

SITE CHARACTERIZATION REMEDIATION PLAN

Rustler Bluff 33

Eddy County, New Mexico
Incident Number nAPP2303929522

Prepared for: Chevron USA, Inc. 6301 Deauville Blvd Midland, TX, 79706

Carlsbad • Houston • Midland • San Antonio • Lubbock • Hobbs • Lafayette

SYNOPSIS

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of Chevron USA, Inc (Chevron), presents the following Site Characterization Remediation Plan (SCRP) detailing site assessment and delineation activities at the Rustler Bluff 33 (Site) associated with an inadvertent release of produced water assigned Incident Number nAPP2303929522. Based on field observations and reported incident details, Chevron proposes this SCRP, which summarizes initial response efforts, delineation activities and details remediation objectives to rectify environmental impacts.

SITE LOCATION AND RELEASE BACKGROUND

The Site is located in Unit L, Section 03, Township 25 South, Range 29 East, in Eddy County, New Mexico (32.166152°, -103.964064°) and is associated with oil and gas exploration and production operations on Federal Land managed by the Bureau of Land Management (**Figure 1** in **Appendix A**).

On February 4, 2023, a subsurface pipeline failure resulted in approximately 121.863 barrels (bbls) of produced water to release on the production pad. Vacuum trucks were immediately dispatched and recovered approximately 2 bbls of free-standing fluids. Chevron immediately reported the release to the NMOCD (Mr. Mike Bratcher) via email on February 4, 2023, and on a Release Notification and Corrective Action Form C-141 (Form C-141), which was received by the NMOCD on February 8, 2023, and was subsequently assigned Incident Number nAPP2303929522. **Figure 2** in **Appendix A** depicts the observed release area, hereafter referred to as the Area of Concern (AOC).

SITE CHARACTERIZATION AND CLOSURE CRITERIA

Etech characterized the Site according to Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC) considering depth to groundwater and the proximity to:

- Any continuously flowing watercourse or any other significant watercourse;
- Any lakebed, sinkhole or playa lake (measured from the ordinary high-water mark);
- An occupied permanent residence, school, hospital, institution or church;
- A spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes;
- Any freshwater well or spring;
- Incorporated municipal boundaries or a defined municipal fresh water well field covered under a municipal ordinance;
- A wetland;
- A subsurface mine;
- An unstable area (i.e. high karst potential); and
- A 100-year floodplain.

Depth to groundwater at the Site is between 51 and 100 feet below ground surface (bgs) based on a recent soil boring that was drilled by Atkins Engineering Associates, Inc. (Atkins) on October 7, 2024. Chevron retained Atkins to assist with confirming regional groundwater depth based on surrounding groundwater well data. The boring was filed under New Mexico Office of the State Engineer (NMOSE) C-04886-POD1. The soil boring is located approximately 0.42 miles west of the Site (**Figure 1A** in **Appendix A**). Using a truck mounted drill rig equipped with air rotary, the soil boring was advanced to a total depth of 101 feet bgs where evidence of groundwater was encountered. Static groundwater measurement was 93 feet bgs. Following the observation period, the boring was plugged and abandoned per the appropriate NMOSE regulations. The boring log is provided in **Appendix B**.

The Site is located within a medium karst potential area and all other potential receptors are not within the established buffers defined in NMAC 19.15.29.12. Receptor details from the site characterization are included in **Figure 1B** and **Figure 1C** in **Appendix A**.

Based on the results from the desktop review and the estimated depth to groundwater, the following Closure Criteria was applied:

Constituents of Concern (COCs)	Laboratory Analytical Method	Closure Criteria [†]
Chloride	Environmental Protection Agency (EPA) 300.0	10,000 milligram per kilogram (mg/kg)
Total Petroleum Hydrocarbon (TPH)	EPA 8015 M/D	2,500 mg/kg
TPH-Gasoline Range Organics (GRO)+ TPH-Deisel Range Organics (DRO)	EPA 8015 M/D	1,000 mg/kg
Benzene	EPA 8260B	10 mg/kg
Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX)	EPA 8260B	50 mg/kg

[†]The reclamation concentration requirements of 600 mg/kg chloride and 100 mg/kg TPH apply to the top 4 feet of areas to be immediately reclaimed following remediation pursuant to NMAC 19.15.17.13.

SITE ASSESSMENT ACTIVITIES

On February 10, 2023, Etech visited the Site to assess the AOC based on information reported on the Form C-141 and visual observations. In agreement with Form C-141, the release had been stopped at the source and appeared to be confined to the production pad. The AOC was mapped utilizing a handheld Global Positioning System (GPS) unit, which is shown in **Figure 2** in **Appendix A**.

DELINEATION SOIL SAMPLING ACTIVITIES

From March 3, 2023, to October 28, 2024, Etech conducted delineation soil sampling activities to assess the Site for the presence or absence of residual soil impacts associated with the AOC. Delineation soil sample locations were advanced within and around the AOC via hand auger which was driven by field screening soil for volatile organic compounds (VOCs) utilizing a photoionization detector (PID) and chloride using Hach® chloride QuanTab® test strips. Soil samples were collected per delineation soil sampling location, representing the highest observed field screening concentrations and the greatest depth. The delineation soil sample locations are shown in **Figure 2** in **Appendix A**. Photographic documentation during the recent site visit is included in **Attachment C**.

Delineation soil samples were placed directly into lab provided pre-cleaned glass jars, packaged with minimal void space, labeled, and immediately placed on ice. The soil samples were transported under strict chain-of-custody procedures, to Permian Basin Environmental Lab, L.P. (PBELAB) in Midland, Texas or Envirotech Analytical Laboratory (Envirotech) in Farmington, New Mexico for analysis of COCs.

LABORATORY SOIL ANALYTICAL RESULTS

Elevated COCs exceedances above the Closure Criteria were identified in Auger Hole 2 at 1-foot bgs (characterized by a chloride concentrations of 11,300 mg/kg). Based on the laboratory analytical results and location of lateral delineation soil samples (BH01 through BH06, North Auger Hole, East Auger Hole, South Auger Hole and West Auger Hole), the horizontal edge of the release is representatively delineated. Laboratory analytical results are summarized in **Table 1** included in **Appendix D**. The executed chain-of-custody forms and laboratory analytical reports are provided in **Appendix E**.

PROPOSED REMEDIATION WORK PLAN

Based on the Site findings, Chevron proposes the following remedial corrective actions:

- Chevon proposes to remove residual impacted soil from the area associated with Auger Hole 2 up to 2 feet bgs based on laboratory analytical results (Figure 3 in Appendix A). Confirmation soil samples will be collected from the advanced excavation, at minimum, from every 200 square foot interval and field screened for VOCs using a calibrated PID and chloride with using Hach® chloride QuanTab® test strips. An estimated 18 cubic yards of residually impacted soil will be removed. In addition to collecting confirmation samples from the advanced excavation, confirmation samples will be collected from the remaining AOC area surface and edges to confirm the presence or absence of residual impacted soil above the Closure Criteria. If impacted soil above the Closure Criteria is encountered, Chevron will delineate and remediate those areas via excavation. The potential excavation(s) will be extended vertically and laterally and confirmed via laboratory analytical results associated with floor and sidewall confirmation samples. Confirmation soil sample locations will be mapped utilizing a handheld GPS unit.
- Confirmation soil samples will be collected, handled and analyzed for all COCs as previously described.
- Impacted soil that is removed during remediation activities will be placed on an impermeable liner and subsequently hauled off for disposal at an approved waste facility.
- Upon receipt and review of soil sample laboratory analytical results, Chevron will:
 - Document the absence of impacted soil based on remediation at the Site as defined by Site Closure Criteria with a subsequent report detailing corrective action and sampling activities or
 - Preparing a SCRP Addendum detailing the next course of remedial actions to address the presence of soil impacts at the Site, based off an updated lateral and vertical extent of impacted soil from continued assessment activities.

If you have any questions or comments, please do not hesitate to contact Joseph Hernandez at (281) 702-2329 or joseph@etechenv.com or Abraham Valladares at (575) 200-6754 or abevalladares@etechenv.com

Sincerely,

eTECH Environmental and Safety Solutions, Inc.

Abraham Valladares Project Coordinator

cc: Amy Barnhill, Chevron

New Mexico Oil Conservation Division

Bureau of Land Management

Joseph S. Hernandez Senior Managing Geologist

Appendices:

Appendix A Figure 1: Site Map

Figure 1A: Site Characterization Map - Groundwater

Figure 1B: Site Characterization Map - Surficial Receptors

Figure 1C: Site Characterization Map – Subsurface Receptors

Figure 2: Delineation Soil Sample Locations

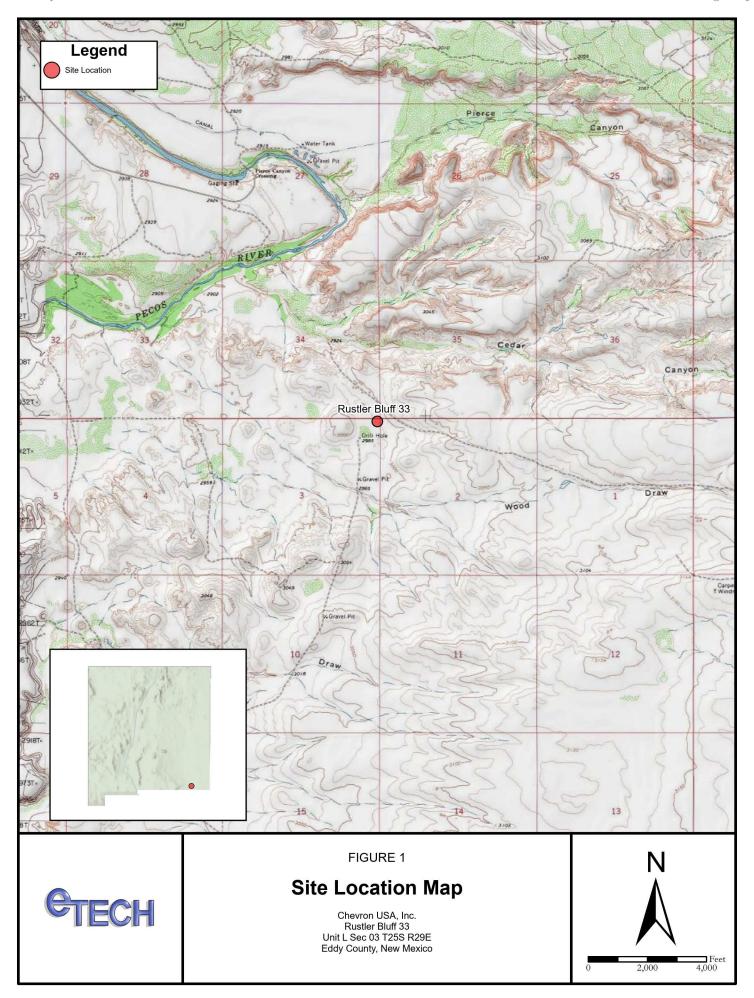
Figure 3: Proposed Excavation Area

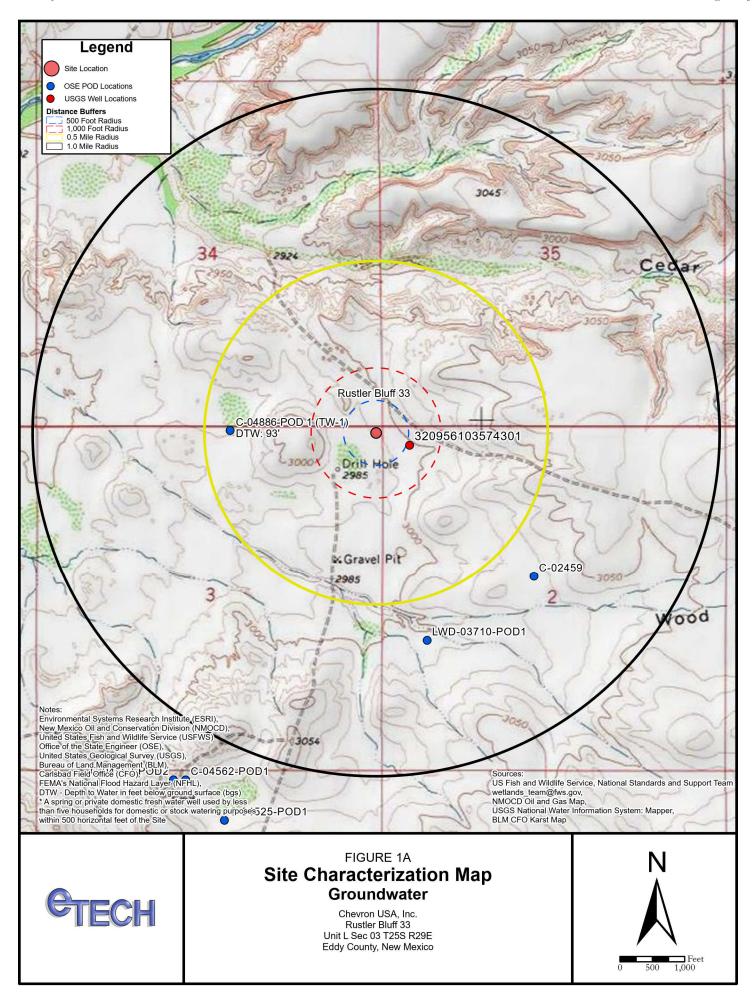
Figure 4: Sampling Grid

Appendix B Referenced Well Records

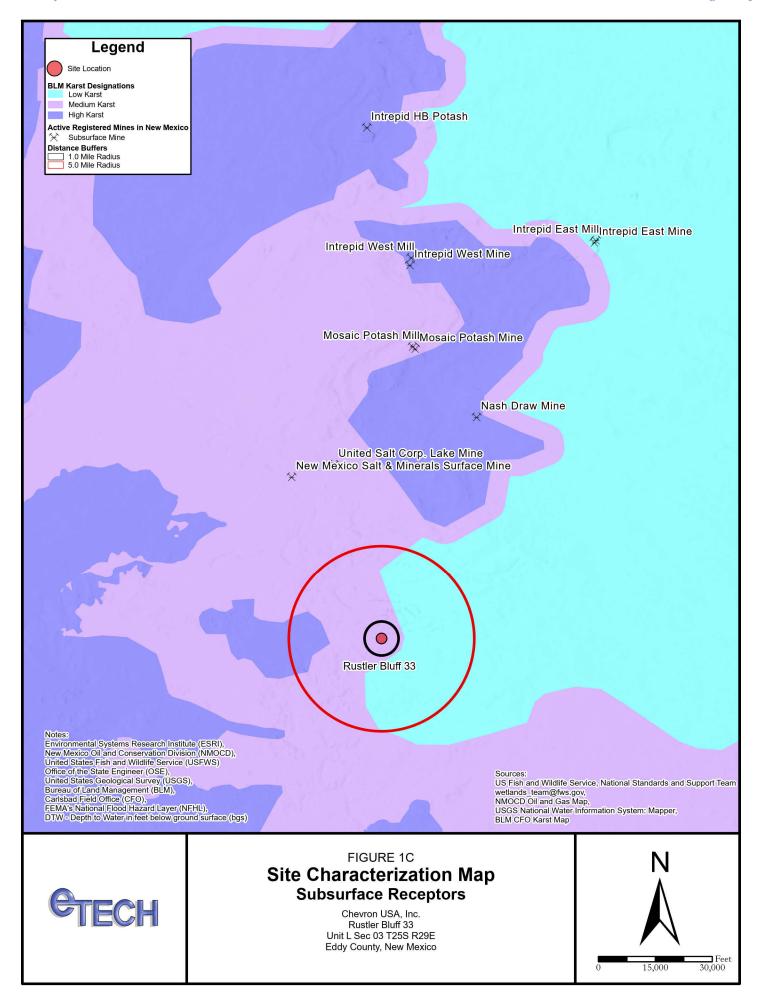
Appendix C Photographic Log

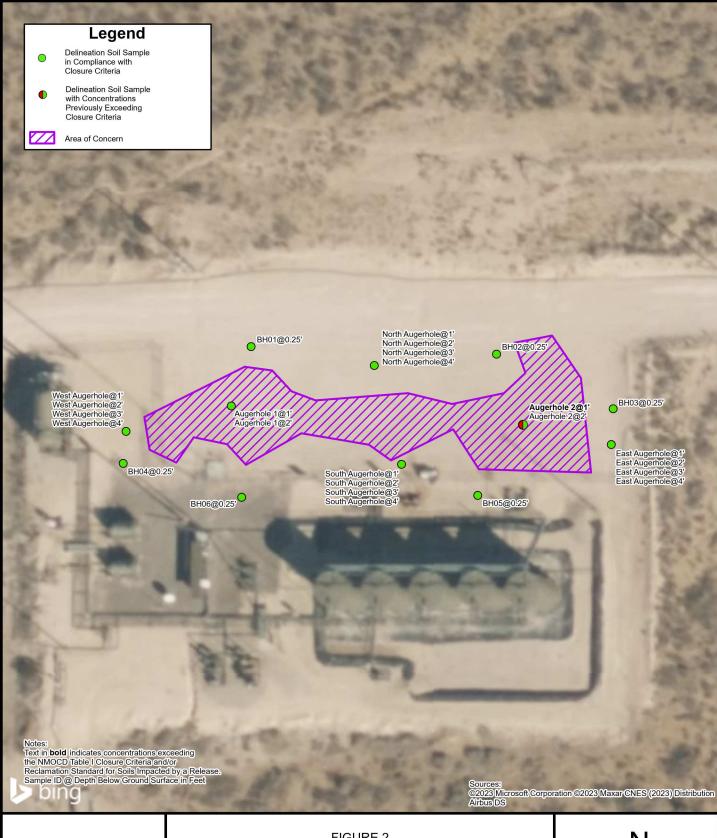
Appendix D: Tables


Appendix E: Laboratory Analytical Reports & Chain-of-Custody Documentation


APPENDIX A

Figures


P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213



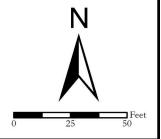
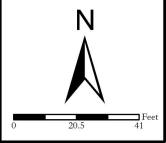


FIGURE 2

Delineation Soil Sample Locations

Chevron USA, Inc. Rustler Bluff 33 Unit L Sec 03 T25S R29E Eddy County, New Mexico



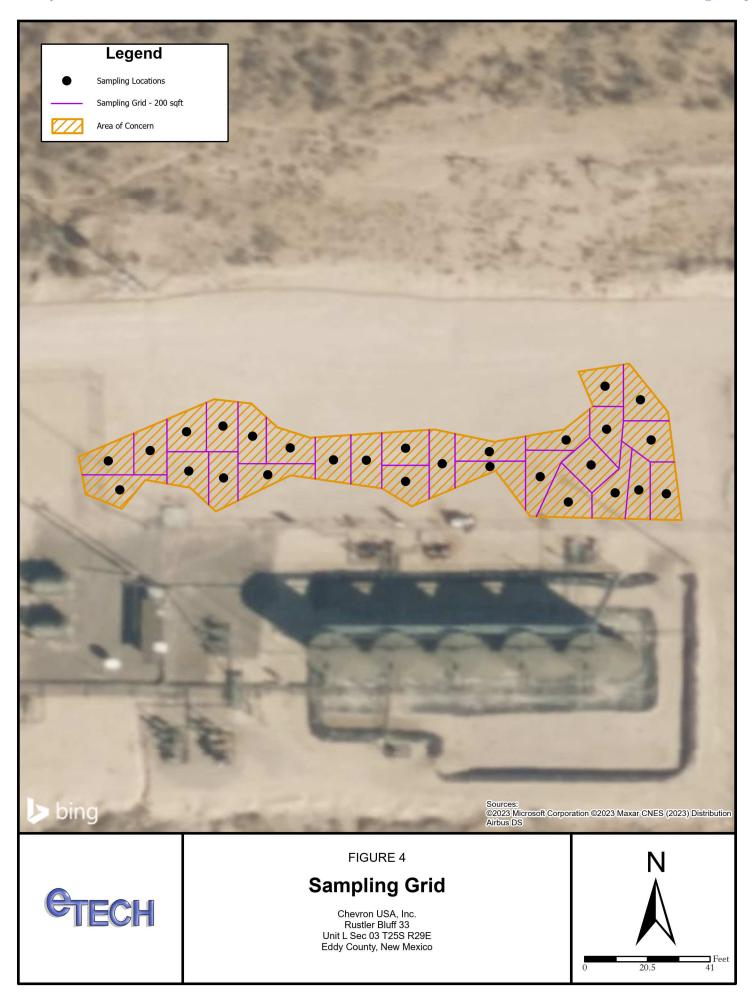


FIGURE 3

Proposed Excavation Area

Chevron USA, Inc. Rustler Bluff 33 Unit L Sec 03 T25S R29E Eddy County, New Mexico

APPENDIX B

Referenced Well Records

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

7	OSE POD NO. POD 1 (TW	•	.)	WELL N/A	L TAG ID NO.			OSE FI	LE NO(S).			
GENERAL AND WELL LOCATION	WELL OWNE			17/1					E (OPTIC	ONAL)			
OCA	Chevron U								_(- /			
TI	WELL OWNE							CITY	1		ST.	ATE 70701	ZIP
WE	6301 Deau	ville Biva						Midla	na ———		12	79701	
AND	WELL		DE	GREES M 32	INUTES 9	SECONDS 58.7		* 400	TIRACV	REQUIRED: ONI	TENTH O	DE A SECOND	
RAL	LOCATION (FROM GPS	3)	TTUDE	103	58	17.0	N W			QUIRED: WGS 84	, 1111111	7 ADDOOND	
ENE	DESCRIPTIO		NGITUDE IG WELL LOCATION TO					S (SECT)	ION, TO	WNSHJIP, RANG	E) WHERE	AVAILABLE	
1.0			R29E, NMPM										
	LICENSE NO.		NAME OF LICENSED		D 4411					NAME OF WEI			T
	124		DAN LING THEFT		D. Atkins) DO	DE HO	r propr	TI (IMP)			ering Associates,	
	DRILLING ST 10/07/2		DRILLING ENDED 10/07/2024	Temporary V				LE DEPT ⊧101	H (FT)	DEPIH WATE	R FIRST E	NCOUNTERED (FI)
Z	COMPLETED	WELL IS:	ARTESIAN *add Centralizer info bel	DRY HOLE	SHALLOV	V (UNCONFII	VED)	1		WATER LEVEL PLETED WELL	±93	DATE STATIO 10/09	MEASURED /2024
\TI0	DRILLING FL	.UID:	☐ AIR	MUD	ADDITIVE	ES – SPECIFY	:						
2. DRILLING & CASING INFORMATION	DRILLING M	ЕТНОД: 🛴	ROTARY HAMIN	MER 🗍 CABLE TOO	ог 🔽 отне	R – SPECIFY	: F	Iollow	Stem A	Auger C	HECK HER	RE IF PITLESS ADA	APTER IS
INFC	DEPTH (feet bgl)	BORE HOLE	CASING MATI	ERIAL AND	OR	C.A	ASING				CASING WALL	SLOT
ING	FROM	ТО	DIAM (inches)	(include each c	asing string, a	sing string, and CONNECT			N	INSIDE DIA (inches)	М.	THICKNESS (inches)	SIZE (inches)
CAS	0	101	±6.25	note section Soil I	s of screen) (add coupling			ling diam	eter)	(mones)	-		-
NG &													
ורוו													
. DR										UNE S			
7										w 1/3	-	1910725	
											_		
											-		
	DEBTIL	Fact 1-1\		LIST ANNULAR S	SEAL MATER	IAL AND G	RAVEI	L PACK	SIZE-	43.507	NT.	1	D. OF
7	DEPTH (TO	BORE HOLE DIAM. (inches)	*(if using Centralize		INTERVAL		cnacing	helow)	AMOU (cubic f		METHO PLACE	
3. ANNULAR MATERIAL	TROM	10		TH USING CERTIANA		i/A	cate me	SPACINE	DEIOW				
MAT													
LAR									-				
INI						_							
3. A)													
	OSE INTER	NAL USE			T non						ORD & L	OG (Version 09/2	22/2022)
	NO. ATION				POD NO.		-1	WE!	TRN			PAGE	E 1 OF 2
LUC	MITTON							WELL	IAGII	J NU.		LAGI	11012

	DEPTH (1	feet bgl) TO	THICKNESS (feet)	INCLUDE WATE	D TYPE OF MATERIAL E R-BEARING CAVITIES O	R FRAC	TURE ZONE	s	BEAL	TER RING? / NO)	ESTIMATED YIELD FOR WATER- BEARING
				•				_			ZONES (gpm)
	0	19	19		ne-grained, poorly graded Re			-	Y	✓ N	
	-19	74	55		yfine-grained, poorly graded				Y	√ N	
	74	101	27	Clay, with fine	grained sand, little gravel, l	ight-med	lium brown		✓ Y	N	1.
									Y	N	
								-	Y	N	
SLL								-	Y	N	
FW								-	Y	N	
4. HYDROGEOLOGIC LOG OF WELL								\rightarrow	Y	N	
07									Y	N	
OGIC								\rightarrow	Y	N	
070								-	Y	N	
GE								-	Y	N	
DR								-	Y	N	
E								-+	Y	N	
4								-	Y	N	
								-	Y	N	
								\rightarrow	Y	N	
				6				\rightarrow	Y	N	
1								\rightarrow	Y	N	
								-	Y	N	
									Y	N	
	<u></u>			OF WATER-BEARING					AL ESTIN L YIELI	MATED) (gpm):	
	PUMI	· A	IR LIFT	BAILER OT	HER - SPECIFY:					(81)	
NO	WELL TEST	TEST :	RESULTS - ATT I TIME, END TI	ACH A COPY OF DAT ME, AND A TABLE SH	A COLLECTED DURING IOWING DISCHARGE AN	WELL 1 D DRA	ESTING, INC	LUDIN ER THE	NG DISC E TESTI	HARGE I	METHOD, DD.
VISION	MISCELLAI	NEOUS INF	ORMATION: T	managari viali mataria	l removed and soil boring	, nlugg	od uging Tym	o I/II N	Jant Car	nant cao	attached
TEST; RIG SUPER			Pi	ugging Record.	n temoved and son borni	ş piugg	cu using Typ	C DII I	teat CCI	nent, see	attached
Su											20
; RIC											
EST	PRINT NAM	E(S) OF DE	RILL RIG SUPER	VISOR(S) THAT PRO	VIDED ONSITE SUPERVI	SION O	F WELL CON	STRUC	CTION O	THER TH	IAN LICENSEE:
5. T	Shane Eldric	` '		.,							
<u> </u>	THE UNDER	RSIGNED H	EREBY CERTIF	TIES THAT, TO THE B	EST OF HIS OR HER KNO D THAT HE OR SHE WIL	WLEDO	GE AND BEL THIS WELL I	IEF, TH	E FORE	EGOING I	S A TRUE AND ATE ENGINEER
SIGNATURE					PLETION OF WELL DRIL						
SNA	- Paul	a Bock		Too	kie D. Atkins				11/	05/24	
6. SIC	Jack Atkins (No	ov 5, 2024 09:	51 MST)	Jac	ALC D. ALKINS				11/	03/44	
_		SIGNAT	URE OF DRILLE	R / PRINT SIGNEE I	NAME					DATE	
FOI	OCE MITER	NAI IICE					WR-20 WE	II PEC	4 (19Or	LOGIVA	rsion 09/22/2022)
	R OSE INTERI E NO.	NAL USE			POD NO.		TRN NO.	DE REC	JOHN W	EOG (VC	191011 07/22/2022)
_	CATION					WELL	TAG ID NO.				PAGE 2 OF 2

APPENDIX C

Photographic Log

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

PHOTOGRAPHIC LOG

Chevron USA, Inc. Rustler Bluff 33

Incident Number nAPP2303929522

Photograph 1 Date: 10/28/2024

Description: Southwestern view of delineation

activities.

Photograph 2 Date: 10/28/2024 Description: Northeastern view of delineation activities.

Photograph 3 Date: 10/28/2024 Description: Southeastern view of delineation activities.

Photograph 4 Date: 10/28/2024 Description: Southwestern view of delineation activities.

APPENDIX D

Tables

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

Received by OCD: 11/16/2024 12:45:28 PM

Table 1 SOIL SAMPLE ANALYTICAL RESULTS Chevron USA, Inc Rustler Bluff 33 Eddy County, New Mexico

Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	DRO+GRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table I Closu Release (NMAC 19.15.		ils Impacted by a	10	50	NE	NE	NE	1,000	2,500	10,000
				Delineation So	il Samples - Incident I	Number nAPP2303929	522			
North Auger Hole	03/03/2023	1	<0.00108	<0.00215	<26.9	<26.9	<26.9	<26.9	<26.9	218
North Auger Hole	03/03/2023	2	<0.00105	<0.00211	<26.3	<26.3	<26.3	<26.3	<26.3	58.1
North Auger Hole	03/03/2023	3	<0.00105	0.00137	<26.3	<26.3	<26.3	<26.3	<26.3	57.9
North Auger Hole	03/03/2023	4	<0.00104	<0.00208	<26.0	<26.0	<26.0	<26.0	<26.0	48.0
East Auger Hole	03/03/2023	1	<0.00108	<0.00215	<26.9	<26.9	<26.9	<26.9	<26.9	3.57
East Auger Hole	03/03/2023	2	<0.00109	<0.00217	<27.2	<27.2	<27.2	<27.2	<27.2	5.36
East Auger Hole	03/03/2023	3	<0.00108	<0.00215	<26.9	<26.9	<26.9	<26.9	<26.9	4.74
East Auger Hole	03/03/2023	4	<0.00106	<0.00213	<26.6	<26.6	<26.6	<26.6	<26.6	3.07
South Auger Hole	03/03/2023	1	<0.00108	<0.00215	<26.9	<26.9	<26.9	<26.9	<26.9	684
South Auger Hole	03/03/2023	2	<0.00106	<0.00213	<26.6	<26.6	<26.6	<26.6	<26.6	443
South Auger Hole	03/03/2023	3	<0.00106	<0.00213	<26.6	<26.6	<26.6	<26.6	<26.6	365
South Auger Hole	03/03/2023	4	<0.00105	<0.00211	<26.3	<26.3	<26.3	<26.3	<26.3	246
West Auger Hole	03/03/2023	1	<0.00105	<0.00211	<26.3	<26.3	<26.3	<26.3	<26.3	10.7
West Auger Hole	03/03/2023	2	<0.00103	<0.00206	<25.8	<25.8	<25.8	<25.8	<25.8	9.59
West Auger Hole	03/03/2023	3	<0.00104	<0.00208	<26.6	<26.6	<26.6	<26.6	<26.6	6.29
West Auger Hole	03/03/2023	4	<0.00106	<0.00213	<26.6	<26.6	<26.6	<26.6	<26.6	26.5
Auger Hole 1	03/03/2023	1	<0.00105	<0.00211	<26.3	<26.3	<26.3	<26.3	<26.3	2,630
Auger Hole 1	03/03/2023	2	<0.00109	<0.00217	<27.2	<27.2	<27.2	<27.2	<27.2	4,580
Auger Hole 2	03/03/2023	1	<0.00111	<0.00222	<27.8	<27.8	<27.8	<27.8	<27.8	11,300
Auger Hole 2	03/03/2023	2	<0.00111	<0.00222	<27.8	<27.8	<27.8	<27.8	<27.8	2,880
BH01	10/28/2024	0.25	<0.0250	<0.500	<20.0	<25.0	<50.0	<25.0	<50.0	330
BH02	10/28/2024	0.25	<0.0250	<0.500	<20.0	<25.0	<50.0	<25.0	<50.0	312
BH03	10/28/2024	0.25	<0.0250	<0.500	<20.0	<25.0	<50.0	<25.0	<50.0	169
BH04	10/28/2024	0.25	<0.0250	<0.500	<20.0	<25.0	<50.0	<25.0	<50.0	133

Received by OCD: 11/16/2024 12:45:28 PM

Table 1 SOIL SAMPLE ANALYTICAL RESULTS Chevron USA, Inc **Rustler Bluff 33**

Eddy County, New Mexico

Sample I.D.	NMOCD Table I Closure Criteria for Soils Impacted by a		Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	DRO+GRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table I Closure Criteria for Soils Impacted by a Release (NMAC 19.15.29)		10	50	NE	NE	NE	1,000	2,500	10,000	
BH05	BH05 10/28/2024 0.25 <0.0250		<0.0250	<0.500	<20.0	<25.0	<50.0	<25.0	<50.0	551
BH06	10/28/2024	0.25	<0.0250	<0.500	<20.0	<25.0	<50.0	<25.0	<50.0	210

Notes:

bgs: below ground surface mg/kg: milligrams per kilogram

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

GRO: Gasoline Range Organics
DRO: Diesel Range Organics
ORO: Oil Range Organics
TPH: Total Petroleum Hydrocarbon

NMOCD: New Mexico Oil Conservation Division

NMAC: New Mexico Administrative Code

Concentrations in bold exceed the NMOCD Table I Closure Criteria and/or Reclamation Standard for Soils Impacted by a Release

APPENDIX E

Laboratory Analytical Reports & Chain-of-Custody Documentation

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Blake Estep
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: Rustler Bluff 33-34 CTB

Project Number: 17563 Location: Eddy County, TX

Lab Order Number: 3C06024

Current Certification

Report Date: 03/22/23

13000 West County Road 100Project Number: 17563Odessa TX, 79765Project Manager: Blake Estep

ANALYTICAL REPORT FOR SAMPLES

Project: Rustler Bluff 33-34 CTB

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
North Augerhole @ 1'	3C06024-01	Soil	03/03/23 09:01	03-06-2023 13:43
North Augerhole @ 2'	3C06024-02	Soil	03/03/23 09:04	03-06-2023 13:43
North Augerhole @ 3'	3C06024-03	Soil	03/03/23 09:08	03-06-2023 13:43
North Augerhole @ 4'	3C06024-04	Soil	03/03/23 09:11	03-06-2023 13:43
East Augerhole @ 1'	3C06024-05	Soil	03/03/23 09:15	03-06-2023 13:43
East Augerhole @ 2'	3C06024-06	Soil	03/03/23 09:19	03-06-2023 13:43
East Augerhole @ 3'	3C06024-07	Soil	03/03/23 09:25	03-06-2023 13:43
East Augerhole @ 4'	3C06024-08	Soil	03/03/23 09:34	03-06-2023 13:43
South Augerhole @ 1'	3C06024-09	Soil	03/03/23 09:39	03-06-2023 13:43
South Augerhole @ 2'	3C06024-10	Soil	03/03/23 09:43	03-06-2023 13:43
South Augerhole @ 3'	3C06024-11	Soil	03/03/23 09:49	03-06-2023 13:43
South Augerhole @ 4'	3C06024-12	Soil	03/03/23 09:55	03-06-2023 13:43
West Augerhole @ 1'	3C06024-13	Soil	03/03/23 09:59	03-06-2023 13:43
West Augerhole @ 2'	3C06024-14	Soil	03/03/23 10:04	03-06-2023 13:43
West Augerhole @ 3'	3C06024-15	Soil	03/03/23 10:10	03-06-2023 13:43
West Augerhole @ 4'	3C06024-16	Soil	03/03/23 10:16	03-06-2023 13:43
Augerhole 1 @ 1'	3C06024-17	Soil	03/03/23 10:24	03-06-2023 13:43
Augerhole 1 @ 2'	3C06024-18	Soil	03/03/23 10:32	03-06-2023 13:43
Augerhole 2 @ 1'	3C06024-19	Soil	03/03/23 10:40	03-06-2023 13:43
Augerhole 2 @ 2'	3C06024-20	Soil	03/03/23 10:50	03-06-2023 13:43

Project: Rustler Bluff 33-34 CTB Project Number: 17563

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

North Augerhole @ 1' 3C06024-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00108	mg/kg dry	1	P3C0905	03/09/23 11:24	03/10/23 15:03	EPA 8021B	
Toluene	ND	0.00108	mg/kg dry	1	P3C0905	03/09/23 11:24	03/10/23 15:03	EPA 8021B	
Ethylbenzene	ND	0.00108	mg/kg dry	1	P3C0905	03/09/23 11:24	03/10/23 15:03	EPA 8021B	
Xylene (p/m)	ND	0.00215	mg/kg dry	1	P3C0905	03/09/23 11:24	03/10/23 15:03	EPA 8021B	
Xylene (o)	ND	0.00108	mg/kg dry	1	P3C0905	03/09/23 11:24	03/10/23 15:03	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	80-120		P3C0905	03/09/23 11:24	03/10/23 15:03	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.3 %	80-120		P3C0905	03/09/23 11:24	03/10/23 15:03	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	A Method	18015M						
C6-C12	ND	26.9	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 06:10	TPH 8015M	
>C12-C28	ND	26.9	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 06:10	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 06:10	TPH 8015M	
Surrogate: 1-Chlorooctane		87.8 %	70-130		P3C1306	03/13/23 13:00	03/19/23 06:10	TPH 8015M	
Surrogate: o-Terphenyl		101 %	70-130		P3C1306	03/13/23 13:00	03/19/23 06:10	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.9	mg/kg dry	1	[CALC]	03/13/23 13:00	03/19/23 06:10	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	218	1.08	mg/kg dry	1	P3C0902	03/09/23 08:54	03/10/23 02:45	EPA 300.0	
% Moisture	7.0	0.1	%	1	P3C0807	03/08/23 16:03	03/09/23 07:35	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project: Rustler Bluff 33-34 CTB
Project Number: 17563

13000 West County Road 100 Odessa TX, 79765

Project Number: 1/563
Project Manager: Blake Estep

North Augerhole @ 2' 3C06024-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00105	mg/kg dry	1	P3C0905	03/09/23 11:24	03/10/23 15:24	EPA 8021B	
Toluene	ND	0.00105	mg/kg dry	1	P3C0905	03/09/23 11:24	03/10/23 15:24	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P3C0905	03/09/23 11:24	03/10/23 15:24	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P3C0905	03/09/23 11:24	03/10/23 15:24	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P3C0905	03/09/23 11:24	03/10/23 15:24	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.2 %	80-120		P3C0905	03/09/23 11:24	03/10/23 15:24	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	80-120		P3C0905	03/09/23 11:24	03/10/23 15:24	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP/	\ Method	8015M						
C6-C12	ND	26.3	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 06:36	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 06:36	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 06:36	TPH 8015M	
Surrogate: 1-Chlorooctane		88.0 %	70-130		P3C1306	03/13/23 13:00	03/19/23 06:36	TPH 8015M	
Surrogate: o-Terphenyl		106 %	70-130		P3C1306	03/13/23 13:00	03/19/23 06:36	TPH 8015M	
Total Petroleum Hydrocarbon	ND	26.3	mg/kg dry	1	[CALC]	03/13/23 13:00	03/19/23 06:36	calc	
C6-C35									
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	58.1	1.05	mg/kg dry	1	P3C0902	03/09/23 08:54	03/10/23 02:59	EPA 300.0	
% Moisture	5.0	0.1	%	1	P3C0807	03/08/23 16:03	03/09/23 07:35	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project: Rustler Bluff 33-34 CTB 13000 West County Road 100 Project Number: 17563

Odessa TX, 79765 Project Manager: Blake Estep

North Augerhole @ 3' 3C06024-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00105	mg/kg dry	1	P3C2103	03/21/23 09:36	03/21/23 12:38	EPA 8021B	
Toluene	0.00137	0.00105	mg/kg dry	1	P3C2103	03/21/23 09:36	03/21/23 12:38	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P3C2103	03/21/23 09:36	03/21/23 12:38	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P3C2103	03/21/23 09:36	03/21/23 12:38	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P3C2103	03/21/23 09:36	03/21/23 12:38	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.0 %	80-120		P3C2103	03/21/23 09:36	03/21/23 12:38	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		106 %	80-120		P3C2103	03/21/23 09:36	03/21/23 12:38	EPA 8021B	
Total Petroleum Hydrocarbons Co	6-C35 by EPA	A Method	8015M						
C6-C12	ND	26.3	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 07:03	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 07:03	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 07:03	TPH 8015M	
Surrogate: 1-Chlorooctane		92.1 %	70-130		P3C1306	03/13/23 13:00	03/19/23 07:03	TPH 8015M	
Surrogate: o-Terphenyl		107 %	70-130		P3C1306	03/13/23 13:00	03/19/23 07:03	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	03/13/23 13:00	03/19/23 07:03	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	57.9	1.05	mg/kg dry	1	P3C0902	03/09/23 08:54	03/10/23 03:14	EPA 300.0	
% Moisture	5.0	0.1	%	1	P3C0807	03/08/23 16:03	03/09/23 07:35	ASTM D2216	

Project: Rustler Bluff 33-34 CTB
Project Number: 17563

13000 West County Road 100 Odessa TX, 79765

Project Number: 1/563
Project Manager: Blake Estep

North Augerhole @ 4' 3C06024-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental I	_ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C2103	03/21/23 09:36	03/21/23 12:59	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C2103	03/21/23 09:36	03/21/23 12:59	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C2103	03/21/23 09:36	03/21/23 12:59	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C2103	03/21/23 09:36	03/21/23 12:59	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C2103	03/21/23 09:36	03/21/23 12:59	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.1 %	80-120		P3C2103	03/21/23 09:36	03/21/23 12:59	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	80-120		P3C2103	03/21/23 09:36	03/21/23 12:59	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	Method	l 8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 07:29	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 07:29	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 07:29	TPH 8015M	
Surrogate: 1-Chlorooctane		90.6 %	70-130		P3C1306	03/13/23 13:00	03/19/23 07:29	TPH 8015M	
Surrogate: o-Terphenyl		104 %	70-130		P3C1306	03/13/23 13:00	03/19/23 07:29	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/13/23 13:00	03/19/23 07:29	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	48.0	1.04	mg/kg dry	1	P3C0902	03/09/23 08:54	03/10/23 03:28	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C0807	03/08/23 16:03	03/09/23 07:35	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Project
Odessa TX, 79765 Project

Project Number: 17563 Project Manager: Blake Estep

East Augerhole @ 1' 3C06024-05 (Soil)

Project: Rustler Bluff 33-34 CTB

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental I	_ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00108	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 15:10	EPA 8021B	
Toluene	ND	0.00108	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 15:10	EPA 8021B	
Ethylbenzene	ND	0.00108	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 15:10	EPA 8021B	
Xylene (p/m)	ND	0.00215	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 15:10	EPA 8021B	
Xylene (o)	ND	0.00108	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 15:10	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.6 %	80-120		P3C1301	03/13/23 09:57	03/13/23 15:10	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	80-120		P3C1301	03/13/23 09:57	03/13/23 15:10	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	Method	l 8015M						
C6-C12	ND	26.9	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 07:56	TPH 8015M	
>C12-C28	ND	26.9	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 07:56	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 07:56	TPH 8015M	
Surrogate: 1-Chlorooctane		90.7 %	70-130		P3C1306	03/13/23 13:00	03/19/23 07:56	TPH 8015M	
Surrogate: o-Terphenyl		105 %	70-130		P3C1306	03/13/23 13:00	03/19/23 07:56	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.9	mg/kg dry	1	[CALC]	03/13/23 13:00	03/19/23 07:56	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	3.57	1.08	mg/kg dry	1	P3C0902	03/09/23 08:54	03/10/23 03:42	EPA 300.0	
% Moisture	7.0	0.1	%	1	P3C0807	03/08/23 16:03	03/09/23 07:35	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Project Number: 17563 Project Manager: Blake Estep

Odessa TX, 79765

East Augerhole @ 2' 3C06024-06 (Soil)

Project: Rustler Bluff 33-34 CTB

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00109	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 15:31	EPA 8021B	
Toluene	ND	0.00109	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 15:31	EPA 8021B	
Ethylbenzene	ND	0.00109	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 15:31	EPA 8021B	
Xylene (p/m)	ND	0.00217	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 15:31	EPA 8021B	
Xylene (o)	ND	0.00109	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 15:31	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	80-120		P3C1301	03/13/23 09:57	03/13/23 15:31	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.7 %	80-120		P3C1301	03/13/23 09:57	03/13/23 15:31	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	27.2	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 08:22	TPH 8015M	
>C12-C28	ND	27.2	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 08:22	TPH 8015M	
>C28-C35	ND	27.2	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 08:22	TPH 8015M	
Surrogate: 1-Chlorooctane		88.7 %	70-130		P3C1306	03/13/23 13:00	03/19/23 08:22	TPH 8015M	
Surrogate: o-Terphenyl		103 %	70-130		P3C1306	03/13/23 13:00	03/19/23 08:22	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.2	mg/kg dry	1	[CALC]	03/13/23 13:00	03/19/23 08:22	calc	
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	5.36	1.09	mg/kg dry	1	P3C0902	03/09/23 08:54	03/10/23 03:57	EPA 300.0	
% Moisture	8.0	0.1	%	1	P3C0807	03/08/23 16:03	03/09/23 07:35	ASTM D2216	

Project: Rustler Bluff 33-34 CTB 13000 West County Road 100 Project Number: 17563

Odessa TX, 79765 Project Manager: Blake Estep

East Augerhole @ 3' 3C06024-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00108	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 15:53	EPA 8021B	
Toluene	ND	0.00108	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 15:53	EPA 8021B	
Ethylbenzene	ND	0.00108	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 15:53	EPA 8021B	
Xylene (p/m)	ND	0.00215	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 15:53	EPA 8021B	
Xylene (o)	ND	0.00108	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 15:53	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.2 %	80-120		P3C1301	03/13/23 09:57	03/13/23 15:53	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C1301	03/13/23 09:57	03/13/23 15:53	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	26.9	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 08:49	TPH 8015M	
>C12-C28	ND	26.9	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 08:49	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 08:49	TPH 8015M	
Surrogate: 1-Chlorooctane		90.2 %	70-130		P3C1306	03/13/23 13:00	03/19/23 08:49	TPH 8015M	
Surrogate: o-Terphenyl		105 %	70-130		P3C1306	03/13/23 13:00	03/19/23 08:49	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.9	mg/kg dry	1	[CALC]	03/13/23 13:00	03/19/23 08:49	calc	
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	4.74	1.08	mg/kg dry	1	P3C0902	03/09/23 08:54	03/10/23 04:11	EPA 300.0	
% Moisture	7.0	0.1	%	1	P3C0807	03/08/23 16:03	03/09/23 07:35	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project: Rustler Bluff 33-34 CTB Project Number: 17563

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

East Augerhole @ 4' 3C06024-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L				
BTEX by 8021B									
Benzene	ND	0.00106	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 16:14	EPA 8021B	
Toluene	ND	0.00106	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 16:14	EPA 8021B	
Ethylbenzene	ND	0.00106	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 16:14	EPA 8021B	
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 16:14	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 16:14	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	80-120		P3C1301	03/13/23 09:57	03/13/23 16:14	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.2 %	80-120		P3C1301	03/13/23 09:57	03/13/23 16:14	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	1 8015M						
C6-C12	ND	26.6	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 09:16	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 09:16	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 09:16	TPH 8015M	
Surrogate: 1-Chlorooctane		88.1 %	70-130		P3C1306	03/13/23 13:00	03/19/23 09:16	TPH 8015M	
Surrogate: o-Terphenyl		103 %	70-130		P3C1306	03/13/23 13:00	03/19/23 09:16	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	03/13/23 13:00	03/19/23 09:16	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	3.07	1.06	mg/kg dry	1	P3C0902	03/09/23 08:54	03/10/23 04:25	EPA 300.0	
% Moisture	6.0	0.1	%	1	P3C0807	03/08/23 16:03	03/09/23 07:35	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Solutions, Inc. [1] Project: Rustler Bluff 33-34 CTB
Project Number: 17563

Odessa TX, 79765

13000 West County Road 100

Project Manager: Blake Estep

South Augerhole @ 1' 3C06024-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00108	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 16:36	EPA 8021B	
Toluene	ND	0.00108	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 16:36	EPA 8021B	
Ethylbenzene	ND	0.00108	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 16:36	EPA 8021B	
Xylene (p/m)	ND	0.00215	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 16:36	EPA 8021B	
Xylene (o)	ND	0.00108	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 16:36	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.6 %	80-120		P3C1301	03/13/23 09:57	03/13/23 16:36	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C1301	03/13/23 09:57	03/13/23 16:36	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	Method	1 8015M						
C6-C12	ND	26.9	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 09:42	TPH 8015M	
>C12-C28	ND	26.9	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 09:42	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 09:42	TPH 8015M	
Surrogate: 1-Chlorooctane		88.5 %	70-130		P3C1306	03/13/23 13:00	03/19/23 09:42	TPH 8015M	
Surrogate: o-Terphenyl		104 %	70-130		P3C1306	03/13/23 13:00	03/19/23 09:42	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.9	mg/kg dry	1	[CALC]	03/13/23 13:00	03/19/23 09:42	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	684	1.08	mg/kg dry	1	P3C1004	03/10/23 08:00	03/10/23 14:57	EPA 300.0	
% Moisture	7.0	0.1	%	1	P3C0807	03/08/23 16:03	03/09/23 07:35	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project: Rustler Bluff 33-34 CTB 13000 West County Road 100 Project Number: 17563

Odessa TX, 79765

Project Manager: Blake Estep

South Augerhole @ 2' 3C06024-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00106	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 17:40	EPA 8021B	
Toluene	ND	0.00106	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 17:40	EPA 8021B	
Ethylbenzene	ND	0.00106	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 17:40	EPA 8021B	
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 17:40	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 17:40	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.6 %	80-120		P3C1301	03/13/23 09:57	03/13/23 17:40	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3C1301	03/13/23 09:57	03/13/23 17:40	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	26.6	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 10:08	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 10:08	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 10:08	TPH 8015M	
Surrogate: 1-Chlorooctane		88.4 %	70-130		P3C1306	03/13/23 13:00	03/19/23 10:08	TPH 8015M	
Surrogate: o-Terphenyl		103 %	70-130		P3C1306	03/13/23 13:00	03/19/23 10:08	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	03/13/23 13:00	03/19/23 10:08	calc	
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	443	1.06	mg/kg dry	1	P3C1004	03/10/23 08:00	03/10/23 15:11	EPA 300.0	
% Moisture	6.0	0.1	%	1	P3C0807	03/08/23 16:03	03/09/23 07:35	ASTM D2216	

Project: Rustler Bluff 33-34 CTB 13000 West County Road 100 Project Number: 17563

Odessa TX, 79765 Project Manager: Blake Estep

South Augerhole @ 3' 3C06024-11 (Soil)

Analyte		Reporting	TT '4	Dil di	D. (I	D 1	Amalayaad	Mathad	NJ-4
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00106	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 18:01	EPA 8021B	
Toluene	ND	0.00106	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 18:01	EPA 8021B	
Ethylbenzene	ND	0.00106	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 18:01	EPA 8021B	
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 18:01	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 18:01	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	80-120		P3C1301	03/13/23 09:57	03/13/23 18:01	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	96.2 %	80-120		P3C1301	03/13/23 09:57	03/13/23 18:01	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	l 8015M						
C6-C12	ND	26.6	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 11:25	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 11:25	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 11:25	TPH 8015M	
Surrogate: 1-Chlorooctane	ç	91.4 %	70-130		P3C1306	03/13/23 13:00	03/19/23 11:25	TPH 8015M	
Surrogate: o-Terphenyl		106 %	70-130		P3C1306	03/13/23 13:00	03/19/23 11:25	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	03/13/23 13:00	03/19/23 11:25	calc	
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	365	1.06	mg/kg dry	1	P3C1004	03/10/23 08:00	03/10/23 15:26	EPA 300.0	
% Moisture	6.0	0.1	%	1	P3C0807	03/08/23 16:03	03/09/23 07:35	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project: Rustler Bluff 33-34 CTB
Project Number: 17563

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

South Augerhole @ 4' 3C06024-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00105	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 18:23	EPA 8021B	
Toluene	ND	0.00105	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 18:23	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 18:23	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 18:23	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 18:23	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.0 %	80-120		P3C1301	03/13/23 09:57	03/13/23 18:23	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	80-120		P3C1301	03/13/23 09:57	03/13/23 18:23	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	A Method	l 8015M						
C6-C12	ND	26.3	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 11:51	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 11:51	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 11:51	TPH 8015M	
Surrogate: 1-Chlorooctane		93.0 %	70-130		P3C1306	03/13/23 13:00	03/19/23 11:51	TPH 8015M	
Surrogate: o-Terphenyl		107 %	70-130		P3C1306	03/13/23 13:00	03/19/23 11:51	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	03/13/23 13:00	03/19/23 11:51	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	246	1.05	mg/kg dry	1	P3C1004	03/10/23 08:00	03/10/23 15:40	EPA 300.0	
% Moisture	5.0	0.1	%	1	P3C0807	03/08/23 16:03	03/09/23 07:35	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project: Rustler Bluff 33-34 CTB 13000 West County Road 100 Project Number: 17563

Odessa TX, 79765

Project Manager: Blake Estep

West Augerhole @ 1' 3C06024-13 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental I	_ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00105	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 18:44	EPA 8021B	
Toluene	ND	0.00105	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 18:44	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 18:44	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 18:44	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 18:44	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	80-120		P3C1301	03/13/23 09:57	03/13/23 18:44	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.6 %	80-120		P3C1301	03/13/23 09:57	03/13/23 18:44	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	1 8015M						
C6-C12	ND	26.3	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 12:17	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 12:17	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 12:17	TPH 8015M	
Surrogate: 1-Chlorooctane		90.4 %	70-130		P3C1306	03/13/23 13:00	03/19/23 12:17	TPH 8015M	
Surrogate: o-Terphenyl		105 %	70-130		P3C1306	03/13/23 13:00	03/19/23 12:17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	03/13/23 13:00	03/19/23 12:17	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	10.7	1.05	mg/kg dry	1	P3C1004	03/10/23 08:00	03/10/23 15:54	EPA 300.0	
% Moisture	5.0	0.1	%	1	P3C0807	03/08/23 16:03	03/09/23 07:35	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project: Rustler Bluff 33-34 CTB 13000 West County Road 100 Project Number: 17563

Odessa TX, 79765 Project Manager: Blake Estep

West Augerhole @ 2' 3C06024-14 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 19:05	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 19:05	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 19:05	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 19:05	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 19:05	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.1 %	80-120		P3C1301	03/13/23 09:57	03/13/23 19:05	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3C1301	03/13/23 09:57	03/13/23 19:05	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	Method	l 8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 12:42	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 12:42	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 12:42	TPH 8015M	
Surrogate: 1-Chlorooctane		88.6 %	70-130		P3C1306	03/13/23 13:00	03/19/23 12:42	TPH 8015M	
Surrogate: o-Terphenyl		103 %	70-130		P3C1306	03/13/23 13:00	03/19/23 12:42	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/13/23 13:00	03/19/23 12:42	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	9.59	1.03	mg/kg dry	1	P3C1004	03/10/23 08:00	03/10/23 16:08	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C0807	03/08/23 16:03	03/09/23 07:35	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project: Rustler Bluff 33-34 CTB Project Number: 17563

Odessa TX, 79765

13000 West County Road 100

Project Manager: Blake Estep

West Augerhole @ 3' 3C06024-15 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 19:26	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 19:26	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 19:26	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 19:26	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 19:26	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.8 %	80-120		P3C1301	03/13/23 09:57	03/13/23 19:26	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3C1301	03/13/23 09:57	03/13/23 19:26	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 13:07	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 13:07	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 13:07	TPH 8015M	
Surrogate: 1-Chlorooctane		94.7 %	70-130		P3C1306	03/13/23 13:00	03/19/23 13:07	TPH 8015M	
Surrogate: o-Terphenyl		110 %	70-130		P3C1306	03/13/23 13:00	03/19/23 13:07	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/13/23 13:00	03/19/23 13:07	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	6.29	1.04	mg/kg dry	1	P3C1004	03/10/23 08:00	03/10/23 16:23	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C0807	03/08/23 16:03	03/09/23 07:35	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project: Rustler Bluff 33-34 CTB Project Number: 17563

Odessa TX, 79765

13000 West County Road 100

Project Number: 1/303
Project Manager: Blake Estep

West Augerhole @ 4' 3C06024-16 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00106	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 19:47	EPA 8021B	
Toluene	ND	0.00106	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 19:47	EPA 8021B	
Ethylbenzene	ND	0.00106	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 19:47	EPA 8021B	
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 19:47	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 19:47	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	80-120		P3C1301	03/13/23 09:57	03/13/23 19:47	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.5 %	80-120		P3C1301	03/13/23 09:57	03/13/23 19:47	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	1 8015M						
C6-C12	ND	26.6	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 13:33	TPH 8015M	•
>C12-C28	ND	26.6	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 13:33	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 13:33	TPH 8015M	
Surrogate: 1-Chlorooctane		91.8 %	70-130		P3C1306	03/13/23 13:00	03/19/23 13:33	TPH 8015M	
Surrogate: o-Terphenyl		105 %	70-130		P3C1306	03/13/23 13:00	03/19/23 13:33	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	03/13/23 13:00	03/19/23 13:33	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	26.5	1.06	mg/kg dry	1	P3C1004	03/10/23 08:00	03/10/23 16:37	EPA 300.0	
% Moisture	6.0	0.1	%	1	P3C0807	03/08/23 16:03	03/09/23 07:35	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project: Rustler Bluff 33-34 CTB 13000 West County Road 100 Project Number: 17563

Odessa TX, 79765

Project Manager: Blake Estep

Augerhole 1 @ 1' 3C06024-17 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00105	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 20:09	EPA 8021B	
Toluene	ND	0.00105	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 20:09	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 20:09	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 20:09	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 20:09	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.3 %	80-120		P3C1301	03/13/23 09:57	03/13/23 20:09	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C1301	03/13/23 09:57	03/13/23 20:09	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EP/	\ Method	18015M						
C6-C12	ND	26.3	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 13:58	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 13:58	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 13:58	TPH 8015M	
Surrogate: 1-Chlorooctane		90.4 %	70-130		P3C1306	03/13/23 13:00	03/19/23 13:58	TPH 8015M	
Surrogate: o-Terphenyl		106 %	70-130		P3C1306	03/13/23 13:00	03/19/23 13:58	TPH 8015M	
Total Petroleum Hydrocarbon	ND	26.3	mg/kg dry	1	[CALC]	03/13/23 13:00	03/19/23 13:58	calc	
C6-C35									
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	2630	5.26	mg/kg dry	5	P3C1004	03/10/23 08:00	03/10/23 16:51	EPA 300.0	
% Moisture	5.0	0.1	%	1	P3C0807	03/08/23 16:03	03/09/23 07:35	ASTM D2216	

Permian Basin Environmental Lab, L.P.

ty Solutions, Inc. [1] Project: Rustler Bluff 33-34 CTB
Project Number: 17563

13000 West County Road 100Project Number:17563Odessa TX, 79765Project Manager:Blake Estep

Augerhole 1 @ 2' 3C06024-18 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00109	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 20:30	EPA 8021B	
Toluene	ND	0.00109	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 20:30	EPA 8021B	
Ethylbenzene	ND	0.00109	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 20:30	EPA 8021B	
Xylene (p/m)	ND	0.00217	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 20:30	EPA 8021B	
Xylene (o)	ND	0.00109	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 20:30	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.5 %	80-120		P3C1301	03/13/23 09:57	03/13/23 20:30	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C1301	03/13/23 09:57	03/13/23 20:30	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	27.2	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 14:23	TPH 8015M	
>C12-C28	ND	27.2	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 14:23	TPH 8015M	
>C28-C35	ND	27.2	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 14:23	TPH 8015M	
Surrogate: 1-Chlorooctane		80.8 %	70-130		P3C1306	03/13/23 13:00	03/19/23 14:23	TPH 8015M	
Surrogate: o-Terphenyl		94.7 %	70-130		P3C1306	03/13/23 13:00	03/19/23 14:23	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.2	mg/kg dry	1	[CALC]	03/13/23 13:00	03/19/23 14:23	calc	
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	4580	5.43	mg/kg dry	5	P3C1004	03/10/23 08:00	03/10/23 17:34	EPA 300.0	
% Moisture	8.0	0.1	%	1	P3C0807	03/08/23 16:03	03/09/23 07:35	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project: Rustler Bluff 33-34 CTB Project Number: 17563

13000 West County Road 100 Odessa TX, 79765

Project Number: 17563
Project Manager: Blake Estep

Augerhole 2 @ 1' 3C06024-19 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	Result	LIIIII	Units	Dilution	Daten	Frepared	Anaryzeu	Wictiod	Note
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00111	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 20:52	EPA 8021B	
Toluene	ND	0.00111	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 20:52	EPA 8021B	
Ethylbenzene	ND	0.00111	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 20:52	EPA 8021B	
Xylene (p/m)	ND	0.00222	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 20:52	EPA 8021B	
Xylene (o)	ND	0.00111	mg/kg dry	1	P3C1301	03/13/23 09:57	03/13/23 20:52	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.3 %	80-120		P3C1301	03/13/23 09:57	03/13/23 20:52	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		107 %	80-120		P3C1301	03/13/23 09:57	03/13/23 20:52	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	\ Method	8015M						
C6-C12	ND	27.8	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 14:48	TPH 8015M	
>C12-C28	ND	27.8	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 14:48	TPH 8015M	
>C28-C35	ND	27.8	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 14:48	TPH 8015M	
Surrogate: 1-Chlorooctane		91.0 %	70-130		P3C1306	03/13/23 13:00	03/19/23 14:48	TPH 8015M	
Surrogate: o-Terphenyl		106 %	70-130		P3C1306	03/13/23 13:00	03/19/23 14:48	TPH 8015M	
Total Petroleum Hydrocarbon	ND	27.8	mg/kg dry	1	[CALC]	03/13/23 13:00	03/19/23 14:48	calc	
C6-C35									
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	11300	27.8	mg/kg dry	25	P3C1004	03/10/23 08:00	03/10/23 18:17	EPA 300.0	
% Moisture	10.0	0.1	%	1	P3C0807	03/08/23 16:03	03/09/23 07:35	ASTM D2216	

13000 West County Road 100 Project Num Odessa TX, 79765 Project Mana

Project Number: 17563 Project Manager: Blake Estep

Augerhole 2 @ 2' 3C06024-20 (Soil)

Analyte	D agr-14	Reporting Limit	I Imita	Dilution	Dotoh	Duamanad	Analyzed	Method	Notes
	Result	Limit	Units	Dilution	Batch	Prepared	Analyzeu	Meniod	Note
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00111	mg/kg dry	1	P3C1302	03/13/23 10:21	03/13/23 23:43	EPA 8021B	
Toluene	ND	0.00111	mg/kg dry	1	P3C1302	03/13/23 10:21	03/13/23 23:43	EPA 8021B	
Ethylbenzene	ND	0.00111	mg/kg dry	1	P3C1302	03/13/23 10:21	03/13/23 23:43	EPA 8021B	
Xylene (p/m)	ND	0.00222	mg/kg dry	1	P3C1302	03/13/23 10:21	03/13/23 23:43	EPA 8021B	
Xylene (o)	ND	0.00111	mg/kg dry	1	P3C1302	03/13/23 10:21	03/13/23 23:43	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.8 %	80-120		P3C1302	03/13/23 10:21	03/13/23 23:43	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	80-120		P3C1302	03/13/23 10:21	03/13/23 23:43	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	1 8015M						
C6-C12	ND	27.8	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 15:13	TPH 8015M	
>C12-C28	ND	27.8	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 15:13	TPH 8015M	
>C28-C35	ND	27.8	mg/kg dry	1	P3C1306	03/13/23 13:00	03/19/23 15:13	TPH 8015M	
Surrogate: 1-Chlorooctane		91.0 %	70-130		P3C1306	03/13/23 13:00	03/19/23 15:13	TPH 8015M	
Surrogate: o-Terphenyl		106 %	70-130		P3C1306	03/13/23 13:00	03/19/23 15:13	TPH 8015M	
Total Petroleum Hydrocarbon	ND	27.8	mg/kg dry	1	[CALC]	03/13/23 13:00	03/19/23 15:13	calc	
C6-C35									
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	2880	5.56	mg/kg dry	5	P3C1004	03/10/23 08:00	03/10/23 19:00	EPA 300.0	
% Moisture	10.0	0.1	%	1	P3C0807	03/08/23 16:03	03/09/23 07:35	ASTM D2216	

13000 West County Road 100 Project Number: 17563 Odessa TX, 79765

Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Project: Rustler Bluff 33-34 CTB

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
·	resur	Ellin	Cints	Level	resur	, with	Limits	пар	Limit	110103
Batch P3C0905 - *** DEFAULT PREP ***										
Blank (P3C0905-BLK1)				Prepared &	Analyzed:	03/09/23				
Benzene	ND	0.00100	mg/kg							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		96.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.121		"	0.120		101	80-120			
LCS (P3C0905-BS1)				Prepared &	z Analyzed:	03/09/23				
Benzene	0.100	0.00100	mg/kg	0.100		100	80-120			
Toluene	0.0971	0.00100	"	0.100		97.1	80-120			
Ethylbenzene	0.101	0.00100	"	0.100		101	80-120			
Xylene (p/m)	0.177	0.00200	"	0.200		88.4	80-120			
Xylene (o)	0.0932	0.00100	"	0.100		93.2	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.8	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	80-120			
LCS Dup (P3C0905-BSD1)				Prepared &	Analyzed:	03/09/23				
Benzene	0.0971	0.00100	mg/kg	0.100		97.1	80-120	3.01	20	
Toluene	0.0943	0.00100	"	0.100		94.3	80-120	2.88	20	
Ethylbenzene	0.0977	0.00100	"	0.100		97.7	80-120	2.83	20	
Xylene (p/m)	0.172	0.00200	"	0.200		85.8	80-120	2.91	20	
Xylene (o)	0.0906	0.00100	"	0.100		90.6	80-120	2.81	20	
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.4	80-120			-
Surrogate: 4-Bromofluorobenzene	0.127		"	0.120		106	80-120			
Calibration Blank (P3C0905-CCB1)				Prepared &	z Analyzed:	03/09/23				
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.113		"	0.120		94.2	80-120			
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		94.8	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765

Project: Rustler Bluff 33-34 CTB

Project Number: 17563 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

	_	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C0905 - *** DEFAULT PREP ***										
Calibration Blank (P3C0905-CCB2)				Prepared &	Analyzed:	03/09/23				
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		95.1	80-120			
Surrogate: 4-Bromofluorobenzene	0.116		"	0.120		97.0	80-120			
Calibration Check (P3C0905-CCV1)				Prepared &	Analyzed:	03/09/23				
Benzene	0.109	0.00100	mg/kg	0.100		109	80-120			
Toluene	0.106	0.00100	"	0.100		106	80-120			
Ethylbenzene	0.104	0.00100	"	0.100		104	80-120			
Xylene (p/m)	0.191	0.00200	"	0.200		95.6	80-120			
Xylene (o)	0.103	0.00100	"	0.100		103	80-120			
Surrogate: 4-Bromofluorobenzene	0.123		"	0.120		102	75-125			
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.5	75-125			
Calibration Check (P3C0905-CCV2)				Prepared &	Analyzed:	03/09/23				
Benzene	0.109	0.00100	mg/kg	0.100		109	80-120		<u></u>	
Toluene	0.106	0.00100	"	0.100		106	80-120			
Ethylbenzene	0.103	0.00100	"	0.100		103	80-120			
Xylene (p/m)	0.187	0.00200	"	0.200		93.5	80-120			
Xylene (o)	0.102	0.00100	"	0.100		102	80-120			
Surrogate: 4-Bromofluorobenzene	0.123		"	0.120		103	75-125			
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.4	75-125			
Batch P3C1301 - *** DEFAULT PREP ***										
Blank (P3C1301-BLK1)				Prepared &	Analyzed:	03/13/23				
Benzene	ND	0.00100	mg/kg	-						
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.113		"	0.120		93.9	80-120			

Permian Basin Environmental Lab, L.P.

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

95.2

80-120

0.114

0.120

13000 West County Road 100 Odessa TX, 79765 Project: Rustler Bluff 33-34 CTB

Project Number: 17563 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Anaryte	Kesuit	Limit	Units	Level	Kesuit	%KEC	Limits	KPD	Limit	inotes
Batch P3C1301 - *** DEFAULT PREP ***										
LCS (P3C1301-BS1)				Prepared &	Analyzed:	03/13/23				
Benzene	0.105	0.00100	mg/kg	0.100		105	80-120			
Toluene	0.103	0.00100	"	0.100		103	80-120			
Ethylbenzene	0.106	0.00100	"	0.100		106	80-120			
Xylene (p/m)	0.187	0.00200	"	0.200		93.3	80-120			
Xylene (o)	0.0993	0.00100	"	0.100		99.3	80-120			
Surrogate: 4-Bromofluorobenzene	0.128		"	0.120		106	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		97.0	80-120			
LCS Dup (P3C1301-BSD1)				Prepared &	Analyzed:	03/13/23				
Benzene	0.107	0.00100	mg/kg	0.100		107	80-120	1.18	20	
Toluene	0.104	0.00100	"	0.100		104	80-120	1.34	20	
Ethylbenzene	0.107	0.00100	"	0.100		107	80-120	1.24	20	
Xylene (p/m)	0.188	0.00200	"	0.200		94.2	80-120	0.965	20	
Xylene (o)	0.100	0.00100	"	0.100		100	80-120	0.742	20	
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	80-120			
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		96.2	80-120			
Calibration Blank (P3C1301-CCB1)				Prepared &	Analyzed:	03/13/23				
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.120		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.116		"	0.120		97.0	80-120			
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		95.2	80-120			
Calibration Blank (P3C1301-CCB2)				Prepared &	Analyzed:	03/13/23				
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.150		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		95.1	80-120			
Surrogate: 4-Bromofluorobenzene	0.119		"	0.120		99.1	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Rustler Bluff 33-34 CTB

Project Number: 17563 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyta	D acult	Reporting	Lluita	Spike	Source	0/DEC	%REC	RPD	RPD	Note-
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	KPD	Limit	Notes
Batch P3C1301 - *** DEFAULT PREP **	**									
Calibration Blank (P3C1301-CCB3)				Prepared &	Analyzed:	03/13/23				
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.110		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.113		"	0.120		94.5	80-120			
Surrogate: 4-Bromofluorobenzene	0.120		"	0.120		100	80-120			
Calibration Check (P3C1301-CCV1)				Prepared &	Analyzed:	03/13/23				
Benzene	0.0935	0.00100	mg/kg	0.100	-	93.5	80-120			
Toluene	0.0906	0.00100	"	0.100		90.6	80-120			
Ethylbenzene	0.0880	0.00100	"	0.100		88.0	80-120			
Xylene (p/m)	0.163	0.00200	"	0.200		81.5	80-120			
Xylene (o)	0.0878	0.00100	"	0.100		87.8	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.4	75-125			
Surrogate: 4-Bromofluorobenzene	0.125		"	0.120		104	75-125			
Calibration Check (P3C1301-CCV2)				Prepared &	Analyzed:	03/13/23				
Benzene	0.105	0.00100	mg/kg	0.100		105	80-120			
Toluene	0.102	0.00100	"	0.100		102	80-120			
Ethylbenzene	0.0987	0.00100	"	0.100		98.7	80-120			
Xylene (p/m)	0.181	0.00200	"	0.200		90.4	80-120			
Xylene (o)	0.0985	0.00100	"	0.100		98.5	80-120			
Surrogate: 4-Bromofluorobenzene	0.127		"	0.120		106	75-125			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.5	75-125			
Calibration Check (P3C1301-CCV3)				Prepared &	z Analyzed:	03/13/23				
Benzene	0.107	0.00100	mg/kg	0.100		107	80-120			
Toluene	0.103	0.00100	"	0.100		103	80-120			
Ethylbenzene	0.0996	0.00100	"	0.100		99.6	80-120			
Xylene (p/m)	0.180	0.00200	"	0.200		90.1	80-120			
Xylene (o)	0.0986	0.00100	"	0.100		98.6	80-120			
Surrogate: 4-Bromofluorobenzene	0.127		"	0.120		106	75-125			

Permian Basin Environmental Lab, L.P.

Surrogate: 1,4-Difluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

95.8

75-125

0.120

0.115

13000 West County Road 100 Odessa TX, 79765 Project: Rustler Bluff 33-34 CTB

Project Number: 17563 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P3C1301 - *** DEFAULT PREP ***

Matrix Spike (P3C1301-MS1)	Source: 3C06024-05			Prepared &	Analyzed:	03/13/23		
Benzene	0.0711	0.00108	mg/kg dry	0.108	ND	66.1	80-120	QM-05
Toluene	0.0699	0.00108	"	0.108	ND	65.0	80-120	QM-05
Ethylbenzene	0.0661	0.00108	"	0.108	ND	61.5	80-120	QM-05
Xylene (p/m)	0.117	0.00215	"	0.215	ND	54.3	80-120	QM-05
Xylene (o)	0.0604	0.00108	"	0.108	ND	56.2	80-120	QM-05
Surrogate: 1,4-Difluorobenzene	0.126		"	0.129		97.8	80-120	
Surrogate: 4-Bromofluorobenzene	0.144		"	0.129		112	80-120	

Matrix Spike Dup (P3C1301-MSD1)	Source: 3C06024-05			Prepared &	Analyzed:	03/13/23				
Benzene	0.0819	0.00108	mg/kg dry	0.108	ND	76.1	80-120	14.1	20	QM-05
Toluene	0.0799	0.00108	"	0.108	ND	74.3	80-120	13.3	20	QM-05
Ethylbenzene	0.0781	0.00108	"	0.108	ND	72.6	80-120	16.6	20	QM-05
Xylene (p/m)	0.137	0.00215	"	0.215	ND	63.8	80-120	16.0	20	QM-05
Xylene (o)	0.0711	0.00108	"	0.108	ND	66.1	80-120	16.2	20	QM-05
Surrogate: 4-Bromofluorobenzene	0.144		"	0.129		111	80-120			
Surrogate: 1,4-Difluorobenzene	0.126		"	0.129		97.6	80-120			

Batch P3C1302 - *** DEFAULT PREP ***

Blank (P3C1302-BLK1)		Prepared & Analyzed: 03/13/23							
Benzene	ND	0.00100	mg/kg						
Toluene	ND	0.00100	"						
Ethylbenzene	ND	0.00100	"						
Xylene (p/m)	ND	0.00200	"						
Xylene (o)	ND	0.00100	"						
Surrogate: 4-Bromofluorobenzene	0.119		"	0.120	99.2	80-120			
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120	94.8	80-120			

Permian Basin Environmental Lab, L.P.

Project Number: 17563
Project Manager: Blake Estep

13000 West County Road 100 Odessa TX, 79765

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Project: Rustler Bluff 33-34 CTB

Analyte	Daml4	Reporting	I Inde	Spike	Source	0/DEC	%REC	ממם	RPD Limit	Ma4-
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C1302 - *** DEFAULT PREP ***										
LCS (P3C1302-BS1)				Prepared &	Analyzed:	03/13/23				
Benzene	0.106	0.00100	mg/kg	0.100		106	80-120			
Toluene	0.101	0.00100	"	0.100		101	80-120			
Ethylbenzene	0.104	0.00100	"	0.100		104	80-120			
Xylene (p/m)	0.180	0.00200	"	0.200		89.8	80-120			
Xylene (o)	0.0965	0.00100	"	0.100		96.5	80-120			
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		95.6	80-120			
Surrogate: 4-Bromofluorobenzene	0.128		"	0.120		107	80-120			
LCS Dup (P3C1302-BSD1)				Prepared &	Analyzed:	03/13/23				
Benzene	0.0949	0.00100	mg/kg	0.100		94.9	80-120	10.7	20	
Toluene	0.0891	0.00100	"	0.100		89.1	80-120	13.0	20	
Ethylbenzene	0.0897	0.00100	"	0.100		89.7	80-120	14.3	20	
Xylene (p/m)	0.161	0.00200	"	0.200		80.3	80-120	11.2	20	
Xylene (o)	0.0841	0.00100	"	0.100		84.1	80-120	13.7	20	
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		97.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.125		"	0.120		105	80-120			
Calibration Blank (P3C1302-CCB1)				Prepared &	Analyzed:	03/13/23				
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.110		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.120		"	0.120		100	80-120			
Surrogate: 1,4-Difluorobenzene	0.113		"	0.120		94.5	80-120			
Calibration Blank (P3C1302-CCB2)				Prepared: 0	3/13/23 A1	nalyzed: 03	/14/23			
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.110		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.118		"	0.120		98.3	80-120			
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		95.6	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Rustler Bluff 33-34 CTB

Project Number: 17563 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		D (G 7	6		0/BEC		DDD	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3C1302 - *** DEFAULT PREP ***										
Calibration Check (P3C1302-CCV1)				Drangrad &	: Analyzed:	03/13/23				
Benzene	0.107	0.00100	mg/kg	0.100	Allalyzeu.	107	80-120			
Toluene	0.107	0.00100	mg/kg	0.100		103	80-120			
Ethylbenzene	0.0996	0.00100	"	0.100		99.6	80-120			
Xylene (p/m)	0.180	0.00200	"	0.200		90.1	80-120			
Xylene (o)	0.0986	0.00100	"	0.100		98.6	80-120			
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		95.8	75-125			
Surrogate: 4-Bromofluorobenzene	0.127		"	0.120		106	75-125			
Calibration Check (P3C1302-CCV2)				Prepared: ()3/13/23 Aı	nalyzed: 03	/14/23			
Benzene	0.106	0.00100	mg/kg	0.100		106	80-120			
Toluene	0.0996	0.00100	"	0.100		99.6	80-120			
Ethylbenzene	0.0944	0.00100	"	0.100		94.4	80-120			
Xylene (p/m)	0.171	0.00200	"	0.200		85.6	80-120			
Xylene (o)	0.0948	0.00100	"	0.100		94.8	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.6	75-125			
Surrogate: 4-Bromofluorobenzene	0.123		"	0.120		103	75-125			
Calibration Check (P3C1302-CCV3)				Prepared: (03/13/23 Aı	nalyzed: 03	/14/23			
Benzene	0.105	0.00100	mg/kg	0.100		105	80-120			
Toluene	0.0991	0.00100	"	0.100		99.1	80-120			
Ethylbenzene	0.0939	0.00100	"	0.100		93.9	80-120			
Xylene (p/m)	0.168	0.00200	"	0.200		84.0	80-120			
Xylene (o)	0.0937	0.00100	"	0.100		93.7	80-120			
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.5	75-125			
Surrogate: 4-Bromofluorobenzene	0.123		"	0.120		103	75-125			
Matrix Spike (P3C1302-MS1)	Sou	ırce: 3C07003	-01	Prepared: (03/13/23 Aı	nalyzed: 03	/14/23			
Benzene	0.100	0.00120	mg/kg dry	0.120	ND	83.1	80-120			
Toluene	0.0955	0.00120	"	0.120	ND	79.3	80-120			QM-
Ethylbenzene	0.0882	0.00120	"	0.120	ND	73.2	80-120			QM-
Xylene (p/m)	0.130	0.00241	"	0.241	ND	54.1	80-120			QM-
Xylene (o)	0.0804	0.00120	"	0.120	ND	66.8	80-120			QM-
Surrogate: 4-Bromofluorobenzene	0.157		"	0.145		109	80-120			
Surrogate: 1,4-Difluorobenzene	0.143		"	0.145		99.0	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Rustler Bluff 33-34 CTB

Project Number: 17563 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3C1302 - *** DEFAULT PREP ***										
Matrix Spike Dup (P3C1302-MSD1)	Sou	rce: 3C07003	-01	Prepared: ()3/13/23 A:	nalyzed: 03	/14/23			
Benzene	0.102	0.00120	mg/kg dry	0.120	ND	84.3	80-120	1.51	20	
Toluene	0.0970	0.00120	"	0.120	ND	80.5	80-120	1.56	20	
Ethylbenzene	0.0905	0.00120	"	0.120	ND	75.1	80-120	2.56	20	QM-0
Xylene (p/m)	0.137	0.00241	"	0.241	ND	57.0	80-120	5.28	20	QM-0
Xylene (o)	0.0822	0.00120	"	0.120	ND	68.3	80-120	2.24	20	QM-0
Surrogate: 4-Bromofluorobenzene	0.158		"	0.145		109	80-120			
Surrogate: 1,4-Difluorobenzene	0.143		"	0.145		99.1	80-120			
Batch P3C2103 - *** DEFAULT PREP ***										
LCS (P3C2103-BS1)				Prepared &	Analyzed:	03/21/23				
Benzene	0.105	0.00100	mg/kg	0.100		105	80-120			
Toluene	0.103	0.00100	"	0.100		103	80-120			
Ethylbenzene	0.107	0.00100	"	0.100		107	80-120			
Xylene (p/m)	0.188	0.00200	"	0.200		94.2	80-120			
Xylene (o)	0.0998	0.00100	"	0.100		99.8	80-120			
Surrogate: 4-Bromofluorobenzene	0.127		"	0.120		106	80-120			
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		96.0	80-120			
LCS Dup (P3C2103-BSD1)				Prepared &	Analyzed:	03/21/23				
Benzene	0.106	0.00100	mg/kg	0.100		106	80-120	0.710	20	
Toluene	0.104	0.00100	"	0.100		104	80-120	0.849	20	
Ethylbenzene	0.108	0.00100	"	0.100		108	80-120	0.298	20	
Xylene (p/m)	0.189	0.00200	"	0.200		94.5	80-120	0.297	20	
Xylene (o)	0.100	0.00100	"	0.100		100	80-120	0.569	20	
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		95.7	80-120			
Surrogate: 4-Bromofluorobenzene	0.128		"	0.120		106	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Rustler Bluff 33-34 CTB

Project Number: 17563 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3C2103 - *** DEFAULT PREP ***										
Calibration Blank (P3C2103-CCB1)				Prepared &	Analyzed:	03/21/23				
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.120		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		94.6	80-120			
Surrogate: 4-Bromofluorobenzene	0.119		"	0.120		99.1	80-120			
Calibration Blank (P3C2103-CCB2)				Prepared &	z Analyzed:	03/21/23				
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.160		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.104		"	0.120		86.5	80-120			
Surrogate: 4-Bromofluorobenzene	0.0931		"	0.120		77.6	80-120			
Calibration Check (P3C2103-CCV1)				Prepared &	Analyzed:	03/21/23				
Benzene	0.106	0.00100	mg/kg	0.100		106	80-120			
Toluene	0.103	0.00100	"	0.100		103	80-120			
Ethylbenzene	0.100	0.00100	"	0.100		100	80-120			
Xylene (p/m)	0.185	0.00200	"	0.200		92.4	80-120			
Xylene (o)	0.0995	0.00100	"	0.100		99.5	80-120			
Surrogate: 4-Bromofluorobenzene	0.123		"	0.120		103	75-125			
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		95.6	75-125			
Calibration Check (P3C2103-CCV2)				Prepared &	Analyzed:	03/21/23				
Benzene	0.116	0.00100	mg/kg	0.100		116	80-120			
Toluene	0.0987	0.00100	"	0.100		98.7	80-120			
Ethylbenzene	0.0906	0.00100	"	0.100		90.6	80-120			
Xylene (p/m)	0.170	0.00200	"	0.200		84.9	80-120			
Xylene (o)	0.0986	0.00100	"	0.100		98.6	80-120			
Surrogate: 1,4-Difluorobenzene	0.109		"	0.120		91.0	75-125			
Surrogate: 4-Bromofluorobenzene	0.0961		"	0.120		80.1	75-125			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Rustler Bluff 33-34 CTB

Project Number: 17563 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C2103 - *** DEFAULT PREP ***										
Calibration Check (P3C2103-CCV3)				Prepared &	& Analyzed:	03/21/23				
Benzene	0.108	0.00100	mg/kg	0.100		108	80-120			
Toluene	0.103	0.00100	"	0.100		103	80-120			
Ethylbenzene	0.0986	0.00100	"	0.100		98.6	80-120			
Xylene (p/m)	0.180	0.00200	"	0.200		90.2	80-120			
Xylene (o)	0.0990	0.00100	"	0.100		99.0	80-120			
Surrogate: 1,4-Difluorobenzene	0.113		"	0.120		94.5	75-125			
Surrogate: 4-Bromofluorobenzene	0.123		"	0.120		103	75-125			
Matrix Spike (P3C2103-MS1)	Sou	rce: 3C20004	I-01	Prepared &	& Analyzed:	03/21/23				
Benzene	0.0843	0.00105	mg/kg dry	0.105	0.000916	79.2	80-120			QM-05
Toluene	0.0709	0.00105	"	0.105	0.0501	19.8	80-120			QM-05
Ethylbenzene	0.0634	0.00105	"	0.105	0.704	NR	80-120			QM-05
Xylene (p/m)	0.112	0.00211	"	0.211	1.11	NR	80-120			QM-05
Xylene (o)	0.0622	0.00105	"	0.105	0.629	NR	80-120			QM-05
Surrogate: 4-Bromofluorobenzene	0.127		"	0.126		101	80-120			
Surrogate: 1,4-Difluorobenzene	0.122		"	0.126		96.2	80-120			
Matrix Spike Dup (P3C2103-MSD1)	Sou	rce: 3C20004	I-01	Prepared &	& Analyzed:	03/21/23				
Benzene	0.0860	0.00105	mg/kg dry	0.105	0.000916	80.9	80-120	2.09	20	
Toluene	0.0756	0.00105	"	0.105	0.0501	24.2	80-120	20.0	20	QM-05
Ethylbenzene	0.0691	0.00105	"	0.105	0.704	NR	80-120	NR	20	QM-05
Xylene (p/m)	0.121	0.00211	"	0.211	1.11	NR	80-120	NR	20	QM-05
Xylene (o)	0.0674	0.00105	"	0.105	0.629	NR	80-120	NR	20	QM-05
Surrogate: 1,4-Difluorobenzene	0.123		"	0.126		97.1	80-120			
Surrogate: 4-Bromofluorobenzene	0.133		"	0.126		105	80-120			

Project: Rustler Bluff 33-34 CTB

13000 West County Road 100 Odessa TX, 79765 Project Number: 17563 Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C1306 - TX 1005										
Blank (P3C1306-BLK1)				Prepared: (03/13/23 Aı	nalyzed: 03	/19/23			
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	89.7		"	100		89.7	70-130			
Surrogate: o-Terphenyl	52.9		"	50.0		106	70-130			
LCS (P3C1306-BS1)				Prepared: (03/13/23 Aı	nalyzed: 03	/19/23			
C6-C12	910	25.0	mg/kg	1000		91.0	75-125			
>C12-C28	958	25.0	"	1000		95.8	75-125			
Surrogate: 1-Chlorooctane	120		"	100		120	70-130			
Surrogate: o-Terphenyl	52.4		"	50.0		105	70-130			
LCS Dup (P3C1306-BSD1)				Prepared: (03/13/23 Aı	nalyzed: 03	/19/23			
C6-C12	882	25.0	mg/kg	1000		88.2	75-125	3.16	20	
>C12-C28	942	25.0	"	1000		94.2	75-125	1.74	20	
Surrogate: 1-Chlorooctane	121		"	100		121	70-130			
Surrogate: o-Terphenyl	53.5		"	50.0		107	70-130			
Calibration Check (P3C1306-CCV1)				Prepared: (03/13/23 Aı	nalyzed: 03	/19/23			
C6-C12	475	25.0	mg/kg	500		95.0	85-115			
>C12-C28	427	25.0	"	500		85.5	85-115			
Surrogate: 1-Chlorooctane	108		"	100		108	70-130			
Surrogate: o-Terphenyl	52.3		"	50.0		105	70-130			
Calibration Check (P3C1306-CCV2)				Prepared: (03/13/23 Aı	nalyzed: 03	/19/23			
C6-C12	488	25.0	mg/kg	500		97.6	85-115			
>C12-C28	444	25.0	"	500		88.9	85-115			
Surrogate: 1-Chlorooctane	110		"	100		110	70-130			
Surrogate: o-Terphenyl	53.6		"	50.0		107	70-130			

Permian Basin Environmental Lab, L.P.

Project Number: 17563

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C1306 - TX 1005										
Matrix Spike (P3C1306-MS1)	Sourc	e: 3C06024	I-20	Prepared:	03/13/23 A	nalyzed: 03	/19/23			
C6-C12	939	27.8	mg/kg dry	1110	ND	84.5	75-125			
>C12-C28	974	27.8	"	1110	ND	87.6	75-125			
Surrogate: 1-Chlorooctane	121		"	111		109	70-130			
Surrogate: o-Terphenyl	60.2		"	55.6		108	70-130			
Matrix Spike Dup (P3C1306-MSD1)	Sourc	e: 3C06024	I-20	Prepared:	03/13/23 A	nalyzed: 03	/19/23			
C6-C12	932	27.8	mg/kg dry	1110	ND	83.9	75-125	0.643	20	
>C12-C28	992	27.8	"	1110	ND	89.3	75-125	1.89	20	
Surrogate: 1-Chlorooctane	121		"	111		109	70-130			
Surrogate: o-Terphenyl	53.7		"	55.6		96.6	70-130			

13000 West County Road 100Project Number:17563Odessa TX, 79765Project Manager:Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
-				<u></u>		· · · · · · · · · · · · · · · · · · ·				
Batch P3C0807 - *** DEFAULT PREP ***										
Blank (P3C0807-BLK1)				Prepared: 0	3/08/23 A	nalyzed: 03/	09/23			
% Moisture	ND	0.1	%							
Blank (P3C0807-BLK2)				Prepared: 0	3/08/23 A	nalyzed: 03/	09/23			
% Moisture	ND	0.1	%							
Duplicate (P3C0807-DUP1)	Sour	ce: 3C03012-	10	Prepared: 0	3/08/23 A	nalyzed: 03/	09/23			
% Moisture	14.0	0.1	%		14.0			0.00	20	
Duplicate (P3C0807-DUP2)	Sour	ce: 3C06003-	02	Prepared: 0	3/08/23 A	nalyzed: 03/	09/23			
% Moisture	18.0	0.1	%		17.0			5.71	20	
Duplicate (P3C0807-DUP3)	Sour	ce: 3C06007-	04	Prepared: 0	3/08/23 A	nalyzed: 03/	09/23			
% Moisture	ND	0.1	%		ND				20	
Duplicate (P3C0807-DUP4)	Sour	ce: 3C06012-	08	Prepared: 0	3/08/23 A	nalyzed: 03/	09/23			
% Moisture	3.0	0.1	%		2.0			40.0	20	R3
Duplicate (P3C0807-DUP5)	Sour	ce: 3C06016-	07	Prepared: 0	3/08/23 A	nalyzed: 03/	09/23			
% Moisture	3.0	0.1	%		3.0			0.00	20	
Duplicate (P3C0807-DUP6)	Sour	ce: 3C06019-	03	Prepared: 0	3/08/23 A	nalyzed: 03/	09/23			
% Moisture	6.0	0.1	%	-	6.0			0.00	20	
Duplicate (P3C0807-DUP7)	Sour	ce: 3C06022-	02	Prepared: 0	3/08/23 A	nalyzed: 03/	09/23			
% Moisture	8.0	0.1	%	•	7.0	-		13.3	20	
Duplicate (P3C0807-DUP8)	Sour	ce: 3C06023-	03	Prepared: 0	3/08/23 A	nalyzed: 03/	09/23			
% Moisture	6.0	0.1	%	1	5.0	<u> </u>	-	18.2	20	

13000 West County Road 100Project Number: 17563Odessa TX, 79765Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3C0807 - *** DEFAULT PREP ***										
Duplicate (P3C0807-DUP9)	Sou	rce: 3C06024-	02	Prepared: (03/08/23 A	nalyzed: 03	/09/23			
% Moisture	6.0	0.1	%		5.0			18.2	20	
Duplicate (P3C0807-DUPA)	Sou	rce: 3C06024-	12	Prepared: (03/08/23 A	nalyzed: 03	/09/23			
% Moisture	5.0	0.1	%		5.0			0.00	20	
Duplicate (P3C0807-DUPB)	Sou	rce: 3C07001-	07	Prepared: (03/08/23 A	nalyzed: 03	/09/23			
% Moisture	6.0	0.1	%		7.0			15.4	20	
Duplicate (P3C0807-DUPC)	Sou	rce: 3C07001-	17	Prepared: (03/08/23 A	nalyzed: 03	/09/23			
% Moisture	7.0	0.1	%		7.0			0.00	20	
Duplicate (P3C0807-DUPD)	Sou	rce: 3C07002-	14	Prepared: (03/08/23 A	nalyzed: 03	/09/23			
% Moisture	13.0	0.1	%		13.0			0.00	20	
Batch P3C0902 - *** DEFAULT PREP ***										
Blank (P3C0902-BLK1)				Prepared &	: Analyzed:	03/09/23				
Chloride	ND	1.00	mg/kg							
LCS (P3C0902-BS1)				Prepared: (03/09/23 A	nalyzed: 03	/10/23			
Chloride	18.0		mg/kg	20.0		90.2	90-110			
LCS Dup (P3C0902-BSD1)				Prepared &	: Analyzed:	: 03/09/23				
Chloride	18.4		mg/kg	20.0		91.8	90-110	1.67	10	
Calibration Check (P3C0902-CCV1)				Prepared &	: Analyzed:	: 03/09/23				
Chloride	18.5		mg/kg	20.0		92.5	90-110	<u> </u>		

13000 West County Road 100 Project Number: 17563
Odessa TX, 79765 Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting	_	Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C0902 - *** DEFAULT PREP ***										
Calibration Check (P3C0902-CCV2)				Prepared:	03/09/23 A	nalyzed: 03	3/10/23			
Chloride	18.8		mg/kg	20.0		94.0	90-110			
Calibration Check (P3C0902-CCV3)				Prepared:	03/09/23 A	nalyzed: 03	3/10/23			
Chloride	18.6		mg/kg	20.0		93.1	90-110			
Matrix Spike (P3C0902-MS1)	Sou	rce: 3C06022	-01	Prepared &	& Analyzed:	03/09/23				
Chloride	6280	11.6	mg/kg dry	1160	4850	123	80-120			QM-05
Matrix Spike (P3C0902-MS2)	Sou	rce: 3C06022	-08	Prepared:	03/09/23 A	nalyzed: 03	3/10/23			
Chloride	8600	12.3	mg/kg dry	1230	5030	289	80-120			QM-05
Matrix Spike Dup (P3C0902-MSD1)	Sou	rce: 3C06022	-01	Prepared &	& Analyzed:	03/09/23				
Chloride	4400	11.6	mg/kg dry	1160	4850	NR	80-120	35.2	20	QM-05
Matrix Spike Dup (P3C0902-MSD2)	Sou	rce: 3C06022	-08	Prepared:	03/09/23 A	nalyzed: 03	3/10/23			
Chloride	6300	12.3	mg/kg dry	1230	5030	103	80-120	30.9	20	R
Batch P3C1004 - *** DEFAULT PREP ***										
Blank (P3C1004-BLK1)				Prepared &	& Analyzed:	03/10/23				
Chloride	ND	1.00	mg/kg	•						
LCS (P3C1004-BS1)				Prepared &	k Analyzed:	03/10/23				
Chloride	18.1		mg/kg	20.0		90.4	90-110			
LCS Dup (P3C1004-BSD1)				Prepared &	& Analyzed:	03/10/23				
Chloride	18.3		mg/kg	20.0		91.5	90-110	1.19	10	

13000 West County Road 100 Project Number: 17563

Odessa TX, 79765 Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C1004 - *** DEFAULT PREP ***										
Calibration Check (P3C1004-CCV1)				Prepared &	& Analyzed:	03/10/23				
Chloride	18.0	1.00	mg/kg				90-110			
Calibration Check (P3C1004-CCV2)				Prepared &	& Analyzed:	03/10/23				
Chloride	18.4	1.00	mg/kg				90-110			
Matrix Spike (P3C1004-MS1)	Sour	ce: 3C06024	-17	Prepared &	& Analyzed:	03/10/23				
Chloride	3540	5.26	mg/kg dry	526	2630	173	80-120			QM-05
Matrix Spike (P3C1004-MS2)	Sour	ce: 3C06024	-19	Prepared &	& Analyzed:	03/10/23				
Chloride	13200	27.8	mg/kg dry	556	11300	338	80-120			QM-05
Matrix Spike Dup (P3C1004-MSD1)	Sour	ce: 3C06024	-17	Prepared &	& Analyzed:	03/10/23				
Chloride	2120	5.26	mg/kg dry	526	2630	NR	80-120	50.1	20	QM-05
Matrix Spike Dup (P3C1004-MSD2)	Sour	ce: 3C06024	-19	Prepared &	& Analyzed:	03/10/23				
Chloride	10700	27.8	mg/kg dry	556	11300	NR	80-120	21.3	20	QM-05

13000 West County Road 100

Odessa TX, 79765

Project: Rustler Bluff 33-34 CTB

Project Number: 17563 Project Manager: Blake Estep

Notes and Definitions

ROI Received on Ice

R3 The RPD exceeded the acceptance limit due to sample matrix effects.

R The RPD exceeded the method control limit. The individual analyte QA/QC recoveries, however, were within acceptance limits.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were

within acceptance limits showing that the laboratory is in control and the data is acceptable.

NPBEL C(Chain of Custody was not generated at PBELAB

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	Burnon			
Report Approved By:		Date:	3/22/2023	

Brent Barron, Laboratory Director/Technical Director

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1] Project: Rustler Bluff 33-34 CTB

13000 West County Road 100Project Number: 17563Odessa TX, 79765Project Manager: Blake Estep

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, whi	
-	
-	
-	
- 2000	
=	
San Printer	
7	
100	
The state of	
-	
1	
0	
CH	
CHA	
CHAI	
CHAIN	
CHAIN	
CHAIN O	
CHAIN OF	
CHAIN OF	
CHAIN OF C	
CHAIN OF CU	
CHAIN OF CUS	
CHAIN OF CUST	
CHAIN OF CUSTO	
CHAIN OF CUSTOL	
CHAIN OF CUSTOD	
CHAIN OF CUSTODY	
CHAIN OF CUSTODY R	
CHAIN OF CUSTODY RE	
CHAIN OF CUSTODY RECO	

Special Instructions: Relinquished by Relinquished by Relinquished by: ORDER #: lab use only) Sampler Signature: City/State/Zip: Project Manager: Company Address: Company Name: 100 Rankin Hwy LAB # (lab use only) west Augenole South Auga hora South Augy had a East West Donth Aug hove East South Augy hove East Augumous East Augrhore とうろけん しのイケ Josts porta P.O. Box 62228 Etech Environmental & Safety Solutions, Inc. Midland, Texas 79711 Blake Estep Augurale Augetule Aug. Augellede Augo here Hugahole FIELD CODE e hale Midland Texas 79701 hole Date Date 6 1:43pm Time Time me Start Depth Received by: Received by 3 E i, 4 w -W W 10 2 -_blake@etechenv.com **End Depth** Preservation & # of Containers 13/23 Date Sampled 110 9:59 1:4 55:6 9:39 9:15 4.0 64:49 9:25 9:17 30:0 84.43 9:04 10:04 4:34 Phone: 432-686-7235 Time Sampled t No. of Containers \ 7 3 7 7 Ice eteca HNO₃ HCI H₂SO₄ NaOH $Na_2S_2O_3$ None Area: Eddy Project #: 17563 Project Name: Lustles Bluff Date Date Report Format: STANDARD: ☐Bill Etech Other (Specify) DW=Drinking Water SL=Sludge a NP=Non-PotableSpecify Other Time Time TPH: 418.1 8015M 1005 1006 Temperature Upon Receipt: Sar by Sampler/Client Rep. Sar by Courier? UPS Custody seals on cooler(s) VOCs Free of Headspace?
Custody seals on container(s) Cations (Ca, Mg, Na, K) Sample Cointainers Intact? Laboratory Comments TOTAL Anions (CI, SO4, CO3, HCO3) TCLP: SAR / ESP / CEC Project Loc: TRRP: Metals: As Ag Ba Cd Cr Pb Hg Se PO#: Volatiles Analyze For: Semi volatiles BTEX 8021B/5030 or BTEX 8260 NPDES: RCI 33-34 CTB Dem wexigo W N.O.R.M Z B X 8 Z 2 X K Chlorides

RUSH TAT(Pre-Schedule) 24, 48, 72 hrs

STANDARD TAT

Page 41 of 42

ZZZZZZ

BBLAB Permian Basin

suvironmental Lab. LP		
	CHAIN OF CUSTODY R	
בייים יוויים יוויים ובייטים ווב עטבטו	ECORD AND ANALYSIS REQUIEST	

-	0 -	ZI Z	T	**																		-	_						
wiiiquisi icu by.		Relinquished by:	Relinquished by:	special Instructions:							103			L	-	7	-	-			טאטרא #:	(lab use only)	(lak :		Sam	Con	Com	Dro	
0.00		ished	ished	ins							92	2-	1	Co		-	0	Ū	LAB # (lab use only)		7 #	se of			Sampler Signature:	Company Address:	Company Name:	000	1 100 Rankin Hwy
29.	3	DV.	by:	truct																		lly)	h.)		Signa	/ Add	/ Nar	cacl	aki.
		an	1	ions							Auguhore	F		P	4		3	3							iture	ress	ne:	gor:	=
		a	2								2	Augerhore		Augenore	Augahole		West Anga Kula	West									1 .		3
		2	H								8	3		Xo	8		7	Ŧ								P.O. Box 62228 Midland Texas 79711	Etech Environmental &	R ₂	
		(1	-1							5	4		6	1		3	4								3x (Env	F 64	
				11.8							2	2		4	1		7	. 3	Ë							22.	ch Environ	cto	3
											1				1		5	Augenole	FIELD CODE							<u>28</u> as 7	me	3	Midland Texas 79701
2	2 5	W	D	t													1		m							971	nta		-
1 6		3.6.23	Date	D																							200		-
		-		0																							Safe		× 71
1		:436	III I	0																					em		tys		1020
] `	30		6							T					T	1	1	Start Depth	1					email:		olu		
Topo T		D	Rec	,	H	\vdash	\vdash	+	+	+	N	-	+	+	+	+	+,	+	-	4					1		tion		
Med	Accelved by	2	Received by:		L	_		_	_	_	2.	7	1	15	L	-	1	U	End Depth	Pre					bla		Safety Solutions, Inc.		
mi budge	3	1	by:			6		L	L									3/3/	S Company	serva					ke©		ان ا		
2	*														T	T	1	3/2	Date Sampled	tion					et				
Ed.									L	L			L					123		0 #					ech				
Se .											10150	10:46		0	6		10:16	10:10		† Con					env				3
-											8	46		10:32	10:24		6	0	Time Sampled	Preservation & # of Containers					blake@etechenv.com				Phone: 132-686-7235
											-	-		-	-	T	-	-	No. of Containers	- 3					13				13
											3	. 3		3	N		5			1									2-6
																			HNO ₃										-0
																			HCI										23
																			H ₂ SO ₄	-									UI.
																	1	1	NaOH Na ₂ S ₂ O ₃	1									
3																			None None	1									
Chate 6/13	Date		Date																Other (Specify)	1				Repo		Area:	Project #:	Pro	
5																			DW=Drinking Water SL=Sludge	2				ort Fo	Bill Etech	a:	jec	iec	
3																			GW = Groundwater S=Soil/Solid	Matrix				ormat	Ete		##	÷ Z	
Se S	Time		T T								0			0	0	0	0	10	NP=Non-PotableSpecify Other TPH: 418.1 8015N 1005 100	_	_	Г		1TS	Ch	E	-	Project Name:	
77	SS	000	2 <	SF															Cations (Ca, Mg, Na, K)	,00				Report Format: STANDARD:		Ady		Ď.	
Temperature Upon Receipt:	Sar by Sampler/Client Rep. Sar by Courier? UPS	Custody seals on cooler(s) Canple Hand Delivered	VOCs Free of Headspace?	Laboratory Comments: Sample Containers Intact?																	10	١.,		RD:			5	Rustia	
ratu	San	dy se	Free	e Co															Anions (CI, SO4, CO3, HCO3)	-	TOTAL	TCLP:						+	
re U	npler rier:	als	of	ry C															SAR / ESP / CEC Metals: As Ag Ba Cd Cr Pb Hg Se		:.	.,		TRF			Pr	A	
on F	/Clie	on c	Head	omr															Volatiles	e				TRRP:		P		4	
Rece	n R R	ooler	Ispa	nen															Semi volatiles	\dashv						PO#:	5	31	
	~	(s)	ce?	2 E							-	0		0	0		0	-	BTEX 8021B/5030 or BTEX 8260	0			Analyze	z			00	31mst	
A	물	8	-	-															RCI		_		For:	NPDES:					
W	П			-															N.O.R.M.					S			DAG	22	
	FedEx	~ ~ ~		1	_					_	Z.			_			K	8	Chlorides								1	1	
	7		_	1							니												.				2	14	
2 F	N Z	ZZZ	22	z F	_															1							CX:CO	?	
Sir	Star			-															RUSH TAT(Pre-Schedule) 24, 48,	, 72 l	nrs						3	12	

RUSH TAT(Pre-Schedule) 24, 48, 72 hrs STANDARD TAT

Report to:
Abraham Valladares

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Chevron

Project Name: Bluff 33 34 CTB

Work Order: E410355

Job Number: 23077-0001

Received: 10/30/2024

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 10/31/24

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise.

Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc.

Envirotech Inc, holds the Utah TNI certification NM00979 for data reported.

Envirotech Inc, holds the Texas TNI certification T104704557 for data reported.

Date Reported: 10/31/24

Abraham Valladares 322 Road 3100 Aztec, NM 87410

Project Name: Bluff 33 34 CTB

Workorder: E410355

Date Received: 10/30/2024 8:00:00AM

Abraham Valladares,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 10/30/2024 8:00:00AM, under the Project Name: Bluff 33 34 CTB.

The analytical test results summarized in this report with the Project Name: Bluff 33 34 CTB apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman

Laboratory Director Office: 505-632-1881 Cell: 775-287-1762

whinchman@envirotech-inc.com

Raina Schwanz

Laboratory Administrator Office: 505-632-1881

rainaschwanz@envirotech-inc.com

Field Offices:

Southern New Mexico Area

Lynn Jarboe

Laboratory Technical Representative Office: 505-421-LABS(5227)

Cell: 505-320-4759

ljarboe@envirotech-inc.com

Michelle Gonzales

Client Representative Office: 505-421-LABS(5227)

Cell: 505-947-8222

mgonzales@envirotech-inc.com

Envirotech Web Address: www.envirotech-inc.com

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	4
Sample Data	5
BH01 0.25'	5
BH02 0.25'	6
BH03 0.25'	7
BH04 0.25'	8
BH05 0.25'	9
BH06 0.25'	10
QC Summary Data	11
QC - Volatile Organics by EPA 8021B	11
QC - Nonhalogenated Organics by EPA 8015D - GRO	12
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	13
QC - Anions by EPA 300.0/9056A	14
Definitions and Notes	15
Chain of Custody etc.	16

Sample Summary

_				
ſ	Chevron	Project Name:	Bluff 33 34 CTB	Reported:
١	322 Road 3100	Project Number:	23077-0001	Reported:
l	Aztec NM, 87410	Project Manager:	Abraham Valladares	10/31/24 14:18

Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
BH01 0.25'	E410355-01A	Soil	10/28/24	10/30/24	Glass Jar, 2 oz.
BH02 0.25'	E410355-02A	Soil	10/28/24	10/30/24	Glass Jar, 2 oz.
BH03 0.25'	E410355-03A	Soil	10/28/24	10/30/24	Glass Jar, 2 oz.
BH04 0.25'	E410355-04A	Soil	10/28/24	10/30/24	Glass Jar, 2 oz.
BH05 0.25'	E410355-05A	Soil	10/28/24	10/30/24	Glass Jar, 2 oz.
BH06 0.25'	E410355-06A	Soil	10/28/24	10/30/24	Glass Jar, 2 oz.

Chevron	Project Name:	Bluff 33 34 CTB	
322 Road 3100	Project Number:	23077-0001	Reported:
Aztec NM, 87410	Project Manager:	Abraham Valladares	10/31/2024 2:18:59PM

BH01 0.25' E410355-01

		L+10555-01				
Analyte	Result	Reporting Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	vst: BA		Batch: 2444078
Benzene	ND	0.0250	1	10/30/24	10/30/24	
Ethylbenzene	ND	0.0250	1	10/30/24	10/30/24	
Toluene	ND	0.0250	1	10/30/24	10/30/24	
o-Xylene	ND	0.0250	1	10/30/24	10/30/24	
p,m-Xylene	ND	0.0500	1	10/30/24	10/30/24	
Total Xylenes	ND	0.0250	1	10/30/24	10/30/24	
Surrogate: 4-Bromochlorobenzene-PID		98.9 %	70-130	10/30/24	10/30/24	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	vst: BA		Batch: 2444078
Gasoline Range Organics (C6-C10)	ND	20.0	1	10/30/24	10/30/24	
Surrogate: 1-Chloro-4-fluorobenzene-FID		87.7 %	70-130	10/30/24	10/30/24	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	vst: NV		Batch: 2444075
Diesel Range Organics (C10-C28)	ND	25.0	1	10/30/24	10/30/24	
Oil Range Organics (C28-C36)	ND	50.0	1	10/30/24	10/30/24	
Surrogate: n-Nonane		119 %	50-200	10/30/24	10/30/24	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	vst: DT		Batch: 2444076
Chloride	330	20.0	1	10/30/24	10/30/24	

Chevron	Project Name:	Bluff 33 34 CTB	
322 Road 3100	Project Number:	23077-0001	Reported:
Aztec NM, 87410	Project Manager:	Abraham Valladares	10/31/2024 2:18:59PM

BH02 0.25' E410355-02

		E-10555-02				
Analyte	Result	Reporting Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	st: BA		Batch: 2444078
Benzene	ND	0.0250	1	10/30/24	10/30/24	
Ethylbenzene	ND	0.0250	1	10/30/24	10/30/24	
Toluene	ND	0.0250	1	10/30/24	10/30/24	
o-Xylene	ND	0.0250	1	10/30/24	10/30/24	
p,m-Xylene	ND	0.0500	1	10/30/24	10/30/24	
Total Xylenes	ND	0.0250	1	10/30/24	10/30/24	
Surrogate: 4-Bromochlorobenzene-PID		99.6 %	70-130	10/30/24	10/30/24	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	st: BA		Batch: 2444078
Gasoline Range Organics (C6-C10)	ND	20.0	1	10/30/24	10/30/24	
Surrogate: 1-Chloro-4-fluorobenzene-FID		87.0 %	70-130	10/30/24	10/30/24	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	st: NV		Batch: 2444075
Diesel Range Organics (C10-C28)	ND	25.0	1	10/30/24	10/30/24	
Oil Range Organics (C28-C36)	ND	50.0	1	10/30/24	10/30/24	
Surrogate: n-Nonane		110 %	50-200	10/30/24	10/30/24	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	st: DT		Batch: 2444076
Chloride	312	20.0	1	10/30/24	10/30/24	

Chevron	Project Name:	Bluff 33 34 CTB	
322 Road 3100	Project Number:	23077-0001	Reported:
Aztec NM, 87410	Project Manager:	Abraham Valladares	10/31/2024 2:18:59PM

BH03 0.25' E410355-03

	E-110535 05				
Result	Reporting Limit	Dilution	Prepared	Analyzed	Notes
mg/kg	mg/kg	Anal	lyst: BA		Batch: 2444078
ND	0.0250	1	10/30/24	10/30/24	
ND	0.0250	1	10/30/24	10/30/24	
ND	0.0250	1	10/30/24	10/30/24	
ND	0.0250	1	10/30/24	10/30/24	
ND	0.0500	1	10/30/24	10/30/24	
ND	0.0250	1	10/30/24	10/30/24	
	99.9 %	70-130	10/30/24	10/30/24	
mg/kg	mg/kg	Anal	lyst: BA		Batch: 2444078
ND	20.0	1	10/30/24	10/30/24	
	87.3 %	70-130	10/30/24	10/30/24	
mg/kg	mg/kg	Anal	lyst: NV		Batch: 2444075
ND	25.0	1	10/30/24	10/30/24	
ND	50.0	1	10/30/24	10/30/24	
	104 %	50-200	10/30/24	10/30/24	
mg/kg	mg/kg	Anal	lyst: DT		Batch: 2444076
169	20.0	1	10/30/24	10/30/24	
	mg/kg ND ND ND ND ND ND ND ND ND Mg/kg ND mg/kg	Result Limit mg/kg mg/kg ND 0.0250 ND 0.0250 ND 0.0250 ND 0.0500 ND 0.0250 MD 0.0250 MD 0.0250 MD 20.0 87.3 % mg/kg MD 25.0 ND 50.0 104 % mg/kg mg/kg mg/kg	mg/kg mg/kg Anal ND 0.0250 1 ND 0.0250 1 ND 0.0250 1 ND 0.0250 1 ND 0.0500 1 ND 0.0250 1 99.9 % 70-130 mg/kg mg/kg Anal ND 20.0 1 87.3 % 70-130 1 mg/kg mg/kg Anal ND 25.0 1 ND 50.0 1 104 % 50-200 mg/kg Mg/kg Anal	Result Limit Dilution Prepared mg/kg mg/kg Analyst: BA ND 0.0250 1 10/30/24 ND 0.0250 1 10/30/24 ND 0.0250 1 10/30/24 ND 0.0250 1 10/30/24 ND 0.0500 1 10/30/24 ND 0.0250 1 10/30/24 mg/kg mg/kg Analyst: BA ND 20.0 1 10/30/24 mg/kg mg/kg Analyst: NV ND 25.0 1 10/30/24 ND 25.0 1 10/30/24 ND 50.0 1 10/30/24 ND 50.0 1 10/30/24 ND 50.0 1 10/30/24 mg/kg mg/kg Analyst: DT	Result Limit Dilution Prepared Analyzed mg/kg mg/kg Analyst: BA ND 0.0250 1 10/30/24 10/30/24 ND 0.0250 1 10/30/24 10/30/24 ND 0.0250 1 10/30/24 10/30/24 ND 0.0500 1 10/30/24 10/30/24 ND 0.0250 1 10/30/24 10/30/24 ND 0.0250 1 10/30/24 10/30/24 MD 0.0250 1 10/30/24 10/30/24 MD 0.0250 1 10/30/24 10/30/24 mg/kg mg/kg Analyst: BA ND 20.0 1 10/30/24 10/30/24 Mg/kg mg/kg Analyst: NV ND 25.0 1 10/30/24 10/30/24 ND 50.0 1 10/30/24 10/30/24 ND 50.0 1 10/30/24 10/30/24 <

Chevron	Project Name:	Bluff 33 34 CTB	
322 Road 3100	Project Number:	23077-0001	Reported:
Aztec NM, 87410	Project Manager:	Abraham Valladares	10/31/2024 2:18:59PM

BH04 0.25' E410355-04

		E410355-04				
Analyta	Result	Reporting Limit	Dilution	Propored	Analyzed	Notes
Analyte	Result	Limit	Dilution	Prepared	Analyzed	notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Anal	yst: BA		Batch: 2444078
Benzene	ND	0.0250	1	10/30/24	10/30/24	
Ethylbenzene	ND	0.0250	1	10/30/24	10/30/24	
Toluene	ND	0.0250	1	10/30/24	10/30/24	
o-Xylene	ND	0.0250	1	10/30/24	10/30/24	
p,m-Xylene	ND	0.0500	1	10/30/24	10/30/24	
Total Xylenes	ND	0.0250	1	10/30/24	10/30/24	
Surrogate: 4-Bromochlorobenzene-PID		99.5 %	70-130	10/30/24	10/30/24	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Anal	yst: BA		Batch: 2444078
Gasoline Range Organics (C6-C10)	ND	20.0	1	10/30/24	10/30/24	
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.2 %	70-130	10/30/24	10/30/24	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Anal	yst: NV		Batch: 2444075
Diesel Range Organics (C10-C28)	ND	25.0	1	10/30/24	10/30/24	
Oil Range Organics (C28-C36)	ND	50.0	1	10/30/24	10/30/24	
Surrogate: n-Nonane		87.0 %	50-200	10/30/24	10/30/24	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Anal	yst: DT		Batch: 2444076
Chloride	133	20.0	1	10/30/24	10/30/24	

Sample Data

Chevron	Project Name:	Bluff 33 34 CTB	
322 Road 3100	Project Number:	23077-0001	Reported:
Aztec NM, 87410	Project Manager:	Abraham Valladares	10/31/2024 2:18:59PM

BH05 0.25' E410355-05

	E410535 03				
Result	Reporting Limit	Dilution	Prepared	Analyzed	Notes
mg/kg	mg/kg	Anal	lyst: BA		Batch: 2444078
ND	0.0250	1	10/30/24	10/30/24	
ND	0.0250	1	10/30/24	10/30/24	
ND	0.0250	1	10/30/24	10/30/24	
ND	0.0250	1	10/30/24	10/30/24	
ND	0.0500	1	10/30/24	10/30/24	
ND	0.0250	1	10/30/24	10/30/24	
	99.1 %	70-130	10/30/24	10/30/24	
mg/kg	mg/kg	Anal	lyst: BA		Batch: 2444078
ND	20.0	1	10/30/24	10/30/24	
	87.9 %	70-130	10/30/24	10/30/24	
mg/kg	mg/kg	Anal	lyst: NV		Batch: 2444075
ND	25.0	1	10/30/24	10/30/24	
ND	50.0	1	10/30/24	10/30/24	
	95.3 %	50-200	10/30/24	10/30/24	
mg/kg	mg/kg	Anal	lyst: DT		Batch: 2444076
551	20.0	1	10/30/24	10/30/24	
	mg/kg ND Mg/kg ND mg/kg	Result Limit mg/kg mg/kg ND 0.0250 ND 0.0250 ND 0.0250 ND 0.0500 ND 0.0250 MD 0.0250 MD 0.0250 MD 20.0 87.9 % mg/kg MD 25.0 ND 50.0 95.3 % mg/kg mg/kg mg/kg	mg/kg mg/kg Anal ND 0.0250 1 ND 0.0250 1 ND 0.0250 1 ND 0.0250 1 ND 0.0500 1 ND 0.0250 1 99.1 % 70-130 mg/kg mg/kg Anal ND 20.0 1 87.9 % 70-130 1 mg/kg mg/kg Anal ND 25.0 1 ND 50.0 1 95.3 % 50-200 mg/kg mg/kg Anal	Result Limit Dilution Prepared mg/kg mg/kg Analyst: BA ND 0.0250 1 10/30/24 ND 0.0250 1 10/30/24 ND 0.0250 1 10/30/24 ND 0.0250 1 10/30/24 ND 0.0500 1 10/30/24 ND 0.0250 1 10/30/24 mg/kg mg/kg Analyst: BA ND 20.0 1 10/30/24 mg/kg mg/kg Analyst: NV ND 25.0 1 10/30/24 ND 25.0 1 10/30/24 ND 50.0 1 10/30/24 ND 50.0 1 10/30/24 Mg/kg mg/kg Analyst: DT	Result Limit Dilution Prepared Analyzed mg/kg mg/kg Analyst: BA ND 0.0250 1 10/30/24 10/30/24 ND 0.0250 1 10/30/24 10/30/24 ND 0.0250 1 10/30/24 10/30/24 ND 0.0500 1 10/30/24 10/30/24 ND 0.0250 1 10/30/24 10/30/24 ND 0.0250 1 10/30/24 10/30/24 MD 0.0250 1 10/30/24 10/30/24 MD 0.0250 1 10/30/24 10/30/24 mg/kg mg/kg Analyst: BA ND 20.0 1 10/30/24 10/30/24 Mg/kg mg/kg Analyst: NV ND 25.0 1 10/30/24 10/30/24 ND 50.0 1 10/30/24 10/30/24 ND 50.0 1 10/30/24 10/30/24 <

Sample Data

Chevron	Project Name:	Bluff 33 34 CTB	
322 Road 3100	Project Number:	23077-0001	Reported:
Aztec NM, 87410	Project Manager:	Abraham Valladares	10/31/2024 2:18:59PM

BH06 0.25' E410355-06

		E410355-06				
Aughte	Result	Reporting Limit	Dilution	Duomonod	Analyzed	Notes
Analyte	Kesuit	Limit	Dilution	Prepared	Analyzed	notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Anal	yst: BA		Batch: 2444078
Benzene	ND	0.0250	1	10/30/24	10/30/24	
Ethylbenzene	ND	0.0250	1	10/30/24	10/30/24	
Toluene	ND	0.0250	1	10/30/24	10/30/24	
o-Xylene	ND	0.0250	1	10/30/24	10/30/24	
p,m-Xylene	ND	0.0500	1	10/30/24	10/30/24	
Total Xylenes	ND	0.0250	1	10/30/24	10/30/24	
Surrogate: 4-Bromochlorobenzene-PID		97.9 %	70-130	10/30/24	10/30/24	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Anal	yst: BA		Batch: 2444078
Gasoline Range Organics (C6-C10)	ND	20.0	1	10/30/24	10/30/24	
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.2 %	70-130	10/30/24	10/30/24	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Anal	yst: NV		Batch: 2444075
Diesel Range Organics (C10-C28)	ND	25.0	1	10/30/24	10/30/24	
Oil Range Organics (C28-C36)	ND	50.0	1	10/30/24	10/30/24	
Surrogate: n-Nonane		89.9 %	50-200	10/30/24	10/30/24	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Anal	yst: DT		Batch: 2444076
Chloride	210	20.0	1	10/30/24	10/30/24	

Surrogate: 4-Bromochlorobenzene-PID

QC Summary Data

Chevron	Project Name:	Bluff 33 34 CTB	Reported:
322 Road 3100	Project Number:	23077-0001	•
Aztec NM, 87410	Project Manager:	Abraham Valladares	10/31/2024 2:18:59PM

Aztec NM, 87410		Project Number: Project Manager:		oraham Vallad	ares			10	0/31/2024 2:18:59PI
		Volatile O	rganics b	y EPA 802	1B				Analyst: BA
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2444078-BLK1)						F	Prepared: 1	0/30/24 Ana	alyzed: 10/30/24
Benzene	ND	0.0250							
Ethylbenzene	ND	0.0250							
Toluene	ND	0.0250							
o-Xylene	ND	0.0250							
o,m-Xylene	ND	0.0500							
Total Xylenes	ND	0.0250							
Surrogate: 4-Bromochlorobenzene-PID	7.69		8.00		96.1	70-130			
LCS (2444078-BS1)						F	Prepared: 10	0/30/24 Ana	alyzed: 10/30/24
Benzene	5.14	0.0250	5.00		103	70-130			
Ethylbenzene	4.95	0.0250	5.00		99.0	70-130			
Toluene	5.06	0.0250	5.00		101	70-130			
o-Xylene	4.94	0.0250	5.00		98.8	70-130			
p,m-Xylene	10.1	0.0500	10.0		101	70-130			
Total Xylenes	15.0	0.0250	15.0		100	70-130			
Surrogate: 4-Bromochlorobenzene-PID	7.85		8.00		98.1	70-130			
LCS Dup (2444078-BSD1)						F	Prepared: 1	0/30/24 Ana	alyzed: 10/30/24
Benzene	5.10	0.0250	5.00		102	70-130	0.698	20	
Ethylbenzene	4.93	0.0250	5.00		98.7	70-130	0.386	20	
Toluene	5.04	0.0250	5.00		101	70-130	0.498	20	
o-Xylene	4.92	0.0250	5.00		98.3	70-130	0.441	20	
p,m-Xylene	10.0	0.0500	10.0		100	70-130	0.298	20	
Total Xylenes	15.0	0.0250	15.0		99.7	70-130	0.345	20	

QC Summary Data

 Chevron
 Project Name:
 Bluff 33 34 CTB
 Reported:

 322 Road 3100
 Project Number:
 23077-0001

 Aztec NM, 87410
 Project Manager:
 Abraham Valladares
 10/31/2024 2:18:59PM

Nonhalogenated	Organics by	EPA	.8015D -	GRO

Analyst: BA

Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes

Blank (2444078-BLK1)						Prepared: 10	0/30/24	Analyzed: 10/30/24
Gasoline Range Organics (C6-C10)	ND	20.0						
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.12		8.00	89.0	70-130			
LCS (2444078-BS2)						Prepared: 10	0/30/24	Analyzed: 10/30/24
Gasoline Range Organics (C6-C10)	36.4	20.0	50.0	72.8	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.21		8.00	90.1	70-130			
LCS Dup (2444078-BSD2)						Prepared: 10	0/30/24	Analyzed: 10/30/24
Gasoline Range Organics (C6-C10)	39.1	20.0	50.0	78.2	70-130	7.23	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.17		8.00	89.6	70-130			

Surrogate: n-Nonane

QC Summary Data

 Chevron
 Project Name:
 Bluff 33 34 CTB
 Reported:

 322 Road 3100
 Project Number:
 23077-0001

 Aztec NM, 87410
 Project Manager:
 Abraham Valladares
 10/31/2024 2:18:59PM

Aztec NM, 8/410		Project Manager	r: At	ranam vanac	iares				10/31/2024 2:16:39PF	
	Nonhalogenated Organics by EPA 8015D - DRO/ORO							Analyst: NV		
nalyte Result	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits	RPD %	RPD Limit		
Blank (2444075-BLK1)							Prepared: 1	0/30/24	Analyzed: 10/30/24	
Diesel Range Organics (C10-C28)	ND	25.0								
Dil Range Organics (C28-C36)	ND	50.0								
Surrogate: n-Nonane	54.6		50.0		109	50-200				
LCS (2444075-BS1)							Prepared: 1	0/30/24	Analyzed: 10/30/24	
Diesel Range Organics (C10-C28)	270	25.0	250		108	38-132				
Surrogate: n-Nonane	51.6		50.0		103	50-200				
LCS Dup (2444075-BSD1)							Prepared: 1	0/30/24	Analyzed: 10/30/24	
Diesel Range Organics (C10-C28)	267	25.0	250		107	38-132	0.974	20		

105

50-200

52.6

254

257

20.0

20.0

LCS (2444076-BS1)

LCS Dup (2444076-BSD1)

Chloride

Chloride

Prepared: 10/30/24 Analyzed: 10/30/24

Prepared: 10/30/24 Analyzed: 10/30/24

20

QC Summary Data

Chevron 322 Road 3100 Aztec NM, 87410		Project Name: Project Number: Project Manager	: 23	luff 33 34 CT 3077-0001 braham Vallad					Reported: 10/31/2024 2:18:59PM	
Anions by EPA 300.0/9056A									Analyst: DT	
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit		
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes	
Blank (2444076-BLK1)						I	Prepared: 1	0/30/24	Analyzed: 10/30/24	
Chloride	ND	20.0								

250

250

102

103

90-110

90-110

1.18

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Definitions and Notes

	Chevron	Project Name:	Bluff 33 34 CTB	
l	322 Road 3100	Project Number:	23077-0001	Reported:
l	Aztec NM, 87410	Project Manager:	Abraham Valladares	10/31/24 14:18

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

DNI Did Not Ignite

DNR Did not react with the addition of acid or base.

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

Address: 13000 W County Rd 100 E4 103 230 100 E4 103 100 E4 103 100 E4 103 100 E4 103 E6 E6 E6 E6 E6 E6 E6 E	Project Ir	formation					Chain o	f Custody										Pag	ge 1
Client name: Amy Barnhill Project Manage: Abraham Valledares Address: 3000 W Court ytt 81.00 Client name: Amy Barnhill Address Address: 3000 W Court ytt 81.00 Client name: Amy Barnhill Address Address: 3000 W Court ytt 81.00 Client name: Amy Barnhill Address Address: 3000 W Court ytt 81.00 Client name: Amy Barnhill Address Address: 3000 W Court ytt 81.00 Client name: Amy Barnhill Address Address: 3000 W Court ytt 81.00 Client name: Amy Barnhill n	Client: Cl	nevron USA. Ir	1C.			Bill To		X		L	ab Us	se On	lv			TAT	EP	A Progran	n
Address: 13000 W Country Rd 100 E4 03 \$ \$ 2501 \ \text{Post No. 100} analysis and Method Analysis and Method RCF Representation Represe									Lab V		2012	loh	Number	1D 2					-
Tricy cate Pole Buff 33 43 CTB City, State, Zip; Odessa, TX 79765 Phone; (432)305-6413 Phone; (432)305-6413 Company Name: Seen Environmental & Safety Solutions Incident ID: nAPP2303929522 State Phone; (432)305-6413 Sample ID Name Sample ID Sam				ladares			100		F4	035	5	23	1000.770						
income (432)305-6413 mail: abevalladerse@etechenv.com comain: abevalladerse@etechenv.com comain: abevalladerse@etechenv.com comian: abevalladerse@etechenv.com comian: abevalladerse@etechenv.com comian: abevalladerse@etechenv.com comian: abevalladerse@etechenv.com comian: abevalladerse@etechenv.com company Name: teste environmental & safety-Solutions incident ID: nAPP2303929522 Lab Number ### Company Name: teste environmental & safety-Solutions incident ID: nAPP2303929522 Company Name: test environmental & safety-Solutions incident ID: nAPP2303929522 Lab Number								la maria	-					od				RCR	A
9:28 10/28/2024 S 1 BH02 3 0.25	tech Pro	oject #: 17563				Phone: (432)563-2200		Age of the second		þý						401			
9:28 10/28/2024 S 1 BH02 3 0.25	hone: (432)305-6413				Email: ap@etechenv.com			1	ORO							Sta	te	
9:28 10/28/2024 S 1 BH02 3 0.25	mail: ab	evalladares@	etechen	v.com		Company Name: Etech Environmen	ital & Safety	Solutions		30/0			0.0	≥		_ NI	M CO UT	AZ TX	
9:28 10/28/2024 S 1 BH02 3 0.25	ollected	d by: Haleigh E	Blume	***		Incident ID: nAPP2303929522			T .	0/DI	826(5010	300		Í	î 🗀			
9:26 10/28/2024 S 1 BH03 3 0.25		Date Sampled	Matrix		Sample ID		La	ab Number	Depth(f	TPH GR 8015 BTEX by	VOC by	Metals	Chloride	верос	0	2005	Rem	arks	
9:28 10/28/2024 S 1 BH04 Y 0.25 X X I BH05 S 0.25 X X I BH05 S 0.25 X X I BH06 S 0.25 X X X I BH06 S 0.25 X X X I BH06 S 0.25 X X X I BH06 S 0.25 X X X I BH06 S 0.25 X X X I BH06 S 0.25 X X X I BH06 S 0.25 X X X I BH06 S 0.25 X X X I BH06 S 0.25 X X X X I BH06 S 0.25 X X X X I BH06 S 0.25 X X X X X X X X I BH06 S 0.25 X X X X X X X X X X X X X X X X X X X	9:23	10/28/2024	S	1		BH01		1	0.25					x					
9:38 10/28/2024 S 1 BH05 5 0.25 X X 10:04 10/28/2024 S 1 BH06 0 0.25 X X 10:04 10/28/2024 S 1 BH06 0 0.25 X X 10:04 10/28/2024 S 1 BH06 0 0.25 X X 10:04 10/28/2024 S 1 BH06 0 0.25 X X 10:04 10/28/2024 S 1 BH06 0 0.25 X X 10:04 10/28/2024 S 1 BH06 0 0.25 X X 10:04 10/28/2024 S 1 BH06 0 0.25 X X 10:04 10/28/2024 S 1 BH06 0 0.25 X X 10:04 10/28/2024 S 1 BH06 0 0.25 X X 10:04 10/28/2024 S 1 BH06 0 0.25 X X 10:04 10/28/2024 S 1 BH06 0 0.25 X X 10:04 10/28/2024 S 1 BH06 0 0.25 X X 10:04 10/28/2024 S 1 BH06 0 0.25 X X 10:04 10/28/2024 S 1 BH06 0 0.25 X X 10:04 10/28/2024 S 1 BH06 0 0.25 X X 10:04 10/28/2024 S 1 BH06 0 0.25 X X 10:04 10/28/2024 S 1 BH06 0 0.25 X X 10:04 10/28/2024 S 10:04 10/28/2024 S 1 BH06 0 0.25 X X 10:04 10/28/2024 S 10:04 10/28/2024 S 1 BH06 0 0.25 X X 10:04 10/28/2024 S 10:04 10/28/2024 S 10:04 10/28/2024 S 1 BH06 0 0.25 X X 10:04 10/28/2024 S 10:04 10/28/2024	9:26	10/28/2024	S	1		BH02		2	0.25					х					
10:01 10/28/2024 S 1 BH06	9:28	10/28/2024	S	1		вноз		3	0.25					x					
10:04 10/28/2024 S 1 BH06	9:38	10/28/2024	S	1		BH04		4	0.25					х					
Additional Instructions: (field sampler), attest to the validity and authenticity of this sample. I am aware that tampering with or intentionally mislabelling the sample location, atte or time of collection is considered fraud and may be grounds for legal action. Samples requiring thermal preservation must be received on ice the day they are sampled or received packed in ice at an avg temp above 0 but less than 6°C on subsequent days. Part of the day they are sampled to received packed in ice at an avg temp above 0 but less than 6°C on subsequent days. Part of the day they are sampled to received packed in ice at an avg temp above 0 but less than 6°C on subsequent days. Part of the day they are sampled or received packed in ice at an avg temp above 0 but less than 6°C on subsequent days. Part of the day they are sampled or received on ice the day they are sampled or received packed in ice at an avg temp above 0 but less than 6°C on subsequent days. Part of the day they are sampled or received on ice the day they are sampled or received packed in ice at an avg temp above 0 but less than 6°C on subsequent days. Part of the day they are sampled or received on ice the day they are sampled or received packed in ice at an avg temp above 0 but less than 6°C on subsequent days. Part of the day they are sampled or received on ice the day they are sampled or received packed in ice at an avg temp above 0 but less than 6°C on subsequent days. Part of the day they are sampled or received packed in ice at an avg temp above 0 but less than 6°C on subsequent days. Part of the day they are sampled or received packed in ice at an avg temp above 0 but less than 6°C on subsequent days. Part of the day they are sampled or received packed in ice at an avg temp above 0 but less than 6°C on subsequent days. Part of the day they are sampled or received packed in ice at an avg temp above 0 but less than 6°C on subsequent days. Part of the day they are sampled to the day they are sampled or they are sampled to the day they	10:01	10/28/2024	S	1		BH05		5	0.25					х					
(field sampler), attest to the validity and authenticity of this sample. I am aware that tampering with or intentionally mislabelling the sample location, attended to collection is considered fraud and may be grounds for legal action. Sampled by: Bate Time Received by: (Signature) Date Time Refered by: (Signature) Date	10:04	10/28/2024	S	1		у ВН06		6	0.25					х		1070			
(field sampler), attest to the validity and authenticity of this sample. I am aware that tampering with or intentionally mislabelling the sample location, attended to collection is considered fraud and may be grounds for legal action. Sampled by: Bate Time Received by: (Signature) Date Time Refered by: (Signature) Date																			
(field sampler), attest to the validity and authenticity of this sample. I am aware that tampering with or intentionally mislabelling the sample location, attest to the validity and authenticity of this sample. I am aware that tampering with or intentionally mislabelling the sample location, and the considered fraud and may be grounds for legal action. Sampled by: Bate Time Received by: (Signature) Date Time AVG Temp °C AVG Temp °C																			
Ifield sampler), attest to the validity and authenticity of this sample. I am aware that tampering with or intentionally mislabelling the sample location, the or time of collection is considered fraud and may be grounds for legal action. Sampled by: HB Samples requiring thermal preservation must be received on ice the day they are sampled or received packed in ice at an avg temp above 0 but less than 6 °C on subsequent days. Time Received by: (Signature) Date Time AVG Temp °C AVG Temp °C																			
(field sampler), attest to the validity and authenticity of this sample. I am aware that tampering with or intentionally mislabelling the sample location, attended to collection is considered fraud and may be grounds for legal action. Sampled by: Bate Time Received by: (Signature) Date Time Refered by: (Signature) Date																			
received packed in ice at an avg temp above 0 but less than 6 °C on subsequent days. Time Received by: (Signature) Pate Time Received by	Addition	al Instruction	s:	1	1														\exists
relinquished by: (Signature) Date Time Received by: (Signature) Physical Letter of the Control of the Contr					ACCOMPANIES AND ACCOMPANIES AN		- j.		tion,										r
elinquished by (Signature) Date 10-21-14 Time 10-30 Indian 1630 T1 T2 T3 elinquished by (Signature) Date 10-21-14 Time 1630 T1 T2 T3 elinquished by (Signature) Liquid Signature) Liquid Signature 10-30-24 8:00 AVG Temp °C 4	OWNERS ON TAMBLE 1914			Date	Time	Received by: (Signarune)	Dat	е	4		f7	Rec	ceived on ice		CO.	Only			
Lelifabished by/(Signature) Date 10.79.74 2745 (auth Man 10.30.24 8:00 AVG Temp °C 4	Relinquished by (Signature) Date Date Time Referred by: (Signature)			Refered by: (Signature)		е		Time Ca	30					<u></u>					
	hou	ed by (Signature	26	Date	29.74 7	Received by: (Signature)			24)	AVO	G Temp °C_	4					
ample Matrix: S - Soil, Sd - Soil, Sg - Sludge, A - Aqueous, O - Other Container Type: g - glass, p - poly/plastic, ag - amber glass, v - VOA	ample Mat	rix: S - Soil, Sd - Sol	id, S g - Slud	ge, A - Aque	ous, O - Other		Co	ntainer Typ	e: g - gl	ass, p - p	oly/p			lass, v -	VOA				

Printed: 10/30/2024 8:31:10AM

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

Instructions: Please take note of any NO checkmarks.

If we receive no response concerning these items within 24 hours of the date of this notice, all the samples will be analyzed as requested.

Client:	Chevron	Date Received:	10/30/24	08:00	Work Order ID:	E410355
Phone:	432-305-6413	Date Logged In:	10/29/24	15:53	Logged In By:	Noe Soto
Email:	abevalladares@etechenv.com	Due Date:	10/30/24	17:00 (0 day TAT)		
Chain of	Custody (COC)					
	ne sample ID match the COC?		Yes			
	ne number of samples per sampling site location ma	tch the COC	Yes			
	amples dropped off by client or carrier?		Yes	Carrier: Courier		
	e COC complete, i.e., signatures, dates/times, reque	sted analyses?	Yes			
5. Were a	Il samples received within holding time? Note: Analysis, such as pH which should be conducted i i.e, 15 minute hold time, are not included in this disucssi	•	Yes		<u>Comment</u>	s/Resolution
Sample T	Curn Around Time (TAT)					
6. Did the	e COC indicate standard TAT, or Expedited TAT?		Yes			
Sample C						
	sample cooler received?		Yes			
8. If yes,	was cooler received in good condition?		Yes			
9. Was th	e sample(s) received intact, i.e., not broken?		Yes			
10. Were	custody/security seals present?		No			
11. If yes	, were custody/security seals intact?		NA			
	e sample received on ice? If yes, the recorded temp is 4°C Note: Thermal preservation is not required, if samples arminutes of sampling visible ice, record the temperature. Actual sample	re received w/i 15	Yes C			
	Container _		_			
	queous VOC samples present?		No			
	OC samples collected in VOA Vials?		NA			
	head space less than 6-8 mm (pea sized or less)?		NA			
	trip blank (TB) included for VOC analyses?		NA			
	on-VOC samples collected in the correct containers	:?	Yes			
	appropriate volume/weight or number of sample contai		Yes			
Field Lal						
-	field sample labels filled out with the minimum info	ormation:				
	ample ID?		Yes			
	ate/Time Collected?		Yes	<u> </u>		
C	ollectors name?		Yes			
	<u>Preservation</u>					
	the COC or field labels indicate the samples were p	reserved?	No			
	ample(s) correctly preserved?		NA			
24. Is lab	filteration required and/or requested for dissolved r	netals?	No			
	se Sample Matrix					
26. Does	the sample have more than one phase, i.e., multipha	ise?	No			
27. If yes	, does the COC specify which phase(s) is to be anal	yzed?	NA			
Subcontr	act Laboratory					
28. Are sa	amples required to get sent to a subcontract laborate	ory?	No			
29. Was a	subcontract laboratory specified by the client and i	f so who?	NA	Subcontract Lab: NA		
Client I	<u>istruction</u>					

Page 17 of 17

Date

Sante Fe Main Office Phone: (505) 476-3441 General Information

Phone: (505) 629-6116
Online Phone Directory
https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 403960

QUESTIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	403960
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Prerequisites				
Incident ID (n#)	nAPP2303929522			
Incident Name	NAPP2303929522 RUSTLER BLUFF 33 @ 0			
Incident Type	Produced Water Release			
Incident Status	Remediation Plan Received			
Incident Facility	[fAPP2132240498] Rustler Bluff 33			

Location of Release Source				
Please answer all the questions in this group.				
Site Name	RUSTLER BLUFF 33			
Date Release Discovered	02/04/2023			
Surface Owner	Federal			

Incident Details			
Please answer all the questions in this group.			
Incident Type	Produced Water Release		
Did this release result in a fire or is the result of a fire	No		
Did this release result in any injuries	No		
Has this release reached or does it have a reasonable probability of reaching a watercourse	No		
Has this release endangered or does it have a reasonable probability of endangering public health	No		
Has this release substantially damaged or will it substantially damage property or the environment	No		
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No		

Nature and Volume of Release					
Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.					
Crude Oil Released (bbls) Details	Not answered.				
Produced Water Released (bbls) Details	Cause: Equipment Failure Flow Line - Production Produced Water Released: 122 BBL Recovered: 2 BBL Lost: 120 BBL.				
Is the concentration of chloride in the produced water >10,000 mg/l	Yes				
Condensate Released (bbls) Details	Not answered.				
Natural Gas Vented (Mcf) Details	Not answered.				
Natural Gas Flared (Mcf) Details	Not answered.				
Other Released Details	Not answered.				
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.				

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 403960

QUESTI	ONS (continued)
Operator: CHEVRON U S A INC	OGRID: 4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	403960
	Action Type: [C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)
QUESTIONS	
Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes
Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (1) an unauthorized release of a volume, excluding gases, of 25 barrels or more.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e.	e. gas only) are to be submitted on the C-129 form.
Initial Response	
The responsible party must undertake the following actions immediately unless they could create a s	afety hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for releathe OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required asses which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Amy Barnhill Title: Waste & Water Specialist Email: ABarnhill@chevron.com Date: 11/16/2024

Sante Fe Main Office Phone: (505) 476-3441 General Information

Phone: (505) 629-6116

Online Phone Directory
https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Action 403960

QUESTIONS (continued)

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	403960
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Site Characterization	
Please answer all the questions in this group (only required when seeking remediation plan approva release discovery date.	l and beyond). This information must be provided to the appropriate district office no later than 90 days after the
What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 51 and 75 (ft.)
What method was used to determine the depth to ground water	NM OSE iWaters Database Search
Did this release impact groundwater or surface water	No
What is the minimum distance, between the closest lateral extents of the release ar	nd the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Between 1 and 5 (mi.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between 1 and 5 (mi.)
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between 1 and 5 (mi.)
Any other fresh water well or spring	Between 500 and 1000 (ft.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Between 1000 (ft.) and ½ (mi.)
A subsurface mine	Between 1 and 5 (mi.)
An (non-karst) unstable area	Between 1 and 5 (mi.)
Categorize the risk of this well / site being in a karst geology	Medium
A 100-year floodplain	Between 1000 (ft.) and ½ (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	No

Remediation Plan				
Please answer all the questions that apply or are indicated. This information must be provide	ed to the appropriate district office no later than 90 days after the release discovery date.			
Requesting a remediation plan approval with this submission	Yes			
Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamir	nation associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.			
Have the lateral and vertical extents of contamination been fully delineated	Yes			
Was this release entirely contained within a lined containment area	No			
Soil Contamination Sampling: (Provide the highest observable value for each, i	in milligrams per kilograms.)			
Chloride (EPA 300.0 or SM4500 Cl B)	11300			
TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M)	0			
GRO+DRO (EPA SW-846 Method 8015M)	0			
BTEX (EPA SW-846 Method 8021B or 8260B)	0			
Benzene (EPA SW-846 Method 8021B or 8260B)	0			
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes comp which includes the anticipated timelines for beginning and completing the remediation.	pleted efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC			
On what estimated date will the remediation commence	03/03/2024			
On what date will (or did) the final sampling or liner inspection occur	12/31/2024			
On what date will (or was) the remediation complete(d)	12/31/2024			
What is the estimated surface area (in square feet) that will be reclaimed	0			
What is the estimated volume (in cubic yards) that will be reclaimed	0			
What is the estimated surface area (in square feet) that will be remediated	486			
What is the estimated volume (in cubic yards) that will be remediated 18				
These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed.				

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 403960

QUESTIONS (continued)

Operator:	OGRID:			
CHEVRON U S A INC	4323			
6301 Deauville Blvd	Action Number:			
Midland, TX 79706	403960			
	Action Type:			
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)			

QUESTIONS

Remediation Plan (continued)				
Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.				
This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants:				
(Select all answers below that apply.)				
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes			
Which OCD approved facility will be used for off-site disposal	R360 ARTESIA LLC LANDFARM [fEEM0112340644]			
OR which OCD approved well (API) will be used for off-site disposal	Not answered.			
OR is the off-site disposal site, to be used, out-of-state	Not answered.			
OR is the off-site disposal site, to be used, an NMED facility	Not answered.			
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.			
(In Situ) Soil Vapor Extraction	Not answered.			
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.			
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.			
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.			
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.			
OTHER (Non-listed remedial process)	Not answered.			
22.00 - 4.00 - 5.00 - 4.				

Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Name: Amy Barnhill Title: Waste & Water Specialist I hereby agree and sign off to the above statement Email: ABarnhill@chevron.com Date: 11/16/2024

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 403960

QUESTIONS (continued)

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	403960
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Deferral Requests Only		
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.		
Requesting a deferral of the remediation closure due date with the approval of this submission	No	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 403960

QUESTIONS (continued)

Operator: CHEVRON U S A INC 6301 Deauville Blvd	OGRID: 4323 Action Number:			
Midland, TX 79706	403960 Action Type:			
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)			
QUESTIONS				
Sampling Event Information				
Last sampling notification (C-141N) recorded	{Unavailable.}			
Remediation Closure Request				
Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.				
Requesting a remediation closure approval with this submission	No			

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 403960

CONDITIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	403960
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

CONDITIONS

Created By	Condition	Condition Date
scott.rodgers	The Remediation Plan is Conditionally Approved. All samples must be analyzed for all constituents listed in Table I of 19.15.29.12 NMAC. Floor confirmation samples should be delineated/excavated to meet closure criteria standards for site assessment/characterization/proven depth to water determination. Sidewall samples should be delineated/excavated to 600 mg/kg for chlorides and 100 mg/kg for TPH to define the edge of the release. Confirmation samples should be collected every 200 ft2. The work will need to occur in 90 days after the work plan has been reviewed.	12/9/2024