                     | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1605                                                                        | 1                                                                      | _            |              |              |                   |             |             |             |            |             |            |            |              |              |               | Start Depth                                                                           |                                |                           |              |              |
| Recei                    | Recei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             | <b>)</b>                                                               | O            | 6            | þ            | يا                | بر          | تر          | زلا         | ير         | بد          | ب          | تحر        | 31/2         | 3 1/2        | 3%            | End Depth                                                                             | Pre                            |                           |              |              |
| Received by:             | Received by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CaC M                                                                       |                                                                        |              |              |              |                   |             |             |             |            |             |            |            |              |              | 5-31-23       | Date Sampled                                                                          | Preservation & # of Containers |                           |              |              |
|                          | The state of the s | 3                                                                           |                                                                        | 11331        | 1328         | 1325         | 11322             | 1320        | 1317        | 1330        | 1327       | 1325        | 1313       | 11315      | 1310         | 1305         | )ز            | Time Sampled                                                                          | f Containers                   |                           |              |              |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                        |              |              | _            |                   |             |             |             |            |             |            |            |              | 1            |               | No. of Containers                                                                     |                                |                           |              |              |
|                          | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                             |                                                                        | L            |              |              |                   |             |             |             | ] [        |             |            |            |              |              |               | lce                                                                                   |                                |                           |              |              |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                        | 片            |              |              |                   |             |             |             |            |             |            |            |              |              |               | HNO <sub>3</sub>                                                                      |                                |                           |              |              |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a v rypro a conse                                                           |                                                                        | 브            | L)           |              |                   |             |             |             | ᆜ          |             |            |            |              |              |               | HCI<br>H₂SO₄                                                                          |                                |                           |              |              |
|                          | an established                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9                                                                           |                                                                        | Ħ            | 甘            | 甘            | H                 | 甘           | Ħ           | Ħ           | Ħ          | 甘           | Ħ          | H          | Ħ            | 吉            | H             | NaOH                                                                                  |                                |                           |              |              |
|                          | Oran opposite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                                                                        |              |              |              |                   |             |             |             |            |             |            |            |              |              |               | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub>                                         |                                |                           |              |              |
| 2.00                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                           | 1                                                                      |              |              |              |                   |             |             |             |            |             |            |            |              |              |               | None                                                                                  |                                |                           |              |              |
| Date                     | Dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date                                                                        |                                                                        |              |              |              |                   |             |             |             |            |             |            |            |              |              |               | Other ( Specify)                                                                      |                                |                           |              |              |
|                          | e -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33<br>16-                                                                   | -                                                                      |              |              |              |                   |             |             |             |            |             |            |            |              |              |               | DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid NP=Non-PotableSpecify Other | Matrix                         |                           |              |              |
| lime                     | me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Q B                                                                         |                                                                        | P            | Ø            | Ø            | P                 | Ø           |             | Ø           | Ø          | Ø           | ⊿          | Ø          | Ø            | Ø            |               | TPH: 418.1 8015M 1005 10                                                              | 06                             |                           |              |              |
| <b>=</b>                 | တ္တ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 800                                                                         | <br> <br>                                                              |              |              |              |                   |             |             |             |            |             |            |            |              |              |               | Cations (Ca, Mg, Na, K)                                                               |                                |                           |              |              |
| ografie i                | ar by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | usto<br>usto<br>amp                                                         | amp<br>OCS                                                             |              |              |              |                   |             |             |             |            |             |            |            |              |              |               | Anions (Cl, SO4, CO3, HCO3)                                                           |                                | 101                       | 亅            |              |
| Fratt                    | Sa<br>Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E dy s                                                                      | rato<br>Free                                                           |              |              |              |                   |             |             |             |            |             |            |            |              |              |               | SAR / ESP / CEC                                                                       |                                | TOTAL:                    | TCLP:        | ĺ            |
| ē                        | mple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eals<br>eals<br>Ind [                                                       | e of a                                                                 |              |              |              |                   |             |             |             |            |             |            |            |              |              |               | Metals: As Ag Ba Cd Cr Pb Hg S                                                        | ie.                            |                           |              |              |
| lpon                     | ું<br>Qi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                             | om:<br>hers                                                            |              |              |              |                   |             |             |             |            |             |            |            |              |              |               | Volatiles                                                                             |                                |                           |              | Α            |
| Rec                      | Sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Custody seals on container Custody seals on cooler(s) Sample Hand Delivered | Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace: |              |              |              |                   |             |             |             |            |             |            |            |              |              |               | Semi volatiles                                                                        |                                |                           |              | naly         |
| Temperature Upon Receipt | Sar by Sampler/Client Rep. ?<br>Sar by Courier? UPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ainer<br>(s)                                                                | Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace? |              |              |              |                   |             |             | O           |            |             |            |            | Π'           | D            |               | BTEX 8021B/5030 or BTEX 826                                                           | 50                             |                           |              | Analyze For: |
| ष्ट                      | ₽"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (S                                                                          |                                                                        | П            | $\Box$       |              |                   |             |             |             |            |             |            |            |              |              | П             | RCI                                                                                   |                                |                           |              | 유            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                        |              |              |              |                   |             |             |             |            |             |            |            |              |              |               | N.O.R.M.                                                                              |                                |                           |              |              |
|                          | ₽<br>₽<br>₽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A STATE OF                                                                  | $\nearrow \swarrow$                                                    |              |              |              |                   |             |             |             |            |             |            |            |              |              |               | Chlorides                                                                             | _                              |                           | _            |              |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\swarrow$                                                                  | ~~_                                                                    | 민            | ] [          |              |                   |             |             | 믜           |            | ][          |            |            |              |              |               |                                                                                       | _                              |                           |              |              |
|                          | Lone SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                             |                                                                        |              |              |              | ] [               |             |             | 빌           |            | ] [         |            |            |              | ] [          |               | N 18 <u>2, 1880 II</u> Siiruneses (18                                                 | ار                             |                           |              |              |
| ರೆ                       | ∍Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ZZZ                                                                         | ZZ                                                                     |              |              |              |                   |             |             |             |            |             |            |            |              |              |               | RUSH TAT(Pre-Schedule) 24, 48                                                         | 3, 72                          | hrs                       |              |              |
| LC.                      | ) <del>5</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             |                                                                        |              |              |              | $\overline{\Box}$ |             |             |             |            |             |            |            | 4            |              |               | STANDARD TAT                                                                          |                                |                           |              | Ш            |

|          | HAIN                                        |
|----------|---------------------------------------------|
|          | N OF CUST                                   |
|          | CUSTODY RECORD.                             |
| -        | ORD ANI                                     |
| なな       | DANALI                                      |
| <b>)</b> | HAIN OF CUSTODY RECORD AND ANALYSIS REQUEST |
|          | UEST.                                       |
|          |                                             |

Page 38 of 41

ORDER #: (lab use only

| Company Name: Etech Environmental & Safety Solutions, Inc. | Project Manager: Blake Estep | 1.100 Raukin Hwy Midland Texas 79701 Phot | P 13 5, 174 1 15 Permian Basin Environmental Lab, LP |  |
|------------------------------------------------------------|------------------------------|-------------------------------------------|------------------------------------------------------|--|
|                                                            |                              | Phone: 132-686-7                          | <b>.</b>                                             |  |

City/State/Zip: P.O. Box 62228

Midland, Texas 7911

Company Name:

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

| Project #: 16187 | Project Name: BSW U |
|------------------|---------------------|
| Project Loc:     | # 30 78             |

Area:

PO#:

□Bill Etech

| Relinquished by:             | Rélinquished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Relinquished                                                                | Speciarins                                        |          |          |   |   |   |          | 7              | ည             | 2             | 9T            | 11            | 1(e           | ij.          | LAB#(lab.use only)                            |                                | )RDER#:  | lab use only) |              | Sampler Si                       |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------|----------|----------|---|---|---|----------|----------------|---------------|---------------|---------------|---------------|---------------|--------------|-----------------------------------------------|--------------------------------|----------|---------------|--------------|----------------------------------|
| d by:                        | described and respectively. The selected by the respective described by the control of the contr | 10 B                                                                        | THE HERE                                          |          |          |   |   |   |          | Physics have 5 | Phydry hole 5 | Prudey hate 4 | Prudév hose 4 | Pruder hore 3 | Phyoex hole 3 | Huger hole 2 | FIELD CODE                                    |                                |          |               |              | Sampler Signature: Maniana James |
| 1                            | IIITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3/13                                                                        |                                                   |          |          |   |   |   |          |                |               |               |               |               |               |              | Start Depth                                   |                                |          |               |              | email:                           |
| seceived by:                 | Selved by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ac M                                                                        |                                                   |          |          |   |   |   |          | <u>.</u>       | Õ             | Ē             | Q             | 6"            | 0             | 0 51.25      | Date Sampled                                  | Preservation & # of Containers |          |               |              | Brandon@etechenv.com             |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS                                                                          |                                                   |          |          |   |   |   |          | 1352           | 1349          | 1346          | 1343          | 1340          | 1337          | 1554         | Time Sampled                                  | f Containers                   |          |               |              | etechen                          |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                   |          |          |   |   |   |          | -              | _             | 1             |               |               |               |              | No. of Containers                             |                                |          |               |              | V. C                             |
|                              | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             |                                                   |          |          |   |   |   |          |                |               |               |               |               |               |              | lce                                           |                                |          |               |              | E                                |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                   |          |          |   |   |   |          |                |               |               |               |               |               |              | HNO₃                                          |                                |          |               |              |                                  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $U \vdash$                                                                  |                                                   |          |          |   |   | 旦 |          |                |               |               |               |               |               |              | HCI                                           |                                |          |               |              |                                  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                   |          | 目        | H |   |   |          |                |               |               |               |               | 目             | 惶            | H₂SO₄                                         |                                |          |               |              |                                  |
|                              | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1                                                                         | <b>\</b> .                                        | Ш        | 분        |   |   |   | <u> </u> |                |               |               |               |               |               |              | NaOH                                          |                                |          |               |              |                                  |
|                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                             | -                                                 |          | ᄪ        |   |   | Ц |          |                |               |               |               |               |               |              | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> | l                              |          |               |              |                                  |
| Ę                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             | ,                                                 | H        |          |   |   |   | 분        | ] [            |               |               |               |               |               |              | None                                          |                                |          |               |              | Rej                              |
| Late                         | ate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |                                                   |          | -        |   |   | Ш |          |                |               |               |               |               | Ш             |              | Other (Specify)  DW=Drinking Water SL=Sludge  | Н                              |          |               |              | on<br>T                          |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (C)                                                                         |                                                   |          | ŀ        |   |   |   |          |                |               |               |               |               |               |              | GW = Groundwater S=Soil/Solid                 | Matrix                         |          |               |              | orm.                             |
|                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u></u>                                                                     |                                                   | <u></u>  | _        |   |   |   |          |                | 4             |               | L,            | <u> </u>      | Ĺ,            | <u> </u>     | NP=Non-PotableSpecify Other                   | ×                              |          |               |              | a <del>r</del><br>S              |
| ā                            | ₹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                         |                                                   |          |          |   |   |   |          |                | ◩             | Z             | Ø             | Ø             | Ø             |              | TPH: 418.1 8015M 1005 10                      | 006                            |          |               |              | TAN                              |
| H.                           | တတ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 800                                                                         | < 0 F                                             |          |          |   |   |   |          |                |               |               |               |               |               |              | Cations (Ca, Mg, Na, K)                       |                                |          |               |              | teport Format: STANDARD:□        |
| due                          | ar by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | usto<br>usto                                                                | Sap 8                                             |          |          |   |   |   |          |                |               |               |               |               |               |              | Anions (Cl, SO4, CO3, HCO3)                   |                                | 7        | Į             |              |                                  |
| eratu                        | S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ह्यु<br>इ.स.च्यु                                                            | Fores                                             |          |          |   |   |   |          |                |               |               |               |               |               |              | SAR / ESP / CEC                               |                                | TOTAL    | TCLP:         |              |                                  |
| lle C                        | rier<br>Jrier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eals                                                                        | e of a                                            | <b>;</b> |          |   |   |   |          |                |               |               |               |               |               | П            | Metals: As Ag Ba Cd Cr Pb Hg S                | Se                             | <u>:</u> |               |              | TRRP:                            |
| Temperature Upon Receipt   🐧 | Sar by Sampler/Client Rep. ?<br>Sar by Courier? UPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Custody seals on container Custody seals on cooler(s) Sample Hand Delivered | Sample Containers Intact? VOCs Free of Headspace? |          |          |   |   |   |          |                |               |               |               |               |               |              | Volatiles                                     |                                |          |               |              | P                                |
| Rec                          | ⊊ă<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cook<br>ered                                                                | Inta<br>dspa                                      | 一        |          |   |   |   |          |                |               |               |               |               |               |              | Semi volatiles                                | $\dashv$                       |          |               | Analyze For: |                                  |
| eipt:                        | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ainer<br>er(s)                                                              | 6                                                 |          |          |   |   |   |          |                |               |               |               |               |               |              | BTEX 8021B/5030 or BTEX 826                   | 50                             |          |               | yze l        | <u> </u>                         |
| بو                           | 星"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>(</u>                                                                    |                                                   |          |          |   |   | П |          | П              | П             |               | П             | П             | П             |              | RCI                                           |                                |          |               | 흑            | NPDES:                           |
| ě                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                             |                                                   |          |          | Б |   |   |          | Ĭ              | ō             |               |               |               | Б             |              | N.O.R.M.                                      |                                |          |               |              | S:<br>□                          |
| 1467<br>8748                 | <b>F</b> _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                             | -                                                 |          |          |   |   |   |          |                |               |               |               |               |               |              | Chlorides                                     |                                |          |               |              |                                  |
|                              | <b>♥</b> ≺                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>≺</b> ≺≺                                                                 | <b>≺</b> ⊀ ]                                      | <u>D</u> |          |   |   |   |          |                |               |               |               |               |               |              |                                               |                                |          |               |              | •                                |
|                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                             |                                                   |          |          |   |   |   |          |                |               |               |               |               |               |              | vija kovo kovo sasani osni                    |                                |          |               |              |                                  |
| ဂိ                           | าe Star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | zzz                                                                         | ZZ                                                |          |          |   |   |   |          |                | 旦             |               |               |               |               |              | RUSH TAT(Pre-Schedule) 24, 4                  | 3, 72                          | hrs      |               | .            |                                  |
| 3                            | <b>"</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                             |                                                   | Б        | <u>.</u> |   | П |   | П        | П              | П             |               | П             |               | Π.            | <del>Г</del> | STANDARD TAT                                  |                                |          |               |              |                                  |

Released to Imaging: 8/1/2024 2:09:18 PM

Brent Barron <a href="mailto:brentbarron@pbelab.com">brentbarron@pbelab.com</a>

# RE: Report for BSWU #3C TB

#### Blake Estep <black>blake@etechenv.com>

Mon, Jun 5, 2023 at 4:02 PM

Hey Brent,

Can we go ahead and get these sampled for BTEX (8021B) & chlorides as well?

Sorry about that they should have been on the COC.

Thank you,

Blake Estep

Etech Environmental & Safety Solutions, Inc.

P.O. Box 62228

Midland, Texas 79711

Phone: 432-563-2200

Mobile: 432-894-6038

Fax: 432-563-2213



DOC #: PBEL\_REV\_SUBMISSION

REVISION #: PBEL\_2021\_1 REVISION Date: 10/29/2021

EFFECTIVE DATE: 10/29/2021

# REVISION/SUBMISSION FORM

Please fill in the required fields below with any requested revisions. In the event that there are multiple workorders or projects to be amended each workorder or project MUST have a separate form filled out entirely. An amended COC must be submitted in addition to the Revision/Submission Form in order for the amendments to be processed. Amended COC's do not replace the requirement of this form. If a revision is required due to errors or omissions on our part this form is still required for the necessary Non-Conformance documentation. Rerun requests will incur additional charges.

Client: eTech Environmental

Project: 3F02005

# Revision Request:

Please revise the depths of Bottom Holes 1-3 to indicate

30".

Submitted by (Name and Date): Blake Estep 06/06/2024

PBEL\_REV\_SUBMISSION\_2021\_1.DOC

Page 1 of 1

# PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701



# Analytical Report Rev. 1

# **Prepared for:**

Blake Estep
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: BSWU #3 CTB
Project Number: 16187
Location:

Lab Order Number: 3K21010



**Current Certification** 

Report Date: 06/06/24

13000 West County Road 100 Odessa TX, 79765 Project: BSWU #3 CTB

Project Number: 16187 Project Manager: Blake Estep

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID                 | Laboratory ID | Matrix | Date Sampled   | Date Received    |
|---------------------------|---------------|--------|----------------|------------------|
| Auger Hole - 6 @ 1'       | 3K21010-01    | Soil   | 11/20/23 12:00 | 11-21-2023 11:19 |
| Auger Hole - 6 @ 2'       | 3K21010-02    | Soil   | 11/20/23 12:02 | 11-21-2023 11:19 |
| Auger Hole - 6 @ 3'       | 3K21010-03    | Soil   | 11/20/23 12:04 | 11-21-2023 11:19 |
| Auger Hole - 6 @ 4'       | 3K21010-04    | Soil   | 11/20/23 12:06 | 11-21-2023 11:19 |
| Auger Hole - 7 @ 1'       | 3K21010-05    | Soil   | 11/20/23 12:08 | 11-21-2023 11:19 |
| Auger Hole - 7 @ 2'       | 3K21010-06    | Soil   | 11/20/23 12:10 | 11-21-2023 11:19 |
| Auger Hole - 7 @ 3'       | 3K21010-07    | Soil   | 11/20/23 12:12 | 11-21-2023 11:19 |
| Auger Hole - 7 @ 4'       | 3K21010-08    | Soil   | 11/20/23 12:14 | 11-21-2023 11:19 |
| Auger Hole - 8 @ 1'       | 3K21010-09    | Soil   | 11/20/23 12:16 | 11-21-2023 11:19 |
| Auger Hole - 8 @ 2'       | 3K21010-10    | Soil   | 11/20/23 12:18 | 11-21-2023 11:19 |
| Auger Hole - 8 @ 3'       | 3K21010-11    | Soil   | 11/20/23 12:20 | 11-21-2023 11:19 |
| Auger Hole - 8 @ 4'       | 3K21010-12    | Soil   | 11/20/23 12:22 | 11-21-2023 11:19 |
| Bottom Hole - 1 @ 3'      | 3K21010-13    | Soil   | 11/20/23 12:24 | 11-21-2023 11:19 |
| Bottom Hole - 2 @ 3'      | 3K21010-14    | Soil   | 11/20/23 12:26 | 11-21-2023 11:19 |
| Bottom Hole - 3 @ 3'      | 3K21010-15    | Soil   | 11/20/23 12:28 | 11-21-2023 11:19 |
| North Sidewall # 1 @ 0-2' | 3K21010-16    | Soil   | 11/20/23 12:30 | 11-21-2023 11:19 |
| South Sidewall # 1 @ 0-2' | 3K21010-17    | Soil   | 11/20/23 12:32 | 11-21-2023 11:19 |
| East Sidewall # 1 @ 0-2'  | 3K21010-18    | Soil   | 11/20/23 12:34 | 11-21-2023 11:19 |
| East Sidewall # 2 @ 0-2'  | 3K21010-19    | Soil   | 11/20/23 12:36 | 11-21-2023 11:19 |
| East Sidewall # 3 @ 0-2'  | 3K21010-20    | Soil   | 11/20/23 12:38 | 11-21-2023 11:19 |

13000 West County Road 100 Odessa TX, 79765 Project: BSWU #3 CTB

Project Number: 16187 Project Manager: Blake Estep

# Auger Hole - 6 @ 1' 3K21010-01 (Soil)

|                                       | Lim         | it Repo  | rting     |           |             |                |                |            |      |
|---------------------------------------|-------------|----------|-----------|-----------|-------------|----------------|----------------|------------|------|
| Analyte                               | Result      |          | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Note |
|                                       |             | P        | ermian B  | asin Envi | ronmental L | ab, L.P.       |                |            |      |
| BTEX by 8021B                         |             |          |           |           |             |                |                |            |      |
| Benzene                               | ND          | 0.00109  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/21/23 23:06 | EPA 8021B  |      |
| Toluene                               | ND          | 0.00109  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/21/23 23:06 | EPA 8021B  |      |
| Ethylbenzene                          | ND          | 0.00109  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/21/23 23:06 | EPA 8021B  |      |
| Xylene (p/m)                          | ND          | 0.00217  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/21/23 23:06 | EPA 8021B  |      |
| Xylene (o)                            | ND          | 0.00109  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/21/23 23:06 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene       |             | 112 %    | 80-120    |           | P3K2109     | 11/21/23 14:20 | 11/21/23 23:06 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene        | 9           | 98.2 %   | 80-120    |           | P3K2109     | 11/21/23 14:20 | 11/21/23 23:06 | EPA 8021B  |      |
| Total Petroleum Hydrocarbons C6-      | C35 by EPA  | Method   | 8015M     |           |             |                |                |            |      |
| C6-C12                                | ND          | 27.2     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| >C12-C28                              | 29.4        | 27.2     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| >C28-C35                              | ND          | 27.2     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane             |             | 77.2 %   | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Surrogate: o-Terphenyl                | d           | 89.9 %   | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon<br>C6-C35 | 29.4        | 27.2     | mg/kg dry | 1         | [CALC]      | 11/21/23 15:35 | 11/22/23 17:00 | calc       |      |
| General Chemistry Parameters by 1     | EPA / Stand | ard Metl | hods      |           |             |                |                |            |      |
| Chloride                              | 88.0        | 1.09     | mg/kg dry | 1         | P3K2211     | 11/24/23 14:10 | 11/29/23 21:14 | EPA 300.0  |      |
| % Moisture                            | 8.0         | 0.1      | %         | 1         | P3K2210     | 11/22/23 10:02 | 11/22/23 10:08 | ASTM D2216 |      |

13000 West County Road 100 Odessa TX, 79765 Project: BSWU #3 CTB

Project Number: 16187 Project Manager: Blake Estep

# Auger Hole - 6 @ 2' 3K21010-02 (Soil)

| Analyte                               | Limi         | Repor    | •         |           | -           |                |                | M.d. 1     | <b>NT</b> : |
|---------------------------------------|--------------|----------|-----------|-----------|-------------|----------------|----------------|------------|-------------|
| Analyte                               | Result       |          | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Note        |
|                                       |              | Po       | ermian B  | asin Envi | ronmental L | ab, L.P.       |                |            |             |
| BTEX by 8021B                         |              |          |           |           |             |                |                |            |             |
| Benzene                               | ND           | 0.00106  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/21/23 23:31 | EPA 8021B  |             |
| Toluene                               | ND           | 0.00106  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/21/23 23:31 | EPA 8021B  |             |
| Ethylbenzene                          | ND           | 0.00106  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/21/23 23:31 | EPA 8021B  |             |
| Xylene (p/m)                          | ND           | 0.00213  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/21/23 23:31 | EPA 8021B  |             |
| Xylene (o)                            | ND           | 0.00106  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/21/23 23:31 | EPA 8021B  |             |
| Surrogate: 1,4-Difluorobenzene        | 9            | 8.5 %    | 80-120    |           | P3K2109     | 11/21/23 14:20 | 11/21/23 23:31 | EPA 8021B  |             |
| Surrogate: 4-Bromofluorobenzene       |              | 113 %    | 80-120    |           | P3K2109     | 11/21/23 14:20 | 11/21/23 23:31 | EPA 8021B  |             |
| Total Petroleum Hydrocarbons C6       | -C35 by EPA  | Method   | 8015M     |           |             |                |                |            |             |
| C6-C12                                | ND           | 26.6     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |             |
| >C12-C28                              | ND           | 26.6     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |             |
| >C28-C35                              | ND           | 26.6     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |             |
| Surrogate: 1-Chlorooctane             | 8            | 9.2 %    | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |             |
| Surrogate: o-Terphenyl                |              | 104 %    | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |             |
| Total Petroleum Hydrocarbon<br>C6-C35 | ND           | 26.6     | mg/kg dry | 1         | [CALC]      | 11/21/23 15:35 | 11/22/23 17:00 | calc       |             |
| General Chemistry Parameters by       | EPA / Standa | ard Metl | nods      |           |             |                |                |            |             |
| Chloride                              | 189          | 1.06     | mg/kg dry | 1         | P3K2211     | 11/24/23 14:10 | 11/29/23 21:29 | EPA 300.0  |             |
| % Moisture                            | 6.0          | 0.1      | %         | 1         | P3K2210     | 11/22/23 10:02 | 11/22/23 10:08 | ASTM D2216 |             |

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: BSWU #3 CTB

Project Number: 16187 Project Manager: Blake Estep

# Auger Hole - 6 @ 3' 3K21010-03 (Soil)

| Amalarta                              | Limit        | t Repor  | _         |           |             |                |                |            |      |
|---------------------------------------|--------------|----------|-----------|-----------|-------------|----------------|----------------|------------|------|
| Analyte                               | Result       |          | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Note |
|                                       |              | Po       | ermian B  | asin Envi | ronmental L | ab, L.P.       |                |            |      |
| BTEX by 8021B                         |              |          |           |           |             |                |                |            |      |
| Benzene                               | ND (         | 0.00105  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/21/23 23:55 | EPA 8021B  |      |
| Toluene                               | ND (         | 0.00105  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/21/23 23:55 | EPA 8021B  |      |
| Ethylbenzene                          | ND (         | 0.00105  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/21/23 23:55 | EPA 8021B  |      |
| Xylene (p/m)                          | ND           | 0.00211  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/21/23 23:55 | EPA 8021B  |      |
| Xylene (o)                            | ND (         | 0.00105  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/21/23 23:55 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene        | 9            | 8.6 %    | 80-120    |           | P3K2109     | 11/21/23 14:20 | 11/21/23 23:55 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene       |              | 112 %    | 80-120    |           | P3K2109     | 11/21/23 14:20 | 11/21/23 23:55 | EPA 8021B  |      |
| Total Petroleum Hydrocarbons C6       | -C35 by EPA  | Method   | 8015M     |           |             |                |                |            |      |
| C6-C12                                | ND           | 26.3     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| >C12-C28                              | ND           | 26.3     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| >C28-C35                              | ND           | 26.3     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane             | 9            | 1.1 %    | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Surrogate: o-Terphenyl                |              | 105 %    | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon<br>C6-C35 | ND           | 26.3     | mg/kg dry | 1         | [CALC]      | 11/21/23 15:35 | 11/22/23 17:00 | calc       |      |
| General Chemistry Parameters by       | EPA / Standa | ard Metl | hods      |           |             |                |                |            |      |
| Chloride                              | 155          | 1.05     | mg/kg dry | 1         | P3K2211     | 11/24/23 14:10 | 11/29/23 21:43 | EPA 300.0  |      |
| % Moisture                            | 5.0          | 0.1      | %         | 1         | P3K2210     | 11/22/23 10:02 | 11/22/23 10:08 | ASTM D2216 |      |

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: BSWU #3 CTB

Project Number: 16187 Project Manager: Blake Estep

# Auger Hole - 6 @ 4' 3K21010-04 (Soil)

|                                       | Lim         | Limit Reporting |           |           |             |                |                |            |      |
|---------------------------------------|-------------|-----------------|-----------|-----------|-------------|----------------|----------------|------------|------|
| Analyte                               | Result      |                 | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Note |
|                                       |             | P               | ermian B  | asin Envi | ronmental L | ab, L.P.       |                |            |      |
| BTEX by 8021B                         |             |                 |           |           |             |                |                |            |      |
| Benzene                               | ND          | 0.00108         | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 00:19 | EPA 8021B  |      |
| Toluene                               | ND          | 0.00108         | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 00:19 | EPA 8021B  |      |
| Ethylbenzene                          | ND          | 0.00108         | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 00:19 | EPA 8021B  |      |
| Xylene (p/m)                          | ND          | 0.00215         | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 00:19 | EPA 8021B  |      |
| Xylene (o)                            | ND          | 0.00108         | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 00:19 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene        | g           | 98.5 %          | 80-120    |           | P3K2109     | 11/21/23 14:20 | 11/22/23 00:19 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene       |             | 112 %           | 80-120    |           | P3K2109     | 11/21/23 14:20 | 11/22/23 00:19 | EPA 8021B  |      |
| Total Petroleum Hydrocarbons C6       | -C35 by EPA | Method          | 8015M     |           |             |                |                |            |      |
| C6-C12                                | ND          | 26.9            | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| >C12-C28                              | ND          | 26.9            | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| >C28-C35                              | ND          | 26.9            | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane             | Č           | 88.2 %          | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Surrogate: o-Terphenyl                |             | 103 %           | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon<br>C6-C35 | ND          | 26.9            | mg/kg dry | 1         | [CALC]      | 11/21/23 15:35 | 11/22/23 17:00 | calc       |      |
| General Chemistry Parameters by       | EPA / Stand | ard Metl        | hods      |           |             |                |                |            |      |
| Chloride                              | 160         | 1.08            | mg/kg dry | 1         | P3K2211     | 11/24/23 14:10 | 11/29/23 21:57 | EPA 300.0  |      |
| % Moisture                            | 7.0         | 0.1             | %         | 1         | P3K2210     | 11/22/23 10:02 | 11/22/23 10:08 | ASTM D2216 |      |

13000 West County Road 100 Odessa TX, 79765 Project: BSWU #3 CTB

Project Number: 16187 Project Manager: Blake Estep

# Auger Hole - 7 @ 1' 3K21010-05 (Soil)

|                                       | Limi         | t Repo   | rtino     |           |             |                |                |            |      |
|---------------------------------------|--------------|----------|-----------|-----------|-------------|----------------|----------------|------------|------|
| Analyte                               | Result       | и керо   | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Note |
|                                       |              | P        | ermian B  | asin Envi | ronmental I | ab, L.P.       |                |            |      |
| BTEX by 8021B                         |              |          |           |           |             |                |                |            |      |
| Benzene                               | ND           | 0.00106  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 00:44 | EPA 8021B  |      |
| Toluene                               | ND           | 0.00106  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 00:44 | EPA 8021B  |      |
| Ethylbenzene                          | ND           | 0.00106  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 00:44 | EPA 8021B  |      |
| Xylene (p/m)                          | ND           | 0.00213  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 00:44 | EPA 8021B  |      |
| Xylene (o)                            | ND           | 0.00106  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 00:44 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene        |              | 101 %    | 80-120    |           | P3K2109     | 11/21/23 14:20 | 11/22/23 00:44 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene       |              | 109 %    | 80-120    |           | P3K2109     | 11/21/23 14:20 | 11/22/23 00:44 | EPA 8021B  |      |
| Total Petroleum Hydrocarbons C6-      | C35 by EPA   | Method   | 8015M     |           |             |                |                |            |      |
| C6-C12                                | ND           | 133      | mg/kg dry | 5         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| >C12-C28                              | 935          | 133      | mg/kg dry | 5         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| >C28-C35                              | 171          | 133      | mg/kg dry | 5         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane             | 7            | 78.1 %   | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Surrogate: o-Terphenyl                | g            | 94.6 %   | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon<br>C6-C35 | 1110         | 133      | mg/kg dry | 5         | [CALC]      | 11/21/23 15:35 | 11/22/23 17:00 | calc       |      |
| General Chemistry Parameters by 1     | EPA / Stand: | ard Metl | hods      |           |             |                |                |            |      |
| Chloride                              | 14.4         | 1.06     | mg/kg dry | 1         | P3K2211     | 11/24/23 14:10 | 11/29/23 22:12 | EPA 300.0  |      |
| % Moisture                            | 6.0          | 0.1      | %         | 1         | P3K2210     | 11/22/23 10:02 | 11/22/23 10:08 | ASTM D2216 |      |

13000 West County Road 100 Odessa TX, 79765 Project: BSWU #3 CTB

Project Number: 16187 Project Manager: Blake Estep

# Auger Hole - 7 @ 2' 3K21010-06 (Soil)

|                                       | Limi         | t Repo   | rting     |           |             |                |                |            |      |
|---------------------------------------|--------------|----------|-----------|-----------|-------------|----------------|----------------|------------|------|
| Analyte                               | Result       | 1        | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Note |
|                                       |              | P        | ermian B  | asin Envi | ronmental L | ab, L.P.       |                |            |      |
| BTEX by 8021B                         |              |          |           |           |             |                |                |            |      |
| Benzene                               | ND           | 0.00108  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 01:08 | EPA 8021B  |      |
| Toluene                               | ND           | 0.00108  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 01:08 | EPA 8021B  |      |
| Ethylbenzene                          | ND           | 0.00108  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 01:08 | EPA 8021B  |      |
| Xylene (p/m)                          | ND           | 0.00215  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 01:08 | EPA 8021B  |      |
| Xylene (o)                            | ND           | 0.00108  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 01:08 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene       |              | 112 %    | 80-120    |           | P3K2109     | 11/21/23 14:20 | 11/22/23 01:08 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene        | 9            | 9.3 %    | 80-120    |           | P3K2109     | 11/21/23 14:20 | 11/22/23 01:08 | EPA 8021B  |      |
| Total Petroleum Hydrocarbons C6-      | C35 by EPA   | Method   | 8015M     |           |             |                |                |            |      |
| C6-C12                                | ND           | 26.9     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| >C12-C28                              | 352          | 26.9     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| >C28-C35                              | 75.6         | 26.9     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane             | 7            | 75.9 %   | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Surrogate: o-Terphenyl                | 9            | 5.5 %    | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon<br>C6-C35 | 428          | 26.9     | mg/kg dry | 1         | [CALC]      | 11/21/23 15:35 | 11/22/23 17:00 | calc       |      |
| General Chemistry Parameters by 1     | EPA / Standa | ard Metl | hods      |           |             |                |                |            |      |
| Chloride                              | 37.9         | 1.08     | mg/kg dry | 1         | P3K2211     | 11/24/23 14:10 | 11/29/23 22:26 | EPA 300.0  |      |
| % Moisture                            | 7.0          | 0.1      | %         | 1         | P3K2210     | 11/22/23 10:02 | 11/22/23 10:08 | ASTM D2216 |      |

13000 West County Road 100 Odessa TX, 79765 Project: BSWU #3 CTB

Project Number: 16187 Project Manager: Blake Estep

> Auger Hole - 7 @ 3' 3K21010-07 (Soil)

|                                       | Limit        | t Repo  | rting     |           |             |                |                |            |      |
|---------------------------------------|--------------|---------|-----------|-----------|-------------|----------------|----------------|------------|------|
| Analyte                               | Result       |         | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Note |
|                                       |              | P       | ermian B  | asin Envi | ronmental L | Lab, L.P.      |                |            |      |
| BTEX by 8021B                         |              |         |           |           |             |                |                |            |      |
| Benzene                               | ND (         | 0.00104 | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 01:32 | EPA 8021B  |      |
| Toluene                               | ND (         | 0.00104 | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 01:32 | EPA 8021B  |      |
| Ethylbenzene                          | ND (         | 0.00104 | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 01:32 | EPA 8021B  |      |
| Xylene (p/m)                          | ND (         | 0.00208 | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 01:32 | EPA 8021B  |      |
| Xylene (o)                            | ND (         | 0.00104 | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 01:32 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene        | 9            | 8.9 %   | 80-120    |           | P3K2109     | 11/21/23 14:20 | 11/22/23 01:32 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene       |              | 114 %   | 80-120    |           | P3K2109     | 11/21/23 14:20 | 11/22/23 01:32 | EPA 8021B  |      |
| Total Petroleum Hydrocarbons C6-      | C35 by EPA   | Method  | l 8015M   |           |             |                |                |            |      |
| C6-C12                                | ND           | 26.0    | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| >C12-C28                              | 38.5         | 26.0    | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| >C28-C35                              | ND           | 26.0    | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane             | 7            | 7.2 %   | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Surrogate: o-Terphenyl                | 9            | 8.0 %   | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon<br>C6-C35 | 38.5         | 26.0    | mg/kg dry | 1         | [CALC]      | 11/21/23 15:35 | 11/22/23 17:00 | calc       |      |
| General Chemistry Parameters by       | EPA / Standa | ard Met | hods      |           |             |                |                |            |      |
| Chloride                              | 53.3         | 1.04    | mg/kg dry | 1         | P3K2211     | 11/24/23 14:10 | 11/29/23 22:40 | EPA 300.0  |      |
| % Moisture                            | 4.0          | 0.1     | %         | 1         | P3K2210     | 11/22/23 10:02 | 11/22/23 10:08 | ASTM D2216 |      |

13000 West County Road 100 Odessa TX, 79765 Project: BSWU #3 CTB

Project Number: 16187 Project Manager: Blake Estep

### Auger Hole - 7 @ 4' 3K21010-08 (Soil)

|                                       | Lim         | it Repo  | •         |           |             |                |                |            |      |
|---------------------------------------|-------------|----------|-----------|-----------|-------------|----------------|----------------|------------|------|
| Analyte                               | Result      |          | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Note |
|                                       |             | P        | ermian B  | asin Envi | ronmental L | ab, L.P.       |                |            |      |
| BTEX by 8021B                         |             |          |           |           |             |                |                |            |      |
| Benzene                               | ND          | 0.00104  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 01:57 | EPA 8021B  |      |
| Toluene                               | ND          | 0.00104  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 01:57 | EPA 8021B  |      |
| Ethylbenzene                          | ND          | 0.00104  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 01:57 | EPA 8021B  |      |
| Xylene (p/m)                          | ND          | 0.00208  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 01:57 | EPA 8021B  |      |
| Xylene (o)                            | ND          | 0.00104  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 01:57 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene       |             | 113 %    | 80-120    |           | P3K2109     | 11/21/23 14:20 | 11/22/23 01:57 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene        | 9           | 98.8 %   | 80-120    |           | P3K2109     | 11/21/23 14:20 | 11/22/23 01:57 | EPA 8021B  |      |
| Total Petroleum Hydrocarbons C6-      | C35 by EPA  | Method   | 8015M     |           |             |                |                |            |      |
| C6-C12                                | ND          | 26.0     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| >C12-C28                              | 107         | 26.0     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| >C28-C35                              | ND          | 26.0     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane             |             | 78.6 %   | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Surrogate: o-Terphenyl                | 9           | 98.5 %   | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon<br>C6-C35 | 107         | 26.0     | mg/kg dry | 1         | [CALC]      | 11/21/23 15:35 | 11/22/23 17:00 | calc       |      |
| General Chemistry Parameters by       | EPA / Stand | ard Metl | hods      |           |             |                |                |            |      |
| Chloride                              | 43.5        | 1.04     | mg/kg dry | 1         | P3K2211     | 11/24/23 14:10 | 11/29/23 23:23 | EPA 300.0  |      |
| % Moisture                            | 4.0         | 0.1      | %         | 1         | P3K2210     | 11/22/23 10:02 | 11/22/23 10:08 | ASTM D2216 |      |

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: BSWU #3 CTB

Project Number: 16187 Project Manager: Blake Estep

### Auger Hole - 8 @ 1' 3K21010-09 (Soil)

| A                                      | Limi         | it Repo  |           |           |             |                |                |            |       |
|----------------------------------------|--------------|----------|-----------|-----------|-------------|----------------|----------------|------------|-------|
| Analyte                                | Result       |          | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Notes |
|                                        |              | P        | ermian B  | asin Envi | ronmental L | ab, L.P.       |                |            |       |
| BTEX by 8021B                          |              |          |           |           |             |                |                |            |       |
| Benzene                                | ND           | 0.00108  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 02:21 | EPA 8021B  |       |
| Toluene                                | ND           | 0.00108  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 02:21 | EPA 8021B  |       |
| Ethylbenzene                           | ND           | 0.00108  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 02:21 | EPA 8021B  |       |
| Xylene (p/m)                           | ND           | 0.00215  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 02:21 | EPA 8021B  |       |
| Xylene (o)                             | ND           | 0.00108  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 02:21 | EPA 8021B  |       |
| Surrogate: 1,4-Difluorobenzene         | g            | 98.8 %   | 80-120    |           | P3K2109     | 11/21/23 14:20 | 11/22/23 02:21 | EPA 8021B  |       |
| Surrogate: 4-Bromofluorobenzene        |              | 114 %    | 80-120    |           | P3K2109     | 11/21/23 14:20 | 11/22/23 02:21 | EPA 8021B  |       |
| Total Petroleum Hydrocarbons C6        | 5-C35 by EPA | Method   | 8015M     |           |             |                |                |            |       |
| C6-C12                                 | ND           | 26.9     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |       |
| >C12-C28                               | ND           | 26.9     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |       |
| >C28-C35                               | ND           | 26.9     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |       |
| Surrogate: 1-Chlorooctane              | (            | 52.3 %   | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  | S-GC  |
| Surrogate: o-Terphenyl                 | ;            | 75.5 %   | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |       |
| Total Petroleum Hydrocarbon            | ND           | 26.9     | mg/kg dry | 1         | [CALC]      | 11/21/23 15:35 | 11/22/23 17:00 | calc       |       |
| C6-C35                                 |              |          |           |           |             |                |                |            |       |
| <b>General Chemistry Parameters by</b> | EPA / Stand  | ard Metl | hods      |           |             |                |                |            |       |
| Chloride                               | 39.2         | 1.08     | mg/kg dry | 1         | P3K2211     | 11/24/23 14:10 | 11/29/23 23:37 | EPA 300.0  |       |
| % Moisture                             | 7.0          | 0.1      | %         | 1         | P3K2210     | 11/22/23 10:02 | 11/22/23 10:08 | ASTM D2216 |       |

13000 West County Road 100 Odessa TX, 79765 Project: BSWU #3 CTB

Project Number: 16187 Project Manager: Blake Estep

### Auger Hole - 8 @ 2' 3K21010-10 (Soil)

| Analyte                         | Limi        | it Repo  | ·         | D.11 - 11 | D. C.       | D '            | A mc 1 J       | Method     | NT-4  |
|---------------------------------|-------------|----------|-----------|-----------|-------------|----------------|----------------|------------|-------|
| 711111710                       | Result      |          | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Notes |
|                                 |             | P        | ermian B  | asin Envi | ronmental L | ab, L.P.       |                |            |       |
| BTEX by 8021B                   |             |          |           |           |             |                |                |            |       |
| Benzene                         | ND          | 0.00109  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 02:45 | EPA 8021B  |       |
| Toluene                         | ND          | 0.00109  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 02:45 | EPA 8021B  |       |
| Ethylbenzene                    | ND          | 0.00109  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 02:45 | EPA 8021B  |       |
| Xylene (p/m)                    | ND          | 0.00217  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 02:45 | EPA 8021B  |       |
| Xylene (o)                      | ND          | 0.00109  | mg/kg dry | 1         | P3K2109     | 11/21/23 14:20 | 11/22/23 02:45 | EPA 8021B  |       |
| Surrogate: 1,4-Difluorobenzene  | ģ           | 98.6 %   | 80-120    |           | P3K2109     | 11/21/23 14:20 | 11/22/23 02:45 | EPA 8021B  |       |
| Surrogate: 4-Bromofluorobenzene |             | 113 %    | 80-120    |           | P3K2109     | 11/21/23 14:20 | 11/22/23 02:45 | EPA 8021B  |       |
| Total Petroleum Hydrocarbons C6 | -C35 by EPA | Method   | 8015M     |           |             |                |                |            |       |
| C6-C12                          | ND          | 27.2     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |       |
| >C12-C28                        | ND          | 27.2     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |       |
| >C28-C35                        | ND          | 27.2     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |       |
| Surrogate: 1-Chlorooctane       | 8           | 86.0 %   | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |       |
| Surrogate: o-Terphenyl          |             | 106 %    | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |       |
| Total Petroleum Hydrocarbon     | ND          | 27.2     | mg/kg dry | 1         | [CALC]      | 11/21/23 15:35 | 11/22/23 17:00 | calc       |       |
| C6-C35                          |             |          |           |           |             |                |                |            |       |
| General Chemistry Parameters by | EPA / Stand | ard Metl | hods      |           |             |                |                |            |       |
| Chloride                        | 42.0        | 1.09     | mg/kg dry | 1         | P3K2211     | 11/24/23 14:10 | 11/29/23 23:51 | EPA 300.0  |       |
| % Moisture                      | 8.0         | 0.1      | %         | 1         | P3K2210     | 11/22/23 10:02 | 11/22/23 10:08 | ASTM D2216 |       |

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: BSWU #3 CTB

Project Number: 16187 Project Manager: Blake Estep

### Auger Hole - 8 @ 3' 3K21010-11 (Soil)

|                                       | Limi         | t Repo   | rting     |           |             |                |                |            |      |
|---------------------------------------|--------------|----------|-----------|-----------|-------------|----------------|----------------|------------|------|
| Analyte                               | Result       |          | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Note |
|                                       |              | P        | ermian B  | asin Envi | ronmental L | ab, L.P.       |                |            |      |
| BTEX by 8021B                         |              |          |           |           |             |                |                |            |      |
| Benzene                               | ND           | 0.00110  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 16:00 | EPA 8021B  |      |
| Toluene                               | ND           | 0.00110  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 16:00 | EPA 8021B  |      |
| Ethylbenzene                          | ND           | 0.00110  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 16:00 | EPA 8021B  |      |
| Xylene (p/m)                          | ND           | 0.00220  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 16:00 | EPA 8021B  |      |
| Xylene (o)                            | ND           | 0.00110  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 16:00 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene       |              | 112 %    | 80-120    |           | P3K2209     | 11/22/23 09:21 | 11/22/23 16:00 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene        | 9            | 06.7 %   | 80-120    |           | P3K2209     | 11/22/23 09:21 | 11/22/23 16:00 | EPA 8021B  |      |
| Total Petroleum Hydrocarbons C6       | -C35 by EPA  | Method   | 8015M     |           |             |                |                |            |      |
| C6-C12                                | ND           | 27.5     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| >C12-C28                              | ND           | 27.5     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| >C28-C35                              | ND           | 27.5     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane             | 8            | 35.0 %   | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Surrogate: o-Terphenyl                |              | 103 %    | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon<br>C6-C35 | ND           | 27.5     | mg/kg dry | 1         | [CALC]      | 11/21/23 15:35 | 11/22/23 17:00 | calc       |      |
| General Chemistry Parameters by       | EPA / Standa | ard Metl | hods      |           |             |                |                |            |      |
| Chloride                              | 38.5         | 1.10     | mg/kg dry | 1         | P3K2211     | 11/24/23 14:10 | 11/30/23 00:06 | EPA 300.0  |      |
| % Moisture                            | 9.0          | 0.1      | %         | 1         | P3K2210     | 11/22/23 10:02 | 11/22/23 10:08 | ASTM D2216 |      |

13000 West County Road 100 Odessa TX, 79765 Project: BSWU #3 CTB

Project Number: 16187 Project Manager: Blake Estep

### Auger Hole - 8 @ 4' 3K21010-12 (Soil)

|                                       | Limit        | t Repo   | rtino     |           |             |                |                |            |       |
|---------------------------------------|--------------|----------|-----------|-----------|-------------|----------------|----------------|------------|-------|
| Analyte                               | Result       | т керо   | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Notes |
|                                       |              |          |           |           |             | ·              | ·              |            |       |
|                                       |              | P        | ermian B  | asin Envi | ronmental I | Lab, L.P.      |                |            |       |
| BTEX by 8021B                         |              |          |           |           |             |                |                |            |       |
| Benzene                               | ND (         | 0.00109  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 16:25 | EPA 8021B  |       |
| Toluene                               | ND (         | 0.00109  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 16:25 | EPA 8021B  |       |
| Ethylbenzene                          | ND (         | 0.00109  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 16:25 | EPA 8021B  |       |
| Xylene (p/m)                          | ND (         | 0.00217  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 16:25 | EPA 8021B  |       |
| Xylene (o)                            | ND (         | 0.00109  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 16:25 | EPA 8021B  |       |
| Surrogate: 1,4-Difluorobenzene        | 9            | 7.2 %    | 80-120    |           | P3K2209     | 11/22/23 09:21 | 11/22/23 16:25 | EPA 8021B  |       |
| Surrogate: 4-Bromofluorobenzene       |              | 109 %    | 80-120    |           | P3K2209     | 11/22/23 09:21 | 11/22/23 16:25 | EPA 8021B  |       |
| Total Petroleum Hydrocarbons C6-      | -C35 by EPA  | Method   | 8015M     |           |             |                |                |            |       |
| C6-C12                                | ND           | 27.2     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |       |
| >C12-C28                              | ND           | 27.2     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |       |
| >C28-C35                              | ND           | 27.2     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |       |
| Surrogate: 1-Chlorooctane             | 8            | 9.5 %    | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |       |
| Surrogate: o-Terphenyl                |              | 106 %    | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |       |
| Total Petroleum Hydrocarbon<br>C6-C35 | ND           | 27.2     | mg/kg dry | 1         | [CALC]      | 11/21/23 15:35 | 11/22/23 17:00 | calc       |       |
| General Chemistry Parameters by       | EPA / Standa | ard Metl | 10ds      |           |             |                |                |            |       |
| Chloride                              | 29.6         | 1.09     | mg/kg dry | 1         | P3K2211     | 11/24/23 14:10 | 11/30/23 00:49 | EPA 300.0  |       |
| % Moisture                            | 8.0          | 0.1      | %         | 1         | P3K2210     | 11/22/23 10:02 | 11/22/23 10:08 | ASTM D2216 |       |

13000 West County Road 100 Odessa TX, 79765 Project: BSWU #3 CTB

Project Number: 16187 Project Manager: Blake Estep

### Bottom Hole - 1 @ 3' 3K21010-13 (Soil)

|                                       | Limi        | t Repo   | rting     |           |             |                |                |            |      |
|---------------------------------------|-------------|----------|-----------|-----------|-------------|----------------|----------------|------------|------|
| Analyte                               | Result      |          | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Note |
|                                       |             | P        | ermian B  | asin Envi | ronmental I | Lab, L.P.      |                |            |      |
| BTEX by 8021B                         |             |          |           |           |             |                |                |            |      |
| Benzene                               | ND          | 0.00108  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 17:38 | EPA 8021B  |      |
| Toluene                               | ND          | 0.00108  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 17:38 | EPA 8021B  |      |
| Ethylbenzene                          | ND          | 0.00108  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 17:38 | EPA 8021B  |      |
| Xylene (p/m)                          | ND          | 0.00215  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 17:38 | EPA 8021B  |      |
| Xylene (o)                            | ND          | 0.00108  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 17:38 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene       |             | 111 %    | 80-120    |           | P3K2209     | 11/22/23 09:21 | 11/22/23 17:38 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene        | ģ           | 7.7 %    | 80-120    |           | P3K2209     | 11/22/23 09:21 | 11/22/23 17:38 | EPA 8021B  |      |
| Total Petroleum Hydrocarbons C6-      | C35 by EPA  | Method   | 8015M     |           |             |                |                |            |      |
| C6-C12                                | ND          | 26.9     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| >C12-C28                              | ND          | 26.9     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| >C28-C35                              | ND          | 26.9     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane             | 8           | 89.6 %   | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Surrogate: o-Terphenyl                |             | 108 %    | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon<br>C6-C35 | ND          | 26.9     | mg/kg dry | 1         | [CALC]      | 11/21/23 15:35 | 11/22/23 17:00 | calc       |      |
| General Chemistry Parameters by       | EPA / Stand | ard Metl | hods      |           |             |                |                |            |      |
| Chloride                              | 209         | 1.08     | mg/kg dry | 1         | P3K2211     | 11/24/23 14:10 | 11/30/23 01:03 | EPA 300.0  |      |
| % Moisture                            | 7.0         | 0.1      | %         | 1         | P3K2210     | 11/22/23 10:02 | 11/22/23 10:08 | ASTM D2216 |      |

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: BSWU #3 CTB

Project Number: 16187 Project Manager: Blake Estep

### Bottom Hole - 2 @ 3' 3K21010-14 (Soil)

| Analyte                         | Limi        | it Repo  |           | Dil e     | D / 1       | D 1            | A malere - 4   | Method     | <b>N</b> T - 4 |
|---------------------------------|-------------|----------|-----------|-----------|-------------|----------------|----------------|------------|----------------|
| 7 Hairy Co                      | Result      |          | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Note           |
|                                 |             | P        | ermian B  | asin Envi | ronmental L | ab, L.P.       |                |            |                |
| BTEX by 8021B                   |             |          |           |           |             |                |                |            |                |
| Benzene                         | ND          | 0.00108  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 18:02 | EPA 8021B  |                |
| Toluene                         | ND          | 0.00108  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 18:02 | EPA 8021B  |                |
| Ethylbenzene                    | ND          | 0.00108  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 18:02 | EPA 8021B  |                |
| Xylene (p/m)                    | ND          | 0.00215  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 18:02 | EPA 8021B  |                |
| Xylene (o)                      | ND          | 0.00108  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 18:02 | EPA 8021B  |                |
| Surrogate: 1,4-Difluorobenzene  | g           | 97.6 %   | 80-120    |           | P3K2209     | 11/22/23 09:21 | 11/22/23 18:02 | EPA 8021B  |                |
| Surrogate: 4-Bromofluorobenzene |             | 112 %    | 80-120    |           | P3K2209     | 11/22/23 09:21 | 11/22/23 18:02 | EPA 8021B  |                |
| Total Petroleum Hydrocarbons C6 | -C35 by EPA | Method   | 8015M     |           |             |                |                |            |                |
| C6-C12                          | ND          | 26.9     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |                |
| >C12-C28                        | ND          | 26.9     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |                |
| >C28-C35                        | ND          | 26.9     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |                |
| Surrogate: 1-Chlorooctane       | <u>,</u>    | 91.6 %   | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |                |
| Surrogate: o-Terphenyl          |             | 108 %    | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |                |
| Total Petroleum Hydrocarbon     | ND          | 26.9     | mg/kg dry | 1         | [CALC]      | 11/21/23 15:35 | 11/22/23 17:00 | calc       |                |
| C6-C35                          |             |          |           |           |             |                |                |            |                |
| General Chemistry Parameters by | EPA / Stand | ard Metl | hods      |           |             |                |                |            |                |
| Chloride                        | 210         | 1.08     | mg/kg dry | 1         | P3K2211     | 11/24/23 14:10 | 11/30/23 01:17 | EPA 300.0  |                |
| % Moisture                      | 7.0         | 0.1      | %         | 1         | P3K2210     | 11/22/23 10:02 | 11/22/23 10:08 | ASTM D2216 |                |

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: BSWU #3 CTB

Project Number: 16187 Project Manager: Blake Estep

### Bottom Hole - 3 @ 3' 3K21010-15 (Soil)

| Analyte                         | Limi        | it Repo  |           |           | -           |                |                | No. d1     | <b>N</b> T : |
|---------------------------------|-------------|----------|-----------|-----------|-------------|----------------|----------------|------------|--------------|
| Anaryte                         | Result      |          | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Note         |
|                                 |             | P        | ermian B  | asin Envi | ronmental L | ab, L.P.       |                |            |              |
| BTEX by 8021B                   |             |          |           |           |             |                |                |            |              |
| Benzene                         | ND          | 0.00108  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 18:26 | EPA 8021B  |              |
| Toluene                         | ND          | 0.00108  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 18:26 | EPA 8021B  |              |
| Ethylbenzene                    | ND          | 0.00108  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 18:26 | EPA 8021B  |              |
| Xylene (p/m)                    | ND          | 0.00215  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 18:26 | EPA 8021B  |              |
| Xylene (o)                      | ND          | 0.00108  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 18:26 | EPA 8021B  |              |
| Surrogate: 1,4-Difluorobenzene  | ģ           | 97.1 %   | 80-120    |           | P3K2209     | 11/22/23 09:21 | 11/22/23 18:26 | EPA 8021B  |              |
| Surrogate: 4-Bromofluorobenzene |             | 112 %    | 80-120    |           | P3K2209     | 11/22/23 09:21 | 11/22/23 18:26 | EPA 8021B  |              |
| Total Petroleum Hydrocarbons C6 | -C35 by EPA | Method   | 8015M     |           |             |                |                |            |              |
| C6-C12                          | ND          | 26.9     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |              |
| >C12-C28                        | ND          | 26.9     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |              |
| >C28-C35                        | ND          | 26.9     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |              |
| Surrogate: 1-Chlorooctane       | ý           | 95.6 %   | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |              |
| Surrogate: o-Terphenyl          |             | 111 %    | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |              |
| Total Petroleum Hydrocarbon     | ND          | 26.9     | mg/kg dry | 1         | [CALC]      | 11/21/23 15:35 | 11/22/23 17:00 | calc       |              |
| C6-C35                          |             |          |           |           |             |                |                |            |              |
| General Chemistry Parameters by | EPA / Stand | ard Metl | hods      |           |             |                |                |            |              |
| Chloride                        | 220         | 1.08     | mg/kg dry | 1         | P3K2211     | 11/24/23 14:10 | 11/30/23 01:32 | EPA 300.0  |              |
| % Moisture                      | 7.0         | 0.1      | %         | 1         | P3K2210     | 11/22/23 10:02 | 11/22/23 10:08 | ASTM D2216 |              |

Permian Basin Environmental Lab, L.P.

13000 West County Road 100

Odessa TX, 79765

Project Number: 16187 Project Manager: Blake Estep

### North Sidewall # 1 @ 0-2' 3K21010-16 (Soil)

Project: BSWU #3 CTB

|                                       | Limi         | t Repo  | rting     |           |             |                |                |            |     |
|---------------------------------------|--------------|---------|-----------|-----------|-------------|----------------|----------------|------------|-----|
| Analyte                               | Result       | •       | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Not |
|                                       |              | P       | ermian B  | asin Envi | ronmental L | ab, L.P.       |                |            |     |
| BTEX by 8021B                         |              |         |           |           |             |                |                |            |     |
| Benzene                               | 0.0176       | 0.00106 | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 18:50 | EPA 8021B  |     |
| Toluene                               | 0.951        | 0.0213  | mg/kg dry | 20        | P3K2209     | 11/22/23 09:21 | 11/27/23 11:40 | EPA 8021B  |     |
| Ethylbenzene                          | 2.50         | 0.0213  | mg/kg dry | 20        | P3K2209     | 11/22/23 09:21 | 11/27/23 11:40 | EPA 8021B  |     |
| Xylene (p/m)                          | 4.67         | 0.0426  | mg/kg dry | 20        | P3K2209     | 11/22/23 09:21 | 11/27/23 11:40 | EPA 8021B  |     |
| Xylene (o)                            | 0.823        | 0.0213  | mg/kg dry | 20        | P3K2209     | 11/22/23 09:21 | 11/27/23 11:40 | EPA 8021B  |     |
| Surrogate: 4-Bromofluorobenzene       |              | 151 %   | 80-120    |           | P3K2209     | 11/22/23 09:21 | 11/27/23 11:40 | EPA 8021B  |     |
| Surrogate: 1,4-Difluorobenzene        | 9            | 6.9 %   | 80-120    |           | P3K2209     | 11/22/23 09:21 | 11/27/23 11:40 | EPA 8021B  |     |
| Total Petroleum Hydrocarbons C6       | -C35 by EPA  | Method  | 8015M     |           |             |                |                |            |     |
| C6-C12                                | 1340         | 266     | mg/kg dry | 10        | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |     |
| >C12-C28                              | 6020         | 266     | mg/kg dry | 10        | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |     |
| >C28-C35                              | 604          | 266     | mg/kg dry | 10        | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |     |
| Surrogate: 1-Chlorooctane             | 7            | 3.4 %   | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |     |
| Surrogate: o-Terphenyl                |              | 118 %   | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |     |
| Total Petroleum Hydrocarbon<br>C6-C35 | 7960         | 266     | mg/kg dry | 10        | [CALC]      | 11/21/23 15:35 | 11/22/23 17:00 | calc       |     |
| General Chemistry Parameters by       | EPA / Standa | ard Met | hods      |           |             |                |                |            |     |
| Chloride                              | 134          | 1.06    | mg/kg dry | 1         | P3K2708     | 11/27/23 16:17 | 11/30/23 22:07 | EPA 300.0  |     |
| % Moisture                            | 6.0          | 0.1     | %         | 1         | P3K2210     | 11/22/23 10:02 | 11/22/23 10:08 | ASTM D2216 |     |

13000 West County Road 100 Odessa TX, 79765 Project: BSWU #3 CTB

Project Number: 16187 Project Manager: Blake Estep

South Sidewall # 1 @ 0-2' 3K21010-17 (Soil)

| Analyte                               | Limit        | t Repo   | _         | 75.11     | B . I       |                | A              | Mada d     | NT-4- |
|---------------------------------------|--------------|----------|-----------|-----------|-------------|----------------|----------------|------------|-------|
| - mary to                             | Result       |          | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Note  |
|                                       |              | P        | ermian B  | asin Envi | ronmental L | ab, L.P.       |                |            |       |
| BTEX by 8021B                         |              |          |           |           |             |                |                |            |       |
| Benzene                               | ND (         | 0.00108  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 19:15 | EPA 8021B  |       |
| Toluene                               | ND (         | 0.00108  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 19:15 | EPA 8021B  |       |
| Ethylbenzene                          | ND (         | 0.00108  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 19:15 | EPA 8021B  |       |
| Xylene (p/m)                          | ND (         | 0.00215  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 19:15 | EPA 8021B  |       |
| Xylene (o)                            | ND (         | 0.00108  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 19:15 | EPA 8021B  |       |
| Surrogate: 1,4-Difluorobenzene        | 9            | 05.6 %   | 80-120    |           | P3K2209     | 11/22/23 09:21 | 11/22/23 19:15 | EPA 8021B  |       |
| Surrogate: 4-Bromofluorobenzene       |              | 108 %    | 80-120    |           | P3K2209     | 11/22/23 09:21 | 11/22/23 19:15 | EPA 8021B  |       |
| Total Petroleum Hydrocarbons C6       | -C35 by EPA  | Method   | 8015M     |           |             |                |                |            |       |
| C6-C12                                | ND           | 26.9     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |       |
| >C12-C28                              | ND           | 26.9     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |       |
| >C28-C35                              | ND           | 26.9     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |       |
| Surrogate: 1-Chlorooctane             | 9            | 93.2 %   | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |       |
| Surrogate: o-Terphenyl                | ي .          | 109 %    | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |       |
| Total Petroleum Hydrocarbon<br>C6-C35 | ND           | 26.9     | mg/kg dry | 1         | [CALC]      | 11/21/23 15:35 | 11/22/23 17:00 | calc       |       |
| General Chemistry Parameters by       | EPA / Standa | ard Metl | hods      |           |             |                |                |            |       |
| Chloride                              | 65.5         | 1.08     | mg/kg dry | 1         | P3K2708     | 11/27/23 16:17 | 11/30/23 22:49 | EPA 300.0  |       |
| % Moisture                            | 7.0          | 0.1      | %         | 1         | P3K2210     | 11/22/23 10:02 | 11/22/23 10:08 | ASTM D2216 |       |

13000 West County Road 100 Odessa TX, 79765 Project: BSWU #3 CTB

Project Number: 16187 Project Manager: Blake Estep

# East Sidewall # 1 @ 0-2' 3K21010-18 (Soil)

|                                       | Limit        | t Repo   | rting     |           |             |                |                |            |      |
|---------------------------------------|--------------|----------|-----------|-----------|-------------|----------------|----------------|------------|------|
| Analyte                               | Result       |          | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Note |
|                                       |              | P        | ermian B  | asin Envi | ronmental L | ab, L.P.       |                |            |      |
| BTEX by 8021B                         |              |          |           |           |             |                |                |            |      |
| Benzene                               | ND (         | 0.00106  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 19:39 | EPA 8021B  |      |
| Toluene                               | ND (         | 0.00106  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 19:39 | EPA 8021B  |      |
| Ethylbenzene                          | ND (         | 0.00106  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 19:39 | EPA 8021B  |      |
| Xylene (p/m)                          | ND (         | 0.00213  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 19:39 | EPA 8021B  |      |
| Xylene (o)                            | ND (         | 0.00106  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 19:39 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene        | 9            | 6.0 %    | 80-120    |           | P3K2209     | 11/22/23 09:21 | 11/22/23 19:39 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene       |              | 111 %    | 80-120    |           | P3K2209     | 11/22/23 09:21 | 11/22/23 19:39 | EPA 8021B  |      |
| Total Petroleum Hydrocarbons C6       | -C35 by EPA  | Method   | 8015M     |           |             |                |                |            |      |
| C6-C12                                | ND           | 26.6     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| >C12-C28                              | ND           | 26.6     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| >C28-C35                              | ND           | 26.6     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane             | 7            | 2.7 %    | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Surrogate: o-Terphenyl                | 8            | 5.7 %    | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon<br>C6-C35 | ND           | 26.6     | mg/kg dry | 1         | [CALC]      | 11/21/23 15:35 | 11/22/23 17:00 | calc       |      |
| General Chemistry Parameters by       | EPA / Standa | ard Metl | hods      |           |             |                |                |            |      |
| Chloride                              | 62.5         | 1.06     | mg/kg dry | 1         | P3K2708     | 11/27/23 16:17 | 11/30/23 23:04 | EPA 300.0  |      |
| % Moisture                            | 6.0          | 0.1      | %         | 1         | P3K2210     | 11/22/23 10:02 | 11/22/23 10:08 | ASTM D2216 |      |

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: BSWU #3 CTB

Project Number: 16187 Project Manager: Blake Estep

# East Sidewall # 2 @ 0-2' 3K21010-19 (Soil)

|                                       | Limi         | t Repo   | rting     |           |             |                |                |            |      |
|---------------------------------------|--------------|----------|-----------|-----------|-------------|----------------|----------------|------------|------|
| Analyte                               | Result       |          | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Note |
|                                       |              | P        | ermian B  | asin Envi | ronmental L | ab, L.P.       |                |            |      |
| BTEX by 8021B                         |              |          |           |           |             |                |                |            |      |
| Benzene                               | ND           | 0.00109  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 20:03 | EPA 8021B  |      |
| Toluene                               | ND           | 0.00109  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 20:03 | EPA 8021B  |      |
| Ethylbenzene                          | ND           | 0.00109  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 20:03 | EPA 8021B  |      |
| Xylene (p/m)                          | ND           | 0.00217  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 20:03 | EPA 8021B  |      |
| Xylene (o)                            | ND           | 0.00109  | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 20:03 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene        | 9            | 05.6 %   | 80-120    |           | P3K2209     | 11/22/23 09:21 | 11/22/23 20:03 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene       |              | 110 %    | 80-120    |           | P3K2209     | 11/22/23 09:21 | 11/22/23 20:03 | EPA 8021B  |      |
| Total Petroleum Hydrocarbons C6       | -C35 by EPA  | Method   | 8015M     |           |             |                |                |            |      |
| C6-C12                                | ND           | 27.2     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| >C12-C28                              | ND           | 27.2     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| >C28-C35                              | ND           | 27.2     | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane             | 9            | 01.8 %   | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Surrogate: o-Terphenyl                |              | 106 %    | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon<br>C6-C35 | ND           | 27.2     | mg/kg dry | 1         | [CALC]      | 11/21/23 15:35 | 11/22/23 17:00 | calc       |      |
| General Chemistry Parameters by       | EPA / Standa | ard Metl | hods      |           |             |                |                |            |      |
| Chloride                              | 83.5         | 1.09     | mg/kg dry | 1         | P3K2708     | 11/27/23 16:17 | 11/30/23 23:18 | EPA 300.0  |      |
| % Moisture                            | 8.0          | 0.1      | %         | 1         | P3K2210     | 11/22/23 10:02 | 11/22/23 10:08 | ASTM D2216 |      |

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: BSWU #3 CTB

Project Number: 16187 Project Manager: Blake Estep

East Sidewall # 3 @ 0-2' 3K21010-20 (Soil)

| Accellants                      | Limit        | Repo    |           |           |             |                |                |            |      |
|---------------------------------|--------------|---------|-----------|-----------|-------------|----------------|----------------|------------|------|
| Analyte                         | Result       |         | Units     | Dilution  | Batch       | Prepared       | Analyzed       | Method     | Note |
|                                 |              | P       | ermian B  | asin Envi | ronmental L | ab, L.P.       |                |            |      |
| BTEX by 8021B                   |              |         |           |           |             |                |                |            |      |
| Benzene                         | ND 0         | 0.00108 | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 20:28 | EPA 8021B  |      |
| Toluene                         | ND 0         | 0.00108 | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 20:28 | EPA 8021B  |      |
| Ethylbenzene                    | ND 0         | 0.00108 | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 20:28 | EPA 8021B  |      |
| Xylene (p/m)                    | ND 0         | 0.00215 | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 20:28 | EPA 8021B  |      |
| Xylene (o)                      | ND 0         | 0.00108 | mg/kg dry | 1         | P3K2209     | 11/22/23 09:21 | 11/22/23 20:28 | EPA 8021B  |      |
| Surrogate: 1,4-Difluorobenzene  | 90           | 6.3 %   | 80-120    |           | P3K2209     | 11/22/23 09:21 | 11/22/23 20:28 | EPA 8021B  |      |
| Surrogate: 4-Bromofluorobenzene | i            | 111 %   | 80-120    |           | P3K2209     | 11/22/23 09:21 | 11/22/23 20:28 | EPA 8021B  |      |
| Total Petroleum Hydrocarbons C6 | 5-C35 by EPA | Method  | 8015M     |           |             |                |                |            |      |
| C6-C12                          | ND           | 26.9    | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| >C12-C28                        | ND           | 26.9    | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| >C28-C35                        | ND           | 26.9    | mg/kg dry | 1         | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Surrogate: 1-Chlorooctane       | 8.           | 5.2 %   | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Surrogate: o-Terphenyl          | 99           | 9.7 %   | 70-130    |           | P3K2110     | 11/21/23 15:35 | 11/22/23 17:00 | TPH 8015M  |      |
| Total Petroleum Hydrocarbon     | ND           | 26.9    | mg/kg dry | 1         | [CALC]      | 11/21/23 15:35 | 11/22/23 17:00 | calc       |      |
| C6-C35                          |              |         |           |           |             |                |                |            |      |
| General Chemistry Parameters by | EPA / Standa | rd Metl | hods      |           |             |                |                |            |      |
| Chloride                        | 74.4         | 1.08    | mg/kg dry | 1         | P3K2708     | 11/27/23 16:17 | 11/30/23 23:32 | EPA 300.0  | -    |
| % Moisture                      | 7.0          | 0.1     | %         | 1         | P3K2210     | 11/22/23 10:02 | 11/22/23 10:08 | ASTM D2216 |      |

RPD

%REC

E Tech Environmental & Safety Solutions, Inc. [1]

13000 West County Road 100 Odessa TX, 79765 Project: BSWU #3 CTB

Project Number: 16187 Project Manager: Blake Estep

## BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Spike

Source

Reporting

0.160

0.380

0.200

0.390

0.160

0.131

0.115

| Analyte                            | Result | Limit   | Units | Level      | Result      | %REC     | Limits | RPD  | Limit | Notes |
|------------------------------------|--------|---------|-------|------------|-------------|----------|--------|------|-------|-------|
| Batch P3K2109 - *** DEFAULT PREP * | **     |         |       |            |             |          |        |      |       |       |
| Blank (P3K2109-BLK1)               |        |         |       | Prepared & | Analyzed:   | 11/21/23 |        |      |       |       |
| Benzene                            | ND     | 0.00100 | mg/kg |            |             |          |        |      |       |       |
| Toluene                            | ND     | 0.00100 | "     |            |             |          |        |      |       |       |
| Ethylbenzene                       | ND     | 0.00100 | "     |            |             |          |        |      |       |       |
| Xylene (p/m)                       | ND     | 0.00200 | "     |            |             |          |        |      |       |       |
| Xylene (o)                         | ND     | 0.00100 | "     |            |             |          |        |      |       |       |
| Surrogate: 1,4-Difluorobenzene     | 0.117  |         | "     | 0.120      |             | 97.2     | 80-120 |      |       |       |
| Surrogate: 4-Bromofluorobenzene    | 0.133  |         | "     | 0.120      |             | 111      | 80-120 |      |       |       |
| LCS (P3K2109-BS1)                  |        |         |       | Prepared & | : Analyzed: | 11/21/23 |        |      |       |       |
| Benzene                            | 0.102  | 0.00100 | mg/kg | 0.100      |             | 102      | 80-120 |      |       |       |
| Toluene                            | 0.0930 | 0.00100 | "     | 0.100      |             | 93.0     | 80-120 |      |       |       |
| Ethylbenzene                       | 0.101  | 0.00100 | "     | 0.100      |             | 101      | 80-120 |      |       |       |
| Xylene (p/m)                       | 0.199  | 0.00200 | "     | 0.200      |             | 99.5     | 80-120 |      |       |       |
| Xylene (o)                         | 0.0895 | 0.00100 | "     | 0.100      |             | 89.5     | 80-120 |      |       |       |
| Surrogate: 4-Bromofluorobenzene    | 0.127  |         | "     | 0.120      |             | 105      | 80-120 |      |       |       |
| Surrogate: 1,4-Difluorobenzene     | 0.118  |         | "     | 0.120      |             | 98.3     | 80-120 |      |       |       |
| LCS Dup (P3K2109-BSD1)             |        |         |       | Prepared & | Analyzed:   | 11/21/23 |        |      |       |       |
| Benzene                            | 0.113  | 0.00100 | mg/kg | 0.100      |             | 113      | 80-120 | 9.67 | 20    |       |
| Toluene                            | 0.104  | 0.00100 | "     | 0.100      |             | 104      | 80-120 | 10.9 | 20    |       |
| Ethylbenzene                       | 0.113  | 0.00100 | "     | 0.100      |             | 113      | 80-120 | 11.3 | 20    |       |
| Xylene (p/m)                       | 0.220  | 0.00200 | "     | 0.200      |             | 110      | 80-120 | 9.85 | 20    |       |
| Xylene (o)                         | 0.100  | 0.00100 | "     | 0.100      |             | 100      | 80-120 | 11.0 | 20    |       |
| Surrogate: 1,4-Difluorobenzene     | 0.119  |         | "     | 0.120      |             | 99.0     | 80-120 |      |       |       |
| Surrogate: 4-Bromofluorobenzene    | 0.127  |         | "     | 0.120      |             | 106      | 80-120 |      |       |       |
| Calibration Blank (P3K2109-CCB1)   |        |         |       | Prepared & | : Analyzed: | 11/21/23 |        |      |       |       |

ug/kg

0.120

0.120

Permian Basin Environmental Lab, L.P.

Benzene

Toluene

Ethylbenzene

Xylene (p/m)

Surrogate: 4-Bromofluorobenzene

Surrogate: 1,4-Difluorobenzene

Xylene (o)

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

109

96.1

80-120

80-120

13000 West County Road 100 Odessa TX, 79765 Project: BSWU #3 CTB

Project Number: 16187 Project Manager: Blake Estep

## BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

| Analyte                              | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|--------------------------------------|--------|--------------------|-------|----------------|------------------|-------------|----------------|-----|--------------|-------|
| Batch P3K2109 - *** DEFAULT PREP *** |        |                    |       |                |                  |             |                |     |              |       |
| Calibration Blank (P3K2109-CCB2)     |        |                    |       | Prepared &     | z Analyzed:      | 11/21/23    |                |     |              |       |
| Benzene                              | 0.130  |                    | ug/kg |                |                  |             |                |     |              |       |
| Toluene                              | 0.300  |                    | "     |                |                  |             |                |     |              |       |
| Ethylbenzene                         | 0.190  |                    | "     |                |                  |             |                |     |              |       |
| Xylene (p/m)                         | 0.280  |                    | "     |                |                  |             |                |     |              |       |
| Xylene (o)                           | 0.130  |                    | "     |                |                  |             |                |     |              |       |
| Surrogate: 1,4-Difluorobenzene       | 0.117  |                    | "     | 0.120          |                  | 97.9        | 80-120         |     |              |       |
| Surrogate: 4-Bromofluorobenzene      | 0.134  |                    | "     | 0.120          |                  | 112         | 80-120         |     |              |       |
| Calibration Check (P3K2109-CCV1)     |        |                    |       | Prepared &     | z Analyzed:      | 11/21/23    |                |     |              |       |
| Benzene                              | 0.106  | 0.00100            | mg/kg | 0.100          |                  | 106         | 80-120         |     |              |       |
| Toluene                              | 0.0971 | 0.00100            | "     | 0.100          |                  | 97.1        | 80-120         |     |              |       |
| Ethylbenzene                         | 0.100  | 0.00100            | "     | 0.100          |                  | 100         | 80-120         |     |              |       |
| Xylene (p/m)                         | 0.207  | 0.00200            | "     | 0.200          |                  | 104         | 80-120         |     |              |       |
| Xylene (o)                           | 0.0946 | 0.00100            | "     | 0.100          |                  | 94.6        | 80-120         |     |              |       |
| Surrogate: 4-Bromofluorobenzene      | 0.127  |                    | "     | 0.120          |                  | 106         | 75-125         |     |              |       |
| Surrogate: 1,4-Difluorobenzene       | 0.118  |                    | "     | 0.120          |                  | 98.4        | 75-125         |     |              |       |
| Calibration Check (P3K2109-CCV2)     |        |                    |       | Prepared &     | Analyzed:        | 11/21/23    |                |     |              |       |
| Benzene                              | 0.118  | 0.00100            | mg/kg | 0.100          |                  | 118         | 80-120         |     |              |       |
| Toluene                              | 0.108  | 0.00100            | "     | 0.100          |                  | 108         | 80-120         |     |              |       |
| Ethylbenzene                         | 0.111  | 0.00100            | "     | 0.100          |                  | 111         | 80-120         |     |              |       |
| Xylene (p/m)                         | 0.224  | 0.00200            | "     | 0.200          |                  | 112         | 80-120         |     |              |       |
| Xylene (o)                           | 0.105  | 0.00100            | "     | 0.100          |                  | 105         | 80-120         |     |              |       |
| Surrogate: 4-Bromofluorobenzene      | 0.133  |                    | "     | 0.120          |                  | 110         | 75-125         |     |              |       |
| Surrogate: 1,4-Difluorobenzene       | 0.120  |                    | "     | 0.120          |                  | 100         | 75-125         |     |              |       |
| Calibration Check (P3K2109-CCV3)     |        |                    |       | Prepared: 1    | 11/21/23 Aı      | nalyzed: 11 | /22/23         |     |              |       |
| Benzene                              | 0.106  | 0.00100            | mg/kg | 0.100          |                  | 106         | 80-120         |     |              |       |
| Toluene                              | 0.0930 | 0.00100            | "     | 0.100          |                  | 93.0        | 80-120         |     |              |       |
| Ethylbenzene                         | 0.0945 | 0.00100            | "     | 0.100          |                  | 94.5        | 80-120         |     |              |       |
| Xylene (p/m)                         | 0.195  | 0.00200            | "     | 0.200          |                  | 97.6        | 80-120         |     |              |       |
| Xylene (o)                           | 0.0914 | 0.00100            | "     | 0.100          |                  | 91.4        | 80-120         |     |              |       |
| Surrogate: 1,4-Difluorobenzene       | 0.121  |                    | "     | 0.120          |                  | 101         | 75-125         |     |              |       |
| Surrogate: 4-Bromofluorobenzene      | 0.130  |                    | "     | 0.120          |                  | 108         | 75-125         |     |              |       |

Permian Basin Environmental Lab, L.P.

13000 West County Road 100

Odessa TX, 79765

Project Number: 16187 Project Manager: Blake Estep

## BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Project: BSWU #3 CTB

|         |        | Reporting |       | Spike | Source |      | %REC   |     | RPD   |       |
|---------|--------|-----------|-------|-------|--------|------|--------|-----|-------|-------|
| Analyte | Result | Limit     | Units | Level | Result | %REC | Limits | RPD | Limit | Notes |

### Batch P3K2109 - \*\*\* DEFAULT PREP \*\*\*

| Matrix Spike (P3K2109-MS1)      | Sour   | Source: 3K21007-01 |           |       | 1/21/23 A | nalyzed: 11 | /22/23 |       |
|---------------------------------|--------|--------------------|-----------|-------|-----------|-------------|--------|-------|
| Benzene                         | 0.0842 | 0.00105            | mg/kg dry | 0.105 | ND        | 80.0        | 80-120 |       |
| Toluene                         | 0.0508 | 0.00105            | "         | 0.105 | ND        | 48.3        | 80-120 | QM-05 |
| Ethylbenzene                    | 0.0367 | 0.00105            | "         | 0.105 | ND        | 34.9        | 80-120 | QM-05 |
| Xylene (p/m)                    | 0.0739 | 0.00211            | "         | 0.211 | ND        | 35.1        | 80-120 | QM-05 |
| Xylene (o)                      | 0.0329 | 0.00105            | "         | 0.105 | ND        | 31.3        | 80-120 | QM-05 |
| Surrogate: 4-Bromofluorobenzene | 0.134  |                    | "         | 0.126 |           | 106         | 80-120 |       |
| Surrogate: 1,4-Difluorobenzene  | 0.128  |                    | "         | 0.126 |           | 101         | 80-120 |       |
|                                 |        |                    |           |       |           |             |        |       |

| Matrix Spike Dup (P3K2109-MSD1) | Source: 3K21007-01 |         |           | Prepared: 1 | 1/21/23 A | nalyzed: 11 |        |      |    |       |
|---------------------------------|--------------------|---------|-----------|-------------|-----------|-------------|--------|------|----|-------|
| Benzene                         | 0.0727             | 0.00105 | mg/kg dry | 0.105       | ND        | 69.1        | 80-120 | 14.7 | 20 | QM-05 |
| Toluene                         | 0.0409             | 0.00105 | "         | 0.105       | ND        | 38.8        | 80-120 | 21.7 | 20 | QM-05 |
| Ethylbenzene                    | 0.0296             | 0.00105 | "         | 0.105       | ND        | 28.2        | 80-120 | 21.3 | 20 | QM-05 |
| Xylene (p/m)                    | 0.0589             | 0.00211 | "         | 0.211       | ND        | 28.0        | 80-120 | 22.5 | 20 | QM-05 |
| Xylene (o)                      | 0.0276             | 0.00105 | "         | 0.105       | ND        | 26.2        | 80-120 | 17.6 | 20 | QM-05 |
| Surrogate: 4-Bromofluorobenzene | 0.136              |         | "         | 0.126       |           | 108         | 80-120 |      |    |       |
| Surrogate: 1,4-Difluorobenzene  | 0.127              |         | "         | 0.126       |           | 101         | 80-120 |      |    |       |

### Batch P3K2209 - \*\*\* DEFAULT PREP \*\*\*

| Blank (P3K2209-BLK1)            |       |         | Prepared & Anal | yzed: 11/22/23 |      |        |  |
|---------------------------------|-------|---------|-----------------|----------------|------|--------|--|
| Benzene                         | ND    | 0.00100 | mg/kg           |                |      |        |  |
| Toluene                         | ND    | 0.00100 | "               |                |      |        |  |
| Ethylbenzene                    | ND    | 0.00100 | "               |                |      |        |  |
| Xylene (p/m)                    | ND    | 0.00200 | "               |                |      |        |  |
| Xylene (o)                      | ND    | 0.00100 | "               |                |      |        |  |
| Surrogate: 4-Bromofluorobenzene | 0.136 |         | "               | 0.120          | 113  | 80-120 |  |
| Surrogate: 1,4-Difluorobenzene  | 0.117 |         | "               | 0.120          | 97.6 | 80-120 |  |

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: BSWU #3 CTB

Project Number: 16187 Project Manager: Blake Estep

## BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

|                                      |        | Reporting |       | Spike      | Source    |          | %REC   |      | RPD   |       |
|--------------------------------------|--------|-----------|-------|------------|-----------|----------|--------|------|-------|-------|
| Analyte                              | Result | Limit     | Units | Level      | Result    | %REC     | Limits | RPD  | Limit | Notes |
| Batch P3K2209 - *** DEFAULT PREP *** |        |           |       |            |           |          |        |      |       |       |
| LCS (P3K2209-BS1)                    |        |           |       | Prepared & | Analyzed: | 11/22/23 |        |      |       |       |
| Benzene                              | 0.101  | 0.00100   | mg/kg | 0.100      |           | 101      | 80-120 |      |       |       |
| Toluene                              | 0.0933 | 0.00100   | "     | 0.100      |           | 93.3     | 80-120 |      |       |       |
| Ethylbenzene                         | 0.101  | 0.00100   | "     | 0.100      |           | 101      | 80-120 |      |       |       |
| Xylene (p/m)                         | 0.200  | 0.00200   | "     | 0.200      |           | 100      | 80-120 |      |       |       |
| Xylene (o)                           | 0.0896 | 0.00100   | "     | 0.100      |           | 89.6     | 80-120 |      |       |       |
| Surrogate: 1,4-Difluorobenzene       | 0.117  |           | "     | 0.120      |           | 97.4     | 80-120 |      |       |       |
| Surrogate: 4-Bromofluorobenzene      | 0.128  |           | "     | 0.120      |           | 107      | 80-120 |      |       |       |
| LCS Dup (P3K2209-BSD1)               |        |           |       | Prepared & | Analyzed: | 11/22/23 |        |      |       |       |
| Benzene                              | 0.111  | 0.00100   | mg/kg | 0.100      |           | 111      | 80-120 | 9.21 | 20    |       |
| Toluene                              | 0.104  | 0.00100   | "     | 0.100      |           | 104      | 80-120 | 11.1 | 20    |       |
| Ethylbenzene                         | 0.111  | 0.00100   | "     | 0.100      |           | 111      | 80-120 | 10.0 | 20    |       |
| Xylene (p/m)                         | 0.220  | 0.00200   | "     | 0.200      |           | 110      | 80-120 | 9.33 | 20    |       |
| Xylene (o)                           | 0.0996 | 0.00100   | "     | 0.100      |           | 99.6     | 80-120 | 10.5 | 20    |       |
| Surrogate: 4-Bromofluorobenzene      | 0.128  |           | "     | 0.120      |           | 107      | 80-120 |      |       |       |
| Surrogate: 1,4-Difluorobenzene       | 0.118  |           | "     | 0.120      |           | 98.3     | 80-120 |      |       |       |
| Calibration Blank (P3K2209-CCB1)     |        |           |       | Prepared & | Analyzed: | 11/22/23 |        |      |       |       |
| Benzene                              | 0.140  |           | ug/kg |            |           |          |        |      |       |       |
| Toluene                              | 0.270  |           | "     |            |           |          |        |      |       |       |
| Ethylbenzene                         | 0.170  |           | "     |            |           |          |        |      |       |       |
| Xylene (p/m)                         | 0.300  |           | "     |            |           |          |        |      |       |       |
| Xylene (o)                           | 0.150  |           | "     |            |           |          |        |      |       |       |
| Surrogate: 1,4-Difluorobenzene       | 0.117  |           | "     | 0.120      |           | 97.5     | 80-120 |      |       |       |
| Surrogate: 4-Bromofluorobenzene      | 0.132  |           | "     | 0.120      |           | 110      | 80-120 |      |       |       |
| Calibration Blank (P3K2209-CCB2)     |        |           |       | Prepared & | Analyzed: | 11/22/23 |        |      |       |       |
| Benzene                              | 0.160  |           | ug/kg |            |           |          |        |      |       |       |
| Toluene                              | 0.270  |           | "     |            |           |          |        |      |       |       |
| Ethylbenzene                         | 0.170  |           | "     |            |           |          |        |      |       |       |
| Xylene (p/m)                         | 0.320  |           | "     |            |           |          |        |      |       |       |
| Xylene (o)                           | 0.130  |           | "     |            |           |          |        |      |       |       |
| Surrogate: 4-Bromofluorobenzene      | 0.132  |           | "     | 0.120      |           | 110      | 80-120 |      |       |       |
| Surrogate: 1,4-Difluorobenzene       | 0.116  |           | "     | 0.120      |           | 96.9     | 80-120 |      |       |       |

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: BSWU #3 CTB

Project Number: 16187 Project Manager: Blake Estep

## BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

|                                      |        | Reporting     |           | Spike      | Source    |          | %REC   |     | RPD   |       |
|--------------------------------------|--------|---------------|-----------|------------|-----------|----------|--------|-----|-------|-------|
| Analyte                              | Result | Limit         | Units     | Level      | Result    | %REC     | Limits | RPD | Limit | Notes |
| Batch P3K2209 - *** DEFAULT PREP *** |        |               |           |            |           |          |        |     |       |       |
| Calibration Check (P3K2209-CCV1)     |        |               |           | Prepared & | Analyzed: | 11/22/23 |        |     |       |       |
| Benzene                              | 0.111  | 0.00100       | mg/kg     | 0.100      |           | 111      | 80-120 |     |       |       |
| Toluene                              | 0.102  | 0.00100       | "         | 0.100      |           | 102      | 80-120 |     |       |       |
| Ethylbenzene                         | 0.105  | 0.00100       | "         | 0.100      |           | 105      | 80-120 |     |       |       |
| Xylene (p/m)                         | 0.217  | 0.00200       | "         | 0.200      |           | 109      | 80-120 |     |       |       |
| Xylene (o)                           | 0.0982 | 0.00100       | "         | 0.100      |           | 98.2     | 80-120 |     |       |       |
| Surrogate: 1,4-Difluorobenzene       | 0.119  |               | "         | 0.120      |           | 99.0     | 75-125 |     |       |       |
| Surrogate: 4-Bromofluorobenzene      | 0.128  |               | "         | 0.120      |           | 107      | 75-125 |     |       |       |
| Calibration Check (P3K2209-CCV2)     |        |               |           | Prepared & | Analyzed: | 11/22/23 |        |     |       |       |
| Benzene                              | 0.116  | 0.00100       | mg/kg     | 0.100      |           | 116      | 80-120 |     |       |       |
| Toluene                              | 0.106  | 0.00100       | "         | 0.100      |           | 106      | 80-120 |     |       |       |
| Ethylbenzene                         | 0.107  | 0.00100       | "         | 0.100      |           | 107      | 80-120 |     |       |       |
| Xylene (p/m)                         | 0.218  | 0.00200       | "         | 0.200      |           | 109      | 80-120 |     |       |       |
| Xylene (o)                           | 0.102  | 0.00100       | "         | 0.100      |           | 102      | 80-120 |     |       |       |
| Surrogate: 1,4-Difluorobenzene       | 0.119  |               | "         | 0.120      |           | 99.0     | 75-125 |     |       |       |
| Surrogate: 4-Bromofluorobenzene      | 0.126  |               | "         | 0.120      |           | 105      | 75-125 |     |       |       |
| Calibration Check (P3K2209-CCV3)     |        |               |           | Prepared & | Analyzed: | 11/22/23 |        |     |       |       |
| Benzene                              | 0.118  | 0.00100       | mg/kg     | 0.100      | •         | 118      | 80-120 |     |       |       |
| Toluene                              | 0.109  | 0.00100       | "         | 0.100      |           | 109      | 80-120 |     |       |       |
| Ethylbenzene                         | 0.110  | 0.00100       | "         | 0.100      |           | 110      | 80-120 |     |       |       |
| Xylene (p/m)                         | 0.222  | 0.00200       | "         | 0.200      |           | 111      | 80-120 |     |       |       |
| Xylene (o)                           | 0.104  | 0.00100       | "         | 0.100      |           | 104      | 80-120 |     |       |       |
| Surrogate: 4-Bromofluorobenzene      | 0.129  |               | "         | 0.120      |           | 107      | 75-125 |     |       |       |
| Surrogate: 1,4-Difluorobenzene       | 0.119  |               | "         | 0.120      |           | 98.8     | 75-125 |     |       |       |
| Matrix Spike (P3K2209-MS1)           | Sou    | ırce: 3K21014 | l-01      | Prepared & | Analyzed: | 11/22/23 |        |     |       |       |
| Benzene                              | 0.0760 | 0.00120       | mg/kg dry | 0.120      | 0.00218   | 61.3     | 80-120 |     |       | QM-0  |
| Toluene                              | 0.0629 | 0.00120       | "         | 0.120      | 0.0108    | 43.2     | 80-120 |     |       | QM-0  |
| Ethylbenzene                         | 0.0620 | 0.00120       | "         | 0.120      | 0.00680   | 45.8     | 80-120 |     |       | QM-0  |
| Xylene (p/m)                         | 0.133  | 0.00241       | "         | 0.241      | 0.0267    | 44.2     | 80-120 |     |       | QM-0  |
| Xylene (o)                           | 0.0550 | 0.00120       | "         | 0.120      | 0.00898   | 38.2     | 80-120 |     |       | QM-0  |
| Surrogate: 4-Bromofluorobenzene      | 0.156  |               | "         | 0.145      |           | 108      | 80-120 |     |       |       |
| Surrogate: 1,4-Difluorobenzene       | 0.141  |               | "         | 0.145      |           | 97.8     | 80-120 |     |       |       |

Permian Basin Environmental Lab, L.P.

13000 West County Road 100

Odessa TX, 79765

Project Number: 16187 Project Manager: Blake Estep

## BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Project: BSWU #3 CTB

|         |        | Reporting |       | Spike | Source |      | %REC   |     | RPD   |       |
|---------|--------|-----------|-------|-------|--------|------|--------|-----|-------|-------|
| Analyte | Result | Limit     | Units | Level | Result | %REC | Limits | RPD | Limit | Notes |

### Batch P3K2209 - \*\*\* DEFAULT PREP \*\*\*

| Matrix Spike Dup (P3K2209-MSD1) | Sour   | Source: 3K21014-01 |           |       | & Analyzed: | 11/22/23 |        |       |    |       |
|---------------------------------|--------|--------------------|-----------|-------|-------------|----------|--------|-------|----|-------|
| Benzene                         | 0.0768 | 0.00120            | mg/kg dry | 0.120 | 0.00218     | 62.0     | 80-120 | 1.12  | 20 | QM-05 |
| Toluene                         | 0.0617 | 0.00120            | "         | 0.120 | 0.0108      | 42.3     | 80-120 | 2.22  | 20 | QM-05 |
| Ethylbenzene                    | 0.0624 | 0.00120            | "         | 0.120 | 0.00680     | 46.2     | 80-120 | 0.674 | 20 | QM-05 |
| Xylene (p/m)                    | 0.134  | 0.00241            | "         | 0.241 | 0.0267      | 44.4     | 80-120 | 0.576 | 20 | QM-05 |
| Xylene (o)                      | 0.0554 | 0.00120            | "         | 0.120 | 0.00898     | 38.5     | 80-120 | 0.730 | 20 | QM-05 |
| Surrogate: 4-Bromofluorobenzene | 0.154  |                    | "         | 0.145 |             | 107      | 80-120 |       |    |       |
| Surrogate: 1,4-Difluorobenzene  | 0.141  |                    | "         | 0.145 |             | 97.4     | 80-120 |       |    |       |

13000 West County Road 100 Project Number: 16187

Odessa TX, 79765

Project Manager: Blake Estep

Project: BSWU #3 CTB

## Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

| Analyte                          | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|----------------------------------|--------|--------------------|-------|----------------|------------------|-------------|----------------|------|--------------|-------|
| Batch P3K2110 - TX 1005          |        |                    |       |                |                  |             |                |      |              |       |
| Blank (P3K2110-BLK1)             |        |                    |       | Prepared: 1    | 11/21/23 A1      | nalvzed: 11 | /22/23         |      |              |       |
| C6-C12                           | ND     | 25.0               | mg/kg | Tropulou       | 17,217,20 111    |             | 22.20          |      |              |       |
| >C12-C28                         | ND     | 25.0               | "     |                |                  |             |                |      |              |       |
| >C28-C35                         | ND     | 25.0               | "     |                |                  |             |                |      |              |       |
| Surrogate: 1-Chlorooctane        | 92.3   |                    | "     | 100            |                  | 92.3        | 70-130         |      |              |       |
| Surrogate: o-Terphenyl           | 56.0   |                    | "     | 50.0           |                  | 112         | 70-130         |      |              |       |
| LCS (P3K2110-BS1)                |        |                    |       | Prepared: 1    | 11/21/23 Aı      | nalyzed: 11 | /22/23         |      |              |       |
| C6-C12                           | 863    | 25.0               | mg/kg | 1000           |                  | 86.3        | 75-125         |      |              |       |
| >C12-C28                         | 826    | 25.0               | "     | 1000           |                  | 82.6        | 75-125         |      |              |       |
| Surrogate: 1-Chlorooctane        | 91.5   |                    | "     | 100            |                  | 91.5        | 70-130         |      |              |       |
| Surrogate: o-Terphenyl           | 54.9   |                    | "     | 50.0           |                  | 110         | 70-130         |      |              |       |
| LCS Dup (P3K2110-BSD1)           |        |                    |       | Prepared: 1    | 11/21/23 Aı      | nalyzed: 11 | /22/23         |      |              |       |
| C6-C12                           | 820    | 25.0               | mg/kg | 1000           |                  | 82.0        | 75-125         | 5.14 | 20           |       |
| >C12-C28                         | 809    | 25.0               | "     | 1000           |                  | 80.9        | 75-125         | 2.08 | 20           |       |
| Surrogate: 1-Chlorooctane        | 90.9   |                    | "     | 100            |                  | 90.9        | 70-130         |      |              |       |
| Surrogate: o-Terphenyl           | 52.4   |                    | "     | 50.0           |                  | 105         | 70-130         |      |              |       |
| Calibration Check (P3K2110-CCV1) |        |                    |       | Prepared: 1    | 11/21/23 Aı      | nalyzed: 11 | /22/23         |      |              |       |
| C6-C12                           | 444    | 25.0               | mg/kg | 500            |                  | 88.7        | 85-115         |      |              |       |
| >C12-C28                         | 493    | 25.0               | "     | 500            |                  | 98.5        | 85-115         |      |              |       |
| Surrogate: 1-Chlorooctane        | 97.5   |                    | "     | 100            |                  | 97.5        | 70-130         |      |              |       |
| Surrogate: o-Terphenyl           | 59.3   |                    | "     | 50.0           |                  | 119         | 70-130         |      |              |       |
| Calibration Check (P3K2110-CCV2) |        |                    |       | Prepared: 1    | 11/21/23 Aı      | nalyzed: 11 | /22/23         |      |              |       |
| C6-C12                           | 515    | 25.0               | mg/kg | 500            |                  | 103         | 85-115         |      |              |       |
| >C12-C28                         | 459    | 25.0               | "     | 500            |                  | 91.7        | 85-115         |      |              |       |
| Surrogate: 1-Chlorooctane        | 97.9   |                    | "     | 100            |                  | 97.9        | 70-130         |      |              |       |
| Surrogate: o-Terphenyl           | 56.2   |                    | "     | 50.0           |                  | 112         | 70-130         |      |              |       |

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: BSWU #3 CTB

Project Number: 16187 Project Manager: Blake Estep

# Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

|                                  |        | Reporting   |           | Spike       | Source     |             | %REC   |      | RPD   |       |
|----------------------------------|--------|-------------|-----------|-------------|------------|-------------|--------|------|-------|-------|
| Analyte                          | Result | Limit       | Units     | Level       | Result     | %REC        | Limits | RPD  | Limit | Notes |
| Batch P3K2110 - TX 1005          |        |             |           |             |            |             |        |      |       |       |
| Calibration Check (P3K2110-CCV3) |        |             |           | Prepared: 1 | 11/21/23 A | nalyzed: 11 | /22/23 |      |       |       |
| C6-C12                           | 427    | 25.0        | mg/kg     | 500         |            | 85.4        | 85-115 |      |       |       |
| >C12-C28                         | 472    | 25.0        | "         | 500         |            | 94.4        | 85-115 |      |       |       |
| Surrogate: 1-Chlorooctane        | 101    |             | "         | 100         |            | 101         | 70-130 |      |       |       |
| Surrogate: o-Terphenyl           | 56.2   |             | "         | 50.0        |            | 112         | 70-130 |      |       |       |
| Duplicate (P3K2110-DUP1)         | Sour   | ce: 3K21010 | -20       | Prepared: 1 | 11/21/23 A | nalyzed: 11 | /22/23 |      |       |       |
| C6-C12                           | 26.4   | 26.9        | mg/kg dry |             | 15.9       |             |        | 49.8 | 20    |       |
| >C12-C28                         | ND     | 26.9        | "         |             | ND         |             |        |      | 20    |       |
| Surrogate: 1-Chlorooctane        | 92.1   |             | "         | 108         |            | 85.7        | 70-130 |      |       |       |
| Surrogate: o-Terphenyl           | 54.5   |             | "         | 53.8        |            | 101         | 70-130 |      |       |       |

13000 West County Road 100

Project: BSWU #3 CTB

Project Number: 16187 Odessa TX, 79765 Project Manager: Blake Estep

## General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

| Analyte                              | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|--------------------------------------|--------|--------------------|-------|----------------|------------------|-------------|----------------|------|--------------|-------|
| Batch P3K2210 - *** DEFAULT PREP *** |        |                    |       |                |                  |             |                |      |              |       |
| Blank (P3K2210-BLK1)                 |        |                    |       | Prepared &     | k Analyzed:      | 11/22/23    |                |      |              |       |
| % Moisture                           | ND     | 0.1                | %     |                |                  |             |                |      |              |       |
| Blank (P3K2210-BLK2)                 |        |                    |       | Prepared &     | Analyzed:        | 11/22/23    |                |      |              |       |
| % Moisture                           | ND     | 0.1                | %     |                |                  |             |                |      |              |       |
| Blank (P3K2210-BLK3)                 |        |                    |       | Prepared &     | Analyzed:        | 11/22/23    |                |      |              |       |
| % Moisture                           | ND     | 0.1                | %     |                |                  |             |                |      |              |       |
| Duplicate (P3K2210-DUP1)             | Sour   | ce: 3K21010-       | 05    | Prepared &     | Analyzed:        | 11/22/23    |                |      |              |       |
| % Moisture                           | 7.0    | 0.1                | %     |                | 6.0              |             |                | 15.4 | 20           |       |
| Duplicate (P3K2210-DUP2)             | Sour   | ce: 3K21010-       | 15    | Prepared &     | Analyzed:        | 11/22/23    |                |      |              |       |
| % Moisture                           | 7.0    | 0.1                | %     |                | 7.0              |             |                | 0.00 | 20           |       |
| Duplicate (P3K2210-DUP3)             | Sour   | ce: 3K21011-       | 10    | Prepared &     | Analyzed:        | 11/22/23    |                |      |              |       |
| % Moisture                           | 14.0   | 0.1                | %     |                | 15.0             |             |                | 6.90 | 20           |       |
| Duplicate (P3K2210-DUP4)             | Sour   | ce: 3K21011-       | 20    | Prepared &     | Analyzed:        | 11/22/23    |                |      |              |       |
| % Moisture                           | 9.0    | 0.1                | %     |                | 9.0              |             |                | 0.00 | 20           |       |
| Duplicate (P3K2210-DUP5)             | Sour   | ce: 3K21015-       | .03   | Prepared &     | Analyzed:        | 11/22/23    |                |      |              |       |
| % Moisture                           | 3.0    | 0.1                | %     |                | 4.0              |             |                | 28.6 | 20           | R     |
| Batch P3K2211 - *** DEFAULT PREP *** |        |                    |       |                |                  |             |                |      |              |       |
| Blank (P3K2211-BLK1)                 |        |                    |       | Prepared:      | 11/22/23 A       | nalyzed: 11 | /29/23         |      |              |       |
| Chloride                             | ND     | 1.00               | mg/kg |                |                  |             |                |      |              |       |

13000 West County Road 100 Odessa TX, 79765 Project: BSWU #3 CTB

Project Number: 16187
Project Manager: Blake Estep

# General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

|                                      |        | Reporting     |       | Spike       | Source      |             | %REC   |      | RPD   |       |
|--------------------------------------|--------|---------------|-------|-------------|-------------|-------------|--------|------|-------|-------|
| Analyte                              | Result | Limit         | Units | Level       | Result      | %REC        | Limits | RPD  | Limit | Notes |
| Batch P3K2211 - *** DEFAULT PREP *** |        |               |       |             |             |             |        |      |       |       |
| LCS (P3K2211-BS1)                    |        |               |       | Prepared:   | 11/22/23 A1 |             |        |      |       |       |
| Chloride                             | 19.2   |               | mg/kg | 18.0        |             | 107         | 90-110 |      |       |       |
| LCS Dup (P3K2211-BSD1)               |        |               |       | Prepared:   | 11/22/23 A1 | nalyzed: 11 | /29/23 |      |       |       |
| Chloride                             | 17.4   |               | mg/kg | 18.0        |             | 96.9        | 90-110 | 9.82 | 10    |       |
| Calibration Check (P3K2211-CCV1)     |        |               |       | Prepared:   | 11/22/23 Aı | nalyzed: 11 | /29/23 |      |       |       |
| Chloride                             | 18.4   |               | mg/kg | 20.0        |             | 92.2        | 90-110 |      |       |       |
| Calibration Check (P3K2211-CCV2)     |        |               |       | Prepared: 1 | 11/22/23 A1 | nalyzed: 11 | /29/23 |      |       |       |
| Chloride                             | 18.8   |               | mg/kg | 20.0        |             | 93.9        | 90-110 |      |       |       |
| Matrix Spike (P3K2211-MS1)           | Sou    | rce: 3K21008- | -01   | Prepared:   | 11/22/23 A1 | nalyzed: 11 | /29/23 |      |       |       |
| Chloride                             | 118    |               | mg/kg | 100         | 11.1        | 107         | 80-120 |      |       |       |
| Matrix Spike (P3K2211-MS2)           | Sou    | rce: 3K21010- | -11   | Prepared:   | 11/22/23 A1 | nalyzed: 11 | /30/23 |      |       |       |
| Chloride                             | 98.5   |               | mg/kg | 100         | 0.701       | 97.8        | 80-120 |      |       |       |
| Matrix Spike Dup (P3K2211-MSD1)      | Sou    | rce: 3K21008- | -01   | Prepared: 1 | 11/22/23 Aı | nalyzed: 11 | /29/23 |      |       |       |
| Chloride                             | 116    |               | mg/kg | 100         | 11.1        | 105         | 80-120 | 1.56 | 20    |       |
| Matrix Spike Dup (P3K2211-MSD2)      | Sou    | rce: 3K21010- | -11   | Prepared: 1 | 11/22/23 Aı | nalyzed: 11 | /30/23 |      |       |       |
| Chloride                             | 94.3   |               | mg/kg | 100         | 0.701       | 93.6        | 80-120 | 4.38 | 20    |       |
| Batch P3K2708 - *** DEFAULT PREP *** |        |               |       |             |             |             |        |      |       |       |
|                                      |        |               |       |             |             |             |        |      |       |       |
| Blank (P3K2708-BLK1)                 |        |               |       | Prepared:   | 11/27/23 Aı | nalyzed: 11 | /30/23 |      |       |       |

13000 West County Road 100Project Number:16187Odessa TX, 79765Project Manager:Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: BSWU #3 CTB

|                                      |        | Reporting      |       | Spike                                 | Source    |             | %REC   |      | RPD   |       |
|--------------------------------------|--------|----------------|-------|---------------------------------------|-----------|-------------|--------|------|-------|-------|
| Analyte                              | Result | Limit          | Units | Level                                 | Result    | %REC        | Limits | RPD  | Limit | Notes |
| Batch P3K2708 - *** DEFAULT PREP *** |        |                |       |                                       |           |             |        |      |       |       |
| LCS (P3K2708-BS1)                    |        |                |       | Prepared: 1                           | 1/27/23 A | nalyzed: 11 | /30/23 |      |       |       |
| Chloride                             | 17.0   |                | mg/kg | 16.0                                  |           | 106         | 90-110 |      |       |       |
| LCS Dup (P3K2708-BSD1)               |        |                |       | Prepared: 1                           | 1/27/23 A | nalyzed: 11 | /30/23 |      |       |       |
| Chloride                             | 15.7   |                | mg/kg | 16.0                                  |           | 98.1        | 90-110 | 8.07 | 10    |       |
| Calibration Check (P3K2708-CCV1)     |        |                |       | Prepared: 1                           | 1/27/23 A | nalyzed: 11 | /30/23 |      |       |       |
| Chloride                             | 17.2   |                | mg/kg | 16.0                                  | ·         | 108         | 90-110 |      | ·     |       |
| Calibration Check (P3K2708-CCV2)     |        |                |       | Prepared: 1                           | 1/27/23 A | nalyzed: 12 | /01/23 |      |       |       |
| Chloride                             | 18.5   |                | mg/kg | 20.0                                  |           | 92.3        | 90-110 |      |       |       |
| Matrix Spike (P3K2708-MS1)           | Sour   | rce: 3K21010-1 | .6    | Prepared: 11/27/23 Analyzed: 11/30/23 |           |             |        |      |       |       |
| Chloride                             | 97.8   |                | mg/kg | 100                                   | 2.52      | 95.2        | 80-120 |      |       |       |
| Matrix Spike (P3K2708-MS2)           | Sour   | rce: 3K21011-0 | 6     | Prepared: 1                           | 1/27/23 A | nalyzed: 12 | /01/23 |      |       |       |
| Chloride                             | 98.8   |                | mg/kg | 100                                   | 0.252     | 98.6        | 80-120 |      |       |       |
| Matrix Spike Dup (P3K2708-MSD1)      | Sour   | rce: 3K21010-1 | 6     | Prepared: 1                           | 1/27/23 A | /30/23      |        |      |       |       |
| Chloride                             | 94.1   |                | mg/kg | 100                                   | 2.52      | 91.5        | 80-120 | 3.87 | 20    |       |
| Matrix Spike Dup (P3K2708-MSD2)      | Sour   | rce: 3K21011-0 | 6     | Prepared: 1                           | 1/27/23 A | nalyzed: 12 | /01/23 |      |       |       |
| Chloride                             | 96.9   |                | mg/kg | 100                                   | 0.252     | 96.6        | 80-120 | 1.99 | 20    |       |

13000 West County Road 100

Odessa TX, 79765

Project: BSWU #3 CTB

Project Number: 16187 Project Manager: Blake Estep

#### **Notes and Definitions**

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

ROI Received on Ice

R3 The RPD exceeded the acceptance limit due to sample matrix effects.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were

within acceptance limits showing that the laboratory is in control and the data is acceptable.

NPBEL CC Chain of Custody was not generated at PBELAB

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By: Date: 6/6/2024

Brent Barron, Laboratory Director/Technical Director

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1] Project: BSWU #3 CTB

13000 West County Road 100Project Number:16187Odessa TX, 79765Project Manager:Blake Estep

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

Sampler Signature:

City/State/Zip:

Midland, Texas 79711

bake @etechenv.com

Area:

☑Bill Etech

Company Name:

Project Manager:

Company Address: P.O. Box 62228

| Etech Environmental & Safety Solutions, Inc. | BLAKE ESTEP                 | Midland Texas 79701 Phone: 432-686-7235 | A B Permian Basin Environmental Lab. LP           |  |
|----------------------------------------------|-----------------------------|-----------------------------------------|---------------------------------------------------|--|
| Project #: 16/17 Project Loc:                | Project Name: DSWU # 5 C1/5 | 80 : 33 N-8                             | CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST ) 02 |  |
|                                              |                             |                                         | B                                                 |  |

| Preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preservation & # of Containers  If you have a preser | #: 3K2 O O  Preservation & # of Containers  and a preservation & # of |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Preservation & # of Containers Matrix 66 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3K2(010   TOTAL: □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3K2(010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

BIAN B Permian Basin Environme

| rtal Lab, LP |                                              |   |
|--------------|----------------------------------------------|---|
|              | CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST |   |
|              |                                              | ^ |

| Relinquished by: Date Time Relinquished by: | A CALIFORNIA C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 461         | \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bolisaniishad by: | CPU COLLEGE TO COMPANY CONTROL AND ADDRESS OF THE COLLEGE OF THE C | Special instructions: |  |  |  |  | 17.5 +5              | 454                                        | Him offer to        | 7.5 MPS | S<br>S  | 15 12/1-3 1-13:11/ | LAB # (lab use only)  FEED COOR Start Depth End Depth                                                                                                                                      | Preserv                        | 3K21010 | (lab use only) | 4                         | Sampler Signature: email: | Midland, Jexas 79711 | Š.        | Company Name: Frech Environmental & Safety Solutions, Inc. |               | 1 400 Rankin Hwy Midland Texas 79701 |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|--|----------------------|--------------------------------------------|---------------------|---------|---------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------|----------------|---------------------------|---------------------------|----------------------|-----------|------------------------------------------------------------|---------------|--------------------------------------|
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | And the second control of the second control of the second control of the second of th |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |  |  |  |  | 1 128 11 14 10 10 10 | <i>                                   </i> | /   <i>)</i> 23/  / |         | 1230 11 | 2028  128  1       | Date Sampled  Time Sampled  No. of Containers Ice HNO <sub>3</sub> HCI H <sub>2</sub> SO <sub>4</sub>                                                                                      | Preservation & # of Containers |         |                |                           | しんて @etecnenv.com         |                      |           |                                                            |               | Phone: 482-680-7233                  |
|                                             | And the little of the latest the | Date Time   | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date lime         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |  |  |  |  |                      |                                            |                     |         |         |                    | NaOH  Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> None  Other (Specify)  DW=Drinking Water SL=Sludge  GW = Groundwater S=Soil/Sour  NP=Non-PotableSpecify Other  TPH: 418.1 S015M 1005 1 | Matrix<br>006                  |         |                | Report Format: STANDARD:⊑ | .                         | ⊠Bill Etech          | Area:     | Project #: /6/                                             | Project Name: |                                      |
| 图 Temperature Upon Receipt : うご             | Sar by Courier? UPS DHL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | ž.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | Sample Containers Intact? VOCs Free of Headsnace?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Laboratory Comment    |  |  |  |  |                      |                                            |                     |         |         |                    | Cations (Ca, Mg, Na, K)  Anions (Cl, SO4, CO3, HCO3  SAR / ESP / CEC  Metals: As Ag Ba Cd Cr Pb Hg  Volatiles  Semi volatiles  BTEX 80226/5030 or BTEX 82  RCI  N.O.R.M.                   | Se                             | TOTAL:  |                | NDARD:TRRP:NPDES:         |                           |                      | PO#: 1618 | /87 Project Loc:                                           | Why #JCTS     | さいこしい                                |
| <i>د</i> -                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del></del> | <br>: <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <br>¥             | `<br>~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     |  |  |  |  |                      |                                            |                     |         |         | <b>5</b>           | Chlorides                                                                                                                                                                                  |                                | . %     |                |                           |                           |                      | 7         |                                                            |               |                                      |

RUSH TAT(Pre-Schedule) 24, 48, 72 hrs
STANDARD TAT



DOC #: PBEL\_REV\_SUBMISSION
REVISION #: PBEL\_2021\_1
REVISION Date: 10/29/2021
EFFECTIVE DATE: 10/29/2021

# REVISION/SUBMISSION FORM

Please fill in the required fields below with any requested revisions. In the event that there are multiple workorders or projects to be amended each workorder or project MUST have a separate form filled out entirely. An amended COC must be submitted in addition to the Revision/Submission Form in order for the amendments to be processed. Amended COC's do not replace the requirement of this form. If a revision is required due to errors or omissions on our part this form is still required for the necessary Non-Conformance documentation. Rerun requests will incur additional charges.

Client: eTech Environmental

Project: 3K21010

# Revision Request:

Please rename Auger Hole 1 through Auger Hole 3 to

Auger Hole 6 through Auger Hole 8

Submitted by (Name and Date): Blake Estep 6/6/24

PBEL\_REV\_SUBMISSION\_2021\_1.DOC

Page 1 of 1

**Environment Testing** 

# **ANALYTICAL REPORT**

# PREPARED FOR

Attn: Blake Estep Etech Environmental & Safety Solutions PO BOX 62228 Midland, Texas 79711

Generated 2/26/2024 3:52:22 PM

# **JOB DESCRIPTION**

BSWU #3 CTB 16187

## **JOB NUMBER**

880-39519-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

# **Eurofins Midland**

### **Job Notes**

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

# **Authorization**

Generated 2/26/2024 3:52:22 PM

Authorized for release by Jessica Kramer, Project Manager <u>Jessica.Kramer@et.eurofinsus.com</u> (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 2 of 26

2/26/2024

Client: Etech Environmental & Safety Solutions Project/Site: BSWU #3 CTB Laboratory Job ID: 880-39519-1 SDG: 16187

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 7  |
| Surrogate Summary      | 12 |
| QC Sample Results      | 13 |
| QC Association Summary | 17 |
| Lab Chronicle          | 20 |
| Certification Summary  | 22 |
| Method Summary         | 23 |
| Sample Summary         | 24 |
| Chain of Custody       | 25 |
| Receint Checklists     | 26 |

2

3

4

6

8

40

11

12

14

### **Definitions/Glossary**

Client: Etech Environmental & Safety Solutions Job ID: 880-39519-1 Project/Site: BSWU #3 CTB SDG: 16187

### **Qualifiers**

| - | $\sim$ | ., | $\overline{}$ | • |
|---|--------|----|---------------|---|
| G | U      | V  | U             | А |

| Qualifier | Qualifier Description                                    |
|-----------|----------------------------------------------------------|
| F1        | MS and/or MSD recovery exceeds control limits.           |
| S1+       | Surrogate recovery exceeds control limits, high biased.  |
| U         | Indicates the analyte was analyzed for but not detected. |

### **GC Semi VOA**

| Qualifier | Qualifier Description                                    |
|-----------|----------------------------------------------------------|
| F1        | MS and/or MSD recovery exceeds control limits.           |
| S1-       | Surrogate recovery exceeds control limits, low biased.   |
| S1+       | Surrogate recovery exceeds control limits, high biased.  |
| U         | Indicates the analyte was analyzed for but not detected. |

### HPLC/IC

| Qualifier | Qualifier Description                                    |
|-----------|----------------------------------------------------------|
| U         | Indicates the analyte was analyzed for but not detected. |

### **Glossary**

| Clossury       |                                                                                                             |  |
|----------------|-------------------------------------------------------------------------------------------------------------|--|
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |  |
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |  |
| %R             | Percent Recovery                                                                                            |  |
| CFL            | Contains Free Liquid                                                                                        |  |
| CFU            | Colony Forming Unit                                                                                         |  |
| CNF            | Contains No Free Liquid                                                                                     |  |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |  |
| Dil Fac        | Dilution Factor                                                                                             |  |
| DL             | Detection Limit (DoD/DOE)                                                                                   |  |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |  |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |  |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |  |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |  |

Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry) Method Detection Limit MDL

MLMinimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present Practical Quantitation Limit **PQL** 

**PRES** Presumptive QC **Quality Control** 

RER Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

**TNTC** Too Numerous To Count

**Eurofins Midland** 

### **Case Narrative**

Client: Etech Environmental & Safety Solutions

Project: BSWU #3 CTB

Job ID: 880-39519-1

**Eurofins Midland** Job ID: 880-39519-1

#### Job Narrative 880-39519-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

#### Receipt

The samples were received on 2/16/2024 1:29 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.8°C.

### Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: Sample Point 1 (880-39519-1), Sample Point 2 (880-39519-2), Northside wall (880-39519-3), EastSide Wall (880-39519-4), Southside Wall (880-39519-5) and Westside Wall (880-39519-6).

### **GC VOA**

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-73889 and analytical batch 880-73976 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8021B: Surrogate recovery for the following sample was outside control limits: EastSide Wall (880-39519-4). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following sample was outside control limits: Sample Point 2 (880-39519-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-73889 and analytical batch 880-73976 was outside the upper control limits.

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-73976 recovered above the upper control limit for Ethylbenzene. An acceptable CCV was ran within the 12 hour window, therefore the data has been qualified and reported. The associated sample is impacted: (CCV 880-73976/64).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

### GC Semi VOA

Method 8015MOD NM: The surrogate recovery for the blank associated with preparation batch 880-73439 and analytical batch 880-73600 was outside the upper control limits.

Method 8015MOD\_NM: Surrogate recovery for the following samples were outside control limits: Sample Point 1 (880-39519-1), Sample Point 2 (880-39519-2), Northside wall (880-39519-3), EastSide Wall (880-39519-4), Southside Wall (880-39519-5), Westside Wall (880-39519-6) and (880-39505-A-2-B MS). Evidence of matrix interferences is not obvious.

Method 8015MOD\_NM: The method blank for preparation batch 880-73439 and analytical batch 880-73600 contained Gasoline Range Organics (GRO)-C6-C10 above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed.

Method 8015MOD NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-73439 and analytical batch 880-73600 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within

**Eurofins Midland** 

### **Case Narrative**

Client: Etech Environmental & Safety Solutions

Project: BSWU #3 CTB

Job ID: 880-39519-1

### Job ID: 880-39519-1 (Continued)

**Eurofins Midland** 

acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

**Eurofins Midland** 

3

4

5

6

8

4.0

11

13

14

### **Client Sample Results**

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

SDG: 16187

Job ID: 880-39519-1

**Client Sample ID: Sample Point 1** 

Date Collected: 02/13/24 10:15 Date Received: 02/16/24 13:29

Sample Depth: 48"

Lab Sample ID: 880-39519-1

**Matrix: Solid** 

| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00201  | U         | 0.00201  |     | mg/Kg |   | 02/22/24 16:19 | 02/25/24 15:45 | 1       |
| Toluene                     | <0.00201  | U         | 0.00201  |     | mg/Kg |   | 02/22/24 16:19 | 02/25/24 15:45 | 1       |
| Ethylbenzene                | <0.00201  | U         | 0.00201  |     | mg/Kg |   | 02/22/24 16:19 | 02/25/24 15:45 | 1       |
| m-Xylene & p-Xylene         | <0.00402  | U         | 0.00402  |     | mg/Kg |   | 02/22/24 16:19 | 02/25/24 15:45 | 1       |
| o-Xylene                    | <0.00201  | U         | 0.00201  |     | mg/Kg |   | 02/22/24 16:19 | 02/25/24 15:45 | 1       |
| Xylenes, Total              | <0.00402  | U         | 0.00402  |     | mg/Kg |   | 02/22/24 16:19 | 02/25/24 15:45 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) |           |           | 70 - 130 |     |       |   | 02/22/24 16:19 | 02/25/24 15:45 | 1       |
| 1,4-Difluorobenzene (Surr)  | 103       |           | 70 - 130 |     |       |   | 02/22/24 16:19 | 02/25/24 15:45 | 1       |

Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total BTEX <0.00402 U 0.00402 mg/Kg 02/25/24 15:45

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total TPH <49.8 U 49.8 02/21/24 05:39 mg/Kg

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Dil Fac Unit D Prepared Analyzed <49.8 U Gasoline Range Organics 49.8 mg/Kg 02/19/24 09:07 02/21/24 05:39 (GRO)-C6-C10 Diesel Range Organics (Over <49.8 U 49.8 mg/Kg 02/19/24 09:07 02/21/24 05:39 C10-C28) OII Range Organics (Over C28-C36) <49.8 U 49 8 02/19/24 09:07 02/21/24 05:39 mg/Kg

%Recovery Qualifier Limits Prepared Dil Fac Surrogate Analyzed 23 S1-70 - 130 02/19/24 09:07 02/21/24 05:39 1-Chlorooctane 16 S1-70 - 130 02/19/24 09:07 02/21/24 05:39 o-Terphenyl

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed 5.05 Chloride 116 mg/Kg 02/20/24 16:20

Client Sample ID: Sample Point 2

Date Collected: 02/13/24 10:18 Date Received: 02/16/24 13:29

Sample Depth: 48"

| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00202  | U         | 0.00202  |     | mg/Kg |   | 02/22/24 16:19 | 02/25/24 16:06 | 1       |
| Toluene                     | <0.00202  | U         | 0.00202  |     | mg/Kg |   | 02/22/24 16:19 | 02/25/24 16:06 | 1       |
| Ethylbenzene                | <0.00202  | U         | 0.00202  |     | mg/Kg |   | 02/22/24 16:19 | 02/25/24 16:06 | 1       |
| m-Xylene & p-Xylene         | 0.00512   |           | 0.00404  |     | mg/Kg |   | 02/22/24 16:19 | 02/25/24 16:06 | 1       |
| o-Xylene                    | 0.00550   |           | 0.00202  |     | mg/Kg |   | 02/22/24 16:19 | 02/25/24 16:06 | 1       |
| Xylenes, Total              | 0.0106    |           | 0.00404  |     | mg/Kg |   | 02/22/24 16:19 | 02/25/24 16:06 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 372       | S1+       | 70 - 130 |     |       |   | 02/22/24 16:19 | 02/25/24 16:06 | 1       |

**Eurofins Midland** 

Lab Sample ID: 880-39519-2

**Matrix: Solid** 

### Client Sample Results

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-39519-1

SDG: 16187

Client Sample ID: Sample Point 2

Date Collected: 02/13/24 10:18 Date Received: 02/16/24 13:29

Sample Depth: 48"

Lab Sample ID: 880-39519-2

Lab Sample ID: 880-39519-3

**Matrix: Solid** 

Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

%Recovery Qualifier Limits Prepared Surrogate Analyzed Dil Fac 70 - 130 02/22/24 16:19 1,4-Difluorobenzene (Surr) 104 02/25/24 16:06

**Method: TAL SOP Total BTEX - Total BTEX Calculation** 

Analyte Result Qualifier RL MDL Unit D Analyzed Dil Fac Prepared 0.00404 02/25/24 16:06 **Total BTEX** 0.0106 mg/Kg

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total TPH <50.1 U 50.1 02/21/24 06:02 mg/Kg

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

**MDL** Unit Analyte Result Qualifier RL D Prepared Analyzed Dil Fac <50.1 U 50.1 mg/Kg Gasoline Range Organics 02/19/24 09:07 02/21/24 06:02 (GRO)-C6-C10 <50.1 U 50.1 02/19/24 09:07 02/21/24 06:02 Diesel Range Organics (Over mg/Kg C10-C28) OII Range Organics (Over C28-C36) <50.1 U 50.1 mg/Kg 02/19/24 09:07 02/21/24 06:02

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 19 S1-70 - 130 02/19/24 09:07 02/21/24 06:02 10 S1-70 - 130 02/19/24 09:07 02/21/24 06:02 o-Terphenyl

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 5.05 02/20/24 16:41 Chloride 89.6 mg/Kg

Client Sample ID: Northside wall

Date Collected: 02/13/24 10:20

Date Received: 02/16/24 13:29

Sample Depth: 0-24"

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00200 U 0.00200 mg/Kg 02/22/24 16:19 02/25/24 16:26 Toluene <0.00200 U 0.00200 02/22/24 16:19 02/25/24 16:26 mg/Kg Ethylbenzene <0.00200 U 0.00200 02/22/24 16:19 02/25/24 16:26 mg/Kg 02/25/24 16:26 m-Xylene & p-Xylene <0.00399 U 0.00399 02/22/24 16:19 mg/Kg o-Xylene <0.00200 U 0.00200 mg/Kg 02/22/24 16:19 02/25/24 16:26 Xylenes, Total <0.00399 U 0.00399 mg/Kg 02/22/24 16:19 02/25/24 16:26

%Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed 70 - 130 4-Bromofluorobenzene (Surr) 124 02/22/24 16:19 02/25/24 16:26 1,4-Difluorobenzene (Surr) 104 70 - 130 02/22/24 16:19 02/25/24 16:26

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte Result Qualifier MDL D RL Unit Prepared Analyzed Dil Fac Total BTEX <0.00399 0.00399 mg/Kg 02/25/24 16:26

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac <50.4 U 02/21/24 04:08 Total TPH 50.4 mg/Kg

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

SDG: 16187

Job ID: 880-39519-1

Client Sample ID: Northside wall

Date Collected: 02/13/24 10:20 Date Received: 02/16/24 13:29

Sample Depth: 0-24"

Lab Sample ID: 880-39519-3

Matrix: Solid

| Analyte                           | Result    | Qualifier | RL                  | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|-----------|-----------|---------------------|-----|-------|---|----------------|----------------|---------|
| Gasoline Range Organics           | <50.4     | U         | 50.4                |     | mg/Kg |   | 02/19/24 09:07 | 02/21/24 04:08 | 1       |
| (GRO)-C6-C10                      |           |           |                     |     |       |   |                |                |         |
| Diesel Range Organics (Over       | <50.4     | U         | 50.4                |     | mg/Kg |   | 02/19/24 09:07 | 02/21/24 04:08 | 1       |
| C10-C28)                          |           |           |                     |     |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <50.4     | U         | 50.4                |     | mg/Kg |   | 02/19/24 09:07 | 02/21/24 04:08 | 1       |
| Surrogate                         | %Recovery | Qualifier | Limits              |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 31        | S1-       | 70 - 130            |     |       |   | 02/19/24 09:07 | 02/21/24 04:08 | 1       |
| o-Terphenyl                       | 23        | S1-       | 70 <sub>-</sub> 130 |     |       |   | 02/19/24 09:07 | 02/21/24 04:08 | 1       |

4.97

RL

0.00198

0.00198

0.00198

mg/Kg

MDL Unit

mg/Kg

mg/Kg

mg/Kg

D

Prepared

02/22/24 16:19

02/22/24 16:19

02/22/24 16:19

144

Result Qualifier

<0.00198 U

<0.00198 U

<0.00198 U

Client Sample ID: EastSide Wall

Date Collected: 02/13/24 10:22

Chloride

Analyte

Benzene

Toluene

Ethylbenzene

Date Received: 02/16/24 13:29

Method: SW846 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: 880-39519-4

02/20/24 16:48

Analyzed

02/25/24 16:47

02/25/24 16:47

02/25/24 16:47

**Matrix: Solid** 

Dil Fac

| m-Xylene & p-Xylene         | <0.00396  | U         | 0.00396  | mg/Kg | 02/22/24 16:19 | 02/25/24 16:47 | 1       |
|-----------------------------|-----------|-----------|----------|-------|----------------|----------------|---------|
| o-Xylene                    | <0.00198  | U         | 0.00198  | mg/Kg | 02/22/24 16:19 | 02/25/24 16:47 | 1       |
| Xylenes, Total              | <0.00396  | U         | 0.00396  | mg/Kg | 02/22/24 16:19 | 02/25/24 16:47 | 1       |
|                             | 0/5       | 0 ""      |          |       |                |                | D# 5    |
| Surrogate                   | %Recovery | Qualifier | Limits   |       | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) |           | S1+       | 70 - 130 |       | 02/22/24 16:19 | 02/25/24 16:47 | DII Fac |
|                             |           |           |          |       |                |                | 1 1     |

| Method: TAL SOP Total BTEX - Total | al BTEX Cald | culation  |         |     |       |   |          |                |         |
|------------------------------------|--------------|-----------|---------|-----|-------|---|----------|----------------|---------|
| Analyte                            | Result       | Qualifier | RL      | MDL | Unit  | D | Prepared | Analyzed       | Dil Fac |
| Total BTEX                         | <0.00396     | U         | 0.00396 |     | mg/Kg |   |          | 02/25/24 16:47 | 1       |

|   | Method: SW846 8015 NM - Diesel Range | Organ  | ics (DRO) (GC | <b>;)</b> |     |       |   |          |                |         |
|---|--------------------------------------|--------|---------------|-----------|-----|-------|---|----------|----------------|---------|
|   | Analyte                              | Result | Qualifier     | RL        | MDL | Unit  | D | Prepared | Analyzed       | Dil Fac |
| l | Total TPH                            | <50.5  | U             | 50.5      |     | mg/Kg |   |          | 02/21/24 04:31 | 1       |

| Total TPH                          | <50.5          | U          | 50.5     |     | mg/Kg |   |                | 02/21/24 04:31 | 1       |
|------------------------------------|----------------|------------|----------|-----|-------|---|----------------|----------------|---------|
| -<br>Method: SW846 8015B NM - Dies | sel Range Orga | nics (DRO) | (GC)     |     |       |   |                |                |         |
| Analyte                            | Result         | Qualifier  | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics            | <50.5          | U          | 50.5     |     | mg/Kg |   | 02/19/24 09:07 | 02/21/24 04:31 | 1       |
| (GRO)-C6-C10                       |                |            |          |     |       |   |                |                |         |
| Diesel Range Organics (Over        | <50.5          | U          | 50.5     |     | mg/Kg |   | 02/19/24 09:07 | 02/21/24 04:31 | 1       |
| C10-C28)                           |                |            |          |     |       |   |                |                |         |
| Oll Range Organics (Over C28-C36)  | <50.5          | U          | 50.5     |     | mg/Kg |   | 02/19/24 09:07 | 02/21/24 04:31 | 1       |
| Surrogate                          | %Recovery      | Qualifier  | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                     | 38             | S1-        | 70 - 130 |     |       |   | 02/19/24 09:07 | 02/21/24 04:31 | 1       |
| o-Terphenyl                        | 30             | S1-        | 70 - 130 |     |       |   | 02/19/24 09:07 | 02/21/24 04:31 | 1       |

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-39519-1

SDG: 16187

Client Sample ID: EastSide Wall

Date Collected: 02/13/24 10:22 Date Received: 02/16/24 13:29

Lab Sample ID: 880-39519-4

Matrix: Solid

| Method: EPA 300.0 - Anions, Ion Chro | matograp | hy - Soluble |      |     |       |   |          |                |         |
|--------------------------------------|----------|--------------|------|-----|-------|---|----------|----------------|---------|
| Analyte                              | Result   | Qualifier    | RL   | MDL | Unit  | D | Prepared | Analyzed       | Dil Fac |
| Chloride                             | 166      |              | 4.96 |     | mg/Kg |   |          | 02/20/24 16:54 | 1       |

**Client Sample ID: Southside Wall** 

Date Collected: 02/13/24 10:24

Date Received: 02/16/24 13:29

| ah C | omnla. | ID. | 000 | 201  | 540 E |
|------|--------|-----|-----|------|-------|
| ab 5 | ample  | IU. | 000 | -33: | ס-פוכ |
|      |        |     |     |      |       |

**Matrix: Solid** 

| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 02/22/24 16:19 | 02/25/24 18:37 | 1       |
| Toluene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 02/22/24 16:19 | 02/25/24 18:37 | 1       |
| Ethylbenzene                | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 02/22/24 16:19 | 02/25/24 18:37 | 1       |
| m-Xylene & p-Xylene         | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 02/22/24 16:19 | 02/25/24 18:37 | 1       |
| o-Xylene                    | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 02/22/24 16:19 | 02/25/24 18:37 | 1       |
| Xylenes, Total              | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 02/22/24 16:19 | 02/25/24 18:37 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 100       |           | 70 - 130 |     |       |   | 02/22/24 16:19 | 02/25/24 18:37 | 1       |
| 1.4-Difluorobenzene (Surr)  | 101       |           | 70 - 130 |     |       |   | 02/22/24 16:19 | 02/25/24 18:37 | 1       |

| Method: TAL SOP Total BTEX - Total BTEX Calculation |            |          |           |         |     |       |   |          |                |         |
|-----------------------------------------------------|------------|----------|-----------|---------|-----|-------|---|----------|----------------|---------|
|                                                     | Analyte    | Result   | Qualifier | RL      | MDL | Unit  | D | Prepared | Analyzed       | Dil Fac |
|                                                     | Total BTEX | <0.00400 | U         | 0.00400 |     | mg/Kg |   |          | 02/25/24 18:37 | 1       |

| Method: SW846 8015 NM - Diesel Ra | nge Organics | (DRO) (GC)  |          |   |          |                |         |
|-----------------------------------|--------------|-------------|----------|---|----------|----------------|---------|
| Analyte                           | Result Qu    | ualifier RL | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
| Total TPH                         | <49.9 U      | 49.9        | mg/K     | g |          | 02/21/24 04:54 | 1       |

| Analyte                                 | Result    | Qualifier | RL     | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|-----------|-----------|--------|-----|-------|---|----------------|----------------|---------|
| Gasoline Range Organics<br>(GRO)-C6-C10 | <49.9     | U         | 49.9   |     | mg/Kg |   | 02/19/24 09:07 | 02/21/24 04:54 | 1       |
| Diesel Range Organics (Over C10-C28)    | <49.9     | U         | 49.9   |     | mg/Kg |   | 02/19/24 09:07 | 02/21/24 04:54 | 1       |
| OII Range Organics (Over C28-C36)       | <49.9     | U         | 49.9   |     | mg/Kg |   | 02/19/24 09:07 | 02/21/24 04:54 | 1       |
| Surrogate                               | %Recovery | Qualifier | Limits |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                          | 21        | S1-       | 70 130 |     |       |   | 02/19/24 09:07 | 02/21/24 04:54 |         |

| O-Terphenyl  Method: EPA 300.0 - Anions, Ion Chrom | 11 S1-           | 70 - 130 |          | · | 02/19/24 09:07 | 02/21/24 04:54 | ,       |
|----------------------------------------------------|------------------|----------|----------|---|----------------|----------------|---------|
| Analyte                                            | Result Qualifier | RL       | MDL Unit | D | Prepared       | Analyzed       | Dil Fac |

Client Sample ID: Westside Wall Lab Sample ID: 880-39519-6 Date Collected: 02/13/24 10:26 **Matrix: Solid** 

4.99

mg/Kg

286

Date Received: 02/16/24 13:29

Chloride

| Method: SW846 8021B - Volatile Organic Compounds (GC) |           |           |         |     |       |   |                |                |         |  |  |
|-------------------------------------------------------|-----------|-----------|---------|-----|-------|---|----------------|----------------|---------|--|--|
| Analyte                                               | Result    | Qualifier | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |  |  |
| Benzene                                               | <0.00199  | U         | 0.00199 |     | mg/Kg |   | 02/22/24 16:19 | 02/25/24 18:58 | 1       |  |  |
| Toluene                                               | < 0.00199 | U         | 0.00199 |     | mg/Kg |   | 02/22/24 16:19 | 02/25/24 18:58 | 1       |  |  |
| Ethylbenzene                                          | <0.00199  | U         | 0.00199 |     | mg/Kg |   | 02/22/24 16:19 | 02/25/24 18:58 | 1       |  |  |

**Eurofins Midland** 

02/20/24 17:01

### **Client Sample Results**

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-39519-1

SDG: 16187

**Client Sample ID: Westside Wall** 

Date Collected: 02/13/24 10:26 Date Received: 02/16/24 13:29

Lab Sample ID: 880-39519-6

Matrix: Solid

| Analyte                                                              | Result                   | Qualifier        | RL                   | MDL | Unit  | D | Prepared                         | Analyzed                         | Dil Fa |
|----------------------------------------------------------------------|--------------------------|------------------|----------------------|-----|-------|---|----------------------------------|----------------------------------|--------|
| m-Xylene & p-Xylene                                                  | <0.00398                 | U                | 0.00398              |     | mg/Kg |   | 02/22/24 16:19                   | 02/25/24 18:58                   |        |
| o-Xylene                                                             | <0.00199                 | U                | 0.00199              |     | mg/Kg |   | 02/22/24 16:19                   | 02/25/24 18:58                   |        |
| Xylenes, Total                                                       | <0.00398                 | U                | 0.00398              |     | mg/Kg |   | 02/22/24 16:19                   | 02/25/24 18:58                   |        |
| Surrogate                                                            | %Recovery                | Qualifier        | Limits               |     |       |   | Prepared                         | Analyzed                         | Dil Fa |
| 4-Bromofluorobenzene (Surr)                                          | 122                      |                  | 70 - 130             |     |       |   | 02/22/24 16:19                   | 02/25/24 18:58                   |        |
| 1,4-Difluorobenzene (Surr)                                           | 108                      |                  | 70 - 130             |     |       |   | 02/22/24 16:19                   | 02/25/24 18:58                   |        |
| Method: TAL SOP Total BTEX - T                                       | otal BTEX Cald           | culation         |                      |     |       |   |                                  |                                  |        |
| Analyte                                                              | Result                   | Qualifier        | RL                   | MDL | Unit  | D | Prepared                         | Analyzed                         | Dil Fa |
| Total BTEX                                                           | <0.00398                 | U                | 0.00398              |     | mg/Kg |   |                                  | 02/25/24 18:58                   |        |
| Method: SW846 8015 NM - Diese                                        | l Range Organ            | ics (DRO) (      | GC)                  |     |       |   |                                  |                                  |        |
| Analyte                                                              |                          | Qualifier        | RL                   | MDL | Unit  | D | Prepared                         | Analyzed                         | Dil Fa |
| Total TPH                                                            | <50.0                    | U                | 50.0                 |     | mg/Kg |   |                                  | 02/21/24 05:17                   |        |
| :<br>Method: SW846 8015B NM - Dies                                   | ol Bango Orga            | nice (DBO)       | (CC)                 |     |       |   |                                  |                                  |        |
| Analyte                                                              |                          | Qualifier        | RL                   | MDL | Unit  | D | Prepared                         | Analyzed                         | Dil Fa |
| Gasoline Range Organics                                              | <50.0                    | U                | 50.0                 |     | mg/Kg |   | 02/19/24 09:07                   | 02/21/24 05:17                   |        |
| (GRO)-C6-C10                                                         |                          |                  |                      |     |       |   |                                  |                                  |        |
| Diesel Range Organics (Over                                          | <50.0                    | U                | 50.0                 |     | mg/Kg |   | 02/19/24 09:07                   | 02/21/24 05:17                   |        |
| C10-C28)                                                             |                          |                  |                      |     |       |   |                                  |                                  |        |
| Oll Range Organics (Over C28-C36)                                    | <50.0                    | U                | 50.0                 |     | mg/Kg |   | 02/19/24 09:07                   | 02/21/24 05:17                   |        |
|                                                                      |                          |                  |                      |     |       |   | Prepared                         | Analyzed                         | Dil Fa |
| Surrogate                                                            | %Recovery                | Qualifier        | Limits               |     |       |   |                                  |                                  |        |
|                                                                      | %Recovery                | Qualifier<br>S1- | 70 <sub>-</sub> 130  |     |       |   | 02/19/24 09:07                   | 02/21/24 05:17                   |        |
| 1-Chlorooctane                                                       |                          |                  |                      |     |       |   | 02/19/24 09:07<br>02/19/24 09:07 | 02/21/24 05:17<br>02/21/24 05:17 |        |
| Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion | 66<br>65                 | S1-<br>S1-       | 70 - 130<br>70 - 130 |     |       |   |                                  |                                  |        |
| 1-Chlorooctane<br>o-Terphenyl                                        | 66<br>65<br>Chromatograp | S1-<br>S1-       | 70 - 130<br>70 - 130 | MDL | Unit  | D |                                  |                                  |        |

### **Surrogate Summary**

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-39519-1

SDG: 16187

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

|                         |                        |          |          | Percent Surrogate Recovery (Acceptance Limit |
|-------------------------|------------------------|----------|----------|----------------------------------------------|
|                         |                        | BFB1     | DFBZ1    |                                              |
| Lab Sample ID           | Client Sample ID       | (70-130) | (70-130) |                                              |
| 880-39506-A-2-E MS      | Matrix Spike           | 115      | 97       |                                              |
| 380-39506-A-2-F MSD     | Matrix Spike Duplicate | 106      | 96       |                                              |
| 380-39519-1             | Sample Point 1         | 117      | 103      |                                              |
| 380-39519-2             | Sample Point 2         | 372 S1+  | 104      |                                              |
| 380-39519-3             | Northside wall         | 124      | 104      |                                              |
| 380-39519-4             | EastSide Wall          | 135 S1+  | 100      |                                              |
| 380-39519-5             | Southside Wall         | 100      | 101      |                                              |
| 380-39519-6             | Westside Wall          | 122      | 108      |                                              |
| .CS 880-73889/1-A       | Lab Control Sample     | 117      | 96       |                                              |
| CSD 880-73889/2-A       | Lab Control Sample Dup | 106      | 97       |                                              |
| MB 880-73889/5-A        | Method Blank           | 131 S1+  | 111      |                                              |
| MB 880-73892/5-A        | Method Blank           | 129      | 111      |                                              |
| Surrogate Legend        |                        |          |          |                                              |
| BFB = 4-Bromofluorober  | nzene (Surr)           |          |          |                                              |
| DFBZ = 1,4-Difluorobenz | zene (Surr)            |          |          |                                              |

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

|                     |                        | 1001     | ОТРН1    | Percent Surrogate Recovery (Acceptance Limits) |
|---------------------|------------------------|----------|----------|------------------------------------------------|
| Lab Sample ID       | Client Sample ID       | (70-130) | (70-130) |                                                |
| 880-39505-A-2-B MS  | Matrix Spike           | 67 S1-   | 66 S1-   |                                                |
| 380-39505-A-2-C MSD | Matrix Spike Duplicate | 79       | 75       |                                                |
| 380-39519-1         | Sample Point 1         | 23 S1-   | 16 S1-   |                                                |
| 880-39519-2         | Sample Point 2         | 19 S1-   | 10 S1-   |                                                |
| 380-39519-3         | Northside wall         | 31 S1-   | 23 S1-   |                                                |
| 880-39519-4         | EastSide Wall          | 38 S1-   | 30 S1-   |                                                |
| 380-39519-5         | Southside Wall         | 21 S1-   | 11 S1-   |                                                |
| 380-39519-6         | Westside Wall          | 66 S1-   | 65 S1-   |                                                |
| _CS 880-73439/2-A   | Lab Control Sample     | 97       | 99       |                                                |
| _CSD 880-73439/3-A  | Lab Control Sample Dup | 86       | 86       |                                                |
| MB 880-73439/1-A    | Method Blank           | 133 S1+  | 152 S1+  |                                                |

Surrogate Legend

1CO = 1-Chlorooctane OTPH = o-Terphenyl

**Eurofins Midland** 

2

3

4

6

8

10

12

13

14

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-39519-1

SDG: 16187

### Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-73889/5-A

**Matrix: Solid** Analysis Batch: 73976 Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 73889

|                     | MB       | MB        |         |     |       |   |                |                |         |
|---------------------|----------|-----------|---------|-----|-------|---|----------------|----------------|---------|
| Analyte             | Result   | Qualifier | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene             | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 02/22/24 16:19 | 02/25/24 13:13 | 1       |
| Toluene             | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 02/22/24 16:19 | 02/25/24 13:13 | 1       |
| Ethylbenzene        | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 02/22/24 16:19 | 02/25/24 13:13 | 1       |
| m-Xylene & p-Xylene | <0.00400 | U         | 0.00400 |     | mg/Kg |   | 02/22/24 16:19 | 02/25/24 13:13 | 1       |
| o-Xylene            | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 02/22/24 16:19 | 02/25/24 13:13 | 1       |
| Xylenes, Total      | <0.00400 | U         | 0.00400 |     | mg/Kg |   | 02/22/24 16:19 | 02/25/24 13:13 | 1       |
|                     |          |           |         |     |       |   |                |                |         |

MB MB

| Surrogate                   | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|----------------|----------------|---------|
| 4-Bromofluorobenzene (Surr) | 131       | S1+       | 70 - 130 | 02/22/24 16:19 | 02/25/24 13:13 | 1       |
| 1,4-Difluorobenzene (Surr)  | 111       |           | 70 - 130 | 02/22/24 16:19 | 02/25/24 13:13 | 1       |

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 73889

Prep Type: Total/NA

Prep Batch: 73889

Lab Sample ID: LCS 880-73889/1-A Matrix: Solid

Analysis Batch: 73976

|                     | Spike | LCS     | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.1113  | -         | mg/Kg |   | 111  | 70 - 130 |  |
| Toluene             | 0.100 | 0.09857 |           | mg/Kg |   | 99   | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.1221  |           | mg/Kg |   | 122  | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.2081  |           | mg/Kg |   | 104  | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.09864 |           | mg/Kg |   | 99   | 70 - 130 |  |
|                     |       |         |           |       |   |      |          |  |

LCS LCS

| Surrogate                   | %Recovery | Qualifier | Limits   |
|-----------------------------|-----------|-----------|----------|
| 4-Bromofluorobenzene (Surr) |           |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 96        |           | 70 - 130 |

**Client Sample ID: Lab Control Sample Dup** 

Matrix: Solid

Analysis Batch: 73976

Lab Sample ID: LCSD 880-73889/2-A

|                     | Spike | LCSD    | LCSD      |       |   |      | %Rec     |     | RPD   |
|---------------------|-------|---------|-----------|-------|---|------|----------|-----|-------|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |
| Benzene             | 0.100 | 0.1135  |           | mg/Kg |   | 113  | 70 - 130 | 2   | 35    |
| Toluene             | 0.100 | 0.1007  |           | mg/Kg |   | 101  | 70 - 130 | 2   | 35    |
| Ethylbenzene        | 0.100 | 0.1179  |           | mg/Kg |   | 118  | 70 - 130 | 4   | 35    |
| m-Xylene & p-Xylene | 0.200 | 0.2002  |           | mg/Kg |   | 100  | 70 - 130 | 4   | 35    |
| o-Xylene            | 0.100 | 0.09816 |           | mg/Kg |   | 98   | 70 - 130 | 0   | 35    |

LCSD LCSD

| Surrogate                   | %Recovery | Qualifier | Limits   |
|-----------------------------|-----------|-----------|----------|
| 4-Bromofluorobenzene (Surr) | 106       |           | 70 - 130 |
| 1.4-Difluorobenzene (Surr)  | 97        |           | 70 - 130 |

Lab Sample ID: 880-39506-A-2-E MS

**Matrix: Solid** 

Analysis Batch: 73976

| Client Sample ID: Matrix Spike |  |
|--------------------------------|--|
| Prep Type: Total/NA            |  |

Prep Batch: 73889

|         | Sample    | Sample    | Spike | MS      | MS        |       |   |      | %Rec     |  |
|---------|-----------|-----------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte | Result    | Qualifier | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene | <0.00199  | U         | 0.101 | 0.09522 |           | mg/Kg |   | 94   | 70 - 130 |  |
| Toluene | < 0.00199 | U         | 0.101 | 0.08802 |           | mg/Kg |   | 87   | 70 - 130 |  |

### QC Sample Results

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-39519-1

SDG: 16187

### Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-39506-A-2-E MS

Lab Sample ID: 880-39506-A-2-F MSD

**Matrix: Solid** 

Analysis Batch: 73976

Client Sample ID: Matrix Spike

Prep Type: Total/NA Prep Batch: 73889

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Ethylbenzene < 0.00199 U 0.101 0.08701 86 70 - 130 mg/Kg m-Xylene & p-Xylene <0.00398 UF1 0.202 0.1508 mg/Kg 75 70 - 130 o-Xylene <0.00199 UF1 0.101 0.07694 76 70 - 130 mg/Kg

MS MS

| Surrogate                   | %Recovery ( | Qualifier | Limits   |
|-----------------------------|-------------|-----------|----------|
| 4-Bromofluorobenzene (Surr) | 115         |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 97          |           | 70 - 130 |

Client Sample ID: Matrix Spike Duplicate

70 - 130

64

Prep Type: Total/NA

Prep Batch: 73889

Analysis Batch: 73976

**Matrix: Solid** 

Sample Sample Spike MSD MSD RPD Result Qualifier Added %Rec RPD Limit Analyte Result Qualifier Unit Limits Benzene <0.00199 U 0.100 0.07196 mg/Kg 72 70 - 130 28 35 0.06983 Toluene <0.00199 0.100 mg/Kg 70 70 - 130 23 35 Ethylbenzene <0.00199 U 0.100 0.07369 73 70 - 130 17 35 mg/Kg 0.200 0.1384 F1 70 - 130 m-Xylene & p-Xylene <0.00398 UF1 mg/Kg 69 9 35

0.06431 F1

mg/Kg

0.100

MSD MSD

<0.00199 U F1

| Surrogate                   | %Recovery Qualifier | Limits   |
|-----------------------------|---------------------|----------|
| 4-Bromofluorobenzene (Surr) | 106                 | 70 - 130 |
| 1 4-Difluorobenzene (Surr)  | 96                  | 70 130   |

Lab Sample ID: MB 880-73892/5-A

**Matrix: Solid** 

o-Xylene

Analysis Batch: 73976

Client Sample ID: Method Blank

Prep Type: Total/NA

18

Prep Batch: 73892

MB MB

| Analyte             | Result   | Qualifier | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|---------------------|----------|-----------|---------|-----|-------|---|----------------|----------------|---------|
| Benzene             | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 02/22/24 16:35 | 02/25/24 01:35 | 1       |
| Toluene             | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 02/22/24 16:35 | 02/25/24 01:35 | 1       |
| Ethylbenzene        | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 02/22/24 16:35 | 02/25/24 01:35 | 1       |
| m-Xylene & p-Xylene | <0.00400 | U         | 0.00400 |     | mg/Kg |   | 02/22/24 16:35 | 02/25/24 01:35 | 1       |
| o-Xylene            | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 02/22/24 16:35 | 02/25/24 01:35 | 1       |
| Xylenes, Total      | <0.00400 | U         | 0.00400 |     | mg/Kg |   | 02/22/24 16:35 | 02/25/24 01:35 | 1       |
|                     |          |           |         |     |       |   |                |                |         |

MB MB

мв мв

| Surrogate                   | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|----------------|----------------|---------|
| 4-Bromofluorobenzene (Surr) | 129       |           | 70 - 130 | 02/22/24 16:35 | 02/25/24 01:35 | 1       |
| 1,4-Difluorobenzene (Surr)  | 111       |           | 70 - 130 | 02/22/24 16:35 | 02/25/24 01:35 | 1       |

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-73439/1-A

**Matrix: Solid** 

Analysis Batch: 73600

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 73439

Analyzed

Analyte Result Qualifier RL MDL Unit Prepared <50.0 U 50.0 02/19/24 09:06 02/20/24 20:27 Gasoline Range Organics mg/Kg (GRO)-C6-C10

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-39519-1

SDG: 16187

### Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-73439/1-A

**Matrix: Solid** 

**Matrix: Solid** 

Analysis Batch: 73600

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 73439

|                                   | IND    | IVID      |      |     |       |   |                |                |         |
|-----------------------------------|--------|-----------|------|-----|-------|---|----------------|----------------|---------|
| Analyte                           | Result | Qualifier | RL   | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Diesel Range Organics (Over       | <50.0  | U         | 50.0 |     | mg/Kg |   | 02/19/24 09:06 | 02/20/24 20:27 | 1       |
| C10-C28)                          |        |           |      |     |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <50.0  | U         | 50.0 |     | mg/Kg |   | 02/19/24 09:06 | 02/20/24 20:27 | 1       |
|                                   |        |           |      |     |       |   |                |                |         |

MB MB

MR MR

|   | Surrogate      | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|---|----------------|-----------|-----------|----------|----------------|----------------|---------|
|   | 1-Chlorooctane | 133       | S1+       | 70 - 130 | 02/19/24 09:06 | 02/20/24 20:27 | 1       |
| Į | o-Terphenyl    | 152       | S1+       | 70 - 130 | 02/19/24 09:06 | 02/20/24 20:27 | 1       |

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 880-73439/2-A Prep Type: Total/NA

Prep Batch: 73439

Analysis Batch: 73600 LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Gasoline Range Organics 1000 819.0 82 70 - 130 mg/Kg (GRO)-C6-C10 1000 897.7 Diesel Range Organics (Over mg/Kg 90 70 - 130C10-C28)

LCS LCS

| Surrogate      | %Recovery | Qualifier | Limits   |
|----------------|-----------|-----------|----------|
| 1-Chlorooctane | 97        |           | 70 - 130 |
| o-Terphenyl    | 99        |           | 70 - 130 |

Lab Sample ID: LCSD 880-73439/3-A

**Matrix: Solid** Analysis Batch: 73600 Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 73439

|                             | Spike | LCSD   | LCSD      |       |   |      | %Rec     |     | RPD   |  |
|-----------------------------|-------|--------|-----------|-------|---|------|----------|-----|-------|--|
| Analyte                     | Added | Result | Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |  |
| Gasoline Range Organics     | 1000  | 802.7  |           | mg/Kg |   | 80   | 70 - 130 | 2   | 20    |  |
| (GRO)-C6-C10                |       |        |           |       |   |      |          |     |       |  |
| Diesel Range Organics (Over | 1000  | 866.2  |           | mg/Kg |   | 87   | 70 - 130 | 4   | 20    |  |
| C10-C28)                    |       |        |           |       |   |      |          |     |       |  |

LCSD LCSD

| Surrogate      | %Recovery Qualifi | er Limits |
|----------------|-------------------|-----------|
| 1-Chlorooctane | 86                | 70 - 130  |
| o-Terphenyl    | 86                | 70 - 130  |

Lab Sample ID: 880-39505-A-2-B MS

**Matrix: Solid** 

Analysis Batch: 73600

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 73439

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits <49.5 U F1 1010 624.1 F1 58 70 - 130 Gasoline Range Organics mg/Kg (GRO)-C6-C10 1010 507.1 F1 Diesel Range Organics (Over <49.5 UF1 mg/Kg 48 70 - 130

C10-C28)

|                | MS        | MS        |          |  |  |
|----------------|-----------|-----------|----------|--|--|
| Surrogate      | %Recovery | Qualifier | Limits   |  |  |
| 1-Chlorooctane | 67        | S1-       | 70 - 130 |  |  |
| o-Terphenvl    | 66        | S1-       | 70 - 130 |  |  |

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-39519-1

SDG: 16187

### Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-39505-A-2-C MSD

Analysis Batch: 73600

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA Prep Batch: 73439

Sample Sample Spike MSD MSD RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Gasoline Range Organics <49.5 UF1 1010 700.5 F1 mg/Kg 65 70 - 130 12 20 (GRO)-C6-C10 1010 Diesel Range Organics (Over 583.6 F1 55 70 - 130 <49.5 U F1 mg/Kg 14

C10-C28)

**Matrix: Solid** 

MSD MSD

| Surrogate      | %Recovery | Qualifier | Limits   |
|----------------|-----------|-----------|----------|
| 1-Chlorooctane | 79        |           | 70 - 130 |
| o-Terphenyl    | 75        |           | 70 - 130 |

### Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-73544/1-A

**Matrix: Solid** 

**Analysis Batch: 73636** 

Client Sample ID: Method Blank **Prep Type: Soluble** 

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Sample Point 1

Client Sample ID: Sample Point 1

**Prep Type: Soluble** 

**Prep Type: Soluble** 

**Prep Type: Soluble** 

MB MB

MDL Unit Result Qualifier Analyte RL Prepared Analyzed Dil Fac Chloride <5.00 5.00 02/20/24 16:00 mg/Kg

Lab Sample ID: LCS 880-73544/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble** 

**Analysis Batch: 73636** 

|          | Spike | LCS    | LCS       |       |   |      | %Rec     |      |
|----------|-------|--------|-----------|-------|---|------|----------|------|
| Analyte  | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |      |
| Chloride | 250   | 260.4  | -         | mg/Kg |   | 104  | 90 - 110 | <br> |

Lab Sample ID: LCSD 880-73544/3-A

**Matrix: Solid** 

Analysis Batch: 73636

| -        | Spike | LCSD   | LCSD      |       |   |      | %Rec     |     | RPD   |  |
|----------|-------|--------|-----------|-------|---|------|----------|-----|-------|--|
| Analyte  | Added | Result | Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |  |
| Chloride | 250   | 263.2  |           | ma/Ka |   | 105  | 90 - 110 |     | 20    |  |

Lab Sample ID: 880-39519-1 MS

**Matrix: Solid** 

**Analysis Batch: 73636** 

|          | Sample | Sample    | Spike | MS     | MS        |       |   |      | %Rec     |  |
|----------|--------|-----------|-------|--------|-----------|-------|---|------|----------|--|
| Analyte  | Result | Qualifier | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |  |
| Chloride | 116    |           | 253   | 365.8  |           | mg/Kg | _ | 99   | 90 - 110 |  |

Lab Sample ID: 880-39519-1 MSD

Matrix: Solid

| Analysis Batch: 73636 |        |           |       |        |           |       |   |      |          |     |       |
|-----------------------|--------|-----------|-------|--------|-----------|-------|---|------|----------|-----|-------|
|                       | Sample | Sample    | Spike | MSD    | MSD       |       |   |      | %Rec     |     | RPD   |
| Analyte               | Result | Qualifier | Added | Result | Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |
| Chloride              | 116    |           | 253   | 368.1  |           | mg/Kg |   | 100  | 90 - 110 | 1   | 20    |

### **QC Association Summary**

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-39519-1 SDG: 16187

### **GC VOA**

Prep Batch: 73889

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 880-39519-1         | Sample Point 1         | Total/NA  | Solid  | 5035   |            |
| 880-39519-2         | Sample Point 2         | Total/NA  | Solid  | 5035   |            |
| 880-39519-3         | Northside wall         | Total/NA  | Solid  | 5035   |            |
| 880-39519-4         | EastSide Wall          | Total/NA  | Solid  | 5035   |            |
| 880-39519-5         | Southside Wall         | Total/NA  | Solid  | 5035   |            |
| 880-39519-6         | Westside Wall          | Total/NA  | Solid  | 5035   |            |
| MB 880-73889/5-A    | Method Blank           | Total/NA  | Solid  | 5035   |            |
| LCS 880-73889/1-A   | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |
| LCSD 880-73889/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |
| 880-39506-A-2-E MS  | Matrix Spike           | Total/NA  | Solid  | 5035   |            |
| 880-39506-A-2-F MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 5035   |            |

### Prep Batch: 73892

| Lab Sample ID    | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|------------------|------------------|-----------|--------|--------|------------|
| MB 880-73892/5-A | Method Blank     | Total/NA  | Solid  | 5035   |            |

### Analysis Batch: 73976

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 880-39519-1         | Sample Point 1         | Total/NA  | Solid  | 8021B  | 73889      |
| 880-39519-2         | Sample Point 2         | Total/NA  | Solid  | 8021B  | 73889      |
| 880-39519-3         | Northside wall         | Total/NA  | Solid  | 8021B  | 73889      |
| 880-39519-4         | EastSide Wall          | Total/NA  | Solid  | 8021B  | 73889      |
| 880-39519-5         | Southside Wall         | Total/NA  | Solid  | 8021B  | 73889      |
| 880-39519-6         | Westside Wall          | Total/NA  | Solid  | 8021B  | 73889      |
| MB 880-73889/5-A    | Method Blank           | Total/NA  | Solid  | 8021B  | 73889      |
| MB 880-73892/5-A    | Method Blank           | Total/NA  | Solid  | 8021B  | 73892      |
| LCS 880-73889/1-A   | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 73889      |
| LCSD 880-73889/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 73889      |
| 880-39506-A-2-E MS  | Matrix Spike           | Total/NA  | Solid  | 8021B  | 73889      |
| 880-39506-A-2-F MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 73889      |

#### **Analysis Batch: 74072**

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method     | Prep Batch |
|---------------|------------------|-----------|--------|------------|------------|
| 880-39519-1   | Sample Point 1   | Total/NA  | Solid  | Total BTEX |            |
| 880-39519-2   | Sample Point 2   | Total/NA  | Solid  | Total BTEX |            |
| 880-39519-3   | Northside wall   | Total/NA  | Solid  | Total BTEX |            |
| 880-39519-4   | EastSide Wall    | Total/NA  | Solid  | Total BTEX |            |
| 880-39519-5   | Southside Wall   | Total/NA  | Solid  | Total BTEX |            |
| 880-39519-6   | Westside Wall    | Total/NA  | Solid  | Total BTEX |            |

### **GC Semi VOA**

### Prep Batch: 73439

| Lab Sample ID    | Client Sample ID | Prep Type | Matrix | Method      | Prep Batch |
|------------------|------------------|-----------|--------|-------------|------------|
| 880-39519-1      | Sample Point 1   | Total/NA  | Solid  | 8015NM Prep |            |
| 880-39519-2      | Sample Point 2   | Total/NA  | Solid  | 8015NM Prep |            |
| 880-39519-3      | Northside wall   | Total/NA  | Solid  | 8015NM Prep |            |
| 880-39519-4      | EastSide Wall    | Total/NA  | Solid  | 8015NM Prep |            |
| 880-39519-5      | Southside Wall   | Total/NA  | Solid  | 8015NM Prep |            |
| 880-39519-6      | Westside Wall    | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-73439/1-A | Method Blank     | Total/NA  | Solid  | 8015NM Prep |            |

### **QC Association Summary**

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-39519-1 SDG: 16187

### GC Semi VOA (Continued)

### Prep Batch: 73439 (Continued)

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|---------------------|------------------------|-----------|--------|-------------|------------|
| LCS 880-73439/2-A   | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-73439/3-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 880-39505-A-2-B MS  | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-39505-A-2-C MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015NM Prep |            |

### Analysis Batch: 73600

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|---------------------|------------------------|-----------|--------|----------|------------|
| 880-39519-1         | Sample Point 1         | Total/NA  | Solid  | 8015B NM | 73439      |
| 880-39519-2         | Sample Point 2         | Total/NA  | Solid  | 8015B NM | 73439      |
| 880-39519-3         | Northside wall         | Total/NA  | Solid  | 8015B NM | 73439      |
| 880-39519-4         | EastSide Wall          | Total/NA  | Solid  | 8015B NM | 73439      |
| 880-39519-5         | Southside Wall         | Total/NA  | Solid  | 8015B NM | 73439      |
| 880-39519-6         | Westside Wall          | Total/NA  | Solid  | 8015B NM | 73439      |
| MB 880-73439/1-A    | Method Blank           | Total/NA  | Solid  | 8015B NM | 73439      |
| LCS 880-73439/2-A   | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 73439      |
| LCSD 880-73439/3-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 73439      |
| 880-39505-A-2-B MS  | Matrix Spike           | Total/NA  | Solid  | 8015B NM | 73439      |
| 880-39505-A-2-C MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015B NM | 73439      |

### Analysis Batch: 73769

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method  | Prep Batch |
|---------------|------------------|-----------|--------|---------|------------|
| 880-39519-1   | Sample Point 1   | Total/NA  | Solid  | 8015 NM |            |
| 880-39519-2   | Sample Point 2   | Total/NA  | Solid  | 8015 NM |            |
| 880-39519-3   | Northside wall   | Total/NA  | Solid  | 8015 NM |            |
| 880-39519-4   | EastSide Wall    | Total/NA  | Solid  | 8015 NM |            |
| 880-39519-5   | Southside Wall   | Total/NA  | Solid  | 8015 NM |            |
| 880-39519-6   | Westside Wall    | Total/NA  | Solid  | 8015 NM |            |

### HPLC/IC

#### Leach Batch: 73544

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|--------------------|------------------------|-----------|--------|----------|------------|
| 880-39519-1        | Sample Point 1         | Soluble   | Solid  | DI Leach |            |
| 880-39519-2        | Sample Point 2         | Soluble   | Solid  | DI Leach |            |
| 880-39519-3        | Northside wall         | Soluble   | Solid  | DI Leach |            |
| 880-39519-4        | EastSide Wall          | Soluble   | Solid  | DI Leach |            |
| 880-39519-5        | Southside Wall         | Soluble   | Solid  | DI Leach |            |
| 880-39519-6        | Westside Wall          | Soluble   | Solid  | DI Leach |            |
| MB 880-73544/1-A   | Method Blank           | Soluble   | Solid  | DI Leach |            |
| LCS 880-73544/2-A  | Lab Control Sample     | Soluble   | Solid  | DI Leach |            |
| LCSD 880-73544/3-A | Lab Control Sample Dup | Soluble   | Solid  | DI Leach |            |
| 880-39519-1 MS     | Sample Point 1         | Soluble   | Solid  | DI Leach |            |
| 880-39519-1 MSD    | Sample Point 1         | Soluble   | Solid  | DI Leach |            |

### Analysis Batch: 73636

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|---------------|------------------|-----------|--------|--------|------------|
| 880-39519-1   | Sample Point 1   | Soluble   | Solid  | 300.0  | 73544      |
| 880-39519-2   | Sample Point 2   | Soluble   | Solid  | 300.0  | 73544      |
| 880-39519-3   | Northside wall   | Soluble   | Solid  | 300.0  | 73544      |
| 880-39519-4   | EastSide Wall    | Soluble   | Solid  | 300.0  | 73544      |
| 880-39519-5   | Southside Wall   | Soluble   | Solid  | 300.0  | 73544      |

**Eurofins Midland** 

Page 18 of 26

### **QC Association Summary**

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-39519-1 SDG: 16187

### **HPLC/IC (Continued)**

### Analysis Batch: 73636 (Continued)

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 880-39519-6        | Westside Wall          | Soluble   | Solid  | 300.0  | 73544      |
| MB 880-73544/1-A   | Method Blank           | Soluble   | Solid  | 300.0  | 73544      |
| LCS 880-73544/2-A  | Lab Control Sample     | Soluble   | Solid  | 300.0  | 73544      |
| LCSD 880-73544/3-A | Lab Control Sample Dup | Soluble   | Solid  | 300.0  | 73544      |
| 880-39519-1 MS     | Sample Point 1         | Soluble   | Solid  | 300.0  | 73544      |
| 880-39519-1 MSD    | Sample Point 1         | Soluble   | Solid  | 300.0  | 73544      |

Job ID: 880-39519-1 SDG: 16187

### **Client Sample ID: Sample Point 1**

Date Collected: 02/13/24 10:15 Date Received: 02/16/24 13:29

Lab Sample ID: 880-39519-1

**Matrix: Solid** 

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.98 g  | 5 mL   | 73889  | 02/22/24 16:19 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 73976  | 02/25/24 15:45 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 74072  | 02/25/24 15:45 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 73769  | 02/21/24 05:39 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.04 g | 10 mL  | 73439  | 02/19/24 09:07 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 73600  | 02/21/24 05:39 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.95 g  | 50 mL  | 73544  | 02/19/24 14:31 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 73636  | 02/20/24 16:20 | CH      | EET MID |

**Client Sample ID: Sample Point 2** 

Date Collected: 02/13/24 10:18

Date Received: 02/16/24 13:29

Lab Sample ID: 880-39519-2

**Matrix: Solid** 

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.95 g  | 5 mL   | 73889  | 02/22/24 16:19 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 73976  | 02/25/24 16:06 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 74072  | 02/25/24 16:06 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 73769  | 02/21/24 06:02 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.98 g  | 10 mL  | 73439  | 02/19/24 09:07 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 73600  | 02/21/24 06:02 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.95 g  | 50 mL  | 73544  | 02/19/24 14:31 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 73636  | 02/20/24 16:41 | CH      | EET MID |

Client Sample ID: Northside wall

Date Collected: 02/13/24 10:20

Date Received: 02/16/24 13:29

| <b>Lab Sample</b> | ID: 880-39519-3 |
|-------------------|-----------------|
|-------------------|-----------------|

**Matrix: Solid** 

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.01 g  | 5 mL   | 73889  | 02/22/24 16:19 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 73976  | 02/25/24 16:26 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 74072  | 02/25/24 16:26 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 73769  | 02/21/24 04:08 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.92 g  | 10 mL  | 73439  | 02/19/24 09:07 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 73600  | 02/21/24 04:08 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.03 g  | 50 mL  | 73544  | 02/19/24 14:31 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 73636  | 02/20/24 16:48 | CH      | EET MID |

Client Sample ID: EastSide Wall

Batch

Туре

Prep

Analysis

Analysis

Batch

Method

5035

8021B

Total BTEX

Date Collected: 02/13/24 10:22

Date Received: 02/16/24 13:29

Prep Type

Total/NA

Total/NA

Total/NA

| Lab Sample ID: 8 | 80-39519-4    |
|------------------|---------------|
|                  | Matrix: Solid |

| Prepared       |         |         |
|----------------|---------|---------|
| or Analyzed    | Analyst | Lab     |
| 02/22/24 16:19 | MNR     | EET MID |
| 02/25/24 16:47 | MNR     | EET MID |
| 02/25/24 16:47 | SM      | EET MID |

**Eurofins Midland** 

Page 20 of 26

Initial

Amount

5.05 g

5 mL

Final

Amount

5 mL

5 mL

Batch

73889

73976

74072

Number

Dil

1

1

Factor

Run

#### **Lab Chronicle**

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

SDG: 16187

Job ID: 880-39519-1

Client Sample ID: EastSide Wall

Date Collected: 02/13/24 10:22 Date Received: 02/16/24 13:29 Lab Sample ID: 880-39519-4

Matrix: Solid

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 73769  | 02/21/24 04:31 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.90 g  | 10 mL  | 73439  | 02/19/24 09:07 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 73600  | 02/21/24 04:31 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.04 g  | 50 mL  | 73544  | 02/19/24 14:31 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 73636  | 02/20/24 16:54 | CH      | EET MID |

Client Sample ID: Southside Wall Lab Sam

Date Collected: 02/13/24 10:24

Date Received: 02/16/24 13:29

Lab Sample ID: 880-39519-5 Matrix: Solid

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.00 g  | 5 mL   | 73889  | 02/22/24 16:19 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 73976  | 02/25/24 18:37 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 74072  | 02/25/24 18:37 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 73769  | 02/21/24 04:54 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.03 g | 10 mL  | 73439  | 02/19/24 09:07 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 73600  | 02/21/24 04:54 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.01 g  | 50 mL  | 73544  | 02/19/24 14:31 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 73636  | 02/20/24 17:01 | СН      | EET MID |

**Client Sample ID: Westside Wall** 

Date Collected: 02/13/24 10:26

Date Received: 02/16/24 13:29

Lab Sample ID: 880-39519-6

Matrix: Solid

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.02 g  | 5 mL   | 73889  | 02/22/24 16:19 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 73976  | 02/25/24 18:58 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 74072  | 02/25/24 18:58 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 73769  | 02/21/24 05:17 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.01 g | 10 mL  | 73439  | 02/19/24 09:07 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 73600  | 02/21/24 05:17 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.96 g  | 50 mL  | 73544  | 02/19/24 14:31 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 73636  | 02/20/24 17:21 | CH      | EET MID |

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

**Eurofins Midland** 

2

3

\_

6

8

10

12

1 1

### **Accreditation/Certification Summary**

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-39519-1

SDG: 16187

### **Laboratory: Eurofins Midland**

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| Authority       | Progra                          | am                             | Identification Number                     | Expiration Date        |  |  |
|-----------------|---------------------------------|--------------------------------|-------------------------------------------|------------------------|--|--|
| Texas           | NELA                            | Р                              | T104704400-23-26                          | 06-30-24               |  |  |
| ,               | are included in this report, bu | ut the laboratory is not certi | fied by the governing authority. This lis | t may include analytes |  |  |
| Analysis Method | Prep Method                     | Matrix                         | Analyte                                   |                        |  |  |
| 8015 NM         |                                 | Solid                          | Total TPH                                 |                        |  |  |
| Total BTEX      |                                 | Solid                          | Total BTEX                                |                        |  |  |

### **Method Summary**

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-39519-1

SI

| DG: | 16187 |  |
|-----|-------|--|
|     |       |  |

| Method      | Method Description                 | Protocol | Laboratory |
|-------------|------------------------------------|----------|------------|
| 8021B       | Volatile Organic Compounds (GC)    | SW846    | EET MID    |
| Total BTEX  | Total BTEX Calculation             | TAL SOP  | EET MID    |
| 8015 NM     | Diesel Range Organics (DRO) (GC)   | SW846    | EET MID    |
| 8015B NM    | Diesel Range Organics (DRO) (GC)   | SW846    | EET MID    |
| 300.0       | Anions, Ion Chromatography         | EPA      | EET MID    |
| 5035        | Closed System Purge and Trap       | SW846    | EET MID    |
| 8015NM Prep | Microextraction                    | SW846    | EET MID    |
| DI Leach    | Deionized Water Leaching Procedure | ASTM     | EET MID    |

#### **Protocol References:**

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

### **Sample Summary**

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-39519-1

SDG: 16187

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       | Depth |
|---------------|------------------|--------|----------------|----------------|-------|
| 880-39519-1   | Sample Point 1   | Solid  | 02/13/24 10:15 | 02/16/24 13:29 | 48"   |
| 880-39519-2   | Sample Point 2   | Solid  | 02/13/24 10:18 | 02/16/24 13:29 | 48"   |
| 880-39519-3   | Northside wall   | Solid  | 02/13/24 10:20 | 02/16/24 13:29 | 0-24" |
| 880-39519-4   | EastSide Wall    | Solid  | 02/13/24 10:22 | 02/16/24 13:29 |       |
| 880-39519-5   | Southside Wall   | Solid  | 02/13/24 10:24 | 02/16/24 13:29 |       |
| 880-39519-6   | Westside Wall    | Solid  | 02/13/24 10:26 | 02/16/24 13:29 |       |

Project Manager

ompany Name:

Etech Environmental 13000 West CR 100 Midland, TX 79711

Blake Estep

Bill to: (if different)

Company Name:

City, State ZIP:

Reporting Level II

Level III \_ PST/UST

TRRP

Havel IV D

City, State ZIP:

Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) / Houston,TX (281) 240-4200 Dallas,TX (214) Midland,TX (432-704-5440) EL Paso,TX (91

|                   |                                      |                     | Atlanta,GA (770-449-8800) Tampa FL (813-620-2000) | 15)585-3443 Lubbock,TX (806)794-1296 | 902-0300 San Antonio,TX (210) 509-3334 | Custody |
|-------------------|--------------------------------------|---------------------|---------------------------------------------------|--------------------------------------|----------------------------------------|---------|
| Ctato             | Program:                             |                     | 20-2000)                                          |                                      |                                        |         |
| State of Droinet: | Program: UST/PST PRP Brownfields RRC |                     | ¥                                                 | (                                    | 7                                      | とうなりこ   |
|                   | PRP                                  | Work o              | www xenco com                                     |                                      |                                        | 22      |
|                   | Brownfiel                            | Work Order Comments | o com                                             |                                      |                                        |         |
|                   | ds<br>.R                             | ment                | Page                                              |                                      |                                        |         |
|                   | RC                                   | Ø                   |                                                   |                                      |                                        |         |

Superfund

|    | WA .    |         | Relinquished by: (Signature) | ervice. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses enco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be | ce Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions | Circle Method(s) and Metal(s) to be analyzed | Total 200.7 / 6010 200.8 / 6020: |            |                  |         | lest side wall | wath Side well | ast side wall | bortusidewell | while found 2 | imple found 4 | Sample Identification   | mple Custody Seals: Yes No | Seals: Ye          | /Test | スタ                                      | AMBI E RECEIPT Temp | npier's Name: | ), Number: | ject Number: \G\87 | BSCU井3           | one: (432)         |
|----|---------|---------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|------------|------------------|---------|----------------|----------------|---------------|---------------|---------------|---------------|-------------------------|----------------------------|--------------------|-------|-----------------------------------------|---------------------|---------------|------------|--------------------|------------------|--------------------|
| 7  | Jam     | )       | Rece                         | t of samples and si<br>applied to each pro                                                                                                                                                                                                                                                                                         | shment of samples                                                                                                                                                                                        | o be analyzed                                | 20:                              |            |                  |         | *              |                |               |               |               | Soil 2/15/24  | Matrix Date Sampled     | AHA                        | MIA                | No    | N S I I I I I I I I I I I I I I I I I I | Temn Blank: You     |               |            |                    | SCO E            | (432)563-2200      |
|    |         |         | Received by: (Signature)     | hall not assume any re<br>ject and a charge of \$                                                                                                                                                                                                                                                                                  | s constitutes a valid pu                                                                                                                                                                                 | ТСLР                                         | 8RCRA 13PPM                      |            |                  |         | 10:46          | 10:24          | 10:72         | 10:20         | (0:18         | 51:01 12      | te Time<br>bled Sampled | Total Containers:          | Correction Factor: |       | Thermometer                             |                     | Due Date      | Rush       | Routine            | 7                | Emall              |
|    |         |         | ire)                         | sponsibility for any<br>5 for each sample s                                                                                                                                                                                                                                                                                        | ırchase order from                                                                                                                                                                                       | 8R<br>C                                      | Texas 11                         |            |                  |         | 4              |                |               | 0-24"         | 48"           | 46"           | Depth                   |                            | 711                | 277   | Tes No                                  | ζ,                  | Date          |            | ine                | Turn Around      |                    |
|    | 2/16/24 |         | Date                         | losses or ex<br>ubmitted to X                                                                                                                                                                                                                                                                                                      | ciient compa                                                                                                                                                                                             | ည္                                           | Al Sb As                         |            |                  |         | 1 1            |                |               |               |               | 12 1          | Number<br>BTEX (8       |                            |                    | tain  | ers                                     |                     |               |            | - 10               |                  | blak               |
|    | 12/27   |         | Date/Time                    | penses incurr<br>enco, but not                                                                                                                                                                                                                                                                                                     | ny to Xenco, it                                                                                                                                                                                          | \s Ba Be                                     | Ba Be                            |            |                  | •       | •              |                |               |               |               |               | TPH (和<br>Chloride      |                            | =                  | 80    | <b>3</b> (5)                            | N                   | <u> </u>      |            |                    | Ť                | blake@etechenv_com |
| රා | 4 2     | ,       | Relin                        | ed by the clien<br>analyzed. The                                                                                                                                                                                                                                                                                                   | s affiliates and                                                                                                                                                                                         | id Or O                                      | B Cd Ca                          |            |                  |         |                |                |               |               |               |               |                         |                            |                    |       |                                         |                     |               |            |                    |                  | nv com             |
|    |         |         | Relinguished by:             | nt if such losse                                                                                                                                                                                                                                                                                                                   | d subcontract                                                                                                                                                                                            | o Cu Pb I                                    | Cr Co Cu                         |            |                  |         |                |                |               |               |               |               |                         |                            |                    |       |                                         |                     |               |            |                    | ANALYSIS         |                    |
|    |         | 489     | : (Signature)                | es are due to o                                                                                                                                                                                                                                                                                                                    | ors. It assign:                                                                                                                                                                                          | <b>ا</b> حا                                  | F.                               |            |                  |         |                |                |               |               |               |               |                         |                            |                    |       |                                         |                     |               |            |                    | S REQUEST        |                    |
|    |         |         | œ)                           | are due to circumstances beyond the control enforced unless previously negotiated.                                                                                                                                                                                                                                                 | s standard te                                                                                                                                                                                            | Mo Ni Se Ag T                                | Ph Ma Mn Mo Ni                   |            |                  |         |                |                |               |               |               |               |                         |                            |                    |       |                                         |                     |               |            |                    | 37               | Deliverables       |
|    |         |         | Received                     | s beyond the c<br>sly negotiated                                                                                                                                                                                                                                                                                                   | rms and condi                                                                                                                                                                                            | TI U                                         | N X SP                           |            |                  |         |                |                |               |               |               |               |                         |                            |                    |       |                                         |                     |               |            |                    |                  | s EDD [            |
|    |         |         | Received by (Signature       | ontrol                                                                                                                                                                                                                                                                                                                             | tions                                                                                                                                                                                                    | ú                                            | An SiOo                          |            | 000 000          | 880-398 |                |                |               |               |               |               |                         |                            |                    |       |                                         |                     |               | ,          |                    |                  | Ab Ab              |
|    |         |         | ature)                       |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                          | 1631 / 245                                   | Na Sr Ti                         |            | Claim of Custody |         |                |                |               | -             |               |               | ø                       |                            |                    |       |                                         |                     |               | Bill Etech |                    | 4                | ADaPT              |
|    |         |         | Date/Time                    |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                          | / 7470 /                                     | 1 Sn    V 7n                     |            | <br>Custody      |         |                |                |               |               |               |               | Sample Comments         |                            |                    |       |                                         |                     |               | ich        |                    | Work Order Notes | Other              |
|    |         | ect/e-t | ي حست                        |                                                                                                                                                                                                                                                                                                                                    | ± ند=                                                                                                                                                                                                    |                                              | _                                | لــــــــا |                  |         |                |                | _             |               | ~~            | E             | of 26                   | `                          |                    |       |                                         |                     |               |            | E                  | August A         | <b>—</b>           |

Revised Date 051418 Rev 2018 1

<u>으</u>

### **Login Sample Receipt Checklist**

Client: Etech Environmental & Safety Solutions

Job Number: 880-39519-1

SDG Number: 16187

Login Number: 39519 List Source: Eurofins Midland

List Number: 1

Creator: Wheeler, Jazmine

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| The cooler's custody seal, if present, is intact.                                | N/A    |         |
| Sample custody seals, if present, are intact.                                    | N/A    |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the containers received and the COC.          | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified.                                                    | N/A    |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").  | N/A    |         |

4

## **APPENDIX F**



## Correspondence & Notifications

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213



<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

### **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS

Action 313478

#### **QUESTIONS**

| Operator:           | OGRID:                                     |
|---------------------|--------------------------------------------|
| CHEVRON U S A INC   | 4323                                       |
| 6301 Deauville Blvd | Action Number:                             |
| Midland, TX 79706   | 313478                                     |
|                     | Action Type:                               |
|                     | [NOTIFY] Notification Of Sampling (C-141N) |
| QUESTIONS           |                                            |

| Prerequisites    |                                                          |  |  |  |  |  |  |
|------------------|----------------------------------------------------------|--|--|--|--|--|--|
| Incident ID (n#) | nAPP2216550022                                           |  |  |  |  |  |  |
| Incident Name    | NAPP2216550022 BENSON SHUGART WATERFLOOD UNIT #3 CTB @ 0 |  |  |  |  |  |  |
| Incident Type    | Oil Release                                              |  |  |  |  |  |  |
| Incident Status  | Remediation Plan Approved                                |  |  |  |  |  |  |

| Location of Release Source |                                       |  |  |  |  |  |
|----------------------------|---------------------------------------|--|--|--|--|--|
| Site Name                  | BENSON SHUGART WATERFLOOD UNIT #3 CTB |  |  |  |  |  |
| Date Release Discovered    | 06/09/2022                            |  |  |  |  |  |
| Surface Owner              | Federal                               |  |  |  |  |  |

| Sampling Event General Information                                                              |            |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------|------------|--|--|--|--|--|--|
| Please answer all the questions in this group.                                                  |            |  |  |  |  |  |  |
| What is the sampling surface area in square feet                                                | 350        |  |  |  |  |  |  |
| What is the estimated number of samples that will be gathered                                   | 5          |  |  |  |  |  |  |
| Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC | 02/12/2024 |  |  |  |  |  |  |
| Time sampling will commence                                                                     | 10:00 AM   |  |  |  |  |  |  |

Warning: Notification can not be less than two business days prior to conducting final sampling.

| Please provide any information necessary for observers to contact samplers | Contact: Delton Petty Contact #: 432.967.9224 |
|----------------------------------------------------------------------------|-----------------------------------------------|
| Please provide any information necessary for navigation to sampling site   | GPS: 32.713379, -103.919543                   |

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

**State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505** 

CONDITIONS

Action 313478

#### **CONDITIONS**

| Operator:           | OGRID:                                     |
|---------------------|--------------------------------------------|
| CHEVRON U S A INC   | 4323                                       |
| 6301 Deauville Blvd | Action Number:                             |
| Midland, TX 79706   | 313478                                     |
|                     | Action Type:                               |
|                     | [NOTIFY] Notification Of Sampling (C-141N) |

#### CONDITIONS

| Created By |                                                                                                                                                                                                       | Condition<br>Date |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| abarnhill  | Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted. | 2/12/2024         |

## **APPENDIX G**

## **Archived Reports**

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213





July 20, 2022

Robert Hamlet
New Mexico Energy, Minerals and Natural Resources Department
Oil Conservation Division
1220 South St. Francis Drive
Santa Fe, NM 87505
PH #: 575-748-1283
Robert.Hamlet@state.nm.us

Re: Soil Remediation Workplan

Chevron USA

Benson Shugart Waterflood Unit #3 CTB Release (nAPP2216550022)

GPS: N 32.71331° W 103.91948°

Unit Letter "J", Section 26, Township 18 South, Range 30 East

Eddy County, New Mexico

Dear Mr. Hamlet,

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of Chevron USA (Chevron), has prepared this Soil Remediation Workplan for the Benson Shugart Waterflood Unit #3 CTB Release Site (Release Site). The legal description of the Release Site is Unit Letter "J", Section 26, Township 18 South, Range 30 East, in Eddy County, New Mexico. The GPS coordinates for the site are N 32.71331° W 103.91948°. A Site Location Map and Aerial Proximity Map are provided as Figure 1 and Figure 2, respectively.

#### INTRODUCTION

On June 9, 2022, a reportable release occurred at the Release Site. The release was the result of a pin hole in the bottom of a heater treater and impacted the caliche production pad within the containment area. Approximately eleven and three-quarter (11.75) barrels (bbls) of crude oil and twenty-three and nine-tenths (23.9) of produced water was released with approximately nine and six-tenths (9.6) bbls of crude oil recovered via vacuum trucks, for a net loss of two and fifteen-hundredths (2.15) bbls of crude oil and twenty-three and nine-tenths (23.9) bbls of produced water. The initial Form C-141 is provided in Appendix A.

### NMOCD SITE CLASSIFICATION

NMOCD assessment and cleanup levels for hydrocarbon and produced water releases are based on depth to groundwater and karst status and follow the criteria in the revised August 2018 Title 19 Chapter 15 part 29 New Mexico Administrative Code (19.15.29 NMAC) regulations. Groundwater databases maintained by the New Mexico Office of the State Engineer (NMOSE), New Mexico Bureau of Geology & Mineral Resources (NMBGMR), and United States Geological Survey (USGS) were accessed to determine if any registered water wells were located within a half-mile of the site. The databases identified no registered water wells within a ½-mile radius. No water wells were located within one thousand (1,000) ft of the release. The two closest water wells of the site were USGS 324244103561601 (1.07 miles west) & 324241103561201 (1.07 miles west) with depths ranging from one hundred eighty-four (184) ft below ground surface (bgs) to two hundred five (205) ft bgs for an average depth of one hundred ninety-five (195) ft bgs. In addition, the site is listed as being in a medium Karst Topography region. See Appendix B for maps, along with water well data, detailing the site relative to groundwater locations. Based on the NMOCD site classification system, the following soil remediation levels were assigned to the Release Site:

- Benzene 10 mg/Kg (ppm)
- Total BTEX 50 mg/Kg (ppm)
- Total TPH 100 mg/Kg (ppm)
- Chloride 600 mg/Kg (ppm)

#### INITIAL ASSESSMENT AND DELINEATION ACTIVITIES

On June 28, 2022, Etech was onsite to perform the initial assessment and delineation of the release. The release, located on Bureau of Land Management (BLM) property, measured approximately forty-six (46) feet (ft) in length and twenty-one (21) ft wide within the bermed containment. The surface dimensions covered an area of approximately 966 square feet. Four (4) auger holes (Bottom Hole 1 through Bottom Hole 4) were installed in the spill area to depths ranging from six (6) inches bgs to forty-eight (48) inches bgs. Refusal was encountered at twelve (12) inches bgs in Bottom Hole 2, twelve (12) inches bgs in Bottom Hole 3, and six (6) inches bgs in Bottom Hole 4. Samples were collected and submitted to Europhins Laboratory in Midland, Texas for analysis of Benzene, Toulene, Ethylbenzene, and Xylenes (BTEX) by EPA method 8021B, Total Petroleum Hydrocarbons (TPH) by EPA method 8015M, and Chlorides by EPA method 300.0. Analytical concentrations for Benzene, Total BTEX, TPH, and/or chloride were above method detection limit (MDL) and/or the New Mexico Oil Conservation Division (NMOCD) remediation standards in Bottom Hole 1 (BH-1) in intervals 0-6" and 6-12", Bottom Hole 2 (AH-2) in interval 0-6", Bottom Hole 3 (BH-3) in intervals 0-6" and 6-12", and Bottom Hole 4 (BH-4) in interval 0-6". The chlorides were not delineated in Bottom Hole 2, 3, or 4. In addition, TPH was not delineated in Bottom Holes 2, 3, or 4. BTEX was fully delineated in all borings. See Table 1 for analytical results. See Appendix C for attached photos detailing release and impact to pad. See Figure 3 for Delineation Plat.

#### SOIL DELINEATION AND REMEDIATION WORKPLAN

Etech proposes to complete delineation and remediation in accordance with NMOCD rules and regulations which will entail the following:

- Impacted soils will be excavated to appropriate depths based on delineation data and stockpiled on plastic awaiting disposal.
- During excavation activities soils will be field screened utilizing chloride test kits and a PID meter for determination of laboratory sampling and additional excavation, if warranted.
- Upon completion of the excavation, confirmation soil samples will be collected every two hundred (200) square feet from the base and sidewalls (representing no more than 50 linear feet) of the excavated areas. Additional, discrete grab samples will be collected from wet or visibly stained areas inferred to have been affected by the release, as necessary. Samples will be submitted to Permian Basin Environmental Labs of Texas (PBELAB) for analysis of BTEX by EPA Method 8021B, TPH by EPA Method 8015M, and Chlorides by EPA method 300.0.
- The impacted soils will be transported off-site for disposal at an NMOCD approved disposal facilty. Estimated 60 cubic yards of impacted soils based on delineation results.
- Upon completion of additional delineation/remediation and requisite soil sampling, the site will be backfilled with locally sourced, non-impacted "like" material from an approved off-site facility and brought back to grade.
- A closure report with final C-141 will be submitted to the NMOCD upon completion of remediation activities.

Once the soil remediation work plan has been approved by the NMOCD, Chevron will commence remediation activities. Upon completion of remediation activities, Chevron will complete the activities within ninety (90) days of approval and submit a "Remediation Summary and Site Closure Request Report" to the NMOCD.

If you have any questions, or if additional information is required, please feel free to call me at 432-563-2200 (office) or 432-653-9697 (cell).

Thank you,

Jeffrey Kindley, P.G.

Hay Kindley

Senior Project Manager/Geologist

Etech Environmental & Safety Solutions, Inc.

### **Attachments:**

Figure 1 – Topographic Map

Figure 2 – Aerial Proximity Map

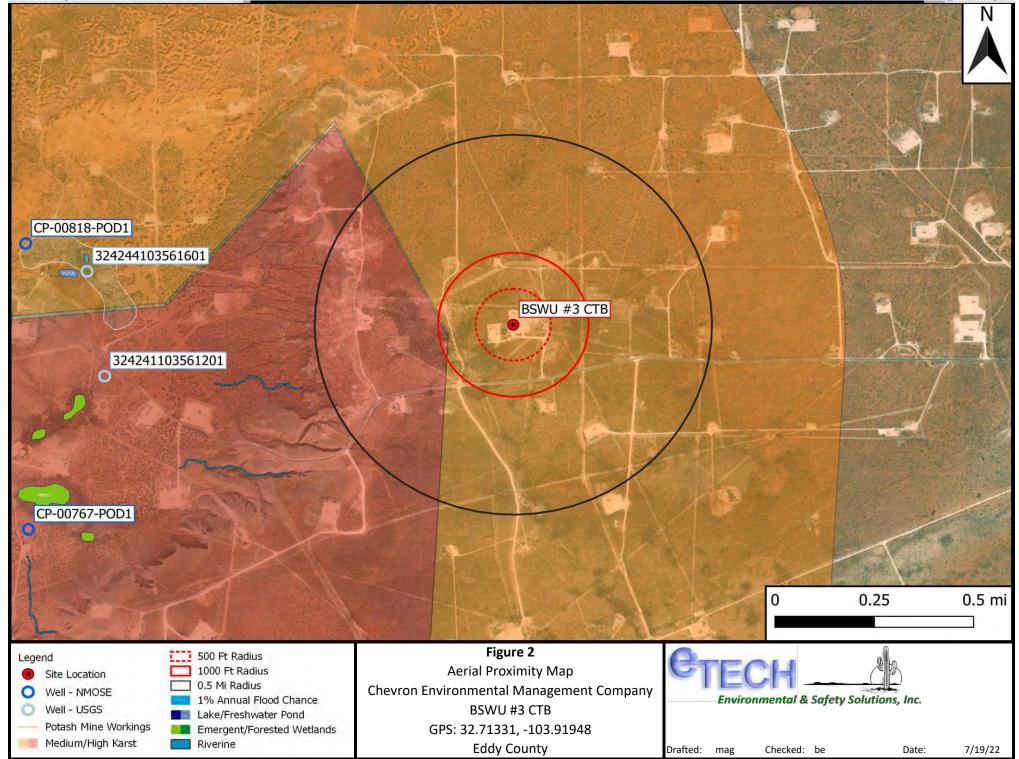
Figure 3 – Delineation Plat

Table 1 – Initial Concentrations of BTEX, TPH, and Chloride in Soil

Appendix A: Initial Release Notification and Corrective Action Form C-141


Appendix B: Groundwater Data Maps and Supporting Water Well Data

Appendix C: Photographic Documentation


Appendix D: Laboratory Analytical

cc: File

## Figure 1 Topographic Map



## Figure 2 Aerial Proximity Map



# Figure 3 Delineation Plat



## Table 1 Concentrations of BTEX, TPH, and Chloride in Soil

6/28/2022

Bottom Hole 4 @ 0-6"

0-0.5 In-Situ

< 0.0994

42.8

1,690

3,610

5,300

<250

5,300

3,830

|                                          | Table 1                                           |                 |                |                    |                               |                                                   |                                                    |                                                            |                                                    |                                                   |                     |
|------------------------------------------|---------------------------------------------------|-----------------|----------------|--------------------|-------------------------------|---------------------------------------------------|----------------------------------------------------|------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------|---------------------|
|                                          | Concentrations of BTEX, TPH, and Chloride in Soil |                 |                |                    |                               |                                                   |                                                    |                                                            |                                                    |                                                   |                     |
| Chevron Environmental Management Company |                                                   |                 |                |                    |                               |                                                   |                                                    |                                                            |                                                    |                                                   |                     |
|                                          | BSWU #3 CTB                                       |                 |                |                    |                               |                                                   |                                                    |                                                            |                                                    |                                                   |                     |
| NMOCD Ref. #: nAPP2216550022             |                                                   |                 |                |                    |                               |                                                   |                                                    |                                                            |                                                    |                                                   |                     |
| NMO                                      | CD Closure C                                      | ritoria         |                | 10                 | 50 Kei. #. II                 | A11 2210                                          |                                                    | Ī                                                          | Ī                                                  | 100                                               | 600                 |
|                                          |                                                   |                 |                |                    |                               | -                                                 | -                                                  | -                                                          | -                                                  |                                                   |                     |
| NWOCD                                    | NMOCD Reclamation Standard                        |                 |                | 10                 | 50                            | •                                                 | -                                                  | •                                                          | •                                                  | 100                                               | 600                 |
|                                          |                                                   |                 |                | SW 840             | SW 846 8021B SW 846 8015M Ext |                                                   |                                                    | Ext.                                                       | 1                                                  | 4500 Cl                                           |                     |
| Sample ID                                | Date                                              | Depth<br>(Feet) | Soil<br>Status | Benzene<br>(mg/kg) | BTEX<br>(mg/kg)               | GRO<br>C <sub>6</sub> -C <sub>10</sub><br>(mg/kg) | DRO<br>C <sub>10</sub> -C <sub>28</sub><br>(mg/kg) | GRO +<br>DRO<br>C <sub>6</sub> -C <sub>28</sub><br>(mg/kg) | ORO<br>C <sub>28</sub> -C <sub>36</sub><br>(mg/kg) | TPH<br>C <sub>6</sub> -C <sub>36</sub><br>(mg/kg) | Chloride<br>(mg/kg) |
| Bottom Hole 1 @ 0-6"                     | 6/28/2022                                         | 0-0.5           | In-Situ        | 0.336              | 92.0                          | 1,570                                             | 2,080                                              | 3,650                                                      | <250                                               | 3,650                                             | 4,390               |
| Bottom Hole 1 @ 6-12"                    | 6/28/2022                                         | 0.5-1           | In-Situ        | 0.368              | 163                           | 3,780                                             | 3,600                                              | 7,380                                                      | <250                                               | 7,380                                             | 896                 |
| Bottom Hole 1 @ 18-24"                   | 6/28/2022                                         | 1.5-2           | In-Situ        | < 0.00199          | 0.00892                       | < 50.0                                            | < 50.0                                             | < 50.0                                                     | < 50.0                                             | < 50.0                                            | 48.7                |
| Bottom Hole 1 @ 30-36"                   | 6/28/2022                                         | 2.5-3           | In-Situ        | < 0.00200          | < 0.00399                     | < 50.0                                            | < 50.0                                             | < 50.0                                                     | < 50.0                                             | < 50.0                                            | 61.7                |
| Bottom Hole 1 @ 42-48"                   | 6/28/2022                                         | 3.5-4           | In-Situ        | < 0.00198          | < 0.00396                     | <49.9                                             | <49.9                                              | <49.9                                                      | <49.9                                              | <49.9                                             | 77.8                |
| Bottom Hole 2 @ 0-6"                     | 6/28/2022                                         | 0-0.5           | In-Situ        | < 0.100            | 25.5                          | 408                                               | 804                                                | 1,210                                                      | <49.8                                              | 1,210                                             | 7,200               |
| Bottom Hole 2 @ 6-12"                    | 6/28/2022                                         | 0.5-1           | In-Situ        | < 0.00200          | < 0.00401                     | < 50.0                                            | < 50.0                                             | < 50.0                                                     | < 50.0                                             | < 50.0                                            | 1,830               |
| Bottom Hole 3 @ 0-6"                     | 6/28/2022                                         | 0-0.5           | In-Situ        | < 0.399            | 28.1                          | 1,180                                             | 2,020                                              | 3,200                                                      | <250                                               | 3,200                                             | 4,600               |
| Bottom Hole 3 @ 6-12"                    | 6/28/2022                                         | 0.5-1           | In-Situ        | < 0.199            | 33.8                          | 1,010                                             | 1,830                                              | 2,840                                                      | <249                                               | 2,840                                             | 3,740               |

# Appendix A

**Initial Release Notification and Corrective Action Form C-141** 

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

| Incident ID    | nAPP2216550022 |
|----------------|----------------|
| District RP    |                |
| Facility ID    |                |
| Application ID |                |

### **Release Notification**

#### **Responsible Party**

|                                                        |                   |                                 |                                 | •                                       |                  | •                                               |  |  |
|--------------------------------------------------------|-------------------|---------------------------------|---------------------------------|-----------------------------------------|------------------|-------------------------------------------------|--|--|
| Responsible                                            | Party: Chev       | ron USA                         |                                 |                                         | OGRID: 4         | 4323                                            |  |  |
| Contact Name: Amy Barnhill                             |                   |                                 |                                 | Contact Telephone: 432-687-7108         |                  |                                                 |  |  |
| Contact ema                                            | il: ABarnhil      | l@chevron.com                   |                                 |                                         | Incident #       | (assigned by OCD)                               |  |  |
| Contact mail                                           | ling address:     | : 6301 Deauville E              | Blvd Midland, Tx                | 79706                                   | 1                |                                                 |  |  |
|                                                        |                   |                                 | Location                        | n of R                                  | elease S         | ource                                           |  |  |
| Latitude 32.7                                          | <sup>7</sup> 1306 |                                 |                                 |                                         | Longitude        | -103.9192                                       |  |  |
|                                                        |                   |                                 | (NAD 83 in a                    | lecimal de                              | grees to 5 deci  | mal places)                                     |  |  |
| Site Name: B                                           | enson Shug        | art Waterflood Un               | it #3 CTB                       |                                         | Site Type:       | Oil                                             |  |  |
| Date Release                                           | Discovered        | : 6-9-22                        |                                 |                                         | API# (if ap      | plicable)                                       |  |  |
|                                                        | T ~ .             |                                 |                                 |                                         |                  |                                                 |  |  |
| Unit Letter                                            | Section           | Township                        | Range                           | F11                                     | Cou              | nty                                             |  |  |
| J                                                      | 26                | 18S                             | 30E                             | Eddy                                    | <i>I</i>         |                                                 |  |  |
| Surface Owne                                           | r: State          | ⊠ Federal □ T                   | ribal 🗌 Private                 | (Name:                                  |                  | )                                               |  |  |
|                                                        |                   |                                 | Nature an                       | nd Vol                                  | ume of           | Release                                         |  |  |
|                                                        |                   | nl(s) Released (Select a        | ll that apply and attac         | ch calculat                             | ions or specific | e justification for the volumes provided below) |  |  |
| Crude Oi                                               | 1                 | Volume Release                  | ed (bbls) 11.75                 |                                         |                  | Volume Recovered (bbls) 9.6                     |  |  |
| Produced                                               | Water             | Volume Release                  | ed (bbls) 23.9                  |                                         |                  | Volume Recovered (bbls)                         |  |  |
|                                                        |                   | Is the concentra produced water | tion of dissolved >10,000 mg/l? | chloride                                | e in the         | ☐ Yes ☐ No                                      |  |  |
| Condensa                                               | ate               | Volume Release                  |                                 |                                         |                  | Volume Recovered (bbls)                         |  |  |
| ☐ Natural Gas Volume Released (Mcf)                    |                   |                                 |                                 | Volume Recovered (Mcf)                  |                  |                                                 |  |  |
| Other (describe) Volume/Weight Released (provide units |                   |                                 | )                               | Volume/Weight Recovered (provide units) |                  |                                                 |  |  |
| Cause of Rel                                           | ease: Hole i      | <br>n bottom of heater          | · treater                       |                                         |                  |                                                 |  |  |
|                                                        | cusc. Hole i      | ir dolloin or neuter            | itioatoi                        |                                         |                  |                                                 |  |  |
|                                                        |                   |                                 |                                 |                                         |                  |                                                 |  |  |
|                                                        |                   |                                 |                                 |                                         |                  |                                                 |  |  |
|                                                        |                   |                                 |                                 |                                         |                  |                                                 |  |  |
|                                                        |                   |                                 |                                 |                                         |                  |                                                 |  |  |

Received by OCD: 7/29/2024 7:27813 AMI State of New Mexico
Page 2 Oil Conservation Division

| 73 | 73  | 7 4 | AT  | 10             | nn |
|----|-----|-----|-----|----------------|----|
| P  | ape | 9/4 | 750 | $D \mathbb{Z}$ | øy |
|    |     | 0   |     |                |    |

| Incident ID    | nAPP2216550022 |
|----------------|----------------|
| District RP    |                |
| Facility ID    |                |
| Application ID |                |

| Was this a major release as defined by | If YES, for what reason(s) does the respon                                      | nsible party consider this a major release?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19.15.29.7(A) NMAC?                    |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ⊠ Yes □ No                             |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                        |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                        |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                        | otice given to the OCD? By whom? To whor from Amy Barnhill on 6-10-22 at 7:39ar | om? When and by what means (phone, email, etc)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                        | ·                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                        | Initial Ro                                                                      | esponse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| The responsible p                      | party must undertake the following actions immediatel                           | y unless they could create a safety hazard that would result in injury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ☐ The source of the rele               | ease has been stopped.                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ☐ The impacted area has                | s been secured to protect human health and                                      | the environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Released materials ha                  | we been contained via the use of berms or d                                     | ikes, absorbent pads, or other containment devices.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| All free liquids and re                | ecoverable materials have been removed and                                      | l managed appropriately.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| If all the actions described           | d above have <u>not</u> been undertaken, explain v                              | why:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                        |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                        |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                        |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                        |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| has begun, please attach a             | a narrative of actions to date. If remedial                                     | emediation immediately after discovery of a release. If remediation efforts have been successfully completed or if the release occurred lease attach all information needed for closure evaluation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                        |                                                                                 | pest of my knowledge and understand that pursuant to OCD rules and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        |                                                                                 | Final control of the |
| failed to adequately investiga         | ate and remediate contamination that pose a thre                                | at to groundwater, surface water, human health or the environment. In responsibility for compliance with any other federal, state, or local laws                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| and/or regulations.                    | i u e i i i report does not tene te die operator or                             | cosponsionity for compliance with any other rederat, state, or rocal target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Printed Name: Amy Barn                 | hill                                                                            | Title: Water Specialist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Signature:                             | 15/11                                                                           | Title: Water Specialist  Date: 6-14-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 31 A D - 1 31 @ 1 .                    |                                                                                 | Telephone: 432-687-7108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| emaii: ABarnniii@cne <del>vi</del> o   | n.com                                                                           | Telephone: 432-687-7108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| OCD Only                               |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <del></del>                            |                                                                                 | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10001104 05.                           |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Received by OCD: 7/29/2024 7:27813 AM1 State of New Mexico Page 3 Oil Conservation Division Page 148 of 209

| Incident ID    | nAPP2216550022 |
|----------------|----------------|
| District RP    |                |
| Facility ID    |                |
| Application ID |                |

**Spill Calculations:** 

| MCBU Spill Ca                           | Iculatio                       | ns Works     | heet (Ma    | y 2019 Release)          | ll light blue a | reas are Requir      | red Informatio   | Incident D          | ate                            |                 | 6/9            | 9/2022     |          |
|-----------------------------------------|--------------------------------|--------------|-------------|--------------------------|-----------------|----------------------|------------------|---------------------|--------------------------------|-----------------|----------------|------------|----------|
| Only Change Valu                        |                                |              |             | ĺ                        |                 |                      |                  |                     |                                |                 | Start Time     | End        | Time     |
|                                         |                                |              |             | hange Formulas!!         |                 | Conversion           | Table            | Incident Ti         | me                             |                 | 12:00 PM       | 12:00      |          |
|                                         |                                | nsions in fe |             | mange i ominaas          |                 | Conversion           | Table            | Location            | 1                              |                 |                | U 3 CTE    |          |
|                                         | All dillier                    | isions in ic |             | Total Volume of Fluid in |                 |                      |                  | Location            | <u> </u>                       |                 | BOW            | 0 3 011    |          |
|                                         | Length                         | Width        | Depth       | barrels                  |                 | Conversions          | Feet             | All volume          | es in foll                     | owing ta        | ble in barrels |            |          |
|                                         |                                |              |             |                          |                 |                      |                  |                     | Standing                       |                 | dimensions /   | Oil        | Water    |
| Average total depth<br>Use oil depth or | 44                             | 19           | 0.1250      | 18.61                    | Fluid total     | 1 inch               | 0.0833           | Area                | Liquid                         | In Soil         | shape          | Volume     | Volume   |
| skim thickness                          | 44                             | 18           | 0.0833      | 11.75                    | Oil volume      | 2 inches             | 0.1667           | 1                   | 18.61                          | 5.29            | 44 x 18        | 11.75      | 23.9     |
|                                         |                                |              |             |                          | Water Volume    | 3 inches             | 0.2500           | 2                   |                                |                 |                |            |          |
|                                         |                                |              |             |                          |                 | 4 inches             | 0.3333           | 3                   |                                |                 |                |            |          |
|                                         | Triange                        | ular spill   |             |                          |                 | 5 inches             | 0.4167           | 4                   |                                |                 |                |            |          |
|                                         |                                | nsions in fe | et!         |                          |                 | 6 inches             | 0.5000           | 5                   |                                |                 |                |            |          |
|                                         |                                |              |             | Total Volume of Fluid in |                 |                      |                  | _                   |                                |                 |                |            |          |
|                                         | Length                         | Width        | Depth       | barrels                  | F1              | 7 inches             | 0.5833           | 6 7                 |                                |                 |                |            |          |
| Average total depth<br>Use oil depth or |                                |              |             | 0.00                     | Fluid total     | 8 inches             | 0.6667           | /                   |                                |                 |                |            |          |
| skim thickness                          |                                |              |             | 0.00                     | Oil volume      | 9 inches             | 0.7500           | 8                   |                                |                 |                |            |          |
|                                         |                                |              |             | 0.00                     |                 | 10 inches            | 0.8333           |                     |                                |                 |                |            |          |
|                                         |                                |              |             |                          |                 | 11 inches            | 0.9167           |                     |                                |                 | Total Fluid    | 11.75      | 23.9     |
|                                         | Circula                        | r Snill      |             |                          |                 | 1/256 inch           | 0.000326         |                     |                                |                 |                |            |          |
|                                         |                                | nsions in fe | -41         |                          |                 |                      | 0.000526         | Fluid Recovered     | ed in barrels Oil Volume Water |                 |                | tor        |          |
|                                         | All dimer                      | isions in ie | et:         | Total Volume of Fluid in |                 | 1/128 inch           | 0.000051         | Fluid Recovered     | III Daire                      | 15              |                |            |          |
|                                         | Diameter                       | Depth        |             | barrels                  |                 | 1/64 inch            | 0.0013           |                     |                                |                 | 9.6            | (          | )        |
| Average total depth                     |                                |              |             | 0.00                     | Fluid total     | 1/32 inch            | 0.0026           | Weather Conditions  | Sunny                          | /nd 15ss        | 102deg         |            |          |
| Use oil depth or                        |                                |              |             |                          |                 |                      |                  |                     |                                |                 | of treater. Sp | oill conta | ained ir |
| skim thickness                          |                                |              |             | 0.00                     | Oil volume      | 1/16 inch            | 0.0052           |                     |                                | erm. Not lined. |                |            |          |
|                                         |                                |              |             | 0.00                     | Water Volume    | 1/8 inch<br>1/4 inch | 0.0104<br>0.0208 | Incident Detailed   | '                              |                 |                |            |          |
|                                         | Elected to                     | C-II D-      | -4          | C!II *                   |                 |                      |                  | Discription         |                                |                 |                |            |          |
|                                         |                                |              | ctangular   | Spili                    |                 | 3/8 inch             | 0.0313           |                     |                                |                 |                |            |          |
|                                         | All dimer                      | nsions in fe | et!         | Total Volume of Fluid in |                 | 1/2 inch             | 0.0417           |                     | 0 11 11                        |                 | 1.01           |            |          |
|                                         |                                |              | Depth-Soil  | Soil Pore Space (15%)    |                 |                      |                  |                     |                                |                 | uck.Shut in    | wells. S   | ent      |
|                                         | Length                         | Width        | Penetration | in barrels               |                 | 5/8 inch             | 0.0521           | Immediate Actions   | supervi                        | sor a me        | ssage.         |            |          |
| Average total depth                     | 44                             | 18           | 0.2500      | 5.29                     | Fluid total     | 3/4 inch             | 0.0625           | Taken               |                                |                 |                |            |          |
|                                         |                                |              |             |                          |                 | 7/8 inch             | 0.0729           |                     |                                |                 |                |            |          |
|                                         | Fluid in                       | Soil Tria    | angular S   | pill *                   |                 |                      |                  | Equipment Component | Heater                         | treater         |                |            |          |
|                                         |                                | nsions in fe |             |                          |                 |                      |                  |                     | corrosio                       | on              |                |            |          |
|                                         |                                |              |             | Total Volume of Fluid in |                 |                      |                  |                     |                                |                 |                |            |          |
|                                         |                                | MONE         | Depth-Soil  | Soil Pore Space (15%)    |                 |                      |                  | Cause               |                                |                 |                |            |          |
| Average total depth                     | Length                         | Width        | Penetration | in barrels<br>0.00       | Fluid total     |                      |                  | -                   |                                |                 |                |            |          |
| Average (otal depth                     |                                |              |             | 0.00                     | riuid total     |                      |                  | 1                   |                                |                 |                |            |          |
|                                         | Fluid in Soil Circular Spill * |              |             |                          |                 |                      |                  |                     | Hole in                        | treater b       | ottom          |            |          |
|                                         |                                |              |             |                          |                 |                      | -                | . Adic iii          | trouter t                      | , ottorii       |                |            |          |
|                                         | All dimensions in feet!        |              |             | Total Volume of Fluid in |                 |                      |                  | Failure Description |                                |                 |                |            |          |
|                                         |                                | Depth-Soil   |             | Soil Pore Space (15%)    |                 |                      |                  |                     |                                |                 |                |            |          |
|                                         | Diameter                       | Penetration  |             | in barrels               |                 |                      |                  |                     |                                |                 |                |            |          |
| Average total depth                     |                                |              |             | 0.00                     | Fluid total     |                      |                  |                     |                                |                 |                |            |          |

|                | Page 149 of 2  | 09 |
|----------------|----------------|----|
| Incident ID    | nAPP2216550022 |    |
| District RP    |                |    |
| Facility ID    |                |    |
| Application ID |                |    |

#### **Site Assessment/Characterization**

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

| What is the shallowest depth to groundwater beneath the area affected by the release?                                                                                                                                                                                                                                                                                                     | <u>&gt;184</u> (ft bgs) |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|
| Did this release impact groundwater or surface water?                                                                                                                                                                                                                                                                                                                                     | ☐ Yes ⊠ No              |  |  |
| Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?                                                                                                                                                                                                                                                        | ☐ Yes ⊠ No              |  |  |
| Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?                                                                                                                                                                                                                                              | ☐ Yes ⊠ No              |  |  |
| Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?                                                                                                                                                                                                                                                      | ☐ Yes ⊠ No              |  |  |
| Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?                                                                                                                                                                                           | ☐ Yes ⊠ No              |  |  |
| Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?                                                                                                                                                                                                                                                                                          | ☐ Yes ⊠ No              |  |  |
| Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?                                                                                                                                                                                                                                                     | ☐ Yes ⊠ No              |  |  |
| Are the lateral extents of the release within 300 feet of a wetland?                                                                                                                                                                                                                                                                                                                      | ☐ Yes ⊠ No              |  |  |
| Are the lateral extents of the release overlying a subsurface mine?                                                                                                                                                                                                                                                                                                                       | ☐ Yes ⊠ No              |  |  |
| Are the lateral extents of the release overlying an unstable area such as karst geology?                                                                                                                                                                                                                                                                                                  | ⊠ Yes □ No              |  |  |
| Are the lateral extents of the release within a 100-year floodplain?                                                                                                                                                                                                                                                                                                                      | ☐ Yes ⊠ No              |  |  |
| Did the release impact areas <b>not</b> on an exploration, development, production, or storage site?                                                                                                                                                                                                                                                                                      | ☐ Yes ⊠ No              |  |  |
| Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vercontamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.                                                                                                                                                              | tical extents of soil   |  |  |
| Characterization Report Checklist: Each of the following items must be included in the report.                                                                                                                                                                                                                                                                                            |                         |  |  |
| <ul> <li>Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.</li> <li>Field data</li> <li>Data table of soil contaminant concentration data</li> <li>Depth to water determination</li> <li>Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release</li> </ul> |                         |  |  |
| Boring or excavation logs                                                                                                                                                                                                                                                                                                                                                                 |                         |  |  |

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Photographs including date and GIS information

□ Laboratory data including chain of custody

Topographic/Aerial maps

Received by OCD: 7/29/2024 7:27813 AMI State of New Mexico
Page 4 Oil Conservation Division

Page 150% f 209

| Incident ID    | nAPP2216550022 |
|----------------|----------------|
| District RP    |                |
| Facility ID    |                |
| Application ID |                |

| I hereby certify that the information given above is true and complete to the regulations all operators are required to report and/or file certain release not public health or the environment. The acceptance of a C-141 report by the Gailed to adequately investigate and remediate contamination that pose a threaddition, OCD acceptance of a C-141 report does not relieve the operator of and/or regulations. | ifications and perform corrective actions for releases which may endanger OCD does not relieve the operator of liability should their operations have eat to groundwater, surface water, human health or the environment. In |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Printed Name: Amy Barnhill Signature: Lice                                                                                                                                                                                                                                                                                                                                                                            | Title: Water Advisor  Date: 7-27-22                                                                                                                                                                                          |
| email:ABarnhill@chevron.com                                                                                                                                                                                                                                                                                                                                                                                           | Telephone: 432-687-7108                                                                                                                                                                                                      |
| OCD Only                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                              |
| Received by:                                                                                                                                                                                                                                                                                                                                                                                                          | Date: 07/27/2022                                                                                                                                                                                                             |

Page 451 of 209
Diate of New Mexico

| Incident ID    | nAPP2216550022 |
|----------------|----------------|
| District RP    |                |
| Facility ID    |                |
| Application ID |                |

### **Remediation Plan**

| Remediation Plan Checklist: Each of the following items must be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e included in the plan.                                            |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
| <ul> <li>Detailed description of proposed remediation technique</li> <li>Scaled sitemap with GPS coordinates showing delineation points</li> <li>Estimated volume of material to be remediated</li> <li>Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC</li> <li>Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |  |
| Deferral Requests Only: Each of the following items must be con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | afirmed as part of any request for deferral of remediation.        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | roduction equipment where remediation could cause a major facility |  |
| Extents of contamination must be fully delineated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    |  |
| Contamination does not cause an imminent risk to human health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n, the environment, or groundwater.                                |  |
| I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.  Printed Name: Amy Barnhill  Title: Water Advisor  Date: 7-27-22  Hemail: ABarnhill@chevron.com  Telephone: 432-687-7108 |                                                                    |  |
| OCD Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |  |
| Received by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date:                                                              |  |
| ☐ Approved ☐ Approved with Attached Conditions of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Approval                                                           |  |
| Signature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date:                                                              |  |

# **Appendix B**

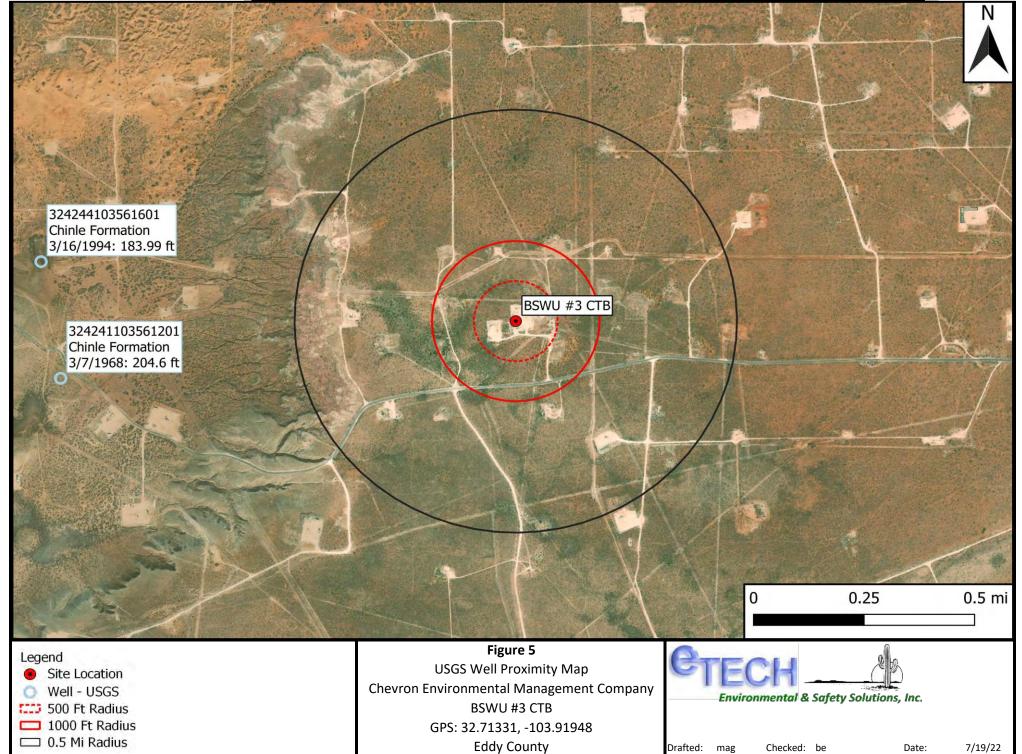
**Groundwater Data Maps and Supporting Water Well Data** 



# New Mexico Office of the State Engineer Water Column/Average Depth to Water

(quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest) (NAD83 UTM in meters)

No records found.


UTMNAD83 Radius Search (in meters):

**Easting (X):** 601265.37 **Northing (Y):** 3620021.27 **Radius:** 1610

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

7/19/22 12:20 PM

WATER COLUMN/ AVERAGE DEPTH TO WATER





USGS Home Contact USGS Search USGS

#### **National Water Information System: Web Interface**

| USGS Water Resources | Data Category: | Geographic Area: |            |    |
|----------------------|----------------|------------------|------------|----|
|                      | Groundwater ~  | United States    | <b>Y</b> [ | GO |

Click for News Bulletins

Groundwater levels for the Nation

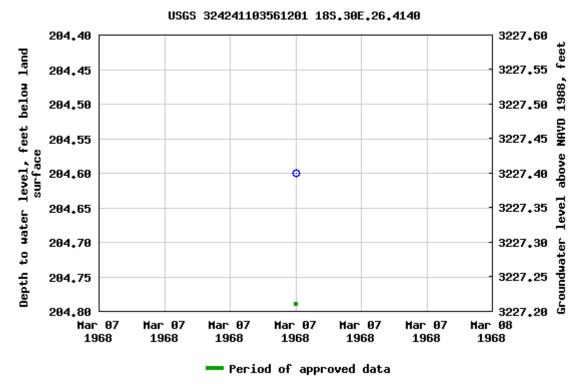
Important: <u>Next Generation Monitoring Location Page</u>

#### Search Results -- 1 sites found

Agency code = usgs site\_no list = • 324241103561201

#### Minimum number of levels = 1

Save file of selected sites to local disk for future upload


#### USGS 324241103561201 18S.30E.26.4140

Available data for this site Groundwater: Field measurements GO

Eddy County, New Mexico
Hydrologic Unit Code 13060011
Latitude 32°42'41", Longitude 103°56'12" NAD27
Land-surface elevation 3,432 feet above NAVD88
The depth of the well is 230 feet below land surface.
This well is completed in the Other aquifers (N9999OTHER) national aquifer.
This well is completed in the Chinle Formation (231CHNL) local aquifer.

#### **Output formats**

| <u>Table of data</u>      |  |
|---------------------------|--|
| <u>Tab-separated data</u> |  |
| Graph of data             |  |
| Reselect period           |  |



Breaks in the plot represent a gap of at least one year between field measurements. <u>Download a presentation-quality graph</u>

Questions about sites/data?
Feedback on this web site
Automated retrievals
Help
Data Tips
Explanation of terms
Subscribe for system changes
News

Accessibility

FOIA

Privacy

Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey

**Title: Groundwater for USA: Water Levels** 

URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u>

Page Last Modified: 2022-07-19 14:18:29 EDT

0.57 0.49 nadww01





USGS Home Contact USGS Search USGS

#### **National Water Information System: Web Interface**

| 11000 | Water | Ph   |        |
|-------|-------|------|--------|
| 11666 | Water | RASO | HILLOS |
|       |       |      |        |

| Data Category: | Geographic Area: |   |    |
|----------------|------------------|---|----|
| Groundwater ~  | United States    | ~ | GO |

\* We've detected you're using a mobile device. Find our <u>Next Generation Station Page</u> <u>here.</u>

#### Click to hideNews Bulletins

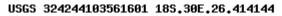
- Explore the NEW <u>USGS National Water Dashboard</u> interactive map to access realtime water data from over 13,500 stations nationwide.
- Full News

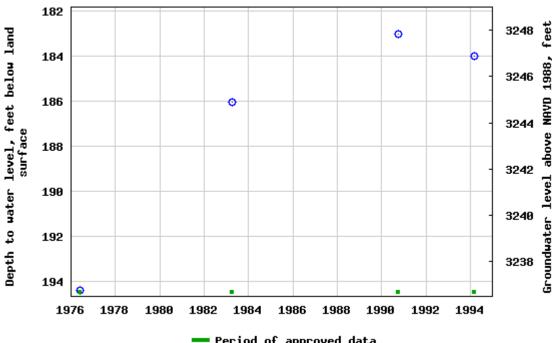
Groundwater levels for the Nation

■ Important: <u>Next Generation Monitoring Location Page</u>

#### Search Results -- 1 sites found

**Agency code** = usgs **site\_no list** = • 324244103561601


#### Minimum number of levels = 1


Save file of selected sites to local disk for future upload

#### USGS 324244103561601 18S.30E.26.414144

| Available data for this site | Groundwater: | Field measurements | <b>∨</b> GO |                |
|------------------------------|--------------|--------------------|-------------|----------------|
| Eddy County, New Mexico      |              |                    |             |                |
| Hydrologic Unit Code 1306    | 0011         |                    |             |                |
| Latitude 32°42'55.8", Lone   | gitude 103°  | 256'16.4" NAD83    |             |                |
| Land-surface elevation 3,4   | 31 feet abo  | ve NAVD88          |             |                |
| This well is completed in th | ne Other aq  | uifers (N9999OTh   | HER) nat    | ional aquifer. |
| This well is completed in th | ne Chinle Fo | rmation (231CHI    | NL) local   | aquifer.       |

# Table of data Tab-separated data Graph of data Reselect period





- Period of approved data

Breaks in the plot represent a gap of at least one year between field measurements. Download a presentation-quality graph

Questions about sites/data? Feedback on this web site Automated retrievals <u>Help</u> **Data Tips Explanation of terms** Subscribe for system changes **News** 

Accessibility

FOIA

Privacy

Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey

Title: Groundwater for USA: Water Levels

URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u>

Page Last Modified: 2022-07-19 14:18:30 EDT

0.56 0.49 nadww01



# **Appendix C Photographic Documentation**

#### Photographic Log

**Photo Number:** 

1

Photo Direction: North

**Photo Description:** 

View of impacted area and surrounding containment.



**Photo Number:** 

2

**Photo Direction:** South

**Photo Description:** 

View of impacted area and surrounding containment.



#### Photographic Log

**Photo Number:** 

3

Photo Direction:

Southeast

**Photo Description:** 



View of impacted area and surrounding containment.

**Photo Number:** 

4

**Photo Direction:** 

West
Photo Description:

View of impacted area and surrounding containment.



# Appendix D Laboratory Analytical

# **Environment Testing America**

# **ANALYTICAL REPORT**

Eurofins Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-16439-1 Client Project/Site: BSWU #3 CTB

or:

**eurofins** 

Etech Environmental & Safety Solutions PO BOX 62228 Midland, Texas 79711

Attn: Brandon Wilson

JURAMER

Authorized for release by: 7/11/2022 10:34:20 AM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

Have a Question?

Ask
The
Expert

LINKS .....

Review your project results through

EOL

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 8/1/2024/2:09:18 PMAM

AM

Results relate only to the items tested and the sample(s) as received by the laboratory.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten

Laboratory Job ID: 880-16439-1

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 2  |
| Definitions/Glossary   | 3  |
| Case Narrative         | 4  |
| Client Sample Results  | 5  |
| Surrogate Summary      | 13 |
| QC Sample Results      | 15 |
| QC Association Summary | 25 |
| Lab Chronicle          | 29 |
| Certification Summary  | 33 |
| Method Summary         | 34 |
| Sample Summary         | 35 |
| Chain of Custody       | 36 |
| Receipt Checklists     | 37 |

#### **Definitions/Glossary**

Client: Etech Environmental & Safety Solutions Job ID: 880-16439-1

Project/Site: BSWU #3 CTB

. . . . . . . .

#### **Qualifiers**

#### **GC VOA**

| Qualifier | Qualifier Description                                    |
|-----------|----------------------------------------------------------|
| S1+       | Surrogate recovery exceeds control limits, high biased.  |
| U         | Indicates the analyte was analyzed for but not detected. |

#### **GC Semi VOA**

| Qualifier | Qualifier Description                                    |
|-----------|----------------------------------------------------------|
| *1        | LCS/LCSD RPD exceeds control limits.                     |
| F1        | MS and/or MSD recovery exceeds control limits.           |
| S1+       | Surrogate recovery exceeds control limits, high biased.  |
| U         | Indicates the analyte was analyzed for but not detected. |
| HPLC/IC   |                                                          |

#### HPLC/IC

| Qualifier | Qualifier Description                                    |
|-----------|----------------------------------------------------------|
| U         | Indicates the analyte was analyzed for but not detected. |

#### **Glossary**

| biossary       |                                                                                                             |
|----------------|-------------------------------------------------------------------------------------------------------------|
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CFU            | Colony Forming Unit                                                                                         |
| CNF            | Contains No Free Liquid                                                                                     |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL             | Detection Limit (DoD/DOE)                                                                                   |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |

| LOQ | Limit of Quantitation (DoD/DOE)                   |
|-----|---------------------------------------------------|
| MCL | EPA recommended "Maximum Contaminant Level"       |
| MDA | Minimum Detectable Activity (Radiochemistry)      |
| MDC | Minimum Detectable Concentration (Radiochemistry) |

| MDL | Method Detection Limit    |
|-----|---------------------------|
| ML  | Minimum Level (Dioxin)    |
| MPN | Most Probable Number      |
| MQL | Method Quantitation Limit |
| NC  | Not Calculated            |

| ND  | Not Detected at the reporting limit (or MDL or EDL if shown)   |
|-----|----------------------------------------------------------------|
| IND | Not betected at the reporting little (or MbE or Ebe ii Showin) |

| NEG  | Negative / Absent            |
|------|------------------------------|
| POS  | Positive / Present           |
| PQL  | Practical Quantitation Limit |
| PRES | Presumptive                  |

| QC  | Quality Control                       |
|-----|---------------------------------------|
| RER | Relative Error Ratio (Radiochemistry) |

| RL Reporting Limit or Requested Limit (Radiochemistry |
|-------------------------------------------------------|
|-------------------------------------------------------|

| RPD | Relative Percent Difference, a measure of the relative difference between two points |
|-----|--------------------------------------------------------------------------------------|
|     |                                                                                      |

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

#### Case Narrative

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-16439-1

Job ID: 880-16439-1

**Laboratory: Eurofins Midland** 

Narrative

Job Narrative 880-16439-1

#### Receipt

The samples were received on 6/29/2022 12:51 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.1°C

#### **GC VOA**

Method 8021B: Surrogate recovery for the following sample was outside control limits: Bottom Hole 1 (880-16439-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC Semi VOA

Method 8015MOD\_NM: Surrogate recovery for the following sample was outside control limits: Bottom Hole 2 (880-16439-7). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD\_NM: Surrogate recovery for the following sample was outside control limits: Bottom Hole 1 (880-16439-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD\_NM: Surrogate recovery for the following sample was outside control limits: Bottom Hole 3 (880-16439-9). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD\_NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-28738 and analytical batch 880-28713 recovered outside control limits for the following analytes: Diesel Range Organics (Over C10-C28).

Method 8015MOD\_NM: The matrix spike (MS) recoveries for preparation batch 880-28738 and analytical batch 880-28713 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

1

3

4

5

\_

8

1 0

13

14

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Lab Sample ID: 880-16439-1

Matrix: Solid

Job ID: 880-16439-1

**Client Sample ID: Bottom Hole 1** Date Collected: 06/28/22 10:00

Date Received: 06/29/22 12:51

Sample Depth: 0-6"

| Senzene Foluene Ethylbenzene n-Xylene & p-Xylene o-Xylene Kylenes, Total Surrogate I-Bromofluorobenzene (Surr) I,4-Difluorobenzene (Surr) Method: Total BTEX - Total BTEX Ca | 0.336<br>23.5<br>31.2<br>20.2<br>16.8<br>37.0<br>%Recovery<br>113<br>85 | Qualifier | 0.200<br>0.200<br>0.200<br>0.400<br>0.200<br>0.400<br><i>Limits</i> |     | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg |   | 07/07/22 10:17<br>07/07/22 10:17<br>07/07/22 10:17<br>07/07/22 10:17<br>07/07/22 10:17<br>07/07/22 10:17 | 07/07/22 20:39<br>07/07/22 20:39<br>07/07/22 20:39<br>07/07/22 20:39<br>07/07/22 20:39<br>07/07/22 20:39 | 100<br>100<br>100<br>100<br>100 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------|---------------------------------------------------------------------|-----|-------------------------------------------|---|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------|
| Ethylbenzene m-Xylene & p-Xylene p-Xylene Kylenes, Total  Surrogate H-Bromofluorobenzene (Surr) J,4-Difluorobenzene (Surr)                                                   | 31.2<br>20.2<br>16.8<br>37.0<br>%Recovery                               | Qualifier | 0.200<br>0.400<br>0.200<br>0.400                                    |     | mg/Kg<br>mg/Kg<br>mg/Kg                   |   | 07/07/22 10:17<br>07/07/22 10:17<br>07/07/22 10:17                                                       | 07/07/22 20:39<br>07/07/22 20:39<br>07/07/22 20:39                                                       | 100<br>100<br>100               |
| n-Xylene & p-Xylene p-Xylene (ylenes, Total Surrogate I-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)                                                                 | 20.2<br>16.8<br>37.0<br>%Recovery                                       | Qualifier | 0.400<br>0.200<br>0.400                                             |     | mg/Kg<br>mg/Kg                            |   | 07/07/22 10:17<br>07/07/22 10:17                                                                         | 07/07/22 20:39<br>07/07/22 20:39                                                                         | 100                             |
| Surrogate I-Bromofluorobenzene (Surr) J.4-Difluorobenzene (Surr)                                                                                                             | 16.8<br>37.0<br>%Recovery                                               | Qualifier | 0.200<br>0.400                                                      |     | mg/Kg                                     |   | 07/07/22 10:17                                                                                           | 07/07/22 20:39                                                                                           | 10                              |
| Surrogate I-Bromofluorobenzene (Surr) I,4-Difluorobenzene (Surr)                                                                                                             | 37.0<br>%Recovery                                                       | Qualifier | 0.400                                                               |     |                                           |   |                                                                                                          |                                                                                                          |                                 |
| Surrogate<br>1-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)                                                                                                       | %Recovery                                                               | Qualifier |                                                                     |     | mg/Kg                                     |   | 07/07/22 10:17                                                                                           | 07/07/22 20:39                                                                                           | 100                             |
| I-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)                                                                                                                    | 113                                                                     | Qualifier | Limits                                                              |     |                                           |   |                                                                                                          |                                                                                                          |                                 |
| ,4-Difluorobenzene (Surr)                                                                                                                                                    |                                                                         |           |                                                                     |     |                                           |   | Prepared                                                                                                 | Analyzed                                                                                                 | Dil Fa                          |
| , ,                                                                                                                                                                          | 85                                                                      |           | 70 - 130                                                            |     |                                           |   | 07/07/22 10:17                                                                                           | 07/07/22 20:39                                                                                           | 100                             |
| Method: Total BTEX - Total BTEX Ca                                                                                                                                           |                                                                         |           | 70 - 130                                                            |     |                                           |   | 07/07/22 10:17                                                                                           | 07/07/22 20:39                                                                                           | 10                              |
|                                                                                                                                                                              | alculation                                                              |           |                                                                     |     |                                           |   |                                                                                                          |                                                                                                          |                                 |
| Analyte                                                                                                                                                                      | Result                                                                  | Qualifier | RL                                                                  | MDL | Unit                                      | D | Prepared                                                                                                 | Analyzed                                                                                                 | Dil Fa                          |
| Total BTEX                                                                                                                                                                   | 92.0                                                                    | 0) (00)   | 0.400                                                               |     | mg/Kg                                     |   |                                                                                                          | 07/07/22 10:19                                                                                           |                                 |
| Method: 8015 NM - Diesel Range Or<br>Analyte                                                                                                                                 | •                                                                       | Qualifier | RL                                                                  | MDL | Unit                                      | D | Prepared                                                                                                 | Analyzed                                                                                                 | Dil Fa                          |
| Total TPH                                                                                                                                                                    | 3650                                                                    |           | 250                                                                 |     | mg/Kg                                     |   |                                                                                                          | 07/01/22 13:31                                                                                           | -                               |
| Method: 8015B NM - Diesel Range C                                                                                                                                            | Organics (D                                                             | RO) (GC)  |                                                                     |     |                                           |   |                                                                                                          |                                                                                                          |                                 |
| Analyte                                                                                                                                                                      | Result                                                                  | Qualifier | RL                                                                  | MDL | Unit                                      | D | Prepared                                                                                                 | Analyzed                                                                                                 | Dil Fac                         |
| Gasoline Range Organics GRO)-C6-C10                                                                                                                                          | 1570                                                                    |           | 250                                                                 |     | mg/Kg                                     |   | 06/30/22 10:13                                                                                           | 07/01/22 04:58                                                                                           |                                 |
| Diesel Range Organics (Over<br>C10-C28)                                                                                                                                      | 2080                                                                    | *1        | 250                                                                 |     | mg/Kg                                     |   | 06/30/22 10:13                                                                                           | 07/01/22 04:58                                                                                           |                                 |
| Oll Range Organics (Over C28-C36)                                                                                                                                            | <250                                                                    | U         | 250                                                                 |     | mg/Kg                                     |   | 06/30/22 10:13                                                                                           | 07/01/22 04:58                                                                                           | ţ                               |
| Surrogate                                                                                                                                                                    | %Recovery                                                               | Qualifier | Limits                                                              |     |                                           |   | Prepared                                                                                                 | Analyzed                                                                                                 | Dil Fa                          |
| -Chlorooctane                                                                                                                                                                | 92                                                                      |           | 70 - 130                                                            |     |                                           |   | 06/30/22 10:13                                                                                           | 07/01/22 04:58                                                                                           | ,                               |
| o-Terphenyl                                                                                                                                                                  | 80                                                                      |           | 70 - 130                                                            |     |                                           |   | 06/30/22 10:13                                                                                           | 07/01/22 04:58                                                                                           |                                 |
| Method: 300.0 - Anions, Ion Chroma                                                                                                                                           | atography -                                                             | Soluble   |                                                                     |     |                                           |   |                                                                                                          |                                                                                                          |                                 |
| Analyte                                                                                                                                                                      | Result                                                                  | Qualifier | RL                                                                  | MDL | Unit                                      | D | Prepared                                                                                                 | Analyzed                                                                                                 | Dil Fa                          |

**Client Sample ID: Bottom Hole 1** 

Date Collected: 06/28/22 10:02

Date Received: 06/29/22 12:51

Sample Depth: 6-12"

| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                     | 0.368     |           | 0.200    |     | mg/Kg |   | 07/07/22 10:17 | 07/07/22 20:59 | 100     |
| Toluene                     | 50.8      |           | 1.00     |     | mg/Kg |   | 07/09/22 14:01 | 07/10/22 11:12 | 500     |
| Ethylbenzene                | 54.9      |           | 1.00     |     | mg/Kg |   | 07/09/22 14:01 | 07/10/22 11:12 | 500     |
| m-Xylene & p-Xylene         | 33.8      |           | 0.401    |     | mg/Kg |   | 07/07/22 10:17 | 07/07/22 20:59 | 100     |
| o-Xylene                    | 22.7      |           | 0.200    |     | mg/Kg |   | 07/07/22 10:17 | 07/07/22 20:59 | 100     |
| Xylenes, Total              | 56.5      |           | 0.401    |     | mg/Kg |   | 07/07/22 10:17 | 07/07/22 20:59 | 100     |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) |           |           | 70 - 130 |     |       |   | 07/07/22 10:17 | 07/07/22 20:59 | 100     |

**Eurofins Midland** 

Lab Sample ID: 880-16439-2

Matrix: Solid

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Lab Sample ID: 880-16439-2

Matrix: Solid

Job ID: 880-16439-1

**Client Sample ID: Bottom Hole 1** Date Collected: 06/28/22 10:02

Date Received: 06/29/22 12:51

Sample Depth: 6-12"

| Method: 8021B - Volatile Organic | Compounds ( | (GC) | (Continued) |
|----------------------------------|-------------|------|-------------|
|----------------------------------|-------------|------|-------------|

| Surrogate                  | %Recovery Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|----------------------------|---------------------|----------|----------------|----------------|---------|
| 1,4-Difluorobenzene (Surr) | 92                  | 70 - 130 | 07/07/22 10:17 | 07/07/22 20:59 | 100     |

| Method: | Total | BTEX - | - Total | BTEX | Calculation |
|---------|-------|--------|---------|------|-------------|

| Analyte    |     | Qualifier RL | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|------------|-----|--------------|----------|---|----------|----------------|---------|
| Total BTEX | 163 | 1.00         | mg/Kg    | ] |          | 07/07/22 10:19 | 1       |

| Mothod: 8015 NM | - Diesel Range | Organice | (DRO) (GC) |
|-----------------|----------------|----------|------------|

|           |                  | DI. |          | _     |          |                |         |
|-----------|------------------|-----|----------|-------|----------|----------------|---------|
| Analyte   | Result Qualifier | RL  | MDL Unit | _ D _ | Prepared | Analyzed       | Dil Fac |
| Total TPH | 7380             | 250 | mg/Kg    |       |          | 07/01/22 13:31 | 1       |

| Analyte                                 | Result    | Qualifier | RL     | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|-----------|-----------|--------|-----|-------|---|----------------|----------------|---------|
| Gasoline Range Organics<br>(GRO)-C6-C10 | 3780      | _         | 250    |     | mg/Kg |   | 06/30/22 10:13 | 07/01/22 05:19 | 5       |
| Diesel Range Organics (Over C10-C28)    | 3600      | *1        | 250    |     | mg/Kg |   | 06/30/22 10:13 | 07/01/22 05:19 | 5       |
| Oll Range Organics (Over C28-C36)       | <250      | U         | 250    |     | mg/Kg |   | 06/30/22 10:13 | 07/01/22 05:19 | 5       |
| Surrogate                               | %Recovery | Qualifier | Limits |     |       |   | Prepared       | Analyzed       | Dil Fac |

| Surrogate      | %Recovery | Qualifier | Limits   |
|----------------|-----------|-----------|----------|
| 1-Chlorooctane | 131       | S1+       | 70 - 130 |
| o-Terphenyl    | 111       |           | 70 - 130 |

| 1-Chlorooctane | 131 S1+ | 70 - 130 | 06/30/22 10:13 | 07/01/22 05:19 | 5 |
|----------------|---------|----------|----------------|----------------|---|
| o-Terphenyl    | 111     | 70 - 130 | 06/30/22 10:13 | 07/01/22 05:19 | 5 |
| _              |         |          |                |                |   |

### Method: 300.0 - Anions, Ion Chromatography - Soluble

| Analyte  | Result Qualifier | RL   | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|----------|------------------|------|----------|---|----------|----------------|---------|
| Chloride | 896              | 25.2 | mg/Kg    |   | _        | 07/07/22 10:11 | 5       |

#### **Client Sample ID: Bottom Hole 1**

Lab Sample ID: 880-16439-3 Date Collected: 06/28/22 10:04

Date Received: 06/29/22 12:51 Sample Depth: 18-24"

#### Method: 8021B - Volatile Organic Compounds (GC)

| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00199  | U         | 0.00199  |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 18:03 | 1       |
| Toluene                     | < 0.00199 | U         | 0.00199  |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 18:03 | 1       |
| Ethylbenzene                | < 0.00199 | U         | 0.00199  |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 18:03 | 1       |
| m-Xylene & p-Xylene         | 0.00434   |           | 0.00398  |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 18:03 | 1       |
| o-Xylene                    | 0.00458   |           | 0.00199  |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 18:03 | 1       |
| Xylenes, Total              | 0.00892   |           | 0.00398  |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 18:03 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) |           |           | 70 - 130 |     |       |   | 07/05/22 13:34 | 07/06/22 18:03 | 1       |
| 1,4-Difluorobenzene (Surr)  | 98        |           | 70 - 130 |     |       |   | 07/05/22 13:34 | 07/06/22 18:03 | 1       |

#### **Method: Total BTEX - Total BTEX Calculation**

| Analyte    | Result Qualifier | RL      | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|------------|------------------|---------|----------|---|----------|----------------|---------|
| Total BTEX | 0.00892          | 0.00398 | mg/Kg    |   |          | 07/07/22 10:19 | 1       |

#### Method: 8015 NM - Diesel Range Organics (DRO) (GC)

| Analyte   | Result | Qualifier | RL   | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|-----------|--------|-----------|------|----------|---|----------|----------------|---------|
| Total TPH | <50.0  | U         | 50.0 | mg/Kg    |   |          | 07/01/22 13:31 | 1       |

**Eurofins Midland** 

**Matrix: Solid** 

**Client Sample ID: Bottom Hole 1** 

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Lab Sample ID: 880-16439-3

Lab Sample ID: 880-16439-4

**Matrix: Solid** 

Matrix: Solid

Job ID: 880-16439-1

Date Collected: 06/28/22 10:04 Date Received: 06/29/22 12:51

Sample Depth: 18-24"

| Analyte                           | Result        | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|---------------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Gasoline Range Organics           | <50.0         | U         | 50.0     |     | mg/Kg |   | 06/30/22 10:13 | 07/01/22 03:11 | 1       |
| (GRO)-C6-C10                      |               |           |          |     |       |   |                |                |         |
| Diesel Range Organics (Over       | <50.0         | U *1      | 50.0     |     | mg/Kg |   | 06/30/22 10:13 | 07/01/22 03:11 | 1       |
| C10-C28)                          |               |           |          |     |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <50.0         | U         | 50.0     |     | mg/Kg |   | 06/30/22 10:13 | 07/01/22 03:11 | 1       |
| Surrogate                         | %Recovery     | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    |               |           | 70 - 130 |     |       |   | 06/30/22 10:13 | 07/01/22 03:11 | 1       |
| o-Terphenyl                       | 119           |           | 70 - 130 |     |       |   | 06/30/22 10:13 | 07/01/22 03:11 | 1       |
| Method: 300.0 - Anions, Ion Chro  | omatography - | Soluble   |          |     |       |   |                |                |         |
| Analyte                           | Result        | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|                                   |               |           |          |     |       |   |                |                |         |

**Client Sample ID: Bottom Hole 1** 

Date Collected: 06/28/22 10:06

Date Received: 06/29/22 12:51

Sample Depth: 30-36"

| Analyte                                 | Result        | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|---------------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                                 | <0.00200      | U         | 0.00200  |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 18:23 | 1       |
| Toluene                                 | <0.00200      | U         | 0.00200  |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 18:23 | 1       |
| Ethylbenzene                            | <0.00200      | U         | 0.00200  |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 18:23 | 1       |
| m-Xylene & p-Xylene                     | <0.00399      | U         | 0.00399  |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 18:23 | 1       |
| o-Xylene                                | <0.00200      | U         | 0.00200  |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 18:23 | 1       |
| Xylenes, Total                          | <0.00399      | U         | 0.00399  |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 18:23 | 1       |
| Surrogate                               | %Recovery     | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)             | 115           |           | 70 - 130 |     |       |   | 07/05/22 13:34 | 07/06/22 18:23 | 1       |
| 1,4-Difluorobenzene (Surr)              | 97            |           | 70 - 130 |     |       |   | 07/05/22 13:34 | 07/06/22 18:23 | 1       |
| -<br>Method: Total BTEX - Total BTEX    | Calculation   |           |          |     |       |   |                |                |         |
| Analyte                                 | Result        | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total BTEX                              | <0.00399      | U         | 0.00399  |     | mg/Kg |   |                | 07/07/22 10:19 | 1       |
| Method: 8015 NM - Diesel Range          | Organics (DR  | O) (GC)   |          |     |       |   |                |                |         |
| Analyte                                 | Result        | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                               | <50.0         | U         | 50.0     |     | mg/Kg |   |                | 07/01/22 13:31 | 1       |
| -<br>Method: 8015B NM - Diesel Rang     | e Organics (D | RO) (GC)  |          |     |       |   |                |                |         |
| Analyte                                 | Result        | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <50.0         | U         | 50.0     |     | mg/Kg |   | 06/30/22 10:13 | 07/01/22 03:54 | 1       |
| Diesel Range Organics (Over C10-C28)    | <50.0         | U *1      | 50.0     |     | mg/Kg |   | 06/30/22 10:13 | 07/01/22 03:54 | 1       |
| Oll Range Organics (Over C28-C36)       | <50.0         | U         | 50.0     |     | mg/Kg |   | 06/30/22 10:13 | 07/01/22 03:54 | 1       |
| Surrogate                               | %Recovery     | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                          | 91            |           | 70 - 130 |     |       |   | 06/30/22 10:13 | 07/01/22 03:54 | 1       |
|                                         |               |           |          |     |       |   |                |                |         |

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Lab Sample ID: 880-16439-4

Lab Sample ID: 880-16439-5

Analyzed

07/07/22 10:19

Matrix: Solid

**Matrix: Solid** 

Job ID: 880-16439-1

**Client Sample ID: Bottom Hole 1** 

Date Collected: 06/28/22 10:06 Date Received: 06/29/22 12:51

Sample Depth: 30-36"

| Method: 300.0 - Anions, Ion Chromatography - Soluble |        |           |      |     |       |   |          |                |         |
|------------------------------------------------------|--------|-----------|------|-----|-------|---|----------|----------------|---------|
| Analyte                                              | Result | Qualifier | RL   | MDL | Unit  | D | Prepared | Analyzed       | Dil Fac |
| Chloride                                             | 61.7   |           | 4.99 |     | mg/Kg |   |          | 07/07/22 11:45 | 1       |

Client Sample ID: Bottom Hole 1

Result Qualifier

<0.00396 U

Date Collected: 06/28/22 10:08 Date Received: 06/29/22 12:51

Sample Depth: 42-48"

Analyte

Total BTEX

| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00198  | U         | 0.00198  |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 18:44 | 1       |
| Toluene                     | <0.00198  | U         | 0.00198  |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 18:44 | 1       |
| Ethylbenzene                | <0.00198  | U         | 0.00198  |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 18:44 | 1       |
| m-Xylene & p-Xylene         | <0.00396  | U         | 0.00396  |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 18:44 | 1       |
| o-Xylene                    | <0.00198  | U         | 0.00198  |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 18:44 | 1       |
| Xylenes, Total              | <0.00396  | U         | 0.00396  |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 18:44 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) |           |           | 70 - 130 |     |       |   | 07/05/22 13:34 | 07/06/22 18:44 | 1       |
| 1,4-Difluorobenzene (Surr)  | 103       |           | 70 - 130 |     |       |   | 07/05/22 13:34 | 07/06/22 18:44 | 1       |

| Analyte   | Result | Qualifier | RL   | MDL | Unit  | D | Prepared | Analyzed       | Dil Fac |
|-----------|--------|-----------|------|-----|-------|---|----------|----------------|---------|
| Total TPH | <49.9  | U         | 49.9 |     | mg/Kg |   |          | 07/01/22 13:31 | 1       |

0.00396

MDL Unit

mg/Kg

Prepared

| 1                                 | •         | , , ,     |          |     |       |   |                |                |         |
|-----------------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Analyte                           | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics           | <49.9     | U         | 49.9     |     | mg/Kg |   | 06/30/22 10:13 | 07/01/22 04:15 | 1       |
| (GRO)-C6-C10                      |           |           |          |     |       |   |                |                |         |
| Diesel Range Organics (Over       | <49.9     | U *1      | 49.9     |     | mg/Kg |   | 06/30/22 10:13 | 07/01/22 04:15 | 1       |
| C10-C28)                          |           |           |          |     |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <49.9     | U         | 49.9     |     | mg/Kg |   | 06/30/22 10:13 | 07/01/22 04:15 | 1       |
| Surrogate                         | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 96        |           | 70 - 130 |     |       |   | 06/30/22 10:13 | 07/01/22 04:15 | 1       |
| o-Terphenyl                       | 105       |           | 70 - 130 |     |       |   | 06/30/22 10:13 | 07/01/22 04:15 | 1       |
|                                   |           |           |          |     |       |   |                |                |         |

| Method: 300.0 - Anions, Ion Chron | natography - | Soluble   |      |     |       |   |          |                |         |
|-----------------------------------|--------------|-----------|------|-----|-------|---|----------|----------------|---------|
| Analyte                           | Result       | Qualifier | RL   | MDL | Unit  | D | Prepared | Analyzed       | Dil Fac |
| Chloride                          | 77.8         |           | 4.95 |     | mg/Kg |   |          | 07/07/22 11:54 | 1       |

**Eurofins Midland** 

Dil Fac

7/11/2022

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Lab Sample ID: 880-16439-6

Matrix: Solid

Job ID: 880-16439-1

Client Sample ID: Bottom Hole 2

Date Collected: 06/28/22 10:10 Date Received: 06/29/22 12:51

Sample Depth: 0-6"

| Analyte                                   | Result        | Qualifier            | RL       | MDL  | Unit   | D | Prepared       | Analyzed       | Dil Fa |
|-------------------------------------------|---------------|----------------------|----------|------|--------|---|----------------|----------------|--------|
| Benzene                                   | <0.100        | U                    | 0.100    |      | mg/Kg  |   | 07/01/22 15:28 | 07/07/22 14:45 | 50     |
| Toluene                                   | 4.37          |                      | 0.100    |      | mg/Kg  |   | 07/01/22 15:28 | 07/07/22 14:45 | 50     |
| Ethylbenzene                              | 8.95          |                      | 0.100    |      | mg/Kg  |   | 07/01/22 15:28 | 07/07/22 14:45 | 5      |
| m-Xylene & p-Xylene                       | 8.26          |                      | 0.200    |      | mg/Kg  |   | 07/01/22 15:28 | 07/07/22 14:45 | 50     |
| o-Xylene                                  | 3.94          |                      | 0.100    |      | mg/Kg  |   | 07/01/22 15:28 | 07/07/22 14:45 | 50     |
| Xylenes, Total                            | 12.2          |                      | 0.200    |      | mg/Kg  |   | 07/01/22 15:28 | 07/07/22 14:45 | 5      |
| Surrogate                                 | %Recovery     | Qualifier            | Limits   |      |        |   | Prepared       | Analyzed       | Dil Fa |
| 4-Bromofluorobenzene (Surr)               | 190           | S1+                  | 70 - 130 |      |        |   | 07/01/22 15:28 | 07/07/22 14:45 | 5      |
| 1,4-Difluorobenzene (Surr)                | 106           |                      | 70 - 130 |      |        |   | 07/01/22 15:28 | 07/07/22 14:45 | 5      |
| Method: Total BTEX - Total BTEX           | Calculation   |                      |          |      |        |   |                |                |        |
| Analyte                                   | Result        | Qualifier            | RL       | MDL  | Unit   | D | Prepared       | Analyzed       | Dil Fa |
| Total BTEX                                | 25.5          |                      | 0.200    |      | mg/Kg  |   |                | 07/07/22 10:19 |        |
| Method: 8015 NM - Diesel Range<br>Analyte | •             | O) (GC)<br>Qualifier | RL       | MDI  | Unit   | D | Prepared       | Analyzed       | Dil Fa |
| Total TPH                                 | 1210          | Qualifier            | 49.8     | MIDL | mg/Kg  |   | Frepareu       | 07/01/22 13:31 | DII Fa |
| Total IPH                                 | 1210          |                      | 49.0     |      | mg/rkg |   |                | 07/01/22 13:31 |        |
| Method: 8015B NM - Diesel Rang            | e Organics (D | RO) (GC)             |          |      |        |   |                |                |        |
| Analyte                                   | Result        | Qualifier            | RL       | MDL  | Unit   | D | Prepared       | Analyzed       | Dil Fa |
| Gasoline Range Organics<br>(GRO)-C6-C10   | 408           |                      | 49.8     |      | mg/Kg  |   | 06/30/22 10:13 | 07/01/22 06:45 |        |
| Diesel Range Organics (Over C10-C28)      | 804           | *1                   | 49.8     |      | mg/Kg  |   | 06/30/22 10:13 | 07/01/22 06:45 |        |
| Oll Range Organics (Over C28-C36)         | <49.8         | U                    | 49.8     |      | mg/Kg  |   | 06/30/22 10:13 | 07/01/22 06:45 |        |
| Surrogate                                 | %Recovery     | Qualifier            | Limits   |      |        |   | Prepared       | Analyzed       | Dil Fa |
| 1-Chlorooctane                            | 109           |                      | 70 - 130 |      |        |   | 06/30/22 10:13 | 07/01/22 06:45 |        |
| o-Terphenyl                               | 116           |                      | 70 - 130 |      |        |   | 06/30/22 10:13 | 07/01/22 06:45 |        |
| Method: 300.0 - Anions, Ion Chro          |               |                      |          |      |        |   |                |                |        |
| Analyte                                   | Result        | Qualifier            | RL       | MDL  |        | D | Prepared       | Analyzed       | Dil Fa |
| Chloride                                  | 7200          |                      | 50.0     |      | mg/Kg  |   |                | 07/07/22 10:31 | 1      |

**Client Sample ID: Bottom Hole 2** 

Date Collected: 06/28/22 10:12

Date Received: 06/29/22 12:51

Sample Depth: 6-12"

| Analyte                     | Result    | (GC)<br>Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-------------------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00200  | U                 | 0.00200  |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 19:04 | 1       |
| Toluene                     | <0.00200  | U                 | 0.00200  |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 19:04 | 1       |
| Ethylbenzene                | <0.00200  | U                 | 0.00200  |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 19:04 | 1       |
| m-Xylene & p-Xylene         | <0.00401  | U                 | 0.00401  |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 19:04 | 1       |
| o-Xylene                    | <0.00200  | U                 | 0.00200  |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 19:04 | 1       |
| Xylenes, Total              | <0.00401  | U                 | 0.00401  |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 19:04 | 1       |
| Surrogate                   | %Recovery | Qualifier         | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) |           |                   | 70 - 130 |     |       |   | 07/05/22 13:34 | 07/06/22 19:04 | 1       |

**Eurofins Midland** 

Lab Sample ID: 880-16439-7

Matrix: Solid

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Lab Sample ID: 880-16439-7

Lab Sample ID: 880-16439-8

Matrix: Solid

Matrix: Solid

Job ID: 880-16439-1

Client Sample ID: Bottom Hole 2

Date Collected: 06/28/22 10:12 Date Received: 06/29/22 12:51

Sample Depth: 6-12"

| Method: 8021B - | Volatile Ord | anic Com | nounds (C  | GC) (         | (Continued) |  |
|-----------------|--------------|----------|------------|---------------|-------------|--|
| Method. 002 1D  | Volatile Oit |          | poullus (C | <b>3</b> 0, ( | (Continueu) |  |

| Surrogate                  | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|----------------------------|-----------|-----------|----------|----------------|----------------|---------|
| 1.4-Difluorobenzene (Surr) | 101       |           | 70 - 130 | 07/05/22 13:34 | 07/06/22 19:04 |         |

| Method: Tot | al BTEX - Tota | al BTEX Ca | alculation  |
|-------------|----------------|------------|-------------|
| mounou. Tot | u. D. L        |            | aiouiutioii |

| Analyte    | Result   | Qualifier | RL      | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|------------|----------|-----------|---------|----------|---|----------|----------------|---------|
| Total BTEX | <0.00401 | U         | 0.00401 | mg/Kg    |   |          | 07/07/22 10:19 | 1       |

| Mothod: 8015 NM - Diesel Range | Organice | (DRO) (GC) |
|--------------------------------|----------|------------|

| Analyte   | Result Qualifier | RL   | MDL Unit | D | Prepared    | Analyzed       | Dil Fac |  |
|-----------|------------------|------|----------|---|-------------|----------------|---------|--|
| Total TPH | <50.0 U          | 50.0 | ma/Ka    |   | <del></del> | 07/01/22 13:31 | 1       |  |

|                 |             | _         |          |        |            |
|-----------------|-------------|-----------|----------|--------|------------|
| Method: 8015B   | NM - Diesel | Range Org | ranics ( | 'DROL  | GC         |
| motriou. ou rob | THE DIGGOL  | itunge or | garnoo ( | D. (O) | ( <b>–</b> |

| Analyte                                 | Result    | Qualifier | RL     | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|-----------|-----------|--------|-----|-------|---|----------------|----------------|---------|
| Gasoline Range Organics<br>(GRO)-C6-C10 | <50.0     | U         | 50.0   |     | mg/Kg |   | 06/30/22 10:13 | 07/01/22 04:37 | 1       |
| Diesel Range Organics (Over<br>C10-C28) | <50.0     | U *1      | 50.0   |     | mg/Kg |   | 06/30/22 10:13 | 07/01/22 04:37 | 1       |
| Oll Range Organics (Over C28-C36)       | <50.0     | U         | 50.0   |     | mg/Kg |   | 06/30/22 10:13 | 07/01/22 04:37 | 1       |
| Surrogate                               | %Recovery | Qualifier | Limits |     |       |   | Prepared       | Analyzed       | Dil Fac |

| Surrogate      | %Recovery Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|----------------|---------------------|----------|----------------|----------------|---------|
| 1-Chlorooctane | 124                 | 70 - 130 | 06/30/22 10:13 | 07/01/22 04:37 | 1       |
| o-Terphenyl    | 139 S1+             | 70 - 130 | 06/30/22 10:13 | 07/01/22 04:37 | 1       |

| Method: 300.0 - Anions, | lon Chromatogra | phy - Soluble |
|-------------------------|-----------------|---------------|
|                         |                 |               |

| Analyte  |      | illei KL | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|----------|------|----------|----------|---|----------|----------------|---------|
| Chloride | 1830 | 24.9     | mg/Kg    |   |          | 07/07/22 02:40 | 5       |

**Client Sample ID: Bottom Hole 3** 

Date Collected: 06/28/22 10:14

Date Received: 06/29/22 12:51

Sample Depth: 0-6"

| Mothod: 9021D        | Volatila Organia   | Compounds (GC) |
|----------------------|--------------------|----------------|
| I WIELIIOU. OUZ ID ' | • voiatile Organic | Compounds (GC) |

| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                     | <0.399    | U         | 0.399    |     | mg/Kg |   | 07/01/22 15:28 | 07/07/22 15:26 | 200     |
| Toluene                     | 0.667     |           | 0.399    |     | mg/Kg |   | 07/01/22 15:28 | 07/07/22 15:26 | 200     |
| Ethylbenzene                | 11.8      |           | 0.399    |     | mg/Kg |   | 07/01/22 15:28 | 07/07/22 15:26 | 200     |
| m-Xylene & p-Xylene         | 11.3      |           | 0.798    |     | mg/Kg |   | 07/01/22 15:28 | 07/07/22 15:26 | 200     |
| o-Xylene                    | 4.35      |           | 0.399    |     | mg/Kg |   | 07/01/22 15:28 | 07/07/22 15:26 | 200     |
| Xylenes, Total              | 15.7      |           | 0.798    |     | mg/Kg |   | 07/01/22 15:28 | 07/07/22 15:26 | 200     |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 142       | S1+       | 70 - 130 |     |       |   | 07/01/22 15:28 | 07/07/22 15:26 | 200     |
| 1,4-Difluorobenzene (Surr)  | 104       |           | 70 - 130 |     |       |   | 07/01/22 15:28 | 07/07/22 15:26 | 200     |

| Mothod: | Total | RTFY. | . Total | RTEY | Calculation |
|---------|-------|-------|---------|------|-------------|

Released to Imaging: 8/11/2024/22:09:18/PMAM

| Analyte    | Result ( | Qualifier | RL    | MDL | Unit  | D | Prepared | Analyzed       | Dil Fac |
|------------|----------|-----------|-------|-----|-------|---|----------|----------------|---------|
| Total BTEX | 28.1     |           | 0.798 |     | ma/Ka |   |          | 07/07/22 10:19 | 1       |

| Method. 0013 MM - Dieser Kange Organics (DRO) (GC) | Method: 8015 NM - Die | esel Range C | Organics ( | DRO) | (GC) |
|----------------------------------------------------|-----------------------|--------------|------------|------|------|
|----------------------------------------------------|-----------------------|--------------|------------|------|------|

| Analyte   | Result | Qualifier | RL  | MDL ( | Unit  | D | Prepared | Analyzed       | Dil Fac |
|-----------|--------|-----------|-----|-------|-------|---|----------|----------------|---------|
| Total TPH | 3200   |           | 250 | r     | mg/Kg |   | _        | 07/01/22 13:31 | 1       |

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Lah Sample ID: 880-16439-8

**Client Sample ID: Bottom Hole 3** Date Collected: 06/28/22 10:14

Date Received: 06/29/22 12:51

Sample Depth: 0-6"

| Lab | Sample | :עו פ | 000-10    | 0439-0    |
|-----|--------|-------|-----------|-----------|
|     |        |       | NA - Audi | 0 - 11 -1 |

Lab Sample ID: 880-16439-9

**Matrix: Solid** 

Matrix: Solid

Job ID: 880-16439-1

| Analyte                           | Result       | Qualifier | RL       | MDI    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|--------------|-----------|----------|--------|-------|---|----------------|----------------|---------|
|                                   |              | Qualifier |          | - WIDE |       | = | <u>.</u>       |                |         |
| Gasoline Range Organics           | 1180         |           | 250      |        | mg/Kg |   | 06/30/22 10:13 | 07/01/22 05:41 | 5       |
| (GRO)-C6-C10                      |              |           |          |        |       |   |                |                |         |
| Diesel Range Organics (Over       | 2020         | *1        | 250      |        | mg/Kg |   | 06/30/22 10:13 | 07/01/22 05:41 | 5       |
| C10-C28)                          |              |           |          |        |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <250         | U         | 250      |        | mg/Kg |   | 06/30/22 10:13 | 07/01/22 05:41 | 5       |
| Surrogate                         | %Recovery    | Qualifier | Limits   |        |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 103          |           | 70 - 130 |        |       |   | 06/30/22 10:13 | 07/01/22 05:41 | 5       |
| o-Terphenyl                       | 119          |           | 70 - 130 |        |       |   | 06/30/22 10:13 | 07/01/22 05:41 | 5       |
| Method: 300.0 - Anions, Ion Chro  | matography - | Soluble   |          |        |       |   |                |                |         |
| Analyte                           | Result       | Qualifier | RL       | MDL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                          | 4600         | -         | 24.8     |        | mg/Kg |   |                | 07/07/22 02:48 | 5       |

**Client Sample ID: Bottom Hole 3** 

Date Collected: 06/28/22 10:16 Date Received: 06/29/22 12:51

Sample Depth: 6-12"

| Analyte                                 | Result         | Qualifier | RL                  | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fa  |
|-----------------------------------------|----------------|-----------|---------------------|-----|-------|---|----------------|----------------|---------|
| Benzene                                 | <0.199         | U         | 0.199               |     | mg/Kg |   | 07/01/22 15:28 | 07/07/22 15:06 | 10      |
| Toluene                                 | 1.73           |           | 0.199               |     | mg/Kg |   | 07/01/22 15:28 | 07/07/22 15:06 | 10      |
| Ethylbenzene                            | 13.3           |           | 0.199               |     | mg/Kg |   | 07/01/22 15:28 | 07/07/22 15:06 | 10      |
| m-Xylene & p-Xylene                     | 13.4           |           | 0.398               |     | mg/Kg |   | 07/01/22 15:28 | 07/07/22 15:06 | 100     |
| o-Xylene                                | 5.32           |           | 0.199               |     | mg/Kg |   | 07/01/22 15:28 | 07/07/22 15:06 | 10      |
| Xylenes, Total                          | 18.7           |           | 0.398               |     | mg/Kg |   | 07/01/22 15:28 | 07/07/22 15:06 | 10      |
| Surrogate                               | %Recovery      | Qualifier | Limits              |     |       |   | Prepared       | Analyzed       | Dil Fa  |
| 4-Bromofluorobenzene (Surr)             | 213            | S1+       | 70 - 130            |     |       |   | 07/01/22 15:28 | 07/07/22 15:06 | 10      |
| 1,4-Difluorobenzene (Surr)              | 96             |           | 70 - 130            |     |       |   | 07/01/22 15:28 | 07/07/22 15:06 | 10      |
| Method: Total BTEX - Total BTEX         | Calculation    |           |                     |     |       |   |                |                |         |
| Analyte                                 | Result         | Qualifier | RL                  | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fa  |
| Total BTEX                              | 33.8           |           | 0.398               |     | mg/Kg |   |                | 07/07/22 10:19 |         |
| Method: 8015 NM - Diesel Range          | Organics (DR   | O) (GC)   |                     |     |       |   |                |                |         |
| Analyte                                 | Result         | Qualifier | RL                  | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                               | 2840           |           | 249                 |     | mg/Kg |   |                | 07/01/22 13:31 |         |
| Method: 8015B NM - Diesel Rang          | je Organics (D | RO) (GC)  |                     |     |       |   |                |                |         |
| Analyte                                 | Result         | Qualifier | RL                  | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fa  |
| Gasoline Range Organics<br>(GRO)-C6-C10 | 1010           |           | 249                 |     | mg/Kg |   | 06/30/22 10:13 | 07/01/22 06:02 |         |
| Diesel Range Organics (Over C10-C28)    | 1830           | *1        | 249                 |     | mg/Kg |   | 06/30/22 10:13 | 07/01/22 06:02 | :       |
| Oll Range Organics (Over C28-C36)       | <249           | U         | 249                 |     | mg/Kg |   | 06/30/22 10:13 | 07/01/22 06:02 |         |
| Surrogate                               | %Recovery      | Qualifier | Limits              |     |       |   | Prepared       | Analyzed       | Dil Fa  |
| 1-Chlorooctane                          | 110            |           | 70 - 130            |     |       |   | 06/30/22 10:13 | 07/01/22 06:02 |         |
|                                         | 138            | S1+       | 70 <sub>-</sub> 130 |     |       |   | 06/30/22 10:13 | 07/01/22 06:02 |         |

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Lab Sample ID: 880-16439-9

Matrix: Solid

**Matrix: Solid** 

Job ID: 880-16439-1

**Client Sample ID: Bottom Hole 3** Date Collected: 06/28/22 10:16

Date Received: 06/29/22 12:51

Sample Depth: 6-12"

| Method: 300.0 - Anions, Ion Chromatography - Soluble |                  |      |          |   |          |                |         |  |  |
|------------------------------------------------------|------------------|------|----------|---|----------|----------------|---------|--|--|
| Analyte                                              | Result Qualifier | RL   | MDL Unit | D | Prepared | Analyzed       | Dil Fac |  |  |
| Chloride                                             | 3740             | 25.2 | mg/Kg    |   |          | 07/07/22 02:56 | 5       |  |  |

Client Sample ID: Bottom Hole 4 Lab Sample ID: 880-16439-10

Date Collected: 06/28/22 10:18 Date Received: 06/29/22 12:51

Sample Depth: 0-6"

| Analyte                       | Result         | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-------------------------------|----------------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                       | <0.0994        | U         | 0.0994   |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 21:07 | 50      |
| Toluene                       | 11.0           |           | 0.0994   |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 21:07 | 50      |
| Ethylbenzene                  | 13.2           |           | 0.0994   |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 21:07 | 50      |
| m-Xylene & p-Xylene           | 11.3           |           | 0.199    |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 21:07 | 50      |
| o-Xylene                      | 7.30           |           | 0.0994   |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 21:07 | 50      |
| Xylenes, Total                | 18.6           |           | 0.199    |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 21:07 | 50      |
| Surrogate                     | %Recovery      | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)   |                |           | 70 - 130 |     |       |   | 07/05/22 13:34 | 07/06/22 21:07 | 50      |
| 1,4-Difluorobenzene (Surr)    | 96             |           | 70 - 130 |     |       |   | 07/05/22 13:34 | 07/06/22 21:07 | 50      |
| Method: Total BTEX - Total BT | EX Calculation |           |          |     |       |   |                |                |         |
| Analyte                       | Result         | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |

| Total BTEX                                 | 42.8         |           | 0.199 |     | mg/Kg |          |                | 07/07/22 10:19 | 1       |
|--------------------------------------------|--------------|-----------|-------|-----|-------|----------|----------------|----------------|---------|
| –<br>Method: 8015 NM - Diesel Range C      | organics (DR | O) (GC)   |       |     |       |          |                |                |         |
| Analyte                                    | Result       | Qualifier | RL    | MDL | Unit  | D        | Prepared       | Analyzed       | Dil Fac |
| Total TPH                                  | 5300         |           | 250   |     | mg/Kg |          |                | 07/01/22 13:31 | 1       |
| Analyte                                    | •            | Qualifier | RL    | MDL | Unit  | D        | Prepared       | Analyzed       | Dil Fac |
| Method: 8015B NM - Diesel Range<br>Analyte | •            | , , ,     | RL    | MDL | Unit  | <u>D</u> | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics<br>(GRO)-C6-C10    | 1690         |           | 250   |     | mg/Kg |          | 06/30/22 10:13 | 07/01/22 06:23 | 5       |
| Diesel Range Organics (Over C10-C28)       | 3610         | *1        | 250   |     | mg/Kg |          | 06/30/22 10:13 | 07/01/22 06:23 | 5       |
|                                            |              |           |       |     |       |          |                |                | 5       |

| Surrogate      | %Recovery Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|----------------|---------------------|----------|----------------|----------------|---------|
| 1-Chlorooctane | 121                 | 70 - 130 | 06/30/22 10:13 | 07/01/22 06:23 | 5       |
| o-Terphenyl    | 122                 | 70 - 130 | 06/30/22 10:13 | 07/01/22 06:23 | 5       |

| Method: 300.0 - Anions, Ion Chromatography - Soluble |        |           |      |     |       |   |          |                |         |
|------------------------------------------------------|--------|-----------|------|-----|-------|---|----------|----------------|---------|
| Analyte                                              | Result | Qualifier | RL   | MDL | Unit  | D | Prepared | Analyzed       | Dil Fac |
| Chloride                                             | 3830   |           | 24.9 |     | mg/Kg |   |          | 07/07/22 03:04 | 5       |

#### **Surrogate Summary**

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-16439-1

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

|                    |                        | DED4             | DED74             | Percent Surrogate Recovery (Acceptance Limits) |
|--------------------|------------------------|------------------|-------------------|------------------------------------------------|
| _ab Sample ID      | Client Sample ID       | BFB1<br>(70-130) | DFBZ1<br>(70-130) |                                                |
| 880-16439-1        | Bottom Hole 1          | 113              | 85                |                                                |
| 30-16439-2         | Bottom Hole 1          | 110              | 92                |                                                |
| 30-16439-3         | Bottom Hole 1          | 111              | 98                |                                                |
| 30-16439-4         | Bottom Hole 1          | 115              | 97                |                                                |
| 30-16439-5         | Bottom Hole 1          | 117              | 103               |                                                |
| 30-16439-6         | Bottom Hole 2          | 190 S1+          | 106               |                                                |
| 80-16439-7         | Bottom Hole 2          | 121              | 101               |                                                |
| 30-16439-8         | Bottom Hole 3          | 142 S1+          | 101               |                                                |
| 30-16439-9         | Bottom Hole 3          | 213 S1+          | 96                |                                                |
| 30-16439-10        | Bottom Hole 4          | 117              |                   |                                                |
|                    |                        |                  | 96                |                                                |
| 80-16557-A-5-E MS  | Matrix Spike           | 111              | 103               |                                                |
| 80-16557-A-5-F MSD | Matrix Spike Duplicate | 108              | 98                |                                                |
| 30-16698-A-11-E MS | Matrix Spike           | 111              | 103               |                                                |
| 0-16698-A-11-F MSD | Matrix Spike Duplicate | 110              | 102               |                                                |
| 90-2475-A-1-G MS   | Matrix Spike           | 110              | 102               |                                                |
| 90-2475-A-1-H MSD  | Matrix Spike Duplicate | 109              | 99                |                                                |
| 0-2497-A-18-A MS   | Matrix Spike           | 117              | 88                |                                                |
| 0-2497-A-18-B MSD  | Matrix Spike Duplicate | 113              | 101               |                                                |
| CS 880-28904/1-A   | Lab Control Sample     | 107              | 101               |                                                |
| CS 880-29048/1-A   | Lab Control Sample     | 113              | 104               |                                                |
| CS 880-29191/1-A   | Lab Control Sample     | 105              | 100               |                                                |
| CS 880-29360/1-A   | Lab Control Sample     | 113              | 104               |                                                |
| CSD 880-28904/2-A  | Lab Control Sample Dup | 107              | 100               |                                                |
| CSD 880-29048/2-A  | Lab Control Sample Dup | 112              | 104               |                                                |
| CSD 880-29191/2-A  | Lab Control Sample Dup | 109              | 97                |                                                |
| CSD 880-29360/2-A  | Lab Control Sample Dup | 113              | 104               |                                                |
| 1B 880-28904/5-A   | Method Blank           | 96               | 87                |                                                |
| IB 880-29048/5-A   | Method Blank           | 103              | 94                |                                                |
| /IB 880-29191/5-A  | Method Blank           | 103              | 99                |                                                |
| /IB 880-29325/5-A  | Method Blank           | 99               | 90                |                                                |
| /IB 880-29360/5-A  | Method Blank           | 104              | 93                |                                                |
| Surrogate Legend   |                        |                  |                   |                                                |

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

|               |                  | 1CO1     | OTPH1    |
|---------------|------------------|----------|----------|
| Lab Sample ID | Client Sample ID | (70-130) | (70-130) |
| 880-16439-1   | Bottom Hole 1    | 92       | 80       |
| 880-16439-2   | Bottom Hole 1    | 131 S1+  | 111      |
| 880-16439-3   | Bottom Hole 1    | 117      | 119      |
| 880-16439-4   | Bottom Hole 1    | 91       | 105      |
| 880-16439-5   | Bottom Hole 1    | 96       | 105      |
| 880-16439-6   | Bottom Hole 2    | 109      | 116      |
| 880-16439-7   | Bottom Hole 2    | 124      | 139 S1+  |
| 880-16439-8   | Bottom Hole 3    | 103      | 119      |

#### **Surrogate Summary**

Client: Etech Environmental & Safety Solutions Job ID: 880-16439-1

Project/Site: BSWU #3 CTB

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

|                      |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |
|----------------------|------------------------|----------|----------|------------------------------------------------|
|                      |                        | 1CO1     | OTPH1    |                                                |
| Lab Sample ID        | Client Sample ID       | (70-130) | (70-130) |                                                |
| 880-16439-9          | Bottom Hole 3          | 110      | 138 S1+  |                                                |
| 880-16439-10         | Bottom Hole 4          | 121      | 122      |                                                |
| 890-2471-A-21-B MS   | Matrix Spike           | 89       | 96       |                                                |
| 890-2471-A-21-C MSD  | Matrix Spike Duplicate | 102      | 109      |                                                |
| LCS 880-28738/2-A    | Lab Control Sample     | 89       | 94       |                                                |
| LCSD 880-28738/3-A   | Lab Control Sample Dup | 81       | 76       |                                                |
| MB 880-28738/1-A     | Method Blank           | 104      | 122      |                                                |
| Surrogate Legend     |                        |          |          |                                                |
| 1CO = 1-Chlorooctane |                        |          |          |                                                |
| OTPH = o-Terphenyl   |                        |          |          |                                                |

Eurofins Midland

-

3

\_\_\_\_

8

10

10

13

14

Lab Sample ID: MB 880-28904/5-A

#### **QC Sample Results**

Client: Etech Environmental & Safety Solutions

Method: 8021B - Volatile Organic Compounds (GC)

Project/Site: BSWU #3 CTB

**Analysis Batch: 29172** 

**Matrix: Solid** 

Job ID: 880-16439-1

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 28904

| MR | MR |  |
|----|----|--|

| Analyte             | Result   | Qualifier | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|---------------------|----------|-----------|---------|-----|-------|---|----------------|----------------|---------|
| Benzene             | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 07/01/22 15:28 | 07/07/22 12:00 | 1       |
| Toluene             | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 07/01/22 15:28 | 07/07/22 12:00 | 1       |
| Ethylbenzene        | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 07/01/22 15:28 | 07/07/22 12:00 | 1       |
| m-Xylene & p-Xylene | <0.00400 | U         | 0.00400 |     | mg/Kg |   | 07/01/22 15:28 | 07/07/22 12:00 | 1       |
| o-Xylene            | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 07/01/22 15:28 | 07/07/22 12:00 | 1       |
| Xylenes, Total      | <0.00400 | U         | 0.00400 |     | mg/Kg |   | 07/01/22 15:28 | 07/07/22 12:00 | 1       |
|                     |          |           |         |     |       |   |                |                |         |

MB MB

| Surrogate                   | %Recovery | Qualifier | Limits   |    | Prepared      | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|----|---------------|----------------|---------|
| 4-Bromofluorobenzene (Surr) | 96        |           | 70 - 130 | 07 | 7/01/22 15:28 | 07/07/22 12:00 | 1       |
| 1,4-Difluorobenzene (Surr)  | 87        |           | 70 - 130 | 07 | 7/01/22 15:28 | 07/07/22 12:00 | 1       |

Lab Sample ID: LCS 880-28904/1-A

Matrix: Solid

**Analysis Batch: 29172** 

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 28904

|                     | <b>Spike</b> | LCS     | LCS       |       |   |      | %Rec     |  |
|---------------------|--------------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Added        | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100        | 0.1014  |           | mg/Kg |   | 101  | 70 - 130 |  |
| Toluene             | 0.100        | 0.09844 |           | mg/Kg |   | 98   | 70 - 130 |  |
| Ethylbenzene        | 0.100        | 0.1029  |           | mg/Kg |   | 103  | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200        | 0.2124  |           | mg/Kg |   | 106  | 70 - 130 |  |
| o-Xylene            | 0.100        | 0.1048  |           | mg/Kg |   | 105  | 70 - 130 |  |
|                     |              |         |           |       |   |      |          |  |

LCS LCS

| Surrogate                   | %Recovery Qualifier | Limits   |
|-----------------------------|---------------------|----------|
| 4-Bromofluorobenzene (Surr) | 107                 | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 101                 | 70 - 130 |

Lab Sample ID: LCSD 880-28904/2-A

**Matrix: Solid** 

**Analysis Batch: 29172** 

| Client Sample ID: Lab Control Sample Dup |
|------------------------------------------|
|------------------------------------------|

Prep Type: Total/NA

Prep Batch: 28904

|                     | Spike | LUGD   | LUGD      |       |   |      | /orec    |     | KFD   |  |
|---------------------|-------|--------|-----------|-------|---|------|----------|-----|-------|--|
| Analyte             | Added | Result | Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |  |
| Benzene             | 0.100 | 0.1049 |           | mg/Kg |   | 105  | 70 - 130 | 3   | 35    |  |
| Toluene             | 0.100 | 0.1030 |           | mg/Kg |   | 103  | 70 - 130 | 5   | 35    |  |
| Ethylbenzene        | 0.100 | 0.1077 |           | mg/Kg |   | 108  | 70 - 130 | 5   | 35    |  |
| m-Xylene & p-Xylene | 0.200 | 0.2212 |           | mg/Kg |   | 111  | 70 - 130 | 4   | 35    |  |
| o-Xylene            | 0.100 | 0.1094 |           | mg/Kg |   | 109  | 70 - 130 | 4   | 35    |  |
|                     |       |        |           |       |   |      |          |     |       |  |

LCSD LCSD

| Surrogate                   | %Recovery | Qualifier | Limits   |
|-----------------------------|-----------|-----------|----------|
| 4-Bromofluorobenzene (Surr) | 107       |           | 70 - 130 |
| 1.4-Difluorobenzene (Surr)  | 100       |           | 70 - 130 |

Lab Sample ID: 890-2475-A-1-G MS

**Matrix: Solid** 

Analysis Batch: 29172

| Client Sample | ID: Matrix Spike |
|---------------|------------------|
| Pre           | p Type: Total/NA |

Prep Batch: 28904

|         | Sample   | Sample    | Spike | MS      | MS        |       |   |      | %Rec     |  |
|---------|----------|-----------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte | Result   | Qualifier | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene | <0.00201 | U         | 0.101 | 0.09951 |           | mg/Kg |   | 99   | 70 - 130 |  |
| Toluene | <0.00201 | U         | 0.101 | 0.09548 |           | mg/Kg |   | 95   | 70 - 130 |  |

**Eurofins Midland** 

Page 15 of 37

#### QC Sample Results

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-16439-1

#### Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-2475-A-1-G MS

Lab Sample ID: 890-2475-A-1-H MSD

**Matrix: Solid** 

**Matrix: Solid** 

**Analysis Batch: 29172** 

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 28904

| Sample    | Sample                   | Spike | MS                                                        | MS                                                                       |                                                                                            |                                                                                                         |                                                                                                                           | %Rec                                                                                                                                 |
|-----------|--------------------------|-------|-----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Result    | Qualifier                | Added | Result                                                    | Qualifier                                                                | Unit                                                                                       | D                                                                                                       | %Rec                                                                                                                      | Limits                                                                                                                               |
| <0.00201  | U                        | 0.101 | 0.09892                                                   |                                                                          | mg/Kg                                                                                      |                                                                                                         | 98                                                                                                                        | 70 - 130                                                                                                                             |
| <0.00402  | U                        | 0.202 | 0.2043                                                    |                                                                          | mg/Kg                                                                                      |                                                                                                         | 101                                                                                                                       | 70 - 130                                                                                                                             |
| < 0.00201 | U                        | 0.101 | 0.1009                                                    |                                                                          | mg/Kg                                                                                      |                                                                                                         | 100                                                                                                                       | 70 - 130                                                                                                                             |
|           | Result <0.00201 <0.00402 |       | Result         Qualifier         Added           <0.00201 | Result         Qualifier         Added         Result           <0.00201 | Result         Qualifier         Added         Result         Qualifier           <0.00201 | Result         Qualifier         Added         Result         Qualifier         Unit           <0.00201 | Result   Qualifier           Added           Result           Qualifier           Unit           D           <0.00201   U | Result          Qualifier         Added          Result          Qualifier         Unit          D          %Rec            <0.00201 |

MS MS

| Surrogate                   | %Recovery Qu | alifier | Limits   |
|-----------------------------|--------------|---------|----------|
| 4-Bromofluorobenzene (Surr) | 110          |         | 70 - 130 |
| 1.4-Difluorobenzene (Surr)  | 102          |         | 70 - 130 |

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 28904

RPD

**Analysis Batch: 29172** Sample Sample Spike MSD MSD Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit %Rec 0.100 0.09182 Benzene <0.00201 U mg/Kg 92 70 - 130 8 35 Toluene <0.00201 U 0.100 0.08800 88 70 - 130 35 mg/Kg 8 Ethylbenzene <0.00201 U 0.100 0.08801 mg/Kg 88 70 - 130 12 35 m-Xylene & p-Xylene <0.00402 U 0.200 0.1817 70 - 130 35 mg/Kg 12 0.100 o-Xylene <0.00201 U 0.09018 90 70 - 130 11 mg/Kg

MSD MSD

| Surrogate                   | %Recovery Quali | fier Limits |
|-----------------------------|-----------------|-------------|
| 4-Bromofluorobenzene (Surr) | 109             | 70 - 130    |
| 1,4-Difluorobenzene (Surr)  | 99              | 70 - 130    |

Lab Sample ID: MB 880-29048/5-A

**Matrix: Solid** 

**Analysis Batch: 29109** 

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 29048

MB MB

| Analyte             | Result   | Qualifier | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|---------------------|----------|-----------|---------|-----|-------|---|----------------|----------------|---------|
| Benzene             | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 12:38 | 1       |
| Toluene             | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 12:38 | 1       |
| Ethylbenzene        | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 12:38 | 1       |
| m-Xylene & p-Xylene | <0.00400 | U         | 0.00400 |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 12:38 | 1       |
| o-Xylene            | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 12:38 | 1       |
| Xylenes, Total      | <0.00400 | U         | 0.00400 |     | mg/Kg |   | 07/05/22 13:34 | 07/06/22 12:38 | 1       |

MB MB

| Surrogate                   | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|----------------|----------------|---------|
| 4-Bromofluorobenzene (Surr) | 103       |           | 70 - 130 | 07/05/22 13:34 | 07/06/22 12:38 | 1       |
| 1,4-Difluorobenzene (Surr)  | 94        |           | 70 - 130 | 07/05/22 13:34 | 07/06/22 12:38 | 1       |

Lab Sample ID: LCS 880-29048/1-A

Matrix: Solid

Analysis Batch: 29109

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 29048

|                     | Spike | LCS     | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.1020  |           | mg/Kg |   | 102  | 70 - 130 |  |
| Toluene             | 0.100 | 0.1140  |           | mg/Kg |   | 114  | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.09745 |           | mg/Kg |   | 97   | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.1975  |           | mg/Kg |   | 99   | 70 - 130 |  |

**Eurofins Midland** 

Released to Imaging: 8/11/2024 22:09::18 PM AM

Lab Sample ID: LCS 880-29048/1-A

Lab Sample ID: LCSD 880-29048/2-A

#### QC Sample Results

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

**Analysis Batch: 29109** 

**Matrix: Solid** 

**Matrix: Solid** 

Job ID: 880-16439-1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 29048

%Rec

Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits D 0.100 0 1127 113 70 - 130 o-Xylene mg/Kg

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 113 70 - 130 70 - 130 1,4-Difluorobenzene (Surr) 104

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 29048

**Analysis Batch: 29109** Spike LCSD LCSD RPD Analyte Added Result Qualifier Unit %Rec Limits Limit D Benzene 0.100 0.1084 mg/Kg 108 70 - 130 6 35 Toluene 0.100 0.1088 mg/Kg 109 70 - 130 35 5 Ethylbenzene 0.100 0.09420 mg/Kg 94 70 - 130 3 35 m-Xylene & p-Xylene 0.200 0.1925 mg/Kg 96 70 - 130 35 0.100 0.1098 70 - 130 35 o-Xylene mg/Kg 110 3

LCSD LCSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 112 70 - 130 1,4-Difluorobenzene (Surr) 104 70 - 130

Lab Sample ID: 890-2497-A-18-A MS

**Matrix: Solid** 

**Analysis Batch: 29109** 

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 29048

MS MS Sample Sample Spike %Rec Result Qualifier Added Result Qualifier Analyte Unit D %Rec Limits Benzene <0.00201 U 0.101 0.08092 mg/Kg 80 70 - 130 Toluene < 0.00201 U 0.101 0.09890 98 70 - 130 mg/Kg Ethylbenzene <0.00201 U 0.101 0.08695 mg/Kg 86 70 - 130 m-Xylene & p-Xylene <0.00402 U 0.202 0.1775 mg/Kg 88 70 - 130 o-Xylene <0.00201 U 0.101 0.1012 mg/Kg 100 70 - 130

MS MS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 117 70 - 130 70 - 130 1,4-Difluorobenzene (Surr) 88

Lab Sample ID: 890-2497-A-18-B MSD

**Matrix: Solid** Analysis Ratch: 20100 Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA Prop Ratch: 29048

| Analysis batch: 29109 |          |           |       |         |           |       |   |      | Prep Batch. 29046 |     |       |  |  |
|-----------------------|----------|-----------|-------|---------|-----------|-------|---|------|-------------------|-----|-------|--|--|
|                       | Sample   | Sample    | Spike | MSD     | MSD       |       |   |      | %Rec              |     | RPD   |  |  |
| Analyte               | Result   | Qualifier | Added | Result  | Qualifier | Unit  | D | %Rec | Limits            | RPD | Limit |  |  |
| Benzene               | <0.00201 | U         | 0.100 | 0.09817 |           | mg/Kg |   | 98   | 70 - 130          | 19  | 35    |  |  |
| Toluene               | <0.00201 | U         | 0.100 | 0.1032  |           | mg/Kg |   | 103  | 70 - 130          | 4   | 35    |  |  |
| Ethylbenzene          | <0.00201 | U         | 0.100 | 0.08557 |           | mg/Kg |   | 85   | 70 - 130          | 2   | 35    |  |  |
| m-Xylene & p-Xylene   | <0.00402 | U         | 0.200 | 0.1738  |           | mg/Kg |   | 87   | 70 - 130          | 2   | 35    |  |  |
| o-Xylene              | <0.00201 | U         | 0.100 | 0.09878 |           | mg/Kg |   | 99   | 70 - 130          | 2   | 35    |  |  |
|                       |          |           |       |         |           |       |   |      |                   |     |       |  |  |

# QC Sample Results

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-16439-1

# Method: 8021B - Volatile Organic Compounds (GC) (Continued)

MSD MSD

Lab Sample ID: 890-2497-A-18-B MSD

**Matrix: Solid** 

**Analysis Batch: 29109** 

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 29048

|                             | INISD IN    | 130      |          |
|-----------------------------|-------------|----------|----------|
| Surrogate                   | %Recovery Q | ualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 113         |          | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 101         |          | 70 - 130 |

Lab Sample ID: MB 880-29191/5-A

**Matrix: Solid** 

Analysis Batch: 29173

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 29191

|   |                     | MB       | MR        |         |     |       |   |                |                |         |
|---|---------------------|----------|-----------|---------|-----|-------|---|----------------|----------------|---------|
|   | Analyte             | Result   | Qualifier | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|   | Benzene             | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 07/07/22 10:17 | 07/07/22 12:31 | 1       |
|   | Toluene             | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 07/07/22 10:17 | 07/07/22 12:31 | 1       |
|   | Ethylbenzene        | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 07/07/22 10:17 | 07/07/22 12:31 | 1       |
|   | m-Xylene & p-Xylene | <0.00400 | U         | 0.00400 |     | mg/Kg |   | 07/07/22 10:17 | 07/07/22 12:31 | 1       |
|   | o-Xylene            | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 07/07/22 10:17 | 07/07/22 12:31 | 1       |
|   | Xylenes, Total      | <0.00400 | U         | 0.00400 |     | mg/Kg |   | 07/07/22 10:17 | 07/07/22 12:31 | 1       |
| ı |                     |          |           |         |     |       |   |                |                |         |

MB MB

| Surrogate                   | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|----------------|----------------|---------|
| 4-Bromofluorobenzene (Surr) | 103       |           | 70 - 130 | 07/07/22 10:17 | 07/07/22 12:31 | 1       |
| 1,4-Difluorobenzene (Surr)  | 99        |           | 70 - 130 | 07/07/22 10:17 | 07/07/22 12:31 | 1       |

Lab Sample ID: LCS 880-29191/1-A

**Matrix: Solid** 

**Analysis Batch: 29173** 

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 29191

|                     | Spike | LCS     | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.09870 | -         | mg/Kg |   | 99   | 70 - 130 |  |
| Toluene             | 0.100 | 0.1043  |           | mg/Kg |   | 104  | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.08958 |           | mg/Kg |   | 90   | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.1825  |           | mg/Kg |   | 91   | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.1042  |           | mg/Kg |   | 104  | 70 - 130 |  |
|                     |       |         |           |       |   |      |          |  |

Spike

Added

0.100

0.100

0.100

0.200

0.100

LCSD LCSD

0.09476

0.1077

0.09471

0.1942

0.1100

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

LCS LCS

| Surrogate                   | %Recovery Qualifier | Limits   |
|-----------------------------|---------------------|----------|
| 4-Bromofluorobenzene (Surr) | 105                 | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 100                 | 70 - 130 |

Lab Sample ID: LCSD 880-29191/2-A

**Matrix: Solid** 

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

m-Xylene & p-Xylene

**Analysis Batch: 29173** 

Client Sample ID: Lab Control Sample Dup

%Rec

95

108

95

97

110

%Rec

70 - 130

70 - 130

Prep Type: Total/NA

Prep Batch: 29191

**RPD** 

35

35

Limits RPD Limit 70 - 130 35 70 - 130 35 3 70 - 130 35

| LCSD | LC. | SD |
|------|-----|----|
|      | _   |    |

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 70 - 130 109

**Eurofins Midland** 

6

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-16439-1

# Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-29191/2-A

**Matrix: Solid** 

**Analysis Batch: 29173** 

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Prep Batch: 29191

LCSD LCSD

%Recovery Qualifier Surrogate Limits 1,4-Difluorobenzene (Surr) 97 70 - 130

Lab Sample ID: 880-16557-A-5-E MS

**Matrix: Solid** 

**Prep Type: Total/NA** Prep Batch: 29191 **Analysis Batch: 29173** 

| Sample   | Sample                                     | Spike                  | MS                                                        | MS                                                                       |                                                                                            |                                                                                                         |                                                                                                                   | %Rec                                                                                                                           |                                                                                                                                               |
|----------|--------------------------------------------|------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Result   | Qualifier                                  | Added                  | Result                                                    | Qualifier                                                                | Unit                                                                                       | D                                                                                                       | %Rec                                                                                                              | Limits                                                                                                                         |                                                                                                                                               |
| <0.00199 | U                                          | 0.101                  | 0.09714                                                   |                                                                          | mg/Kg                                                                                      |                                                                                                         | 96                                                                                                                | 70 - 130                                                                                                                       |                                                                                                                                               |
| <0.00199 | U                                          | 0.101                  | 0.1018                                                    |                                                                          | mg/Kg                                                                                      |                                                                                                         | 101                                                                                                               | 70 - 130                                                                                                                       |                                                                                                                                               |
| <0.00199 | U                                          | 0.101                  | 0.08591                                                   |                                                                          | mg/Kg                                                                                      |                                                                                                         | 85                                                                                                                | 70 - 130                                                                                                                       |                                                                                                                                               |
| <0.00398 | U                                          | 0.202                  | 0.1763                                                    |                                                                          | mg/Kg                                                                                      |                                                                                                         | 87                                                                                                                | 70 - 130                                                                                                                       |                                                                                                                                               |
| <0.00199 | U                                          | 0.101                  | 0.09959                                                   |                                                                          | mg/Kg                                                                                      |                                                                                                         | 99                                                                                                                | 70 - 130                                                                                                                       |                                                                                                                                               |
|          | Result <0.00199 <0.00199 <0.00199 <0.00398 | Result   Qualifier   U | Result         Qualifier         Added           <0.00199 | Result         Qualifier         Added         Result           <0.00199 | Result         Qualifier         Added         Result         Qualifier           <0.00199 | Result         Qualifier         Added         Result         Qualifier         Unit           <0.00199 | Result         Qualifier         Added         Result         Qualifier         Unit         D           <0.00199 | Result         Qualifier         Added         Result         Qualifier         Unit         D         %Rec           <0.00199 | Result         Qualifier         Added         Result         Qualifier         Unit         D         %Rec         Limits           <0.00199 |

MS MS

| Surrogate                   | %Recovery Qualifier | Limits   |
|-----------------------------|---------------------|----------|
| 4-Bromofluorobenzene (Surr) | 111                 | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 103                 | 70 - 130 |

Lab Sample ID: 880-16557-A-5-F MSD Client Sample ID: Matrix Spike Duplicate

**Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 29173** Prep Batch: 29191

|                     | Sample   | Sample    | Spike | MSD     | MSD       |       |   |      | %Rec     |     | RPD   |
|---------------------|----------|-----------|-------|---------|-----------|-------|---|------|----------|-----|-------|
| Analyte             | Result   | Qualifier | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |
| Benzene             | <0.00199 | U         | 0.100 | 0.09385 |           | mg/Kg |   | 94   | 70 - 130 | 3   | 35    |
| Toluene             | <0.00199 | U         | 0.100 | 0.1051  |           | mg/Kg |   | 105  | 70 - 130 | 3   | 35    |
| Ethylbenzene        | <0.00199 | U         | 0.100 | 0.09028 |           | mg/Kg |   | 90   | 70 - 130 | 5   | 35    |
| m-Xylene & p-Xylene | <0.00398 | U         | 0.200 | 0.1853  |           | mg/Kg |   | 92   | 70 - 130 | 5   | 35    |
| o-Xylene            | <0.00199 | U         | 0.100 | 0.1044  |           | mg/Kg |   | 104  | 70 - 130 | 5   | 35    |

MSD MSD

| Surrogate                   | %Recovery Qualit | fier Limits |
|-----------------------------|------------------|-------------|
| 4-Bromofluorobenzene (Surr) | 108              | 70 - 130    |
| 1.4-Difluorobenzene (Surr)  | 98               | 70 - 130    |

Lab Sample ID: MB 880-29325/5-A Client Sample ID: Method Blank

**Matrix: Solid** 

Released to Imaging: 8/11/2024 22:09::18 PM AM

Prep Type: Total/NA **Analysis Batch: 29358** Prep Batch: 29325

| Analyte             | Result   | Qualifier | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|---------------------|----------|-----------|---------|-----|-------|---|----------------|----------------|---------|
| Benzene             | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 07/08/22 14:51 | 07/09/22 16:11 | 1       |
| Toluene             | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 07/08/22 14:51 | 07/09/22 16:11 | 1       |
| Ethylbenzene        | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 07/08/22 14:51 | 07/09/22 16:11 | 1       |
| m-Xylene & p-Xylene | <0.00400 | U         | 0.00400 |     | mg/Kg |   | 07/08/22 14:51 | 07/09/22 16:11 | 1       |
| o-Xylene            | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 07/08/22 14:51 | 07/09/22 16:11 | 1       |
| Xylenes, Total      | <0.00400 | U         | 0.00400 |     | mg/Kg |   | 07/08/22 14:51 | 07/09/22 16:11 | 1       |

мв мв

мв мв

| Surrogate                   | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|----------------|----------------|---------|
| 4-Bromofluorobenzene (Surr) | 99        |           | 70 - 130 | 07/08/22 14:51 | 07/09/22 16:11 | 1       |
| 1,4-Difluorobenzene (Surr)  | 90        |           | 70 - 130 | 07/08/22 14:51 | 07/09/22 16:11 | 1       |

# QC Sample Results

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-16439-1

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 29360

1

# Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 880-29360/5-A **Matrix: Solid** 

Analysis Batch: 29358

| l |                     | MB       | MB        |         |     |       |   |                |                |         |
|---|---------------------|----------|-----------|---------|-----|-------|---|----------------|----------------|---------|
|   | Analyte             | Result   | Qualifier | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|   | Benzene             | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 07/09/22 14:01 | 07/10/22 03:20 | 1       |
|   | Toluene             | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 07/09/22 14:01 | 07/10/22 03:20 | 1       |
|   | Ethylbenzene        | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 07/09/22 14:01 | 07/10/22 03:20 | 1       |
| I | m-Xylene & p-Xylene | <0.00400 | U         | 0.00400 |     | mg/Kg |   | 07/09/22 14:01 | 07/10/22 03:20 | 1       |
|   | o-Xylene            | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 07/09/22 14:01 | 07/10/22 03:20 | 1       |
|   | Xylenes, Total      | <0.00400 | U         | 0.00400 |     | mg/Kg |   | 07/09/22 14:01 | 07/10/22 03:20 | 1       |

MB MB Qualifier %Recovery Limits Prepared Analyzed Dil Fac Surrogate 70 - 130 07/09/22 14:01 07/10/22 03:20 4-Bromofluorobenzene (Surr) 104 70 - 130 07/09/22 14:01 07/10/22 03:20 1,4-Difluorobenzene (Surr) 93

Lab Sample ID: LCS 880-29360/1-A

**Matrix: Solid** 

**Analysis Batch: 29358** 

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Prep Batch: 29360

|                     | Spike | LCS    | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|--------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.1120 | -         | mg/Kg |   | 112  | 70 - 130 |  |
| Toluene             | 0.100 | 0.1081 |           | mg/Kg |   | 108  | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.1124 |           | mg/Kg |   | 112  | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.2330 |           | mg/Kg |   | 117  | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.1229 |           | mg/Kg |   | 123  | 70 - 130 |  |
|                     |       |        |           |       |   |      |          |  |

LCS LCS %Recovery Qualifier

Limits Surrogate 70 - 130 4-Bromofluorobenzene (Surr) 113 104 70 - 130 1,4-Difluorobenzene (Surr)

Lab Sample ID: LCSD 880-29360/2-A

**Matrix: Solid** 

Analysis Batch: 29358

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 29360

|                     | Spike | LCSD   | LCSD      |       |   |      | %Rec     |     | RPD   |
|---------------------|-------|--------|-----------|-------|---|------|----------|-----|-------|
| Analyte             | Added | Result | Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |
| Benzene             | 0.100 | 0.1089 |           | mg/Kg |   | 109  | 70 - 130 | 3   | 35    |
| Toluene             | 0.100 | 0.1033 |           | mg/Kg |   | 103  | 70 - 130 | 5   | 35    |
| Ethylbenzene        | 0.100 | 0.1106 |           | mg/Kg |   | 111  | 70 - 130 | 2   | 35    |
| m-Xylene & p-Xylene | 0.200 | 0.2268 |           | mg/Kg |   | 113  | 70 - 130 | 3   | 35    |
| o-Xylene            | 0.100 | 0.1233 |           | mg/Kg |   | 123  | 70 - 130 | 0   | 35    |

LCSD LCSD %Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 113 70 - 130 1,4-Difluorobenzene (Surr) 104 70 - 130

Lab Sample ID: 880-16698-A-11-E MS

**Matrix: Solid** 

Analysis Batch: 29358

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 29360

|         | Sample   | Sample    | Spike  | MS     | MS        |       |   |      | %Rec     |  |
|---------|----------|-----------|--------|--------|-----------|-------|---|------|----------|--|
| Analyte | Result   | Qualifier | Added  | Result | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene | <0.00199 | U         | 0.0998 | 0.1101 |           | mg/Kg |   | 110  | 70 - 130 |  |
| Toluene | <0.00199 | U         | 0.0998 | 0.1064 |           | mg/Kg |   | 106  | 70 - 130 |  |

**Eurofins Midland** 

Page 20 of 37

# **QC Sample Results**

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-16439-1

# Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-16698-A-11-E MS

**Matrix: Solid** 

Analysis Batch: 29358

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 29360

|                     | Sample    | Sample    | <b>Бріке</b> | IVIS   | IVIS      |       |   |      | %Rec     |  |
|---------------------|-----------|-----------|--------------|--------|-----------|-------|---|------|----------|--|
| Analyte             | Result    | Qualifier | Added        | Result | Qualifier | Unit  | D | %Rec | Limits   |  |
| Ethylbenzene        | <0.00199  | U         | 0.0998       | 0.1093 |           | mg/Kg |   | 109  | 70 - 130 |  |
| m-Xylene & p-Xylene | <0.00398  | U         | 0.200        | 0.2257 |           | mg/Kg |   | 112  | 70 - 130 |  |
| o-Xylene            | < 0.00199 | U         | 0.0998       | 0.1192 |           | mg/Kg |   | 119  | 70 - 130 |  |
|                     |           |           |              |        |           |       |   |      |          |  |

MS MS

| Surrogate                   | %Recovery Qualifier | Limits   |
|-----------------------------|---------------------|----------|
| 4-Bromofluorobenzene (Surr) | 111                 | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 103                 | 70 - 130 |

**Client Sample ID: Matrix Spike Duplicate** 

Prep Type: Total/NA

Prep Batch: 29360

Lab Sample ID: 880-16698-A-11-F MSD **Matrix: Solid** 

**Analysis Batch: 29358** 

|                     | Sample   | Sample    | Spike | MSD    | MSD       |       |   |      | %Rec     |     | RPD   |
|---------------------|----------|-----------|-------|--------|-----------|-------|---|------|----------|-----|-------|
| Analyte             | Result   | Qualifier | Added | Result | Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |
| Benzene             | <0.00199 | U         | 0.100 | 0.1060 |           | mg/Kg |   | 106  | 70 - 130 | 4   | 35    |
| Toluene             | <0.00199 | U         | 0.100 | 0.1020 |           | mg/Kg |   | 101  | 70 - 130 | 4   | 35    |
| Ethylbenzene        | <0.00199 | U         | 0.100 | 0.1052 |           | mg/Kg |   | 104  | 70 - 130 | 4   | 35    |
| m-Xylene & p-Xylene | <0.00398 | U         | 0.200 | 0.2165 |           | mg/Kg |   | 107  | 70 - 130 | 4   | 35    |
| o-Xylene            | <0.00199 | U         | 0.100 | 0.1126 |           | mg/Kg |   | 112  | 70 - 130 | 6   | 35    |
|                     |          |           |       |        |           |       |   |      |          |     |       |

MSD MSD

| Surrogate                   | %Recovery | Qualifier | Limits   |
|-----------------------------|-----------|-----------|----------|
| 4-Bromofluorobenzene (Surr) | 110       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 102       |           | 70 - 130 |

## Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-28738/1-A

**Matrix: Solid** 

**Analysis Batch: 28713** 

| Client Sample ID: Method Blank |  |
|--------------------------------|--|
| Duan Tunas Tatal/NA            |  |

Prep Type: Total/NA

Prep Batch: 28738

|                                         | MB     | MB        |      |     |       |   |                |                |         |
|-----------------------------------------|--------|-----------|------|-----|-------|---|----------------|----------------|---------|
| Analyte                                 | Result | Qualifier | RL   | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <50.0  | U         | 50.0 |     | mg/Kg |   | 06/30/22 10:13 | 06/30/22 22:11 | 1       |
| Diesel Range Organics (Over<br>C10-C28) | <50.0  | U         | 50.0 |     | mg/Kg |   | 06/30/22 10:13 | 06/30/22 22:11 | 1       |
| Oll Range Organics (Over C28-C36)       | <50.0  | U         | 50.0 |     | mg/Kg |   | 06/30/22 10:13 | 06/30/22 22:11 | 1       |

MB MB

| Surrogate      | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|----------------|-----------|-----------|----------|----------------|----------------|---------|
| 1-Chlorooctane | 104       |           | 70 - 130 | 06/30/22 10:13 | 06/30/22 22:11 | 1       |
| o-Terphenyl    | 122       |           | 70 - 130 | 06/30/22 10:13 | 06/30/22 22:11 | 1       |

Lab Sample ID: LCS 880-28738/2-A

**Matrix: Solid** 

**Analysis Batch: 28713** 

| Client Sample ID: Lab Control Sample |  |
|--------------------------------------|--|
| Prep Type: Total/NA                  |  |

Prep Batch: 28738

|                             | Spike | LCS    | LCS       |       |   |      | %Rec     |  |
|-----------------------------|-------|--------|-----------|-------|---|------|----------|--|
| Analyte                     | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |  |
| Gasoline Range Organics     | 1000  | 1108   |           | mg/Kg |   | 111  | 70 - 130 |  |
| (GRO)-C6-C10                |       |        |           |       |   |      |          |  |
| Diesel Range Organics (Over | 1000  | 1029   |           | mg/Kg |   | 103  | 70 - 130 |  |
| C10-C28)                    |       |        |           |       |   |      |          |  |

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-16439-1

# Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

LCS LCS

Lab Sample ID: LCS 880-28738/2-A

Lab Sample ID: LCSD 880-28738/3-A

Lab Sample ID: 890-2471-A-21-B MS

**Matrix: Solid** 

**Matrix: Solid** 

**Analysis Batch: 28713** 

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

Prep Batch: 28738

Surrogate %Recovery Qualifier Limits 1-Chlorooctane 89 70 - 130 o-Terphenyl 94 70 - 130

Client Sample ID: Lab Control Sample Dup

70 - 130

83

Prep Type: Total/NA

21

**Analysis Batch: 28713** Prep Batch: 28738 Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit 1000 1198 120 70 - 1308 20 Gasoline Range Organics mg/Kg

834.5 \*1

mg/Kg

1000

C10-C28)

(GRO)-C6-C10

**Matrix: Solid** 

Diesel Range Organics (Over

**Analysis Batch: 28713** 

LCSD LCSD

| Surrogate      | %Recovery | Qualifier | Limits   |
|----------------|-----------|-----------|----------|
| 1-Chlorooctane | 81        |           | 70 - 130 |
| o-Terphenyl    | 76        |           | 70 - 130 |

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 28738

Sample Sample MS MS Spike Added Analyte Result Qualifier Result Qualifier Unit D %Rec Limits Gasoline Range Organics <49.9 U 996 787.7 mg/Kg 79 70 - 130 (GRO)-C6-C10 <49.9 U \*1 F1 Diesel Range Organics (Over 996 670.8 F1 mg/Kg 67 70 - 130

C10-C28)

MS MS %Recovery Qualifier Surrogate Limits 70 - 130 1-Chlorooctane 89 o-Terphenyl 96 70 - 130

Lab Sample ID: 890-2471-A-21-C MSD Client Sample ID: Matrix Spike Duplicate

**Matrix: Solid** 

**Analysis Batch: 28713** 

Prep Type: Total/NA

Prep Batch: 28738

Sample Sample MSD MSD RPD Spike %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Gasoline Range Organics <49.9 U 996 876.4 88 mg/Kg 70 - 130 11 20 (GRO)-C6-C10 Diesel Range Organics (Over <49.9 U\*1F1 996 767.3 mg/Kg 77 70 - 130 13 20

C10-C28)

MSD MSD

| Surrogate      | %Recovery | Qualifier | Limits   |
|----------------|-----------|-----------|----------|
| 1-Chlorooctane | 102       |           | 70 - 130 |
| o-Terphenyl    | 109       |           | 70 - 130 |

**Eurofins Midland** 

# QC Sample Results

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-16439-1

07/07/22 05:25

## Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-28870/1-A

**Matrix: Solid** 

Analyte

Chloride

**Analysis Batch: 29129** 

Client Sample ID: Method Blank **Prep Type: Soluble** 

мв мв Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac

mg/Kg

Lab Sample ID: LCS 880-28870/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble** 

5.00

**Analysis Batch: 29129** 

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Chloride 250 238.6 mg/Kg 95 90 - 110

Lab Sample ID: LCSD 880-28870/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble** 

Analysis Batch: 29129

LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 250 238.6 mg/Kg 90 - 110

Lab Sample ID: 880-16437-A-14-B MS Client Sample ID: Matrix Spike **Prep Type: Soluble** 

**Matrix: Solid** 

**Analysis Batch: 29129** 

MS MS Spike %Rec Sample Sample Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits Chloride 353 248 594.0 90 - 110 mg/Kg

Lab Sample ID: 880-16437-A-14-C MSD Client Sample ID: Matrix Spike Duplicate **Prep Type: Soluble** 

**Matrix: Solid** 

**Analysis Batch: 29129** 

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit 353 Chloride 248 593.7 mg/Kg 97 90 \_ 110

Lab Sample ID: MB 880-28872/1-A Client Sample ID: Method Blank Matrix: Solid **Prep Type: Soluble** 

**Analysis Batch: 29132** 

мв мв

<5.00 U

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chloride <5.00 5.00 mg/Kg 07/07/22 01:53

Lab Sample ID: LCS 880-28872/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble** 

**Analysis Batch: 29132** 

LCS LCS Spike %Rec Added Result Qualifier Limits Analyte Unit %Rec Chloride 250 239.8 mg/Kg 96 90 - 110

Lab Sample ID: LCSD 880-28872/3-A Client Sample ID: Lab Control Sample Dup **Prep Type: Soluble** 

**Matrix: Solid** 

**Analysis Batch: 29132** 

Released to Imaging: 8/11/2024/22:09:18 PM AM

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Chloride 250 241.6 mg/Kg 97 90 - 110 20

# **QC Sample Results**

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-16439-1

## Method: 300.0 - Anions, Ion Chromatography

Analysis Batch: 29132

Lab Sample ID: 880-16439-6 MS Client Sample ID: Bottom Hole 2 **Matrix: Solid Prep Type: Soluble** 

Sample Sample Spike MS MS %Rec Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits Chloride 7200 2500 9838 mg/Kg 106 90 - 110

Lab Sample ID: 880-16439-6 MSD Client Sample ID: Bottom Hole 2

**Matrix: Solid Prep Type: Soluble** 

**Analysis Batch: 29132** 

Spike Sample Sample MSD MSD %Rec RPD Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec Chloride 7200 2500 9743 mg/Kg 102 90 - 110 20

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-16439-1

# **GC VOA**

# Prep Batch: 28904

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 880-16439-6        | Bottom Hole 2          | Total/NA  | Solid  | 5035   |            |
| 880-16439-8        | Bottom Hole 3          | Total/NA  | Solid  | 5035   |            |
| 880-16439-9        | Bottom Hole 3          | Total/NA  | Solid  | 5035   |            |
| MB 880-28904/5-A   | Method Blank           | Total/NA  | Solid  | 5035   |            |
| LCS 880-28904/1-A  | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |
| LCSD 880-28904/2-A | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |
| 890-2475-A-1-G MS  | Matrix Spike           | Total/NA  | Solid  | 5035   |            |
| 890-2475-A-1-H MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 5035   |            |

### Prep Batch: 29048

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batcl |
|---------------------|------------------------|-----------|--------|--------|------------|
| 880-16439-3         | Bottom Hole 1          | Total/NA  | Solid  | 5035   | <u> </u>   |
| 880-16439-4         | Bottom Hole 1          | Total/NA  | Solid  | 5035   |            |
| 880-16439-5         | Bottom Hole 1          | Total/NA  | Solid  | 5035   |            |
| 880-16439-7         | Bottom Hole 2          | Total/NA  | Solid  | 5035   |            |
| 880-16439-10        | Bottom Hole 4          | Total/NA  | Solid  | 5035   |            |
| MB 880-29048/5-A    | Method Blank           | Total/NA  | Solid  | 5035   |            |
| LCS 880-29048/1-A   | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |
| LCSD 880-29048/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |
| 890-2497-A-18-A MS  | Matrix Spike           | Total/NA  | Solid  | 5035   |            |
| 890-2497-A-18-B MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 5035   |            |

## **Analysis Batch: 29109**

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 880-16439-3         | Bottom Hole 1          | Total/NA  | Solid  | 8021B  | 29048      |
| 880-16439-4         | Bottom Hole 1          | Total/NA  | Solid  | 8021B  | 29048      |
| 880-16439-5         | Bottom Hole 1          | Total/NA  | Solid  | 8021B  | 29048      |
| 880-16439-7         | Bottom Hole 2          | Total/NA  | Solid  | 8021B  | 29048      |
| 880-16439-10        | Bottom Hole 4          | Total/NA  | Solid  | 8021B  | 29048      |
| MB 880-29048/5-A    | Method Blank           | Total/NA  | Solid  | 8021B  | 29048      |
| LCS 880-29048/1-A   | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 29048      |
| LCSD 880-29048/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 29048      |
| 890-2497-A-18-A MS  | Matrix Spike           | Total/NA  | Solid  | 8021B  | 29048      |
| 890-2497-A-18-B MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 29048      |

## Analysis Batch: 29172

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 880-16439-6        | Bottom Hole 2          | Total/NA  | Solid  | 8021B  | 28904      |
| 880-16439-8        | Bottom Hole 3          | Total/NA  | Solid  | 8021B  | 28904      |
| 880-16439-9        | Bottom Hole 3          | Total/NA  | Solid  | 8021B  | 28904      |
| MB 880-28904/5-A   | Method Blank           | Total/NA  | Solid  | 8021B  | 28904      |
| LCS 880-28904/1-A  | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 28904      |
| LCSD 880-28904/2-A | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 28904      |
| 890-2475-A-1-G MS  | Matrix Spike           | Total/NA  | Solid  | 8021B  | 28904      |
| 890-2475-A-1-H MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 28904      |

## Analysis Batch: 29173

| Lab Sample ID 880-16439-1 | Client Sample ID  Bottom Hole 1 | Prep Type Total/NA | Matrix Solid | Method<br>8021B | Prep Batch 29191 |
|---------------------------|---------------------------------|--------------------|--------------|-----------------|------------------|
| 880-16439-2               | Bottom Hole 1                   | Total/NA           | Solid        | 8021B           | 29191            |
| MB 880-29191/5-A          | Method Blank                    | Total/NA           | Solid        | 8021B           | 29191            |

**Eurofins Midland** 

Page 25 of 37

Released to Imaging: 8/1/2024 22:09:18 PM AM

9

\_

8

9

11

. .

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-16439-1

# GC VOA (Continued)

## **Analysis Batch: 29173 (Continued)**

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| LCS 880-29191/1-A   | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 29191      |
| LCSD 880-29191/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 29191      |
| 880-16557-A-5-E MS  | Matrix Spike           | Total/NA  | Solid  | 8021B  | 29191      |
| 880-16557-A-5-F MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 29191      |

## Prep Batch: 29191

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 880-16439-1         | Bottom Hole 1          | Total/NA  | Solid  | 5035   | _          |
| 880-16439-2         | Bottom Hole 1          | Total/NA  | Solid  | 5035   |            |
| MB 880-29191/5-A    | Method Blank           | Total/NA  | Solid  | 5035   |            |
| LCS 880-29191/1-A   | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |
| LCSD 880-29191/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |
| 880-16557-A-5-E MS  | Matrix Spike           | Total/NA  | Solid  | 5035   |            |
| 880-16557-A-5-F MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 5035   |            |

#### **Analysis Batch: 29192**

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method     | Prep Batch |
|---------------|------------------|-----------|--------|------------|------------|
| 880-16439-1   | Bottom Hole 1    | Total/NA  | Solid  | Total BTEX |            |
| 880-16439-2   | Bottom Hole 1    | Total/NA  | Solid  | Total BTEX |            |
| 880-16439-3   | Bottom Hole 1    | Total/NA  | Solid  | Total BTEX |            |
| 880-16439-4   | Bottom Hole 1    | Total/NA  | Solid  | Total BTEX |            |
| 880-16439-5   | Bottom Hole 1    | Total/NA  | Solid  | Total BTEX |            |
| 880-16439-6   | Bottom Hole 2    | Total/NA  | Solid  | Total BTEX |            |
| 880-16439-7   | Bottom Hole 2    | Total/NA  | Solid  | Total BTEX |            |
| 880-16439-8   | Bottom Hole 3    | Total/NA  | Solid  | Total BTEX |            |
| 880-16439-9   | Bottom Hole 3    | Total/NA  | Solid  | Total BTEX |            |
| 880-16439-10  | Bottom Hole 4    | Total/NA  | Solid  | Total BTEX |            |

## Prep Batch: 29325

| Lab Sample ID    | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|------------------|------------------|-----------|--------|--------|------------|
| MB 880-29325/5-A | Method Blank     | Total/NA  | Solid  | 5035   |            |

# Analysis Batch: 29358

| Lab Sample ID        | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|----------------------|------------------------|-----------|--------|--------|------------|
| 880-16439-2          | Bottom Hole 1          | Total/NA  | Solid  | 8021B  | 29360      |
| MB 880-29325/5-A     | Method Blank           | Total/NA  | Solid  | 8021B  | 29325      |
| MB 880-29360/5-A     | Method Blank           | Total/NA  | Solid  | 8021B  | 29360      |
| LCS 880-29360/1-A    | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 29360      |
| LCSD 880-29360/2-A   | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 29360      |
| 880-16698-A-11-E MS  | Matrix Spike           | Total/NA  | Solid  | 8021B  | 29360      |
| 880-16698-A-11-F MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 29360      |

### Prep Batch: 29360

| Lab Sample ID        | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|----------------------|------------------------|-----------|--------|--------|------------|
| 880-16439-2          | Bottom Hole 1          | Total/NA  | Solid  | 5035   |            |
| MB 880-29360/5-A     | Method Blank           | Total/NA  | Solid  | 5035   |            |
| LCS 880-29360/1-A    | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |
| LCSD 880-29360/2-A   | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |
| 880-16698-A-11-E MS  | Matrix Spike           | Total/NA  | Solid  | 5035   |            |
| 880-16698-A-11-F MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 5035   |            |

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-16439-1

# GC Semi VOA

## Analysis Batch: 28713

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|---------------------|------------------------|-----------|--------|----------|------------|
| 880-16439-1         | Bottom Hole 1          | Total/NA  | Solid  | 8015B NM | 28738      |
| 880-16439-2         | Bottom Hole 1          | Total/NA  | Solid  | 8015B NM | 28738      |
| 880-16439-3         | Bottom Hole 1          | Total/NA  | Solid  | 8015B NM | 28738      |
| 880-16439-4         | Bottom Hole 1          | Total/NA  | Solid  | 8015B NM | 28738      |
| 880-16439-5         | Bottom Hole 1          | Total/NA  | Solid  | 8015B NM | 28738      |
| 880-16439-6         | Bottom Hole 2          | Total/NA  | Solid  | 8015B NM | 28738      |
| 880-16439-7         | Bottom Hole 2          | Total/NA  | Solid  | 8015B NM | 28738      |
| 880-16439-8         | Bottom Hole 3          | Total/NA  | Solid  | 8015B NM | 28738      |
| 880-16439-9         | Bottom Hole 3          | Total/NA  | Solid  | 8015B NM | 28738      |
| 880-16439-10        | Bottom Hole 4          | Total/NA  | Solid  | 8015B NM | 28738      |
| MB 880-28738/1-A    | Method Blank           | Total/NA  | Solid  | 8015B NM | 28738      |
| LCS 880-28738/2-A   | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 28738      |
| LCSD 880-28738/3-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 28738      |
| 890-2471-A-21-B MS  | Matrix Spike           | Total/NA  | Solid  | 8015B NM | 28738      |
| 890-2471-A-21-C MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015B NM | 28738      |

#### Prep Batch: 28738

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|---------------------|------------------------|-----------|--------|-------------|------------|
| 880-16439-1         | Bottom Hole 1          | Total/NA  | Solid  | 8015NM Prep |            |
| 880-16439-2         | Bottom Hole 1          | Total/NA  | Solid  | 8015NM Prep |            |
| 880-16439-3         | Bottom Hole 1          | Total/NA  | Solid  | 8015NM Prep |            |
| 880-16439-4         | Bottom Hole 1          | Total/NA  | Solid  | 8015NM Prep |            |
| 880-16439-5         | Bottom Hole 1          | Total/NA  | Solid  | 8015NM Prep |            |
| 880-16439-6         | Bottom Hole 2          | Total/NA  | Solid  | 8015NM Prep |            |
| 880-16439-7         | Bottom Hole 2          | Total/NA  | Solid  | 8015NM Prep |            |
| 880-16439-8         | Bottom Hole 3          | Total/NA  | Solid  | 8015NM Prep |            |
| 880-16439-9         | Bottom Hole 3          | Total/NA  | Solid  | 8015NM Prep |            |
| 880-16439-10        | Bottom Hole 4          | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-28738/1-A    | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-28738/2-A   | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-28738/3-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 890-2471-A-21-B MS  | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |
| 890-2471-A-21-C MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015NM Prep |            |

## **Analysis Batch: 28880**

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method  | Prep Batch |
|---------------|------------------|-----------|--------|---------|------------|
| 880-16439-1   | Bottom Hole 1    | Total/NA  | Solid  | 8015 NM |            |
| 880-16439-2   | Bottom Hole 1    | Total/NA  | Solid  | 8015 NM |            |
| 880-16439-3   | Bottom Hole 1    | Total/NA  | Solid  | 8015 NM |            |
| 880-16439-4   | Bottom Hole 1    | Total/NA  | Solid  | 8015 NM |            |
| 880-16439-5   | Bottom Hole 1    | Total/NA  | Solid  | 8015 NM |            |
| 880-16439-6   | Bottom Hole 2    | Total/NA  | Solid  | 8015 NM |            |
| 880-16439-7   | Bottom Hole 2    | Total/NA  | Solid  | 8015 NM |            |
| 880-16439-8   | Bottom Hole 3    | Total/NA  | Solid  | 8015 NM |            |
| 880-16439-9   | Bottom Hole 3    | Total/NA  | Solid  | 8015 NM |            |
| 880-16439-10  | Bottom Hole 4    | Total/NA  | Solid  | 8015 NM |            |

**Eurofins Midland** 

3

4

6

8

9

11

14

Euronno Midiana

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-16439-1

# HPLC/IC

# Leach Batch: 28870

| Lab Sample ID        | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|----------------------|------------------------|-----------|--------|----------|------------|
| 880-16439-1          | Bottom Hole 1          | Soluble   | Solid  | DI Leach |            |
| 880-16439-2          | Bottom Hole 1          | Soluble   | Solid  | DI Leach |            |
| 880-16439-3          | Bottom Hole 1          | Soluble   | Solid  | DI Leach |            |
| 880-16439-4          | Bottom Hole 1          | Soluble   | Solid  | DI Leach |            |
| 880-16439-5          | Bottom Hole 1          | Soluble   | Solid  | DI Leach |            |
| MB 880-28870/1-A     | Method Blank           | Soluble   | Solid  | DI Leach |            |
| LCS 880-28870/2-A    | Lab Control Sample     | Soluble   | Solid  | DI Leach |            |
| LCSD 880-28870/3-A   | Lab Control Sample Dup | Soluble   | Solid  | DI Leach |            |
| 880-16437-A-14-B MS  | Matrix Spike           | Soluble   | Solid  | DI Leach |            |
| 880-16437-A-14-C MSD | Matrix Spike Duplicate | Soluble   | Solid  | DI Leach |            |

#### Leach Batch: 28872

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|--------------------|------------------------|-----------|--------|----------|------------|
| 880-16439-6        | Bottom Hole 2          | Soluble   | Solid  | DI Leach |            |
| 880-16439-7        | Bottom Hole 2          | Soluble   | Solid  | DI Leach |            |
| 880-16439-8        | Bottom Hole 3          | Soluble   | Solid  | DI Leach |            |
| 880-16439-9        | Bottom Hole 3          | Soluble   | Solid  | DI Leach |            |
| 880-16439-10       | Bottom Hole 4          | Soluble   | Solid  | DI Leach |            |
| MB 880-28872/1-A   | Method Blank           | Soluble   | Solid  | DI Leach |            |
| LCS 880-28872/2-A  | Lab Control Sample     | Soluble   | Solid  | DI Leach |            |
| LCSD 880-28872/3-A | Lab Control Sample Dup | Soluble   | Solid  | DI Leach |            |
| 880-16439-6 MS     | Bottom Hole 2          | Soluble   | Solid  | DI Leach |            |
| 880-16439-6 MSD    | Bottom Hole 2          | Soluble   | Solid  | DI Leach |            |

# Analysis Batch: 29129

| Lab Sample ID        | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|----------------------|------------------------|-----------|--------|--------|------------|
| 880-16439-1          | Bottom Hole 1          | Soluble   | Solid  | 300.0  | 28870      |
| 880-16439-2          | Bottom Hole 1          | Soluble   | Solid  | 300.0  | 28870      |
| 880-16439-3          | Bottom Hole 1          | Soluble   | Solid  | 300.0  | 28870      |
| 880-16439-4          | Bottom Hole 1          | Soluble   | Solid  | 300.0  | 28870      |
| 880-16439-5          | Bottom Hole 1          | Soluble   | Solid  | 300.0  | 28870      |
| MB 880-28870/1-A     | Method Blank           | Soluble   | Solid  | 300.0  | 28870      |
| LCS 880-28870/2-A    | Lab Control Sample     | Soluble   | Solid  | 300.0  | 28870      |
| LCSD 880-28870/3-A   | Lab Control Sample Dup | Soluble   | Solid  | 300.0  | 28870      |
| 880-16437-A-14-B MS  | Matrix Spike           | Soluble   | Solid  | 300.0  | 28870      |
| 880-16437-A-14-C MSD | Matrix Spike Duplicate | Soluble   | Solid  | 300.0  | 28870      |

## Analysis Batch: 29132

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 880-16439-6        | Bottom Hole 2          | Soluble   | Solid  | 300.0  | 28872      |
| 880-16439-7        | Bottom Hole 2          | Soluble   | Solid  | 300.0  | 28872      |
| 880-16439-8        | Bottom Hole 3          | Soluble   | Solid  | 300.0  | 28872      |
| 880-16439-9        | Bottom Hole 3          | Soluble   | Solid  | 300.0  | 28872      |
| 880-16439-10       | Bottom Hole 4          | Soluble   | Solid  | 300.0  | 28872      |
| MB 880-28872/1-A   | Method Blank           | Soluble   | Solid  | 300.0  | 28872      |
| LCS 880-28872/2-A  | Lab Control Sample     | Soluble   | Solid  | 300.0  | 28872      |
| LCSD 880-28872/3-A | Lab Control Sample Dup | Soluble   | Solid  | 300.0  | 28872      |
| 880-16439-6 MS     | Bottom Hole 2          | Soluble   | Solid  | 300.0  | 28872      |
| 880-16439-6 MSD    | Bottom Hole 2          | Soluble   | Solid  | 300.0  | 28872      |

**Eurofins Midland** 

3

4

6

8

9

#### Lab Chronicle

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Client Sample ID: Bottom Hole 1

Date Collected: 06/28/22 10:00 Date Received: 06/29/22 12:51

Lab Sample ID: 880-16439-1

Matrix: Solid

Job ID: 880-16439-1

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 5035 29191 Total/NA Prep 5.00 g 5 mL 07/07/22 10:17 EL XEN MID 8021B Total/NA Analysis 100 5 mL 5 mL 29173 07/07/22 20:39 MR XEN MID Total/NA Analysis Total BTEX 29192 07/07/22 10:19 AJ XEN MID 1 Total/NA 8015 NM 28880 XEN MID Analysis 1 07/01/22 13:31 SM Total/NA 8015NM Prep 28738 06/30/22 10:13 XEN MID Prep 10.01 g 10 mL DM Total/NA Analysis 8015B NM 5 28713 07/01/22 04:58 SM XEN MID

10

5.01 g

50 mL

28870

29129

Client Sample ID: Bottom Hole 1

Leach

Analysis

DI Leach

300.0

Date Collected: 06/28/22 10:02

Soluble

Soluble

Date Received: 06/29/22 12:51

Lab Sample ID: 880-16439-2

Lab Sample ID: 880-16439-3

SMC

СН

07/01/22 13:07

07/07/22 10:01

**Matrix: Solid** 

Matrix: Solid

XEN MID

XEN MID

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.99 g  | 5 mL   | 29191  | 07/07/22 10:17 | EL      | XEN MID |
| Total/NA  | Analysis | 8021B       |     | 100    | 5 mL    | 5 mL   | 29173  | 07/07/22 20:59 | MR      | XEN MID |
| Total/NA  | Prep     | 5035        |     |        | 4.98 g  | 5 mL   | 29360  | 07/09/22 14:01 | MR      | XEN MID |
| Total/NA  | Analysis | 8021B       |     | 500    | 5 mL    | 5 mL   | 29358  | 07/10/22 11:12 | AJ      | XEN MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 29192  | 07/07/22 10:19 | AJ      | XEN MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 28880  | 07/01/22 13:31 | SM      | XEN MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.01 g | 10 mL  | 28738  | 06/30/22 10:13 | DM      | XEN MID |
| Total/NA  | Analysis | 8015B NM    |     | 5      |         |        | 28713  | 07/01/22 05:19 | SM      | XEN MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.96 g  | 50 mL  | 28870  | 07/01/22 13:07 | SMC     | XEN MID |
| Soluble   | Analysis | 300.0       |     | 5      |         |        | 29129  | 07/07/22 10:11 | CH      | XEN MID |

**Client Sample ID: Bottom Hole 1** 

Date Collected: 06/28/22 10:04

Date Received: 06/29/22 12:51

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.02 g  | 5 mL   | 29048  | 07/05/22 13:34 | EL      | XEN MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 29109  | 07/06/22 18:03 | AJ      | XEN MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 29192  | 07/07/22 10:19 | AJ      | XEN MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 28880  | 07/01/22 13:31 | SM      | XEN MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.00 g | 10 mL  | 28738  | 06/30/22 10:13 | DM      | XEN MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      |         |        | 28713  | 07/01/22 03:11 | SM      | XEN MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.99 g  | 50 mL  | 28870  | 07/01/22 13:07 | SMC     | XEN MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 29129  | 07/07/22 10:20 | CH      | XEN MID |

Job ID: 880-16439-1

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Lab Sample ID: 880-16439-4

Client Sample ID: Bottom Hole 1 Date Collected: 06/28/22 10:06 Matrix: Solid

Date Received: 06/29/22 12:51

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.01 g  | 5 mL   | 29048  | 07/05/22 13:34 | EL      | XEN MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 29109  | 07/06/22 18:23 | AJ      | XEN MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 29192  | 07/07/22 10:19 | AJ      | XEN MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 28880  | 07/01/22 13:31 | SM      | XEN MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.01 g | 10 mL  | 28738  | 06/30/22 10:13 | DM      | XEN MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      |         |        | 28713  | 07/01/22 03:54 | SM      | XEN MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.01 g  | 50 mL  | 28870  | 07/01/22 13:07 | SMC     | XEN MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 29129  | 07/07/22 11:45 | CH      | XEN MID |

**Client Sample ID: Bottom Hole 1** Lab Sample ID: 880-16439-5

Date Collected: 06/28/22 10:08 Matrix: Solid

Date Received: 06/29/22 12:51

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.05 g  | 5 mL   | 29048  | 07/05/22 13:34 | EL      | XEN MIC |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 29109  | 07/06/22 18:44 | AJ      | XEN MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 29192  | 07/07/22 10:19 | AJ      | XEN MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 28880  | 07/01/22 13:31 | SM      | XEN MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.02 g | 10 mL  | 28738  | 06/30/22 10:13 | DM      | XEN MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      |         |        | 28713  | 07/01/22 04:15 | SM      | XEN MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.05 g  | 50 mL  | 28870  | 07/01/22 13:07 | SMC     | XEN MI  |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 29129  | 07/07/22 11:54 | CH      | XEN MI  |

Client Sample ID: Bottom Hole 2 Lab Sample ID: 880-16439-6

Date Collected: 06/28/22 10:10 **Matrix: Solid** Date Received: 06/29/22 12:51

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.99 g  | 5 mL   | 28904  | 07/01/22 15:28 | MR      | XEN MID |
| Total/NA  | Analysis | 8021B       |     | 50     | 5 mL    | 5 mL   | 29172  | 07/07/22 14:45 | AJ      | XEN MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 29192  | 07/07/22 10:19 | AJ      | XEN MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 28880  | 07/01/22 13:31 | SM      | XEN MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.04 g | 10 mL  | 28738  | 06/30/22 10:13 | DM      | XEN MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      |         |        | 28713  | 07/01/22 06:45 | SM      | XEN MID |
| Soluble   | Leach    | DI Leach    |     |        | 5 g     | 50 mL  | 28872  | 07/01/22 13:09 | SMC     | XEN MID |
| Soluble   | Analysis | 300.0       |     | 10     |         |        | 29132  | 07/07/22 10:31 | CH      | XEN MID |

Client Sample ID: Bottom Hole 2 Lab Sample ID: 880-16439-7 Date Collected: 06/28/22 10:12

Date Received: 06/29/22 12:51

Released to Imaging: 8/11/2024/22:09:18 PM AM

|           | Batch    | Batch      |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method     | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035       |     |        | 4.99 g  | 5 mL   | 29048  | 07/05/22 13:34 | EL      | XEN MID |
| Total/NA  | Analysis | 8021B      |     | 1      | 5 mL    | 5 mL   | 29109  | 07/06/22 19:04 | AJ      | XEN MID |
| Total/NA  | Analysis | Total BTEX |     | 1      |         |        | 29192  | 07/07/22 10:19 | AJ      | XEN MID |

**Eurofins Midland** 

**Matrix: Solid** 

#### Lab Chronicle

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Client Sample ID: Bottom Hole 2

Date Collected: 06/28/22 10:12 Date Received: 06/29/22 12:51

Lab Sample ID: 880-16439-7

Job ID: 880-16439-1

Matrix: Solid

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 28880  | 07/01/22 13:31 | SM      | XEN MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.00 g | 10 mL  | 28738  | 06/30/22 10:13 | DM      | XEN MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      |         |        | 28713  | 07/01/22 04:37 | SM      | XEN MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.02 g  | 50 mL  | 28872  | 07/01/22 13:09 | SMC     | XEN MID |
| Soluble   | Analysis | 300.0       |     | 5      |         |        | 29132  | 07/07/22 02:40 | CH      | XEN MID |

**Client Sample ID: Bottom Hole 3** 

Date Collected: 06/28/22 10:14

Date Received: 06/29/22 12:51

Lab Sample ID: 880-16439-8

**Matrix: Solid** 

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.01 g  | 5 mL   | 28904  | 07/01/22 15:28 | MR      | XEN MID |
| Total/NA  | Analysis | 8021B       |     | 200    | 5 mL    | 5 mL   | 29172  | 07/07/22 15:26 | AJ      | XEN MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 29192  | 07/07/22 10:19 | AJ      | XEN MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 28880  | 07/01/22 13:31 | SM      | XEN MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.00 g | 10 mL  | 28738  | 06/30/22 10:13 | DM      | XEN MID |
| Total/NA  | Analysis | 8015B NM    |     | 5      |         |        | 28713  | 07/01/22 05:41 | SM      | XEN MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.05 g  | 50 mL  | 28872  | 07/01/22 13:09 | SMC     | XEN MID |
| Soluble   | Analysis | 300.0       |     | 5      |         |        | 29132  | 07/07/22 02:48 | CH      | XEN MID |

**Client Sample ID: Bottom Hole 3** 

Date Collected: 06/28/22 10:16

Date Received: 06/29/22 12:51

Lab Sample ID: 880-16439-9

**Matrix: Solid** 

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.02 g  | 5 mL   | 28904  | 07/01/22 15:28 | MR      | XEN MID |
| Total/NA  | Analysis | 8021B       |     | 100    | 5 mL    | 5 mL   | 29172  | 07/07/22 15:06 | AJ      | XEN MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 29192  | 07/07/22 10:19 | AJ      | XEN MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 28880  | 07/01/22 13:31 | SM      | XEN MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.03 g | 10 mL  | 28738  | 06/30/22 10:13 | DM      | XEN MID |
| Total/NA  | Analysis | 8015B NM    |     | 5      |         |        | 28713  | 07/01/22 06:02 | SM      | XEN MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.96 g  | 50 mL  | 28872  | 07/01/22 13:09 | SMC     | XEN MID |
| Soluble   | Analysis | 300.0       |     | 5      |         |        | 29132  | 07/07/22 02:56 | CH      | XEN MID |

Client Sample ID: Bottom Hole 4

Date Collected: 06/28/22 10:18

Date Received: 06/29/22 12:51

| Lab Sample I | ID: 880-16439-10 |
|--------------|------------------|
|--------------|------------------|

**Matrix: Solid** 

| _                    | Batch            | Batch                   |     | Dil    | Initial | Final  | Batch          | Prepared                         |          |                    |
|----------------------|------------------|-------------------------|-----|--------|---------|--------|----------------|----------------------------------|----------|--------------------|
| Prep Type            | Type             | Method                  | Run | Factor | Amount  | Amount | Number         | or Analyzed                      | Analyst  | Lab                |
| Total/NA             | Prep             | 5035                    |     |        | 5.03 g  | 5 mL   | 29048          | 07/05/22 13:34                   | EL       | XEN MID            |
| Total/NA             | Analysis         | 8021B                   |     | 50     | 5 mL    | 5 mL   | 29109          | 07/06/22 21:07                   | AJ       | XEN MID            |
| Total/NA             | Analysis         | Total BTEX              |     | 1      |         |        | 29192          | 07/07/22 10:19                   | AJ       | XEN MID            |
| Total/NA             | Analysis         | 8015 NM                 |     | 1      |         |        | 28880          | 07/01/22 13:31                   | SM       | XEN MID            |
| Total/NA<br>Total/NA | Prep<br>Analysis | 8015NM Prep<br>8015B NM |     | 5      | 10.01 g | 10 mL  | 28738<br>28713 | 06/30/22 10:13<br>07/01/22 06:23 | DM<br>SM | XEN MID<br>XEN MID |

Job ID: 880-16439-1

#### Lab Chronicle

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Client Sample ID: Bottom Hole 4 Lab Sample ID: 880-16439-10

Date Collected: 06/28/22 10:18
Date Received: 06/29/22 12:51
Matrix: Solid

Batch Batch Dil Initial Final Batch Prepared Method Prep Type Туре Run Factor Amount Amount Number or Analyzed Analyst Lab Soluble DI Leach 28872 07/01/22 13:09 SMC XEN MID Leach 5.02 g 50 mL 300.0 07/07/22 03:04 XEN MID Soluble Analysis 5 29132 СН

#### Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

3

5

0

8

10

12

13

# **Accreditation/Certification Summary**

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-16439-1

## **Laboratory: Eurofins Midland**

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| Authority                                 | Pr                               | ogram                            | Identification Number                       | <b>Expiration Date</b>    |  |
|-------------------------------------------|----------------------------------|----------------------------------|---------------------------------------------|---------------------------|--|
| Texas                                     | NE                               | ELAP                             | T104704400-22-24                            | 06-30-23                  |  |
| The following analytes                    | are included in this report, bu  | it the laboratory is not certifi | ed by the governing authority. This list ma | av include analytes for w |  |
| the agency does not of                    | fer certification.               | ,                                | ou s, and governming dualismy.              | ay molado analytoo for v  |  |
| the agency does not of<br>Analysis Method | fer certification .  Prep Method | Matrix                           | Analyte                                     | ay morado anarytoo tor v  |  |
| 9 ,                                       |                                  | •                                | , , ,                                       |                           |  |

2

3

4

5

7

9

10

12

# **Method Summary**

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-16439-1

| Method      | Method Description                 | Protocol | Laboratory |
|-------------|------------------------------------|----------|------------|
| 8021B       | Volatile Organic Compounds (GC)    | SW846    | XEN MID    |
| Total BTEX  | Total BTEX Calculation             | TAL SOP  | XEN MID    |
| 8015 NM     | Diesel Range Organics (DRO) (GC)   | SW846    | XEN MID    |
| 8015B NM    | Diesel Range Organics (DRO) (GC)   | SW846    | XEN MID    |
| 300.0       | Anions, Ion Chromatography         | MCAWW    | XEN MID    |
| 5035        | Closed System Purge and Trap       | SW846    | XEN MID    |
| 8015NM Prep | Microextraction                    | SW846    | XEN MID    |
| DI Leach    | Deionized Water Leaching Procedure | ASTM     | XEN MID    |

#### **Protocol References:**

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

#### Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

**Eurofins Midland** 

-

1

5

7

9

10

40

# **Sample Summary**

Client: Etech Environmental & Safety Solutions

Project/Site: BSWU #3 CTB

Job ID: 880-16439-1

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       | Depth  |
|---------------|------------------|--------|----------------|----------------|--------|
| 880-16439-1   | Bottom Hole 1    | Solid  | 06/28/22 10:00 | 06/29/22 12:51 | 0-6"   |
| 880-16439-2   | Bottom Hole 1    | Solid  | 06/28/22 10:02 | 06/29/22 12:51 | 6-12"  |
| 880-16439-3   | Bottom Hole 1    | Solid  | 06/28/22 10:04 | 06/29/22 12:51 | 18-24" |
| 880-16439-4   | Bottom Hole 1    | Solid  | 06/28/22 10:06 | 06/29/22 12:51 | 30-36" |
| 880-16439-5   | Bottom Hole 1    | Solid  | 06/28/22 10:08 | 06/29/22 12:51 | 42-48" |
| 880-16439-6   | Bottom Hole 2    | Solid  | 06/28/22 10:10 | 06/29/22 12:51 | 0-6"   |
| 880-16439-7   | Bottom Hole 2    | Solid  | 06/28/22 10:12 | 06/29/22 12:51 | 6-12"  |
| 880-16439-8   | Bottom Hole 3    | Solid  | 06/28/22 10:14 | 06/29/22 12:51 | 0-6"   |
| 880-16439-9   | Bottom Hole 3    | Solid  | 06/28/22 10:16 | 06/29/22 12:51 | 6-12"  |
| 880-16439-10  | Bottom Hole 4    | Solid  | 06/28/22 10:18 | 06/29/22 12:51 | 0-6"   |

3

4

7

\_

40

11

13

# **Chain of Custody**

Work Order No: \_\_\_

|                         | , ,                      | •                  |               | -,                    |               |        |    |   |
|-------------------------|--------------------------|--------------------|---------------|-----------------------|---------------|--------|----|---|
| Midland TX (            | 432-704-5440) EL Paso TX | (915)585-3443 Lu   | bbock TX (806 | 3)794-1296            |               | - 1    |    | } |
| Hobbs NM (575-392-7550) | Phoenix,AZ (480-355-090  | ) Atlanta GA (770- | -449-8800) Ta | mpa FL (813-620-2000) | www xenco com | Page ( | of |   |

| XI                              | ENCC             | 3        |                 |                 | ,TX (281) 240-42                    | 200 Da     | llas,TX     | (214) 9     | 02-030   | 0 San |          | TX (21 |            |          |                                                |          | 1        | Nork | Orde   | er No | o: 16431                   |                                         | 7/11/2022 |
|---------------------------------|------------------|----------|-----------------|-----------------|-------------------------------------|------------|-------------|-------------|----------|-------|----------|--------|------------|----------|------------------------------------------------|----------|----------|------|--------|-------|----------------------------|-----------------------------------------|-----------|
|                                 |                  |          | Hobbs           |                 | d TX (432-704-54<br>-7550) Phoenix, |            |             |             |          |       |          |        |            |          | -620-20                                        | 00)      |          | www  | xenco  | com   | Pageof                     |                                         | 7/11,     |
| Project Manager                 | Brandon Wilso    | n        |                 |                 | Bill to (if differe                 |            |             |             |          |       |          |        |            |          | Work Order Comments                            |          |          |      |        |       |                            |                                         |           |
| Company Name                    | Etech Environr   | mental   |                 |                 | Company Na                          | ne         |             |             |          |       |          |        |            |          | Program: UST/PST PRP Brownfields RRC Superfund |          |          |      |        |       |                            |                                         |           |
| Address                         | 13000 W CR 1     | 00       |                 |                 | Address                             |            |             |             |          |       |          |        |            |          | 1                                              | ate of   |          |      |        |       | •                          |                                         |           |
| City, State ZIP                 | Odessa, Texas    | 79765    |                 |                 | City, State ZII                     | >          |             |             |          |       |          |        |            |          | Repo                                           | ting Le  | vel II   | Lev  | el III | PST/  | UST TRRP—Level IV          | v <sup></sup>                           |           |
| Phone                           | 432-563-2200     |          |                 | Email           | blake@etecl                         | nenv o     | <u>com</u>  |             |          |       |          |        |            |          | Delive                                         | erables  | EDD      |      | /      | ADaPT | Other                      |                                         |           |
| Project Name                    | BSWU #3 CTE      | 3        |                 | Tu              | ırn Around                          |            | . 11-3      | <del></del> |          |       | AN       | VALYS  | SIS RI     | EQUE     | ST                                             |          |          |      |        |       | Work Order Not             | es                                      |           |
| Project Number                  | 16187            |          |                 | Rout            | ine                                 |            |             |             |          |       |          |        |            |          |                                                |          |          |      |        |       |                            |                                         |           |
| PO Number                       | 16187            |          |                 | Rush            | ו                                   |            |             |             |          |       |          |        |            |          |                                                |          |          |      |        |       |                            |                                         |           |
| Sampler's Name                  | Blake Estep      |          |                 | Due             | Date                                |            |             |             |          |       |          |        |            |          |                                                |          |          |      |        |       |                            |                                         |           |
| SAMPLE REC                      | E <b>IPT</b> Ten | np Blank | Yes No√         | Wet Ice         | (Yes No                             |            |             |             |          |       |          |        |            |          |                                                |          |          |      |        |       |                            |                                         |           |
| Temperature (°C)                | 5.3/5            | ī. \     |                 | hermomete       | r ID                                | Containers |             |             |          |       |          |        |            |          | İ                                              |          |          |      |        |       |                            |                                         |           |
| Received Intact.                | (Yes             | No       |                 |                 | Sl8                                 | ntai       |             |             |          |       |          |        |            |          |                                                |          |          |      |        |       |                            |                                         | ĺ         |
| Cooler Custody Sea              |                  |          | Corre           | ction Factor    |                                     |            | _           | e e         | (E300)   |       |          |        |            |          |                                                |          |          |      |        |       | TAT starts the day recevie | ed by the                               |           |
| Sample Custody Se               | als Yes N        | o 167A   | Tota            | Containers      | -91                                 | er of      | 15M         | (8021B)     | e<br>(E3 |       |          |        |            |          |                                                |          |          |      |        |       | lab if received by 4 3     |                                         | 37        |
| Sample Ide                      | ntification      | Matrix   | Date<br>Sampled | Time<br>Sampled | Depth                               | Number     | TPH (8015M) | втех (8     | Chloride |       |          |        |            |          |                                                |          |          |      |        |       | Sample Comme               | nts                                     | 36 of     |
| Bottom                          | Hole 1           | S        | 6/28/2022       | 10 00           | 0-6"                                | 1          | Х           | Х           | Х        |       |          |        |            |          |                                                |          |          |      |        |       |                            | *************************************** | Page      |
| Bottom                          | Hole 1           | S        | 6/28/2022       | 10 02           | 6-12"                               | 1          | Х           | Х           | Х        |       |          |        |            |          |                                                |          |          |      |        |       |                            |                                         | Pa        |
| Bottom                          | Hole 1           | S        | 6/28/2022       | 10 04           | 18-24"                              | 1          | Х           | Х           | Х        |       |          |        |            |          |                                                | 1111     |          |      |        |       |                            |                                         |           |
| Bottom                          | Hole 1           | S        | 6/28/2022       | 10 06           | 30-36"                              | 1          | Х           | Х           | Х        |       |          |        |            |          |                                                |          |          |      |        |       |                            |                                         |           |
| Bottom I                        | Hole 1           | S        | 6/28/2022       | 10 08           | 42-48"                              | 1          | X           | Х           | Х        |       |          |        |            | <u> </u> |                                                |          |          |      |        |       |                            |                                         |           |
| Bottom Hole 2 S 6/28/2022 10 10 |                  | 0-6"     | 1               | Х               | Х                                   | Х          |             |             |          |       | <u> </u> |        | 1111<br>88 | )-1643   | 9 Cha                                          | in of Cu | ustody   |      |        | ١.    |                            |                                         |           |
| Bottom                          | Hole 2           | S        | 6/28/2022       | 10 12           | 6-12"                               | 1          | X           | Х           | Х        |       |          |        |            | <u> </u> |                                                | . —      | <u> </u> | -    |        |       |                            |                                         |           |
| Bottom I                        | Hole 3           | S        | 6/28/2022       | 10 14           | 0-6"                                | 1          | Х           | Х           | Х        |       |          |        |            |          |                                                |          |          |      |        |       |                            |                                         |           |
| Bottom I                        | Hole 3           | S        | 6/28/2022       | 10 16           | 6-12"                               | 1          | Х           | Х           | X        |       |          |        |            | <u> </u> |                                                | <u> </u> |          |      |        |       |                            |                                         | 6.0       |
| Bottom I                        | Hole 4           | S        | 6/28/2022       | 10 18           | 0-6"                                | 1          | X           | Х           | Х        |       |          |        |            |          |                                                |          | <u>.</u> |      |        |       |                            |                                         | 9         |

Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed 8RCRA 13PPM Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO2 Na Sr Ti Sn U V Zn TCLP / SPLP 6010 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Ti U 1631 / 245.1 / 7470 / 7471 Hg

Notice Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.

| Ü.  | Relinquished by (Signature) | Received by (Signature) | Date/Time | Relinquished by (Signature) | Received by (Signature) | Date/Time |
|-----|-----------------------------|-------------------------|-----------|-----------------------------|-------------------------|-----------|
| 5   | 1                           | 1 emple                 | 0/20/202  | 2                           |                         |           |
| d p | 3                           | /                       | V         | 4                           |                         |           |
| wei | 5                           |                         | 1451      | 6                           |                         |           |

Released to Imaging: 8/1/2024/2:09:18 PMAM

# **Login Sample Receipt Checklist**

Client: Etech Environmental & Safety Solutions

Job Number: 880-16439-1

Login Number: 16439 List Source: Eurofins Midland

List Number: 1

Creator: Rodriguez, Leticia

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| The cooler's custody seal, if present, is intact.                                | N/A    |         |
| Sample custody seals, if present, are intact.                                    | N/A    |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the containers received and the COC.          | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified.                                                    | N/A    |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").  | N/A    |         |

\_\_

3

4

6

8

10

15

13

|                | Page 2019 f 2  | 09 |
|----------------|----------------|----|
| Incident ID    | nAPP2216550022 |    |
| District RP    |                |    |
| Facility ID    |                |    |
| Application ID |                |    |

# **Remediation Plan**

| Remediation Plan Checklist: Each of the following items must be included in the plan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <ul> <li>☑ Detailed description of proposed remediation technique</li> <li>☑ Scaled sitemap with GPS coordinates showing delineation points</li> <li>☑ Estimated volume of material to be remediated</li> <li>☑ Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC</li> <li>☑ Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)</li> </ul>                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| <u>Deferral Requests Only</u> : Each of the following items must be confirmed as part of any request for deferral of remediation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Extents of contamination must be fully delineated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Contamination does not cause an imminent risk to human health, the environment, or groundwater.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. |  |  |  |  |  |
| Printed Name: Amy Barnhill Title: Water Advisor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Signature: Date: 7-27-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| email: ABarnhid chevron.com Telephone: 432-687-7108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| OCD Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Received by: Jocelyn Harimon Date: 11/21/2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| ☐ Approved ☐ Approved with Attached Conditions of Approval ☐ Denied ☐ Deferral Approved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Signature: Robert Hamlet Date: 11/21/2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

**State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505** 

CONDITIONS

Action 129083

#### CONDITIONS

| Operator:         | OGRID:                                    |
|-------------------|-------------------------------------------|
| CHEVRON U S A INC | 4323                                      |
|                   | Action Number:                            |
| Midland, TX 79706 | 129083                                    |
|                   | Action Type:                              |
|                   | [C-141] Release Corrective Action (C-141) |

#### CONDITIONS

| Created By | Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Condition Date |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| rhamlet    | The Remediation Plan is Conditionally Approved. Samples must be analyzed for all constituents listed in Table I of 19.15.29.12 NMAC. Floor confirmation samples should be delineated/excavated to meet closure criteria standards for site assessment/characterization/proven depth to water determination. Sidewall samples should be delineated/excavated to 600 mg/kg for chlorides and 100 mg/kg for TPH to define the edge of the release. Confirmation samples should be collected every 200 ft2. The work will need to occur in 90 days after the work plan has been approved. | 11/21/2022     |

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

# **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS

Action 367849

#### **QUESTIONS**

| Operator:           | OGRID:                                            |
|---------------------|---------------------------------------------------|
| CHEVRON U S A INC   | 4323                                              |
| 6301 Deauville Blvd | Action Number:                                    |
| Midland, TX 79706   | 367849                                            |
|                     | Action Type:                                      |
|                     | [C-141] Deferral Request C-141 (C-141-v-Deferral) |

#### QUESTIONS

| Prerequisites     |                                                          |  |  |  |
|-------------------|----------------------------------------------------------|--|--|--|
| Incident ID (n#)  | nAPP2216550022                                           |  |  |  |
| Incident Name     | NAPP2216550022 BENSON SHUGART WATERFLOOD UNIT #3 CTB @ 0 |  |  |  |
| Incident Type     | Oil Release                                              |  |  |  |
| Incident Status   | Deferral Request Received                                |  |  |  |
| Incident Facility | [fAPP2133349179] Benson Shugart 3 Battery                |  |  |  |

| Location of Release Source                     |                                       |  |  |  |
|------------------------------------------------|---------------------------------------|--|--|--|
| Please answer all the questions in this group. |                                       |  |  |  |
| Site Name                                      | BENSON SHUGART WATERFLOOD UNIT #3 CTB |  |  |  |
| Date Release Discovered                        | 06/09/2022                            |  |  |  |
| Surface Owner                                  | Federal                               |  |  |  |

| Incident Details                                                                                     | ncident Details |  |  |  |  |
|------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|
| Please answer all the questions in this group.                                                       |                 |  |  |  |  |
| Incident Type                                                                                        | Oil Release     |  |  |  |  |
| Did this release result in a fire or is the result of a fire                                         | No              |  |  |  |  |
| Did this release result in any injuries                                                              | No              |  |  |  |  |
| Has this release reached or does it have a reasonable probability of reaching a watercourse          | No              |  |  |  |  |
| Has this release endangered or does it have a reasonable probability of endangering public health    | No              |  |  |  |  |
| Has this release substantially damaged or will it substantially damage property or the environment   | No              |  |  |  |  |
| Is this release of a volume that is or may with reasonable probability be detrimental to fresh water | No              |  |  |  |  |

| Nature and Volume of Release                                                                                                                         |                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Material(s) released, please answer all that apply below. Any calculations or specific justifications for                                            | or the volumes provided should be attached to the follow-up C-141 submission.                            |
| Crude Oil Released (bbls) Details                                                                                                                    | Cause: Corrosion   Treating Tower   Crude Oil   Released: 12 BBL   Recovered: 10 BBL   Lost: 2 BBL.      |
| Produced Water Released (bbls) Details                                                                                                               | Cause: Corrosion   Treating Tower   Produced Water   Released: 24 BBL   Recovered: 0 BBL   Lost: 24 BBL. |
| Is the concentration of chloride in the produced water >10,000 mg/l                                                                                  | Yes                                                                                                      |
| Condensate Released (bbls) Details                                                                                                                   | Not answered.                                                                                            |
| Natural Gas Vented (Mcf) Details                                                                                                                     | Not answered.                                                                                            |
| Natural Gas Flared (Mcf) Details                                                                                                                     | Not answered.                                                                                            |
| Other Released Details                                                                                                                               | Not answered.                                                                                            |
| Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts) | Not answered.                                                                                            |

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III
1000 Rio Brazos Rd., Aztec, NM 87410

Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505

# **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 2

Action 367849

| Phone:(505) 476-3470 Fax:(505) 476-3462                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QUEST                                                                                                                                                                                | IONS (continued)                                                                                                                                                                                                                                                                                                                                                                               |
| Operator:                                                                                                                                                                            | OGRID:                                                                                                                                                                                                                                                                                                                                                                                         |
| CHEVRON U S A INC                                                                                                                                                                    | 4323                                                                                                                                                                                                                                                                                                                                                                                           |
| 6301 Deauville Blvd                                                                                                                                                                  | Action Number:                                                                                                                                                                                                                                                                                                                                                                                 |
| Midland, TX 79706                                                                                                                                                                    | 367849                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                      | Action Type:  [C-141] Deferral Request C-141 (C-141-v-Deferral)                                                                                                                                                                                                                                                                                                                                |
| QUESTIONS                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                |
| Nature and Volume of Release (continued)                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                |
| Is this a gas only submission (i.e. only significant Mcf values reported)                                                                                                            | No, according to supplied volumes this does not appear to be a "gas only" report.                                                                                                                                                                                                                                                                                                              |
| Was this a major release as defined by Subsection A of 19.15.29.7 NMAC                                                                                                               | Yes                                                                                                                                                                                                                                                                                                                                                                                            |
| Reasons why this would be considered a submission for a notification of a major release                                                                                              | From paragraph A. "Major release" determine using: (1) an unauthorized release of a volume, excluding gases, of 25 barrels or more.                                                                                                                                                                                                                                                            |
| With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.                                                                                 | e. gas only) are to be submitted on the C-129 form.                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                |
| Initial Response                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                |
| The responsible party must undertake the following actions immediately unless they could create a                                                                                    | safety hazard that would result in injury.                                                                                                                                                                                                                                                                                                                                                     |
| The source of the release has been stopped                                                                                                                                           | True                                                                                                                                                                                                                                                                                                                                                                                           |
| The impacted area has been secured to protect human health and the environment                                                                                                       | True                                                                                                                                                                                                                                                                                                                                                                                           |
| Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices                                                                   | True                                                                                                                                                                                                                                                                                                                                                                                           |
| All free liquids and recoverable materials have been removed and managed appropriately                                                                                               | True                                                                                                                                                                                                                                                                                                                                                                                           |
| If all the actions described above have not been undertaken, explain why                                                                                                             | Not answered.                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                      | ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative o<br>ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of<br>evaluation in the follow-up C-141 submission.                                                                                                                 |
| to report and/or file certain release notifications and perform corrective actions for relethe OCD does not relieve the operator of liability should their operations have failed to | knowledge and understand that pursuant to OCD rules and regulations all operators are required asses which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or |
|                                                                                                                                                                                      | Name: Amy Barnhill                                                                                                                                                                                                                                                                                                                                                                             |
| I hereby agree and sign off to the above statement                                                                                                                                   | Title: Waste & Water Specialist                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                      | Email: ABarnhill@chevron.com                                                                                                                                                                                                                                                                                                                                                                   |

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

# **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 3

Action 367849

**QUESTIONS** (continued)

| Operator:           | OGRID:                                            |
|---------------------|---------------------------------------------------|
| CHEVRON U S A INC   | 4323                                              |
| 6301 Deauville Blvd | Action Number:                                    |
| Midland, TX 79706   | 367849                                            |
|                     | Action Type:                                      |
|                     | [C-141] Deferral Request C-141 (C-141-v-Deferral) |

#### QUESTIONS

| Site Characterization                                                                                                                                                                                                                         |                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date. |                                 |
| What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)                                                                                                                    | Between 100 and 500 (ft.)       |
| What method was used to determine the depth to ground water                                                                                                                                                                                   | U.S. Geological Survey          |
| Did this release impact groundwater or surface water                                                                                                                                                                                          | No                              |
| What is the minimum distance, between the closest lateral extents of the release ar                                                                                                                                                           | nd the following surface areas: |
| A continuously flowing watercourse or any other significant watercourse                                                                                                                                                                       | Between 1 and 5 (mi.)           |
| Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)                                                                                                                                                             | Greater than 5 (mi.)            |
| An occupied permanent residence, school, hospital, institution, or church                                                                                                                                                                     | Greater than 5 (mi.)            |
| A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes                                                                                                                     | Greater than 5 (mi.)            |
| Any other fresh water well or spring                                                                                                                                                                                                          | Between 1 and 5 (mi.)           |
| Incorporated municipal boundaries or a defined municipal fresh water well field                                                                                                                                                               | Greater than 5 (mi.)            |
| A wetland                                                                                                                                                                                                                                     | Between 1 and 5 (mi.)           |
| A subsurface mine                                                                                                                                                                                                                             | Greater than 5 (mi.)            |
| An (non-karst) unstable area                                                                                                                                                                                                                  | Between 500 and 1000 (ft.)      |
| Categorize the risk of this well / site being in a karst geology                                                                                                                                                                              | Medium                          |
| A 100-year floodplain                                                                                                                                                                                                                         | Between ½ and 1 (mi.)           |
| Did the release impact areas not on an exploration, development, production, or storage site                                                                                                                                                  | No                              |

| Remediation Plan                       |                                                                                                               |                                                                                                                    |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Please answer all the questions that a | pply or are indicated. This information must be provided to                                                   | the appropriate district office no later than 90 days after the release discovery date.                            |
| Requesting a remediation plan          | n approval with this submission                                                                               | Yes                                                                                                                |
| Attach a comprehensive report demon    | strating the lateral and vertical extents of soil contamination                                               | associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.               |
| Have the lateral and vertical ex       | tents of contamination been fully delineated                                                                  | Yes                                                                                                                |
| Was this release entirely conta        | ained within a lined containment area                                                                         | No                                                                                                                 |
| Soil Contamination Sampling: (P        | Provide the highest observable value for each, in mil                                                         | lligrams per kilograms.)                                                                                           |
| Chloride                               | (EPA 300.0 or SM4500 CI B)                                                                                    | 7200                                                                                                               |
| TPH (GRO+DRO+MRO)                      | (EPA SW-846 Method 8015M)                                                                                     | 15000                                                                                                              |
| GRO+DRO                                | (EPA SW-846 Method 8015M)                                                                                     | 11709                                                                                                              |
| BTEX                                   | (EPA SW-846 Method 8021B or 8260B)                                                                            | 163                                                                                                                |
| Benzene                                | (EPA SW-846 Method 8021B or 8260B)                                                                            | 0                                                                                                                  |
|                                        | C unless the site characterization report includes completed es for beginning and completing the remediation. | d efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, |
| On what estimated date will the        | e remediation commence                                                                                        | 06/28/2022                                                                                                         |
| On what date will (or did) the fi      | inal sampling or liner inspection occur                                                                       | 02/12/2024                                                                                                         |
| On what date will (or was) the         | remediation complete(d)                                                                                       | 02/19/2024                                                                                                         |
| What is the estimated surface          | area (in square feet) that will be reclaimed                                                                  | 1403                                                                                                               |
| What is the estimated volume           | (in cubic yards) that will be reclaimed                                                                       | 187                                                                                                                |
| What is the estimated surface          | area (in square feet) that will be remediated                                                                 | 819                                                                                                                |
| What is the estimated volume           | (in cubic yards) that will be remediated                                                                      | 100                                                                                                                |
| These estimated dates and measurement  | ents are recognized to be the best guess or calculation at the                                                | e time of submission and may (be) change(d) over time as more remediation efforts are completed.                   |
| The OCD recognizes that proposed re-   | mediation measures may have to be minimally adjusted in a                                                     | accordance with the physical realities encountered during remediation. If the responsible party has any need to    |

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

<u>District II</u> 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 **District III** 

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462 State of New Mexico
Energy, Minerals and Natural Resources
Oil Conservation Division
1220 S. St Francis Dr.
Santa Fe, NM 87505

QUESTIONS, Page 4

Action 367849

#### **QUESTIONS** (continued)

| Operator:           | OGRID:                                            |
|---------------------|---------------------------------------------------|
| CHEVRON U S A INC   | 4323                                              |
| 6301 Deauville Blvd | Action Number:                                    |
| Midland, TX 79706   | 367849                                            |
|                     | Action Type:                                      |
|                     | [C-141] Deferral Request C-141 (C-141-v-Deferral) |

#### QUESTIONS

| Remediation Plan (continued)                                                                                                                                                              |                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date. |                                            |
| This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants:                                                                             |                                            |
| (Select all answers below that apply.)                                                                                                                                                    |                                            |
| (Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)                                                                                                            | Yes                                        |
| Which OCD approved facility will be used for off-site disposal                                                                                                                            | R360 ARTESIA LLC LANDFARM [fEEM0112340644] |
| OR which OCD approved well (API) will be used for off-site disposal                                                                                                                       | Not answered.                              |
| OR is the off-site disposal site, to be used, out-of-state                                                                                                                                | Not answered.                              |
| OR is the off-site disposal site, to be used, an NMED facility                                                                                                                            | Not answered.                              |
| (Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)                                                                                                                    | Not answered.                              |
| (In Situ) Soil Vapor Extraction                                                                                                                                                           | Not answered.                              |
| (In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)                                                                                                         | Not answered.                              |
| (In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)                                                                                                                        | Not answered.                              |
| (In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)                                                                                                                  | Not answered.                              |
| Ground Water Abatement pursuant to 19.15.30 NMAC                                                                                                                                          | Not answered.                              |
| OTHER (Non-listed remedial process)                                                                                                                                                       | Not answered.                              |

Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

I hereby agree and sign off to the above statement

Name: Amy Barnhill Title: Waste & Water Specialist Email: ABarnhill@chevron.com

Date: 07/29/2024

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

# **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 5

Action 367849

**QUESTIONS** (continued)

| Operator: CHEVRON U S A INC                                                                                                                                                               | OGRID: 4323                                                                                                                                                                                                                                                                                                                                                                                    |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 6301 Deauville Blvd<br>Midland, TX 79706                                                                                                                                                  | Action Number: 367849                                                                                                                                                                                                                                                                                                                                                                          |  |
| Widalia, 1X 75700                                                                                                                                                                         | Action Type:  [C-141] Deferral Request C-141 (C-141-v-Deferral)                                                                                                                                                                                                                                                                                                                                |  |
| QUESTIONS                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Deferral Requests Only                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Only answer the questions in this group if seeking a deferral upon approval this submission. Each o                                                                                       | f the following items must be confirmed as part of any request for deferral of remediation.                                                                                                                                                                                                                                                                                                    |  |
| Requesting a deferral of the remediation closure due date with the approval of this submission                                                                                            | Yes                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Have the lateral and vertical extents of contamination been fully delineated                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Is the remaining contamination in areas immediately under or around production equipment where remediation could cause a major facility deconstruction                                    | Yes                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Please list or describe the production equipment and how (re)moving the equipment would cause major facility deconstruction                                                               | Residual soil impacts above the Closure Criteria appear to solely reside below and directly adjacent to active production equipment and utilities within the earthen berm containment, based on the delineation and final confirmation excavation soil samples in the vicinity of areas that could not be safely excavated at this time.                                                       |  |
| What is the remaining surface area (in square feet) that will still need to be remediated if a deferral is granted                                                                        | 584                                                                                                                                                                                                                                                                                                                                                                                            |  |
| What is the remaining volume (in cubic yards) that will still need to be remediated if a deferral is granted                                                                              | 87                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                                                                                                                                                           | iately under or around production equipment such as production tanks, wellheads and pipelines where<br>In may be deferred with division written approval until the equipment is removed during other operations, or when                                                                                                                                                                       |  |
| Enter the facility ID (f#) on which this deferral should be granted                                                                                                                       | Benson Shugart 3 Battery [fAPP2133349179]                                                                                                                                                                                                                                                                                                                                                      |  |
| Enter the well API (30-) on which this deferral should be granted                                                                                                                         | Not answered.                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Contamination does not cause an imminent risk to human health, the environment, or groundwater                                                                                            | True                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed employed includes the anticipated timelines for beginning and completing the remediation. | fforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC                                                                                                                                                                                                                                                                                 |  |
| to report and/or file certain release notifications and perform corrective actions for releathe OCD does not relieve the operator of liability should their operations have failed to     | knowledge and understand that pursuant to OCD rules and regulations all operators are required asses which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or |  |
| I hereby agree and sign off to the above statement                                                                                                                                        | Name: Amy Barnhill Title: Waste & Water Specialist Email: ABarnhill@chevron.com                                                                                                                                                                                                                                                                                                                |  |

Date: 07/29/2024

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

**State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505** 

QUESTIONS, Page 6

Action 367849

| QUESTIONS | (continued) |
|-----------|-------------|
|           |             |

| Operator:           | OGRID:                                            |
|---------------------|---------------------------------------------------|
| CHEVRON U S A INC   | 4323                                              |
| 6301 Deauville Blvd | Action Number:                                    |
| Midland, TX 79706   | 367849                                            |
|                     | Action Type:                                      |
|                     | [C-141] Deferral Request C-141 (C-141-v-Deferral) |

#### QUESTIONS

| Sampling Event Information                                                                      |            |
|-------------------------------------------------------------------------------------------------|------------|
| Last sampling notification (C-141N) recorded                                                    | 313478     |
| Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC | 02/12/2024 |
| What was the (estimated) number of samples that were to be gathered                             | 5          |
| What was the sampling surface area in square feet                                               | 350        |

| Remediation Closure Request                                                                                                                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed. |  |
| Requesting a remediation closure approval with this submission No                                                                          |  |

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

**State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505** 

CONDITIONS

Action 367849

#### **CONDITIONS**

| Operator:           | OGRID:                                            |
|---------------------|---------------------------------------------------|
| CHEVRON U S A INC   | 4323                                              |
| 6301 Deauville Blvd | Action Number:                                    |
| Midland, TX 79706   | 367849                                            |
|                     | Action Type:                                      |
|                     | [C-141] Deferral Request C-141 (C-141-v-Deferral) |

#### CONDITIONS

| Created By     | Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Condition<br>Date |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| crystal.walker | Deferral Request is approved. Deferral area includes sampling locations Auger Hole 2, Auger Hole 4, North Wall and North Side Wall #1 are characterized by concentrations of TPH between 146 mg/kg and 15,000 mg/kg within the top 4 feet bgs.                                                                                                                                                                                                                                                                                                                                                                                             | 8/1/2024          |
| crystal.walker | Per 19.15.29.12.C.(2) If the contamination is located in areas immediately under or around production equipment such as production tanks, wellheads and pipelines where remediation could cause a major facility deconstruction, the remediation, restoration and reclamation may be deferred with division written approved until the equipment is removed during other operations, or when the well or facility is plugged or abandoned, whichever comes first. Final remediation and reclamation shall take place in accordance with 19.15.29.12 and 19.15.29.13 NMAC once the site is no longer being used for oil and gas operations. | 8/1/2024          |