

CLOSURE REQUEST REPORT

Hayhurst NM Section 35 CTB

Eddy County, New Mexico

Incident Number nAPP2302742810

Prepared for: Chevron USA, Inc. 6301 Deauville Blvd Midland, TX, 79706

Carlsbad ● Houston ● Midland ● San Antonio ● Lubbock ● Hobbs ● Lafayette

SYNOPSIS

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of Chevron USA, Inc (Chevron), presents the following Closure Request Report (CRR) detailing completed corrective actions proposed in an approved work plan associated with an inadvertent release of crude oil at the Hayhurst NM section 35 CTB (Site). Based on completed remedial actions and laboratory analytical results from recent soil sampling events, Chevron is requesting No Further Action (NFA) at the Site.

SITE LOCATION AND RELEASE BACKGROUND

The Site is located in Unit A, Section 35, Township 25 South, Range 27 East, in Eddy County, New Mexico (32.0916°, -104.1523°) and is associated with oil and gas exploration and production operations on Federal Land managed by the Bureau of Land Management (**Figure 1** in **Appendix A**).

On January 12, 2023, a Lease Automatic Custody Transfer (LACT) unit failure resulted in approximately 6.217 barrels (bbls) of crude oil to overflow onto the LACT unit skid and the adjacent production pad surface. Vacuum trucks were immediately dispatched and recovered approximately 4.5 bbls of free-standing fluids. Chevron immediately reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Release Notification and Corrective Action Form C-141 (Form C-141), which was received by the NMOCD on January 27, 2023, and was subsequently assigned Incident Number nAPP2302742810. **Figure 2** in **Appendix A** depicts the observed release area, hereafter referred to as the Area of Concern (AOC).

Etech submitted a RWP that was approved by the NMOCD on June 17, 2024. The summary below details remediation activities completed to fulfill the proposed work in the RWP.

SITE CHARACTERIZATION AND CLOSURE CRITERIA

As a summary Etech characterized the Site according to Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC) considering depth to groundwater and the proximity to:

- Any continuously flowing watercourse or any other significant watercourse;
- Any lakebed, sinkhole or playa lake (measured from the ordinary high-water mark);
- An occupied permanent residence, school, hospital, institution or church;
- A spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes;
- Any freshwater well or spring;
- Incorporated municipal boundaries or a defined municipal fresh water well field covered under a municipal ordinance;
- A wetland;
- A subsurface mine;
- An unstable area (i.e. high karst potential); and
- A 100-year floodplain.

The closest well with available groundwater data is the New Mexico Office of State Engineer (NMOSE) well C-04371, located approximately ½-mile northwest of the Site. The well has a reported groundwater depth of 69 feet below ground surface (bgs) from 2019. Based on this measurement and findings from a regional groundwater data review, depth to groundwater at the Site is estimated to be between 51 and 100 feet bgs. The referenced well record is provided in **Appendix C.**

Based on the desktop review of the current BLM Carlsbad Field Office (CFO) karst cave potential map, this Site is located in a high potential karst area. All other potential receptors are not within the

established buffers in NMAC 19.15.29.12. Receptor details and sources used for the site characterization are included **in Figure 1B** and **Figure 1C** in **Appendix A**.

Based on the results from the desktop review, specifically the BLM CFO karst designation, the following Closure Criteria was applied:

Constituents of Concern (COCs)	Laboratory Analytical Method	Closure Criteria [†]
Chloride	(Environmental Protection Agency) EPA 300.0	600 milligrams per kilogram (mg/kg)
Total Petroleum Hydrocarbon (TPH)	EPA 8015 M/D	100 mg/kg
Benzene	EPA 8021B	10 mg/kg
Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX)	EPA 8021B	50 mg/kg

[†]The reclamation concentration requirements of 600 mg/kg chloride and 100 mg/kg TPH apply to the top 4 feet of areas to be immediately reclaimed following remediation pursuant to NMAC 19.15.17.13.

EXCAVATION AND SOIL SAMPLING ACTIVITIES

On October 30, 2024, excavation activities were performed via hydrovac to remove residual impacts identified by COCs exceedances as summarized in the approved RWP. Excavation activities were driven by field screening soil samples for volatile organic compounds (VOCs) utilizing a calibrated photoionization detector (PID) and chloride using Hach® chloride QuanTab® test strips

Following the removal of residual soil impacts, Etech collected 5-point composite confirmation excavation soil samples at a sampling frequency of 200 square feet from the floor (labeled as FS01) and sidewalls (labeled as SW01 and SW02) of the excavation. The 5-point composite samples were comprised of five equivalent aliquots homogenized in a 1-gallon, resealable plastic bag. The soil samples were then handled and analyzed as previously described by Envirotech Analytical Laboratory (Envirotech) in Farmington, New Mexico.

Following remediation activities, approximately 7 cubic yards of residual impacted soil removed from the Site was transported to a licensed and approved New Mexico landfill under Chevron approved waste manifests. The excavation extent and confirmation sample locations are presented on **Figure 2** in **Appendix A**

EXCAVATION SOIL SAMPLE LABORATORY ANALYTICAL RESULTS

Laboratory analytical results indicated that concentrations of COCs for all final confirmation excavation soil samples were below the applicable Site Closure Criteria. Laboratory analytical results are summarized in **Table 1** included in **Appendix D**. The executed chain-of-custody forms and laboratory analytical reports are provided in **Appendix E**.

SITE CLOSURE REQUEST

Based on laboratory analytical results for confirmation excavation soil samples, Chevron believes residual soil impacts associated with the inadvertent release have been excavated and removed from the Site per the RWP. COCs concentrations for all final excavation confirmation soil samples were below the Site Closure Criteria. As such, NFA appears warranted at this time and Incident Number nAPP2302742810 should be respectfully considered for Closure by the NMOCD. Chevron believes the completed remedial actions meet the requirements set forth in the NMAC regulations and to be protective of human health, the environment, and groundwater.

If you have any questions or comments, please do not hesitate to contact Joseph Hernandez at (432) 305-6413 or joseph@etechenv.com or Erick Herrera at (432) 305-6413 or erick@etechenv.com. Appendix F provides correspondence and notification receipts associated with the subject release. Appendix G includes the approved RWP and previous field summaries.

Sincerely,

eTECH Environmental and Safety Solutions, Inc.

Abraham Valladares Project Coordinator Joseph S. Hernandez Senior Managing Geologist

Joyn SHdy

CC:

Amy Barnhill, Chevron

New Mexico Oil Conservation Division

Bureau of Land Management

Appendices:

Appendix A: Figure 1: Site Map

Figure 1A: Site Characterization Map – Groundwater

Figure 1B: Site Characterization Map – Surficial Receptors

Figure 1C: Site Characterization Map - Subsurface Receptors

Figure 2: Excavation Soil Sample Locations

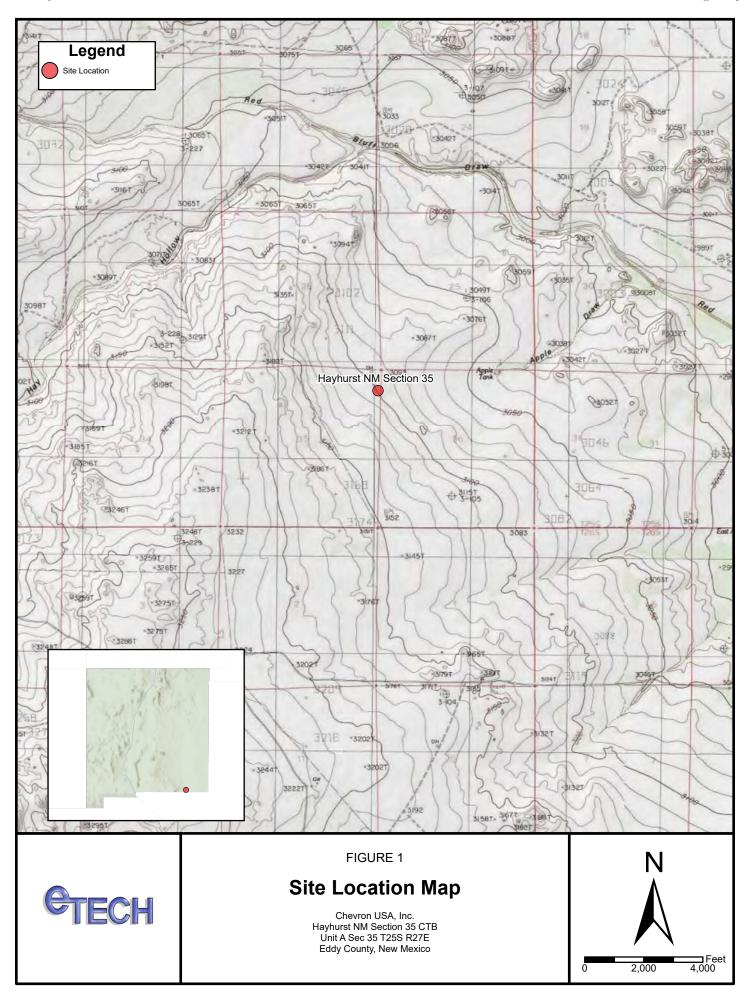
Appendix B: Referenced Well Records

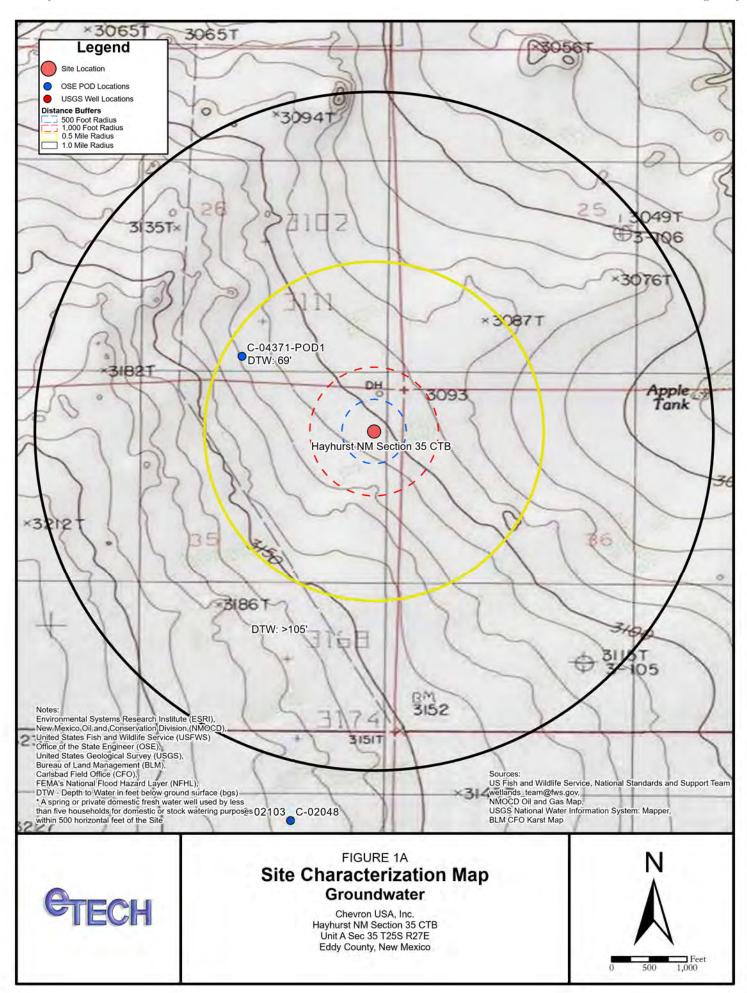
Appendix C: Photographic Log

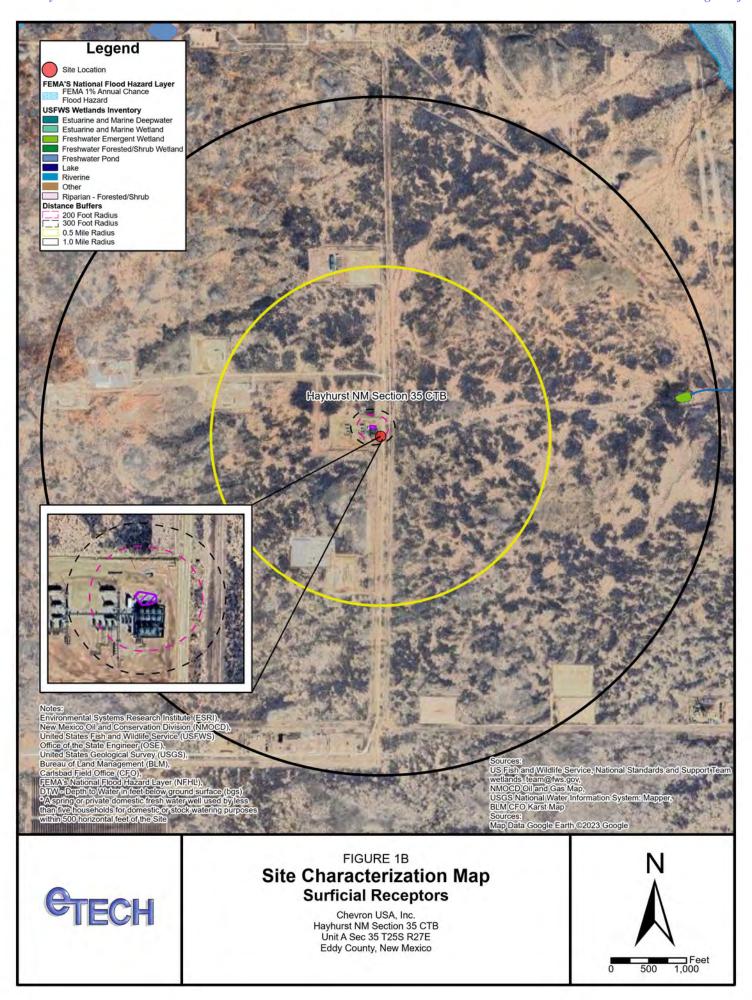
Appendix D: Tables

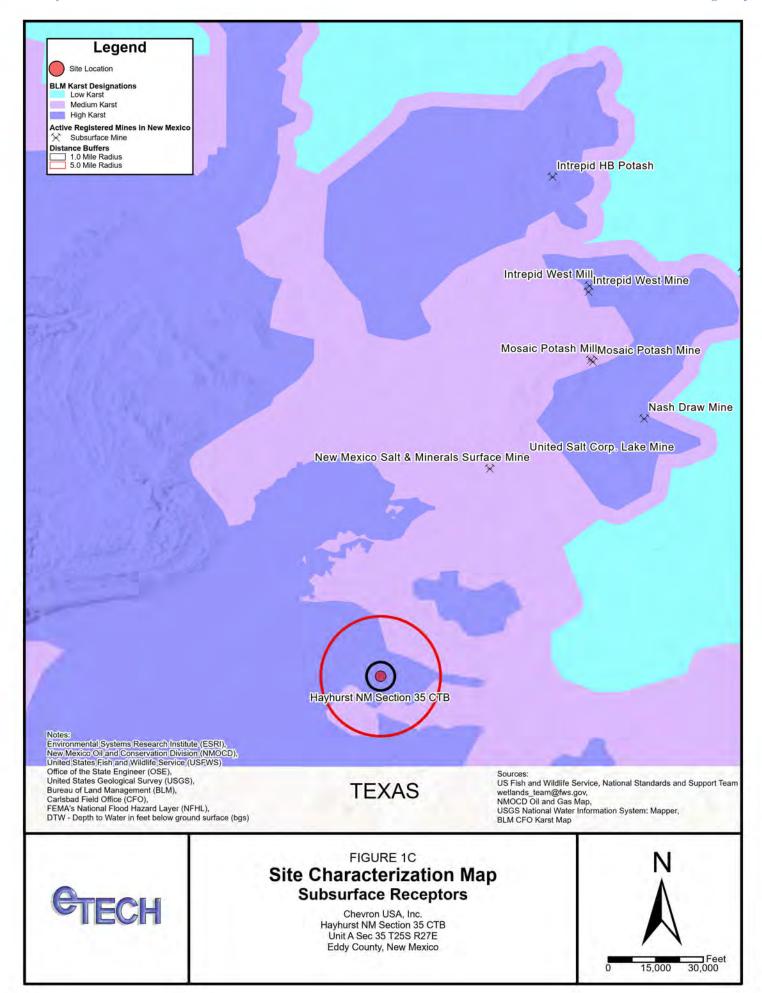
Appendix E: Laboratory Analytical Reports & Chain-of-Custody Documentation

Appendix F: Correspondence & Notifications


Appendix G: Archived Reports


APPENDIX A


Figures


P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213



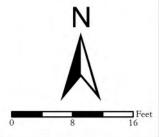


FIGURE 2

Excavation Soil Sample Locations

Chevron USA, Inc. Hayhurst NM Section 35 CTB Unit A Sec 35 T25S R27E Eddy County, New Mexico

APPENDIX B

Referenced Well Records

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

STATE ENGINEER OFFICE ROSWELL

7012 APR 26 | A 10: 55

100000	in the second second	Physicana a sec. 47 and	The state of the s	ecoronal appearance and a second	and the second s			and the second second second second	de la companya de la	Processor and the second	
	POD NUMB	ER (WELL N	MBER)	1	_		OSE FILE NUI	^ ` _			
NO LI	WELL OWN	ER NAME(S)	<u> </u>	7			PHONE (OPTI	<u> </u>	3		
10. 20.	Co	ley	Burge	55			575	-200-	7445		
NECL	WELLOWN	ER MALLING	ADDRESS /				Lan	~ 1	25VV 88	256	
2	WELL			DEGREES	MINUTES SECO	NDS		Market J. Market St. Market St.			
2	LOCATIO	1 1	TTUDE	32	1611	א פ	1	REQUIRED: ONE TENT QUIRED: WGS 84	TH OF A SECOND		
Z.	(FROM G	LOI	and the second second second	<u>۲۷</u>	02 to) (W	DATOM REA	COINCED. WOS 64	The second process of the trape is the Police	TO THE STREET	
Ü	DESCRIPTI	ON RELATIN	IG WELL LOCATION	TO STREET ADDRES	SS AND COMMON LANDA	MARKS					
		· • • <u></u> <u></u> <u></u> <u></u> <u></u>	potential and the second	na este está a caráció a		taa seeta er	<u> </u>		and the second section of the second section		
	(2.5 ACR	E)	(10 ACRE)	(40 ACRE)	(160 ACRE)	SECTION	_	I ~ 765	RANGE C	, K ELST	
V.O	SUBDIVISIO	IN NAME	ocy !	5W%	SW %	LOT NUM	REER .	BLOCK NUMBER	SOUTH Z C	CT WEST	
OÍL.	,										
2.0	HYDROGRA	PHIC SURV	eY			<u> </u>		MAP NUMBER	TRACT N	JMBER	
		`	en mai mande l'est a la capacida.	and the same of the same and the	in the S.C. of the second section assumptions and	——————————————————————————————————————	e a la comp ensa de la compensa de la compe		graph may particular and the mail of the first of the fir	The second of the second	
1000	LICENSEN		NAME OF LICENS	ED DRILLER	1 -			NAME OF WELL DR	ELLING COMPANY	110	
	DRILLING S	62(e	DRILLING ENDER	DEPTH OF COM	PLETED, WELL (FT)	BORE HOL	LE DEPTH (FT)	DEPTH WATER FOR	LLO PONTEISED (LL)	<u> مين</u>	
	16 1	-12	4-8-1	2	211	1 _	10		170		
OH YW	COMPLETE	D WELL IS:	ARTESIAN	DRY HOLE	BEHALLOW (UNC	ONFINED)		STATIC WATER LEVEL IN COMPLETED WELL (FT)			
FOR	DRILLING F	TLUID:	□ ADR	MUD	ADDITIVES - SPE	ECIFY:					
(0.0	DRILLING N	AETROD:	ROTARY	LIAMOMER	CABLE TOOL	Опи	R - SPECIFY:	en a la companya da	To extract prima send from the Linders		
DRILLE	DEPTI FROM	I (FT) TO	BORE HOLE DIA. (IN)	1	CASING ATERIAL		IECTION (CASING)	INSIDE DIA. CASING (IN)	CASING WALL THICKNESS (IN)	SLOT SIZE (DV)	
1	0	I(Q)	10	4	NC	(-)	we	5993	0.316	AU	
	μ_{0}	MO	10_	f	VC	6	ve_	5.493	0.316	0.037	
			· ·	1		<u></u>				 	
A and	DEPTI	H (FT)	THICKNESS	FR	ORMATION DESCRIP	TION OF P	RINCIPAL W	ATER-BEARING S	TRATA	YIELD	
Y.	FROM	1490	. <u>(F</u> I).		(INCLUDE WATER			R FRACTURE ZON	ES).	(GPM)	
STR.	170	210)		Coacs	2 sandsto	ne -	Red	Tan		5	
N. P.	(90	<u>sin</u>	<u> 20</u>	Fix	e Sitt	y ta	$n \geq a$	<u> </u>			
BEARIN				+		<u> </u>		 			
TER BEARING											
WATE VATE	METHOD U	SED TO ESTI	MATE YIELD OF WA	TER-BEARING STRA	ATA	The Control of the Co	and the proportional and the Company of the	TOTAL ESTIMATED	WELL YIELD (GPM)		
			1/2	ho p	ump				5		
- upper of the	EOD OST	DEFERM	LICE		- To the second of the second			WELL DECO	n a 100 0/	(/O/N9)	
	FILE NUM	INTERNAL	-3535		POD NUMBI	ER (-02	3535-Pa	TRN NUMBE	D&LOG (Version on Warding 1985)	(00/kg	
				242 34		<u> </u>			PAGE 1	OF 2	

PUND	TYPE O	PUMP:	GACUBMER TURBIN		☐ JET ☐ CYLINDER	☐ NO PUMP – WELL NOT EQUI	PPED			त्र व्यवस्थानस्य स्थापितस्य स्थापन्तः । स्थापन्ति
SEAL AND PU	ANNU SEAL GRAVE	AND	DEPTI- FROM	1(FT) TO 210	BORE HOLE DIA. (IN)	MATERIAL TYPE AND SIZE	ce	AMOUNT (CUBIC FT)	METHO PLACE	
8	CIG (Z							.		
	DEPTI	H (FT)	THICK (F			OLOR AND TYPE OF MATERIAL ENC DE WATER-BEARING CAVITIES OR F		ONES)	WAT BEAR	
(E)	TROM	1	(e		1 -				☐ YES	Œ NO
	1.	20	14	,	Sand	stone and li	at the	nsand	☐ YES	NO
	20	75	5,0	2		ed Clay) 		☐ YES	D/NO
变成: A	75	90	10	5	\ \	hite Grypsur	٣		☐ YES	© ∕NO
	90	0	2-7	D D	Tan	larey sta	ndc	lay	☐ YES	NO
WELL	110	00	50	2	こして	anttan silt	<u>y ela</u>	4	☐ YES	₽ / NO
,0°	160		10		Lia	et tan sandy.	3114	day	YES	⊡ / NO
200	(70)	190		<u> </u>	B A TOO	ose Sandstone'-	-Ked	Han	₩ES	□ NO
GEOLOGIC	190	210	20	,,,,	F-3X	e siltytan s	and		YES	□ NO
J O				LIČE	TO BELLE	SIVIE E			☐ YES	□ NO
S.				٠,١٠٠	10 0111110				☐ YES	□ NO
				<u> </u>					☐ YES	□ NO
									☐ YES	□ NO
					 				☐ YES	□ NO
					.:2	·		*************	☐ YES	□ NO
									☐ YES	□ NO
			ATTACH	ADDITION	AL PAGES AS NI	EDED TO FULLY DESCRIBE THE GEO	LOGIC LOG	OF THE WELL		
	en e		METHOD:	BAILE	R BUMP	☐ AIR LIFT ☐ OTHER - SPECIF	Υ:			
AL INFO	WELL	TEST				ATA COLLECTED DURING WELL TES ND DRAWDOWN OVER THE TESTING		DING START TI	ME, END T	ME,
	ADDITION	AL STATES	CENTS OR EXPL	ANATIONS:						
TEST & ADDIT	V	Vell	Addr	<i>es</i> 5:	208 R	667 Hill Road				
CTURE S	CORREC	T RECOR	D OF THE AB	OVE DESCR	UBED HOLE AN	ST OF HIS OR HER KNOWLEDGE AND THAT HE OR SHE WILL FILE THIS W ON OF WELL DRILLING:	BELIEF, TH ELL RECORI	E FOREGOING I	S A TRUE A	ND EER AND
3	k	ou i	(a. K	। था		4-23-20	12			
S 8		7	SIGNATUR	E OF DRILL	ER	DATE		garan, saar dirarga dagaas,	alog taktorita tara	eni, sependana (44).

FOR OSE INTERNAL USE	_	WELL RECORD & LO	G (Version 6/9/08)
FILE NUMBER C-35.35	POD NUMBER (-03535-PaD1	TRN NUMBER 49	5562
LOCATION 23.28.25.3342343			PAGE 2 OF 2

Locator Tool Report

General Information:

Application ID:29

Date: 05-14-2012

Time: 16:20:15

WR File Number: C-03535-POD1

Purpose: POINT OF DIVERSION

Applicant First Name: COLEY BURGESS NEW DOMESTIC

Applicant Last Name: WELL LOG LOCATION

GW Basin: CARLSBAD County: EDDY

Critical Management Area Name(s): NONE Special Condition Area Name(s): NONE

Land Grant Name: NON GRANT

PLSS Description (New Mexico Principal Meridian):

NE 1/4 of SE 1/4 of SW 1/4 of SW 1/4 of Section 25, Township 23S, Range 28E.

Coordinate System Details:

Geographic Coordinates:

Latitude: 32 Degrees 16 Min

32 Degrees 16 Minutes 11.6 Seconds N

Longitude: 104 Degrees 2 Minutes 45.1 Seconds W

Universal Transverse Mercator Zone: 13N

 NAD 1983(92) (Meters)
 N: 3,570,751
 E: 589,860

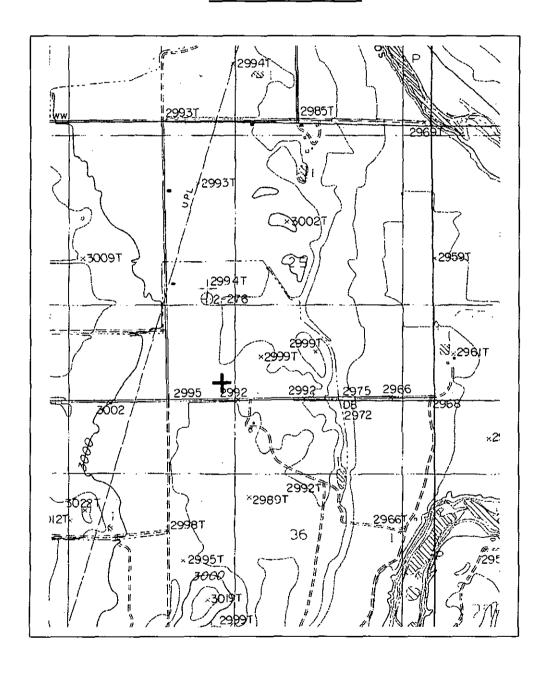
 NAD 1983(92) (Survey Feet)
 N: 1.1,715,039
 E: 1,935,233

 NAD 1927 (Meters)
 N: 3,570,549
 E: 589,909

 NAD 1927 (Survey Feet)
 N: 11,714,377
 E: 1,935,392

State Plane Coordinate System Zone: New Mexico East

 NAD 1983(92) (Meters)
 N: 140,829
 E: 192,082


 NAD 1983(92) (Survey Feet)
 N: 462,038
 E: 630,189

 NAD 1927 (Meters)
 N: 140,811
 E: 179,529

 NAD 1927 (Survey Feet)
 N: 461,978
 E: 589,005

NEW MEXICO OFFICE OF STATE ENGINEER

Locator Tool Report

WR File Number: C-03535-POD1 Scale: 1:22,677

Northing/Easting: UTM83(92) (Meter): N: 3,570,751 E: 589,860

Northing/Easting: SPCS83(92) (Feet): N: 462,038 E: 630,189

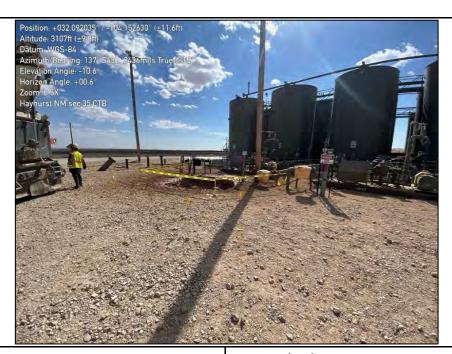
GW Basin: Carlsbad

Page 2 of 2 Print Date: 05/14/2012

APPENDIX C

Photographic Log

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213


PHOTOGRAPHIC LOG

Chevron USA, Inc.
Hayhurst NM Section CTB
Incident Number nAPP2302742810

Photograph 1 Date: 10/30/2024

Description: Southwestern view of completed excavation extent.

Photograph 2 Date: 10/30/2024

Description: Southeastern view of completed excavation extent.

APPENDIX D

Tables

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

Received by OCD: 12/9/2024 10:59:28 AM

Table 1 SOIL SAMPLE ANALYTICAL RESULTS Chevron USA, Inc. Hayhurst NM Section 35 CTB Eddy County, New Mexico

Sample I.D. Sample Sample Depth (feet bgs)		Benzene (mg/kg)	Total BTEX TPH GRO (mg/kg)		TPH DRO (mg/kg)			Chloride (mg/kg)	
	NMOCD Table I Closure Criteria for Soils Impacted by a Release (NMAC 19.15.29)		a for Soils Impacted by a 10 50		NE	NE NE		100	600
			Ex	cavation Soil Samples	- Incident Number nAF	P2302742810			
FS01 10/30/2024 1.5		1.5	<0.0250	<0.0500	<20.0	<25.0	<50.0	<50.0	<100
SW01 10/30/2024 0-1.5		<0.0250	<0.0500	<20.0	<25.0	<50.0	<50.0	<100	
SW02	10/30/2024	0-1.5	<0.0250	<0.0500	<20.0	<25.0	<50.0	<50.0	52.8

Notes:

bgs: below ground surface mg/kg: milligrams per kilogram

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

GRO: Gasoline Range Organics DRO: Diesel Range Organics ORO: Oil Range Organics

TPH: Total Petroleum Hydrocarbon

NMOCD: New Mexico Oil Conservation Division

NMAC: New Mexico Administrative Code

Text in ""grey"" represents excavated soil samples

Concentrations in **bold** exceed the NMOCD Table I Closure Criteria and/or Reclamation Standard for Soils Impacted by a Release

[†] The reclamation concentration requirements of 600 mg/kg chloride and 100 mg/kg TPH apply to the top 4 feet of areas to be immediately reclaimed following remediation pursuant to NMAC 19.15.17.13.

APPENDIX E

Laboratory Analytical Reports & Chain-of-Custody Documentation

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

Report to:

Joseph Hernandez

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Chevron, USA

Project Name: Hayhurst NM Section 35 CTB

Work Order: E411007

Job Number: 23077-0001

Received: 11/3/2024

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 11/6/24

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise.

Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc.

Envirotech Inc, holds the Utah TNI certification NM00979 for data reported.

Envirotech Inc, holds the Texas TNI certification T104704557 for data reported.

Date Reported: 11/6/24

Joseph Hernandez 6301 Deauville Blvd Midland, TX 79706

Project Name: Hayhurst NM Section 35 CTB

Workorder: E411007

Date Received: 11/3/2024 8:00:00PM

Joseph Hernandez,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 11/3/2024 8:00:00PM, under the Project Name: Hayhurst NM Section 35 CTB.

The analytical test results summarized in this report with the Project Name: Hayhurst NM Section 35 CTB apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman

Laboratory Director Office: 505-632-1881 Cell: 775-287-1762

whinchman@envirotech-inc.com

Raina Schwanz

Laboratory Administrator Office: 505-632-1881

rainaschwanz@envirotech-inc.com

Field Offices:

Southern New Mexico Area

Lynn Jarboe

Laboratory Technical Representative Office: 505-421-LABS(5227)

Cell: 505-320-4759

ljarboe@envirotech-inc.com

Michelle Gonzales

Client Representative

Office: 505-421-LABS(5227)

Cell: 505-947-8222

mgonzales@envirotech-inc.com

Envirotech Web Address: www.envirotech-inc.com

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	4
Sample Data	5
SW01 0-1.5'	5
SW02 0-1.5'	6
QC Summary Data	7
QC - Volatile Organic Compounds by EPA 8260B	7
QC - Nonhalogenated Organics by EPA 8015D - GRO	8
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	9
QC - Anions by EPA 300.0/9056A	10
Definitions and Notes	11
Chain of Custody etc.	12

Sample Summary

_				
	Chevron, USA	Project Name:	Hayhurst NM Section 35 CTB	Reported:
١	6301 Deauville Blvd	Project Number:	23077-0001	Reported:
	Midland TX, 79706	Project Manager:	Joseph Hernandez	11/06/24 16:14

Client Sample ID	Lab Sample ID Matrix	Sampled	Received	Container
SW01 0-1.5'	E411007-01A Soil	10/30/24	11/03/24	Glass Jar, 2 oz.
SW02 0-1.5'	E411007-02A Soil	10/30/24	11/03/24	Glass Jar, 2 oz.

Sample Data

Chevron, USA	Project Name:	Hayhurst NM Section 35 CTB	
6301 Deauville Blvd	Project Number:	23077-0001	Reported:
Midland TX, 79706	Project Manager:	Joseph Hernandez	11/6/2024 4:14:12PM

SW01 0-1.5' E411007-01

		Reporting					
Analyte	Result	Limit	Dil	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2445001
Benzene	ND	0.0250		1	11/04/24	11/04/24	
Ethylbenzene	ND	0.0250		1	11/04/24	11/04/24	
Toluene	ND	0.0250		1	11/04/24	11/04/24	
o-Xylene	ND	0.0250		1	11/04/24	11/04/24	
p,m-Xylene	ND	0.0500		1	11/04/24	11/04/24	
Total Xylenes	ND	0.0250		1	11/04/24	11/04/24	
Surrogate: Bromofluorobenzene		113 %	70-130		11/04/24	11/04/24	
Surrogate: 1,2-Dichloroethane-d4		93.5 %	70-130		11/04/24	11/04/24	
Surrogate: Toluene-d8		107 %	70-130		11/04/24	11/04/24	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2445001
Gasoline Range Organics (C6-C10)	ND	20.0		1	11/04/24	11/04/24	
Surrogate: Bromofluorobenzene		113 %	70-130		11/04/24	11/04/24	
Surrogate: 1,2-Dichloroethane-d4		93.5 %	70-130		11/04/24	11/04/24	
Surrogate: Toluene-d8		107 %	70-130		11/04/24	11/04/24	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	NV		Batch: 2445002
Diesel Range Organics (C10-C28)	ND	25.0		1	11/04/24	11/04/24	
Oil Range Organics (C28-C36)	ND	50.0		1	11/04/24	11/04/24	
Surrogate: n-Nonane		90.8 %	50-200		11/04/24	11/04/24	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	DT		Batch: 2445025

Sample Data

Chevron, USA Project Name: Hayhurst NM Section 35 CTB 6301 Deauville Blvd Project Number: 23077-0001 Reported: 11/6/2024 4:14:12PM Midland TX, 79706 Project Manager: Joseph Hernandez

SW02 0-1.5'

		E411007-02					
		Reporting					
Analyte	Result	Limit	Di	lution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	kg Analyst: IY			Batch: 2445001	
Benzene	ND	0.0250		1	11/04/24	11/04/24	
Ethylbenzene	ND	0.0250		1	11/04/24	11/04/24	
Toluene	ND	0.0250		1	11/04/24	11/04/24	
o-Xylene	ND	0.0250		1	11/04/24	11/04/24	
p,m-Xylene	ND	0.0500		1	11/04/24	11/04/24	
Total Xylenes	ND	0.0250		1	11/04/24	11/04/24	
Surrogate: Bromofluorobenzene		112 %	70-130		11/04/24	11/04/24	
Surrogate: 1,2-Dichloroethane-d4		94.1 %	70-130		11/04/24	11/04/24	
Surrogate: Toluene-d8		110 %	70-130		11/04/24	11/04/24	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2445001
Gasoline Range Organics (C6-C10)	ND	20.0		1	11/04/24	11/04/24	
Surrogate: Bromofluorobenzene		112 %	70-130		11/04/24	11/04/24	
Surrogate: 1,2-Dichloroethane-d4		94.1 %	70-130		11/04/24	11/04/24	
Surrogate: Toluene-d8		110 %	70-130		11/04/24	11/04/24	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	NV		Batch: 2445002
Diesel Range Organics (C10-C28)	ND	25.0	•	1	11/04/24	11/04/24	
Oil Range Organics (C28-C36)	ND	50.0		1	11/04/24	11/04/24	
Surrogate: n-Nonane		89.8 %	50-200		11/04/24	11/04/24	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	DT		Batch: 2445025
Chloride	52.8	20.0		1	11/04/24	11/05/24	

QC Summary Data

Chevron, USAProject Name:Hayhurst NM Section 35 CTBReported:6301 Deauville BlvdProject Number:23077-0001Midland TX, 79706Project Manager:Joseph Hernandez11/6/2024 4:14:12PM

Midland TX, 79706		Project Manage	r: Jo	seph Hernand	lez			11	/6/2024 4:14:12PM
	Vo	olatile Organ	ic Compo	unds by EI	PA 82601	В			Analyst: IY
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2445001-BLK1)							Prepared: 1	1/04/24 Anal	yzed: 11/04/24
Benzene	ND	0.0250							
Ethylbenzene	ND	0.0250							
Toluene	ND	0.0250							
o-Xylene	ND	0.0250							
p,m-Xylene	ND	0.0500							
Total Xylenes	ND	0.0250							
Surrogate: Bromofluorobenzene	0.557		0.500		111	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.474		0.500		94.7	70-130			
Surrogate: Toluene-d8	0.552		0.500		110	70-130			
LCS (2445001-BS1)							Prepared: 1	1/04/24 Anal	yzed: 11/04/24
Benzene	2.35	0.0250	2.50		94.2	70-130			
Ethylbenzene	2.42	0.0250	2.50		96.6	70-130			
Toluene	2.42	0.0250	2.50		96.9	70-130			
o-Xylene	2.50	0.0250	2.50		100	70-130			
p,m-Xylene	4.98	0.0500	5.00		99.7	70-130			
Total Xylenes	7.49	0.0250	7.50		99.8	70-130			
Surrogate: Bromofluorobenzene	0.579		0.500		116	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.485		0.500		97.0	70-130			
Surrogate: Toluene-d8	0.551		0.500		110	70-130			
LCS Dup (2445001-BSD1)							Prepared: 1	1/04/24 Anal	yzed: 11/05/24
Benzene	2.50	0.0250	2.50		100	70-130	6.16	23	
Ethylbenzene	2.51	0.0250	2.50		100	70-130	3.90	27	
Toluene	2.52	0.0250	2.50		101	70-130	3.93	24	
o-Xylene	2.59	0.0250	2.50		104	70-130	3.36	27	
p,m-Xylene	5.16	0.0500	5.00		103	70-130	3.47	27	
Total Xylenes	7.75	0.0250	7.50		103	70-130	3.43	27	
Surrogate: Bromofluorobenzene	0.575		0.500		115	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.491		0.500		98.2	70-130			
~									

0.500

108

70-130

0.538

Surrogate: Toluene-d8

QC Summary Data

Chevron, USAProject Name:Hayhurst NM Section 35 CTBReported:6301 Deauville BlvdProject Number:23077-0001Midland TX, 79706Project Manager:Joseph Hernandez11/6/2024 4:14:12PM

Nonhalogenated	Organics by	EPA	.8015D -	GRO

Analyst: IY

Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2445001-BLK1)						I	Prepared: 1	1/04/24 Anal	yzed: 11/04/24
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: Bromofluorobenzene	0.557		0.500		111	70-130			

Surrogate: 1,2-Dichloroethane-d4	0.474	0.500	94.7	70-130
Surrogate: Toluene-d8	0.552	0.500	110	70-130
LCS (2445001-BS2)				Prepared: 11/04/24 Analyzed: 11/04/24

Gasoline Range Organics (C6-C10) 41.6 20.0 50.0 83.2 70-130 0.500 115 70-130 Surrogate: Bromofluorobenzene 0.575 93.1 Surrogate: 1,2-Dichloroethane-d4 0.466 0.50070-130 Surrogate: Toluene-d8 0.554 0.500 111 70-130

LCS Dup (2445001-BSD2)					P	repared: 11	/04/24 Anal	lyzed: 11/04/24	
Gasoline Range Organics (C6-C10)	41.8	20.0	50.0	83.7	70-130	0.525	20		

 Surrogate: Bromofluorobenzene
 0.569
 0.500
 114
 70-130

 Surrogate: 1,2-Dichloroethane-d4
 0.467
 0.500
 93.4
 70-130

 Surrogate: Toluene-d8
 0.551
 0.500
 110
 70-130

QC Summary Data

Chevron, USA	Project Name:	Hayhurst NM Section 35 CTB	Reported:
6301 Deauville Blvd	Project Number:	23077-0001	
Midland TX, 79706	Project Manager:	Joseph Hernandez	11/6/2024 4:14:12PM

	ogenated Org	ganics by l	EPA 8015I) - DRO	/ORO			Analyst: NV	
	esult g/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2445002-BLK1)							Prepared: 1	1/04/24 A	nalyzed: 11/04/24
Diesel Range Organics (C10-C28)	ND	25.0							
Oil Range Organics (C28-C36)	ND	50.0							
Surrogate: n-Nonane	12.7		50.0		85.4	50-200			
LCS (2445002-BS1)							Prepared: 1	1/04/24 A	nalyzed: 11/04/24
Diesel Range Organics (C10-C28)	228	25.0	250		91.3	38-132			
Surrogate: n-Nonane	14.4		50.0		88.8	50-200			
LCS Dup (2445002-BSD1)							Prepared: 1	1/04/24 A	nalyzed: 11/04/24
Diesel Range Organics (C10-C28)	246	25.0	250		98.3	38-132	7.44	20	
Surrogate: n-Nonane	16.3		50.0		92.6	50-200			

LCS Dup (2445025-BSD1)

Chloride

Prepared: 11/04/24 Analyzed: 11/05/24

20

QC Summary Data

Chevron, USA	Project Name:	Hayhurst NM Section 35 CTB	Reported:
6301 Deauville Blvd	Project Number:	23077-0001	
Midland TX, 79706	Project Manager:	Joseph Hernandez	11/6/2024 4:14:12PM

Anions by EPA 300.0/9056A	Analyst: DT

100

90-110

0.369

Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit		
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes	
Blank (2445025-BLK1)							Prepared: 1	1/04/24 Anal	yzed: 11/05/24	
Chloride	ND	20.0								
LCS (2445025-BS1)							Prepared: 1	1/04/24 Anal	yzed: 11/05/24	
Chloride	250	20.0	250		99.9	90-110				

250

20.0

251

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Definitions and Notes

Chevron, USA	Project Name:	Hayhurst NM Section 35 CTB	
6301 Deauville Blvd	Project Number:	23077-0001	Reported:
Midland TX, 79706	Project Manager:	Joseph Hernandez	11/06/24 16:14

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

DNI Did Not Ignite

DNR Did not react with the addition of acid or base.

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

7																		
	hevron USA, In				Bill To					Lab U					TA			rogram
	me: Amy Barnl				Attention: Joseph Hernandez			Lab W	Q#		Job	Numbe	r .	1D 20	3D	Standard	CWA	SDWA
	Nanager: Josep				Address: 13000 W County Rd			EH	llO	01	d	3017	appr			2 Say TAT		5.05.1
	Hayhurst NM S oject #: 17586	ection 35	CIB		City, State, Zip: Odessa, TX 79	3/65					Analy	ysis and N	lethod	-				RCRA
tech Pro	oject #. 17566				Phone: (432)563-2200	0 1 1	. Kelir	-	^									
	432)305-6413	Will series			Email: ap@etechenv.com, erick				/ORO b							and so	State	I TO I
	seph@etecher				Company Name: Etech Environme		utions		DRO	321	10	0.00		ΣZ	×	NM CO	UI AZ	IX
	d by: Edyte Kon	an	757.8	18	Incident ID: nAPP2302742810		•	£.	RO/	by 80	s 60	de 3		N N	1	×		
Time Sampled	Date Sampled	Matrix	No. of Containers	Sample ID		Lab r	Number	Depth(ft.)	TPH GRO/DRO/ORO by 8015	BTEX by 8021 VOC by 8260	Metals 6010	Chloride 300.0		верос	GDOC		Remarks	Pag rogram SDWA RCRA
11:10	10.30.2024	S	1		SW01		•	0-1.5						Х				
11:20	10.30.2024	S	1		SW02	8	3	0-1.5'						Х				
	,									-	+		+-	-				
											-							
															1			
										-	+	-	+					
									200									
ddition	al Instructions																	
10.11											le .					and the first that the		and des
	of collection is cons				m aware that tampering with or intentional		e sample l	ocation,								received on ice the outless than 6 °C on s		
	ed by: (Signature)	idered frauc	Date			Date			Time	_	Sec.				Jse On			
ennquisire	Hyd		lols		1:30 Miffelle Gonz	rles 10-	312	t	21	30	Re	ceived or	n ice:	V		υγ		
elindurshe	many Ma	nzales	Date		Received by: (Signature)	Date //.	1.2	1	Time /	30	T1			T2		T3		
elinquishe	ed by: (Sprature)		Date //./	10.	Received by: (Signature)	Date	3/11		Time 70	00	AV	'G Temp '	°c	4	Ę			
mole Mate	ix: S - Soil, Sd - Solid	c- childre	1.	. 10	the same	0.1	iner Type		_		-							

or disposed of at the client expense. The report for the analysis of the above on the report.

Page 32 of the report.

Page 32 of the above on the report.

envirotech Inc.

Printed: 11/4/2024 10:26:48AM

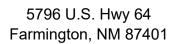
Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

Instructions: Please take note of any NO checkmarks.

If we receive no response concerning these items within 24 hours of the date of this notice, all the samples will be analyzed as requested.

	CI LIGA						
Client:	Chevron, USA	Date Received:	11/03/24 2	0:00		Work Order ID:	E411007
Phone:	432-305-6413	Date Logged In:	11/01/24 1	3:05		Logged In By:	Caitlin Mars
Email:	joseph@etechenv.com	Due Date:	11/12/24 1	7:00 (6 day TAT)			
Chain of	f Custody (COC)						
	the sample ID match the COC?		Yes				
	the number of samples per sampling site location ma	tch the COC	Yes				
	samples dropped off by client or carrier?		Yes	Carrier: C	ourier		
	ne COC complete, i.e., signatures, dates/times, reques	sted analyses?	Yes	<u> </u>	- Currer		
5. Were a	all samples received within holding time?	•	Yes				
	Note: Analysis, such as pH which should be conducted in					Commont	s/Resolution
	i.e, 15 minute hold time, are not included in this disucssi	on.		Г		Comment	s/Resolution
	Turn Around Time (TAT)		37				
	e COC indicate standard TAT, or Expedited TAT?		Yes				
Sample 9			Yes				
	sample cooler received? was cooler received in good condition?						
•	<u> </u>		Yes				
	ne sample(s) received intact, i.e., not broken?		Yes				
	custody/security seals present?		No				
•	s, were custody/security seals intact?		NA				
12. Was ti	he sample received on ice? If yes, the recorded temp is 4°C, Note: Thermal preservation is not required, if samples ar minutes of sampling		Yes				
13. If no	visible ice, record the temperature.	temperature: 4°0	<u>C</u>				
Sample (<u>Container</u>						
14. Are a	aqueous VOC samples present?		No				
15. Are V	VOC samples collected in VOA Vials?		NA				
16. Is the	e head space less than 6-8 mm (pea sized or less)?		NA				
17. Was	a trip blank (TB) included for VOC analyses?		NA				
18. Are r	non-VOC samples collected in the correct containers	?	Yes				
19. Is the	appropriate volume/weight or number of sample contain	ners collected?	Yes				
Field La	<u>bel</u>						
	e field sample labels filled out with the minimum info	ormation:					
	Sample ID?		Yes				
	Date/Time Collected? Collectors name?		Yes	_			
	Preservation		No				
	the COC or field labels indicate the samples were pr	reserved?	No				
	sample(s) correctly preserved?		NA				
	o filteration required and/or requested for dissolved n	netals?	No				
Multiph	ase Sample Matrix						
	the sample have more than one phase, i.e., multipha	ise?	No				
	s, does the COC specify which phase(s) is to be analy		NA				
	ract Laboratory	•	1112				
	samples required to get sent to a subcontract laborato	aru?	No				
	a subcontract laboratory specified by the client and i	-		Subcontract Lab	· NI A		
	• • •	1 30 WHO:	1421	Subcontract Lab	. INA		
Client I	<u>nstruction</u>						


Date

Signature of client authorizing changes to the COC or sample disposition.

Report to:

Joseph Hernandez

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Chevron, USA

Project Name: Hayhurst NM Section 35 CTB

Work Order: E411006

Job Number: 23077-0001

Received: 11/3/2024

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 11/5/24

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise.

Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc.

Envirotech Inc, holds the Utah TNI certification NM00979 for data reported.

Envirotech Inc, holds the Texas TNI certification T104704557 for data reported.

Date Reported: 11/5/24

Joseph Hernandez 6301 Deauville Blvd Midland, TX 79706

Project Name: Hayhurst NM Section 35 CTB

Workorder: E411006

Date Received: 11/3/2024 8:00:00PM

Joseph Hernandez,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 11/3/2024 8:00:00PM, under the Project Name: Hayhurst NM Section 35 CTB.

The analytical test results summarized in this report with the Project Name: Hayhurst NM Section 35 CTB apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman

Laboratory Director Office: 505-632-1881 Cell: 775-287-1762

whinchman@envirotech-inc.com

Raina Schwanz

Laboratory Administrator Office: 505-632-1881

rainaschwanz@envirotech-inc.com

Field Offices:

Southern New Mexico Area

Lynn Jarboe

Laboratory Technical Representative Office: 505-421-LABS(5227)

Cell: 505-320-4759

ljarboe@envirotech-inc.com

Michelle Gonzales

Client Representative

Office: 505-421-LABS(5227)

Cell: 505-947-8222

mgonzales@envirotech-inc.com

Envirotech Web Address: www.envirotech-inc.com

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	4
Sample Data	5
FS01 1.5'	5
QC Summary Data	6
QC - Volatile Organic Compounds by EPA 8260B	6
QC - Nonhalogenated Organics by EPA 8015D - GRO	7
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	8
QC - Anions by EPA 300.0/9056A	9
Definitions and Notes	10
Chain of Custody etc.	11

Sample Summary

_				
ſ	Chevron, USA	Project Name:	Hayhurst NM Section 35 CTB	Reported:
١	6301 Deauville Blvd	Project Number:	23077-0001	Reported:
l	Midland TX, 79706	Project Manager:	Joseph Hernandez	11/05/24 14:19

Client Sample ID	Lab Sample ID M	latrix	Sampled	Received	Container
FS01 1.5'	E411006-01A	Soil	10/30/24	11/03/24	Glass Jar, 2 oz.

Sample Data

Chevron, USA	Project Name:	Hayhurst NM Section 35 CTB	
6301 Deauville Blvd	Project Number:	23077-0001	Reported:
Midland TX, 79706	Project Manager:	Joseph Hernandez	11/5/2024 2:19:50PM

FS01 1.5' E411006-01

		E411000-01					
Analyte	Result	Reporting Limit		ution	Prepared	Analyzed	Notes
Analyte	Result	Limit	Dili	ution	1 repared	Analyzeu	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	Batch: 2445001		
Benzene	ND	0.0250		1	11/04/24	11/04/24	
Ethylbenzene	ND	0.0250		1	11/04/24	11/04/24	
Toluene	ND	0.0250		1	11/04/24	11/04/24	
o-Xylene	ND	0.0250		1	11/04/24	11/04/24	
p,m-Xylene	ND	0.0500		1	11/04/24	11/04/24	
Total Xylenes	ND	0.0250		1	11/04/24	11/04/24	
Surrogate: Bromofluorobenzene		115 %	70-130		11/04/24	11/04/24	
Surrogate: 1,2-Dichloroethane-d4		93.1 %	70-130		11/04/24	11/04/24	
Surrogate: Toluene-d8		108 %	70-130		11/04/24	11/04/24	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2445001
Gasoline Range Organics (C6-C10)	ND	20.0		1	11/04/24	11/04/24	
Surrogate: Bromofluorobenzene		115 %	70-130		11/04/24	11/04/24	
Surrogate: 1,2-Dichloroethane-d4		93.1 %	70-130		11/04/24	11/04/24	
Surrogate: Toluene-d8		108 %	70-130		11/04/24	11/04/24	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	NV		Batch: 2445002
Diesel Range Organics (C10-C28)	ND	25.0		1	11/04/24	11/04/24	
Oil Range Organics (C28-C36)	ND	50.0		1	11/04/24	11/04/24	
Surrogate: n-Nonane		88.0 %	50-200		11/04/24	11/04/24	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	IY		Batch: 2445023
Chloride	ND	100		5	11/04/24	11/05/24	

Chevron, USA Project Name: Hayhurst NM Section 35 CTB Reported:
6301 Deauville Blvd Project Number: 23077-0001
Midland TX, 79706 Project Manager: Joseph Hernandez 11/5/2024 2:19:50PM

Midland TX, 79706		Project Manager:	Jo	seph Hernand	lez			11	/5/2024 2:19:50PM
	V	olatile Organio	c Compo	unds by EI	PA 82601	В			Analyst: IY
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2445001-BLK1)							Prepared: 1	1/04/24 Anal	lyzed: 11/04/24
Benzene	ND	0.0250							
Ethylbenzene	ND	0.0250							
Toluene	ND	0.0250							
o-Xylene	ND	0.0250							
p,m-Xylene	ND	0.0500							
Total Xylenes	ND	0.0250							
Surrogate: Bromofluorobenzene	0.557		0.500		111	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.474		0.500		94.7	70-130			
Surrogate: Toluene-d8	0.552		0.500		110	70-130			
LCS (2445001-BS1)							Prepared: 1	1/04/24 Anal	lyzed: 11/04/24
Benzene	2.35	0.0250	2.50		94.2	70-130			
Ethylbenzene	2.42	0.0250	2.50		96.6	70-130			
Toluene	2.42	0.0250	2.50		96.9	70-130			
o-Xylene	2.50	0.0250	2.50		100	70-130			
p,m-Xylene	4.98	0.0500	5.00		99.7	70-130			
Total Xylenes	7.49	0.0250	7.50		99.8	70-130			
Surrogate: Bromofluorobenzene	0.579		0.500		116	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.485		0.500		97.0	70-130			
Surrogate: Toluene-d8	0.551		0.500		110	70-130			
LCS Dup (2445001-BSD1)							Prepared: 1	1/04/24 Anal	lyzed: 11/05/24
Benzene	2.50	0.0250	2.50		100	70-130	6.16	23	
Ethylbenzene	2.51	0.0250	2.50		100	70-130	3.90	27	
Toluene	2.52	0.0250	2.50		101	70-130	3.93	24	
o-Xylene	2.59	0.0250	2.50		104	70-130	3.36	27	
p,m-Xylene	5.16	0.0500	5.00		103	70-130	3.47	27	
Total Xylenes	7.75	0.0250	7.50		103	70-130	3.43	27	
Surrogate: Bromofluorobenzene	0.575		0.500		115	70-130			

0.500

0.500

98.2

108

70-130

70-130

Surrogate: 1,2-Dichloroethane-d4

Surrogate: Toluene-d8

0.491

0.538

Chevron, USAProject Name:Hayhurst NM Section 35 CTBReported:6301 Deauville BlvdProject Number:23077-0001Midland TX, 79706Project Manager:Joseph Hernandez11/5/20242:19:50PM

Nonhalogenated	Organics by	[,] EPA 8015D	- GRO

Analyst: IY

Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes

Blank (2445001-BLK1)						Prepared: 11	/04/24 Analy	zed: 11/04/24
Gasoline Range Organics (C6-C10)	ND	20.0						
Surrogate: Bromofluorobenzene	0.557		0.500	111	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.474		0.500	94.7	70-130			
Surrogate: Toluene-d8	0.552		0.500	110	70-130			
LCS (2445001-BS2)						Prepared: 11	/04/24 Analy	zed: 11/04/24
Gasoline Range Organics (C6-C10)	41.6	20.0	50.0	83.2	70-130			
Surrogate: Bromofluorobenzene	0.575		0.500	115	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.466		0.500	93.1	70-130			
Surrogate: Toluene-d8	0.554		0.500	111	70-130			
LCS Dup (2445001-BSD2)						Prepared: 11	/04/24 Analy	zed: 11/04/24
Gasoline Range Organics (C6-C10)	41.8	20.0	50.0	83.7	70-130	0.525	20	
Surrogate: Bromofluorobenzene	0.569		0.500	114	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.467		0.500	93.4	70-130			
Surrogate: Toluene-d8	0.551		0.500	110	70-130			

Chevron, USA	Project Name:	Hayhurst NM Section 35 CTB	Reported:
6301 Deauville Blvd	Project Number:	23077-0001	
Midland TX, 79706	Project Manager:	Joseph Hernandez	11/5/2024 2:19:50PM

Midland TX, 79706		Project Manager	r: Jos	seph Hernand	lez				11/5/2024 2:19:50PM	
	Nonhalogenated Organics by EPA 8015D - DRO/ORO							Analyst: NV		
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits	RPD %	RPD Limit %	Notes	
Blank (2445002-BLK1)							Prepared: 1	1/04/24 A	Analyzed: 11/04/24	
Diesel Range Organics (C10-C28)	ND	25.0								
Oil Range Organics (C28-C36)	ND	50.0								
Surrogate: n-Nonane	42.7		50.0		85.4	50-200				
LCS (2445002-BS1)							Prepared: 1	1/04/24 A	Analyzed: 11/04/24	
Diesel Range Organics (C10-C28)	228	25.0	250		91.3	38-132				
Surrogate: n-Nonane	44.4		50.0		88.8	50-200				
LCS Dup (2445002-BSD1)							Prepared: 1	1/04/24 A	Analyzed: 11/04/24	
Diesel Range Organics (C10-C28)	246	25.0	250		98.3	38-132	7.44	20		
Surrogate: n-Nonane	46.3		50.0		92.6	50-200				

Chevron, USA	Project Name:	Hayhurst NM Section 35 CTB	Reported:
6301 Deauville Blvd	Project Number:	23077-0001	
Midland TX, 79706	Project Manager:	Joseph Hernandez	11/5/2024 2:19:50PM

Anions by EPA 300.0/9056A									Analyst: IY	
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit		
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes	
Blank (2445023-BLK1)							Prepared: 1	1/04/24 Anal	yzed: 11/04/24	
Chloride	ND	20.0								
LCS (2445023-BS1)							Prepared: 1	1/04/24 Analy	yzed: 11/04/24	
Chloride	259	20.0	250		104	90-110				
LCS Dup (2445023-BSD1)							Prepared: 1	1/04/24 Anal	yzed: 11/04/24	

250

20.0

102

90-110

1.53

255

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Definitions and Notes

Chevron, USA	Project Name:	Hayhurst NM Section 35 CTB	
6301 Deauville Blvd	Project Number:	23077-0001	Reported:
Midland TX, 79706	Project Manager:	Joseph Hernandez	11/05/24 14:19

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

DNI Did Not Ignite

DNR Did not react with the addition of acid or base.

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

lient: C	nevron USA, In	C.			Bill To			100		Lab Us	se On	lv			TA	AT.	EPA P	rogram			
Client name: Amy Barnhill					Attention: Joseph Hernandez			Lah W	/O#				r	1D 2		Standard	CWA	SDWA			
	Aanager: Josep		idez		Address: 13000 W County Rd	100		F41	10	010	23	Numbe	1000			DINTAT	- 61310	1			
Project:	Hayhurst NM S	ection 35	СТВ	4	City, State, Zip: Odessa, TX 79			-	110	,	Analy	sis and N	/lethod				11-25	RCRA			
Etech Pr	oject #: 17586				Phone: (432)563-2200																
					Email: ap@etechenv.com, erick(@etechenv.	com		ρλ		1										
Phone: (432)305-6413									ORC								State				
	seph@etechen				Company Name: Etech Environment	ntal & Safety S	olutions		RO/	27	0	0.0		ΣZ	×	NM CO	Page 1 EPA Program CWA SDWA RCRA State UT AZ TX Remarks				
	d by: Edyte Kon	an		100	Incident ID: nAPP2302742810	P. San Contract		£.	30/0	y 80	601	le 30				×					
Time Sampled	Date Sampled	Matrix	No. of Containers	Sample ID		Lab	Number	Depth(ft.)	TPH GRO/DRO/ORO by 8015	BTEX by 8021 VOC by 8260	Metals 6010	Chloride 300.0		BGDOC	GDOC		Remarks				
11:00	10.30.2024	S	1		FS01			1.5'						х							
2 50 90	3.540-550-500				\$ 7777					_	-			~	-	100					
				-					-	-					+-		_				
		(1)									1		1								
											\vdash										
		1	14		3112024																
					21120							1 -									
				101	311																
				10																	
			//																		
									\rightarrow	-	-	-	-		-						
															1 - 1						
																_					
									1												
									- 1	-											
ddition	al Instructions	;																			
16.11		D. 16.									la i										
					m aware that tampering with or intentionall		the sample lo	cation,			1	A STATE OF THE STA				received on ice the c t less than 6 °C on st					
	of collection is cons ed by: (Signature)		Date .	rounds for lega		EK Date			Time		1000							**			
alinavich	- hijh	_	110/	31/24 9	Received by: (Signature)	rec 10	-31-21	1	Time	30	Door			\$	Use On	ıy					
Relinquishe					me Received by: (Signature)	Date	310		Time	30	Rec	eived o	n ice:	Y /	N						
telinquishe	ed bystSignature)	n	Date				1 - /	. 01	1-	//	1000000000										
telinquishe	ed by (Signature)	rales	Date 			1//	1.70		11	50	T1			T2		T2					
elinguishe	ed by: (Signature)	zales	II- I	-24 1	7.5 Received by: (Signature)	Date	1.74		Time	50	T1_			<u>T2</u>		T3					

or disposed of at the client expense. The report for the analysis of the above on the report.

Continuous environments of the analysis of the above environments of the analysis of the analysis of the above environments of the analysis of the an

Printed: 11/4/2024 7:59:52AM

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

Instructions: Please take note of any NO checkmarks.

If we receive no response concerning these items within 24 hours of the date of this notice, all the samples will be analyzed as requested.

Client:	Chevron, USA	Date Received:	11/03/24	20:00		Work Order ID:	E411006
Phone:	432-305-6413	Date Logged In:	11/01/24	12:55		Logged In By:	Caitlin Mars
Email:	joseph@etechenv.com	Due Date:	11/12/24	17:00 (6 day TAT)			
Chain of	Custody (COC)						
	the sample ID match the COC?		Yes				
	he number of samples per sampling site location mate	ch the COC					
	amples dropped off by client or carrier?		Yes Yes	Comion C	·		
	e COC complete, i.e., signatures, dates/times, reques	ted analyses?	Yes	Carrier: <u>C</u>	<u>ourier</u>		
	ill samples received within holding time?	ied anaryses:	Yes				
3. Wole a	Note: Analysis, such as pH which should be conducted in i.e, 15 minute hold time, are not included in this disucssio		103			Comments	s/Resolution
Sample 7	Turn Around Time (TAT)						
6. Did the	e COC indicate standard TAT, or Expedited TAT?		Yes				
Sample (<u>Cooler</u>						
7. Was a	sample cooler received?		Yes				
8. If yes,	was cooler received in good condition?		Yes				
9. Was th	e sample(s) received intact, i.e., not broken?		Yes				
10. Were	custody/security seals present?		No				
11. If yes	, were custody/security seals intact?		NA				
	ne sample received on ice? If yes, the recorded temp is 4°C, Note: Thermal preservation is not required, if samples are minutes of sampling visible ice, record the temperature. Actual sample	received w/i 15	Yes				
	•	temperature. 4	<u>C</u>				
	<u>Container</u> queous VOC samples present?		No				
	OC samples collected in VOA Vials?		NA				
	head space less than 6-8 mm (pea sized or less)?		NA				
	a trip blank (TB) included for VOC analyses?		NA				
	on-VOC samples collected in the correct containers?		Yes				
	appropriate volume/weight or number of sample contain		Yes				
Field Lal		ers conected:	105				
•	field sample labels filled out with the minimum info	rmation:					
	ample ID?	mation.	Yes				
	Date/Time Collected?		Yes	L			
C	Collectors name?		No				
Sample I	Preservation_						
21. Does	the COC or field labels indicate the samples were pro-	eserved?	No				
22. Are s	ample(s) correctly preserved?		NA				
24. Is lab	filteration required and/or requested for dissolved m	etals?	No				
Multipha	ase Sample Matrix						
26. Does	the sample have more than one phase, i.e., multiphas	e?	No				
27. If yes	, does the COC specify which phase(s) is to be analy	zed?	NA				
Subconti	ract Laboratory						
	amples required to get sent to a subcontract laborator	v?	No				
	a subcontract laboratory specified by the client and if	-	NA	Subcontract Lab	· NA		
				Succentrate Eas	. 1411		
Chent II	<u>nstruction</u>						

Date

APPENDIX F

Correspondence & Notifications

Searches Operator Data Hearing Fee Application

[NOTIFY] Notification Of Sampling (C-141N) Application

395847 [<u>4323]</u> CHEVRON U S A INC CHEVRON U.S.A.INC.
CHEVRON U.S.A.INC. (4323)
, HAYHURST NM SECTION 35 CTB
, nAPP2302742810

APPROVED Status: 10/25/2024 SAPP2131342791, nAPP2302742810 Status Date:

Forms

This application type does not have attachments.

Questions NAPP2302742810 HAYHURST NM SECTION 35 CTB @ 0 Oil Release Remediation Plan Approved [fAPP2131342791] Hayhurst NM Section 35 CTB Incident Type Incident Status Incident Facility Location of Release Source HAYHURST NM SECTION 35 CTB Date Release Discovered What is the sampling surface area in square feet what is the estimated number of sampties that will be gathered 3 Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19302024 19.15.29.12 NMAC 07:00 AM

From the intersection of Whites City Road & CR 775, travel East for 0.03 miles. Turn North and travel for 0.76 miles. Turn East and travel 1.86 miles. Turn Northwest and travel 0.09 miles to the GPS coordinates (32.091991, -104.152622).

Acknowledgments

This submission type does not have acknowledgments, at this time.

Please provide any information necessary for navigation to sampling site

Comments

No comments found for this submission.

Conditions

No reasons found for this submission

New Mexico Energy, Minerals and Natural Resources Department | Copyright 2012 1220 South St. Francis Drive | Santa Fe, NM 87505 | P: (505) 476-3200 | F: (505) 476-3220

APPENDIX G

Archived Reports

REMEDIATION WORK PLAN

Hayhurst NM Section 35 CTB

Eddy County, New Mexico

Incident Number nAPP2302742810

Prepared for: Chevron USA, Inc. 6301 Deauville Blvd Midland, TX, 79706

Carlsbad • Midland • San Antonio • Lubbock • Hobbs • Lafayette

SYNOPSIS

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of Chevron USA, Inc (Chevron), presents the following Remediation Work Plan (RWP) detailing completed corrective actions associated with an inadvertent release of crude oil at the Hayhurst NM section 35 CTB (Site). Chevron proposes this RWP, which summarizes current corrective response efforts and details remediation objectives to rectify remaining environmental impacts.

SITE LOCATION AND RELEASE BACKGROUND

The Site is located in Unit A, Section 35, Township 25 South, Range 27 East, in Eddy County, New Mexico (32.0916°, -104.1523°) and is associated with oil and gas exploration and production operations on Federal Land managed by the Bureau of Land Management (**Figure 1** in **Appendix A**).

On January 12, 2023, a Lease Automatic Custody Transfer (LACT) unit failure resulted in approximately 6.217 barrels (bbls) of crude oil to overflow onto the LACT unit skid and the adjacent production pad surface. Vacuum trucks were immediately dispatched and recovered approximately 4.5 bbls of free-standing fluids. Chevron immediately reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Release Notification and Corrective Action Form C-141 (Form C-141), which was received by the NMOCD on January 27, 2023, and was subsequently assigned Incident Number nAPP2302742810. **Figure 2** in **Appendix A** depicts the observed release area, hereafter referred to as the Area of Concern (AOC).

SITE CHARACTERIZATION AND CLOSURE CRITERIA

Etech characterized the Site according to Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC) considering depth to groundwater and the proximity to:

- Any continuously flowing watercourse or any other significant watercourse;
- Any lakebed, sinkhole or playa lake (measured from the ordinary high-water mark);
- An occupied permanent residence, school, hospital, institution or church;
- A spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes;
- Any freshwater well or spring;
- Incorporated municipal boundaries or a defined municipal fresh water well field covered under a municipal ordinance;
- A wetland;
- A subsurface mine;
- An unstable area (i.e. high karst potential); and
- A 100-year floodplain.

The closest well with available groundwater data is the New Mexico Office of State Engineer (NMOSE) well C-04371, located approximately ½-mile northwest of the Site. The well has a reported groundwater depth of 69 feet below ground surface (bgs) from 2019. Based on this measurement and findings from a regional groundwater data review, depth to groundwater at the Site is estimated to be between 51 and 100 feet bgs. The referenced well record is provided in **Appendix C**.

Based on the desktop review of the current BLM Carlsbad Field Office (CFO) karst cave potential map, this Site is located in a high potential karst area. All other potential receptors are not within the established buffers in NMAC 19.15.29.12. Receptor details and sources used for the site characterization are included **in Figure 1B** and **Figure 1C** in **Appendix A**.

Based on the results from the desktop review, specifically the BLM CFO karst designation, the following Closure Criteria was applied:

Constituents of Concern (COCs)	Laboratory Analytical Method	Closure Criteria [†]
Chloride	(Environmental Protection Agency) EPA 300.0	600 milligrams per kilogram (mg/kg)
Total Petroleum Hydrocarbon (TPH)	EPA 8015 M/D	100 mg/kg
Benzene	EPA 8021B	10 mg/kg
Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX)	EPA 8021B	50 mg/kg

[†]The reclamation concentration requirements of 600 mg/kg chloride and 100 mg/kg TPH apply to the top 4 feet of areas to be immediately reclaimed following remediation pursuant to NMAC 19.15.17.13.

SITE ASSEMENT ASSESSMENT ACTIVITIES

On February 10, 2023, Etech personnel conducted site assessment to characterize the subject release by verifying the presence or absence of residual soil impacts within the AOC based on information provided on the Form C-141 and visual observation. Two discrete preliminary assessment soil samples (Sample Point 1 and Sample Point 2) were collected within the AOC at surface level. The locations of the preliminary soil samples are shown in **Figure 2** in **Appendix A**. Photographic documentation of site assessment activities is included in **Appendix D**.

The preliminary assessment soil samples were then placed into lab provided pre-cleaned glass jars, packaged with minimal void space, labeled, and immediately placed on ice. The soil samples were transported under strict chain-of-custody procedures to Permian Basin Environmental Laboratory (PBELAB) in Midland, Texas, for analysis of COCs.

Laboratory analytical results indicated elevated TPH concentrations for both preliminary assessment soil samples. As such, further remedial action appeared warranted.

EXCAVATION AND SOIL SAMPLING ACTIVITIES

On August 11, 2023, excavation activities were performed via hand shoveling to remove residual impacts identified by laboratory analytical results, verified information provided on the Form C-141 and visual observations. Excavation activities were driven by field screening soil samples for VOCs and chloride, as previously described.

Following the removal of residual soil impacts, Etech collected 5-point composite confirmation excavation soil samples at a sampling frequency of 200 square feet from the floor (labeled as Bottom Hole) and sidewalls (labeled as North Wall, South Wall, East Wall and West Wall) of the excavation. The 5-point composite samples were comprised of five equivalent aliquots homogenized in a 1-gallon, resealable plastic bag. The soil samples were then handled and analyzed as previously described by Eurofins Environment Testing (Eurofins) in Midland, Texas. Laboratory analytical results indicated one or more elevated COC concentrations present in most excavation sidewalls and throughout the excavation floor.

On March 22, 2024, Etech resumed excavation activities to remove the residual impacts identified by laboratory analytical results. Excavation activities were driven by field screening soil samples for VOCs and chloride, as previously described by PBELAB in Midland, Texas. Following additional soil removal, composite confirmation excavation soil samples were collected from the new excavation floors and sidewalls (as denoted with a suffix of "A") handled and analyzed as previously described. The locations of the final confirmation excavation soil samples are shown in **Figure 2** in **Appendix A**.

Following remediation activities, impacted soil removed from the Site was transported to a licensed and approved New Mexico landfill under Chevron approved waste manifests.

EXCAVATION SOIL SAMPLE LABORATORY ANALYTICAL RESULTS

Laboratory analytical results indicated that concentrations of COCs for all final confirmation excavation soil samples were below the applicable Site Closure Criteria, except soil sample BH13A. Laboratory analytical results for BH13A indicated chloride concentrations exceeded the applicable Site Closure Criteria within the top 1-foot bgs. Laboratory analytical results are summarized in **Table 1** included in **Appendix D**. The executed chain-of-custody forms and laboratory analytical reports are provided in **Appendix E**.

PROPOSED REMEDIATION WORKPLAN AND SCHEDULE

Based on the excavation soil sampling results, the following conclusions regarding the release are presented:

- Laboratory analytical results indicate residual chloride impacts remain within the vicinity of soil sampling location BH13A at 0.75 feet bgs, characterized by the concentration of 4,340 mg/kg. Impacts identified at the BH13A soil sampling location appears to be horizontally delineated by the surrounding confirmation excavation sidewall soil samples and adjacent confirmation excavation floor soil samples.
- Laboratory analytical results for concentrations of COCs for the remaining final confirmation excavation soil samples are below the applicable Site Closure Criteria.

Based on the conclusions drawn above, Chevron proposes the following remedial corrective actions:

- Based on laboratory analytical results, residual impacted soil will be excavated until concentrations of COCs are in accordance with the Site Closure Criteria or the Maximum Extent Practical (MEP). Although Chevron does not anticipate complications for the continuance of excavation activities in proximity to BH13A to Site Closure Criteria, the possibility of additional subsurface and/or surface utilities within the excavation area may restrict the excavation laterally and/or vertically. As such, residual soil impacts will be excavated to the MEP, leaving residual impacted soil in place directly beneath or adjacent to utilities on the production pad.
 - Chevron and/or a third-party operator may implement additional safety precautions above encroachment guidelines at their company's discretion for the health and safety of on-site personnel and for the structural integrity of utilities.
- Following the removal of residual impacts or excavation to the MEP, 5-point confirmation excavation soil samples will be collected from the excavation, handled, and analyzed as previously described. The excavation will then be backfilled with clean, locally sourced soil and restored to "as close to its original state" as possible.
- Upon receipt and review of confirmation excavation soil sample results, Chevron will determine the appropriate measure of corrective actions that will include one of the following:
 - Documenting the removal of impacted soil at the Site with a subsequent Closure Report detailing assessment and sampling activities, including, but not limited to backfilling the excavation with clean, locally sourced soil and restored to "as close to its original state as possible."

- or -

 Documenting and estimating the amount of residual impacted soil to be left in place at the Site with a subsequent Deferral Request Report detailing remediation efforts and soil sampling activities.

If you have any questions or comments, please do not hesitate to contact Joseph Hernandez at (432) 305-6413 or joseph@etechenv.com or Erick Herrera at (432) 305-6413 or joseph@etechenv.com. Appendix G provides correspondence and notification receipts associated with the subject release.

Sincerely,

eTECH Environmental and Safety Solutions, Inc.

Erick Herrera Staff Geologist

Ericl A

Joseph S. Hernandez Senior Managing Geologist

cc: Amy Barnhill, Chevron

New Mexico Oil Conservation Division

Bureau of Land Management

Appendices:

Appendix A: Figure 1: Site Map

Figure 1A: Site Characterization Map – Groundwater

Figure 1B: Site Characterization Map – Surficial Receptors

Figure 1C: Site Characterization Map – Subsurface Receptors

Figure 2: Preliminary Soil Sample Locations

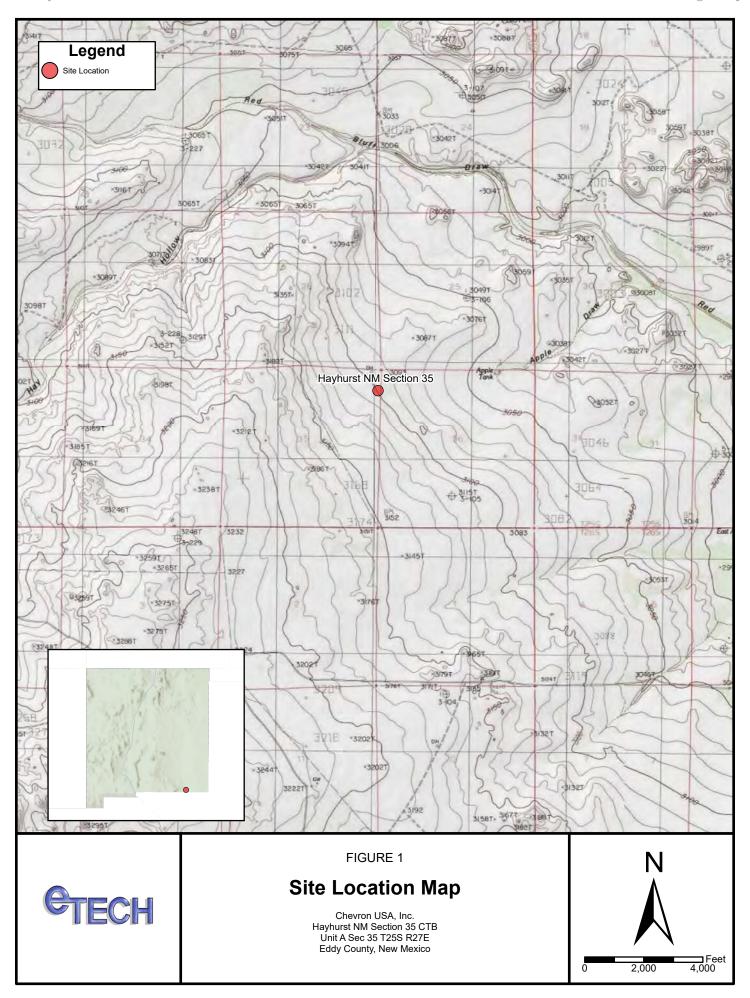
Figure 3: Excavation Soil Sample Locations

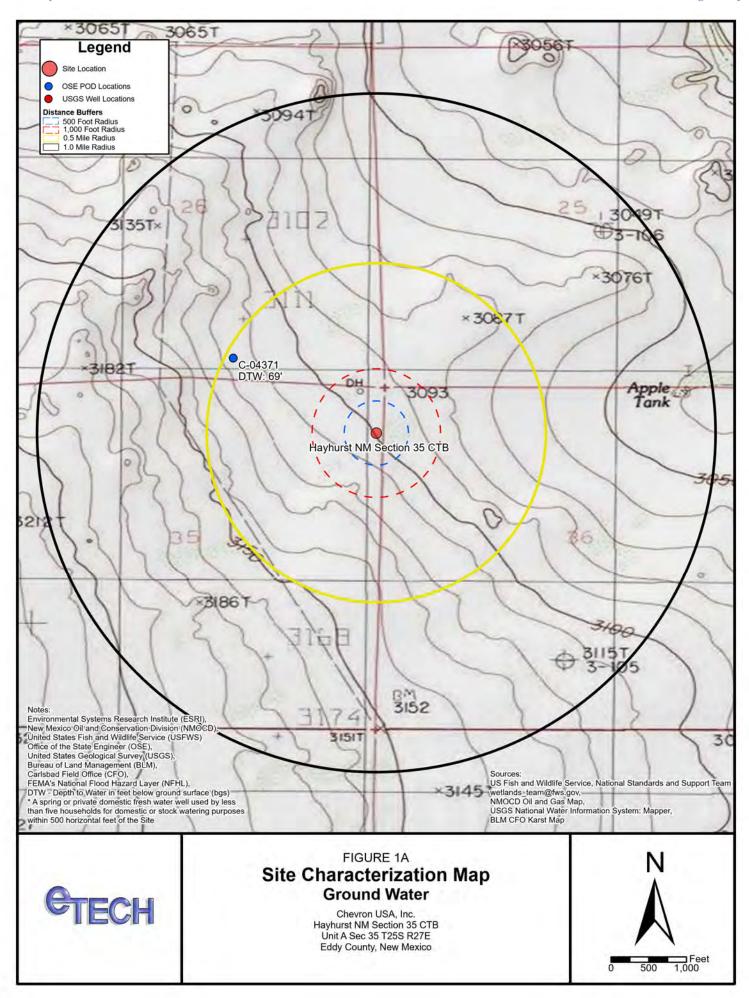
Figure 4: Proposed Excavation Area

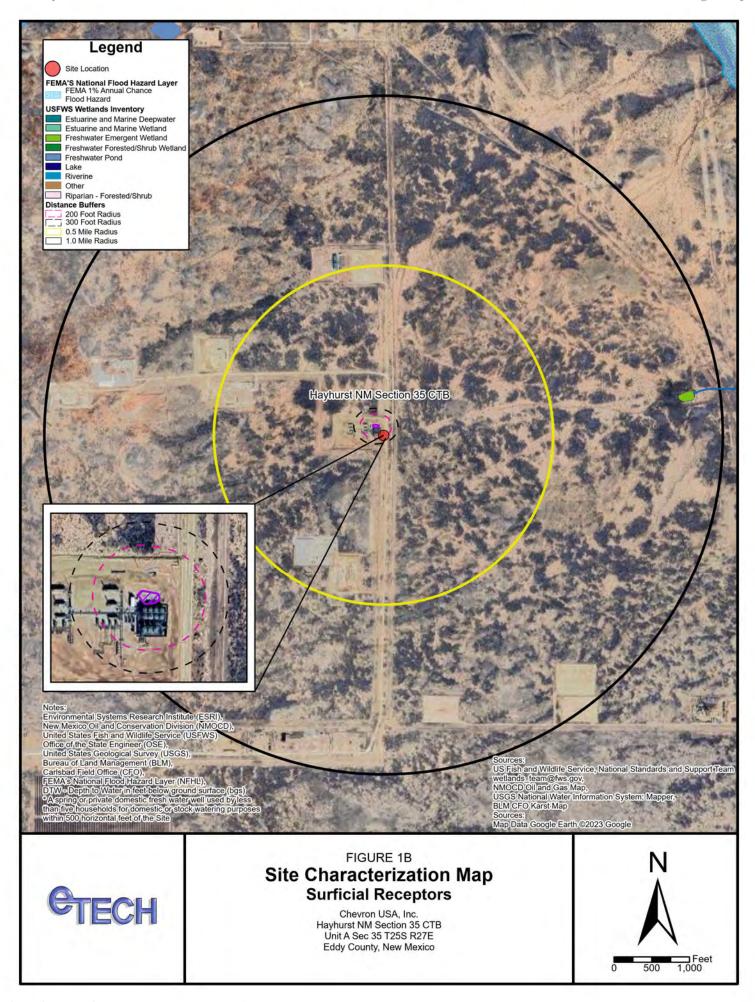
Appendix B: Referenced Well Records

Appendix C: Photographic Log

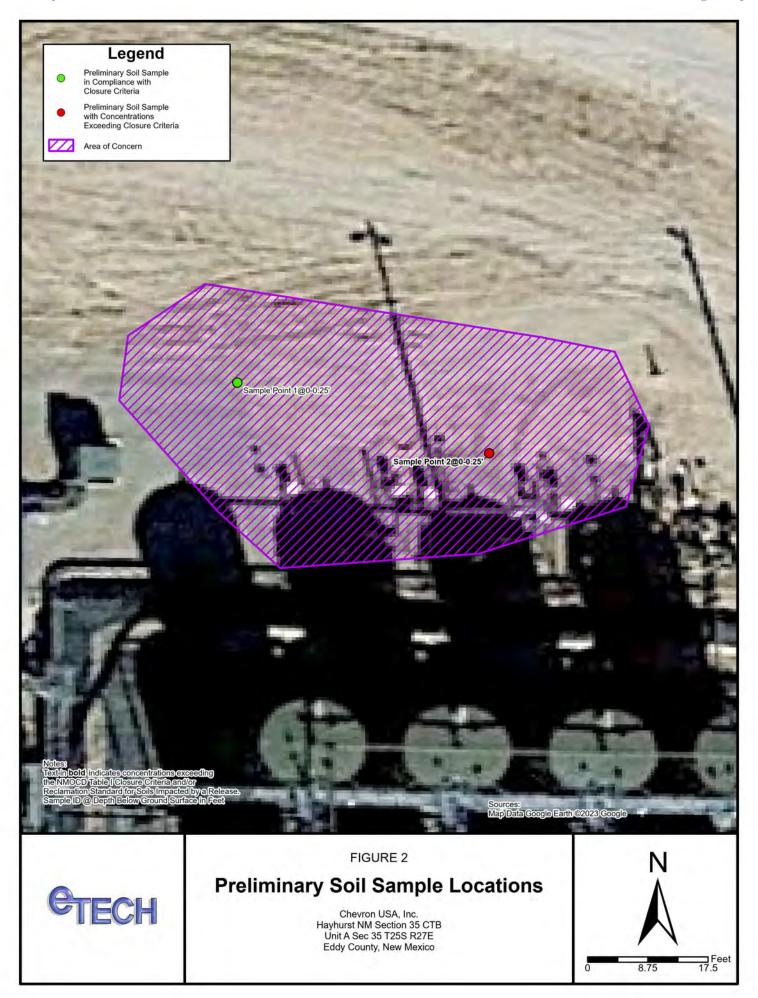
Appendix D: Tables

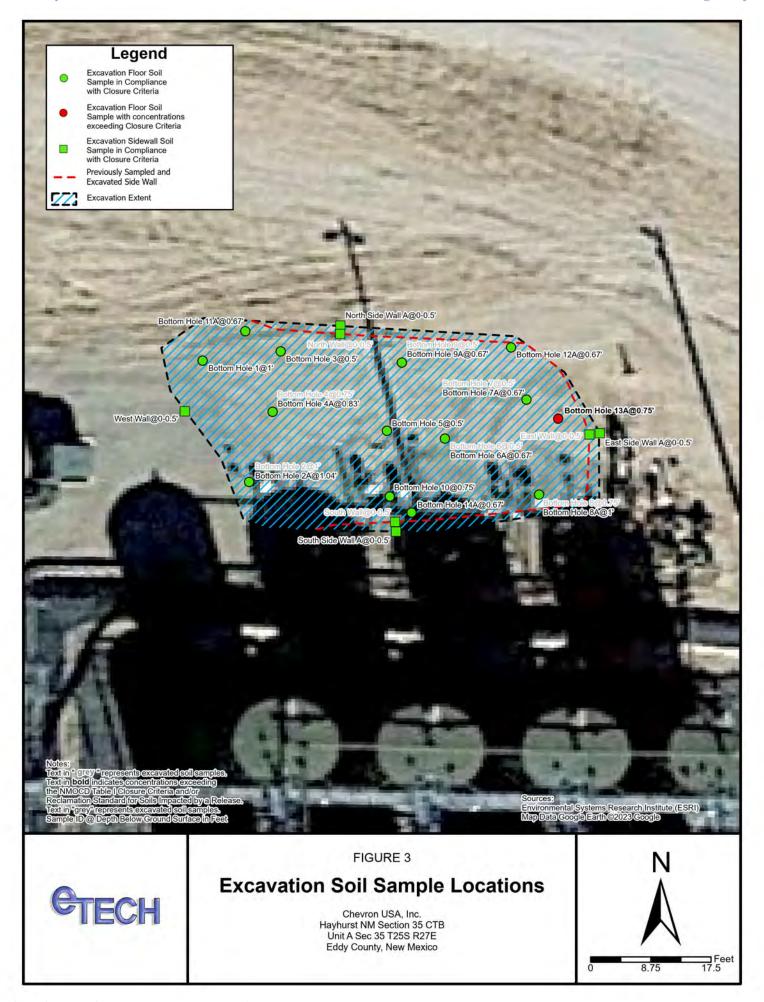

Appendix E: Laboratory Analytical Reports & Chain-of-Custody Documentation


Appendix F: Correspondence & Notifications


APPENDIX A

Figures





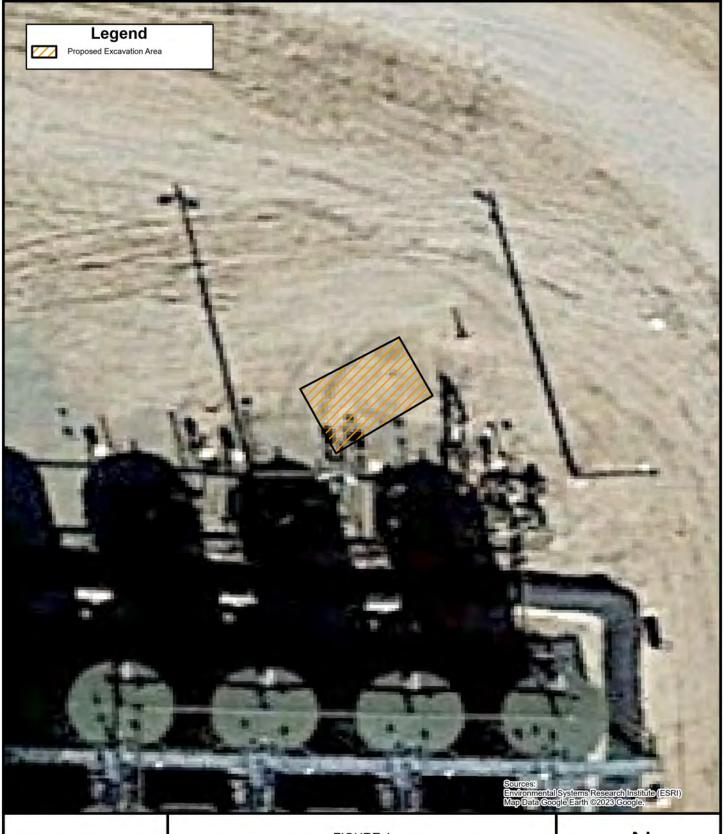
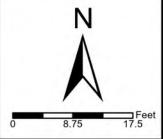



FIGURE 4

Proposed Excavation Area

Chevron USA, Inc. Hayhurst NM Section 35 CTB Unit A Sec 35 T25S R27E Eddy County, New Mexico

APPENDIX B

Referenced Well Records

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.o	see eta	te nn	1 110
WWW.U	13 C. S L		1.415

C. 3	27
C	S.
تيتية	
(_)	

PAGE 1 OF 2

								 			<u> </u>	
	OSE POD NO	. (WELL NO	.)		WELL TAG ID NO			OSE FILE NO(S).			
Z	N/A	•						C-4371			<u></u>	400
20	7777 ORDE	ED NAME (E)						PHONE (OPTH	ONLAR)			
.≼	WELL OWN		ehalf of Chevron N	I A E&PCo				432-687-813			2	3 7 7
AND WELL LOCATION				.A. Lat Co	•						ع.	Fro 12
7	WELL OWN							CITY		STATE	1.2	3 5
VEI	901 W. Wa	all St. Suit	te 100					Midland		TX	183 06	동
2			Di	GREES	MINUTES	SECO	MENE	<u> </u>				
Ž	WELL	ļ	Di	32	5	41.	01			remark e		
J	LOCATIO	N LA	TITUDE	J <u>Z</u>	3	71.	⁹¹ N		REQUIRED: ONE TEN	IH OF A S	ECOND	
ER	(FROM GPS)		NGITUDE	104	9	31.	92 W	* DATUM REG	QUIRED: WGS 84			
GENERAL	DESCRIPTION		IG WELL LOCATION TO	OTDEET AND	DECC AND COMMON	I I ANTON	ADVe DIS	s (SECTION TO	WANGERING DANGE) WILL	EDE AVA	II ADI E	
1. G	DESCRIPTION	ON RELATIO	G WELL DOCATION IN	Jaireel Addi	CESS AND COMMO!	LEMEN	AKKO - FLO	s (section, to	WISHUL, RANGE) WII	EKE AVA	III	
_												
	LICENSE NO		NAME OF LICENSED	DONTED					NAME OF WELL DR	II I NG CO	MPANY	
	WD-1		WAVE OF EICHOLD	DALLER	John W. White						ompany, Inc.	
				·								
	DRILLING S		DRILLING ENDED	DEPTH OF CO	MPLETED WELL (F	רד		LE DEPTH (FT)	DEPTH WATER FIR		INTERED (FT)	
	10/17/	2019	10/17/2019					100		69		
			·						STATIC WATER LEV	EL IN CO	MPLETED WE	LL (FT)
· •	COMPLETE	D WELL IS:	ARTESIAN	DRY HOL	LE 🔽 SHALLO	W (UNCC	NFINED)			69		
CASING INFORMATION	DRILLING FLUID: AIR MUD ADDITIVES - SPECIFY:											
[V	DRILLING METHOD: ROTARY HAMMER CABLE TOOL OTHER - SPECIFY:											
SE SE	DRILLING M	ŒTHOD:	[7] ROTARY	HAMMEI	R CABLET	OOL	OTHE	R – SPECIFY:				
Σ	DEPTH	(feet bgl)	BORE HOLE	CASING	MATERIAL ANI	O/OR		ı emic	CASING	CAST	NG WALL	SLOT
C	FROM TO DIAM				GRADE			ASING NECTION	INSIDE DIAM.		CKNESS	SIZE
Ž	(inches)				each casing string,		7	TYPE	(inches)		nches)	(inches)
₹.				note	sections of screen)	,	(add coup	ling diameter)			-	
Ž												
3												
DRILLING &												
7 T				1						Ì		
				<u> </u>								
				 					<u> </u>			\vdash
										 		
									<u> </u>	-		
				<u> </u>								
		<u> </u>		<u> </u>					<u> </u>	<u> </u>		<u> </u>
	DEPTH	(feet bgl)	BORE HOLE	1.1	ST ANNULAR S	EAL MA	TERIAL A	AND	AMOUNT		METHO	D OF
7	· · · · · · · · · · · · · · · · · · ·		DIAM. (inches)		VEL PACK SIZE				(cubic feet)		PLACEM	
Ð	FROM	то	<u> </u>						` '			
E												
¥												
2												
ANNULAR MATERIAL												
Ž	<u> </u>			1								
		 	-	+								<u>-</u>
eri.		 						<u> </u>				
		<u> </u>]								
	OCE BITED							11 PD A	WELL DECORD	• • • • •		0/10>

POD NO.

TRN NO.

WELL TAG ID NO.

LOCATION 255.27E.26.

Released to Imaging: 12/17/2024 11:07:38 AM

FILE NO.

PAGE 2 OF 2

WELL TAG ID NO.

			·							
	DEPTH (1	eet bgl)	THICKNESS (feet)	INCLUDE WATE	D TYPE OF MATERIAL R-BEARING CAVITIES plemental sheets to fully	OR FRACTUR	E ZONES	WAT BEAR (YES	ING?	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
	0	5	5		Tan clayey sand			Y	√N	
	5	100	95		Gypsum			✓ Y	N	
								Y	N	
								Y	N	
								Y	N	
Ţ								Y	N	
HYDROGEOLOGIC LOG OF WELL	·							Y	N	
OF.								Y	N	
93			_	Y	N					
OIC.								Y	N	
010								Y	N	
)as								Y	N	
DRO								Y	N	
4. HY								Y	N	
4	· ·					· · · · · · · · · · · · · · · · · · ·		Y	N	
	:							Y	N	
								Y	N	
					· · · · · · · · · · · · · · · · · · ·			Y	N	
								Y	N N	
			<u> </u>					Y	N N	
	AGENOD I	CED TO E	TTM (ATTE VIET D	OF WATER-BEARIN	C STRATA.		TO	TAL ESTIN		
					THER - SPECIFY:		· · ·	ELL YIELD		0.00
	PUM		IR LIFT	BAILER O	HER - SPECIF I:					
NOI	WELL TES				A COLLECTED DURING DISCHARGE					
TEST; RIG SUPERVISION	MISCELLA	NEOUS IN	FORMATION:				,			
EST	PRINT NAI	Æ(S) OF D	RILL RIG SUPER	RVISOR(S) THAT PRO	VIDED ONSITE SUPER	VISION OF WI	ELL CONSTR	UCTION O	THER TH	IAN LICENSEE:
S. T	Dallas Rade	` '				·				
SIGNATURE	RECORD O	F THE ABO	OVE DESCRIBED	WELL, I ALSO CERT	F MY KNOWLEDGE A TIFY THAT THE WELL HOLDER WITHIN 30 DA	rag, if requi	RED, HAS BI	EN INSTA	LLED AT	ND THAT THIS
NE			-				1/-	281	a	
3		SIGNAT	URE OF DRILLE	ER / PRINT SIGNEE	NAME			100 I	7 DATE	
	<u> </u>									
	R OSE INTER	NAL USE		<u> </u>	POD VO			ECORD &	LOG (Ve	rsion 04/30/2019)
FIL	E NO.				POD NO.	l 1K	N NO.			

LOCATION

APPENDIX C

Photographic Log

PHOTOGRAPHIC LOG

Chevron USA, Inc. Hayhurst NM Section 35 CTB Incident Number nAPP2302742810

Photograph 1 Date: 02/10/2023

Description: Northwest view of site assessment.

2/10/2 32 091942 N. 104 15

Photograph 2 Date: 02/10/2022

Description: Northeast view of site assessment.

Photograph 3 Date: 08/11/2023

Description: Northern view of excavation activities.

Photograph 4 Date: 08/11/2023 Description: Western view of excavation activities.

PHOTOGRAPHIC LOG

Chevron USA, Inc. Hayhurst NM Section 35 CTB Incident Number nAPP2302742810

Photograph 5 Date: 08/11/2023
Description: Southeastern view of excavation

activities.

Photograph 6 Date: 03/22/2024
Description: Southeastern view of site restoration

Photograph 7 Date: 03/22/2024

Description: Northeast view of site restoration

activities.

Photograph 8 Date: 03/22/2024

Description: Southwest view of site restoration

activities.

activities.

APPENDIX D

Tables

Table 1 SOIL SAMPLE ANALYTICAL RESULTS Chevron USA, Inc. Hayhurst NM Section 35 CTB Eddy County, New Mexico

Sample I.D.	Sample Date	Sample Depth (inches)	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)	
NMOCD Table I Closur 19.15.29)	e Criteria for Soil	is impacted by a F	Release (NMAC	10	50	NE	NE	NE	100	600	
				Preliminary	Soil Samples - Incide	nt Number nAPP23027	42810				
Sample Point 1	02/10/2023	0-3	0-0.25	<0.00116	0.00301	<29.1	55.5	<29.1	55.5	7.37	
Sample Point 2	02/10/2023	0-3	0-0.25	<0.00114	32.8	2,380	8,470	270	11,100	5.25	
	Excavation Soil Samples - Incident Number nAPP2302742810										
Bottom Hole 1	08/11/2023	12	1	<0.00200	<0.00400	<49.6	<49.6	<49.6	<49.6	334	
Bottom Hole 2	08/11/2023	12	1	<0.00199	<0.00398	<50.2	64.0	<50.2	64.0	707	
Bottom Hole 2A	03/22/2024	12.5	1.04	<0.00103	<0.00206	<25.8	30.6	<25.8	30.6	170	
Bottom Hole 3	08/11/2023	6	0.5	<0.00201	<0.00402	<50.4	<50.4	<50.4	<50.4	241	
Bottom Hole 4	08/11/2023	9	0.75	<0.00200	<0.00401	<50.5	1,630	<50.5	1,630	469	
Bottom Hole 4A	03/22/2024	10	0.83	<0.00105	<0.00211	<26.3	<26.3	<26.3	<26.3	75.4	
Bottom Hole 5	08/11/2023	6	0.5	<0.00200	<0.00399	<50.0	53.7	<50.0	53.7	551	
Bottom Hole 6	08/11/2023	6	0.5	<0.00199	<0.00398	<49.9	510	<49.9	510	583	
Bottom Hole 6A	03/22/2024	8	0.67	<0.00106	<0.00213	<26.6	<26.6	<26.6	<26.6	111	
Bottom Hole 7	08/11/2023	6	0.5	<0.00198	<0.00396	<50.2	<50.2	<50.2	<50.2	706	
Bottom Hole 7A	03/22/2024	8	0.67	<0.00105	<0.00211	<26.3	<26.3	<26.3	<26.3	131	
Bottom Hole 8	08/11/2023	9	0.75	<0.00199	<0.00398	<50.1	4,700	<50.1	4,700	399	
Bottom Hole 8A	03/22/2024	12	1	<0.00110	<0.00220	<27.5	<27.5	<27.5	<27.5	60.3	
Bottom Hole 9	08/11/2023	6	0.5	<0.00202	<0.00403	<50.5	295	<50.5	295	437	
Bottom Hole 9A	03/22/2024	8	0.67	<0.00105	<0.00211	<26.3	<26.3	<26.3	<26.3	132	
Bottom Hole 10	08/11/2023	9	0.75	<0.00201	<0.00402	<49.9	59.0	<49.9	59.0	306	
Bottom Hole 11A	03/22/2024	8	0.67	<0.00105	<0.00211	<26.3	<26.3	<26.3	<26.3	107	
Bottom Hole 12A	03/22/2024	8	0.67	<0.00104	<0.00208	<26.0	<26.0	<26.0	<26.0	231	
Bottom Hole 13A	03/22/2024	8	0.67	<0.00108	<0.00215	<26.9	<26.9	<26.9	<26.9	4,340	
Bottom Hole 14A	03/22/2024	8	0.67	<0.00104	<0.00208	<26.0	<26.0	<26.0	<26.0	236	

Table 1 **SOIL SAMPLE ANALYTICAL RESULTS** Chevron USA, Inc. **Hayhurst NM Section 35 CTB Eddy County, New Mexico**

Sample I.D.	Sample Date	Sample Depth (inches)	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table I Closure Criteria for Soils Impacted by a Release (NMAC 19.15.29)				10	50	NE	NE	NE	100	600
North Wall	08/11/2023	0-6	0-0.5	<0.00200	<0.00401	<49.6	167	<49.6	167	803
North Side Wall A	03/22/2024	0-6	0-0.5	<0.00103	<0.00206	<25.8	<25.8	<25.8	<25.8	127
South Wall	08/11/2023	0-6	0-0.5	<0.00200	<0.00400	<49.5	90.8	<49.5	90.8	654
South Side Wall A	03/22/2024	0-6	0-0.5	<0.00104	<0.00208	<26.0	<26.0	<26.0	<26.0	91.8
East Wall	08/11/2023	0-6	0-0.5	<0.00199	<0.00398	<50.0	51.2	<50.0	51.2	1,710
East Side Wall A	03/22/2024	0-6	0-0.5	<0.00102	<0.00204	26.5	<25.5	<25.5	26.5	282
West Wall	08/11/2023	0-6	0-0.5	<0.00198	<0.00396	<50.3	69.4	<50.3	69.4	360

Notes:

bgs: below ground surface mg/kg: milligrams per kilogram

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

GRO: Gasoline Range Organics DRO: Diesel Range Organics

ORO: Oil Range Organics TPH: Total Petroleum Hydrocarbon

NMOCD: New Mexico Oil Conservation Division

NMAC: New Mexico Administrative Code

Text in ""grey"" represents excavated soil samples

Concentrations in **bold** exceed the NMOCD Table I Closure Criteria and/or Reclamation Standard[†] for Soils Impacted by a Release

The reclamation concentration requirements of 600 mg/kg chloride and 100 mg/kg TPH apply to the top 4 feet of areas to be immediately reclaimed following remediation pursuant to NMAC 19.15.17.13.

APPENDIX E

Laboratory Analytical Reports & Chain-of-Custody Documentation

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Blake Estep
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: Hayhurst Section 35 CTB

Project Number: 17586 Location: New Mexico

Lab Order Number: 3B15006

Current Certification

Report Date: 02/22/23

13000 West County Road 100 Odessa TX, 79765 Project: Hayhurst Section 35 CTB

Project Number: 17586 Project Manager: Blake Estep

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Sample Point -1 @ 0"-3"	3B15006-01	Soil	02/14/23 11:15	02-15-2023 12:36
Sample Point -2 @ 0"-3"	3B15006-02	Soil	02/14/23 11:19	02-15-2023 12:36

Project Number: 17586

Project: Hayhurst Section 35 CTB

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

Sample Point -1 @ 0"-3" 3B15006-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00116	mg/kg dry	1	P3B1610	02/16/23 15:49	02/16/23 21:15	EPA 8021B	
Toluene	ND	0.00116	mg/kg dry	1	P3B1610	02/16/23 15:49	02/16/23 21:15	EPA 8021B	
Ethylbenzene	ND	0.00116	mg/kg dry	1	P3B1610	02/16/23 15:49	02/16/23 21:15	EPA 8021B	
Xylene (p/m)	0.00301	0.00233	mg/kg dry	1	P3B1610	02/16/23 15:49	02/16/23 21:15	EPA 8021B	
Xylene (o)	ND	0.00116	mg/kg dry	1	P3B1610	02/16/23 15:49	02/16/23 21:15	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		76.1 %	80-120		P3B1610	02/16/23 15:49	02/16/23 21:15	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		103 %	80-120		P3B1610	02/16/23 15:49	02/16/23 21:15	EPA 8021B	
Total Petroleum Hydrocarbons C6	6-C35 by EPA	A Method	8015M						
C6-C12	ND	29.1	mg/kg dry	1	P3B1804	02/18/23 09:30	02/20/23 12:23	TPH 8015M	
>C12-C28	55.5	29.1	mg/kg dry	1	P3B1804	02/18/23 09:30	02/20/23 12:23	TPH 8015M	
>C28-C35	ND	29.1	mg/kg dry	1	P3B1804	02/18/23 09:30	02/20/23 12:23	TPH 8015M	
Surrogate: 1-Chlorooctane		85.9 %	70-130		P3B1804	02/18/23 09:30	02/20/23 12:23	TPH 8015M	
Surrogate: o-Terphenyl		105 %	70-130		P3B1804	02/18/23 09:30	02/20/23 12:23	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	55.5	29.1	mg/kg dry	1	[CALC]	02/18/23 09:30	02/20/23 12:23	calc	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	7.37	1.16	mg/kg dry	1	P3B1709	02/17/23 15:57	02/20/23 10:48	EPA 300.0	
% Moisture	14.0	0.1	%	1	P3B1603	02/16/23 10:06	02/16/23 10:10	ASTM D2216	

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100 Odessa TX, 79765 Project: Hayhurst Section 35 CTB

Project Number: 17586 Project Manager: Blake Estep

Sample Point -2 @ 0''-3'' 3B15006-02 (Soil)

		Reporting											
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note				
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.							
BTEX by 8021B													
Benzene	ND	0.00114	mg/kg dry	1	P3B1610	02/16/23 15:49	02/16/23 21:36	EPA 8021B					
Toluene	2.99	0.0568	mg/kg dry	50	P3B1610	02/16/23 15:49	02/17/23 10:05	EPA 8021B					
Ethylbenzene	2.23	0.0568	mg/kg dry	50	P3B1610	02/16/23 15:49	02/17/23 10:05	EPA 8021B					
Xylene (p/m)	20.6	0.114	mg/kg dry	50	P3B1610	02/16/23 15:49	02/17/23 10:05	EPA 8021B					
Xylene (o)	7.01	0.0568	mg/kg dry	50	P3B1610	02/16/23 15:49	02/17/23 10:05	EPA 8021B					
Surrogate: 4-Bromofluorobenzene		82.3 %	80-120		P3B1610	02/16/23 15:49	02/17/23 10:05	EPA 8021B					
Surrogate: 1,4-Difluorobenzene		113 %	80-120		P3B1610	02/16/23 15:49	02/17/23 10:05	EPA 8021B					
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M										
C6-C12	2380	142	mg/kg dry	5	P3B1804	02/18/23 09:30	02/21/23 08:51	TPH 8015M					
>C12-C28	8470	142	mg/kg dry	5	P3B1804	02/18/23 09:30	02/21/23 08:51	TPH 8015M					
>C28-C35	270	28.4	mg/kg dry	1	P3B1804	02/18/23 09:30	02/21/23 08:51	TPH 8015M					
Surrogate: 1-Chlorooctane		97.2 %	70-130		P3B1804	02/18/23 09:30	02/21/23 08:51	TPH 8015M					
Surrogate: o-Terphenyl		109 %	70-130		P3B1804	02/18/23 09:30	02/21/23 08:51	TPH 8015M					
Total Petroleum Hydrocarbon	11100	142	mg/kg dry	5	[CALC]	02/18/23 09:30	02/21/23 08:51	calc					
C6-C35													
General Chemistry Parameters by	General Chemistry Parameters by EPA / Standard Methods												
Chloride	5.25	1.14	mg/kg dry	1	P3B1709	02/17/23 15:57	02/18/23 05:23	EPA 300.0					
% Moisture	12.0	0.1	%	1	P3B1603	02/16/23 10:06	02/16/23 10:10	ASTM D2216					

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100 Odessa TX, 79765 Project: Hayhurst Section 35 CTB

Project Number: 17586 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3B1610 - *** DEFAULT PREP ***										
Blank (P3B1610-BLK1)				Prepared &	Analyzed:	02/16/23				
Benzene	ND	0.00100	mg/kg							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.127		"	0.120		106	80-120			
Surrogate: 4-Bromofluorobenzene	0.0832		"	0.120		69.3	80-120			S-GC
LCS (P3B1610-BS1)				Prepared &	z Analyzed:	02/16/23				
Benzene	0.0962	0.00100	mg/kg	0.100		96.2	80-120			
Toluene	0.0895	0.00100	"	0.100		89.5	80-120			
Ethylbenzene	0.0973	0.00100	"	0.100		97.3	80-120			
Xylene (p/m)	0.161	0.00200	"	0.200		80.6	80-120			
Xylene (o)	0.0910	0.00100	"	0.100		91.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.0931		"	0.120		77.6	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.138		"	0.120		115	80-120			
LCS Dup (P3B1610-BSD1)				Prepared &	z Analyzed:	02/16/23				
Benzene	0.105	0.00100	mg/kg	0.100		105	80-120	8.36	20	
Toluene	0.0993	0.00100	"	0.100		99.3	80-120	10.5	20	
Ethylbenzene	0.109	0.00100	"	0.100		109	80-120	10.9	20	
Xylene (p/m)	0.175	0.00200	"	0.200		87.5	80-120	8.18	20	
Xylene (o)	0.102	0.00100	"	0.100		102	80-120	11.3	20	
Surrogate: 1,4-Difluorobenzene	0.142		"	0.120		119	80-120			
Surrogate: 4-Bromofluorobenzene	0.0976		"	0.120		81.3	80-120			
Calibration Blank (P3B1610-CCB1)				Prepared &	. Analyzed:	02/16/23				
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.120		"							
Xylene (p/m)	0.170		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.0905		"	0.120		75.4	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.133		"	0.120		111	80-120			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100 Odessa TX, 79765 Project: Hayhurst Section 35 CTB

Project Number: 17586 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3B1610 - *** DEFAULT PREP ***										
Calibration Blank (P3B1610-CCB2)				Prepared &	z Analyzed:	02/16/23				
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.110		"							
Xylene (p/m)	0.370		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.125		"	0.120		104	80-120			
Surrogate: 4-Bromofluorobenzene	0.0931		"	0.120		77.6	80-120			S-G
Calibration Check (P3B1610-CCV1)				Prepared &	Analyzed:	02/16/23				
Benzene	0.116	0.00100	mg/kg	0.100		116	80-120			
Toluene	0.104	0.00100	"	0.100		104	80-120			
Ethylbenzene	0.103	0.00100	"	0.100		103	80-120			
Xylene (p/m)	0.177	0.00200	"	0.200		88.4	80-120			
Xylene (o)	0.107	0.00100	"	0.100		107	80-120			
Surrogate: 1,4-Difluorobenzene	0.140		"	0.120		116	75-125			
Surrogate: 4-Bromofluorobenzene	0.0900		"	0.120		75.0	75-125			
Calibration Check (P3B1610-CCV2)				Prepared &	z Analyzed:	02/16/23				
Benzene	0.106	0.00100	mg/kg	0.100		106	80-120			
Toluene	0.105	0.00100	"	0.100		105	80-120			
Ethylbenzene	0.107	0.00100	"	0.100		107	80-120			
Xylene (p/m)	0.184	0.00200	"	0.200		92.0	80-120			
Xylene (o)	0.105	0.00100	"	0.100		105	80-120			
Surrogate: 1,4-Difluorobenzene	0.134		"	0.120		112	75-125			
Surrogate: 4-Bromofluorobenzene	0.0969		"	0.120		80.7	75-125			
Calibration Check (P3B1610-CCV3)				Prepared: ()2/16/23 Aı	nalyzed: 02	/17/23			
Benzene	0.113	0.00100	mg/kg	0.100		113	80-120			
Toluene	0.110	0.00100	"	0.100		110	80-120			
Ethylbenzene	0.111	0.00100	"	0.100		111	80-120			
Xylene (p/m)	0.188	0.00200	"	0.200		94.0	80-120			
Xylene (o)	0.111	0.00100	"	0.100		111	80-120			
Surrogate: 4-Bromofluorobenzene	0.0963		"	0.120		80.2	75-125			

Permian Basin Environmental Lab, L.P.

Surrogate: 1,4-Difluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

115

75-125

0.120

0.138

13000 West County Road 100 Odessa TX, 79765 Project: Hayhurst Section 35 CTB

Project Number: 17586 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	ľ
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P3B1610 - *** DEFAULT PREP ***

Surrogate: 1,4-Difluorobenzene

Matrix Spike (P3B1610-MS1)	Sour	ce: 3B14016	5-28	Prepared: 0	02/16/23 A	nalyzed: 02	2/17/23			
Benzene	0.0885	0.00102	mg/kg dry	0.102	ND	86.8	80-120			
Toluene	0.0889	0.00102	"	0.102	ND	87.2	80-120			
Ethylbenzene	0.0979	0.00102	"	0.102	ND	96.0	80-120			
Xylene (p/m)	0.161	0.00204	"	0.204	ND	78.8	80-120			S-GC
Xylene (o)	0.0858	0.00102	"	0.102	ND	84.1	80-120			
Surrogate: 4-Bromofluorobenzene	0.102		"	0.122		83.6	80-120			
Surrogate: 1,4-Difluorobenzene	0.138		"	0.122		113	80-120			
Matrix Spike Dup (P3B1610-MSD1)	Sour	ce: 3B14016	5-28	Prepared: 0	02/16/23 A	nalyzed: 02	2/17/23			
Benzene	0.0891	0.00102	mg/kg dry	0.102	ND	87.3	80-120	0.632	20	
Toluene	0.0854	0.00102	"	0.102	ND	83.7	80-120	4.03	20	
Ethylbenzene	0.0911	0.00102	"	0.102	ND	89.3	80-120	7.26	20	
Xylene (p/m)	0.147	0.00204	"	0.204	ND	72.2	80-120	8.80	20	QM-05
Xylene (o)	0.0809	0.00102	"	0.102	ND	79.3	80-120	5.89	20	QM-05
Surrogate: 4-Bromofluorobenzene	0.0962		"	0.122		78.6	80-120			S-GC

0.122

114

80-120

0.140

Project: Hayhurst Section 35 CTB

13000 West County Road 100 Odessa TX, 79765 Project Number: 17586 Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source	0/775	%REC	222	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3B1804 - TX 1005										
Blank (P3B1804-BLK1)				Prepared: (02/18/23 At	nalyzed: 02	/20/23			
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	86.1		"	100		86.1	70-130			
Surrogate: o-Terphenyl	50.4		"	50.0		101	70-130			
LCS (P3B1804-BS1)				Prepared: (02/18/23 At	nalyzed: 02	2/20/23			
C6-C12	854	25.0	mg/kg	1000		85.4	75-125	<u> </u>		
>C12-C28	983	25.0	"	1000		98.3	75-125			
Surrogate: 1-Chlorooctane	122		"	100		122	70-130			
Surrogate: o-Terphenyl	61.8		"	50.0		124	70-130			
LCS Dup (P3B1804-BSD1)				Prepared: (02/18/23 At	nalyzed: 02	2/20/23			
C6-C12	846	25.0	mg/kg	1000		84.6	75-125	0.883	20	
>C12-C28	974	25.0	"	1000		97.4	75-125	0.951	20	
Surrogate: 1-Chlorooctane	120		"	100		120	70-130			
Surrogate: o-Terphenyl	61.0		"	50.0		122	70-130			
Calibration Check (P3B1804-CCV1)				Prepared: (02/18/23 At	nalyzed: 02	2/20/23			
C6-C12	465	25.0	mg/kg	500		93.1	85-115			
>C12-C28	466	25.0	"	500		93.3	85-115			
Surrogate: 1-Chlorooctane	101		"	100		101	70-130			
Surrogate: o-Terphenyl	49.6		"	50.0		99.3	70-130			
Calibration Check (P3B1804-CCV2)				Prepared: (02/18/23 At	nalyzed: 02	/20/23			
C6-C12	445	25.0	mg/kg	500		89.0	85-115			
>C12-C28	448	25.0	"	500		89.7	85-115			
Surrogate: 1-Chlorooctane	96.4		"	100		96.4	70-130			
Surrogate: o-Terphenyl	47.8		"	50.0		95.5	70-130			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Project: Hayhurst Section 35 CTB Project Number: 17586

13000 West County Road 100 Odessa TX, 79765

Project Number: 17586
Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3B1804 - TX 1005										
Calibration Check (P3B1804-CCV3)				Prepared: (02/18/23 A ₁	nalyzed: 02	/20/23			
C6-C12	444	25.0	mg/kg	500		88.8	85-115			
>C12-C28	456	25.0	"	500		91.2	85-115			
Surrogate: 1-Chlorooctane	97.3		"	100		97.3	70-130			
Surrogate: o-Terphenyl	47.8		"	50.0		95.6	70-130			
Matrix Spike (P3B1804-MS1)	Sou	rce: 3B14016	-21	Prepared: (02/18/23 A ₁	nalyzed: 02	/20/23			
C6-C12	696	25.5	mg/kg dry	1020	ND	68.2	75-125			QM-05
>C12-C28	819	25.5	"	1020	ND	80.3	75-125			
Surrogate: 1-Chlorooctane	91.4		"	102		89.6	70-130			
Surrogate: o-Terphenyl	45.2		"	51.0		88.6	70-130			
Matrix Spike Dup (P3B1804-MSD1)	Sou	rce: 3B14016	-21	Prepared: (02/18/23 Aı	nalyzed: 02	/20/23			
C6-C12	696	25.5	mg/kg dry	1020	ND	68.2	75-125	0.0117	20	QM-05
>C12-C28	820	25.5	"	1020	ND	80.3	75-125	0.0436	20	
Surrogate: 1-Chlorooctane	90.9		"	102		89.1	70-130			
Surrogate: o-Terphenyl	46.4		"	51.0		90.9	70-130			

13000 West County Road 100 Project Number: 17586 Odessa TX, 79765

Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: Hayhurst Section 35 CTB

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3B1603 - *** DEFAULT PREP ***										
Blank (P3B1603-BLK1)				Prepared &	z Analyzed:	02/16/23				
% Moisture	ND	0.1	%							
Duplicate (P3B1603-DUP1)	Sou	rce: 3B14013-	07	Prepared &	Analyzed:	02/16/23				
% Moisture	9.0	0.1	%		9.0			0.00	20	
Duplicate (P3B1603-DUP2)	Sou	rce: 3B14015-	07	Prepared &	Analyzed:	02/16/23				
% Moisture	10.0	0.1	%		10.0			0.00	20	
Duplicate (P3B1603-DUP3)	Sou	rce: 3B14015-	22	Prepared &	Analyzed:	02/16/23				
% Moisture	6.0	0.1	%		6.0			0.00	20	
Duplicate (P3B1603-DUP4)	Sou	rce: 3B14016-	09	Prepared & Analyzed: 02/16/23						
% Moisture	10.0	0.1	%	10.0				0.00	20	
Duplicate (P3B1603-DUP5)	Sou	rce: 3B14016-	24	Prepared &	Analyzed:	02/16/23				
% Moisture	3.0	0.1	%		4.0			28.6	20	R
Duplicate (P3B1603-DUP6)	Sou	rce: 3B15004-	01	Prepared &	Analyzed:	02/16/23				
% Moisture	7.0	0.1	%		7.0			0.00	20	
Duplicate (P3B1603-DUP7)	Sou	rce: 3B15004-	07	Prepared &	Analyzed:	02/16/23				
% Moisture	7.0	0.1	%		8.0			13.3	20	
Duplicate (P3B1603-DUP8)	Sou	rce: 3B15007-	02	Prepared &	Analyzed:	02/16/23				
% Moisture	8.0	0.1	%		8.0			0.00	20	
Batch P3B1709 - *** DEFAULT PREP ***										
Blank (P3B1709-BLK1)				Prepared: ()2/17/23 A	nalyzed: 02	/18/23			
Chloride	ND	1.00	mg/kg							

13000 West County Road 100Project Number:17586Odessa TX, 79765Project Manager:Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: Hayhurst Section 35 CTB

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3B1709 - *** DEFAULT PREP ***										
LCS (P3B1709-BS1)				Prepared: (02/17/23 A	nalyzed: 02	/18/23			
Chloride	21.4		mg/kg	20.0		107	90-110			
LCS Dup (P3B1709-BSD1)				Prepared: (02/17/23 A	nalyzed: 02	/18/23			
Chloride	21.0		mg/kg	20.0		105	90-110	2.12	10	
Calibration Blank (P3B1709-CCB1)				Prepared &	k Analyzed:	02/17/23				
Chloride	-0.155		mg/kg							
Calibration Blank (P3B1709-CCB2)				Prepared: (02/17/23 A	nalyzed: 02	/18/23			
Chloride	0.00		mg/kg							
Calibration Check (P3B1709-CCV1)				Prepared &	k Analyzed:	02/17/23				
Chloride	21.0		mg/kg	20.0		105	90-110			
Calibration Check (P3B1709-CCV2)				Prepared: (02/17/23 A	nalyzed: 02	/18/23			
Chloride	21.5		mg/kg	20.0		108	90-110			
Calibration Check (P3B1709-CCV3)				Prepared: (02/17/23 A	nalyzed: 02	2/20/23			
Chloride	20.6		mg/kg	20.0		103	90-110			
Matrix Spike (P3B1709-MS1)	Sou	rce: 3B14016	-26	Prepared: (02/17/23 A	nalyzed: 02	/18/23			
Chloride	378	1.03	mg/kg dry	258	127	97.1	80-120			
Matrix Spike (P3B1709-MS2)	Sou	rce: 3B15005	-02	Prepared: (02/17/23 A	nalyzed: 02	/18/23			
Chloride	2910	10.2	mg/kg dry	510	2570	67.7	80-120			QM-0
Matrix Spike Dup (P3B1709-MSD1)	Source: 3B14016-26 Pro		Prepared: 02/17/23 Analyzed: 02/18/23			/18/23				
Chloride	387	1.03	mg/kg dry	258	127	101	80-120	2.31	20	

13000 West County Road 100 Odessa TX, 79765 Project: Hayhurst Section 35 CTB

Project Number: 17586 Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P3B1709 - *** DEFAULT PREP ***

Matrix Spike Dup (P3B1709-MSD2)	Source	e: 3B15005-02	Prepared: ()2/17/23 At	nalyzed: 02	2/18/23			
Chloride	2440	10.2 mg/kg dry	510	2570	NR	80-120	17.8	20	QM-05

13000 West County Road 100

Project Number: 17586 Odessa TX, 79765 Project Manager: Blake Estep

Notes and Definitions

Project: Hayhurst Section 35 CTB

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

ROI Received on Ice

R3 The RPD exceeded the acceptance limit due to sample matrix effects.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were

within acceptance limits showing that the laboratory is in control and the data is acceptable.

NPBEL CO Chain of Custody was not generated at PBELAB

Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range BULK

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

Sample results reported on a dry weight basis dry

Relative Percent Difference RPD

LCS Laboratory Control Spike

MS Matrix Spike

Duplicate Dup

Report Approved By:

Brent Barron, Laboratory Director/Technical Director

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

E Tech Environmental & Safety Solutions, Inc. [1] Project: Hayhurst Section 35 CTB

13000 West County Road 100 Project Number: 17586
Odessa TX, 79765 Project Manager: Blake Estep

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Relinquished by: Date Time	Relinquished by: Date Time	Relinquished by: Date Time	Special Instructions:												e	Sample Point 1	FIELD CODE		ORDER #: 4515006	ntv)		Sampler Signature: Multiplifity For DP email:	ess:	Company Name: Etech Environmental & Safety Solutions, Inc.
		-													0	0	Start Depth							ution
bdelive	Received by:	Received by:													3.	S	End Depth	Pres				blak		s, In
Received by:	ed by:	ed by:													2-10-23	2-10-23	Date Sampled	Preservation & # of Containers				blake@etechenv.com		ic l
Marke															11:19	11:15	Time Sampled	Containers				nv.com		
															-	-	No. of Containers							
															8	X	lce	4						
																	HNO ₃	4						
																	HCI H ₂ SO ₄	4						
					H	П					П						NaOH	+						
																	Na ₂ S ₂ O ₃	+						
CB																	None	1			_	7	1	1
7/B	Date	Date															Other (Specify)				Зеро	XBill Etech	Area:	Project #:
200 P	te	te															DW=Drinking Water SL=Sludge	- 3			rt Fo	≘	a.	ect
		-													N	S	GW = Groundwater S=Soil/Solid	Matrix			rmat	Ete		#
1.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00	Time	Time		П											*	#	NP=Non-PotableSpecify Other TPH: 418.1 8015N 1005 1	_			Report Format: STANDARD:	ch		=
£.	0	· O													0			000			NDA			V
Ten	Sar	Sar	Sar	-] [] [Cations (Ca, Mg, Na, K)		_		RD		1	86
pera	by S	Custody seals on conta Custody seals on coole Sample Hand Delivered	ω nple														Anions (CI, SO4, CO3, HCO3	3)	TOTAL	TCLP:				
ature	our	sea	Cen Con				П	П	Ш			П			Ш		SAR / ESP / CEC		-	. P	R			P
d)	ier?	als o als o	Co taine of H														Metals: As Ag Ba Cd Cr Pb Hg	Se			TRRP:			0
on F	Qien	n co n co liver	mm ers in														Volatiles				5		00	ect
Temperature Upon Receipt	Sar by Sampler/Client Rep. Sar by Courier? UPS	Custody seals on container(s) Custody seals on cooler(s) Sample Hand Delivered	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?														Semi volatiles				NPDES		PO#: 1	Project Loc
ipt:	sp. ?	ner(s)	e3 22 E8:												7	128	BTEX 8021B 5030 or BTEX 82	260			NP.		~	15
4	7	S															RCI				NPDES:		5	2
1	3																N.O.R.M.						06	Y.
	FedEx		_												×	B	Chlorides							
	立子	~~~	44	9																				
3	40	12																						
20	one Star	ZZZ	ZZ														RUSH TAT(Pre-Schedule) 24,	48, 72	hrs					
0	tar				П	П			П	П		П	П		X	×	STANDARD TAT							

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Blake Estep Etech Environmental & Safety Solutions PO BOX 62228 Midland, Texas 79711

Generated 8/24/2023 10:08:42 AM

JOB DESCRIPTION

NM Hayhurst Section 35 CTB SDG NUMBER 1786

JOB NUMBER

880-32113-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 8/24/2023 10:08:42 AM

Authorized for release by Jessica Kramer, Project Manager <u>Jessica.Kramer@et.eurofinsus.com</u> (432)704-5440

3

А

6

_

10

13

14

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Laboratory Job ID: 880-32113-1

SDG: 1786

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	7
Surrogate Summary	18
QC Sample Results	20
QC Association Summary	26
Lab Chronicle	30
Certification Summary	35
Method Summary	36
Sample Summary	37
Chain of Custody	38
	39

Definitions/Glossary

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1

SDG: 1786

Qualifiers

00	11	$\overline{}$	Α.
GC	v	U	A

Qualifier	Qualifier Description
*+	LCS and/or LCSD is outside acceptance limits, high biased.
S1-	Surrogate recovery exceeds control limits, low biased.
U	Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier	Qualifier Description
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.

Glossary

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry) EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry) MDC MDL Method Detection Limit

Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present PQL Practical Quantitation Limit Presumptive **PRES**

QC **Quality Control** RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Case Narrative

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1

SDG: 1786

Job ID: 880-32113-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-32113-1

Receipt

The samples were received on 8/15/2023 4:35 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.3°C

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: South Wall (880-32113-12), East Wall (880-32113-13), West Wall (880-32113-14) and (890-5106-A-1-G). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following samples were outside control limits: Bottom Hole-2 (880-32113-2) and Bottom Hole-9 (880-32113-9). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The laboratory control sample (LCS) associated with preparation batch 880-60871 and analytical batch 880-60869 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-60869 recovered above the upper control limit for Toluene, m-Xylene & p-Xylene and o-Xylene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 880-60869/2).

Method 8021B: The laboratory control sample (LCS) associated with preparation batch 880-60938 and analytical batch 880-60869 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-60869 recovered above the upper control limit for m-Xylene & p-Xylene and o-Xylene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 880-60869/51).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-60741 and analytical batch 880-60776 was outside the upper control limits.

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: (890-5126-A-1-D) and (890-5126-A-1-E) MS). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD NM: Surrogate recovery for the following sample was outside control limits: Bottom Hole-4 (880-32113-4). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: Bottom Hole-6 (880-32113-6), Bottom Hole-9 (880-32113-9) and Bottom Hole-10 (880-32113-10). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: (CCV 880-60776/20), (CCV 880-60776/31) and (CCV 880-60776/5). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Case Narrative

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB Job ID: 880-32113-1

SDG: 1786

Job ID: 880-32113-1 (Continued)

Laboratory: Eurofins Midland (Continued)

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

1

5

0

8

3

11

13

112

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1

SDG: 1786

Client Sample ID: Bottom Hole-1

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35 Lab Sample ID: 880-32113-1

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200		mg/Kg		08/23/23 17:45	08/24/23 03:32	
Toluene	<0.00200	U	0.00200		mg/Kg		08/23/23 17:45	08/24/23 03:32	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/23/23 17:45	08/24/23 03:32	
m-Xylene & p-Xylene	<0.00400	U *+	0.00400		mg/Kg		08/23/23 17:45	08/24/23 03:32	
o-Xylene	<0.00200	U *+	0.00200		mg/Kg		08/23/23 17:45	08/24/23 03:32	
Xylenes, Total	<0.00400	U *+	0.00400		mg/Kg		08/23/23 17:45	08/24/23 03:32	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	85		70 - 130				08/23/23 17:45	08/24/23 03:32	
1,4-Difluorobenzene (Surr)	73		70 - 130				08/23/23 17:45	08/24/23 03:32	
Method: TAL SOP Total BTEX - 1	otal BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00400	U	0.00400		mg/Kg			08/24/23 10:35	
Method: SW846 8015 NM - Diese		ics (DRO) (GC)	MDI	Unit	D	Prepared	Anglyzad	Dil Fa
Analyte Total TPH			49.6	WIDL	mg/Kg			Analyzed 08/23/23 11:00	DII Fa
TOTAL TEN	\49.0	U	49.0		mg/Kg			06/23/23 11:00	
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.6	U	49.6		mg/Kg		08/21/23 14:10	08/22/23 14:06	
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.6	U	49.6		mg/Kg		08/21/23 14:10	08/22/23 14:06	
C10-C28) OII Range Organics (Over C28-C36)	~10 G		49.6		no ar /1/ ar		00/04/02 44:40	00/00/00 44.06	
Oil Range Organics (Over Czo-Cso)	<49.6	U	49.0		mg/Kg		08/21/23 14:10	08/22/23 14:06	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	112		70 - 130				08/21/23 14:10	08/22/23 14:06	
o-Terphenyl	98		70 - 130				08/21/23 14:10	08/22/23 14:06	
Method: EPA 300.0 - Anions, Ion	Chromatogran	hv - Solubl	e						
metriou. El A 000.0 - Amoris, ion	om omatograp								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Client Sample ID: Bottom Hole-2

Date Collected: 08/11/23 14:53

Date Received: 08/15/23 16:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		08/23/23 17:45	08/24/23 03:52	1
Toluene	<0.00199	U	0.00199		mg/Kg		08/23/23 17:45	08/24/23 03:52	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		08/23/23 17:45	08/24/23 03:52	1
m-Xylene & p-Xylene	<0.00398	U *+	0.00398		mg/Kg		08/23/23 17:45	08/24/23 03:52	1
o-Xylene	<0.00199	U *+	0.00199		mg/Kg		08/23/23 17:45	08/24/23 03:52	1
Xylenes, Total	<0.00398	U *+	0.00398		mg/Kg		08/23/23 17:45	08/24/23 03:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		70 - 130				08/23/23 17:45	08/24/23 03:52	1
1,4-Difluorobenzene (Surr)	65	S1-	70 - 130				08/23/23 17:45	08/24/23 03:52	1

Eurofins Midland

Lab Sample ID: 880-32113-2

Matrix: Solid

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB Job ID: 880-32113-1

SDG: 1786

Client Sample ID: Bottom Hole-2

Lab Sample ID: 880-32113-2

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35 Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			08/24/23 10:35	1
- Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	64.0		50.2		mg/Kg			08/23/23 11:00	1
- Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.2	U	50.2		mg/Kg		08/21/23 14:10	08/22/23 14:29	1
(GRO)-C6-C10									
Diesel Range Organics (Over	64.0		50.2		mg/Kg		08/21/23 14:10	08/22/23 14:29	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.2	U	50.2		mg/Kg		08/21/23 14:10	08/22/23 14:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	120		70 - 130				08/21/23 14:10	08/22/23 14:29	1
o-Terphenyl	105		70 - 130				08/21/23 14:10	08/22/23 14:29	1
Method: EPA 300.0 - Anions, Ion	Chromatogran	hv - Solubl							
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	707		49.8		mg/Kg			08/18/23 21:59	10

Client Sample ID: Bottom Hole-3 Lab S

Lab Sample ID: 880-32113-3

Matrix: Solid

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		08/23/23 17:45	08/24/23 04:13	1
Toluene	<0.00201	U	0.00201		mg/Kg		08/23/23 17:45	08/24/23 04:13	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		08/23/23 17:45	08/24/23 04:13	1
m-Xylene & p-Xylene	<0.00402	U *+	0.00402		mg/Kg		08/23/23 17:45	08/24/23 04:13	1
o-Xylene	<0.00201	U *+	0.00201		mg/Kg		08/23/23 17:45	08/24/23 04:13	1
Xylenes, Total	<0.00402	U *+	0.00402		mg/Kg		08/23/23 17:45	08/24/23 04:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130				08/23/23 17:45	08/24/23 04:13	1
								00/01/00 01 10	
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX Analyte			70 ₋ 130	MDI	Unit	n	08/23/23 17:45	08/24/23 04:13	
		culation	70 - 130				08/23/23 17:45	08/24/23 04:13	7
	- Total BTEX Cald	Qualifier	70 - 130 RL 0.00402	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 08/24/23 10:35	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX	- Total BTEX Cald Result <0.00402	Qualifier U	RL 0.00402	MDL		<u>D</u>		Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte	- Total BTEX Cald Result <0.00402 essel Range Organ	Qualifier U	RL 0.00402	MDL MDL	mg/Kg	<u>D</u>		Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Did	- Total BTEX Cald Result <0.00402 essel Range Organ	Qualifier U ics (DRO) (Comparison of the property of the prope	RL 0.00402		mg/Kg	_ =	Prepared	Analyzed 08/24/23 10:35	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Did Analyte	- Total BTEX Cald Result <0.00402 esel Range Organ Result <50.4	Qualifier U ics (DRO) (Qualifier U	RL 0.00402 ——————————————————————————————————		mg/Kg	_ =	Prepared	Analyzed 08/24/23 10:35 Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Did Analyte Total TPH	- Total BTEX Cald Result <0.00402 esel Range Organ Result <50.4 Diesel Range Orga	Qualifier U ics (DRO) (Qualifier U	RL 0.00402 ——————————————————————————————————		mg/Kg Unit mg/Kg	_ =	Prepared	Analyzed 08/24/23 10:35 Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Did Analyte Total TPH Method: SW846 8015B NM - Did Method: S	- Total BTEX Cald Result <0.00402 esel Range Organ Result <50.4 Diesel Range Orga	Qualifier U ics (DRO) (Qualifier U inics (DRO) Qualifier	RL 0.00402 GC) RL 50.4	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed 08/24/23 10:35 Analyzed 08/23/23 11:00	Dil Fac

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1

SDG: 1786

Client Sample ID: Bottom Hole-3

Lab Sample ID: 880-32113-3

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35 Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.4	U	50.4		mg/Kg		08/21/23 14:10	08/22/23 14:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	125		70 - 130				08/21/23 14:10	08/22/23 14:50	1
o-Terphenyl	111		70 - 130				08/21/23 14:10	08/22/23 14:50	1

Method: EPA 300.0 - Anions, Ion C	hromatograp	hy - Solub	le						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	241		24.9		mg/Kg			08/18/23 22:06	5

Client Sample ID: Bottom Hole-4

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35

Lab Sample ID: 880-32113-4

Matrix: Solid

Method: SW846 8021B - Volati	le Organic Comp	ounds (GC))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/23/23 17:45	08/24/23 04:33	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/23/23 17:45	08/24/23 04:33	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/23/23 17:45	08/24/23 04:33	1
m-Xylene & p-Xylene	<0.00401	U *+	0.00401		mg/Kg		08/23/23 17:45	08/24/23 04:33	1
o-Xylene	<0.00200	U *+	0.00200		mg/Kg		08/23/23 17:45	08/24/23 04:33	1
Xylenes, Total	<0.00401	U *+	0.00401		mg/Kg		08/23/23 17:45	08/24/23 04:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130				08/23/23 17:45	08/24/23 04:33	1
1 4-Difluorobenzene (Surr)	92		70 - 130				08/23/23 17:45	08/24/23 04:33	1

Method: TAL SOP Total BTEX - Total	al BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			08/24/23 10:35	1

Method: SW846 8015 NM - Diesel F	Range Organi	cs (DRO) (G	C)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	1630		50.5		mg/Kg			08/23/23 11:00	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.5	U	50.5		mg/Kg		08/21/23 14:10	08/22/23 15:12	1
Diesel Range Organics (Over C10-C28)	1630		50.5		mg/Kg		08/21/23 14:10	08/22/23 15:12	1
Oll Range Organics (Over C28-C36)	<50.5	U	50.5		mg/Kg		08/21/23 14:10	08/22/23 15:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	139	S1+	70 - 130				08/21/23 14:10	08/22/23 15:12	1
o-Terphenvl	112		70 - 130				08/21/23 14:10	08/22/23 15:12	1

Method: EPA 300.0 - Anions, Ion Chi	romatograp	hy - Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	469		50.2		mg/Kg			08/18/23 22:13	10

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB Job ID: 880-32113-1

SDG: 1786

Client Sample ID: Bottom Hole-5

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35 Lab Sample ID: 880-32113-5

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/23/23 17:45	08/24/23 04:53	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/23/23 17:45	08/24/23 04:53	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/23/23 17:45	08/24/23 04:53	1
m-Xylene & p-Xylene	<0.00399	U *+	0.00399		mg/Kg		08/23/23 17:45	08/24/23 04:53	1
o-Xylene	<0.00200	U *+	0.00200		mg/Kg		08/23/23 17:45	08/24/23 04:53	1
Xylenes, Total	<0.00399	U *+	0.00399		mg/Kg		08/23/23 17:45	08/24/23 04:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130				08/23/23 17:45	08/24/23 04:53	1
1,4-Difluorobenzene (Surr)	76		70 - 130				08/23/23 17:45	08/24/23 04:53	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			08/24/23 10:35	
Method: SW846 8015 NM - Diese					mg/rtg			00/2 1/20 10:00	
Method: SW846 8015 NM - Diese Analyte	el Range Organ Result		GC)	MDL	Unit	<u>D</u>	Prepared	Analyzed	
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)	MDL		<u>D</u>	Prepared		Dil Fac
Method: SW846 8015 NM - Diese Analyte	Result 53.7	ics (DRO) ((RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	
Method: SW846 8015 NM - Diese Analyte Total TPH	el Range Organ Result 53.7 sel Range Orga	ics (DRO) ((RL	MDL	Unit mg/Kg	D	Prepared Prepared	Analyzed	1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies	el Range Organ Result 53.7 sel Range Orga	Qualifier nics (DRO) Qualifier	RL 50.0		Unit mg/Kg		<u> </u>	Analyzed 08/23/23 11:00	1 Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics	el Range Organ Result 53.7 sel Range Orga Result	Qualifier nics (DRO) Qualifier	GC) RL 50.0		Unit mg/Kg		Prepared	Analyzed 08/23/23 11:00 Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	el Range Organ Result 53.7 sel Range Orga Result <50.0	ics (DRO) ((Qualifier nics (DRO) Qualifier U	GC) RL 50.0 (GC) RL 50.0		Unit mg/Kg Unit mg/Kg		Prepared 08/21/23 14:10	Analyzed 08/23/23 11:00 Analyzed 08/22/23 15:55	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Organ Result 53.7 sel Range Orga Result <50.0 53.7	ics (DRO) ((Qualifier nics (DRO) Qualifier U	GC) RL 50.0 (GC) RL 50.0 50.0		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 08/21/23 14:10 08/21/23 14:10	Analyzed 08/23/23 11:00 Analyzed 08/22/23 15:55 08/22/23 15:55	1 Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	el Range Organ Result 53.7 sel Range Orga Result <50.0 53.7	ics (DRO) ((Qualifier nics (DRO) Qualifier U	GC) RL 50.0 (GC) RL 50.0 50.0		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 08/21/23 14:10 08/21/23 14:10 08/21/23 14:10	Analyzed 08/23/23 11:00 Analyzed 08/22/23 15:55 08/22/23 15:55	Dil Fac 1 1 Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	el Range Organ Result 53.7 sel Range Orga Result <50.0 \$3.7 \$50.0 %Recovery	ics (DRO) ((Qualifier nics (DRO) Qualifier U	GC) RL 50.0 (GC) RL 50.0 50.0 50.0 Limits		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 08/21/23 14:10 08/21/23 14:10 08/21/23 14:10 Prepared	Analyzed 08/23/23 11:00 Analyzed 08/22/23 15:55 08/22/23 15:55 Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Range Organ Result	ics (DRO) ((Qualifier) nics (DRO) Qualifier U	GC) RL 50.0 (GC) RL 50.0 50.0 50.0 Limits 70 - 130 70 - 130		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 08/21/23 14:10 08/21/23 14:10 08/21/23 14:10 Prepared 08/21/23 14:10	Analyzed 08/23/23 11:00 Analyzed 08/22/23 15:55 08/22/23 15:55 Analyzed 08/22/23 15:55	1 Dil Fac 1 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Range Organ Result	ics (DRO) ((Qualifier) nics (DRO) Qualifier U	GC) RL 50.0 (GC) RL 50.0 50.0 50.0 Limits 70 - 130 70 - 130		Unit mg/Kg Unit mg/Kg mg/Kg mg/Kg		Prepared 08/21/23 14:10 08/21/23 14:10 08/21/23 14:10 Prepared 08/21/23 14:10	Analyzed 08/23/23 11:00 Analyzed 08/22/23 15:55 08/22/23 15:55 Analyzed 08/22/23 15:55	1 1 1 Dil Fac 1

Client Sample ID: Bottom Hole-6

Date Collected: 08/11/23 14:53

Date Received: 08/15/23 16:35

Lab Sample II	D: 880-32113-6
---------------	----------------

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		08/23/23 17:45	08/24/23 05:14	1
Toluene	<0.00199	U	0.00199		mg/Kg		08/23/23 17:45	08/24/23 05:14	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		08/23/23 17:45	08/24/23 05:14	1
m-Xylene & p-Xylene	<0.00398	U *+	0.00398		mg/Kg		08/23/23 17:45	08/24/23 05:14	1
o-Xylene	<0.00199	U *+	0.00199		mg/Kg		08/23/23 17:45	08/24/23 05:14	1
Xylenes, Total	<0.00398	U *+	0.00398		mg/Kg		08/23/23 17:45	08/24/23 05:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130				08/23/23 17:45	08/24/23 05:14	1
1.4-Difluorobenzene (Surr)	80		70 - 130				08/23/23 17:45	08/24/23 05:14	1

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1

SDG: 1786

Client Sample ID: Bottom Hole-6

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35 Lab Sample ID: 880-32113-6

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			08/24/23 10:35	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	510		49.9		mg/Kg			08/23/23 11:00	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		08/21/23 14:10	08/22/23 16:17	1
(GRO)-C6-C10									
Diesel Range Organics (Over	510		49.9		mg/Kg		08/21/23 14:10	08/22/23 16:17	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/21/23 14:10	08/22/23 16:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	136	S1+	70 - 130				08/21/23 14:10	08/22/23 16:17	1
o-Terphenyl	119		70 - 130				08/21/23 14:10	08/22/23 16:17	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	583		25.2		mg/Kg			08/18/23 22:39	5

Client Sample ID: Bottom Hole-7

Date Collected: 08/11/23 14:53

Date Received: 08/15/23 16:35

Lab Sample ID: 880-32113-7

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		08/23/23 17:45	08/24/23 05:34	1
Toluene	<0.00198	U	0.00198		mg/Kg		08/23/23 17:45	08/24/23 05:34	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		08/23/23 17:45	08/24/23 05:34	1
m-Xylene & p-Xylene	<0.00396	U *+	0.00396		mg/Kg		08/23/23 17:45	08/24/23 05:34	1
o-Xylene	<0.00198	U *+	0.00198		mg/Kg		08/23/23 17:45	08/24/23 05:34	1
Xylenes, Total	<0.00396	U *+	0.00396		mg/Kg		08/23/23 17:45	08/24/23 05:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130				08/23/23 17:45	08/24/23 05:34	1
			70 100				00/00/00 17 15	00/04/00 05 04	1
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX Analyte		culation Qualifier	70 ₋ 130 RL	MDL	Unit	D	08/23/23 17:45 Prepared	08/24/23 05:34 Analyzed	
		culation	70 - 130				08/23/23 17:45	08/24/23 05:34	,
	- Total BTEX Cald	Qualifier		MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 08/24/23 10:35	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX	- Total BTEX Cald Result <0.00396	Qualifier U	RL 0.00396	MDL		<u>D</u>		Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte	- Total BTEX Cald Result <0.00396 esel Range Organ	Qualifier U	RL 0.00396	MDL MDL	mg/Kg	<u>D</u>		Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die	- Total BTEX Cald Result <0.00396 esel Range Organ	Qualifier U ics (DRO) (Qualifier	RL 0.00396		mg/Kg		Prepared	Analyzed 08/24/23 10:35	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Did Analyte	- Total BTEX Calc Result <0.00396 esel Range Organ Result <50.2	Qualifier U ics (DRO) (Qualifier U	RL 0.00396 GC) RL 50.2		mg/Kg		Prepared	Analyzed 08/24/23 10:35	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Did Analyte Total TPH	- Total BTEX Calc Result <0.00396 esel Range Organ Result <50.2	Qualifier U ics (DRO) (Qualifier U	RL 0.00396 GC) RL 50.2		mg/Kg Unit mg/Kg		Prepared	Analyzed 08/24/23 10:35	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Did Analyte Total TPH Method: SW846 8015B NM - E	- Total BTEX Calc Result <0.00396 esel Range Organ Result <50.2	Qualifier U ics (DRO) (Qualifier U nics (DRO) Qualifier	RL 0.00396 GC) RL 50.2	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed 08/24/23 10:35 Analyzed 08/23/23 11:00	Dil Fac

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1

SDG: 1786

Client Sample ID: Bottom Hole-7

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35 Lab Sample ID: 880-32113-7

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.2	U	50.2		mg/Kg		08/21/23 14:10	08/22/23 16:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	115		70 - 130				08/21/23 14:10	08/22/23 16:39	1
o-Terphenyl	101		70 - 130				08/21/23 14:10	08/22/23 16:39	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL D Dil Fac Unit Prepared Analyzed 49.9 08/18/23 22:46 706 10 Chloride mg/Kg

Client Sample ID: Bottom Hole-8

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35

Analyte

Lab Sample ID: 880-32113-8

Analyzed

Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Benzene <0.00199 U 0.00199 08/23/23 17:45 08/24/23 05:55 mg/Kg Toluene <0.00199 U 0.00199 08/23/23 17:45 08/24/23 05:55 mg/Kg Ethylbenzene <0.00199 U 0.00199 08/23/23 17:45 08/24/23 05:55 mg/Kg m-Xylene & p-Xylene 08/23/23 17:45 08/24/23 05:55 <0.00398 U*+ 0.00398 mg/Kg o-Xylene <0.00199 U*+ 0.00199 mg/Kg 08/23/23 17:45 08/24/23 05:55 08/23/23 17:45 Xylenes, Total <0.00398 U*+ 0.00398 mg/Kg 08/24/23 05:55 %Recovery Limits Dil Fac Surrogate Qualifier Prepared Analyzed 70 - 130 122

08/24/23 05:55 4-Bromofluorobenzene (Surr) 08/23/23 17:45 1,4-Difluorobenzene (Surr) 112 70 - 130 08/23/23 17:45 08/24/23 05:55 **Method: TAL SOP Total BTEX - Total BTEX Calculation**

RL

MDL Unit

D

Prepared

Result Qualifier

Total BTEX	<0.00398	J	0.00398		mg/Kg		-	08/24/23 10:35	1
Method: SW846 8015 NM - Diesel	Range Organic	s (DRO) (G	C)						
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	4700		50.1		mg/Kg			08/23/23 11:00	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.1	U	50.1		mg/Kg		08/21/23 14:10	08/22/23 17:00	1
(GRO)-C6-C10									
Diesel Range Organics (Over	4700		50.1		mg/Kg		08/21/23 14:10	08/22/23 17:00	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.1	U	50.1		mg/Kg		08/21/23 14:10	08/22/23 17:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	126		70 - 130				08/21/23 14:10	08/22/23 17:00	1
o-Terphenyl	101		70 - 130				08/21/23 14:10	08/22/23 17:00	1

Method: EPA 300.0 - Anions, Ion Ch	nromatograph	hy - Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	399		24.9		mg/Kg			08/18/23 22:53	5

Eurofins Midland

Dil Fac

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1

SDG: 1786

Client Sample ID: Bottom Hole-9

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35 Lab Sample ID: 880-32113-9

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		08/23/23 17:45	08/24/23 06:15	1
Toluene	<0.00202	U	0.00202		mg/Kg		08/23/23 17:45	08/24/23 06:15	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		08/23/23 17:45	08/24/23 06:15	1
m-Xylene & p-Xylene	<0.00403	U *+	0.00403		mg/Kg		08/23/23 17:45	08/24/23 06:15	1
o-Xylene	<0.00202	U *+	0.00202		mg/Kg		08/23/23 17:45	08/24/23 06:15	1
Xylenes, Total	<0.00403	U *+	0.00403		mg/Kg		08/23/23 17:45	08/24/23 06:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130				08/23/23 17:45	08/24/23 06:15	1
1,4-Difluorobenzene (Surr)	66	S1-	70 - 130				08/23/23 17:45	08/24/23 06:15	1
Method: TAL SOP Total BTEX -	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00403	U	0.00403		mg/Kg			08/24/23 10:35	1
- -									
Method: SW846 8015 NM - Diese Analyte		ics (DRO) (Qualifier	GC)	MDL	Unit	D	Prepared	Analyzed	Dil Fac
			•	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 08/23/23 11:00	
Analyte	Result 295	Qualifier	RL 50.5	MDL		<u>D</u>	Prepared		
Analyte Total TPH	Result 295 sel Range Orga	Qualifier	RL 50.5			<u>D</u>	Prepared Prepared		1
Analyte Total TPH Method: SW846 8015B NM - Die	Result 295 sel Range Orga	Qualifier nics (DRO) Qualifier	RL 50.5		mg/Kg		<u> </u>	08/23/23 11:00	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die: Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result 295 sel Range Orga Result	Qualifier nics (DRO) Qualifier	RL 50.5 (GC)		mg/Kg		Prepared	08/23/23 11:00 Analyzed	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die: Analyte Gasoline Range Organics (GRO)-C6-C10	Result 295 sel Range Orga Result < 50.5	Qualifier nics (DRO) Qualifier U	RL 50.5 (GC) RL 50.5		mg/Kg Unit mg/Kg		Prepared 08/21/23 14:10	08/23/23 11:00 Analyzed 08/22/23 17:22	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die: Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result 295 sel Range Orga Result < 50.5 295	Qualifier nics (DRO) Qualifier U	RL 50.5 (GC) RL 50.5 50.5		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/21/23 14:10 08/21/23 14:10	08/23/23 11:00 Analyzed 08/22/23 17:22 08/22/23 17:22	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die: Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result 295	Qualifier nics (DRO) Qualifier U	RL 50.5 (GC) RL 50.5 50.5 50.5		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/21/23 14:10 08/21/23 14:10 08/21/23 14:10	08/23/23 11:00 Analyzed 08/22/23 17:22 08/22/23 17:22	Dil Face 1 1 1 Dil Face
Analyte Total TPH Method: SW846 8015B NM - Die: Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result 295	Qualifier nics (DRO) Qualifier U	RL 50.5 (GC) RL 50.5 50.5 50.5 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/21/23 14:10 08/21/23 14:10 08/21/23 14:10 Prepared	08/23/23 11:00 Analyzed 08/22/23 17:22 08/22/23 17:22 08/22/23 17:22 Analyzed	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result 295	Qualifier nics (DRO) Qualifier U Qualifier S1+	RL 50.5 (GC) RL 50.5 50.5 50.5 Limits 70 - 130 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/21/23 14:10 08/21/23 14:10 08/21/23 14:10 Prepared 08/21/23 14:10	08/23/23 11:00 Analyzed 08/22/23 17:22 08/22/23 17:22 08/22/23 17:22 Analyzed 08/22/23 17:22	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result 295	Qualifier nics (DRO) Qualifier U Qualifier S1+	RL 50.5 (GC) RL 50.5 50.5 50.5 Limits 70 - 130 70 - 130	MDL	mg/Kg Unit mg/Kg mg/Kg		Prepared 08/21/23 14:10 08/21/23 14:10 08/21/23 14:10 Prepared 08/21/23 14:10	08/23/23 11:00 Analyzed 08/22/23 17:22 08/22/23 17:22 08/22/23 17:22 Analyzed 08/22/23 17:22	Dil Fac

Client Sample ID: Bottom Hole-10

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35 Lab Sample ID: 880-32113-10

Matrix: Solid

– Method: SW846 8021B - Volati	le Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		08/23/23 17:45	08/24/23 06:36	1
Toluene	<0.00201	U	0.00201		mg/Kg		08/23/23 17:45	08/24/23 06:36	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		08/23/23 17:45	08/24/23 06:36	1
m-Xylene & p-Xylene	<0.00402	U *+	0.00402		mg/Kg		08/23/23 17:45	08/24/23 06:36	1
o-Xylene	<0.00201	U *+	0.00201		mg/Kg		08/23/23 17:45	08/24/23 06:36	1
Xylenes, Total	<0.00402	U *+	0.00402		mg/Kg		08/23/23 17:45	08/24/23 06:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130				08/23/23 17:45	08/24/23 06:36	1
1,4-Difluorobenzene (Surr)	75		70 - 130				08/23/23 17:45	08/24/23 06:36	1

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB Job ID: 880-32113-1

SDG: 1786

Client Sample ID: Bottom Hole-10

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35 Lab Sample ID: 880-32113-10

08/18/23 23:06

Matrix: Solid

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			08/24/23 10:35	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	59.0		49.9		mg/Kg			08/23/23 11:00	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		08/21/23 14:10	08/22/23 17:44	1
(GRO)-C6-C10									
Diesel Range Organics (Over	59.0		49.9		mg/Kg		08/21/23 14:10	08/22/23 17:44	1
C10-C28)									
OII Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/21/23 14:10	08/22/23 17:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	131	S1+	70 - 130				08/21/23 14:10	08/22/23 17:44	1
o-Terphenyl	116		70 - 130				08/21/23 14:10	08/22/23 17:44	1
Mathad: FDA 200 0 Aniona Ion	Chuamata aua	h. Calubi	_						
Method: EPA 300.0 - Anions, Ion	unromatograp	nıy - Solubi	е						

Client Sample ID: North Wall Lab Sample ID: 880-32113-11

25.1

mg/Kg

306

Date Collected: 08/11/23 14:53

Chloride

Date Received: 08/15/23 16:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/23/23 08:45	08/23/23 18:19	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/23/23 08:45	08/23/23 18:19	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/23/23 08:45	08/23/23 18:19	1
m-Xylene & p-Xylene	<0.00401	U *+	0.00401		mg/Kg		08/23/23 08:45	08/23/23 18:19	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/23/23 08:45	08/23/23 18:19	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		08/23/23 08:45	08/23/23 18:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	82		70 - 130				08/23/23 08:45	08/23/23 18:19	1
	73		70 ₋ 130				08/23/23 08:45	08/23/23 18:19	1
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX - Analyte	Total BTEX Cald	culation Qualifier	70 - 130 RL	MDL	Unit	D	Prepared	Analyzed	
Method: TAL SOP Total BTEX -	Total BTEX Cald			MDI	llait	В			
Method: TAL SOP Total BTEX - Analyte	Total BTEX Cald	Qualifier		MDL	Unit mg/Kg	<u>D</u>			Dil Fac
Method: TAL SOP Total BTEX - Analyte Total BTEX Method: SW846 8015 NM - Dies	Total BTEX Calc Result <0.00401 sel Range Organ	Qualifier U	RL 0.00401		mg/Kg		Prepared	Analyzed 08/24/23 10:35	Dil Fac
Method: TAL SOP Total BTEX - Analyte Total BTEX Method: SW846 8015 NM - Dies Analyte	Total BTEX Calc Result <0.00401 sel Range Organ Result	Qualifier U	RL 0.00401		mg/Kg	<u>D</u>		Analyzed 08/24/23 10:35	Dil Fac
Method: TAL SOP Total BTEX - Analyte Total BTEX Method: SW846 8015 NM - Dies	Total BTEX Calc Result <0.00401 sel Range Organ	Qualifier U	RL 0.00401		mg/Kg		Prepared	Analyzed 08/24/23 10:35	Dil Fac
Method: TAL SOP Total BTEX - Analyte Total BTEX Method: SW846 8015 NM - Dies Analyte	rotal BTEX Calc Result <0.00401 sel Range Organ Result 167	Qualifier U ics (DRO) (Qualifier	RL 0.00401 ——————————————————————————————————		mg/Kg		Prepared	Analyzed 08/24/23 10:35	Dil Fac
Method: TAL SOP Total BTEX - Analyte Total BTEX Method: SW846 8015 NM - Dies Analyte Total TPH	Total BTEX Calc Result <0.00401 sel Range Organ Result 167 esel Range Orga	Qualifier U ics (DRO) (Qualifier	RL 0.00401 ——————————————————————————————————	MDL	mg/Kg		Prepared	Analyzed 08/24/23 10:35	Dil Fac
Method: TAL SOP Total BTEX - Analyte Total BTEX Method: SW846 8015 NM - Dies Analyte Total TPH Method: SW846 8015B NM - Die	Total BTEX Calc Result <0.00401 sel Range Organ Result 167 esel Range Orga	Qualifier U ics (DRO) (Qualifier nics (DRO) Qualifier	RL 0.00401 GC) RL 49.6 (GC)	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed 08/24/23 10:35 Analyzed 08/23/23 11:00	Dil Fac

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1

SDG: 1786

Client Sample ID: North Wall

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35 Lab Sample ID: 880-32113-11

Matrix: Solid

Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC) (Continue	ed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		08/21/23 14:10	08/22/23 18:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	114		70 - 130				08/21/23 14:10	08/22/23 18:05	1
o-Terphenyl	97		70 - 130				08/21/23 14:10	08/22/23 18:05	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Result Qualifier RL MDL Dil Fac Analyte Unit D Prepared Analyzed 49.9 08/18/23 23:13 10 Chloride 803 mg/Kg

Client Sample ID: South Wall

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35 Lab Sample ID: 880-32113-12

Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Benzene <0.00200 U 0.00200 08/23/23 08:45 08/23/23 18:40 mg/Kg Toluene <0.00200 U 0.00200 08/23/23 08:45 08/23/23 18:40 mg/Kg Ethylbenzene <0.00200 U 0.00200 08/23/23 08:45 08/23/23 18:40 mg/Kg 08/23/23 18:40 m-Xylene & p-Xylene 08/23/23 08:45 <0.00400 U *+ 0.00400 mg/Kg o-Xylene <0.00200 U 0.00200 mg/Kg 08/23/23 08:45 08/23/23 18:40 08/23/23 08:45 Xylenes, Total <0.00400 U 0.00400 mg/Kg 08/23/23 18:40 %Recovery Limits Surrogate Qualifier Prepared Analyzed Dil Fac

70 - 130 08/23/23 08:45 4-Bromofluorobenzene (Surr) 101 08/23/23 18:40 70 - 130 1,4-Difluorobenzene (Surr) 56 S1-08/23/23 08:45 08/23/23 18:40

Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed Total BTEX <0.00400 U 0.00400 mg/Kg 08/24/23 10:35

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier MDL Dil Fac RL Unit D Prepared Analyzed 49.5 08/23/23 11:00 **Total TPH** 90.8 mg/Kg

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Result Qualifier Analyte RL MDL Unit Prepared Analyzed Dil Fac <49.5 U 49.5 08/21/23 14:10 08/22/23 18:27 Gasoline Range Organics mg/Kg (GRO)-C6-C10 08/21/23 14:10 08/22/23 18:27 **Diesel Range Organics (Over** 90.8 49.5 mg/Kg C10-C28) OII Range Organics (Over C28-C36) <49.5 U 49.5 mg/Kg 08/21/23 14:10 08/22/23 18:27 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac

08/21/23 14:10 o-Terphenyl 112 70 - 130 08/22/23 18:27 Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier MDL Dil Fac RL Unit Prepared Analyzed

25.0

mg/Kg

70 - 130

128

654

Eurofins Midland

08/22/23 18:27

08/18/23 23:33

08/21/23 14:10

1-Chlorooctane

Chloride

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB Job ID: 880-32113-1

SDG: 1786

Client Sample ID: East Wall

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35 Lab Sample ID: 880-32113-13

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		08/23/23 08:45	08/23/23 19:00	1
Toluene	< 0.00199	U	0.00199		mg/Kg		08/23/23 08:45	08/23/23 19:00	1
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		08/23/23 08:45	08/23/23 19:00	1
m-Xylene & p-Xylene	<0.00398	U *+	0.00398		mg/Kg		08/23/23 08:45	08/23/23 19:00	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		08/23/23 08:45	08/23/23 19:00	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		08/23/23 08:45	08/23/23 19:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130				08/23/23 08:45	08/23/23 19:00	1
1,4-Difluorobenzene (Surr)	59	S1-	70 - 130				08/23/23 08:45	08/23/23 19:00	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			08/24/23 10:35	1
Method: SW846 8015 NM - Diese	ol Pango Organ	ice (DPO) ((ec)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	51.2								
-			50.0		mg/Kg			08/23/23 11:00	1
		nics (DRO)			mg/Kg			08/23/23 11:00	1
Method: SW846 8015B NM - Die: Analyte	sel Range Orga	nics (DRO) Qualifier		MDL		D	Prepared	08/23/23 11:00 Analyzed	1 Dil Fac
Analyte	sel Range Orga	Qualifier	(GC)	MDL		<u>D</u>	Prepared 08/21/23 14:10		
	sel Range Orga Result	Qualifier	(GC)	MDL	Unit	<u>D</u>		Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	sel Range Orga Result	Qualifier	(GC)	MDL	Unit	<u>D</u>		Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	sel Range Orga Result <50.0	Qualifier U	(GC) RL 50.0	MDL	Unit mg/Kg mg/Kg	<u>D</u>	08/21/23 14:10 08/21/23 14:10	Analyzed 08/22/23 18:49 08/22/23 18:49	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	sel Range Orga Result <50.0	Qualifier U	(GC) RL 50.0	MDL	Unit mg/Kg	<u>D</u>	08/21/23 14:10	Analyzed 08/22/23 18:49	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	sel Range Orga Result <50.0	Qualifier U	(GC) RL 50.0 50.0 50.0 Limits	MDL	Unit mg/Kg mg/Kg	<u>D</u>	08/21/23 14:10 08/21/23 14:10	Analyzed 08/22/23 18:49 08/22/23 18:49 08/22/23 18:49 Analyzed	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	sel Range Orga Result <50.0 51.2 <50.0	Qualifier U	(GC) RL 50.0 50.0 50.0	MDL	Unit mg/Kg mg/Kg	<u>D</u>	08/21/23 14:10 08/21/23 14:10 08/21/23 14:10	Analyzed 08/22/23 18:49 08/22/23 18:49 08/22/23 18:49	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Sel Range Orga Result <50.0 51.2 <50.0 %Recovery	Qualifier U	(GC) RL 50.0 50.0 50.0 Limits	MDL	Unit mg/Kg mg/Kg	<u>D</u>	08/21/23 14:10 08/21/23 14:10 08/21/23 14:10 Prepared	Analyzed 08/22/23 18:49 08/22/23 18:49 08/22/23 18:49 Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Sel Range Orga Result <50.0 51.2 <50.0	Qualifier U Qualifier	(GC) RL 50.0 50.0 50.0 Limits 70 - 130 70 - 130	MDL	Unit mg/Kg mg/Kg	<u>D</u>	08/21/23 14:10 08/21/23 14:10 08/21/23 14:10 Prepared 08/21/23 14:10	Analyzed 08/22/23 18:49 08/22/23 18:49 08/22/23 18:49 Analyzed 08/22/23 18:49	Dil Fac 1 1 Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Sel Range Orga Result	Qualifier U Qualifier	(GC) RL 50.0 50.0 50.0 Limits 70 - 130 70 - 130	MDL	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	08/21/23 14:10 08/21/23 14:10 08/21/23 14:10 Prepared 08/21/23 14:10	Analyzed 08/22/23 18:49 08/22/23 18:49 08/22/23 18:49 Analyzed 08/22/23 18:49	Dil Fac 1 1 1 Dil Fac

Client Sample ID: West Wall

Date Collected: 08/11/23 14:53

Lab Sample ID: 880-32113-14

Matrix: Solid

Date Received: 08/15/23 16:35

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier MDL Unit D Dil Fac RL Prepared Analyzed Benzene <0.00198 U 0.00198 mg/Kg 08/23/23 08:45 08/23/23 19:21 Toluene <0.00198 U 0.00198 mg/Kg 08/23/23 08:45 08/23/23 19:21 Ethylbenzene <0.00198 U 0.00198 mg/Kg 08/23/23 08:45 08/23/23 19:21 m-Xylene & p-Xylene <0.00396 U*+ 0.00396 mg/Kg 08/23/23 08:45 08/23/23 19:21 o-Xylene <0.00198 U 0.00198 mg/Kg 08/23/23 08:45 08/23/23 19:21 <0.00396 U 0.00396 08/23/23 08:45 08/23/23 19:21 Xylenes, Total mg/Kg

%Recovery Qualifier Limits Surrogate Prepared Analyzed Dil Fac 99 70 - 130 08/23/23 08:45 4-Bromofluorobenzene (Surr) 08/23/23 19:21 1,4-Difluorobenzene (Surr) 58 S1-70 - 130 08/23/23 08:45 08/23/23 19:21

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB Job ID: 880-32113-1

SDG: 1786

Client Sample ID: West Wall

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35 Lab Sample ID: 880-32113-14

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			08/24/23 10:35	
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	69.4		50.3		mg/Kg			08/23/23 11:00	
- Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<50.3	U	50.3		mg/Kg		08/21/23 14:10	08/22/23 19:11	
(GRO)-C6-C10									
Diesel Range Organics (Over	69.4		50.3		mg/Kg		08/21/23 14:10	08/22/23 19:11	
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.3	U	50.3		mg/Kg		08/21/23 14:10	08/22/23 19:11	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	114		70 - 130				08/21/23 14:10	08/22/23 19:11	
o-Terphenyl	98		70 - 130				08/21/23 14:10	08/22/23 19:11	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	360		50.1		mg/Kg			08/18/23 23:59	10

Surrogate Summary

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB Job ID: 880-32113-1

SDG: 1786

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
_ab Sample ID	Client Sample ID	(70-130)	(70-130)	
380-31986-A-1-E MS	Matrix Spike	122	113	
380-31986-A-1-G MSD	Matrix Spike Duplicate	127	120	
380-32113-1	Bottom Hole-1	85	73	
880-32113-2	Bottom Hole-2	112	65 S1-	
80-32113-3	Bottom Hole-3	92	73	
80-32113-4	Bottom Hole-4	103	92	
80-32113-5	Bottom Hole-5	102	76	
80-32113-6	Bottom Hole-6	106	80	
80-32113-7	Bottom Hole-7	105	75	
80-32113-8	Bottom Hole-8	122	112	
80-32113-9	Bottom Hole-9	104	66 S1-	
80-32113-10	Bottom Hole-10	98	75	
80-32113-11	North Wall	82	73	
80-32113-12	South Wall	101	56 S1-	
30-32113-13	East Wall	102	59 S1-	
80-32113-14	West Wall	99	58 S1-	
90-5106-A-1-E MS	Matrix Spike	127	109	
90-5106-A-1-F MSD	Matrix Spike Duplicate	127	110	
CS 880-60871/1-A	Lab Control Sample	119	110	
.CS 880-60938/1-A	Lab Control Sample	121	109	
.CSD 880-60871/2-A	Lab Control Sample Dup	118	114	
CSD 880-60938/2-A	Lab Control Sample Dup	122	106	
1B 880-60871/5-A	Method Blank	73	96	
MB 880-60938/5-A	Method Blank	73	80	

BFB = 4-Bromotiuoropenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-32113-1	Bottom Hole-1	112	98	
880-32113-2	Bottom Hole-2	120	105	
880-32113-3	Bottom Hole-3	125	111	
880-32113-4	Bottom Hole-4	139 S1+	112	
880-32113-5	Bottom Hole-5	120	104	
880-32113-6	Bottom Hole-6	136 S1+	119	
880-32113-7	Bottom Hole-7	115	101	
880-32113-8	Bottom Hole-8	126	101	
880-32113-9	Bottom Hole-9	135 S1+	115	
880-32113-10	Bottom Hole-10	131 S1+	116	
880-32113-11	North Wall	114	97	
880-32113-12	South Wall	128	112	
880-32113-13	East Wall	124	110	
880-32113-14	West Wall	114	98	
890-5126-A-1-E MS	Matrix Spike	133 S1+	104	

Surrogate Summary

Client: Etech Environmental & Safety Solutions

Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1

SDG: 1786

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1001	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-5126-A-1-F MSD	Matrix Spike Duplicate	129	101	
LCS 880-60741/2-A	Lab Control Sample	107	91	
LCSD 880-60741/3-A	Lab Control Sample Dup	123	106	
MB 880-60741/1-A	Method Blank	187 S1+	168 S1+	
Surrogate Legend				
1CO = 1-Chlorooctane				
OTPH = o-Terphenyl				

Eurofins Midland

2

5

7

8

10

12

13

14

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1

SDG: 1786

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-60871/5-A

Matrix: Solid

Analysis Batch: 60869

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 60871

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/23/23 08:45	08/23/23 12:07	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/23/23 08:45	08/23/23 12:07	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/23/23 08:45	08/23/23 12:07	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		08/23/23 08:45	08/23/23 12:07	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/23/23 08:45	08/23/23 12:07	1
Xylenes, Total	< 0.00400	U	0.00400		mg/Kg		08/23/23 08:45	08/23/23 12:07	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	73	70 - 130	08/23/23 08:45	08/23/23 12:07	1
1,4-Difluorobenzene (Surr)	96	70 - 130	08/23/23 08:45	08/23/23 12:07	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 60871

Lab Sample ID: LCS 880-60871/1-A Matrix: Solid

Analysis Batch: 60869

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1017	-	mg/Kg		102	70 - 130	
Toluene	0.100	0.1196		mg/Kg		120	70 - 130	
Ethylbenzene	0.100	0.1179		mg/Kg		118	70 - 130	
m-Xylene & p-Xylene	0.200	0.2633	*+	mg/Kg		132	70 - 130	
o-Xylene	0.100	0.1279		mg/Kg		128	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	119	70 - 130
1,4-Difluorobenzene (Surr)	110	70 - 130

Lab Sample ID: LCSD 880-60871/2-A

Matrix: Solid

Analysis Batch: 60869

Client Sample ID: Lab Control Sample D	up
--	----

Prep Type: Total/NA

Prep Batch: 60871

RPD LCSD LCSD Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Limit 0.09507 Benzene 0.100 mg/Kg 95 70 - 130 7 35 Toluene 0.100 0.1040 mg/Kg 104 70 - 130 14 35 Ethylbenzene 0.100 0.09942 mg/Kg 99 70 - 130 17 35 0.200 m-Xylene & p-Xylene 0.2191 mg/Kg 110 70 - 130 18 35 0.100 0.1079 108 70 - 130 o-Xylene mg/Kg 35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	118		70 - 130
1.4-Difluorobenzene (Surr)	114		70 - 130

Lab Sample ID: 880-31986-A-1-E MS

Matrix: Solid

Analysis Batch: 60869

Client Sample ID: Matrix Spike	е
Prep Type: Total/N/	4

Prep Batch: 60871

_	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U	0.0996	0.08878		mg/Kg		89	70 - 130	
Toluene	<0.00199	U	0.0996	0.1046		mg/Kg		105	70 - 130	

Eurofins Midland

Page 20 of 39

QC Sample Results

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB Job ID: 880-32113-1

SDG: 1786

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-31986-A-1-E MS

Matrix: Solid

Analysis Batch: 60869

Client Sample ID: Matrix Spike

Prep Type: Total/NA Prep Batch: 60871

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00199	U	0.0996	0.1053		mg/Kg		106	70 - 130	
m-Xylene & p-Xylene	<0.00398	U *+	0.199	0.2310		mg/Kg		116	70 - 130	
o-Xylene	<0.00199	U	0.0996	0.1126		mg/Kg		113	70 - 130	

MS MS

Surrogate	%Recovery Qualit	fier Limits
4-Bromofluorobenzene (Surr)	122	70 - 130
1,4-Difluorobenzene (Surr)	113	70 - 130

Client Sample ID: Matrix Spike Duplicate

70 - 130

119

Prep Type: Total/NA

Prep Batch: 60871

Lab Sample ID: 880-31986-A-1-G MSD Matrix: Solid

Analysis Batch: 60869

Sample Sample Spike MSD MSD RPD Result Qualifier Added Result Qualifier RPD Limit Analyte Unit %Rec Limits 0.100 Benzene <0.00199 U 0.09959 mg/Kg 99 70 - 130 11 35 Toluene <0.00199 U 0.100 0.1090 mg/Kg 109 70 - 130 4 35 Ethylbenzene <0.00199 U 0.100 0.1104 mg/Kg 110 70 - 130 5 35 <0.00398 U*+ 0.200 0.2439 122 70 - 130 35 m-Xylene & p-Xylene mg/Kg 5

0.1189

mg/Kg

0.100

MSD MSD

<0.00199 U

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	127	70 - 130
1.4-Difluorobenzene (Surr)	120	70 - 130

Lab Sample ID: MB 880-60938/5-A

Matrix: Solid

o-Xylene

Analysis Batch: 60869

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 60938

MB MB

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/23/23 17:45	08/23/23 22:44	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/23/23 17:45	08/23/23 22:44	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/23/23 17:45	08/23/23 22:44	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		08/23/23 17:45	08/23/23 22:44	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/23/23 17:45	08/23/23 22:44	1
Xylenes, Total	< 0.00400	U	0.00400		mg/Kg		08/23/23 17:45	08/23/23 22:44	1

MB MB

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	73	70 - 130	08/23/23 17:45	08/23/23 22:44	1
1,4-Difluorobenzene (Surr)	80	70 - 130	08/23/23 17:45	08/23/23 22:44	1

Lab Sample ID: LCS 880-60938/1-A

Matrix: Solid

Analysis Batch: 60869

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 60938

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1023		mg/Kg		102	70 - 130	
Toluene	0.100	0.1241		mg/Kg		124	70 - 130	
Ethylbenzene	0.100	0.1257		mg/Kg		126	70 - 130	
m-Xylene & p-Xylene	0.200	0.2796	*+	mg/Kg		140	70 - 130	

Eurofins Midland

2

3

A

6

9

10

16

14

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1

SDG: 1786

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-60938/1-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Analysis Batch: 60869 Prep Batch: 60938 Spike LCS LCS %Rec

Analyte Added Result Qualifier Unit %Rec Limits D 0.100 0 1363 136 70 - 130 o-Xylene mg/Kg

LCS LCS %Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 121 70 - 130 70 - 130 1,4-Difluorobenzene (Surr) 109

Lab Sample ID: LCSD 880-60938/2-A Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 60869 Prep Batch: 60938 LCSD LCSD Spike RPD Analyte Added Result Qualifier Unit %Rec Limits Limit D Benzene 0.100 0.08296 mg/Kg 83 70 - 130 21 35 Toluene 0.100 0.09693 mg/Kg 97 70 - 130 25 35 Ethylbenzene 0.100 0.09971 mg/Kg 100 70 - 130 23 35

0.2231

0.1102

mg/Kg

mg/Kg

112

110

70 - 130

70 - 130

23

21

Prep Type: Total/NA

Prep Batch: 60938

0.200

0.100

LCSD LCSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 122 70 - 130 1,4-Difluorobenzene (Surr) 106 70 - 130

Lab Sample ID: 890-5106-A-1-E MS Client Sample ID: Matrix Spike

Matrix: Solid

m-Xylene & p-Xylene

o-Xylene

Analysis Batch: 60869

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U	0.0996	0.08986		mg/Kg		90	70 - 130	
Toluene	< 0.00199	U	0.0996	0.1062		mg/Kg		107	70 - 130	
Ethylbenzene	< 0.00199	U	0.0996	0.1113		mg/Kg		112	70 - 130	
m-Xylene & p-Xylene	<0.00398	U *+	0.199	0.2432		mg/Kg		122	70 - 130	
o-Xylene	<0.00199	U *+	0.0996	0.1213		mg/Kg		122	70 - 130	

MS MS Surrogate %Recovery Qualifier Limits 70 - 130 4-Bromofluorobenzene (Surr) 127 70 - 130 1,4-Difluorobenzene (Surr) 109

Lab Sample ID: 890-5106-A-1-F MSD Client Sample ID: Matrix Spike Duplicate

Analysis Batch: 60869

Matrix: Solid

Sample Sample Spike MSD MSD %Rec RPD Result Qualifier Result Qualifier Limit Added Analyte Unit %Rec Limits RPD Benzene <0.00199 U 0.101 0.09515 mg/Kg 94 70 - 130 6 35 0.101 Toluene <0.00199 U 0 1089 108 70 - 1302 35 mg/Kg Ethylbenzene <0.00199 U 0.101 0.1111 mg/Kg 110 70 - 130 0 35 m-Xylene & p-Xylene <0.00398 U*+ 0.202 0.2432 121 mg/Kg 70 - 1300 35 o-Xylene <0.00199 U*+ 0 101 0.1217 mg/Kg 121 70 - 130 35

Eurofins Midland

35

35

Prep Type: Total/NA

Prep Batch: 60938

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1

SDG: 1786

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-5106-A-1-F MSD

Matrix: Solid

Analysis Batch: 60869

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 60938

MSD MSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	127	70 - 130
1,4-Difluorobenzene (Surr)	110	70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-60741/1-A

Matrix: Solid

Analysis Batch: 60776

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 60741

мв мв

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		08/21/23 14:10	08/22/23 08:13	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		08/21/23 14:10	08/22/23 08:13	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		08/21/23 14:10	08/22/23 08:13	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	187	S1+	70 - 130	08/21/23 14:10	08/22/23 08:13	1
o-Terphenyl	168	S1+	70 - 130	08/21/23 14:10	08/22/23 08:13	1

Lab Sample ID: LCS 880-60741/2-A

Matrix: Solid

Analysis Batch: 60776

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 60741

		Spike	LCS	LCS				%Rec	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Gasoline Range Organics	1000	938.0		mg/Kg		94	70 - 130	
	(GRO)-C6-C10								
	Diesel Range Organics (Over	1000	881.7		mg/Kg		88	70 - 130	
١	C10-C28)								

LCS LCS

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	107	70 - 130
o-Terphenyl	91	70 - 130

Lab Sample ID: LCSD 880-60741/3-A

Matrix: Solid Analysis Batch: 60776

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 60741

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	1012		mg/Kg		101	70 - 130	8	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	995.8		mg/Kg		100	70 - 130	12	20
C10 C28)									

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	123	70 - 130
o-Terphenvl	106	70 - 130

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1

SDG: 1786

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-5126-A-1-E MS

Matrix: Solid

Analysis Batch: 60776

Client Sample	ID: Matrix	Spike
----------------------	------------	-------

Prep Type: Total/NA Prep Batch: 60741

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	<49.6	U	995	1258		mg/Kg		124	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	<49.6	U	995	1150		mg/Kg		114	70 - 130	
C10 C20)										

C10-C28)

MS MS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	133	S1+	70 - 130
o-Terphenyl	104		70 - 130

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 60741

Lab Sample ID: 890-5126-A-1-F MSD

Matrix: Solid

Analysis Batch: 60776

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.6	U	995	1241		mg/Kg		123	70 - 130	1	20
Diesel Range Organics (Over C10-C28)	<49.6	U	995	1117		mg/Kg		111	70 - 130	3	20

MSD MSD %Recovery Qualifier Surrogate Limits 1-Chlorooctane 129 70 - 130 o-Terphenyl 101 70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-60360/1-A Client Sample ID: Method Blank **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 60617

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00		mg/Kg			08/18/23 21:19	1

Lab Sample ID: LCS 880-60360/2-A **Client Sample ID: Lab Control Sample Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 60617

	Spike	LUS L	.cs			%Rec	
Analyte	Added	Result Q	Qualifier Unit	D	%Rec	Limits	
Chloride	250	258.3	ma/Ka		103	90 - 110	

Lab Sample ID: LCSD 880-60360/3-A Client Sample ID: Lab Control Sample Dup **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 60617

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	250	258.8		mg/Kg		104	90 - 110	0	20	

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1

Prep Type: Soluble

Client Sample ID: North Wall

Prep Type: Soluble

SDG: 1786

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 880-32113-1 MS Client Sample ID: Bottom Hole-1 **Matrix: Solid**

Analysis Batch: 60617

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	334		1250	1625		mg/Kg		103	90 - 110	

Lab Sample ID: 880-32113-1 MSD **Client Sample ID: Bottom Hole-1 Prep Type: Soluble Matrix: Solid**

Analysis Batch: 60617

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	334		1250	1634		mg/Kg		104	90 - 110	1	20

Lab Sample ID: 880-32113-11 MS **Client Sample ID: North Wall Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 60617

Analysis Baton, 60011									
	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloride	803		2500	3355		mg/Kg		102	90 - 110

Lab Sample ID: 880-32113-11 MSD

Matrix: Solid

Analysis Batch: 60617

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	803		2500	3362		mg/Kg		103	90 - 110	0	20

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1 SDG: 1786

GC VOA

Analysis Batch: 60869

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-32113-1	Bottom Hole-1	Total/NA	Solid	8021B	60938
880-32113-2	Bottom Hole-2	Total/NA	Solid	8021B	60938
880-32113-3	Bottom Hole-3	Total/NA	Solid	8021B	60938
880-32113-4	Bottom Hole-4	Total/NA	Solid	8021B	60938
880-32113-5	Bottom Hole-5	Total/NA	Solid	8021B	60938
880-32113-6	Bottom Hole-6	Total/NA	Solid	8021B	60938
880-32113-7	Bottom Hole-7	Total/NA	Solid	8021B	60938
880-32113-8	Bottom Hole-8	Total/NA	Solid	8021B	60938
880-32113-9	Bottom Hole-9	Total/NA	Solid	8021B	60938
880-32113-10	Bottom Hole-10	Total/NA	Solid	8021B	60938
880-32113-11	North Wall	Total/NA	Solid	8021B	60871
880-32113-12	South Wall	Total/NA	Solid	8021B	60871
880-32113-13	East Wall	Total/NA	Solid	8021B	60871
880-32113-14	West Wall	Total/NA	Solid	8021B	60871
MB 880-60871/5-A	Method Blank	Total/NA	Solid	8021B	60871
MB 880-60938/5-A	Method Blank	Total/NA	Solid	8021B	60938
LCS 880-60871/1-A	Lab Control Sample	Total/NA	Solid	8021B	60871
LCS 880-60938/1-A	Lab Control Sample	Total/NA	Solid	8021B	60938
LCSD 880-60871/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	60871
LCSD 880-60938/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	60938
880-31986-A-1-E MS	Matrix Spike	Total/NA	Solid	8021B	60871
880-31986-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	60871
890-5106-A-1-E MS	Matrix Spike	Total/NA	Solid	8021B	60938
890-5106-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	60938

Prep Batch: 60871

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
880-32113-11	North Wall	Total/NA	Solid	5035	
880-32113-12	South Wall	Total/NA	Solid	5035	
880-32113-13	East Wall	Total/NA	Solid	5035	
880-32113-14	West Wall	Total/NA	Solid	5035	
MB 880-60871/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-60871/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-60871/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-31986-A-1-E MS	Matrix Spike	Total/NA	Solid	5035	
880-31986-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Prep Batch: 60938

Released to Imaging: 12/17/2024 11:07:38 AM

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
880-32113-1	Bottom Hole-1	Total/NA	Solid	5035	
880-32113-2	Bottom Hole-2	Total/NA	Solid	5035	
880-32113-3	Bottom Hole-3	Total/NA	Solid	5035	
880-32113-4	Bottom Hole-4	Total/NA	Solid	5035	
880-32113-5	Bottom Hole-5	Total/NA	Solid	5035	
880-32113-6	Bottom Hole-6	Total/NA	Solid	5035	
880-32113-7	Bottom Hole-7	Total/NA	Solid	5035	
880-32113-8	Bottom Hole-8	Total/NA	Solid	5035	
880-32113-9	Bottom Hole-9	Total/NA	Solid	5035	
880-32113-10	Bottom Hole-10	Total/NA	Solid	5035	
MB 880-60938/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-60938/1-A	Lab Control Sample	Total/NA	Solid	5035	

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1 SDG: 1786

GC VOA (Continued)

Prep Batch: 60938 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-60938/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-5106-A-1-E MS	Matrix Spike	Total/NA	Solid	5035	
890-5106-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 60979

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
880-32113-1	Bottom Hole-1	Total/NA	Solid	Total BTEX	
880-32113-2	Bottom Hole-2	Total/NA	Solid	Total BTEX	
880-32113-3	Bottom Hole-3	Total/NA	Solid	Total BTEX	
880-32113-4	Bottom Hole-4	Total/NA	Solid	Total BTEX	
880-32113-5	Bottom Hole-5	Total/NA	Solid	Total BTEX	
880-32113-6	Bottom Hole-6	Total/NA	Solid	Total BTEX	
880-32113-7	Bottom Hole-7	Total/NA	Solid	Total BTEX	
880-32113-8	Bottom Hole-8	Total/NA	Solid	Total BTEX	
880-32113-9	Bottom Hole-9	Total/NA	Solid	Total BTEX	
880-32113-10	Bottom Hole-10	Total/NA	Solid	Total BTEX	
880-32113-11	North Wall	Total/NA	Solid	Total BTEX	
880-32113-12	South Wall	Total/NA	Solid	Total BTEX	
880-32113-13	East Wall	Total/NA	Solid	Total BTEX	
880-32113-14	West Wall	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 60741

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-32113-1	Bottom Hole-1	Total/NA	Solid	8015NM Prep	
880-32113-2	Bottom Hole-2	Total/NA	Solid	8015NM Prep	
880-32113-3	Bottom Hole-3	Total/NA	Solid	8015NM Prep	
880-32113-4	Bottom Hole-4	Total/NA	Solid	8015NM Prep	
880-32113-5	Bottom Hole-5	Total/NA	Solid	8015NM Prep	
880-32113-6	Bottom Hole-6	Total/NA	Solid	8015NM Prep	
880-32113-7	Bottom Hole-7	Total/NA	Solid	8015NM Prep	
880-32113-8	Bottom Hole-8	Total/NA	Solid	8015NM Prep	
880-32113-9	Bottom Hole-9	Total/NA	Solid	8015NM Prep	
880-32113-10	Bottom Hole-10	Total/NA	Solid	8015NM Prep	
880-32113-11	North Wall	Total/NA	Solid	8015NM Prep	
880-32113-12	South Wall	Total/NA	Solid	8015NM Prep	
880-32113-13	East Wall	Total/NA	Solid	8015NM Prep	
880-32113-14	West Wall	Total/NA	Solid	8015NM Prep	
MB 880-60741/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-60741/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-60741/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-5126-A-1-E MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-5126-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 60776

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-32113-1	Bottom Hole-1	Total/NA	Solid	8015B NM	60741
880-32113-2	Bottom Hole-2	Total/NA	Solid	8015B NM	60741
880-32113-3	Bottom Hole-3	Total/NA	Solid	8015B NM	60741
880-32113-4	Bottom Hole-4	Total/NA	Solid	8015B NM	60741

Eurofins Midland

Page 27 of 39

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1 SDG: 1786

GC Semi VOA (Continued)

Analysis Batch: 60776 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-32113-5	Bottom Hole-5	Total/NA	Solid	8015B NM	60741
880-32113-6	Bottom Hole-6	Total/NA	Solid	8015B NM	60741
880-32113-7	Bottom Hole-7	Total/NA	Solid	8015B NM	60741
880-32113-8	Bottom Hole-8	Total/NA	Solid	8015B NM	60741
880-32113-9	Bottom Hole-9	Total/NA	Solid	8015B NM	60741
880-32113-10	Bottom Hole-10	Total/NA	Solid	8015B NM	60741
880-32113-11	North Wall	Total/NA	Solid	8015B NM	60741
880-32113-12	South Wall	Total/NA	Solid	8015B NM	60741
880-32113-13	East Wall	Total/NA	Solid	8015B NM	60741
880-32113-14	West Wall	Total/NA	Solid	8015B NM	60741
MB 880-60741/1-A	Method Blank	Total/NA	Solid	8015B NM	60741
LCS 880-60741/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	60741
LCSD 880-60741/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	60741
890-5126-A-1-E MS	Matrix Spike	Total/NA	Solid	8015B NM	60741
890-5126-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	60741

Analysis Batch: 60897

Prep Bato	Method	Matrix	Prep Type	Client Sample ID	Lab Sample ID
	8015 NM	Solid	Total/NA	Bottom Hole-1	880-32113-1
	8015 NM	Solid	Total/NA	Bottom Hole-2	880-32113-2
	8015 NM	Solid	Total/NA	Bottom Hole-3	880-32113-3
	8015 NM	Solid	Total/NA	Bottom Hole-4	880-32113-4
	8015 NM	Solid	Total/NA	Bottom Hole-5	880-32113-5
	8015 NM	Solid	Total/NA	Bottom Hole-6	880-32113-6
	8015 NM	Solid	Total/NA	Bottom Hole-7	880-32113-7
	8015 NM	Solid	Total/NA	Bottom Hole-8	880-32113-8
	8015 NM	Solid	Total/NA	Bottom Hole-9	880-32113-9
	8015 NM	Solid	Total/NA	Bottom Hole-10	880-32113-10
	8015 NM	Solid	Total/NA	North Wall	880-32113-11
	8015 NM	Solid	Total/NA	South Wall	880-32113-12
	8015 NM	Solid	Total/NA	East Wall	880-32113-13
	8015 NM	Solid	Total/NA	West Wall	880-32113-14

HPLC/IC

Leach Batch: 60360

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-32113-1	Bottom Hole-1	Soluble	Solid	DI Leach	
880-32113-2	Bottom Hole-2	Soluble	Solid	DI Leach	
880-32113-3	Bottom Hole-3	Soluble	Solid	DI Leach	
880-32113-4	Bottom Hole-4	Soluble	Solid	DI Leach	
880-32113-5	Bottom Hole-5	Soluble	Solid	DI Leach	
880-32113-6	Bottom Hole-6	Soluble	Solid	DI Leach	
880-32113-7	Bottom Hole-7	Soluble	Solid	DI Leach	
880-32113-8	Bottom Hole-8	Soluble	Solid	DI Leach	
880-32113-9	Bottom Hole-9	Soluble	Solid	DI Leach	
880-32113-10	Bottom Hole-10	Soluble	Solid	DI Leach	
880-32113-11	North Wall	Soluble	Solid	DI Leach	
880-32113-12	South Wall	Soluble	Solid	DI Leach	
880-32113-13	East Wall	Soluble	Solid	DI Leach	
880-32113-14	West Wall	Soluble	Solid	DI Leach	

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB Job ID: 880-32113-1 SDG: 1786

HPLC/IC (Continued)

Leach Batch: 60360 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-60360/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-60360/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-60360/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-32113-1 MS	Bottom Hole-1	Soluble	Solid	DI Leach	
880-32113-1 MSD	Bottom Hole-1	Soluble	Solid	DI Leach	
880-32113-11 MS	North Wall	Soluble	Solid	DI Leach	
880-32113-11 MSD	North Wall	Soluble	Solid	DI Leach	

Analysis Batch: 60617

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-32113-1	Bottom Hole-1	Soluble	Solid	300.0	60360
880-32113-2	Bottom Hole-2	Soluble	Solid	300.0	60360
880-32113-3	Bottom Hole-3	Soluble	Solid	300.0	60360
880-32113-4	Bottom Hole-4	Soluble	Solid	300.0	60360
880-32113-5	Bottom Hole-5	Soluble	Solid	300.0	60360
880-32113-6	Bottom Hole-6	Soluble	Solid	300.0	60360
880-32113-7	Bottom Hole-7	Soluble	Solid	300.0	60360
880-32113-8	Bottom Hole-8	Soluble	Solid	300.0	60360
880-32113-9	Bottom Hole-9	Soluble	Solid	300.0	60360
880-32113-10	Bottom Hole-10	Soluble	Solid	300.0	60360
880-32113-11	North Wall	Soluble	Solid	300.0	60360
880-32113-12	South Wall	Soluble	Solid	300.0	60360
880-32113-13	East Wall	Soluble	Solid	300.0	60360
880-32113-14	West Wall	Soluble	Solid	300.0	60360
MB 880-60360/1-A	Method Blank	Soluble	Solid	300.0	60360
LCS 880-60360/2-A	Lab Control Sample	Soluble	Solid	300.0	60360
LCSD 880-60360/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	60360
880-32113-1 MS	Bottom Hole-1	Soluble	Solid	300.0	60360
880-32113-1 MSD	Bottom Hole-1	Soluble	Solid	300.0	60360
880-32113-11 MS	North Wall	Soluble	Solid	300.0	60360
880-32113-11 MSD	North Wall	Soluble	Solid	300.0	60360

Eurofins Midland

Released to Imaging: 12/17/2024 11:07:38 AM

2

4

6

8

10

40

13

14

Client Sample ID: Bottom Hole-1

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35 Lab Sample ID: 880-32113-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	60938	08/23/23 17:45	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	60869	08/24/23 03:32	SM	EET MID
Total/NA	Analysis	Total BTEX		1			60979	08/24/23 10:35	SM	EET MID
Total/NA	Analysis	8015 NM		1			60897	08/23/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	60741	08/21/23 14:10	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	60776	08/22/23 14:06	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	60360	08/16/23 09:31	SMC	EET MID
Soluble	Analysis	300.0		5			60617	08/18/23 21:39	CH	EET MID

Client Sample ID: Bottom Hole-2

Date Collected: 08/11/23 14:53

Date Received: 08/15/23 16:35

Lab Sample ID: 880-32113-2

Matrix: Solid

Batch Dil Initial Final Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Prep 5035 Total/NA 5.02 g 5 mL 60938 08/23/23 17:45 EL EET MID Total/NA 8021B 5 mL **EET MID** Analysis 1 5 mL 60869 08/24/23 03:52 SM Total/NA Total BTEX 60979 08/24/23 10:35 SM Analysis **EET MID** 1 Total/NA Analysis 8015 NM 60897 08/23/23 11:00 SM **EET MID** Total/NA 9.96 g 60741 Prep 8015NM Prep 10 mL 08/21/23 14:10 TKC EET MID Total/NA Analysis 8015B NM 1 uL 1 uL 60776 08/22/23 14:29 SM **EET MID** Soluble 08/16/23 09:31 Leach DI Leach 5.02 g 50 mL 60360 SMC **EET MID** Soluble Analysis 300.0 10 60617 08/18/23 21:59 СН **EET MID**

Client Sample ID: Bottom Hole-3

Date Collected: 08/11/23 14:53

Date Received: 08/15/23 16:35

Lab Sample ID: 880-32113-3

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	60938	08/23/23 17:45	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	60869	08/24/23 04:13	SM	EET MID
Total/NA	Analysis	Total BTEX		1			60979	08/24/23 10:35	SM	EET MID
Total/NA	Analysis	8015 NM		1			60897	08/23/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			9.92 g	10 mL	60741	08/21/23 14:10	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	60776	08/22/23 14:50	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	60360	08/16/23 09:31	SMC	EET MID
Soluble	Analysis	300.0		5			60617	08/18/23 22:06	CH	EET MID

Client Sample ID: Bottom Hole-4

Date Collected: 08/11/23 14:53

Date Received: 08/15/23 16:35

Lab Sample	ID: 880-32113-4
------------	-----------------

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	60938	08/23/23 17:45	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	60869	08/24/23 04:33	SM	EET MID
Total/NA	Analysis	Total BTEX		1			60979	08/24/23 10:35	SM	EET MID

Lab Chronicle

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1

SDG: 1786

Client Sample ID: Bottom Hole-4

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35 Lab Sample ID: 880-32113-4

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			60897	08/23/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	60741	08/21/23 14:10	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	60776	08/22/23 15:12	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	60360	08/16/23 09:31	SMC	EET MID
Soluble	Analysis	300.0		10			60617	08/18/23 22:13	CH	EET MID

Lab Sample ID: 880-32113-5 **Client Sample ID: Bottom Hole-5**

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35 **Matrix: Solid**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	60938	08/23/23 17:45	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	60869	08/24/23 04:53	SM	EET MID
Total/NA	Analysis	Total BTEX		1			60979	08/24/23 10:35	SM	EET MID
Total/NA	Analysis	8015 NM		1			60897	08/23/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	60741	08/21/23 14:10	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	60776	08/22/23 15:55	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	60360	08/16/23 09:31	SMC	EET MID
Soluble	Analysis	300.0		10			60617	08/18/23 22:19	CH	EET MID

Client Sample ID: Bottom Hole-6 Lab Sample ID: 880-32113-6

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35 **Matrix: Solid**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	60938	08/23/23 17:45	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	60869	08/24/23 05:14	SM	EET MID
Total/NA	Analysis	Total BTEX		1			60979	08/24/23 10:35	SM	EET MID
Total/NA	Analysis	8015 NM		1			60897	08/23/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	60741	08/21/23 14:10	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	60776	08/22/23 16:17	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	60360	08/16/23 09:31	SMC	EET MID
Soluble	Analysis	300.0		5			60617	08/18/23 22:39	CH	EET MID

Client Sample ID: Bottom Hole-7

Released to Imaging: 12/17/2024 11:07:38 AM

Lab Sample ID: 880-32113-7 Date Collected: 08/11/23 14:53 **Matrix: Solid**

Date Received: 08/15/23 16:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	60938	08/23/23 17:45	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	60869	08/24/23 05:34	SM	EET MID
Total/NA	Analysis	Total BTEX		1			60979	08/24/23 10:35	SM	EET MID
Total/NA	Analysis	8015 NM		1			60897	08/23/23 11:00	SM	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	9.97 g 1 uL	10 mL 1 uL	60741 60776	08/21/23 14:10 08/22/23 16:39	TKC SM	EET MID EET MID

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1

SDG: 1786

Client Sample ID: Bottom Hole-7

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35 Lab Sample ID: 880-32113-7

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.01 g	50 mL	60360	08/16/23 09:31	SMC	EET MID
Soluble	Analysis	300.0		10			60617	08/18/23 22:46	CH	EET MID

Client Sample ID: Bottom Hole-8 Lab Sample ID: 880-32113-8

Date Collected: 08/11/23 14:53 **Matrix: Solid**

Date Received: 08/15/23 16:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	60938	08/23/23 17:45	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	60869	08/24/23 05:55	SM	EET MID
Total/NA	Analysis	Total BTEX		1			60979	08/24/23 10:35	SM	EET MID
Total/NA	Analysis	8015 NM		1			60897	08/23/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			9.99 g	10 mL	60741	08/21/23 14:10	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	60776	08/22/23 17:00	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	60360	08/16/23 09:31	SMC	EET MID
Soluble	Analysis	300.0		5			60617	08/18/23 22:53	CH	EET MID

Client Sample ID: Bottom Hole-9

Lab Sample ID: 880-32113-9 Date Collected: 08/11/23 14:53

Date Received: 08/15/23 16:35

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	60938	08/23/23 17:45	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	60869	08/24/23 06:15	SM	EET MID
Total/NA	Analysis	Total BTEX		1			60979	08/24/23 10:35	SM	EET MID
Total/NA	Analysis	8015 NM		1			60897	08/23/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	60741	08/21/23 14:10	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	60776	08/22/23 17:22	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	60360	08/16/23 09:31	SMC	EET MID
Soluble	Analysis	300.0		10			60617	08/18/23 22:59	CH	EET MID

Client Sample ID: Bottom Hole-10

Lab Sample ID: 880-32113-10 Date Collected: 08/11/23 14:53 Matrix: Solid

Date Received: 08/15/23 16:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	60938	08/23/23 17:45	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	60869	08/24/23 06:36	SM	EET MID
Total/NA	Analysis	Total BTEX		1			60979	08/24/23 10:35	SM	EET MID
Total/NA	Analysis	8015 NM		1			60897	08/23/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	60741	08/21/23 14:10	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	60776	08/22/23 17:44	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	60360	08/16/23 09:31	SMC	EET MID
Soluble	Analysis	300.0		5			60617	08/18/23 23:06	CH	EET MID

Eurofins Midland

Matrix: Solid

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB Job ID: 880-32113-1

SDG: 1786

Client Sample ID: North Wall

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35 Lab Sample ID: 880-32113-11

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	60871	08/23/23 08:45	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	60869	08/23/23 18:19	SM	EET MID
Total/NA	Analysis	Total BTEX		1			60979	08/24/23 10:35	SM	EET MID
Total/NA	Analysis	8015 NM		1			60897	08/23/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	60741	08/21/23 14:10	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	60776	08/22/23 18:05	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	60360	08/16/23 09:31	SMC	EET MID
Soluble	Analysis	300.0		10			60617	08/18/23 23:13	CH	EET MID

Client Sample ID: South Wall

Date Collected: 08/11/23 14:53

Date Received: 08/15/23 16:35

Lab Sample ID: 880-32113-12

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	60871	08/23/23 08:45	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	60869	08/23/23 18:40	SM	EET MID
Total/NA	Analysis	Total BTEX		1			60979	08/24/23 10:35	SM	EET MID
Total/NA	Analysis	8015 NM		1			60897	08/23/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			10.10 g	10 mL	60741	08/21/23 14:10	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	60776	08/22/23 18:27	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	60360	08/16/23 09:31	SMC	EET MID
Soluble	Analysis	300.0		5			60617	08/18/23 23:33	CH	EET MID

Client Sample ID: East Wall

Date Collected: 08/11/23 14:53

Date Received: 08/15/23 16:35

Lab Sample ID: 880-32113-13

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	60871	08/23/23 08:45	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	60869	08/23/23 19:00	SM	EET MID
Total/NA	Analysis	Total BTEX		1			60979	08/24/23 10:35	SM	EET MID
Total/NA	Analysis	8015 NM		1			60897	08/23/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	60741	08/21/23 14:10	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	60776	08/22/23 18:49	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	60360	08/16/23 09:31	SMC	EET MID
Soluble	Analysis	300.0		10			60617	08/18/23 23:39	CH	EET MID

Client Sample ID: West Wall

Date Collected: 08/11/23 14:53

Date Received: 08/15/23 16:35

Lab Sample	ID: 880-32113-14
------------	------------------

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	60871	08/23/23 08:45	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	60869	08/23/23 19:21	SM	EET MID
Total/NA	Analysis	Total BTEX		1			60979	08/24/23 10:35	SM	EET MID

Eurofins Midland

2

3

6

9

10

12

0/24/2022

Lab Chronicle

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1

SDG: 1786

Client Sample ID: West Wall

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35 Lab Sample ID: 880-32113-14

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			60897	08/23/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			9.94 g	10 mL	60741	08/21/23 14:10	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	60776	08/22/23 19:11	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	60360	08/16/23 09:31	SMC	EET MID
Soluble	Analysis	300.0		10			60617	08/18/23 23:59	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

9

10

12

13

14

Accreditation/Certification Summary

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1

SDG: 1786

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		rogram	Identification Number	Expiration Date	
- Texas		ELAP	T104704400-23-26	06-30-24	
The following analytes the agency does not of	. ,	ut the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes fo	
Analysis Method	Prep Method	Matrix	Analyte		
8015 NM		Solid	Total TPH		
Total BTEX					

Ė

6

7

9

10

12

13

14

Method Summary

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1

SDG: 1786

_	

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1

SDG: 1786

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-32113-1	Bottom Hole-1	Solid	08/11/23 14:53	08/15/23 16:35
880-32113-2	Bottom Hole-2	Solid	08/11/23 14:53	08/15/23 16:35
880-32113-3	Bottom Hole-3	Solid	08/11/23 14:53	08/15/23 16:35
880-32113-4	Bottom Hole-4	Solid	08/11/23 14:53	08/15/23 16:35
880-32113-5	Bottom Hole-5	Solid	08/11/23 14:53	08/15/23 16:35
880-32113-6	Bottom Hole-6	Solid	08/11/23 14:53	08/15/23 16:35
880-32113-7	Bottom Hole-7	Solid	08/11/23 14:53	08/15/23 16:35
880-32113-8	Bottom Hole-8	Solid	08/11/23 14:53	08/15/23 16:35
880-32113-9	Bottom Hole-9	Solid	08/11/23 14:53	08/15/23 16:35
880-32113-10	Bottom Hole-10	Solid	08/11/23 14:53	08/15/23 16:35
880-32113-11	North Wall	Solid	08/11/23 14:53	08/15/23 16:35
880-32113-12	South Wall	Solid	08/11/23 14:53	08/15/23 16:35
880-32113-13	East Wall	Solid	08/11/23 14:53	08/15/23 16:35
880-32113-14	West Wall	Solid	08/11/23 14:53	08/15/23 16:35

Relinquished by: Date Time	Date Time	9/5/17 16:35	itions:	2	wall	Mari	hall	\mathcal{U}	1		Rotton 746-7	5		N	Rotton Hole- 3	Rother Hul- 2	Botton Ible- 1	LAB # (lab use only)	ORDER#: 32113	Mah uso saku	ure:	Etech Env s: P.O. Box (Project Manager: BLAKE ESTEP	1 100 Bankin Hwy Midland Texas 79701	Physical Lab. L.P. Permian Basin Lavironmental Lab. L.P.
Receiv	Receiv	Received by		6,	6,	6,	2	911	6"	9/1	6"	6:	6"	9:	6"	12'	12	End Depth				ons, Ir			7000
Received by:	Received by:	ed by:	0													-	8-11-23	End Depth 880-32113 Chain Chain			Dak @etechenv.com	<u>1</u> C.			ontal Lab.
		6		1570	1518	1516	1014	1912	1510	1508	1506	1504	1502	1459	1457	1455	1453	Date Sampled Chain of Custody Time Sampled			etechen			Phone: 132-636-7235	Th.
		(0			-	-	1	1	1	_		1	-	1	1	1	-	No. of Containers			V.C			132	
		7														0	43	ice			E C			-6324	
																		HNO ₃						7	
			2															HCI						2:1.5	
									므									H₂SO₄							
																		NaOH							_
-	-	-0																Na ₂ S ₂ O ₃							CHA
١	0	0		6		<u> </u>												None Other/Specify		Rep		Project #: Area:	Project Name:		Z
Date	Date			_				_					_			3		Other (Specify) DW=Drinking Water SL=Sludge	1	ort T	⊠Bill Etech	ia: jec	jec		QF
		83										_		_	_	-	S	GW = Groundwater S=Soil/Soild NP=Non-PotableSpecify Other		orma	Ω	#	Z		S
_	=	6													_		_	NP≖Non-PotableSpecify Other	-	2	<u> </u>		am		570
ime	ne ne	7						0	-		8	2	0	0	0		S	TPH: 418.1 8015 1005 1006		1 A			e:		νď
Ħ	S S	800	< 0 L															Cations (Ca, Mg, Na, K)]	Report Format: STANDARD:D		86	M		RE
Temperature Upon Receipt:	Sar by	Custody seals on container Custody seals on cooler(s) Sample Hand Delivered	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?															Anions (CI, SO4, CO3, HCO3)					13		202
ratu	San	dy so	Free Co															SAR / ESP / CEC	TOTAL:				Ha		ã
re U	rier	nd D	ntair of I															Metals: As Ag Ba Cd Cr Pb Hg Se		1999		or or	1		N.
pon	Sampler/Client Rep. Courier? UPS	on con con con con con con con con con c	ners Head															Volatiles				Project Loc PO#: /	7		A
Rec	S R	onta	intac Ispa															Semi volatiles				ect Lo	5		A
apt:	Sep. ?	Custody seals on container(s) Custody seals on cooler(s) Sample Hand Delivered	Ce?	D.	D			0	0			Ü			0	0	4	BTEX-802-1875030 or BTEX 8260		Analyze For:		/ C	ection		AIN OF CUSTODY RECORD AND ANALYSIS REQUEST
S	星~	(s)																RCI		2 2		2	8		SR
																		N.O.R.M.] P		8	W		EQU
W5.	FedEx			0		8											归	Chlorides		1		0	3		JES
3	₩ ≺	~~~	~~																				7		7
	Lone																						11		
റ്	e Star	ZZZ	ZZ															RUSH TAT(Pre-Schedule) 24, 48, 7	2 hrs	1			S		
														-		-		STANDARD TAT		1 1					

Login Sample Receipt Checklist

Client: Etech Environmental & Safety Solutions

Job Number: 880-32113-1

SDG Number: 1786

Login Number: 32113 **List Source: Eurofins Midland**

List Number: 1 Creator: Teel, Brianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

Released to Imaging: 12/17/2024 11:07:38 AM

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report Rev. 1

Prepared for:

Blake Estep
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: NM Hayhurst Sect. 35 C TB

Project Number: 17586 Location: New Mexico

Lab Order Number: 4C25010

Current Certification

Report Date: 05/10/24

13000 West County Road 100 Odessa TX, 79765 Project: NM Hayhurst Sect. 35 C TB

Project Number: 17586 Project Manager: Blake Estep

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Bottom Hole - 2A @ 12.5"	4C25010-01	Soil	03/22/24 12:00	03-25-2024 15:52
Bottom Hole - 4A @ 10"	4C25010-02	Soil	03/22/24 12:02	03-25-2024 15:52
Bottom Hole - 6A @ 8"	4C25010-03	Soil	03/22/24 12:04	03-25-2024 15:52
Bottom Hole - 7A @ 8"	4C25010-04	Soil	03/22/24 12:06	03-25-2024 15:52
Bottom Hole - 8A @ 12"	4C25010-05	Soil	03/22/24 12:08	03-25-2024 15:52
Bottom Hole - 9A @ 8"	4C25010-06	Soil	03/22/24 12:10	03-25-2024 15:52
Bottom Hole - 11A @ 8"	4C25010-07	Soil	03/22/24 12:12	03-25-2024 15:52
Bottom Hole 12A @ 8"	4C25010-08	Soil	03/22/24 12:14	03-25-2024 15:52
Bottom Hole - 13A @ 8"	4C25010-09	Soil	03/22/24 12:16	03-25-2024 15:52
Bottom Hole - 14A @ 8"	4C25010-10	Soil	03/22/24 12:18	03-25-2024 15:52
North Side Wall A @ 0-6"	4C25010-11	Soil	03/22/24 12:20	03-25-2024 15:52
South Side Wall A @ 0-6"	4C25010-12	Soil	03/22/24 12:22	03-25-2024 15:52
East Side Wall A @ 0-6"	4C25010-13	Soil	03/22/24 12:24	03-25-2024 15:52

Project Number: 17586

Project: NM Hayhurst Sect. 35 C TB

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

Bottom Hole - 2A @ 12.5" 4C25010-01 (Soil)

	Lim	it Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 15:54	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 15:54	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 15:54	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 15:54	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 15:54	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		101 %	80-120		P4C2610	03/26/24 13:05	03/26/24 15:54	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	ě	89.0 %	80-120		P4C2610	03/26/24 13:05	03/26/24 15:54	EPA 8021B	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 03:49	TPH 8015M	
>C12-C28	30.6	25.8	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 03:49	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 03:49	TPH 8015M	
Surrogate: 1-Chlorooctane		91.2 %	70-130	·	P4C2615	03/26/24 15:41	03/27/24 03:49	TPH 8015M	
Surrogate: o-Terphenyl		106 %	70-130		P4C2615	03/26/24 15:41	03/27/24 03:49	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	30.6	25.8	mg/kg dry	1	[CALC]	03/26/24 15:41	03/27/24 03:49	calc	
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	170	1.03	mg/kg dry	1	P4C2611	03/26/24 14:29	03/26/24 20:41	EPA 300.0	
% Moisture	3.0	0.1	%	1	P4C2709	03/27/24 10:08	03/27/24 10:12	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: NM Hayhurst Sect. 35 C TB

Project Number: 17586 Project Manager: Blake Estep

Bottom Hole - 4A @ 10" 4C25010-02 (Soil)

Amalasta	Limit	Repo	U						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND (0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 16:16	EPA 8021B	
Toluene	ND (0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 16:16	EPA 8021B	
Ethylbenzene	ND (0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 16:16	EPA 8021B	
Xylene (p/m)	ND (0.00211	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 16:16	EPA 8021B	
Xylene (o)	ND (0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 16:16	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	i	105 %	80-120		P4C2610	03/26/24 13:05	03/26/24 16:16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	8	8.6 %	80-120		P4C2610	03/26/24 13:05	03/26/24 16:16	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	Method	8015M						
C6-C12	ND	26.3	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 04:12	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 04:12	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 04:12	TPH 8015M	
Surrogate: 1-Chlorooctane	9	5.5 %	70-130		P4C2615	03/26/24 15:41	03/27/24 04:12	TPH 8015M	
Surrogate: o-Terphenyl		110 %	70-130		P4C2615	03/26/24 15:41	03/27/24 04:12	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	03/26/24 15:41	03/27/24 04:12	calc	
General Chemistry Parameters by	EPA / Standa	ard Metl	hods						
Chloride	75.4	5.26	mg/kg dry	5	P4C2611	03/26/24 14:29	03/26/24 20:56	EPA 300.0	
% Moisture	5.0	0.1	%	1	P4C2709	03/27/24 10:08	03/27/24 10:12	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: NM Hayhurst Sect. 35 C TB

Project Number: 17586 Project Manager: Blake Estep

Bottom Hole - 6A @ 8" 4C25010-03 (Soil)

A	Limit	Repor	-						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Po	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND (0.00106	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 16:39	EPA 8021B	
Toluene	ND (0.00106	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 16:39	EPA 8021B	
Ethylbenzene	ND (0.00106	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 16:39	EPA 8021B	
Xylene (p/m)	ND (0.00213	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 16:39	EPA 8021B	
Xylene (o)	ND (0.00106	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 16:39	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		110 %	80-120		P4C2610	03/26/24 13:05	03/26/24 16:39	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	8	5.0 %	80-120		P4C2610	03/26/24 13:05	03/26/24 16:39	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	26.6	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 05:22	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 05:22	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 05:22	TPH 8015M	
Surrogate: 1-Chlorooctane	9	7.2 %	70-130		P4C2615	03/26/24 15:41	03/27/24 05:22	TPH 8015M	
Surrogate: o-Terphenyl		113 %	70-130		P4C2615	03/26/24 15:41	03/27/24 05:22	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	03/26/24 15:41	03/27/24 05:22	calc	
General Chemistry Parameters by	EPA / Standa	rd Metl	nods						
Chloride	111	1.06	mg/kg dry	1	P4C2611	03/26/24 14:29	03/28/24 10:32	EPA 300.0	
% Moisture	6.0	0.1	%	1	P4C2709	03/27/24 10:08	03/27/24 10:12	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: NM Hayhurst Sect. 35 C TB

Project Number: 17586 Project Manager: Blake Estep

Bottom Hole - 7A @ 8" 4C25010-04 (Soil)

Amelyte	Limi	t Repo	•						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:01	EPA 8021B	
Toluene	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:01	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:01	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:01	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:01	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	8	86.5 %	80-120		P4C2610	03/26/24 13:05	03/26/24 17:01	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		109 %	80-120		P4C2610	03/26/24 13:05	03/26/24 17:01	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	26.3	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 05:45	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 05:45	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 05:45	TPH 8015M	
Surrogate: 1-Chlorooctane	9	93.6 %	70-130		P4C2615	03/26/24 15:41	03/27/24 05:45	TPH 8015M	
Surrogate: o-Terphenyl		109 %	70-130		P4C2615	03/26/24 15:41	03/27/24 05:45	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	03/26/24 15:41	03/27/24 05:45	calc	
General Chemistry Parameters by	EPA / Standa	ard Metl	10ds						
Chloride	131	1.05	mg/kg dry	1	P4C2611	03/26/24 14:29	03/28/24 10:49	EPA 300.0	
% Moisture	5.0	0.1	%	1	P4C2709	03/27/24 10:08	03/27/24 10:12	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: NM Hayhurst Sect. 35 C TB

Project Number: 17586 Project Manager: Blake Estep

Bottom Hole - 8A @ 12" 4C25010-05 (Soil)

	Limit	t Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND (0.00110	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:24	EPA 8021B	
Toluene	ND (0.00110	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:24	EPA 8021B	
Ethylbenzene	ND (0.00110	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:24	EPA 8021B	
Xylene (p/m)	ND (0.00220	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:24	EPA 8021B	
Xylene (o)	ND (0.00110	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:24	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		107 %	80-120		P4C2610	03/26/24 13:05	03/26/24 17:24	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	8	8.4 %	80-120		P4C2610	03/26/24 13:05	03/26/24 17:24	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	Method	8015M						
C6-C12	ND	27.5	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 06:09	TPH 8015M	
>C12-C28	ND	27.5	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 06:09	TPH 8015M	
>C28-C35	ND	27.5	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 06:09	TPH 8015M	
Surrogate: 1-Chlorooctane	9	5.6 %	70-130		P4C2615	03/26/24 15:41	03/27/24 06:09	TPH 8015M	
Surrogate: o-Terphenyl		111 %	70-130		P4C2615	03/26/24 15:41	03/27/24 06:09	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.5	mg/kg dry	1	[CALC]	03/26/24 15:41	03/27/24 06:09	calc	
General Chemistry Parameters by	EPA / Standa	ard Metl	hods						
Chloride	60.3	5.49	mg/kg dry	5	P4C2611	03/26/24 14:29	03/26/24 21:42	EPA 300.0	
% Moisture	9.0	0.1	%	1	P4C2709	03/27/24 10:08	03/27/24 10:12	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: NM Hayhurst Sect. 35 C TB

Project Number: 17586 Project Manager: Blake Estep

Bottom Hole - 9A @ 8" 4C25010-06 (Soil)

Analyta	Limi	t Repor	•					36.2.3	
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Po	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:46	EPA 8021B	
Toluene	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:46	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:46	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:46	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:46	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	8	88.1 %	80-120		P4C2610	03/26/24 13:05	03/26/24 17:46	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		109 %	80-120		P4C2610	03/26/24 13:05	03/26/24 17:46	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	26.3	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 06:32	TPH 8015M	·
>C12-C28	ND	26.3	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 06:32	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 06:32	TPH 8015M	
Surrogate: 1-Chlorooctane	8	89.1 %	70-130		P4C2615	03/26/24 15:41	03/27/24 06:32	TPH 8015M	
Surrogate: o-Terphenyl		102 %	70-130		P4C2615	03/26/24 15:41	03/27/24 06:32	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	03/26/24 15:41	03/27/24 06:32	calc	
General Chemistry Parameters by	EPA / Standa	ard Meth	nods						
Chloride	132	1.05	mg/kg dry	1	P4C2611	03/26/24 14:29	03/28/24 11:06	EPA 300.0	
% Moisture	5.0	0.1	%	1	P4C2709	03/27/24 10:08	03/27/24 10:12	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: NM Hayhurst Sect. 35 C TB

Project Number: 17586 Project Manager: Blake Estep

Bottom Hole - 11A @ 8" 4C25010-07 (Soil)

Analyte	Lim	it Repo	•	D.1	D	ъ .	A 1 1	M-4 1	NT /
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:08	EPA 8021B	
Toluene	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:08	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:08	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:08	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:08	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		87.3 %	80-120		P4C2610	03/26/24 13:05	03/26/24 18:08	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		108 %	80-120		P4C2610	03/26/24 13:05	03/26/24 18:08	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	26.3	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 06:55	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 06:55	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 06:55	TPH 8015M	
Surrogate: 1-Chlorooctane		99.3 %	70-130		P4C2615	03/26/24 15:41	03/27/24 06:55	TPH 8015M	
Surrogate: o-Terphenyl		116 %	70-130		P4C2615	03/26/24 15:41	03/27/24 06:55	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	03/26/24 15:41	03/27/24 06:55	calc	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	107	1.05	mg/kg dry	1	P4C2611	03/26/24 14:29	03/28/24 11:22	EPA 300.0	
% Moisture	5.0	0.1	%	1	P4C2709	03/27/24 10:08	03/27/24 10:12	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: NM Hayhurst Sect. 35 C TB

Project Number: 17586 Project Manager: Blake Estep

Bottom Hole 12A @ 8" 4C25010-08 (Soil)

	Limi	t Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:30	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:30	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:30	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:30	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:30	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	8	87.8 %	80-120		P4C2610	03/26/24 13:05	03/26/24 18:30	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		112 %	80-120		P4C2610	03/26/24 13:05	03/26/24 18:30	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 07:19	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 07:19	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 07:19	TPH 8015M	
Surrogate: 1-Chlorooctane	9	07.4 %	70-130		P4C2615	03/26/24 15:41	03/27/24 07:19	TPH 8015M	
Surrogate: o-Terphenyl		113 %	70-130		P4C2615	03/26/24 15:41	03/27/24 07:19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/26/24 15:41	03/27/24 07:19	calc	
General Chemistry Parameters by	EPA / Standa	ard Metl	hods						
Chloride	231	1.04	mg/kg dry	1	P4C2611	03/26/24 14:29	03/28/24 11:39	EPA 300.0	
% Moisture	4.0	0.1	%	1	P4C2709	03/27/24 10:08	03/27/24 10:12	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: NM Hayhurst Sect. 35 C TB

Project Number: 17586 Project Manager: Blake Estep

Bottom Hole - 13A @ 8" 4C25010-09 (Soil)

	Limi	t Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00108	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:53	EPA 8021B	
Toluene	ND	0.00108	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:53	EPA 8021B	
Ethylbenzene	ND	0.00108	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:53	EPA 8021B	
Xylene (p/m)	ND	0.00215	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:53	EPA 8021B	
Xylene (o)	ND	0.00108	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:53	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	8	32.9 %	80-120		P4C2610	03/26/24 13:05	03/26/24 18:53	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		120 %	80-120		P4C2610	03/26/24 13:05	03/26/24 18:53	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	26.9	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 07:42	TPH 8015M	
>C12-C28	ND	26.9	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 07:42	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 07:42	TPH 8015M	
Surrogate: 1-Chlorooctane	9	06.4 %	70-130		P4C2615	03/26/24 15:41	03/27/24 07:42	TPH 8015M	
Surrogate: o-Terphenyl		112 %	70-130		P4C2615	03/26/24 15:41	03/27/24 07:42	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.9	mg/kg dry	1	[CALC]	03/26/24 15:41	03/27/24 07:42	calc	
General Chemistry Parameters by	EPA / Standa	ard Metl	hods						
Chloride	4340	10.8	mg/kg dry	10	P4C2613	03/26/24 15:25	03/27/24 00:01	EPA 300.0	
% Moisture	7.0	0.1	%	1	P4C2709	03/27/24 10:08	03/27/24 10:12	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: NM Hayhurst Sect. 35 C TB

Project Number: 17586 Project Manager: Blake Estep

Bottom Hole - 14A @ 8" 4C25010-10 (Soil)

	Limit	Repor	rtıng						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Po	ermian B	asin Envii	ronmental L	Lab, L.P.			
BTEX by 8021B									
Benzene	ND (0.00104	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 19:16	EPA 8021B	
Toluene	ND (0.00104	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 19:16	EPA 8021B	
Ethylbenzene	ND (0.00104	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 19:16	EPA 8021B	
Xylene (p/m)	ND (0.00208	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 19:16	EPA 8021B	
Xylene (o)	ND (0.00104	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 19:16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	8	6.8 %	80-120		P4C2610	03/26/24 13:05	03/26/24 19:16	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		110 %	80-120		P4C2610	03/26/24 13:05	03/26/24 19:16	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 08:05	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 08:05	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 08:05	TPH 8015M	
Surrogate: 1-Chlorooctane	9	6.7 %	70-130		P4C2615	03/26/24 15:41	03/27/24 08:05	TPH 8015M	
Surrogate: o-Terphenyl		112 %	70-130		P4C2615	03/26/24 15:41	03/27/24 08:05	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/26/24 15:41	03/27/24 08:05	calc	
General Chemistry Parameters by	EPA / Standa	rd Metl	nods						
Chloride	236	10.4	mg/kg dry	10	P4C2613	03/26/24 15:25	03/27/24 00:47	EPA 300.0	
% Moisture	4.0	0.1	%	1	P4C2709	03/27/24 10:08	03/27/24 10:12	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: NM Hayhurst Sect. 35 C TB

Project Number: 17586 Project Manager: Blake Estep

North Side Wall A @ 0-6" 4C25010-11 (Soil)

Analyte	Lim	it Repo	·	D.:	D	ъ.	A 1 1	M. d. d	37 -
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 20:24	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 20:24	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 20:24	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 20:24	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 20:24	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		87.5 %	80-120		P4C2610	03/26/24 13:05	03/26/24 20:24	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		110 %	80-120		P4C2610	03/26/24 13:05	03/26/24 20:24	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 08:28	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 08:28	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 08:28	TPH 8015M	
Surrogate: 1-Chlorooctane		102 %	70-130		P4C2615	03/26/24 15:41	03/27/24 08:28	TPH 8015M	
Surrogate: o-Terphenyl		118 %	70-130		P4C2615	03/26/24 15:41	03/27/24 08:28	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/26/24 15:41	03/27/24 08:28	calc	
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	127	1.03	mg/kg dry	1	P4C2613	03/26/24 15:25	03/28/24 11:56	EPA 300.0	
% Moisture	3.0	0.1	%	1	P4C2709	03/27/24 10:08	03/27/24 10:12	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Project Number
Odessa TX, 79765 Project Manage

Project Number: 17586 Project Manager: Blake Estep

Project: NM Hayhurst Sect. 35 C TB

South Side Wall A @ 0-6" 4C25010-12 (Soil)

	Limit	Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND 0	0.00104	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 20:46	EPA 8021B	
Toluene	ND 0	0.00104	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 20:46	EPA 8021B	
Ethylbenzene	ND 0	0.00104	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 20:46	EPA 8021B	
Xylene (p/m)	ND 0	0.00208	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 20:46	EPA 8021B	
Xylene (o)	ND 0	0.00104	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 20:46	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	1	08 %	80-120		P4C2610	03/26/24 13:05	03/26/24 20:46	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	88	8.1 %	80-120		P4C2610	03/26/24 13:05	03/26/24 20:46	EPA 8021B	
Total Petroleum Hydrocarbons C6	6-C35 by EPA	Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 08:51	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 08:51	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 08:51	TPH 8015M	
Surrogate: 1-Chlorooctane	98	8.5 %	70-130		P4C2615	03/26/24 15:41	03/27/24 08:51	TPH 8015M	
Surrogate: o-Terphenyl	1	15 %	70-130		P4C2615	03/26/24 15:41	03/27/24 08:51	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/26/24 15:41	03/27/24 08:51	calc	
General Chemistry Parameters by	EPA / Standa	rd Metl	hods						
Chloride	91.8	5.21	mg/kg dry	5	P4C2613	03/26/24 15:25	03/27/24 01:17	EPA 300.0	
% Moisture	4.0	0.1	%	1	P4C2709	03/27/24 10:08	03/27/24 10:12	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: NM Hayhurst Sect. 35 C TB

Project Number: 17586 Project Manager: Blake Estep

East Side Wall A @ 0-6" 4C25010-13 (Soil)

	Limi	it Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 21:09	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 21:09	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 21:09	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 21:09	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 21:09	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	8	85.9 %	80-120		P4C2610	03/26/24 13:05	03/26/24 21:09	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		108 %	80-120		P4C2610	03/26/24 13:05	03/26/24 21:09	EPA 8021B	
Total Petroleum Hydrocarbons C6-	-C35 by EPA	Method	8015M						
C6-C12	26.5	25.5	mg/kg dry	1	P4C2616	03/26/24 15:43	03/26/24 23:21	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P4C2616	03/26/24 15:43	03/26/24 23:21	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P4C2616	03/26/24 15:43	03/26/24 23:21	TPH 8015M	
Surrogate: 1-Chlorooctane		113 %	70-130		P4C2616	03/26/24 15:43	03/26/24 23:21	TPH 8015M	
Surrogate: o-Terphenyl		105 %	70-130		P4C2616	03/26/24 15:43	03/26/24 23:21	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	26.5	25.5	mg/kg dry	1	[CALC]	03/26/24 15:43	03/26/24 23:21	calc	
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	282	5.10	mg/kg dry	5	P4C2613	03/26/24 15:25	03/27/24 01:32	EPA 300.0	
% Moisture	2.0	0.1	%	1	P4C2709	03/27/24 10:08	03/27/24 10:12	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: NM Hayhurst Sect. 35 C TB

Project Number: 17586 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analysis	D1:	Reporting	T I:4	Spike	Source	0/DEC	%REC	DDD	RPD	Nier
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P4C2610 - *** DEFAULT PREP *	**									
Blank (P4C2610-BLK1)				Prepared &	Analyzed:	03/26/24				
Benzene	ND	0.00100	mg/kg							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.105		"	0.120		87.8	80-120			
Surrogate: 4-Bromofluorobenzene	0.119		"	0.120		99.5	80-120			
LCS (P4C2610-BS1)				Prepared &	Analyzed:	03/26/24				
Benzene	0.0911	0.00100	mg/kg	0.100		91.1	80-120			
Toluene	0.0816	0.00100	"	0.100		81.6	80-120			
Ethylbenzene	0.0924	0.00100	"	0.100		92.4	80-120			
Kylene (p/m)	0.196	0.00200	"	0.200		98.0	80-120			
Xylene (o)	0.0844	0.00100	"	0.100		84.4	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.3	80-120			
Surrogate: 4-Bromofluorobenzene	0.122		"	0.120		102	80-120			
LCS Dup (P4C2610-BSD1)				Prepared &	Analyzed:	03/26/24				
Benzene	0.0939	0.00100	mg/kg	0.100		93.9	80-120	2.98	20	
Toluene	0.0864	0.00100	"	0.100		86.4	80-120	5.63	20	
Ethylbenzene	0.0982	0.00100	"	0.100		98.2	80-120	6.09	20	
Xylene (p/m)	0.208	0.00200	"	0.200		104	80-120	5.91	20	
Xylene (o)	0.0913	0.00100	"	0.100		91.3	80-120	7.88	20	
Gurrogate: 1,4-Difluorobenzene	0.110		"	0.120		91.6	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	80-120			
Calibration Blank (P4C2610-CCB1)				Prepared &	Analyzed:	03/26/24				
Benzene	0.180		ug/kg							
Coluene	0.240		"							
Ethylbenzene	0.110		"							
Xylene (p/m)	0.140		"							
Xylene (o)	0.100		"							
Surrogate: 1,4-Difluorobenzene	0.107		"	0.120		89.0	80-120			

Permian Basin Environmental Lab, L.P.

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

105

80-120

0.120

0.126

13000 West County Road 100 Odessa TX, 79765 Project: NM Hayhurst Sect. 35 C TB

Project Number: 17586 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	Liiiit	Oillis	LEVEI	Kesuit	/OKEC	Limits	KrD	Dillit	TAULES
Batch P4C2610 - *** DEFAULT PREP ***										
Calibration Blank (P4C2610-CCB2)				Prepared &	Analyzed:	03/26/24				
Benzene	0.270		ug/kg							
Toluene	0.370		"							
Ethylbenzene	0.240		"							
Xylene (p/m)	0.210		"							
Xylene (o)	0.210		"							
Surrogate: 1,4-Difluorobenzene	0.101		"	0.120		84.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.130		"	0.120		108	80-120			
Calibration Check (P4C2610-CCV1)				Prepared &	Analyzed:	03/26/24				
Benzene	0.0952	0.00100	mg/kg	0.100		95.2	80-120			
Toluene	0.0840	0.00100	"	0.100		84.0	80-120			
Ethylbenzene	0.0889	0.00100	"	0.100		88.9	80-120			
Xylene (p/m)	0.201	0.00200	"	0.200		101	80-120			
Xylene (o)	0.0876	0.00100	"	0.100		87.6	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.6	75-125			
Surrogate: 4-Bromofluorobenzene	0.121		"	0.120		101	75-125			
Calibration Check (P4C2610-CCV2)				Prepared &	Analyzed:	03/26/24				
Benzene	0.105	0.00100	mg/kg	0.100		105	80-120			
Toluene	0.0935	0.00100	"	0.100		93.5	80-120			
Ethylbenzene	0.100	0.00100	"	0.100		100	80-120			
Xylene (p/m)	0.227	0.00200	"	0.200		114	80-120			
Xylene (o)	0.100	0.00100	"	0.100		100	80-120			
Surrogate: 1,4-Difluorobenzene	0.110		"	0.120		91.5	75-125			
Surrogate: 4-Bromofluorobenzene	0.123		"	0.120		103	75-125			
Calibration Check (P4C2610-CCV3)				Prepared: 0	3/26/24 Aı	nalyzed: 03	/27/24			
Benzene	0.113	0.00100	mg/kg	0.100		113	80-120			
Toluene	0.0980	0.00100	"	0.100		98.0	80-120			
Ethylbenzene	0.103	0.00100	"	0.100		103	80-120			
Xylene (p/m)	0.232	0.00200	"	0.200		116	80-120			
Xylene (o)	0.102	0.00100	"	0.100		102	80-120			
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		94.9	75-125			
Surrogate: 4-Bromofluorobenzene	0.119		"	0.120		99.6	75-125			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: NM Hayhurst Sect. 35 C TB

Project Number: 17586 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P4C2610 - ***	DEFAULT PREP ***
---------------------	------------------

Surrogate: 1,4-Difluorobenzene

Matrix Spike (P4C2610-MS1)	Sour	Source: 4C25010-01		Prepared: 03/26/24 Analyzed: 03/27/24						
Benzene	0.0837	0.00103	mg/kg dry	0.103	ND	81.2	80-120			
Toluene	0.0726	0.00103	"	0.103	ND	70.4	80-120			QM-05
Ethylbenzene	0.0789	0.00103	"	0.103	ND	76.5	80-120			QM-05
Xylene (p/m)	0.170	0.00206	"	0.206	ND	82.4	80-120			
Xylene (o)	0.0712	0.00103	"	0.103	ND	69.0	80-120			QM-05
Surrogate: 4-Bromofluorobenzene	0.126		"	0.124		102	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.124		93.6	80-120			
Matrix Spike Dup (P4C2610-MSD1)	Sour	Source: 4C25010-01			Prepared: 03/26/24 Analyzed: 03/27/24					
Benzene	0.0927	0.00103	mg/kg dry	0.103	ND	89.9	80-120	10.2	20	
Toluene	0.0824	0.00103	"	0.103	ND	79.9	80-120	12.7	20	QM-05
Ethylbenzene	0.0905	0.00103	"	0.103	ND	87.8	80-120	13.8	20	
Xylene (p/m)	0.199	0.00206	"	0.206	ND	96.7	80-120	16.0	20	
Xylene (o)	0.0849	0.00103	"	0.103	ND	82.3	80-120	17.6	20	
Surrogate: 4-Bromofluorobenzene	0.129		"	0.124		104	80-120			

0.124

92.0

80-120

0.114

Project: NM Hayhurst Sect. 35 C TB

13000 West County Road 100 Odessa TX, 79765 Project Number: 17586
Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P4C2615 - TX 1005										
Blank (P4C2615-BLK1)				Prepared &	Analyzed:	03/26/24				
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	93.2		"	100		93.2	70-130			
Surrogate: o-Terphenyl	53.9		"	50.0		108	70-130			
LCS (P4C2615-BS1)				Prepared &	Analyzed:	03/26/24				
C6-C12	822	25.0	mg/kg	1000		82.2	75-125			
>C12-C28	858	25.0	"	1000		85.8	75-125			
Surrogate: 1-Chlorooctane	107		"	100		107	70-130			
Surrogate: o-Terphenyl	49.3		"	50.0		98.7	70-130			
LCS Dup (P4C2615-BSD1)				Prepared &	Analyzed:	03/26/24				
C6-C12	830	25.0	mg/kg	1000		83.0	75-125	0.931	20	
>C12-C28	853	25.0	"	1000		85.3	75-125	0.623	20	
Surrogate: 1-Chlorooctane	106		"	100		106	70-130			
Surrogate: o-Terphenyl	50.5		"	50.0		101	70-130			
Calibration Check (P4C2615-CCV1)				Prepared &	Analyzed:	03/26/24				
C6-C12	536	25.0	mg/kg	500		107	85-115			
>C12-C28	570	25.0	"	500		114	85-115			
Surrogate: 1-Chlorooctane	107		"	100		107	70-130			
Surrogate: o-Terphenyl	56.2		"	50.0		112	70-130			
Calibration Check (P4C2615-CCV2)				Prepared: (3/26/24 Aı	nalyzed: 03	/27/24			
C6-C12	525	25.0	mg/kg	500		105	85-115			
>C12-C28	572	25.0	"	500		114	85-115			
Surrogate: 1-Chlorooctane	105		"	100		105	70-130			
Surrogate: o-Terphenyl	55.0		,,	50.0		110	70-130			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Project: NM Hayhurst Sect. 35 C TB Project Number: 17586

13000 West County Road 100 Odessa TX, 79765

Project Number: 1/380
Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

	D 1	Reporting	** **	Spike	Source	0/DEC	%REC	222	RPD	NT -
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P4C2615 - TX 1005										
Calibration Check (P4C2615-CCV3)				Prepared: (03/26/24 At	nalyzed: 03	/27/24			
C6-C12	562	25.0	mg/kg	500		112	85-115			
>C12-C28	566	25.0	"	500		113	85-115			
Surrogate: 1-Chlorooctane	113		"	100		113	70-130			
Surrogate: o-Terphenyl	58.7		"	50.0		117	70-130			
Batch P4C2616 - TX 1005										
Blank (P4C2616-BLK1)				Prepared &	Analyzed:	03/26/24				
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	119		"	100		119	70-130			
Surrogate: o-Terphenyl	54.5		"	50.0		109	70-130			
LCS (P4C2616-BS1)				Prepared &	Analyzed:	03/26/24				
C6-C12	854	25.0	mg/kg	1000		85.4	75-125			
>C12-C28	785	25.0	"	1000		78.5	75-125			
Surrogate: 1-Chlorooctane	122		"	100		122	70-130			
Surrogate: o-Terphenyl	52.8		"	50.0		106	70-130			
LCS Dup (P4C2616-BSD1)				Prepared &	Analyzed:	03/26/24				
C6-C12	818	25.0	mg/kg	1000		81.8	75-125	4.33	20	
>C12-C28	788	25.0	"	1000		78.8	75-125	0.351	20	
Surrogate: 1-Chlorooctane	115		"	100		115	70-130			
Surrogate: o-Terphenyl	50.8		"	50.0		102	70-130			
Calibration Check (P4C2616-CCV1)				Prepared &	Analyzed:	03/26/24				
C6-C12	533	25.0	mg/kg	500		107	85-115			
>C12-C28	513	25.0	"	500		103	85-115			
Surrogate: 1-Chlorooctane	126		"	100		126	70-130			
Surrogate: o-Terphenyl	56.7		"	50.0		113	70-130			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Project Number: 17586

Project: NM Hayhurst Sect. 35 C TB

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P4C2616 - TX 1005										
Calibration Check (P4C2616-CCV2)				Prepared: (03/26/24 A	nalyzed: 03	/27/24			
C6-C12	521	25.0	mg/kg	500		104	85-115			
>C12-C28	504	25.0	"	500		101	85-115			
Surrogate: 1-Chlorooctane	119		"	100		119	70-130			
Surrogate: o-Terphenyl	54.4		"	50.0		109	70-130			
Calibration Check (P4C2616-CCV3)				Prepared: (03/26/24 A	nalyzed: 03	/27/24			
C6-C12	506	25.0	mg/kg	500		101	85-115			
>C12-C28	485	25.0	"	500		97.0	85-115			
Surrogate: 1-Chlorooctane	111		"	100		111	70-130			
Surrogate: o-Terphenyl	52.5		"	50.0		105	70-130			

13000 West County Road 100Project Number:17586Odessa TX, 79765Project Manager:Blake Estep

Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: NM Hayhurst Sect. 35 C TB

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P4C2611 - *** DEFAULT PREP ***										
Blank (P4C2611-BLK1)				Prepared &	z Analyzed:	03/26/24				
Chloride	ND	1.00	mg/kg							
LCS (P4C2611-BS1)				Prepared &	Analyzed:	03/26/24				
Chloride	16.5		mg/kg	18.0		91.5	90-110			
Calibration Check (P4C2611-CCV1)				Prepared &	Analyzed:	03/26/24				
Chloride	17.1		mg/kg	18.0	•	94.8	90-110			
Calibration Check (P4C2611-CCV2)				Prepared &	Analyzed:	03/26/24				
Chloride	17.3		mg/kg	18.0		96.0	90-110			
Matrix Spike (P4C2611-MS1)	Sou	rce: 4C20018-	-07	Prepared &	Analyzed:	03/26/24				
Chloride	102		mg/kg	100	-0.100	102	80-120			
Matrix Spike (P4C2611-MS2)	Sou	rce: 4C25008-	-02	Prepared &	Analyzed:	03/26/24				
Chloride	105		mg/kg	100	5.62	99.2	80-120			
Matrix Spike Dup (P4C2611-MSD1)	Sou	rce: 4C20018-	-07	Prepared &	Analyzed:	03/26/24				
Chloride	101		mg/kg	100	-0.100	101	80-120	0.953	20	
Matrix Spike Dup (P4C2611-MSD2)	Sou	rce: 4C25008-	-02	Prepared &	Analyzed:	03/26/24				
Chloride	104		mg/kg	100	5.62	98.9	80-120	0.326	20	
Batch P4C2613 - *** DEFAULT PREP ***										
Blank (P4C2613-BLK1)				Prepared &	Analyzed:	03/26/24				
Chloride	ND	1.00	mg/kg		· · · · · ·					

13000 West County Road 100 Project Number: 17586 Project Manager: Blake Estep

Odessa TX, 79765

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: NM Hayhurst Sect. 35 C TB

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P4C2613 - *** DEFAULT PREP ***										
LCS (P4C2613-BS1)				Prepared &	Analyzed:	03/26/24				
Chloride	16.9		mg/kg	18.0		93.8	90-110			
LCS Dup (P4C2613-BSD1)				Prepared &	z Analyzed:	03/26/24				
Chloride	17.3		mg/kg	18.0		95.9	90-110	2.17	10	
Calibration Check (P4C2613-CCV1)				Prepared &	Analyzed:	03/26/24				
Chloride	17.6		mg/kg	18.0		97.9	90-110			
Calibration Check (P4C2613-CCV2)				Prepared: ()3/26/24 Aı	nalyzed: 03	/27/24			
Chloride	17.7		mg/kg	18.0		98.4	90-110			
Matrix Spike (P4C2613-MS1)	Sour	ce: 4C25010-	.09	Prepared: ()3/26/24 At	nalyzed: 03	/27/24			
Chloride	121		mg/kg	100	40.4	80.6	80-120			
				D 1.0	2/26/24	nolyzad: 03	127/24			
Matrix Spike (P4C2613-MS2)	Sour	ce: 4C26016-	-06	Prepared: ()3/26/24 Aı	iaryzcu. 03	121124			
Matrix Spike (P4C2613-MS2) Chloride	93.8	ce: 4C26016-	mg/kg	100	-0.103	93.8	80-120			
	93.8	rce: 4C26016- rce: 4C25010-	mg/kg	100		93.8	80-120			
Chloride	93.8		mg/kg	100	-0.103	93.8	80-120	2.95	20	
Chloride Matrix Spike Dup (P4C2613-MSD1)	93.8 Sour 125		mg/kg e09 mg/kg	100 Prepared: (-0.103 03/26/24 At	93.8 nalyzed: 03 84.2	80-120 /27/24 80-120	2.95	20	
Chloride Matrix Spike Dup (P4C2613-MSD1) Chloride	93.8 Sour 125	rce: 4C25010-	mg/kg e09 mg/kg	100 Prepared: (-0.103 03/26/24 At 40.4	93.8 nalyzed: 03 84.2	80-120 /27/24 80-120	2.95	20	
Chloride Matrix Spike Dup (P4C2613-MSD1) Chloride Matrix Spike Dup (P4C2613-MSD2)	93.8 Sou 125 Sou	rce: 4C25010-	mg/kg .09 mg/kg	100 Prepared: (100 Prepared: (-0.103 03/26/24 At 40.4 03/26/24 At	93.8 nalyzed: 03 84.2 nalyzed: 03	80-120 /27/24 80-120 /27/24		-	
Chloride Matrix Spike Dup (P4C2613-MSD1) Chloride Matrix Spike Dup (P4C2613-MSD2) Chloride	93.8 Sou 125 Sou	rce: 4C25010-	mg/kg .09 mg/kg	100 Prepared: (100 Prepared: (100 100	-0.103 03/26/24 At 40.4 03/26/24 At	93.8 nalyzed: 03 84.2 nalyzed: 03 96.1	80-120 /27/24 80-120 /27/24		-	

13000 West County Road 100 Odessa TX, 79765 Project: NM Hayhurst Sect. 35 C TB

Project Number: 17586 Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P4C2709 - *** DEFAULT PREP ***										
Blank (P4C2709-BLK2)				Prepared &	Analyzed:	03/27/24				
% Moisture	ND	0.1	%							
Duplicate (P4C2709-DUP1)	Sour	ce: 4C25010-0	02	Prepared &	Analyzed:	03/27/24				
% Moisture	6.0	0.1	%		5.0			18.2	20	
Duplicate (P4C2709-DUP2)	Sour	ce: 4C25010-	12	Prepared &	Analyzed:	03/27/24				
% Moisture	4.0	0.1	%		4.0			0.00	20	
Duplicate (P4C2709-DUP3)	Sour	ce: 4C26016-1	14	Prepared &	Analyzed:	03/27/24				
% Moisture	3.0	0.1	%		3.0			0.00	20	

13000 West County Road 100 P

Odessa TX, 79765

Project Number: 17586 Project Manager: Blake Estep

Project: NM Hayhurst Sect. 35 C TB

Notes and Definitions

ROI Received on Ice

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were

within acceptance limits showing that the laboratory is in control and the data is acceptable.

NPBEL Ct Chain of Custody was not generated at PBELAB

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	Drew	Darron			
Report Approved By:			Date:	5/10/2024	

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

E Tech Environmental & Safety Solutions, Inc. [1] Project: NM Hayhurst Sect. 35 C TB

13000 West County Road 100Project Number:17586Odessa TX, 79765Project Manager:Blake Estep

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Project Manager:

Address: Company Name:

40 25010 Work Order No: PAT

Page 27 of 29

Chain of Custody

ĺг		City, State Zir.	Midland, IX /9/11
Reporting: Level III PST/UST TRRP Level IV	Report	Offices:	Midland TV 70744
Program: US I/PSI PRP Brownieids RRC Superium State of Project:	Progra	Company Name:	Etech Environmental
Work Order Comments		Bill to: (if different)	Blake Estep
www.xenco.com Page1of	Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000)	5-392-7550) Phoenix,AZ (480	Hobbs,NM (575
	Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296	idland,TX (432-704-5440) El	A TOO
	Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334	uston,TX (281) 240-4200 Da	
			\

Received by (Signature)	Relinquisned by (Signature)	Date/Time	nature)	Received by: (Signature)	(Signature)	Relinquished by: (Signature)
	Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control a minimum charge of \$75,00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	ny losses or expenses in e submitted to Xenco, bu	ny responsibility for a of \$5 for each sample	es and shall not assume a each project and a charge	of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expense of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco,	of service. Xenco will be of Xenco. A minimum cha
standard terms and conditions	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions	m client company to Xen	id purchase order from	samples constitutes a va	locument and relinquishment o	Notice: Signature of this o
Se Ag TI U 1631 / 245.1 / 7470 / 7471 : Hg	Be Cd Cr Co Cu Pb Mn Mo Ni	8RCRA Sb As Ba	TCLP / SPLP 6010: 8R		Circle Method(s) and Metal(s) to be analyzed	Circle Method
	B Cd Ca Cr Co Cu Fe Pb	Al Sb As Ba Be	8RCRA 13PPM Texas 11 Al Sb	8RCRA 13	10 200.8 / 6020:	Total 200.7 / 6010
			8"	816/ 1 1	7/1/ R IS	Rotton Hale
				9161	-13P S	Petton Hole-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			00,	1 1214	24 5	Botton Hole-
			00	161	7 41	Botton How
6			00	0/4/	9 A S	M
O			, Ja'''	1208	8 A S	Botton Hole-
4			8/1	1206	7A S	Rotton Hole-
Cy			1 8	1)204	> 6.9 <	Rotton Hole
2			\ /o''	1 1/202	· UH S	Botton Hol
	X	· ×	2 12"	J-22-21/1200	1-2A S	Bottom Flote-
Sample Comments	BT	Numb Chlorid	Depth	Date Time Sampled Sampled	ification Matrix	Sample Identification
	<u> </u>	de (E	ers:	Total Containers:	s:   (reg) No AND	Sample Custody Seals
	((8	300) 25) <b>(</b>	itor: NCT	Correction Factor:	Yes No (N/A	Cooler Custody Seals
	30	<u></u>	O'		Mes No	Received Intact:
	15	0/3	jer ID	Thermometer ID	<b>3</b> 3.2	Temperature (°C):
	<i>S)</i>	SM	lce: (rejs No	Yes 🕦 Wet Ice:	PT Temp Blank:	SAMPLE RECEIPT
			Due Date:	9000 D	Mrturo Del	Sampler's Name:
			Rush:	7	17586	P.O. Number:
P./ Itech			Routine	Z	17586	Project Number:
Work Order Notes	ANALYSIS REQUEST		Turn Around	35 678	Mn Hayhird Sed.	Project Name:
Deliverables: EDD ADaPT Other:		blake@etechenv.com	Email		(432)563-2200	Phone:
֓֞֞֞֓֓֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓			City, State Air	X /9/11	Widiand, IX /9/11	City, State ZIP:
Reporting:Level	Rec	٠	014 Of arts 710	V 10744	N # : -   -   -   -   -   -   -   -   -   -	

Revised Date 051418 Rev. 2018 1	a constant		
	6		5
	4		S
	18/05/24 15:52-12	Jun budro	
Received by: (Signature) Date/Time	Date/Time Relinquished by: (Signature)	Received by: (Signature)	Relinquished by: (Signature)
riously negotiated.	Notice: Signature of this document and relinquishment of samples constitutes a value functions of the control of service. Signature of this document and relinquishment of samples constitutes a value function of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	ment of samples constitutes a valid putchase over the samples and shall not assume any responsibility of samples and shall not assume any responsibility of samples and scharge of \$5 for each sam	Notice: Signature of this document and relinquishing of service. Xenco will be liable only for the cost of of Xenco. A minimum charge of \$75.00 will be app
g TI U 1631 / 245.1 / 7470 / 7471 : Hg	8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag	be analyzed TCLP / SPLP 6010:	Circle Method(s) and Metal(s) to be analyzed
V Zn	Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg	): 8RCRA 13PPM Texas 11	Total 200.7 / 6010 200.8 / 6020:
3		1/ 124 0-6"	Side Will
550		1) / /22 0-6"	South Side would A S
	* × ×	1,9-0 oeel herec	North Side wall A
Sample Comments	Numi Chlor TPH (	Matrix Date Time Depth Sampled Sampled	Sample Identification Ma
	ide (E	N/ATotal Containers: し	(Yes) No
	300) 06)	Correction Factor:	Seals: Yes .No
	<b>8</b> 0	G)	
	ners	Thermometer ID	5
	m		CEPT
		De ando Due Date:	me Arturo
Divi Lieu.		Rush:	P.O. Number:
Dil Steph		Ro	
Work Order Notes	ANALYSIS REQUEST	(a.1.35 CTR Turn Around	Project Name: Mm. Hulut
ss: EDD ADaPT Other:	blake@etechenv.com Deliverables:	-2200 Email:	Phone: (432)563-2200
Reporting:Level II		Midland, TX 79711 City, State ZIP:	e ZIP:
	State of	13000 West CR 100 Address:	
Program: UST/PST ☐PRP ☐ Brownfields ☐RRC ☐Superfund ☐ ☐		Etech Environmental Company Name	
Work Order Comments	(Pice)	Blake Estep Bill to: (if different)	Project Manager: Bl
www.xenco.com Page 2 of 2	Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000)	Hobbs,NM (575-392-7550) Phoenix,	
8 of 2	Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296	Houston,TX (281) 240-42 Midland,TX (432-704-54	XTURIO
Work Order No: PAT	Chain of Custody		
\ (			10777



DOC #: PBEL_REV_SUBMISSION

REVISION #: PBEL_2021_1

REVISION Date: 10/29/2021

EFFECTIVE DATE: 10/29/2021

### REVISION/SUBMISSION FORM

Please fill in the required fields below with any requested revisions. In the event that there are multiple workorders or projects to be amended each workorder or project MUST have a separate form filled out entirely. An amended COC must be submitted in addition to the Revision/Submission Form in order for the amendments to be processed. Amended COC's do not replace the requirement of this form. If a revision is required due to errors or omissions on our part this form is still required for the necessary Non-Conformance documentation. Rerun requests will incur additional charges.

Client: eTech Environmental

Project: 4C25010

### **Revision Request:**

Please revise the depth of Sample 2A from 12" to 12.5".

Submitted by (Name and Date): Blake Estep 05/10/2024

PBEL REV SUBMISSION 2021 1.DOC

Page 1 of 1

### **APPENDIX F**

Correspondence & Notifications

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213



### **Abe Valladares**

From: Wells, Shelly, EMNRD <Shelly.Wells@emnrd.nm.gov>

**Sent:** Monday, August 7, 2023 10:45 AM

To: Blake Estep

Cc: Bratcher, Michael, EMNRD; Hamlet, Robert, EMNRD

**Subject:** RE: [EXTERNAL] Soil Sampling Activities

You don't often get email from shelly.wells@emnrd.nm.gov. Learn why this is important

Hi Blake,

The OCD has received your notification. Include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thank you,

Shelly

Shelly Wells * Environmental Specialist-Advanced Administrative Permitting Program EMNRD-Oil Conservation Division 1220 S. St. Francis Drive|Santa Fe, NM 87505 (505)469-7520|Shelly.Wells@emnrd.nm.gov http://www.emnrd.state.nm.us/OCD/

From: Blake Estep <br/> <br/>blake@etechenv.com><br/>
Sent: Monday, August 7, 2023 9:12 AM

To: Enviro, OCD, EMNRD < OCD. Enviro@emnrd.nm.gov>

Subject: [EXTERNAL] Soil Sampling Activities

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Good morning,

Chevron anticipates conducting soil sampling activities at the following sites between August 10 & 11, 2023:

Site Name: Hayhurst NM Section 26 Dignitas SWD

Incident Number: nAPP2301837404

Site Name: Hayhurst NM Section 35 CTB Incident Number: nAPP2302742810

Thank you,

Blake Estep

P.O. Box 62228

Midland, Texas 79711 Phone: 432-563-2200 Mobile: 432-894-6038

Fax: 432-563-2213

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

### **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS

Action 324933

### **QUESTIONS**

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	324933
i i	Action Type:
	[NOTIFY] Notification Of Sampling (C-141N)

### QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2302742810
Incident Name	NAPP2302742810 HAYHURST NM SECTION 35 CTB @ 0
Incident Type	Oil Release
Incident Status	Initial C-141 Approved
Incident Facility	[fAPP2131342791] Hayhurst NM Section 35 CTB

Location of Release Source	
Site Name	HAYHURST NM SECTION 35 CTB
Date Release Discovered	01/12/2023
Surface Owner	Federal

Sampling Event General Information	
Please answer all the questions in this group.	
What is the sampling surface area in square feet	1,863
What is the estimated number of samples that will be gathered	13
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	03/22/2024
Time sampling will commence	08:30 AM
Please provide any information necessary for observers to contact samplers	Blake Estep at 432-894-6038
Please provide any information necessary for navigation to sampling site	From the intersection of Whites City Road & CR 775, travel E for 0.03 miles. Turn N, travel 0.76 miles. Turn E, travel 1.86 miles. Turn NW, travel 0.09 miles to the GPS coordinates (32.091991, -104.152622)

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

**State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505** 

CONDITIONS

Action 324933

### **CONDITIONS**

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	324933
	Action Type:
	[NOTIFY] Notification Of Sampling (C-141N)

### CONDITIONS

Created By		Condition Date
abarnhill	Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted.	3/20/2024

Sante Fe Main Office Phone: (505) 476-3441 General Information

Phone: (505) 629-6116
Online Phone Directory
<a href="https://www.emnrd.nm.gov/ocd/contact-us">https://www.emnrd.nm.gov/ocd/contact-us</a>

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 409878

### **QUESTIONS**

ı	Operator:	OGRID:
ı	CHEVRON U S A INC	4323
ı	6301 Deauville Blvd	Action Number:
ı	Midland, TX 79706	409878
ı		Action Type:
ı		[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

### QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2302742810
Incident Name	NAPP2302742810 HAYHURST NM SECTION 35 CTB @ 0
Incident Type	Oil Release
Incident Status	Remediation Closure Report Received
Incident Facility	[fAPP2131342791] Hayhurst NM Section 35 CTB

Location of Release Source	
Please answer all the questions in this group.	
Site Name	HAYHURST NM SECTION 35 CTB
Date Release Discovered	01/12/2023
Surface Owner	Federal

Incident Details	
Please answer all the questions in this group.	
Incident Type	Oil Release
Did this release result in a fire or is the result of a fire	No
Did this release result in any injuries	No
Has this release reached or does it have a reasonable probability of reaching a watercourse	No
Has this release endangered or does it have a reasonable probability of endangering public health	No
Has this release substantially damaged or will it substantially damage property or the environment	No
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No

Nature and Volume of Release		
Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.		
Crude Oil Released (bbls) Details	Cause: Equipment Failure   Tank (Any)   Crude Oil   Released: 6 BBL   Recovered: 5 BBL   Lost: 1 BBL.	
Produced Water Released (bbls) Details	Not answered.	
Is the concentration of chloride in the produced water >10,000 mg/l	No	
Condensate Released (bbls) Details	Not answered.	
Natural Gas Vented (Mcf) Details	Not answered.	
Natural Gas Flared (Mcf) Details	Not answered.	
Other Released Details	Not answered.	
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

## State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 409878

QUESTIONS (con	tinuea)
----------------	---------

Operator:	OGRID:
CHEVRON U S A INC 6301 Deauville Blvd	4323
Midland, TX 79706	Action Number: 409878
Wildiana, 177 10100	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)
QUESTIONS	
Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No
Reasons why this would be considered a submission for a notification of a major release	Unavailable.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e.	e. gas only) are to be submitted on the C-129 form.
F =	
Initial Response	
The responsible party must undertake the following actions immediately unless they could create a s	afety hazard that would result in injury. T
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative o ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for releating the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required asses which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Amy Barnhill Title: Waste & Water Specialist Email: ABarnhill@chevron.com Date: 12/09/2024

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

## State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Action 409878

**QUESTIONS** (continued)

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	409878
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

### QUESTIONS

Site Characterization	
Please answer all the questions in this group (only required when seeking remediation plan approva release discovery date.	l and beyond). This information must be provided to the appropriate district office no later than 90 days after the
What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 51 and 75 (ft.)
What method was used to determine the depth to ground water	NM OSE iWaters Database Search
Did this release impact groundwater or surface water	No
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:	
A continuously flowing watercourse or any other significant watercourse	Greater than 5 (mi.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Greater than 5 (mi.)
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between 1 and 5 (mi.)
Any other fresh water well or spring	Between 1 and 5 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Between ½ and 1 (mi.)
A subsurface mine	Greater than 5 (mi.)
An (non-karst) unstable area	Zero feet, overlying, or within area
Categorize the risk of this well / site being in a karst geology	High
A 100-year floodplain	Between 1 and 5 (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	No

Dama diation Bloo			
Remediation Plan			
Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.			
Requesting a remediation	plan approval with this submission	Yes	
Attach a comprehensive report de	Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.		
Have the lateral and vertica	l extents of contamination been fully delineated	Yes	
Was this release entirely co	ontained within a lined containment area	No	
Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.)			
Chloride	(EPA 300.0 or SM4500 CI B)	52.8	
TPH (GRO+DRO+MRO)	(EPA SW-846 Method 8015M)	0	
GRO+DRO	(EPA SW-846 Method 8015M)	0	
BTEX	(EPA SW-846 Method 8021B or 8260B)	0	
Benzene	(EPA SW-846 Method 8021B or 8260B)	0	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC which includes the anticipated timelines for beginning and completing the remediation.			
On what estimated date wi	On what estimated date will the remediation commence 10/30/2024		
On what date will (or did) the	ne final sampling or liner inspection occur	10/30/2024	
On what date will (or was) t	On what date will (or was) the remediation complete(d) 10/30/2024		
What is the estimated surfa	What is the estimated surface area (in square feet) that will be reclaimed 0		
What is the estimated volur	me (in cubic yards) that will be reclaimed	0	
What is the estimated surfa	ace area (in square feet) that will be remediated	1861	
What is the estimated volur	What is the estimated volume (in cubic yards) that will be remediated 18		
These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed.			
The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to			

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

General Information Phone: (505) 629-6116

Online Phone Directory <a href="https://www.emnrd.nm.gov/ocd/contact-us">https://www.emnrd.nm.gov/ocd/contact-us</a>

## State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 409878

**QUESTIONS** (continued)

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	409878
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

### QUESTIONS

4		
Remediation Plan (continued)		
Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants:		
(Select all answers below that apply.)		
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes	
Which OCD approved facility will be used for off-site disposal	R360 ARTESIA LLC LANDFARM [fEEM0112340644]	
OR which OCD approved well (API) will be used for off-site disposal	Not answered.	
<b>OR</b> is the <b>off-site</b> disposal site, to be used, out-of-state	No	
<b>OR</b> is the <b>off-site</b> disposal site, to be used, an NMED facility	No	
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	No	
(In Situ) Soil Vapor Extraction	No	
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	No	
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	No	
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	No	
Ground Water Abatement pursuant to 19.15.30 NMAC	No	
OTHER (Non-listed remedial process)	No	

Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Name: Amy Barnhill
Title: Waste & Water Specialist
Email: ABarnhill@chevron.com
Date: 12/09/2024

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

## State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 409878

**QUESTIONS** (continued)

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	409878
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

### QUESTIONS

Deferral Requests Only	
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of	the following items must be confirmed as part of any request for deferral of remediation.
Requesting a deferral of the remediation closure due date with the approval of this submission	No

Sante Fe Main Office Phone: (505) 476-3441 General Information

Phone: (505) 629-6116

Online Phone Directory
<a href="https://www.emnrd.nm.gov/ocd/contact-us">https://www.emnrd.nm.gov/ocd/contact-us</a>

### State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 409878

**QUESTIONS** (continued)

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	409878
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

### QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	395847
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	10/30/2024
What was the (estimated) number of samples that were to be gathered	3
What was the sampling surface area in square feet	200

Remediation Closure Request	
Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.	
Requesting a remediation closure approval with this submission	Yes
Have the lateral and vertical extents of contamination been fully delineated	Yes
Was this release entirely contained within a lined containment area	No
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes
What was the total surface area (in square feet) remediated	1861
What was the total volume (cubic yards) remediated	18
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes
What was the total surface area (in square feet) reclaimed	0
What was the total volume (in cubic yards) reclaimed	0
Summarize any additional remediation activities not included by answers (above)	Remediation area has been backfilled and re-contoured to return the Site to match pre- existing conditions "as close as possible".

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (in .pdf format) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Name: Amy Barnhill
Title: Waste & Water Specialist
Email: ABarnhill@chevron.com
Date: 12/09/2024

General Information Phone: (505) 629-6116

Online Phone Directory <a href="https://www.emnrd.nm.gov/ocd/contact-us">https://www.emnrd.nm.gov/ocd/contact-us</a>

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Action 409878

**QUESTIONS** (continued)

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	409878
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

### QUESTIONS

Reclamation Report	
Only answer the questions in this group if all reclamation steps have been completed.	
Requesting a reclamation approval with this submission No	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 409878

### **CONDITIONS**

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	409878
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

### CONDITIONS

Created By	Condition	Condition Date
scwells	None	12/17/2024