

SITE INFORMATION

Closure Report
M-Maljamar Suction Line-12"-09212024
Lea County, New Mexico
Incident ID: nAPP2426848904
Unit G Sec 22 T18S R32E
32.734892°, -103.751541°

Natural Gas Release
Point of Release: Equipment Failure

Release Date: 09.21.2024

Volume Released: 8 barrels of Condensate Volume Recovered: 6 barrels of Condensate

CARMONA RESOURCES

Prepared for:
Kinetik Midstream
47 Conoco Rd.
Maljamar, New Mexico 88264

Prepared by: Carmona Resources, LLC 310 West Wall Street Suite 500 Midland, Texas 79701

TABLE OF CONTENTS

1.0 SITE INFORMATION AND BACKGROUND

2.0 SITE CHARACTERIZATION AND GROUNDWATER

3.0 NMAC REGULATORY CRITERIA

4.0 SITE ASSESSMENT ACTIVITIES

5.0 REMEDIATION ACTIVITIES

6.0 CONCLUSIONS

FIGURES

FIGURE 1	OVERVIEW	FIGURE 2	TOPOGRAPHIC
FIGURE 3	SAMPLE LOCATION	FIGURE 4	EXCAVATION
FIGURE 3	SAMPLE LUCATION	FIGUKE 4	LACAVATION

APPENDICES

APPENDIX A	TABLES
APPENDIX B	PHOTOS
APPENDIX C	N.O.R. AND FINAL C-141/NMOCD CORRESPONDENCE
APPENDIX D	SITE CHARACTERIZATION AND GROUNDWATER
APPENDIX E	LABORATORY REPORTS

November 26, 2024

New Mexico Oil Conservation Division 1220 South St, Francis Drive Santa Fe, NM 87505

Re: Closure Report

M-Maljamar Suction Line 12"-09212024

Kinetik Midstream

Incident ID: nAPP2426848904

Site Location: Unit G, S22, T18S, R32E (Lat 32.734892°, Long -103.751541°)

Lea County, New Mexico

To whom it may concern:

On behalf of Kinetik Midstream, Carmona Resources, LLC has prepared this letter to document site assessment activities for the M-Maljamar Suction Line 12"-09212024. This site is located at 32.734892°,-103.751541° within Unit G, S22, T18S, R32E, in Lea County, New Mexico (Figures 1 and 2).

1.0 Site Information and Background

Based on the Notice of Release obtained from the New Mexico Oil Conservation Division (NMOCD), the release was discovered due to equipment failure on a 12" buried gas line on September 21, 2024. It released approximately eight (8) barrels of condensate, with six barrels (6) barrels recovered. The impacted area occurred on the R.O.W. See Figure 3. The Notice of Release form is attached in Appendix C.

2.0 Site Characterization and Groundwater

The site is located within a low karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases, one known water source is within a 0.50-mile radius of the location. The nearest identified well is located approximately 0.48 miles southwest of the site in S22, T18S, R32E, and was drilled in 1986. The well has a reported depth to groundwater of 429.49' below ground surface (ft bgs). A copy of the associated Point of Diversion Summary report is attached in Appendix D.

3.0 NMAC Regulatory Criteria

Per the NMOCD regulatory criteria established in 19.15.29.12 NMAC, the following criteria were utilized in assessing the site.

- Benzene: 10 milligrams per kilogram (mg/kg).
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg.
- TPH: 100 mg/kg (GRO + DRO + MRO).
- Chloride: 600 mg/kg

310 West Wall Street, Suite 500 Midland, Texas 79701 432.813,1992

4.0 Site Assessment Activities

Initial Assessment

Carmona Resources, LLC performed site assessment activities to evaluate soil impacts from the release. Two (2) sample points (S-1 through S-2) and five (5) horizontal samples (H-1 through H-5) were advanced to depths ranging from the surface to 5' bgs inside and surrounding the release area to assess the vertical and horizontal extent. See Figure 3 for the sample locations. For chemical analysis, the soil samples were collected and placed directly into laboratory-provided sample containers, stored on ice, and transported under the proper chain-of-custody protocol to Eurofins Laboratories in Midland, Texas. The samples were analyzed for total petroleum hydrocarbons (TPH) by EPA method 8015, modified benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B, and chloride by EPA method 300.0. The laboratory reports, including analytical methods, results, and chain-of-custody documents, are attached in Appendix E. See Table 1 for the analytical results.

5.0 Remediation Activities

Carmona Resources personnel were on site to guide the remediation activities, collect confirmation samples, and document backfill activities. Before collecting composite confirmation samples, the NMOCD division office was notified via the NMOCD Portal on October 30, 2024, per Subsection D of 19.15.29.12 NMAC. See Appendix C. A total of eight (8) floor confirmation samples were collected (CS-1 through CS-8), and twelve (12) sidewall samples (SW-1 through SW-12) were collected every 200 square feet to ensure the proper removal of the contaminated soils. All collected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix E. The excavation depths and confirmation sample locations are shown in Figure 4.

All final confirmation samples met the regulatory requirements for TPH, BTEX, and chloride. Refer to Table 2.

Approximately 130 cubic yards of material were excavated and transported offsite for proper disposal.

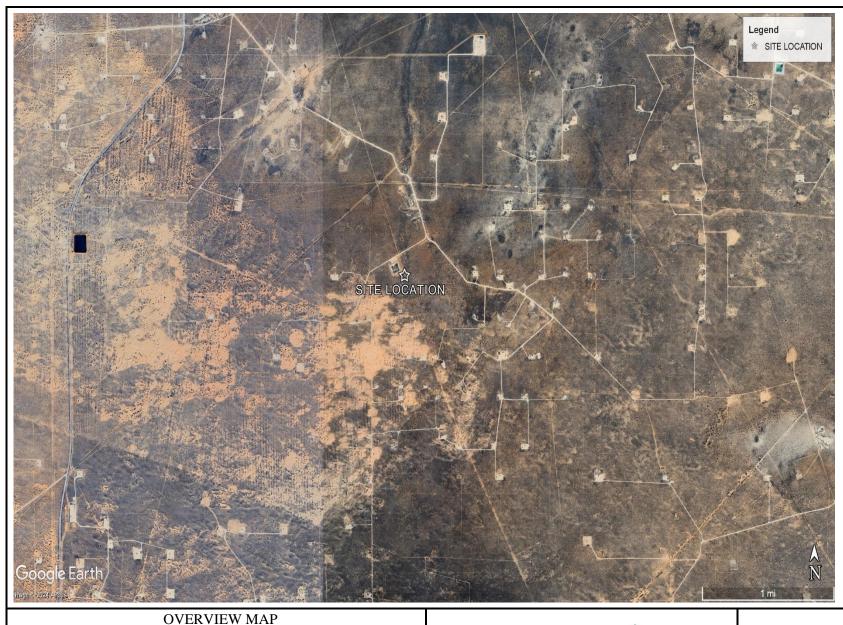
6.0 Conclusions

Based on the assessment results and the final analytical data, no further actions are required at the site. Kinetik formally requests the closure of these incidents. If you have any questions about this report or need additional information, please contact us at 432-813-1992.

Sincerely,

Carmona Resources, LLC

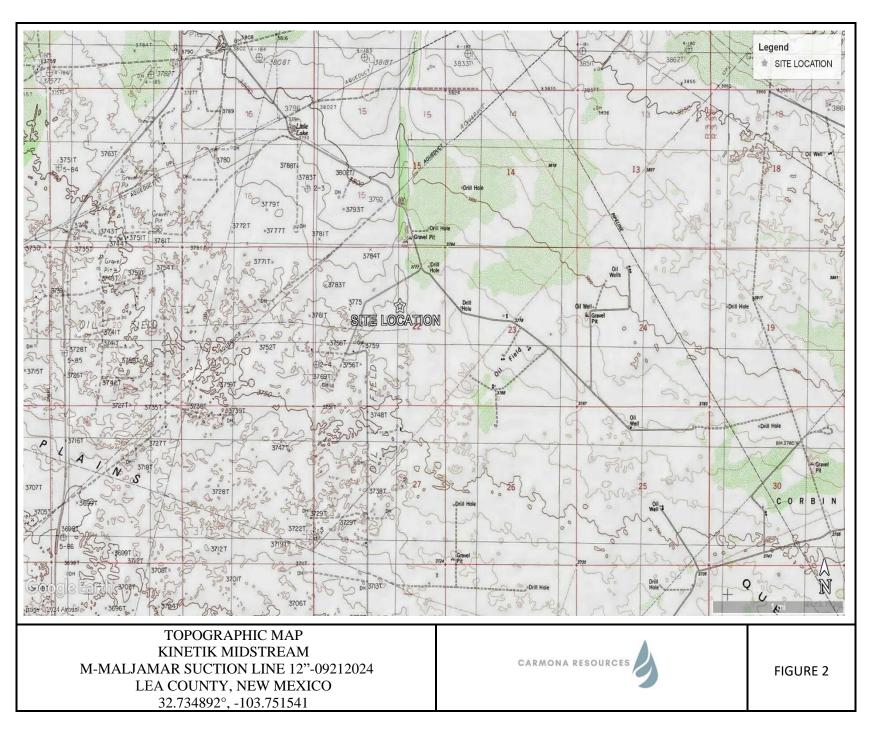
Conner Moehring

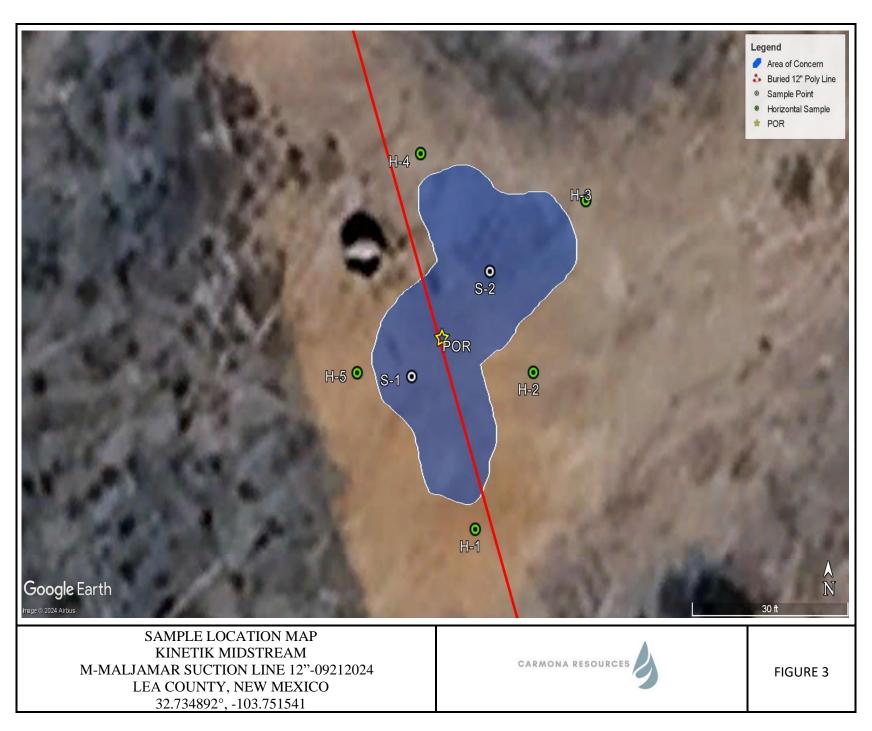

Environmental Manager

Devin Dominguez Sr. Project Manager

> 310 West Wall Street, Suite 500 Midland, Texas 79701 432.813,1992

FIGURES


CARMONA RESOURCES



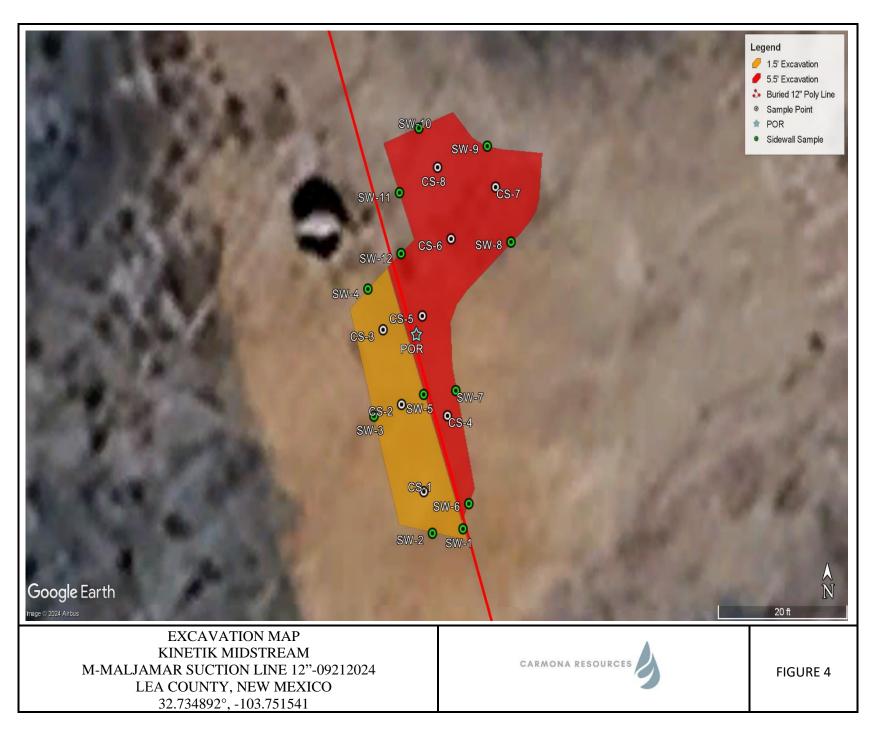

KINETIK MIDSTREAM
M-MALJAMAR SUCTION LINE 12"-09212024
LEA COUNTY, NEW MEXICO
32.734892°, -103.751541

FIGURE 1

APPENDIX A

CARMONA RESOURCES

Table 1 Kinetic M-Maljamar Suction Line-12-S-09122024 Lea County, New Mexico

Sample ID	Date	Donth (ft)		TPH	(mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
S-1	10/18/2024	3'	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	20.4
S-2	10/18/2024	5'	<49.7	117	<49.7	117	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	177
H-1	10/18/2024	0-0.5'	<49.8	<49.8	<49.8	<49.8	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	17.0
H-2	10/18/2024	0-0.5'	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	<10.0
H-3	10/18/2024	0-0.5'	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	10.9
H-4	10/18/2024	0-0.5'	<49.8	<49.8	<49.8	<49.8	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	27.7
H-5	10/18/2024	0-0.5'	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	<9.92
Regulato	ry Criteria ^A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram
TPH - Total Petroleum Hydrocarbons
ft - feet
(S) Sample Point
(H) Horizontal Point

Removed

Table 2
Kinetic Holdings
M-Maljamar Suction Line-12-S-09212024
Lea County, New Mexico

Comple ID	Data	Donath (f4)		TPH	(mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
CS-1	11/1/2024	1.5'	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	27.8
CS-2	11/1/2024	1.5'	<50.5	<50.5	<50.5	<50.5	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	31.2
CS-3	11/1/2024	1.5'	<49.7	<49.7	<49.7	<49.7	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	33.2
CS-4	11/1/2024	5.5'	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	26.7
CS-5	11/1/2024	5.5'	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	30.2
CS-6	11/1/2024	5.5'	<49.6	<49.6	<49.6	<49.6	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	25.7
CS-7	11/1/2024	5.5'	<50.1	<50.1	<50.1	<50.1	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	24.5
CS-8	11/1/2024	5.5'	<50.1	<50.1	<50.1	<50.1	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	23.0
SW-1	11/1/2024	1.5'	<50.4	<50.4	<50.4	<50.4	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	33.7
SW-2	11/1/2024	1.5'	<50.5	<50.5	<50.5	<50.5	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	21.5
SW-3	11/1/2024	1.5'	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	27.7
SW-4	11/1/2024	1.5'	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	25.7
SW-5	11/1/2024	4.0'	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	<10.0
SW-6	11/1/2024	5.5'	<49.7	<49.7	<49.7	<49.7	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	40.5
SW-7	11/1/2024	5.5'	<50.3	<50.3	<50.3	<50.3	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	28.2
SW-8	11/1/2024	5.5'	<50.1	<50.1	<50.1	<50.1	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	25.9
SW-9	11/1/2024	5.5'	<50.4	<50.4	<50.4	<50.4	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	36.7
SW-10	11/1/2024	5.5'	<50.5	<50.5	<50.5	<50.5	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	36.6
SW-11	11/1/2024	1.5'	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	21.4
SW-12	11/1/2024	1.5'	<49.7	<49.7	<49.7	<49.7	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	10.4
	ry Criteria A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

(-) Not Analyzed

A – Table 1 - 19.15.29 NMAC
mg/kg - milligram per kilogram
TPH - Total Petroleum Hydrocarbons
ft - feet
(CS) Confirmation Sample
(SW) Sidewall Sample

APPENDIX B

CARMONA RESOURCES

PHOTOGRAPHIC LOG

Kinetik Midstream

Photograph No. 1

Facility: M-Maljamar Suction Line 12"-

09212024

County: Lea County, New Mexico

Description:

View Northwest, area of CS-1 through 3.

Photograph No. 2

Facility: M-Maljamar Suction Line 12"-

09212024

County: Lea County, New Mexico

Description:

View North, area of CS-4 through 6.

Photograph No. 3

Facility: M-Maljamar Suction Line 12"-

09212024

County: Lea County, New Mexico

Description:

View West, area of CS-7 through 8.

APPENDIX C

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS

Action 386349

QUESTIONS

ı	Operator:	OGRID:
ı	FRONTIER FIELD SERVICES, LLC	221115
ı	303 Veterans Airpark Lane	Action Number:
ı	Midland, TX 79705	386349
ı		Action Type:
ı		[NOTIFY] Notification Of Release (NOR)

QUESTIONS

Location of Release Source				
Please answer all the questions in this group.				
Site Name	M-Maljamar Suction Line - 12"-09212024			
Date Release Discovered	09/21/2024			
Surface Owner	Private			

ncident Details					
lease answer all the questions in this group.					
Incident Type	Natural Gas Release				
Did this release result in a fire or is the result of a fire	No				
Did this release result in any injuries	No				
Has this release reached or does it have a reasonable probability of reaching a watercourse	No				
Has this release endangered or does it have a reasonable probability of endangering public health	No				
Has this release substantially damaged or will it substantially damage property or the environment	No				
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No				

Nature and Volume of Release						
Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.						
Crude Oil Released (bbls) Details	Not answered.					
Produced Water Released (bbls) Details	Not answered.					
Is the concentration of chloride in the produced water >10,000 mg/l	Not answered.					
Condensate Released (bbls) Details	Cause: High Line Pressure Pipeline (Any) Condensate Released: 8 BBL Recovered: 6 BBL Lost: 2 BBL.					
Natural Gas Vented (Mcf) Details	Cause: High Line Pressure Pipeline (Any) Natural Gas Vented Released: 143 Mcf Recovered: 0 Mcf Lost: 143 Mcf.					
Natural Gas Flared (Mcf) Details	Not answered.					
Other Released Details	Not answered.					
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.					

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170 **District IV**

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 2

Action 386349

QUESTIONS ((continued)

Operator:	OGRID:
FRONTIER FIELD SERVICES, LLC	221115
303 Veterans Airpark Lane	Action Number:
Midland, TX 79705	386349
	Action Type:
	[NOTIFY] Notification Of Release (NOR)

QUESTIONS

Nature and Volume of Release (continued)					
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.				
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No				
Reasons why this would be considered a submission for a notification of a major release	Unavailable.				
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.					

Initial Response						
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.						
The source of the release has been stopped	True					
The impacted area has been secured to protect human health and the environment	True					
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True					
All free liquids and recoverable materials have been removed and managed appropriately	True					
If all the actions described above have not been undertaken, explain why	Not answered.					

Per Paragraph 4 of Subsection B of 19.15.29.8 NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of actions to date in the follow-up C-141 submission. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please prepare and attach all information needed for closure evaluation in the follow-up C-141 submission.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

ACKNOWLEDGMENTS

Action 386349

ACKNOWLEDGMENTS

Operator:	OGRID:
FRONTIER FIELD SERVICES, LLC	221115
303 Veterans Airpark Lane	Action Number:
Midland, TX 79705	386349
	Action Type:
	[NOTIFY] Notification Of Release (NOR)

ACKNOWLEDGMENTS

\checkmark	I acknowledge that I am authorized to submit notification of a release on behalf of my operator.
V	I acknowledge that upon submitting this application, I will be creating a new incident file (assigned to my operator) to track the notification(s) and corrective action(s) for a release, pursuant to NMAC 19.15.29.
V	I acknowledge that creating a new incident file will require my operator to file subsequent submission(s) of form "C-141, Application for administrative approval of a release notification and corrective action", pursuant to NMAC 19.15.29.
V	I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment.
V	I acknowledge the fact that the acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment.
V	I acknowledge the fact that, in addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 386349

CONDITIONS

Operator:	OGRID:
FRONTIER FIELD SERVICES, LLC	221115
303 Veterans Airpark Lane	Action Number:
Midland, TX 79705	386349
	Action Type:
	[NOTIFY] Notification Of Release (NOR)

CONDITIONS

Created B	Condition	Condition Date
sorozco	When submitting future reports regarding this release, please submit the calculations used or specific justification for the volumes reported on the initial C-141.	9/24/2024

Gas Volume Release Report

Gas Release Volume Calculator				
Date:	9/21/2024			
Site or Line Name:		M-Maljamar Suction Line - 12"-09212024		
Area of Hole in Pipe:	0.5	0.5 square inches		
Absolute Pressure:	40	40 psia - absolute pressure (psia = psig gauge pressure + 14.7)		
Duration of Release:	120.00	minutes		
Actual Temperature:	70	70 Degrees F		
Representative Gas Analysis	Please attach or email a representative gas analysis			
Constants				
Temperature at standard conditions:	60 Deg. F			
Pressure at standard conditions:	14.7	PSIA		
Volume of Gas - Actual Conditions	53.68	MACF		
Volume of Gas - Standard Conditions	143.31	MSCF		

Notes	
Entered by user	
Calculated Value	
Constant	

Note:

Liquid Volume Release Report

Liquid Release Volume Calculator							
Date:		9/21/2024					
Site or Line Name:			M-Malj	amar Suctio	n Line - 12"-(09212024	
Soil Type	Porosity	Length	Width	Depth (.083 per inch)	Cubic Feet	Estimated Barrels	Soil Type
Clay	0.15				0	0.00	Clay
Sandy Clay	0.12				0	0.00	Sandy Clay
Silt	0.16				0	0.00	Silt
Fine Sand	0.16	60	29	0.166	288.84	8.24	Fine Sand
Medium Sand	0.25				0	0.00	Medium Sand
Coarse Sand	0.26				0	0.00	Coarse Sand
Gravely Sand	0.26				0	0.00	Gravely Sand
Fine Gravel	0.26				0	0.00	Fine Gravel
Medium Gravel	0.20				0	0.00	Medium Gravel
Coarse Gravel	0.18				0	0.00	Coarse Gravel
Sandstone	0.25				0	0.00	Sandstone
Siltstone	0.18				0	0.00	Siltstone
Limestone	0.13				0	0.00	Limestone
Basalt	0.19				0	0.00	Basalt
Standing Liquids	Χ	0	0	0	0	0.00	Standing Liquids

Choose the one prevailing ground type for estimating spill volumes at a single location. Standing liquids are figured separately using the green cell.

Note that the depth should be measured in feet and tenths of feet (1 inch = .083)

Cubic Feet = L x W x D

Estimated Barrels = ((Cubic Feet x Porosity) / 5.61)

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS

Action 386356

QUESTIONS

Op	perator:	OGRID:
	FRONTIER FIELD SERVICES, LLC	221115
	303 Veterans Airpark Lane	Action Number:
	Midland, TX 79705	386356
		Action Type:
		[C-141] Initial C-141 (C-141-v-Initial)

QUESTIONS

Prerequisites		
Incident ID (n#)	nAPP2426848904	
Incident Name	NAPP2426848904 M-MALJAMAR SUCTION LINE - 12"-09212024 @ 0	
Incident Type	Natural Gas Release	
Incident Status	Initial C-141 Received	
Incident Facility	[fAPP2123229442] Frontier Field Services Gathering System	

Location of Release Source	
Please answer all the questions in this group.	
Site Name	M-Maljamar Suction Line - 12"-09212024
Date Release Discovered	09/21/2024
Surface Owner	Private

Incident Details		
Please answer all the questions in this group.		
Incident Type	Natural Gas Release	
Did this release result in a fire or is the result of a fire	No	
Did this release result in any injuries	No	
Has this release reached or does it have a reasonable probability of reaching a watercourse	No	
Has this release endangered or does it have a reasonable probability of endangering public health	No	
Has this release substantially damaged or will it substantially damage property or the environment	No	
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No	

Nature and Volume of Release			
Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.			
Crude Oil Released (bbls) Details	Not answered.		
Produced Water Released (bbls) Details	Not answered.		
Is the concentration of chloride in the produced water >10,000 mg/l	No		
Condensate Released (bbls) Details	Cause: High Line Pressure Pipeline (Any) Condensate Released: 8 BBL Recovered: 6 BBL Lost: 2 BBL.		
Natural Gas Vented (Mcf) Details	Cause: High Line Pressure Pipeline (Any) Natural Gas Vented Released: 143 MCF Recovered: 0 MCF Lost: 143 MCF.		
Natural Gas Flared (Mcf) Details	Not answered.		
Other Released Details	Not answered.		
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.		

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III
1000 Rio Brazos Rd., Aztec, NM 87410

Phone:(505) 334-6178 Fax:(505) 334-6170

<u>District IV</u> 1220 S. St Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 2

Action 386356

Phone:(505) 476-3470 Fax:(505) 476-3462	
QUESTI	ONS (continued)
Operator: FRONTIER FIELD SERVICES, LLC 303 Veterans Airpark Lane	OGRID: 221115 Action Number:
Midland, TX 79705	386356
	Action Type: [C-141] Initial C-141 (C-141-v-Initial)
QUESTIONS	
Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No
Reasons why this would be considered a submission for a notification of a major release	Unavailable.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e.	e. gas only) are to be submitted on the C-129 form.
Initial Response	
The responsible party must undertake the following actions immediately unless they could create a s	afety hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of the or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for releating the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required asses which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Sebastian Orozco Title: Sr. Environmental Specialist Email: sorozco@kinetik.com Date: 09/24/2024

District I

storage site

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 **District II**

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 **District III**

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Action 386356

QUESTIONS (continued)

Operator:	OGRID:				
FRONTIER FIELD SERVICES, LLC	221115				
303 Veterans Airpark Lane	Action Number:				
Midland, TX 79705	386356				
	Action Type:				
	[C-141] Initial C-141 (C-141-v-Initial)				

QUESTIONS Site Characterization Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the elease discovery date. What is the shallowest depth to groundwater beneath the area affected by the Not answered. release in feet below ground surface (ft bgs) What method was used to determine the depth to ground water Not answered. Did this release impact groundwater or surface water Not answered. What is the minimum distance, between the closest lateral extents of the release and the following surface areas: A continuously flowing watercourse or any other significant watercourse Not answered. Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark) Not answered. An occupied permanent residence, school, hospital, institution, or church Not answered. A spring or a private domestic fresh water well used by less than five households Not answered for domestic or stock watering purposes Any other fresh water well or spring Not answered. Incorporated municipal boundaries or a defined municipal fresh water well field Not answered. A wetland Not answered. A subsurface mine Not answered. An (non-karst) unstable area Not answered. Categorize the risk of this well / site being in a karst geology Not answered. A 100-year floodplain Not answered. Did the release impact areas not on an exploration, development, production, or

Remediation Plan	
Please answer all the questions that apply or are indicated. This information must be provided to the	e appropriate district office no later than 90 days after the release discovery date.
Requesting a remediation plan approval with this submission	No
The OCD recognizes that proposed remediation measures may have to be minimally adjusted in acc	ordance with the physical realities encountered during remediation. If the responsible party has any need to

Not answered.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 386356

CONDITIONS

Operator:	OGRID:
FRONTIER FIELD SERVICES, LLC	221115
303 Veterans Airpark Lane	Action Number:
Midland, TX 79705	386356
	Action Type:
	[C-141] Initial C-141 (C-141-v-Initial)

CONDITIONS

Created By		Condition Date
nvelez	None	9/25/2024

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS

Action 397409

QUESTIONS

Operator:	OGRID:
FRONTIER FIELD SERVICES, LLC	221115
303 Veterans Airpark Lane	Action Number:
Midland, TX 79705	397409
	Action Type:
	[NOTIFY] Notification Of Sampling (C-141N)

QUESTIONS

Prerequisites						
Incident ID (n#)	nAPP2426848904					
Incident Name	NAPP2426848904 M-MALJAMAR SUCTION LINE - 12"-09212024 @ 0					
Incident Type	Natural Gas Release					
Incident Status	Initial C-141 Approved					
Incident Facility	[fAPP2123229442] Frontier Field Services Gathering System					

Location of Release Source								
Site Name	M-Maljamar Suction Line - 12"-09212024							
Date Release Discovered	09/21/2024							
Surface Owner	Private							

Sampling Event General Information							
Please answer all the questions in this group.							
What is the sampling surface area in square feet	1,623						
What is the estimated number of samples that will be gathered	20						
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	11/01/2024						
Time sampling will commence	03:00 PM						
Please provide any information necessary for observers to contact samplers	Conner Moerhring (432) 813-6823						
Please provide any information necessary for navigation to sampling site	32.734894, -103.751540						

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

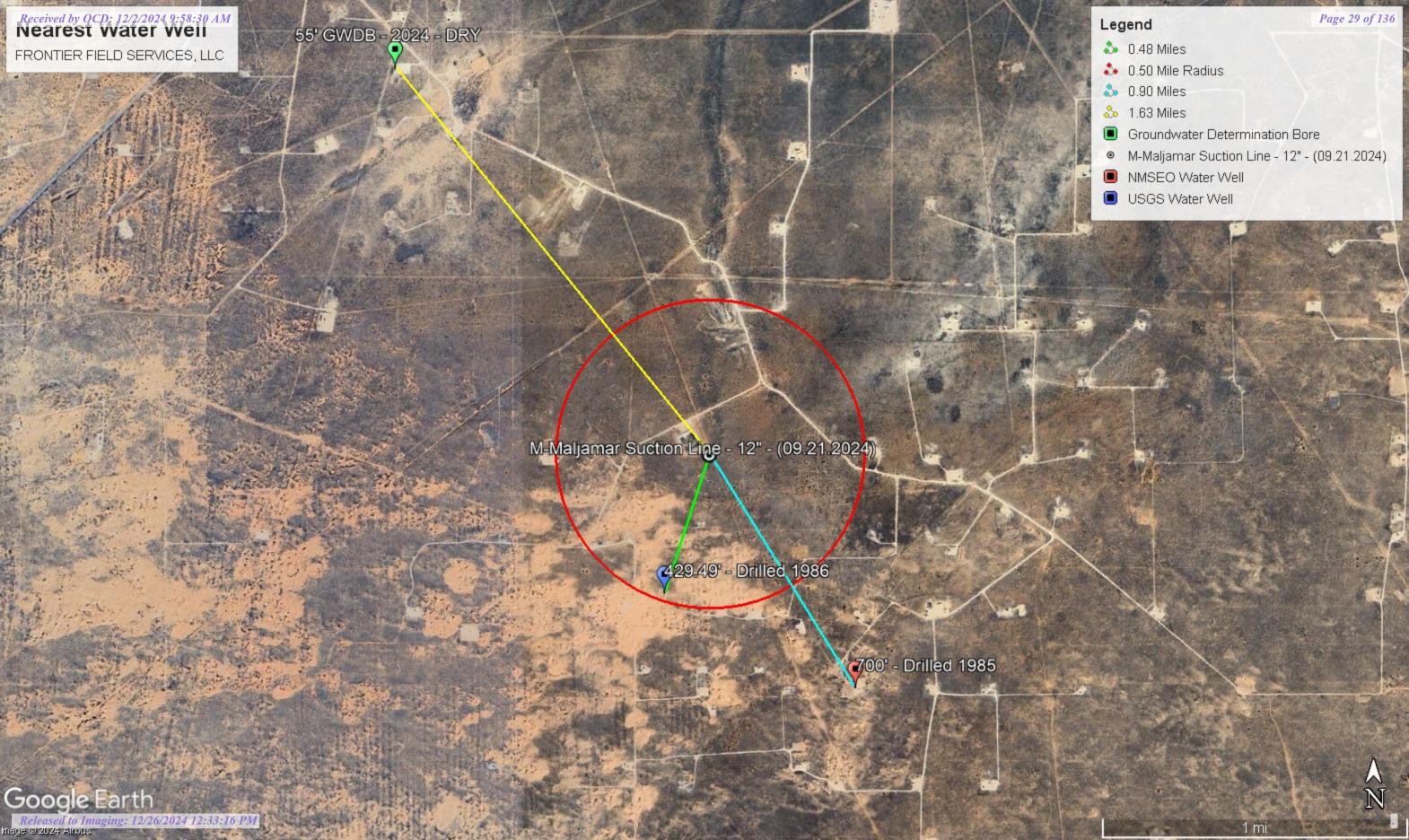
1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

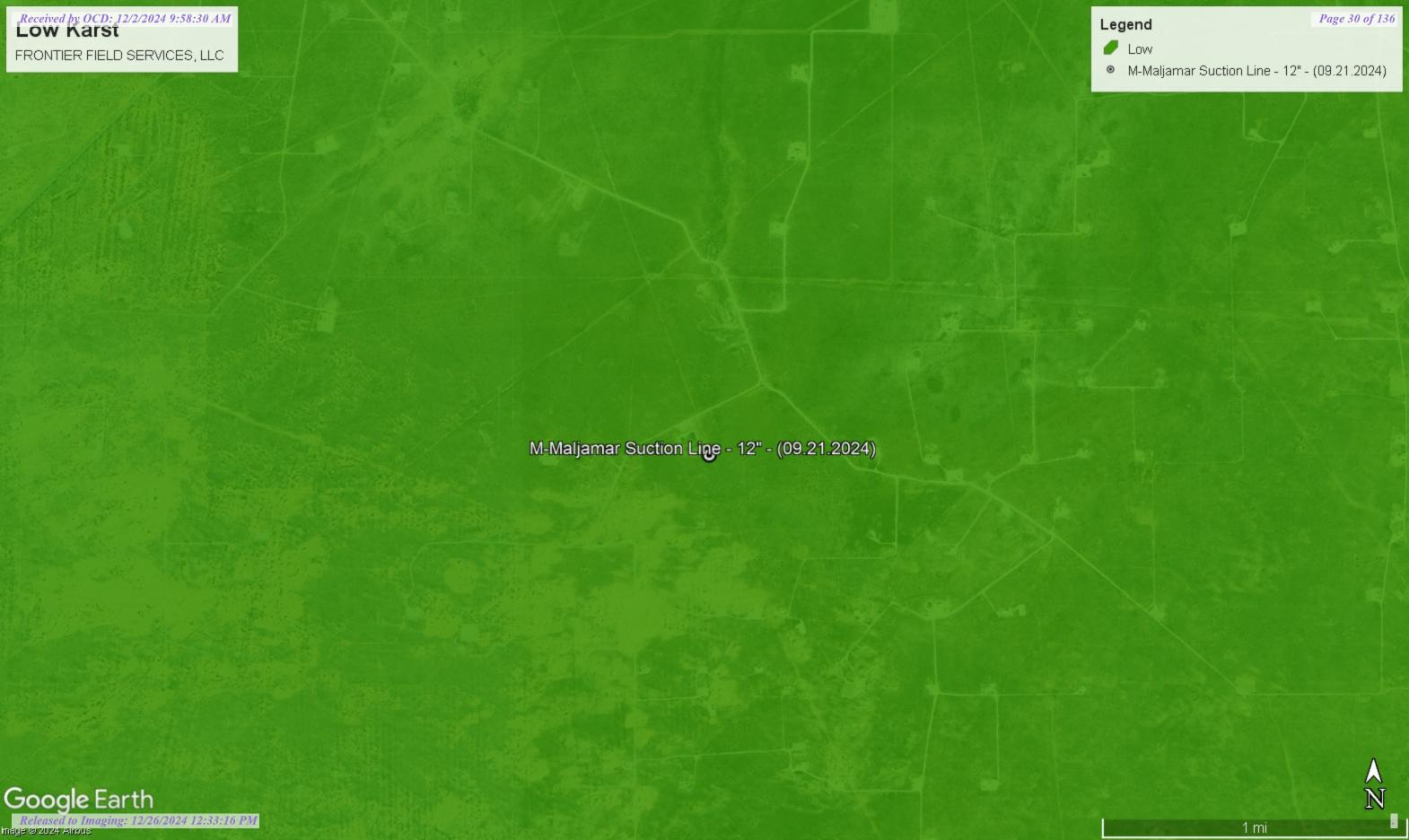
State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 397409

CONDITIONS


Operator:	OGRID:
FRONTIER FIELD SERVICES, LLC	221115
303 Veterans Airpark Lane	Action Number:
Midland, TX 79705	397409
	Action Type:
	[NOTIFY] Notification Of Sampling (C-141N)


CONDITIONS

Created By	Condition	Condition Date
sorozco	Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted.	10/30/2024

APPENDIX D

CARMONA RESOURCES

New Mexico Office of the State Engineer

Water Column/Average Depth to Water

(A CLW#### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)

(R=POD has been replaced, O=orphaned, C=the file is closed)

(quarters are smallest to largest)

(meters)

(In feet)

POD Number	Code	Sub basin	County	Q64	Q16	Q4	Sec	Tws	Range	X	Y	Мар	Distance		Depth Water	
<u>CP 00677</u>		CP	LE		NW	NW	26	18S	32E	617750.0	3621373.0 *		1444	700		
CP 01986 POD1		CP	LE	NW	NW	NE	16	18S	32E	615292.4	3624605.5	•	2623	55		
<u>CP 02001 POD1</u>		СР	LE	NE	SW	NW	10	18S	32E	616091.2	3625869.6		3395	55		

Average Depth to Water: 0 feet

Minimum Depth: 0 feet

Maximum Depth: 0 feet

Record Count: 3

UTM Filters (in meters):

Easting: 616972.52 **Northing:** 3622590.50

Radius: 4000

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

^{*} UTM location was derived from PLSS - see Help

Click to hideNews Bulletins

- Explore the NEW <u>USGS National Water Dashboard</u> interactive map to access real-time water data from over 13,500 stations nationwide.
- How are we doing? We want to hear from you. Take our quick survey to tell us what you think.

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs site_no list =

• 324342103451501

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 324342103451501 18S.32E.22.32322

Lea County, New Mexico Latitude 32°43'42", Longitude 103°45'15" NAD27

Land-surface elevation 3,761 feet above NAVD88

This well is completed in the Other aquifers (N9999OTHER) national aquifer.

This well is completed in the Santa Rosa Sandstone (231SNRS) local aquifer.

Output formats

Table of data	
Tab-separated data	
Graph of data	
Reselect period	

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Water- level approval status
1968-03-18		D	62610		3327.83	NGVD29	1	Z			А
1968-03-18		D	62611		3329.40	NAVD88	1	Z			А
1968-03-18		D	72019	431.60			1	Z			А
1971-04-06		D	62610		3325.02	NGVD29	1	Z			А
1971-04-06		D	62611		3326.59	NAVD88	1	Z			А
1971-04-06		D	72019	434.41			1	Z			A
1976-05-21		D	62610		3331.54	NGVD29	1	Z			Α
1976-05-21		D	62611		3333.11	NAVD88	1	Z			A
1976-05-21		D		427.89			1	Z			А
1981-03-12		D			3331.19	NGVD29	1	Z			А
1981-03-12		D			3332.76	NAVD88	1	Z			A
1981-03-12		D		428.24			1	Z			А
1986-03-25		D			3329.94	NGVD29	1	Z			A
1986-03-25		D			3331.51	NAVD88	1	Z			A
1986-03-25		D	72019	429.49			1	Z			Α

Explanation

Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929

Date	Time	Water-level date-time accuracy	Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Metho meası
Water-level approval s	tatus	,	A Approved for	publication Processin	ng and review completed	i.		

Questions or Comments Help Data Tips Explanation of terms Subscribe for system changes

FOIA Accessibility

U.S. Department of the Interior | U.S. Geological Survey
Title: Groundwater for New Mexico: Water Levels
URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Policies and Notices

Page Contact Information: New Mexico Water Data Maintainer Page Last Modified: 2024-10-22 10:15:35 EDT 0.33 0.23 nadww01

USA.gov

STATE ENGINEER OFFICE WELL RECORD

Section 1. GENERAL INFORMATION

(A)	Owner of Street or City and	well <u>T</u> Post Office Add State <u>F</u>	X O Prod iress c/o G Box 692 T	lenn's Wate atum, New I	er Well Mexico	Servi 88267	Owner Lce, Inc.	's Well No	
Well	was drilled	l under Permit N	No. CP-	677	and	is located	in the:		
	a	¼ ₩1 ¼	NW ¼ N	W 1/4 of Section_	26 _{To}	wnship 🛚	L8-S. Ran	ge 32-E.	N.M.P.M.
	c. Lot N	00	of Block No		of the				
		÷							C. 17.
							System		Zone in Grant.
(B)							License No		<u>C</u> 5
Addı	ress <u>Bo</u>	x 692 Ta	atum, New	Mexico 88	267	<u>:</u> _			
Drill	ing Began	5/9/85	Compl	eted <u>5/9/8</u>	5тур	e tools _	Rotary	Size of ho	le 7 7/8in.
							ft. Total depth	and the second second	
	pleted wel				•		r upon completion		
	p.0.00		•	on 2. PRINCIPAL			•		ara s
	Depth	in Feet	Thickness		tion of Water-				ted Yield
-	From	То	in Feet	Descrip			Officialion	(gallons p	er minute)
		ලා	<u> </u>	,			,		
			10.00 10.00	Dry H	ole				
ļ			○ (5 - (5 ki		· V				
		Ectivo							
		ann again	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Section 3. RE	CORD OF C	ASING		*	The American
1	iameter inches)	Pounds per foot	Threads per in	Depth in Feet		ength feet)	Type of Sho	Po Fron	erforations n To
	:	<u> </u>	<i>o</i>	100 801	ttoin			From	
						٠.			<i>A</i>
					,		٠.		
		· · · · · · · · · · · · · · · · · · ·	Sectio	n 4. RECORD OF	MUDDING A	ND CEN	MENTING		. April 1
	Depth From	in Feet To	Hole Diameter	Sacks of Mud	Cubic F of Ceme	1	Metho	d of Placémer	nt
		well was	spluged	with sand	and mud		A grander Mile	eri jaj li kureni i	A secondary of the secondary
			,					والمراجعة والمسترون والمسترون	
			- 1		ų				Aldrey
<u> </u>	<u> </u>			Section 5, PL	UGGING RE	CORD			a supplied to the supplied to
_	-	actor		·		Γ	Depth in	Feet	Cubic Feet
Plug	ging Metho	od	<u> </u>			No.	Top	Bottom	of Cement
	ging appro	-				2			.
		:	State Engi	neer Representative	e ·	3 4	the section of the		
				FOR USE OF ST	ATE ÈNGINI	EER ON	LY		
Date	Received	May 15,	1985	2 0 00 0 0 . 01			e de la companya de l		ECI
		CP-677			Quad OWD		•	<u> </u>	
F	ile No			Use			Location No1	8.32.26	.11143

0		1 00		TIAT	
Section	_		() H	H()	

17 1 1 1 2		Section 6. LOG OF HOLE							
Depth'	n Feet	Thickness in Feet Color and Type of Material Encountered							
From	То	in Feet	Color and Type of material Encountered						
0	12		sand-loose						
12	24	12	clay						
24	47	_23	caleche						
47	58	11	sand						
58	84	26	sandy clay						
84	102	18	red clay sticky						
102	116	14	sand and gravel						
116	142	26	red clay sticky						
142	315	173	brown clay						
31.5	325	10	purple clay						
325	378	53	red clay						
378	408	30	pink red clay						
408	440	32	brown shale and blue streaks						
440	500	60	brown shale-grainey						
500	530	30	sand rock -fine						
530	545	15	brown shale						
545	605	60	sand rock-medium						
605	616		brown shale						
616	675	59	sand rock						
675	700	25	red shale						
	<u> </u>								
		, .	ZE O						
	<u> </u>	3	REMARKS AND ADDITIONAL INFORMATION						
	From 0 12 24 47 58 84 102 116 142 315 325 378 408 440 500 545 605 616 675	0 12 12 24 24 47 47 58 58 84 84 102 102 116 116 142 142 315 315 325 325 378 378 408 408 440 440 500 500 530 500 530 545 605 616 616 675 675 700	From To in Feet 0 12 12 12 24 12 24 47 23 47 58 11 58 84 26 84 102 18 102 116 14 116 142 26 142 315 173 315 325 10 325 378 53 378 408 30 408 440 32 440 500 60 500 530 30 530 545 15 545 605 60 605 616 11 616 675 59 675 700 25						

Griller

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

INSTRUCTIONS: This form should executed in triplicate, preferably typewritter of submitted to the appropriate district office of the State Engineer. All sections, ept Section 5, shall be answered as completed and accurately as possible when any well is Released to Lyngsing 12/26/2018 When the section is used as a plugging record, only Section 1(a) and Section 5 need be completed.

NC	OSE POD NO. (WELL NO.) pod 1 WELL TAG ID NO.							OSE FILE NO(S). CP-01986				
OCATI	WELL OWN		(James Hawley)-age	nt				PHONE (OPTIO	ONAL)			
WELL L	WELL OWN		G ADDRESS		•			CITY Hobbs		STATE	88241	ZIP
GENERAL AND WELL LOCATION	WELL LOCATIO (FROM GF	(S)	ATITUDE				.79 _N		REQUIRED: ONE TEN	TH OF A	SECOND	
1. GEN	DESCRIPTION	ON RELATI	NG WELL LOCATION TO	STREET ADD	RESS AND COMMON	LANDA	MARKS – PLS	SS (SECTION, TO	WNSHJIP, RANGE) WH	IERE AV	AILABLE	
	LICENSE NO		NAME OF LICENSED	DRILLER	James Hawley				NAME OF WELL DR H&F		COMPANY orises, LLC.	
	DRILLING S 1/31		DRILLING ENDED 1/31/24	DEPTH OF CO	MPLETED WELL (F)	Γ)	BORE HO	LE DEPTH (FT) 55'	DEPTH WATER FIR	ST ENCO		
NO	COMPLETE	D WELL IS:	ARTESIAN *add Centralizer info bel	ow	V DRY HOLE SHALLOW (UNCONFINED)				WATER LEVEL PLETED WELL N	/A	DATE STATIC 2/3/	
RMATI	DRILLING FLUID:								CHECK	HERE II	F PITLESS ADAI	PTER IS
CASING INFORMATION	DEPTH (feet bgl) BORE HOLE FROM TO DIAM			CON			ASING CASING CASIN			SING WALL SLOT HICKNESS SIZE		
	0'	(inches)						TYPE ling diameter)	(inches) (inches)		(inches)	
2. DRILLING &			7 5/7	110	asing left in note							
RILL							-					
2. I												
							<u> </u>					
	DEPTH	(feet bgl)		LIST ANNU	JLAR SEAL MATEI	RIAL AN	ND GRAVE	L PACK SIZE-				
IAL	FROM	TO	BORE HOLE DIAM. (inches)	RANGE BY INTERVAL *(if using Centralizers for Artesian wells- indicate the spacing below			e spacing below)	AMOUNT (cubic feet)		METHOD OF PLACEMENT		
ATER					1	N/A						
ANNULAR MATERIAL									055 011 15	812	2024 pm[10	
3. A.												
	OSE INTER	NAL USI	3						0 WELL RECORD			2/2022)
FILE	NO.CP	198	6-40D1	.117	POD NO). /		WELL TAG II	NO. 755 2	105	PAGE	1 OF 2
	7	71	1000									

	DEPTH (f	TO	THICKNESS (feet)	COLOR AND TYPE OF MATERIAL ENCOUNTERED - INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES (attach supplemental sheets to fully describe all units)	5	WATER BEARING? (YES / NO)	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
	0'	10'	10'	sand		Y ✓N	
	10'	15'	5'	caliche		Y ✔N	
	15'	45'	30'	sandy caliche		Y ✓N	
	45'	55'	10'	red sand		Y ✓N	
						Y N	
E						Y N	
4. HYDROGEOLOGIC LOG OF WELL						Y N	
OF						Y N	
007						Y N	
CIC						Y N	
OTO						Y N	
GEC						Y N	
DRO						Y N	
HX						Y N	
4						Y N	
						Y N	
						Y N	
						Y N	
						Y N	
					-	Y N	
						Y N	
	METHOD U	SED TO ES	STIMATE YIELD	OF WATER-BEARING STRATA:		AL ESTIMATED	0.00
	PUMI	P DA	IR LIFT	BAILER OTHER - SPECIFY: dry hole	WEL	L YIELD (gpm):	
RVISION	WELL TES			ACH A COPY OF DATA COLLECTED DURING WELL TESTING, INC ME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVI			
RVIS	MISCELLA	NEOUS INI	FORMATION: WO	ell was gauged for water on 2/3/24, well was dry, temporary well ca	sing v	vas removed. bor	e hole was
			ba	ckfilled to 10' BGS will drill cuttings, then hydrated bentonite chip	s were	poured from 10'	BGS to surface.
S							
TEST; RIG SUPE							
TES	PRINT NAM	AE(S) OF D	RILL RIG SUPER	RVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CON	STRUC	CTION OTHER TH	HAN LICENSEE:
S.	Nathan Sme	elcer					
	THE UNDE	RSIGNED H	HEREBY CERTIF	TIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BEL	IEF, TI	HE FOREGOING I	S A TRUE AND
URE				DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL F TO DAYS AFTER COMPLETION OF WELL DRILLING:		D WITH THE STA 11 FEB 12 202	
VAT	1	10	Λ				
6. SIGNATURE	(h)	///	NX	James Hawley		2/9/24	
9	THE ME	SIGNAT	URE OF DRILLE	ER / PRINT SIGNEE NAME		DATE	POSSESSE POS
	OSE INTER	NAL USE		A		CORD & LOG (Ve	rsion 09/22/2022)
-	E NO. T	1786	72211	POD NO. TRN NO.	15	5205	DACE 2 OF 2
LOC	CATION	X /2	5.52.16	- WELL TAG ID NO.	-		PAGE 2 OF 2

Mike A. Hamman, P.E. State Engineer

...well Office 1900 WEST SECOND STREET ROSWELL, NM 88201

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

Trn Nbr: File Nbr: 755205

Well File Nbr: CP 01986 POD1

CP 01986

Jan. 12, 2024

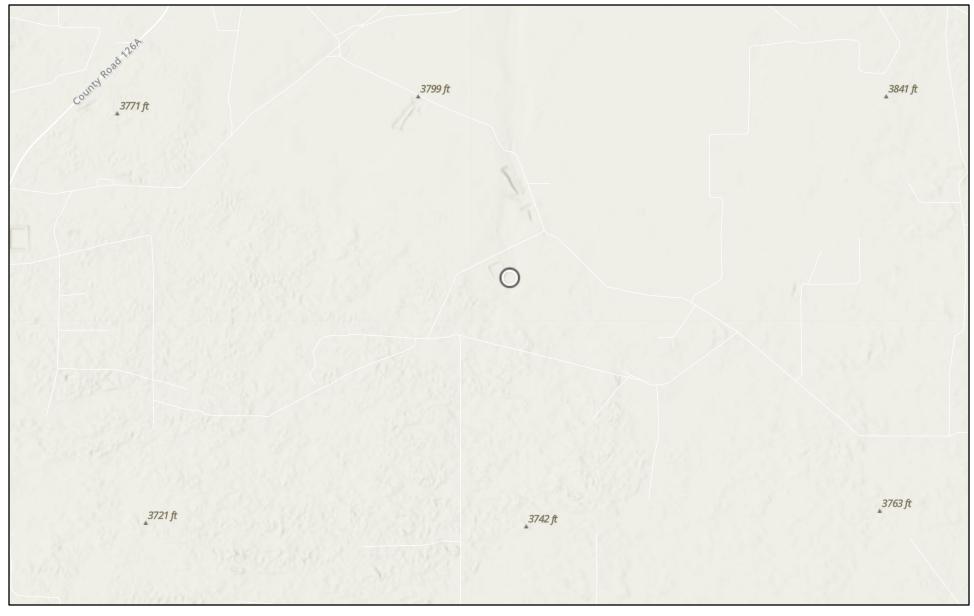
JAMES HAWLEY COTERRA ENERGY CO. P.O. BOX 3641 HOBBS, NM 88241

Greetings:

The above numbered permit was issued in your name on 01/23/2024.

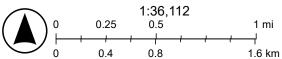
The Well Record was received in this office on 02/12/2024, stating that it had been completed on 01/31/2024, and was a dry well. The well is to be plugged according to 19.27.4.30 NMAC.

Please note that another well can be drilled under this permit if the well is completed and the well log filed on or before 01/22/2025.


If you have any questions, please feel free to contact us.

Sincerely,

Maret Thompson (575) 622 - 6521


drywel1

M-Maljamar Suction Line - 12" - (09.21.2024)

10/22/2024

World Hillshade

Esri, NASA, NGA, USGS, FEMA, Texas Parks & Wildlife, Esri, TomTom, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS,

APPENDIX E

CARMONA RESOURCES

ANALYTICAL REPORT

PREPARED FOR

Attn: Mike Carmona Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701

Generated 10/24/2024 3:53:14 PM

JOB DESCRIPTION

M-Maljamar Suction Line-12-S-09212024 Lea County, New Mexico

JOB NUMBER

880-50147-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 10/24/2024 3:53:14 PM

Authorized for release by Jessica Kramer, Project Manager <u>Jessica.Kramer@et.eurofinsus.com</u> (432)704-5440 **O**

g Q

q

10

12

Client: Carmona Resources Project/Site: M-Maljamar Suction Line-12-S-09212024 Laboratory Job ID: 880-50147-1 SDG: Lea County, New Mexico

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	15
Lab Chronicle	17
Certification Summary	18
Method Summary	19
Sample Summary	20
Receipt Checklists	21

Definitions/Glossary

Job ID: 880-50147-1 Client: Carmona Resources Project/Site: M-Maljamar Suction Line-12-S-09212024

SDG: Lea County, New Mexico

Qualifiers

GC VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier Qualifier Description

Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

₩ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid Colony Forming Unit CFU **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TFF Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Case Narrative

Client: Carmona Resources Job ID: 880-50147-1

Project: M-Maljamar Suction Line-12-S-09212024

Job ID: 880-50147-1 Eurofins Midland

Job Narrative 880-50147-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on $10/23/2024\ 2:30\ PM$. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -6.7°C.

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: S-1 (3') (880-50147-1) and S-2 (5') (880-50147-2).

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Midland

1

3

_

7

a

1 1

Client Sample Results

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212024

Job ID: 880-50147-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-50147-1

Matrix: Solid

Cilei	nτ	Sam	рιε	,	Ш	ט	5	-1	ı	(3)	,

Date Collected: 10/18/24 00:00 Date Received: 10/23/24 14:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		10/23/24 15:20	10/23/24 19:55	1
Toluene	<0.00200	U	0.00200		mg/Kg		10/23/24 15:20	10/23/24 19:55	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		10/23/24 15:20	10/23/24 19:55	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		10/23/24 15:20	10/23/24 19:55	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		10/23/24 15:20	10/23/24 19:55	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		10/23/24 15:20	10/23/24 19:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	124		70 - 130				10/23/24 15:20	10/23/24 19:55	1
1,4-Difluorobenzene (Surr)	99		70 - 130				10/23/24 15:20	10/23/24 19:55	1
- Method: TAL SOP Total BTEX - 1	otal BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			10/23/24 19:55	1
Method: SW846 8015 NM - Diese Analyte	•	ics (DRO) (Qualifier	GC)	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0		50.0		mg/Kg	_ <u>-</u>		10/24/24 14:50	
Method: SW846 8015B NM - Dies	nal Banga Orga	nico (DBO)	(CC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics			50.0	WIDL	mg/Kg		10/23/24 15:17	10/24/24 14:50	DII Fac
(GRO)-C6-C10	\50.0	U	50.0		ilig/Kg		10/23/24 15.17	10/24/24 14.50	1
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		10/23/24 15:17	10/24/24 14:50	1
C10-C28)					0 0				
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		10/23/24 15:17	10/24/24 14:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	98		70 - 130				10/23/24 15:17	10/24/24 14:50	1
o-Terphenyl	108		70 - 130				10/23/24 15:17	10/24/24 14:50	1
Method: EPA 300.0 - Anions, Ion	Chromatogran	hv - Solubl	e						
		,	· -						

Client Sample ID: S-2 (5') Lab Sample ID: 880-50147-2 Date Collected: 10/18/24 00:00 **Matrix: Solid**

20.4

10.1

mg/Kg

Date Received: 10/23/24 14:30

Chloride

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		10/23/24 15:20	10/23/24 19:08	1
Toluene	<0.00199	U	0.00199		mg/Kg		10/23/24 15:20	10/23/24 19:08	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		10/23/24 15:20	10/23/24 19:08	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		10/23/24 15:20	10/23/24 19:08	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		10/23/24 15:20	10/23/24 19:08	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		10/23/24 15:20	10/23/24 19:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130				10/23/24 15:20	10/23/24 19:08	1
1,4-Difluorobenzene (Surr)	99		70 - 130				10/23/24 15:20	10/23/24 19:08	1

Eurofins Midland

10/24/24 02:39

Client Sample Results

Client: Carmona Resources

Date Received: 10/23/24 14:30

Surrogate

o-Terphenyl

1-Chlorooctane

Project/Site: M-Maljamar Suction Line-12-S-09212024

Job ID: 880-50147-1

SDG: Lea County, New Mexico

Analyzed

10/24/24 15:11

10/24/24 15:11

Prepared

10/23/24 15:17

10/23/24 15:17

Client Sample ID: S-2 (5') Lab Sample ID: 880-50147-2 Date Collected: 10/18/24 00:00

%Recovery Qualifier

103

110

Matrix: Solid

Method: TAL SOP Total BTEX - To	tal BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			10/23/24 19:08	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (G	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	117		49.7		mg/Kg			10/24/24 15:11	1
- Method: SW846 8015B NM - Diese	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7		mg/Kg		10/23/24 15:17	10/24/24 15:11	1
(GRO)-C6-C10									
Diesel Range Organics (Over	117		49.7		mg/Kg		10/23/24 15:17	10/24/24 15:11	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49 7	H	49 7		ma/Ka		10/23/24 15:17	10/24/24 15:11	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble										
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac			
Chloride	177	10.1	mg/K			10/24/24 02:59	1			

Limits

70 - 130

70 - 130

Dil Fac

Surrogate Summary

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212024

Job ID: 880-50147-1

SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
	BFB1	DFBZ1	
Client Sample ID	(70-130)	(70-130)	
Matrix Spike	97	101	
Matrix Spike Duplicate	103	101	
S-1 (3')	124	99	
S-2 (5')	100	99	
Matrix Spike	112	102	
Matrix Spike Duplicate	105	104	
Lab Control Sample	98	100	
Lab Control Sample Dup	98	100	
Method Blank	106	86	
	Matrix Spike Matrix Spike Duplicate S-1 (3') S-2 (5') Matrix Spike Matrix Spike Duplicate Lab Control Sample Lab Control Sample Dup	Matrix Spike 97 Matrix Spike Duplicate 103 S-1 (3') 124 S-2 (5') 100 Matrix Spike 112 Matrix Spike Duplicate 105 Lab Control Sample 98 Lab Control Sample Dup 98	Client Sample ID (70-130) (70-130) Matrix Spike 97 101 Matrix Spike Duplicate 103 101 S-1 (3') 124 99 S-2 (5') 100 99 Matrix Spike 112 102 Matrix Spike Duplicate 105 104 Lab Control Sample 98 100 Lab Control Sample Dup 98 100

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits
		BFB2	DFBZ2	
Sample ID	Client Sample ID	(70-130)	(70-130)	
S 880-93959/1-A	Lab Control Sample	103	100	
SD 880-93959/2-A	Lab Control Sample Dup	110	102	
880-93959/5-A	Method Blank	98	98	
Surrogate Legend				
BFB = 4-Bromofluorobe	enzene (Surr)			
DFBZ = 1,4-Difluorobe	nzene (Surr)			

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-50147-1	S-1 (3')	98	108	
880-50147-1 MS	S-1 (3')	99	94	
880-50147-1 MSD	S-1 (3')	101	96	
880-50147-2	S-2 (5')	103	110	
LCS 880-93958/2-A	Lab Control Sample	78	75	
LCSD 880-93958/3-A	Lab Control Sample Dup	83	81	
MB 880-93958/1-A	Method Blank	109	118	

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Project/Site: M-Maljamar Suction Line-12-S-09212024

Job ID: 880-50147-1

SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-93913/5-A

Matrix: Solid

Analysis Batch: 93908

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 93913

l		MB	MB							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Benzene	<0.00200	U	0.00200		mg/Kg		10/23/24 08:35	10/23/24 11:20	1
	Toluene	<0.00200	U	0.00200		mg/Kg		10/23/24 08:35	10/23/24 11:20	1
	Ethylbenzene	<0.00200	U	0.00200		mg/Kg		10/23/24 08:35	10/23/24 11:20	1
I	m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		10/23/24 08:35	10/23/24 11:20	1
	o-Xylene	<0.00200	U	0.00200		mg/Kg		10/23/24 08:35	10/23/24 11:20	1
	Xylenes, Total	<0.00400	U	0.00400		mg/Kg		10/23/24 08:35	10/23/24 11:20	1

MB MB

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130	10	0/23/24 08:35	10/23/24 11:20	1
1,4-Difluorobenzene (Surr)	86		70 - 130	1	0/23/24 08:35	10/23/24 11:20	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 93913

Prep Type: Total/NA

Prep Batch: 93913

Lab Sample ID: LCS 880-93913/1-A Matrix: Solid

Analysis Batch: 93908

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1019		mg/Kg		102	70 - 130	
Toluene	0.100	0.1025		mg/Kg		102	70 - 130	
Ethylbenzene	0.100	0.09885		mg/Kg		99	70 - 130	
m-Xylene & p-Xylene	0.200	0.1948		mg/Kg		97	70 - 130	
o-Xylene	0.100	0.09746		mg/Kg		97	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	98		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 93908

Lab Sample ID: LCSD 880-93913/2-A

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1032		mg/Kg		103	70 - 130	1	35
Toluene	0.100	0.1021		mg/Kg		102	70 - 130	0	35
Ethylbenzene	0.100	0.09933		mg/Kg		99	70 - 130	0	35
m-Xylene & p-Xylene	0.200	0.1956		mg/Kg		98	70 - 130	0	35
o-Xylene	0.100	0.09790		mg/Kg		98	70 - 130	0	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits		
4-Bromofluorobenzene (Surr)	98		70 - 130		
1.4-Difluorobenzene (Surr)	100		70 - 130		

Lab Sample ID: 880-50094-A-1-G MS

Matrix: Solid

Analysis Batch: 93908

Client San	nple ID: Matrix Spike
	Prep Type: Total/NA

Prep Batch: 93913

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U	0.100	0.1081		mg/Kg		108	70 - 130	
Toluene	< 0.00201	U	0.100	0.1070		mg/Kg		107	70 - 130	

Eurofins Midland

Page 9 of 21

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212024

Job ID: 880-50147-1

SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-50094-A-1-G MS

Matrix: Solid

Analysis Batch: 93908

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 93913

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00201	U	0.100	0.1039		mg/Kg		104	70 - 130	
m-Xylene & p-Xylene	<0.00402	U	0.200	0.2044		mg/Kg		102	70 - 130	
o-Xylene	<0.00201	U	0.100	0.1017		mg/Kg		102	70 - 130	

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	97		70 - 130
1,4-Difluorobenzene (Surr)	101		70 - 130

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 93913

Lab Sample ID: 880-50094-A-1-H MSD **Matrix: Solid**

Analysis Batch: 93908

-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00201	U	0.100	0.1126		mg/Kg		113	70 - 130	4	35
Toluene	<0.00201	U	0.100	0.1116		mg/Kg		112	70 - 130	4	35
Ethylbenzene	<0.00201	U	0.100	0.1074		mg/Kg		107	70 - 130	3	35
m-Xylene & p-Xylene	<0.00402	U	0.200	0.2103		mg/Kg		105	70 - 130	3	35
o-Xylene	<0.00201	U	0.100	0.1048		mg/Kg		105	70 - 130	3	35

MSD MSD

Surrogate	%Recovery Qualifie	er Limits
4-Bromofluorobenzene (Surr)	103	70 - 130
1,4-Difluorobenzene (Surr)	101	70 - 130

Lab Sample ID: MB 880-93959/5-A

Matrix: Solid

o-Xylene

Xylenes, Total

Analysis Batch: 93910

Client Sample ID: Method Blank

10/23/24 17:04

10/23/24 17:04

Prep Type: Total/NA

Prep Batch: 93959

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		10/23/24 15:20	10/23/24 17:04	1
Toluene	<0.00200	U	0.00200		mg/Kg		10/23/24 15:20	10/23/24 17:04	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		10/23/24 15:20	10/23/24 17:04	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		10/23/24 15:20	10/23/24 17:04	1

0.00200

0.00400

mg/Kg

mg/Kg

MB MB

<0.00200 U

<0.00400 U

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98	70 - 130	10/23/24 15:20	10/23/24 17:04	1
1 4-Difluorobenzene (Surr)	98	70 - 130	10/23/24 15:20	10/23/24 17:04	1

Lab Sample ID: LCS 880-93959/1-A

Matrix: Solid

Analysis Batch: 93910

Client Sample ID: Lab Control Sample

10/23/24 15:20

10/23/24 15:20

Prep Type: Total/NA

Prep Batch: 93959

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.08946		mg/Kg		89	70 - 130	
Toluene	0.100	0.08879		mg/Kg		89	70 - 130	
Ethylbenzene	0.100	0.09632		mg/Kg		96	70 - 130	
m-Xylene & p-Xylene	0.200	0.1798		mg/Kg		90	70 - 130	

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212024

Job ID: 880-50147-1

SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-93959/1-A

Matrix: Solid

Analyte

o-Xylene

Analysis Batch: 93910

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 93959

Spike LCS LCS %Rec Added Result Qualifier Unit %Rec Limits D 0.100 0.09852 99 70 - 130 mg/Kg

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 103 70 - 130 70 - 130 1,4-Difluorobenzene (Surr) 100

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 93959

Lab Sample ID: LCSD 880-93959/2-A **Matrix: Solid**

Analysis Batch: 93910

Spike LCSD LCSD RPD Analyte Added Result Qualifier Unit %Rec Limits Limit Benzene 0.100 0.1002 mg/Kg 100 70 - 130 11 35 Toluene 0.100 0.09857 mg/Kg 99 70 - 130 10 35 0.100 Ethylbenzene 0.1073 mg/Kg 107 70 - 130 11 35 0.200 m-Xylene & p-Xylene 0.1995 mg/Kg 100 70 - 130 10 35 0.100 0.1103 110 70 - 130 11 o-Xylene mg/Kg 35

LCSD LCSD

Surrogate	%Recovery Q	ualifier	Limits
4-Bromofluorobenzene (Surr)	110		70 - 130
1,4-Difluorobenzene (Surr)	102		70 - 130

Lab Sample ID: 880-50149-A-1-C MS

Matrix: Solid

Analysis Batch: 93910

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 93959

MS MS Sample Sample Spike %Rec Result Qualifier Added Result Qualifier Analyte Unit %Rec Limits Benzene <0.00201 U 0.100 0.09208 mg/Kg 92 70 - 130 Toluene <0.00201 U 0.100 0.09103 mg/Kg 91 70 - 130 Ethylbenzene <0.00201 U 0.100 0.09836 mg/Kg 98 70 - 130 m-Xylene & p-Xylene <0.00402 U 0.200 0.1850 mg/Kg 93 70 - 130 o-Xylene <0.00201 U 0.100 0.09771 mg/Kg 98 70 - 130

MS MS

Surrogate	%Recovery Qualifi	er Limits
4-Bromofluorobenzene (Surr)	112	70 - 130
1.4-Difluorobenzene (Surr)	102	70 - 130

Lab Sample ID: 880-50149-A-1-D MSD

Matrix: Solid

Analysis Batch: 93910

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 93959

-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00201	U	0.100	0.09834	-	mg/Kg		98	70 - 130	7	35
Toluene	<0.00201	U	0.100	0.09528		mg/Kg		95	70 - 130	5	35
Ethylbenzene	<0.00201	U	0.100	0.1031		mg/Kg		103	70 - 130	5	35
m-Xylene & p-Xylene	<0.00402	U	0.200	0.1893		mg/Kg		95	70 - 130	2	35
o-Xvlene	<0.00201	U	0.100	0.1034		ma/Ka		103	70 130	6	35

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212024 SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-50149-A-1-D MSD

Matrix: Solid

Analysis Batch: 93910

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Job ID: 880-50147-1

Prep Batch: 93959

MSD MSD

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 105 70 - 130 1,4-Difluorobenzene (Surr) 104 70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-93958/1-A

Matrix: Solid

Analysis Batch: 93976

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 93958

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Gasoline Range Organics <50.0 U 50.0 10/23/24 15:17 10/24/24 08:31 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 50.0 mg/Kg 10/23/24 15:17 10/24/24 08:31 C10-C28) Oil Range Organics (Over C28-C36) 50.0 10/24/24 08:31 <50.0 U mg/Kg 10/23/24 15:17

MB MB

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	109	70 - 130	10/23/24 15:17	10/24/24 08:31	1
o-Terphenyl	118	70 - 130	10/23/24 15:17	10/24/24 08:31	1

Lab Sample ID: LCS 880-93958/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 93976

Prep Type: Total/NA Prep Batch: 93958

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	960.5		mg/Kg		96	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	823.7		mg/Kg		82	70 - 130	
C10-C28)								

LCS LCS

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	78	70 - 130
o-Terphenyl	75	70 - 130

Lab Sample ID: LCSD 880-93958/3-A

Matrix: Solid

Analysis Batch: 93976

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 93958

-	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	934.6		mg/Kg		93	70 - 130	3	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	838.0		mg/Kg		84	70 - 130	2	20
C10-C28)									

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	83	70 - 130
o-Terphenyl	81	70 - 130

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212024

Job ID: 880-50147-1

SDG: Lea County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-50147-1 MS

Matrix: Solid

Analysis Batch: 93976

Client Sample ID: S-1	(3
-----------------------	----

Prep Type: Total/NA Prep Batch: 93958

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	<50.0	U	999	874.8		mg/Kg		88	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	<50.0	U	999	841.8		mg/Kg		84	70 - 130	
C10-C28)										

MS MS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	99		70 - 130
o-Terphenyl	94		70 - 130

Lab Sample ID: 880-50147-1 MSD

Matrix: Solid

Analysis Batch: 93976

Client	Sample	ID: S-1	(3.)

Prep Type: Total/NA

Prep Batch: 93958

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	999	890.9		mg/Kg		89	70 - 130	2	20
Diesel Range Organics (Over C10-C28)	<50.0	U	999	874.4		mg/Kg		88	70 - 130	4	20

MSD MSD %Recovery Qualifier Surrogate Limits

1-Chlorooctane 101 70 - 130 o-Terphenyl 96 70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-93957/1-A Client Sample ID: Method Blank **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 93968

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<10.0	U	10.0		mg/Kg			10/24/24 00:42	1

Lab Sample ID: LCS 880-93957/2-A Client Sample ID: Lab Control Sample **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 93968

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 250	251.4		mg/Kg		101	90 - 110	

Lab Sample ID: LCSD 880-93957/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 93968

	Spike	LCSD	LCSD			%Rec		RPD
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	252.6	mg/Kg		101	90 - 110	0	20

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212024

Job ID: 880-50147-1

SDG: Lea County, New Mexico

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 880-50147-1 MS **Matrix: Solid**

Client Sample ID: S-1 (3') **Prep Type: Soluble**

Analysis Batch: 93968

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Analyte Unit D %Rec Limits Chloride 20.4 252 273.2 mg/Kg 100 90 - 110

Client Sample ID: S-1 (3')

Lab Sample ID: 880-50147-1 MSD **Matrix: Solid**

Prep Type: Soluble

Analysis Batch: 93968

Sample Sample Spike MSD MSD %Rec RPD Result Qualifier RPD Added Result Qualifier Limits Limit Analyte Unit D %Rec Chloride 20.4 252 274.0 mg/Kg 101 90 - 110 0 20

QC Association Summary

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212024

Job ID: 880-50147-1 SDG: Lea County, New Mexico

GC VOA

Analysis Batch: 93908

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-50147-1	S-1 (3')	Total/NA	Solid	8021B	93913
MB 880-93913/5-A	Method Blank	Total/NA	Solid	8021B	93913
LCS 880-93913/1-A	Lab Control Sample	Total/NA	Solid	8021B	93913
LCSD 880-93913/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	93913
880-50094-A-1-G MS	Matrix Spike	Total/NA	Solid	8021B	93913
880-50094-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	93913

Analysis Batch: 93910

Lab Sample ID 880-50147-2	Client Sample ID S-2 (5')	Prep Type Total/NA	Matrix Solid	Method 8021B	Prep Batch 93959
MB 880-93959/5-A	Method Blank	Total/NA	Solid	8021B	93959
LCS 880-93959/1-A	Lab Control Sample	Total/NA	Solid	8021B	93959
LCSD 880-93959/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	93959
880-50149-A-1-C MS	Matrix Spike	Total/NA	Solid	8021B	93959
880-50149-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	93959

Prep Batch: 93913

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Ba
880-50147-1	S-1 (3')	Total/NA	Solid	5035	
MB 880-93913/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-93913/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-93913/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-50094-A-1-G MS	Matrix Spike	Total/NA	Solid	5035	
880-50094-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Prep Batch: 93959

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
880-50147-2	S-2 (5')	Total/NA	Solid	5035	
MB 880-93959/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-93959/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-93959/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-50149-A-1-C MS	Matrix Spike	Total/NA	Solid	5035	
880-50149-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 93992

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-50147-1	S-1 (3')	Total/NA	Solid	Total BTEX	
880-50147-2	S-2 (5')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 93958

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-50147-1	S-1 (3')	Total/NA	Solid	8015NM Prep	
880-50147-2	S-2 (5')	Total/NA	Solid	8015NM Prep	
MB 880-93958/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-93958/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-93958/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-50147-1 MS	S-1 (3')	Total/NA	Solid	8015NM Prep	
880-50147-1 MSD	S-1 (3')	Total/NA	Solid	8015NM Prep	

Eurofins Midland

2

Λ

7

10

12

13

rotins ivildiand

QC Association Summary

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212024

Job ID: 880-50147-1

SDG: Lea County, New Mexico

GC Semi VOA

Analysis Batch: 93976

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-50147-1	S-1 (3')	Total/NA	Solid	8015B NM	93958
880-50147-2	S-2 (5')	Total/NA	Solid	8015B NM	93958
MB 880-93958/1-A	Method Blank	Total/NA	Solid	8015B NM	93958
LCS 880-93958/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	93958
LCSD 880-93958/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	93958
880-50147-1 MS	S-1 (3')	Total/NA	Solid	8015B NM	93958
880-50147-1 MSD	S-1 (3')	Total/NA	Solid	8015B NM	93958

Analysis Batch: 94043

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-50147-1	S-1 (3')	Total/NA	Solid	8015 NM	
880-50147-2	S-2 (5')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 93957

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-50147-1	S-1 (3')	Soluble	Solid	DI Leach	
880-50147-2	S-2 (5')	Soluble	Solid	DI Leach	
MB 880-93957/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-93957/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-93957/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-50147-1 MS	S-1 (3')	Soluble	Solid	DI Leach	
880-50147-1 MSD	S-1 (3')	Soluble	Solid	DI Leach	

Analysis Batch: 93968

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-50147-1	S-1 (3')	Soluble	Solid	300.0	93957
880-50147-2	S-2 (5')	Soluble	Solid	300.0	93957
MB 880-93957/1-A	Method Blank	Soluble	Solid	300.0	93957
LCS 880-93957/2-A	Lab Control Sample	Soluble	Solid	300.0	93957
LCSD 880-93957/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	93957
880-50147-1 MS	S-1 (3')	Soluble	Solid	300.0	93957
880-50147-1 MSD	S-1 (3')	Soluble	Solid	300.0	93957

Lab Chronicle

Client: Carmona Resources

Client Sample ID: S-1 (3')

Date Collected: 10/18/24 00:00

Date Received: 10/23/24 14:30

Project/Site: M-Maljamar Suction Line-12-S-09212024

SDG: Lea County, New Mexico

Job ID: 880-50147-1

Lab Sample ID: 880-50147-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	93913	10/23/24 15:20	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93908	10/23/24 19:55	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93992	10/23/24 19:55	SM	EET MID
Total/NA	Analysis	8015 NM		1			94043	10/24/24 14:50	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	93958	10/23/24 15:17	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93976	10/24/24 14:50	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	93957	10/23/24 14:54	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	93968	10/24/24 02:39	CH	EET MID

Client Sample ID: S-2 (5') Lab Sample ID: 880-50147-2 Date Collected: 10/18/24 00:00 Matrix: Solid

Date Received: 10/23/24 14:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	93959	10/23/24 15:20	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93910	10/23/24 19:08	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93992	10/23/24 19:08	SM	EET MID
Total/NA	Analysis	8015 NM		1			94043	10/24/24 15:11	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	93958	10/23/24 15:17	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93976	10/24/24 15:11	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	93957	10/23/24 14:54	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	93968	10/24/24 02:59	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212024

Job ID: 880-50147-1 SDG: Lea County, New Mexico

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		am	Identification Number	Expiration Date			
Texas		Р	T104704400 06-30-25				
,	are included in this report, bu	nt the laboratory is not certif	fied by the governing authority. This lis	t may include analytes			
Analysis Method	Prep Method	Matrix	Analyte				
8015 NM		Solid	Total TPH				
Total BTEX		Solid	Total BTEX				

3

4

O

7

9

10

12

Method Summary

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212024

Job ID: 880-50147-1

SDG: Lea County, New Mexico

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

3

4

6

0

9

11

12

Ш

Sample Summary

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212024

Job ID: 880-50147-1

SDG: Lea County, New Mexico

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
880-50147-1	S-1 (3')	Solid	10/18/24 00:00	10/23/24 14:30	
880-50147-2	S-2 (5')	Solid	10/18/24 00:00	10/23/24 14:30	

4

8

9

10

12

Login Sample Receipt Checklist

Client: Carmona Resources Job Number: 880-50147-1 SDG Number: Lea County, New Mexico

Login Number: 50147 List Source: Eurofins Midland List Number: 1

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mike Carmona Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701

Generated 10/25/2024 12:34:24 PM

JOB DESCRIPTION

M-Maljamar Suction Line-12-S-09212024 Lea County, New Mexico

JOB NUMBER

880-50149-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 10/25/2024 12:34:24 PM

Authorized for release by Jessica Kramer, Project Manager <u>Jessica.Kramer@et.eurofinsus.com</u> (432)704-5440 2

3

4

5

6

_

10

13

Client: Carmona Resources Project/Site: M-Maljamar Suction Line-12-S-09212024 Laboratory Job ID: 880-50149-1 SDG: Lea County, New Mexico

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	15
Lab Chronicle	17
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
Receipt Chacklists	23

2

3

4

5

7

9

10

12

13

Definitions/Glossary

Client: Carmona Resources Project/Site: M-Maljamar Suction Line-12-S-09212024

Job ID: 880-50149-1 SDG: Lea County, New Mexico

Qualifiers

GC VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

₩ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

Relative Percent Difference, a measure of the relative difference between two points **RPD**

TFF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Carmona Resources Job ID: 880-50149-1

Project: M-Maljamar Suction Line-12-S-09212024

Job ID: 880-50149-1 Eurofins Midland

Job Narrative 880-50149-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 10/23/2024 2:30 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -6.5°C.

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Midland

1

3

6

8

4.0

11

Project/Site: M-Maljamar Suction Line-12-S-09212024

SDG: Lea County, New Mexico

Lab Sample ID: 880-50149-1

Matrix: Solid

Job ID: 880-50149-1

Client Sample ID: H-1 (0-0.5')
Date Collected: 10/18/24 00:0	00
Date Received: 10/23/24 14:3	30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		10/23/24 15:20	10/23/24 17:26	1
Toluene	<0.00201	U	0.00201		mg/Kg		10/23/24 15:20	10/23/24 17:26	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		10/23/24 15:20	10/23/24 17:26	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		10/23/24 15:20	10/23/24 17:26	1
o-Xylene	< 0.00201	U	0.00201		mg/Kg		10/23/24 15:20	10/23/24 17:26	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		10/23/24 15:20	10/23/24 17:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	113		70 - 130				10/23/24 15:20	10/23/24 17:26	1
1,4-Difluorobenzene (Surr)	102		70 - 130				10/23/24 15:20	10/23/24 17:26	1
Method: TAL SOP Total BTEX	(- Total BTE	X Calculat	tion						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			10/23/24 17:26	1
Method: SW846 8015 NM - Di	esel Range (Organics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			10/24/24 15:31	1
- Method: SW846 8015B NM - I	Diesel Range	e Organics	(DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		10/23/24 15:17	10/24/24 15:31	1
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		10/23/24 15:17	10/24/24 15:31	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		10/23/24 15:17	10/24/24 15:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	91		70 - 130				10/23/24 15:17	10/24/24 15:31	1
o-Terphenyl	98		70 - 130				10/23/24 15:17	10/24/24 15:31	1
_									
Method: EPA 300.0 - Anions,	Ion Chroma	tography	Solublo						

Client Sample ID: H-2 (0-0.5') Lab Sample ID: 880-50149-2 Date Collected: 10/18/24 00:00

17.0

9.92

mg/Kg

Date Received: 10/23/24 14:30

Chloride

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		10/23/24 15:20	10/23/24 17:46	1
Toluene	< 0.00199	U	0.00199		mg/Kg		10/23/24 15:20	10/23/24 17:46	1
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		10/23/24 15:20	10/23/24 17:46	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		10/23/24 15:20	10/23/24 17:46	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		10/23/24 15:20	10/23/24 17:46	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		10/23/24 15:20	10/23/24 17:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130				10/23/24 15:20	10/23/24 17:46	1
1,4-Difluorobenzene (Surr)	101		70 - 130				10/23/24 15:20	10/23/24 17:46	1

Eurofins Midland

10/24/24 03:06

Matrix: Solid

Project/Site: M-Maljamar Suction Line-12-S-09212024

SDG: Lea County, New Mexico

Client Sample ID: H-2 (0-0.5')

Date Collected: 10/18/24 00:00 Date Received: 10/23/24 14:30 Lab Sample ID: 880-50149-2

Lab Sample ID: 880-50149-3

Matrix: Solid

Job ID: 880-50149-1

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			10/23/24 17:46	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result Qua	lifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	49 9	ma/Ka			10/24/24 15:51	

		. <u> </u>	(=:(=),(==)					
Analyte	Result	Qualifier	RL	MDL Ur	nit I	D Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mç	g/Kg	10/23/24 15:17	10/24/24 15:51	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mç	g/Kg	10/23/24 15:17	10/24/24 15:51	1
Oil Range Organics (Over C28-C36)	<49.9	U	49.9	mį	g/Kg	10/23/24 15:17	10/24/24 15:51	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

ı	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	DII Fac
	1-Chlorooctane	87		70 - 130	10/23/24 15:17	10/24/24 15:51	1
	o-Terphenyl	93		70 - 130	10/23/24 15:17	10/24/24 15:51	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifie	r RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<10.0 U	10.0	mg/Kg			10/24/24 03:27	1

Client Sample ID: H-3 (0-0.5')

Released to Imaging: 12/26/2024 12:33:16 PM

Date Collected: 10/18/24 00:00 Date Received: 10/23/24 14:30

Mathod: SWRAR R024R - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		10/23/24 15:20	10/23/24 18:07	1
Toluene	<0.00200	U	0.00200		mg/Kg		10/23/24 15:20	10/23/24 18:07	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		10/23/24 15:20	10/23/24 18:07	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		10/23/24 15:20	10/23/24 18:07	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		10/23/24 15:20	10/23/24 18:07	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		10/23/24 15:20	10/23/24 18:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 130				10/23/24 15:20	10/23/24 18:07	

ourrogute	7011CCCVC1y	Qualifici Ellillo	reparea	Analyzea	Dir r uc
4-Bromofluorobenzene (Surr)	106	70 - 130	10/23/24 15:20	10/23/24 18:07	1
1,4-Difluorobenzene (Surr)	101	70 - 130	10/23/24 15:20	10/23/24 18:07	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			10/23/24 18:07	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			10/24/24 16:12	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

mothodi offo-to octob tim	Diocol Italige	, organioc	(5.10) (50)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		10/23/24 15:17	10/24/24 16:12	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		10/23/24 15:17	10/24/24 16:12	1
C10-C28)									

Eurofins Midland

Matrix: Solid

Job ID: 880-50149-1 Project/Site: M-Maljamar Suction Line-12-S-09212024

SDG: Lea County, New Mexico

Client Sample ID: H-3 (0-0.5')

Date Collected: 10/18/24 00:00 Date Received: 10/23/24 14:30

Lab Sample ID: 880-50149-3

Matrix: Solid

Diesel Range	Organics	(DRO) (GC)	(Continued)				
Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
<50.0	U	50.0	mg/Kg		10/23/24 15:17	10/24/24 16:12	1
%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
91		70 - 130			10/23/24 15:17	10/24/24 16:12	1
94		70 - 130			10/23/24 15:17	10/24/24 16:12	1
	Result <50.0 %Recovery 91	Result Qualifier <50.0	Result Qualifier RL <50.0	<50.0	Result Qualifier RL MDL mg/Kg Unit mg/Kg D %Recovery 91 Qualifier Limits 70 - 130	Result Qualifier RL MDL mg/Kg D mg/Kg Prepared 10/23/24 15:17 %Recovery 91	Result Qualifier RL MDL Unit D Prepared Analyzed <50.0

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Result Qualifier **MDL** Unit Prepared Analyzed Dil Fac Chloride 10.9 9.90 mg/Kg 10/24/24 03:34

Client Sample ID: H-4 (0-0.5')

Date Collected: 10/18/24 00:00

Lab Sample ID: 880-50149-4 Matrix: Solid

Date Received: 10/23/24 14:30

Method: SW846 8021B - Vo	ethod: SW846 8021B - Volatile Organic Compounds (GC)												
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac				
Benzene	<0.00201	U	0.00201		mg/Kg		10/23/24 15:20	10/23/24 18:27	1				
Toluene	<0.00201	U	0.00201		mg/Kg		10/23/24 15:20	10/23/24 18:27	1				
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		10/23/24 15:20	10/23/24 18:27	1				
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		10/23/24 15:20	10/23/24 18:27	1				
o-Xylene	<0.00201	U	0.00201		mg/Kg		10/23/24 15:20	10/23/24 18:27	1				
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		10/23/24 15:20	10/23/24 18:27	1				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac				
4-Bromofluorobenzene (Surr)	101		70 - 130				10/23/24 15:20	10/23/24 18:27	1				
1,4-Difluorobenzene (Surr)	102		70 - 130				10/23/24 15:20	10/23/24 18:27	1				

Method: TAL SOP Total BTEX - Total BTEX Calculation										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Total BTEX	<0.00402	U	0.00402		mg/Kg			10/23/24 18:27	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Total TPH	<49.8	U	49.8		mg/Kg			10/24/24 16:32	1

Total IPH	<49.8	U	49.8		mg/Kg			10/24/24 16:32	1
Method: SW846 8015B NM - D	Diesel Range	o Organics	(DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		10/23/24 15:17	10/24/24 16:32	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		10/23/24 15:17	10/24/24 16:32	1
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		10/23/24 15:17	10/24/24 16:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	115		70 - 130				10/23/24 15:17	10/24/24 16:32	1
o-Terphenyl	117		70 - 130				10/23/24 15:17	10/24/24 16:32	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble									
	Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
	Chloride	27.7	9.90	mg/Kg			10/24/24 03:41	1	

Client Sample Results

Client: Carmona Resources Job ID: 880-50149-1

Project/Site: M-Maljamar Suction Line-12-S-09212024 SDG: Lea County, New Mexico

Client Sample ID: H-5 (0-0.5') Lab Sample ID: 880-50149-5 Date Collected: 10/18/24 00:00 **Matrix: Solid** Date Received: 10/23/24 14:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200		mg/Kg		10/23/24 15:20	10/23/24 18:48	
Toluene	<0.00200	U	0.00200		mg/Kg		10/23/24 15:20	10/23/24 18:48	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		10/23/24 15:20	10/23/24 18:48	
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		10/23/24 15:20	10/23/24 18:48	
o-Xylene	<0.00200	U	0.00200		mg/Kg		10/23/24 15:20	10/23/24 18:48	
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		10/23/24 15:20	10/23/24 18:48	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	103		70 - 130				10/23/24 15:20	10/23/24 18:48	
1,4-Difluorobenzene (Surr)	103		70 - 130				10/23/24 15:20	10/23/24 18:48	
Method: TAL SOP Total BTEX	(- Total BTE	X Calculat	ion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00400	U	0.00400		mg/Kg			10/23/24 18:48	
Method: SW846 8015 NM - Di	esel Range	Organics (DRO) (GC)						
Analyte	_	Qualifier	, RL	MDL	Unit	D	Prepared	Analyzed	
			1.7-	IVIDE	Oilit		i icpuica	Allalyzeu	Dil Fa
Iotal IPH	<49.8	U	49.8		mg/Kg	_ =	Tropulcu	10/24/24 17:08	DII Fa
			49.8			_ =			
Method: SW846 8015B NM - [Diesel Range		49.8				Prepared		
Method: SW846 8015B NM - I Analyte Gasoline Range Organics	Diesel Range	Organics Qualifier	49.8 (DRO) (GC)		mg/Kg		<u> </u>	10/24/24 17:08	Dil Fa
Method: SW846 8015B NM - I Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Diesel Range Result	Organics Qualifier	49.8 (DRO) (GC) RL		mg/Kg Unit		Prepared 10/23/24 15:17	10/24/24 17:08 Analyzed	Dil Fa
Method: SW846 8015B NM - I Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Diesel Range Result <49.8	Organics Qualifier U	49.8 (DRO) (GC) RL 49.8		mg/Kg Unit mg/Kg		Prepared 10/23/24 15:17 10/23/24 15:17	10/24/24 17:08 Analyzed 10/24/24 17:08	Dil Fa
Method: SW846 8015B NM - E Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36)	Diesel Range Result <49.8	Organics Qualifier U	49.8 (DRO) (GC) RL 49.8 49.8		mg/Kg Unit mg/Kg mg/Kg		Prepared 10/23/24 15:17 10/23/24 15:17	10/24/24 17:08 Analyzed 10/24/24 17:08 10/24/24 17:08	
Method: SW846 8015B NM - E Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36)	Name	Organics Qualifier U	49.8 (DRO) (GC) RL 49.8 49.8 49.8		mg/Kg Unit mg/Kg mg/Kg		Prepared 10/23/24 15:17 10/23/24 15:17 10/23/24 15:17	Analyzed 10/24/24 17:08 Analyzed 10/24/24 17:08 10/24/24 17:08 10/24/24 17:08	Dil Fa
Method: SW846 8015B NM - EANAINTE Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Diesel Range Result <49.8 <49.8 <49.8	Organics Qualifier U	49.8 (DRO) (GC) RL 49.8 49.8 49.8 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 10/23/24 15:17 10/23/24 15:17 10/23/24 15:17 Prepared 10/23/24 15:17	Analyzed 10/24/24 17:08 Analyzed 10/24/24 17:08 10/24/24 17:08 10/24/24 17:08 Analyzed	Dil Fa
Method: SW846 8015B NM - EANAINTE Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Name	Qualifier U U Qualifier	49.8 (DRO) (GC) RL 49.8 49.8 49.8 49.8 Limits 70 - 130 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 10/23/24 15:17 10/23/24 15:17 10/23/24 15:17 Prepared 10/23/24 15:17	Analyzed 10/24/24 17:08 Analyzed 10/24/24 17:08 10/24/24 17:08 Analyzed 10/24/24 17:08	Dil Fa
Method: SW846 8015B NM - EANalyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Analyte	Ciesel Range Result <49.8 <49.8 <49.8 %Recovery 90 91 Ion Chroma	Qualifier U U Qualifier	49.8 (DRO) (GC) RL 49.8 49.8 49.8 49.8 Limits 70 - 130 70 - 130	MDL	mg/Kg Unit mg/Kg mg/Kg		Prepared 10/23/24 15:17 10/23/24 15:17 10/23/24 15:17 Prepared 10/23/24 15:17	Analyzed 10/24/24 17:08 Analyzed 10/24/24 17:08 10/24/24 17:08 Analyzed 10/24/24 17:08	Dil Fa

Surrogate Summary

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212024

Job ID: 880-50149-1 SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC)

Prep Type: Total/NA **Matrix: Solid**

			Percent S	Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-50149-1	H-1 (0-0.5')	113	102	
880-50149-1 MS	H-1 (0-0.5')	112	102	
880-50149-1 MSD	H-1 (0-0.5')	105	104	
880-50149-2	H-2 (0-0.5')	102	101	
380-50149-3	H-3 (0-0.5')	106	101	
880-50149-4	H-4 (0-0.5')	101	102	
880-50149-5	H-5 (0-0.5')	103	103	

BFB = 4-Bromofluorobenzene (Surr) DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

			Pe
		BFB2	DFBZ2
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
LCS 880-93959/1-A	Lab Control Sample	103	100
LCSD 880-93959/2-A	Lab Control Sample Dup	110	102
MB 880-93959/5-A	Method Blank	98	98

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

			Percen	t Surrogate Recovery (Acceptance Limits)
		1001	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-50147-A-1-F MS	Matrix Spike	99	94	
880-50147-A-1-G MSD	Matrix Spike Duplicate	101	96	
880-50149-1	H-1 (0-0.5')	91	98	
880-50149-2	H-2 (0-0.5')	87	93	
880-50149-3	H-3 (0-0.5')	91	94	
880-50149-4	H-4 (0-0.5')	115	117	
880-50149-5	H-5 (0-0.5')	90	91	
LCS 880-93958/2-A	Lab Control Sample	78	75	
LCSD 880-93958/3-A	Lab Control Sample Dup	83	81	
MB 880-93958/1-A	Method Blank	109	118	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Job ID: 880-50149-1 Project/Site: M-Maljamar Suction Line-12-S-09212024 SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-93959/5-A

Matrix: Solid

Analysis Batch: 93910

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 93959

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		10/23/24 15:20	10/23/24 17:04	1
Toluene	<0.00200	U	0.00200		mg/Kg		10/23/24 15:20	10/23/24 17:04	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		10/23/24 15:20	10/23/24 17:04	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		10/23/24 15:20	10/23/24 17:04	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		10/23/24 15:20	10/23/24 17:04	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		10/23/24 15:20	10/23/24 17:04	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98	70 - 130	10/23/24 15:20	10/23/24 17:04	1
1,4-Difluorobenzene (Surr)	98	70 - 130	10/23/24 15:20	10/23/24 17:04	1

Lab Sample ID: LCS 880-93959/1-A

Matrix: Solid

Analysis Batch: 93910

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 93959

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.08946		mg/Kg		89	70 - 130	
Toluene	0.100	0.08879		mg/Kg		89	70 - 130	
Ethylbenzene	0.100	0.09632		mg/Kg		96	70 - 130	
m-Xylene & p-Xylene	0.200	0.1798		mg/Kg		90	70 - 130	
o-Xylene	0.100	0.09852		mg/Kg		99	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits		
4-Bromofluorobenzene (Surr)	103		70 - 130		
1,4-Difluorobenzene (Surr)	100		70 - 130		

Lab Sample ID: LCSD 880-93959/2-A

Matrix: Solid

Analysis Batch: 93910

Client Sam	ple ID: Lab	Control	Sample	e Dup
------------	-------------	---------	--------	-------

Prep Type: Total/NA

Prep Batch: 93959

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1002		mg/Kg		100	70 - 130	11	35
Toluene	0.100	0.09857		mg/Kg		99	70 - 130	10	35
Ethylbenzene	0.100	0.1073		mg/Kg		107	70 - 130	11	35
m-Xylene & p-Xylene	0.200	0.1995		mg/Kg		100	70 - 130	10	35
o-Xylene	0.100	0.1103		mg/Kg		110	70 - 130	11	35

LCSD LCSD

<0.00201 U

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	110		70 - 130
1,4-Difluorobenzene (Surr)	102		70 - 130

Lab Sample ID: 880-50149-1 MS

Matrix: Solid

Toluene

Analysis Batch: 93910

Client Sample ID: H-1 (0-0.5')

70 - 130

91

Prep Type: Total/NA

Prep Batch: 93959

Spike MS MS %Rec Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Benzene <0.00201 U 0.100 0.09208 mg/Kg 92 70 - 130

0.100

Eurofins Midland

0.09103

mg/Kg

QC Sample Results

Client: Carmona Resources Job ID: 880-50149-1 Project/Site: M-Maljamar Suction Line-12-S-09212024 SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-50149-1 MS Client Sample ID: H-1 (0-0.5') **Matrix: Solid**

Prep Type: Total/NA **Analysis Batch: 93910** Prep Batch: 93959

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00201	U	0.100	0.09836		mg/Kg		98	70 - 130	
m-Xylene & p-Xylene	<0.00402	U	0.200	0.1850		mg/Kg		93	70 - 130	
o-Xylene	<0.00201	U	0.100	0.09771		mg/Kg		98	70 - 130	

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	112		70 - 130
1,4-Difluorobenzene (Surr)	102		70 - 130

Lab Sample ID: 880-50149-1 MSD **Client Sample ID: H-1 (0-0.5')** Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 93910

Analysis Batch: 93910									Prep E	atch: 9	93959
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00201	U	0.100	0.09834		mg/Kg		98	70 - 130	7	35
Toluene	<0.00201	U	0.100	0.09528		mg/Kg		95	70 - 130	5	35
Ethylbenzene	<0.00201	U	0.100	0.1031		mg/Kg		103	70 - 130	5	35
m-Xylene & p-Xylene	<0.00402	U	0.200	0.1893		mg/Kg		95	70 - 130	2	35
o-Xylene	<0.00201	U	0.100	0.1034		mg/Kg		103	70 - 130	6	35

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	105		70 - 130
1,4-Difluorobenzene (Surr)	104		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-93958/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA Prep Batch: 93958

Analysis Batch: 93976

	MB	MB							
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		10/23/24 15:17	10/24/24 08:31	1	
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		10/23/24 15:17	10/24/24 08:31	1	
Oil Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		10/23/24 15:17	10/24/24 08:31	1	

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 130	10/23/24 15:17	10/24/24 08:31	1
o-Terphenyl	118		70 - 130	10/23/24 15:17 1	10/24/24 08:31	1

Lab Sample ID: LCS 880-93958/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Prep Type: Total/NA **Analysis Batch: 93976** Prep Batch: 93958

	Spike	LUS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	1000	960.5		mg/Kg		96	70 - 130	
Diesel Range Organics (Over C10-C28)	1000	823.7		mg/Kg		82	70 - 130	

Project/Site: M-Maljamar Suction Line-12-S-09212024

Job ID: 880-50149-1 SDG: Lea County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-93958/2-A

Lab Sample ID: LCSD 880-93958/3-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 93976

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 93958

LCS LCS

%Recovery Qualifier Limits Surrogate 1-Chlorooctane 78 70 - 130 o-Terphenyl 75 70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 93958

Analysis Batch: 93976

LCSD LCSD RPD %Rec Spike Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Gasoline Range Organics 1000 934.6 mg/Kg 93 70 - 130 3 20 (GRO)-C6-C10 Diesel Range Organics (Over 1000 838.0 mg/Kg 84 70 - 130 2 20

C10-C28)

Matrix: Solid

Analysis Batch: 93976

LCSD LCSD

Lab Sample ID: 880-50147-A-1-F MS

Surrogate %Recovery Qualifier Limits 1-Chlorooctane 83 70 - 130 70 - 130 o-Terphenyl 81

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 93958

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Limits **Analyte** Unit D %Rec <50.0 U Gasoline Range Organics 999 874.8 mg/Kg 88 70 - 130 (GRO)-C6-C10 999 Diesel Range Organics (Over <50.0 U 841.8 mg/Kg 84 70 - 130

C10-C28)

MS MS Surrogate %Recovery Qualifier Limits 1-Chlorooctane 70 - 130 99 o-Terphenyl 94 70 - 130

Lab Sample ID: 880-50147-A-1-G MSD

Matrix: Solid

Analysis Batch: 93976

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Prep Batch: 93958

Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier Added Result Qualifier Limits **RPD** Limit **Analyte** Unit %Rec Gasoline Range Organics <50.0 U 999 890.9 89 70 - 130 2 20 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 999 874.4 mg/Kg 88 70 - 130 4 20

C10-C28)

MSD MSD

%Recovery Qualifier Limits Surrogate 1-Chlorooctane 101 70 - 130 o-Terphenyl 96 70 - 130

QC Sample Results

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212024

SDG: Lea County, New Mexico

Job ID: 880-50149-1

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-93957/1-A

Lab Sample ID: LCS 880-93957/2-A

Client Sample ID: Method Blank

Prep Type: Soluble

Analysis Batch: 93968

Matrix: Solid

Matrix: Solid

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac D Prepared 10.0 10/24/24 00:42 Chloride <10.0 U mg/Kg

Client Sample ID: Lab Control Sample

Client Sample ID: Matrix Spike Duplicate

Prep Type: Soluble

Prep Type: Soluble

Analysis Batch: 93968

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Chloride 250 90 - 110 251.4 mg/Kg 101

Lab Sample ID: LCSD 880-93957/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid Prep Type: Soluble

Analysis Batch: 93968

Spike LCSD LCSD %Rec RPD Added Result Qualifier Limits **RPD** Limit **Analyte** Unit %Rec Chloride 250 252.6 101 90 - 110 20 mg/Kg

Lab Sample ID: 880-50147-A-1-B MS **Client Sample ID: Matrix Spike Matrix: Solid Prep Type: Soluble**

Analysis Batch: 93968

Spike MS MS %Rec Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 252 273.2 20.4 mg/Kg 100 90 - 110

Lab Sample ID: 880-50147-A-1-C MSD

Matrix: Solid

Analysis Batch: 93968

MSD MSD RPD Sample Sample Spike %Rec Analyte Result Qualifier Added Unit Limits RPD Result Qualifier %Rec Limit Chloride 20.4 252 274.0 101 20 mg/Kg 90 - 110 0

QC Association Summary

Client: Carmona Resources Project/Site: M-Maljamar Suction Line-12-S-09212024

Job ID: 880-50149-1 SDG: Lea County, New Mexico

GC VOA

Analysis Batch: 93910

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-50149-1	H-1 (0-0.5')	Total/NA	Solid	8021B	93959
880-50149-2	H-2 (0-0.5')	Total/NA	Solid	8021B	93959
880-50149-3	H-3 (0-0.5')	Total/NA	Solid	8021B	93959
880-50149-4	H-4 (0-0.5')	Total/NA	Solid	8021B	93959
880-50149-5	H-5 (0-0.5')	Total/NA	Solid	8021B	93959
MB 880-93959/5-A	Method Blank	Total/NA	Solid	8021B	93959
LCS 880-93959/1-A	Lab Control Sample	Total/NA	Solid	8021B	93959
LCSD 880-93959/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	93959
880-50149-1 MS	H-1 (0-0.5')	Total/NA	Solid	8021B	93959
880-50149-1 MSD	H-1 (0-0.5')	Total/NA	Solid	8021B	93959

Prep Batch: 93959

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-50149-1	H-1 (0-0.5')	Total/NA	Solid	5035	<u> </u>
880-50149-2	H-2 (0-0.5')	Total/NA	Solid	5035	
880-50149-3	H-3 (0-0.5')	Total/NA	Solid	5035	
880-50149-4	H-4 (0-0.5')	Total/NA	Solid	5035	
880-50149-5	H-5 (0-0.5')	Total/NA	Solid	5035	
MB 880-93959/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-93959/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-93959/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-50149-1 MS	H-1 (0-0.5')	Total/NA	Solid	5035	
880-50149-1 MSD	H-1 (0-0.5')	Total/NA	Solid	5035	

Analysis Batch: 93993

Lab Sample ID 880-50149-1	Client Sample ID H-1 (0-0.5')	Prep Type Total/NA	Matrix Solid	Method Total BTEX	Prep Batch
880-50149-2	H-2 (0-0.5')	Total/NA	Solid	Total BTEX	
880-50149-3	H-3 (0-0.5')	Total/NA	Solid	Total BTEX	
880-50149-4	H-4 (0-0.5')	Total/NA	Solid	Total BTEX	
880-50149-5	H-5 (0-0.5')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 93958

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-50149-1	H-1 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-50149-2	H-2 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-50149-3	H-3 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-50149-4	H-4 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-50149-5	H-5 (0-0.5')	Total/NA	Solid	8015NM Prep	
MB 880-93958/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-93958/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-93958/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-50147-A-1-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-50147-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 93976

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-50149-1	H-1 (0-0.5')	Total/NA	Solid	8015B NM	93958
880-50149-2	H-2 (0-0.5')	Total/NA	Solid	8015B NM	93958

QC Association Summary

Client: Carmona Resources
Project/Site: M-Maljamar Suction Line-12-S-09212024

Job ID: 880-50149-1 SDG: Lea County, New Mexico

GC Semi VOA (Continued)

Analysis Batch: 93976 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-50149-3	H-3 (0-0.5')	Total/NA	Solid	8015B NM	93958
880-50149-4	H-4 (0-0.5')	Total/NA	Solid	8015B NM	93958
880-50149-5	H-5 (0-0.5')	Total/NA	Solid	8015B NM	93958
MB 880-93958/1-A	Method Blank	Total/NA	Solid	8015B NM	93958
LCS 880-93958/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	93958
LCSD 880-93958/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	93958
880-50147-A-1-F MS	Matrix Spike	Total/NA	Solid	8015B NM	93958
880-50147-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	93958

Analysis Batch: 94054

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-50149-1	H-1 (0-0.5')	Total/NA	Solid	8015 NM	
880-50149-2	H-2 (0-0.5')	Total/NA	Solid	8015 NM	
880-50149-3	H-3 (0-0.5')	Total/NA	Solid	8015 NM	
880-50149-4	H-4 (0-0.5')	Total/NA	Solid	8015 NM	
880-50149-5	H-5 (0-0.5')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 93957

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-50149-1	H-1 (0-0.5')	Soluble	Solid	DI Leach	
880-50149-2	H-2 (0-0.5')	Soluble	Solid	DI Leach	
880-50149-3	H-3 (0-0.5')	Soluble	Solid	DI Leach	
880-50149-4	H-4 (0-0.5')	Soluble	Solid	DI Leach	
880-50149-5	H-5 (0-0.5')	Soluble	Solid	DI Leach	
MB 880-93957/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-93957/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-93957/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-50147-A-1-B MS	Matrix Spike	Soluble	Solid	DI Leach	
880-50147-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 93968

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-50149-1	H-1 (0-0.5')	Soluble	Solid	300.0	93957
880-50149-2	H-2 (0-0.5')	Soluble	Solid	300.0	93957
880-50149-3	H-3 (0-0.5')	Soluble	Solid	300.0	93957
880-50149-4	H-4 (0-0.5')	Soluble	Solid	300.0	93957
880-50149-5	H-5 (0-0.5')	Soluble	Solid	300.0	93957
MB 880-93957/1-A	Method Blank	Soluble	Solid	300.0	93957
LCS 880-93957/2-A	Lab Control Sample	Soluble	Solid	300.0	93957
LCSD 880-93957/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	93957
880-50147-A-1-B MS	Matrix Spike	Soluble	Solid	300.0	93957
880-50147-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	93957

Eurofins Midland

3

5

8

9

10

15

3

14

Project/Site: M-Maljamar Suction Line-12-S-09212024

Lab Sample ID: 880-50149-1

Client Sample ID: H-1 (0-0.5') Date Collected: 10/18/24 00:00

Matrix: Solid

Date Received: 10/23/24 14:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	93959	10/23/24 15:20	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93910	10/23/24 17:26	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93993	10/23/24 17:26	SM	EET MID
Total/NA	Analysis	8015 NM		1			94054	10/24/24 15:31	SM	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	93958	10/23/24 15:17	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93976	10/24/24 15:31	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	93957	10/23/24 14:54	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	93968	10/24/24 03:06	CH	EET MID

Client Sample ID: H-2 (0-0.5')

Lab Sample ID: 880-50149-2

Date Collected: 10/18/24 00:00

Matrix: Solid

Date Received: 10/23/24 14:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	93959	10/23/24 15:20	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93910	10/23/24 17:46	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93993	10/23/24 17:46	SM	EET MID
Total/NA	Analysis	8015 NM		1			94054	10/24/24 15:51	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	93958	10/23/24 15:17	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93976	10/24/24 15:51	SM	EET MID
Soluble	Leach	DI Leach			5.00 g	50 mL	93957	10/23/24 14:54	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	93968	10/24/24 03:27	CH	EET MID

Client Sample ID: H-3 (0-0.5')

Lab Sample ID: 880-50149-3

Date Collected: 10/18/24 00:00

Matrix: Solid

Date Received:	10/23/24	14:30
	Ratch	Rat

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	93959	10/23/24 15:20	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93910	10/23/24 18:07	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93993	10/23/24 18:07	SM	EET MID
Total/NA	Analysis	8015 NM		1			94054	10/24/24 16:12	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	93958	10/23/24 15:17	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93976	10/24/24 16:12	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	93957	10/23/24 14:54	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	93968	10/24/24 03:34	CH	EET MID

Client Sample ID: H-4 (0-0.5')

Lab Sample ID: 880-50149-4

Matrix: Solid

Date Collected: 10/18/24 00:00 Date Received: 10/23/24 14:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	93959	10/23/24 15:20	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93910	10/23/24 18:27	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93993	10/23/24 18:27	SM	EET MID

Client Sample ID: H-4 (0-0.5')

Date Collected: 10/18/24 00:00

Date Received: 10/23/24 14:30

Lab Chronicle

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212024

SDG: Lea County, New Mexico

Lab Sample ID: 880-50149-4

Matrix: Solid

Matrix: Solid

Job ID: 880-50149-1

Batch Batch Dil Initial Final Batch Prepared Method or Analyzed **Prep Type** Type Run **Factor Amount** Amount Number Analyst Lab Total/NA 8015 NM 94054 10/24/24 16:32 SM EET MID Analysis Total/NA Prep 8015NM Prep 10.04 g 10 mL 93958 10/23/24 15:17 EL **EET MID** Total/NA Analysis 8015B NM 1 uL 1 uL 93976 10/24/24 16:32 SM **EET MID** 93957 Soluble Leach DI Leach 5.05 g50 mL 10/23/24 14:54 SA **EET MID** Soluble Analysis 300.0 50 mL 50 mL 93968 10/24/24 03:41 CH 1 **EET MID**

Client Sample ID: H-5 (0-0.5') Lab Sample ID: 880-50149-5 Date Collected: 10/18/24 00:00

Date Received: 10/23/24 14:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	93959	10/23/24 15:20	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93910	10/23/24 18:48	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93993	10/23/24 18:48	SM	EET MID
Total/NA	Analysis	8015 NM		1			94054	10/24/24 17:08	SM	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	93958	10/23/24 15:17	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93976	10/24/24 17:08	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	93957	10/23/24 15:54	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	93968	10/24/24 03:48	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Carmona Resources

Job ID: 880-50149-1 Project/Site: M-Maljamar Suction Line-12-S-09212024 SDG: Lea County, New Mexico

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Progra	am	Identification Number	Expiration Date
exas	NELAI	P	T104704400	06-30-25
The following analyte	s are included in this reno	rt but the laboratory is r	not certified by the governing authori	ity. This list may includ
,	does not offer certification	•	lot certified by the governing authori	ity. This list may includ
,	•	•	Analyte	ity. This list may includ
for which the agency	does not offer certification	i.	, , ,	

Method Summary

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212024

Job ID: 880-50149-1 SDG: Lea County, New Mexico

Protocol Laboratory
SW846 EET MID

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

3

4

6

8

9

11

. .

14

Sample Summary

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212024

Job ID: 880-50149-1 SDG: Lea County, New Mexico

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-50149-1	H-1 (0-0.5')	Solid	10/18/24 00:00	10/23/24 14:30
880-50149-2	H-2 (0-0.5')	Solid	10/18/24 00:00	10/23/24 14:30
880-50149-3	H-3 (0-0.5')	Solid	10/18/24 00:00	10/23/24 14:30
880-50149-4	H-4 (0-0.5')	Solid	10/18/24 00:00	10/23/24 14:30
880-50149-5	H-5 (0-0.5')	Solid	10/18/24 00:00	10/23/24 14:30

3

-

-

8

10

13

14

Chain of Custody

Orange Company Name Company Na			Bill to: (if different)	3	Carmona Resources	ssources				Wo	-k Order C	Work Order Comments	
Charlet Si be 500 Address Charlet Ch	ame:		Company Name:						Progran		P Irown	fields RC	perfund
Charle C	Ate ZIP: Name: A		Address:						State of				
101/18/2024 22-813-1992 Emait	Name: Number:		City, State ZIP:						Reportir	g:Level II Level	III 🗎 ST/		☐Level IV ☐
Mindignara Suction Line -12-S-09212024 Turn Around		Email:		4					Delivera	bles: EDD	ADaP		
Control Cont			Around				AN	IALYSIS	REQUEST			Preserva	tive Codes
Cool Cool Cool Cool Cool Cool Cool Coo		Routin	✓ Rush	Pres. Code				_				None: NO	DI Water: H ₂ O
Famp Blant: Yest No Wet Ice: Yest No Yest No Wet Ice: Yest No Ye		Due Date:			-							Cool: Cool	MeOH: Me
Testion Date Time Soil Water Comp Count	Sampler's Name: IR PO #:	5	thrs		OBM 4							HCL: HC	HNO3: HN
Yes No NA Temporature Reading:	Feren Blank	ON CONTRACT	1/		_	0						H.PO. HP	
Yes No N/A Correction Factor. Correction Factor. Correction Factor. Correction Factor. Corrected Temperature Reading.	oN SA		New Y		_	le 30						NaHSO.: NABIS	
Yes No NA Temperature Reading:	Yes No MA	ion Factor	0_,		_	orid						Na-S-O-: NaSO	
Corrected Temperature:	Yes No NA	rature Reading:	9.9-			СРІ						Zn Acetate+NaC	H: Zn
Date Time Soil Water Comp Cont Graph Cont # of 10/18/2024 P mater Comp Cont E mater Comp Cont E mater Comp Cont T mater Cont T m		ed Temperature:	5.9-		108	_	_		_			NaOH+Ascorbic	Acid: SAPC
10/18/2024 X G 1 X X		Soil		# of Cont	HdT					_		Sample (comments
10/18/2024 X G 1 X X 10/18/2024 X G 1 X X 10/18/2024 X G 1 X X		×	O	-	\vdash	×		_					
10/18/2024 X G 1 X X X 10/18/2024 X G 1 X X X X 10/18/2024 X G 1 X X X X X X X X X X X X X X X X X		×	ပ	-	\vdash	×							
10/18/2024 X G 1 X X X 10/18/2024 X G 1 X X X X X X X X X X X X X X X X X		×	9		\vdash	×		_					
10/18/2024 X G 1 X X		×	၅	-	-	×							
		×	O	-	H	×	-						
	Relinquished by: (Sign	nature)		Dě	ite/Time			(Received by:	(Signature)			Date/Time
Relinquished by: (Signature) Date/Time Date/Time Date/Time							2		^			(old	0/33/W (V)3

Page 22 of 23

10/25/2024

Login Sample Receipt Checklist

Client: Carmona Resources

Job Number: 880-50149-1

SDG Number: Lea County, New Mexico

List Source: Eurofins Midland

Login Number: 50149 List Number: 1

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Euronnis Milalana

Released to Imaging: 12/26/2024 12:33:16 PM

6

8

10

4.0

13

14

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Conner Moehring Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701

Generated 11/4/2024 11:54:34 AM

JOB DESCRIPTION

M-Maljamar Suction Line-12-S-09212021 Lea County, New Mexico

JOB NUMBER

880-50594-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 11/4/2024 11:54:34 AM

Authorized for release by Jessica Kramer, Project Manager <u>Jessica.Kramer@et.eurofinsus.com</u> (432)704-5440 •

_

5

4

5

7

8

10

1 1

13

14

Client: Carmona Resources Project/Site: M-Maljamar Suction Line-12-S-09212021 Laboratory Job ID: 880-50594-1 SDG: Lea County, New Mexico

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	21
QC Sample Results	23
QC Association Summary	27
Lab Chronicle	32
Certification Summary	39
Method Summary	40
Sample Summary	41
Chain of Custody	42
Receint Checklists	44

2

3

4

6

8

10

12

13

14

Definitions/Glossary

Job ID: 880-50594-1 Client: Carmona Resources Project/Site: M-Maljamar Suction Line-12-S-09212021

SDG: Lea County, New Mexico

Qualifiers

GC VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description**

S1+ Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

74 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) Most Probable Number MPN Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NFG Negative / Absent POS Positive / Present PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points RPD

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Carmona Resources Job ID: 880-50594-1

Project: M-Maljamar Suction Line-12-S-09212021

Eurofins Midland Job ID: 880-50594-1

Job Narrative 880-50594-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 11/1/2024 3:53 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.2°C.

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: CS-1 (1.5') (880-50594-1), CS-2 (1.5') (880-50594-2), CS-3 (1.5') (880-50594-3), CS-4 (5.5') (880-50594-4), CS-5 (5.5') (880-50594-5), CS-6 (5.5') (880-50594-6), CS-7 (5.5') (880-50594-7), CS-8 (5.5') (880-50594-8), SW-1 (1.5') (880-50594-9), SW-2 (1.5') (880-50594-10), SW-3 (1.5') (880-50594-11), SW-4 (1.5') (880-50594-12), SW-5 (4') (880-50594-13), SW-6 (5.5') (880-50594-14), SW-7 (5.5') (880-50594-15), SW-8 (5.5') (880-50594-16), SW-9 (5.5') (880-50594-17), SW-10 (5.5') (880-50594-18), SW-11 (1.5') (880-50594-19) and SW-12 (1.5') (880-50594-20).

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015MOD NM: The surrogate recovery for the blank associated with preparation batch 880-94654 and analytical batch 880-94553 was outside the upper control limits.

Method 8015MOD NM: An incorrect volume of surrogate spiking solution was inadvertently added the following samples: CS-2 (1.5') (880-50594-2) and SW-6 (5.5') (880-50594-14). Percent recoveries are based on the amount spiked.

Method 8015MOD NM: The closing continuing calibration verification (CCVC) associated with batch 880-94553 recovered above the upper control limit for Gasoline Range Organics (GRO)-C6-C10 and Diesel Range Organics (Over C10-C28). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: Carmona Resources

Job ID: 880-50594-1 Project/Site: M-Maljamar Suction Line-12-S-09212021 SDG: Lea County, New Mexico

Lab Sample ID: 880-50594-1

Client Sample ID: CS-1 (1.5') Date Collected: 11/01/24 00:00

Date Received: 11/01/24 15:53

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 13:41	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 13:41	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 13:41	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/01/24 17:00	11/02/24 13:41	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 13:41	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/01/24 17:00	11/02/24 13:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	81		70 - 130				11/01/24 17:00	11/02/24 13:41	1
1,4-Difluorobenzene (Surr)	88		70 - 130				11/01/24 17:00	11/02/24 13:41	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			11/02/24 13:41	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) ((GC)						
Analyte	•	Qualifier	•	MDI	Unit	D	Duranana		
riidiyio	Result	Qualifiei	RL	MDL	UIIIL	U	Prepared	Analyzed	Dil Fac
Total TPH	<49.8		49.8	MIDL	mg/Kg	— -	Prepared	11/02/24 00:13	Dil Fac
	<49.8	U	49.8	MDL			Prepared		
Total TPH	<49.8 sel Range Orga	U	49.8			D	Prepared		
Total TPH Method: SW846 8015B NM - Dies Analyte	<49.8 sel Range Orga	nics (DRO) Qualifier	49.8 (GC)		mg/Kg		<u> </u>	11/02/24 00:13	1
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10	<49.8 sel Range Orga Result <49.8	Unics (DRO) Qualifier	49.8 (GC) RL 49.8		mg/Kg Unit mg/Kg		Prepared 11/01/24 17:08	11/02/24 00:13 Analyzed 11/02/24 00:13	Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<49.8 sel Range Orga Result	Unics (DRO) Qualifier	49.8 (GC)		mg/Kg		Prepared	11/02/24 00:13 Analyzed	1 Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<49.8 sel Range Orga Result <49.8 <49.8	Unics (DRO) Qualifier U	49.8 (GC) RL 49.8 49.8		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/24 17:08 11/01/24 17:08	11/02/24 00:13 Analyzed 11/02/24 00:13 11/02/24 00:13	1 Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<49.8 sel Range Orga Result <49.8	Unics (DRO) Qualifier U	49.8 (GC) RL 49.8		mg/Kg Unit mg/Kg		Prepared 11/01/24 17:08	11/02/24 00:13 Analyzed 11/02/24 00:13	Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate	<49.8 sel Range Orga Result <49.8 <49.8	Unics (DRO) Qualifier U	49.8 (GC) RL 49.8 49.8 49.8 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/24 17:08 11/01/24 17:08 11/01/24 17:08 Prepared	Analyzed 11/02/24 00:13 Analyzed 11/02/24 00:13 11/02/24 00:13 11/02/24 00:13 Analyzed	Dil Fac 1 1 Dil Fac Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36)	<49.8 sel Range Orga Result <49.8 <49.8 <49.8	Unics (DRO) Qualifier U	49.8 (GC) RL 49.8 49.8 49.8		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/24 17:08 11/01/24 17:08 11/01/24 17:08	Analyzed 11/02/24 00:13 Analyzed 11/02/24 00:13 11/02/24 00:13 11/02/24 00:13	Dil Fac 1 1 Dil Fac Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate	<49.8 sel Range Orga Result <49.8 <49.8 <49.8 %Recovery	Unics (DRO) Qualifier U	49.8 (GC) RL 49.8 49.8 49.8 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/24 17:08 11/01/24 17:08 11/01/24 17:08 Prepared	Analyzed 11/02/24 00:13 Analyzed 11/02/24 00:13 11/02/24 00:13 11/02/24 00:13 Analyzed	Dil Fac
Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<49.8 sel Range Orga Result <49.8 <49.8 <49.8 <80.8 %Recovery 106 82	U nics (DRO) Qualifier U U Qualifier	49.8 (GC) RL 49.8 49.8 49.8 Limits 70 - 130 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/24 17:08 11/01/24 17:08 11/01/24 17:08 Prepared 11/01/24 17:08	Analyzed 11/02/24 00:13 Analyzed 11/02/24 00:13 11/02/24 00:13 Analyzed 11/02/24 00:13	Dil Fac 1 1 Dil Fac Dil Fac
Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<49.8 sel Range Orga Result <49.8 <49.8 <49.8 <8ecovery 106 82 n Chromatograp	U nics (DRO) Qualifier U U Qualifier	49.8 (GC) RL 49.8 49.8 49.8 Limits 70 - 130 70 - 130	MDL	mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/24 17:08 11/01/24 17:08 11/01/24 17:08 Prepared 11/01/24 17:08	Analyzed 11/02/24 00:13 Analyzed 11/02/24 00:13 11/02/24 00:13 Analyzed 11/02/24 00:13	1 Dil Fac 1 1 1 1 Dil Fac 1

Client Sample ID: CS-2 (1.5') Lab Sample ID: 880-50594-2 Date Collected: 11/01/24 00:00 **Matrix: Solid**

Date Received: 11/01/24 15:53

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/01/24 17:00	11/02/24 14:01	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/01/24 17:00	11/02/24 14:01	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/01/24 17:00	11/02/24 14:01	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/01/24 17:00	11/02/24 14:01	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/01/24 17:00	11/02/24 14:01	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/01/24 17:00	11/02/24 14:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	83		70 - 130				11/01/24 17:00	11/02/24 14:01	1
1,4-Difluorobenzene (Surr)	90		70 - 130				11/01/24 17:00	11/02/24 14:01	1

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212021

Job ID: 880-50594-1

SDG: Lea County, New Mexico

Client Sample ID: CS-2 (1.5')

Date Collected: 11/01/24 00:00 Date Received: 11/01/24 15:53

Lab Sample ID: 880-50594-2

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			11/02/24 14:01	1
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.5	U	50.5		mg/Kg			11/02/24 01:02	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.5	U	50.5		mg/Kg		11/01/24 17:08	11/02/24 01:02	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.5	U	50.5		mg/Kg		11/01/24 17:08	11/02/24 01:02	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.5	U	50.5		mg/Kg		11/01/24 17:08	11/02/24 01:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	203	S1+	70 - 130				11/01/24 17:08	11/02/24 01:02	1
o-Terphenyl	161	S1+	70 - 130				11/01/24 17:08	11/02/24 01:02	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	• .	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	31.2	· 	10.0		mg/Kg			11/02/24 03:59	

Client Sample ID: CS-3 (1.5') Lab Sample ID: 880-50594-3 Date Collected: 11/01/24 00:00 **Matrix: Solid**

Date Received: 11/01/24 15:53

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/01/24 17:00	11/02/24 14:22	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/01/24 17:00	11/02/24 14:22	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/01/24 17:00	11/02/24 14:22	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/01/24 17:00	11/02/24 14:22	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		11/01/24 17:00	11/02/24 14:22	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/01/24 17:00	11/02/24 14:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130				11/01/24 17:00	11/02/24 14:22	1
1,4-Difluorobenzene (Surr)	94		70 - 130				11/01/24 17:00	11/02/24 14:22	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			11/02/24 14:22	1
Method: SW846 8015 NM - Die	sel Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7		mg/Kg			11/02/24 01:20	1
Method: SW846 8015B NM - D	iesel Range Orga	nics (DRO)	(GC)						

Eurofins Midland

11/02/24 01:20

11/02/24 01:20

11/01/24 17:08

11/01/24 17:08

49.7

49.7

mg/Kg

mg/Kg

<49.7 U

<49.7 U

Gasoline Range Organics

Diesel Range Organics (Over

(GRO)-C6-C10

C10-C28)

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212021

Job ID: 880-50594-1

SDG: Lea County, New Mexico

Lab Sample ID: 880-50594-3

Matrix: Solid

Client Sample ID: CS-3 (1.5') Date Collected: 11/01/24 00:00

Date Received: 11/01/24 15:53

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.7	U	49.7	mg/Kg		11/01/24 17:08	11/02/24 01:20	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	113		70 - 130			11/01/24 17:08	11/02/24 01:20	1
o-Terphenyl	93		70 - 130			11/01/24 17:08	11/02/24 01:20	1

Method: EPA 300.0 - Anions, Ion C	hromatograp	hy - Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	33.2		10.1		mg/Kg			11/02/24 04:04	1

Client Sample ID: CS-4 (5.5') Date Collected: 11/01/24 00:00

Date Received: 11/01/24 15:53

Lab Sample ID: 880-50594-4

Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC) Result Qualifier Analyte MDL Unit Prepared Analyzed Dil Fac Benzene <0.00200 U 0.00200 11/01/24 17:00 11/02/24 14:42 mg/Kg Toluene <0.00200 U 0.00200 11/01/24 17:00 11/02/24 14:42 mg/Kg Ethylbenzene <0.00200 U 0.00200 mg/Kg 11/01/24 17:00 11/02/24 14:42 m-Xylene & p-Xylene 11/02/24 14:42 0.00399 mg/Kg 11/01/24 17:00 <0.00399 U o-Xylene <0.00200 U 0.00200 mg/Kg 11/01/24 17:00 11/02/24 14:42 <0.00399 U 11/01/24 17:00 Xylenes, Total 0.00399 mg/Kg 11/02/24 14:42 Surrogate Qualifier Limits Dil Fac %Recovery Prepared Analyzed 4-Bromofluorobenzene (Surr) 101 70 - 130 11/02/24 14:42 11/01/24 17:00 1,4-Difluorobenzene (Surr) 89 70 - 130 11/01/24 17:00 11/02/24 14:42

Method: TAL SOP Total BTEX - Tot	al BTEX Calc	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			11/02/24 14:42	1

	Method: SW846 8015 NM - Diesel Range	Organ	ics (DRO) (GC)							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Total TPH	<49.9	U	49.9		mg/Kg			11/02/24 01:36	1
ì										

\49.9	U	49.9		mg/kg			11/02/24 01:30	ı
el Range Orga	nics (DRO)	(GC)						
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<49.9	U	49.9		mg/Kg		11/01/24 17:08	11/02/24 01:36	1
<49.9	U	49.9		mg/Kg		11/01/24 17:08	11/02/24 01:36	1
<49.9	U	49.9		mg/Kg		11/01/24 17:08	11/02/24 01:36	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
109		70 - 130				11/01/24 17:08	11/02/24 01:36	1
86		70 - 130				11/01/24 17:08	11/02/24 01:36	1
	el Range Orga	Result Qualifier	Result Qualifier RL	Result Qualifier RL MDL	Result Qualifier RL MDL Unit mg/Kg	Result Qualifier RL MDL Unit mg/Kg	Result Qualifier RL MDL Unit D Prepared	Result Qualifier RL MDL Unit D Prepared Analyzed 11/01/24 17:08 11/02/24 01:36

Method: EPA 300.0 - Anions, Ion Ch							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	26.7	10.1	mg/Kg			11/02/24 04:09	1

Eurofins Midland

11/4/2024

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212021

SDG: Lea County, New Mexico

Lab Sample ID: 880-50594-5

Matrix: Solid

Job ID: 880-50594-1

Client Sample ID: CS-5 (5.5')

Date Collected: 11/01/24 00:00 Date Received: 11/01/24 15:53

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/01/24 17:00	11/02/24 15:03	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/01/24 17:00	11/02/24 15:03	,
Ethylbenzene	< 0.00201	U	0.00201		mg/Kg		11/01/24 17:00	11/02/24 15:03	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/01/24 17:00	11/02/24 15:03	1
o-Xylene	< 0.00201	U	0.00201		mg/Kg		11/01/24 17:00	11/02/24 15:03	
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/01/24 17:00	11/02/24 15:03	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	100		70 - 130				11/01/24 17:00	11/02/24 15:03	
1,4-Difluorobenzene (Surr)	92		70 - 130				11/01/24 17:00	11/02/24 15:03	
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			11/02/24 15:03	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)						
			•	MDI	Unit	n	Propared	Analyzed	Dil Fa
Analyte		Qualifier	RL 50.0	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 11/02/24 01:54	Dil Fac
Analyte Total TPH	Result <50.0	Qualifier U	RL 50.0	MDL		<u>D</u>	Prepared		
Analyte Total TPH . Method: SW846 8015B NM - Dies	Result <50.0	Qualifier Unics (DRO)	RL 50.0		mg/Kg			11/02/24 01:54	
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte	Result <50.0 sel Range Orga Result	Qualifier Unics (DRO) Qualifier	RL 50.0		mg/Kg	<u>D</u>	Prepared	11/02/24 01:54 Analyzed	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	Result <50.0	Qualifier Unics (DRO) Qualifier	RL 50.0		mg/Kg			11/02/24 01:54	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10	Result <50.0 sel Range Orga Result	Qualifier U nics (DRO) Qualifier U	RL 50.0		mg/Kg		Prepared	11/02/24 01:54 Analyzed	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <50.0 Sel Range Orga Result <50.0	Qualifier U nics (DRO) Qualifier U	RL 50.0		mg/Kg Unit mg/Kg		Prepared 11/01/24 17:08	11/02/24 01:54 Analyzed 11/02/24 01:54	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.0 Sel Range Orga Result <50.0	Qualifier U nics (DRO) Qualifier U	RL 50.0		mg/Kg Unit mg/Kg		Prepared 11/01/24 17:08	11/02/24 01:54 Analyzed 11/02/24 01:54	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36)	Result	Qualifier U nics (DRO) Qualifier U U	RL 50.0 (GC) RL 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/24 17:08 11/01/24 17:08	11/02/24 01:54 Analyzed 11/02/24 01:54 11/02/24 01:54	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate	Result	Qualifier U nics (DRO) Qualifier U U	RL 50.0 (GC) RL 50.0 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/24 17:08 11/01/24 17:08 11/01/24 17:08	Analyzed 11/02/24 01:54 11/02/24 01:54 11/02/24 01:54 11/02/24 01:54	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result	Qualifier U nics (DRO) Qualifier U U	RL 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/24 17:08 11/01/24 17:08 11/01/24 17:08 Prepared	Analyzed 11/02/24 01:54 Analyzed 11/02/24 01:54 11/02/24 01:54 Analyzed	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <50.0	Qualifier U nics (DRO) Qualifier U U Qualifier	RL 50.0 (GC) RL 50.0 50.0 50.0 Limits 70 - 130 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/24 17:08 11/01/24 17:08 11/01/24 17:08 Prepared 11/01/24 17:08	Analyzed 11/02/24 01:54 Analyzed 11/02/24 01:54 11/02/24 01:54 Analyzed 11/02/24 01:54	
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <50.0	Qualifier U nics (DRO) Qualifier U U Qualifier	RL 50.0 (GC) RL 50.0 50.0 50.0 Limits 70 - 130 70 - 130	MDL	mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/24 17:08 11/01/24 17:08 11/01/24 17:08 Prepared 11/01/24 17:08	Analyzed 11/02/24 01:54 Analyzed 11/02/24 01:54 11/02/24 01:54 Analyzed 11/02/24 01:54	Dil Fac

Client Sample ID: CS-6 (5.5') Lab Sample ID: 880-50594-6 Date Collected: 11/01/24 00:00 **Matrix: Solid**

Date Received: 11/01/24 15:53

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/01/24 17:00	11/02/24 15:24	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/01/24 17:00	11/02/24 15:24	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/01/24 17:00	11/02/24 15:24	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/01/24 17:00	11/02/24 15:24	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/01/24 17:00	11/02/24 15:24	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/01/24 17:00	11/02/24 15:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 130				11/01/24 17:00	11/02/24 15:24	1
1,4-Difluorobenzene (Surr)	89		70 - 130				11/01/24 17:00	11/02/24 15:24	1

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212021

Job ID: 880-50594-1

SDG: Lea County, New Mexico

11/02/24 02:10

11/02/24 02:10

11/01/24 17:08

11/01/24 17:08

Client Sample ID: CS-6 (5.5') Lab Sample ID: 880-50594-6

103

80

Matrix: Solid

Date Collected: 11/01/24 00:00 Date Received: 11/01/24 15:53

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			11/02/24 15:24	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.6	U	49.6		mg/Kg			11/02/24 02:10	1
Method: SW846 8015B NM - Dies		. ,	. ,			_			
- Method: SW846 8015B NM - Dies Analyte		nics (DRO) Qualifier	(GC)	MDL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	. ,	MDL	Unit mg/Kg	<u>D</u>	Prepared 11/01/24 17:08	Analyzed 11/02/24 02:10	Dil Fac
Analyte	Result	Qualifier	RL	MDL		<u>D</u>	<u>.</u>		Dil Fac
Analyte Gasoline Range Organics	Result	Qualifier U	RL	MDL		<u>D</u>	<u>.</u>		Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10		Qualifier U	RL 49.6	MDL	mg/Kg	<u>D</u>	11/01/24 17:08	11/02/24 02:10	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over		Qualifier U	RL 49.6	MDL	mg/Kg	<u>D</u>	11/01/24 17:08	11/02/24 02:10	Dil Fac 1 1

Method: EPA 300.0 - Anions, Ion C	hromatograp	hy - Soluble)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	25.7		9.90		mg/Kg			11/02/24 04:30	1

70 - 130

70 - 130

Lab Sample ID: 880-50594-7 Client Sample ID: CS-7 (5.5') Date Collected: 11/01/24 00:00 **Matrix: Solid**

Date Received: 11/01/24 15:53

1-Chlorooctane

o-Terphenyl

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 15:44	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 15:44	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 15:44	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/01/24 17:00	11/02/24 15:44	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 15:44	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/01/24 17:00	11/02/24 15:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130				11/01/24 17:00	11/02/24 15:44	1
			70 - 130				11/01/24 17:00	11/02/24 15:44	
Method: TAL SOP Total BTEX Analyte	- Total BTEX Cald	Qualifier	70 - 130 RL 0.00399	MDL	Unit mg/Kg	<u>D</u>	11/01/24 17:00 Prepared	11/02/24 15:44 Analyzed 11/02/24 15:44	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX	- Total BTEX Calc Result <0.00399	Qualifier U	RL 0.00399	MDL		<u>D</u>		Analyzed	Dil Fac
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte	- Total BTEX Calc Result <0.00399 sel Range Organ	Qualifier U	RL 0.00399			<u>D</u>		Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die	- Total BTEX Calc Result <0.00399 sel Range Organ	Qualifier U ics (DRO) (Qualifier	RL 0.00399		mg/Kg		Prepared	Analyzed 11/02/24 15:44	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte	- Total BTEX Calc Result <0.00399 sel Range Organ Result <50.1	Qualifier U ics (DRO) (Qualifier U	RL 0.00399 GC) RL 50.1		mg/Kg		Prepared	Analyzed 11/02/24 15:44 Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH Method: SW846 8015B NM - Die	- Total BTEX Calc Result <0.00399 sel Range Organ Result <50.1 iesel Range Orga	Qualifier U ics (DRO) (Qualifier U	RL 0.00399 GC) RL 50.1	MDL	mg/Kg		Prepared	Analyzed 11/02/24 15:44 Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH	- Total BTEX Calc Result <0.00399 sel Range Organ Result <50.1 iesel Range Orga	Qualifier U ics (DRO) (Qualifier U nics (DRO) Qualifier	RL 0.00399 GC) RL 50.1	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed 11/02/24 15:44 Analyzed 11/02/24 02:26	Dil Fac

Eurofins Midland

Released to Imaging: 12/26/2024 12:33:16 PM

Project/Site: M-Maljamar Suction Line-12-S-09212021

Job ID: 880-50594-1

SDG: Lea County, New Mexico

Client Sample ID: CS-7 (5.5')

Date Collected: 11/01/24 00:00 Date Received: 11/01/24 15:53

Lab Sample ID: 880-50594-7

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<50.1	U	50.1		mg/Kg		11/01/24 17:08	11/02/24 02:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 130				11/01/24 17:08	11/02/24 02:26	1
o-Terphenyl	84		70 - 130				11/01/24 17:08	11/02/24 02:26	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit Analyzed Dil Fac D Prepared 9.92 11/02/24 04:35 Chloride 24.5 mg/Kg

Client Sample ID: CS-8 (5.5')

Date Collected: 11/01/24 00:00 Date Received: 11/01/24 15:53

Lab Sample ID: 880-50594-8

Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier MDL Unit Prepared Analyzed Dil Fac Benzene <0.00199 U 0.00199 11/01/24 17:00 11/02/24 16:05 mg/Kg Toluene <0.00199 U 0.00199 11/01/24 17:00 11/02/24 16:05 mg/Kg Ethylbenzene <0.00199 U 0.00199 mg/Kg 11/01/24 17:00 11/02/24 16:05 m-Xylene & p-Xylene <0.00398 U 0.00398 11/01/24 17:00 11/02/24 16:05 mg/Kg o-Xylene <0.00199 U 0.00199 mg/Kg 11/01/24 17:00 11/02/24 16:05 Xylenes, Total <0.00398 U 0.00398 mg/Kg 11/01/24 17:00 11/02/24 16:05 Surrogato %Recovery Qualifier 1:--:4-A ... a l. ... a al

Surrogate	76Recovery Qua	illier Lillius	rrepareu	Allalyzeu	DII Fac
4-Bromofluorobenzene (Surr)	96	70 - 130	11/01/24 17:00	11/02/24 16:05	1
1,4-Difluorobenzene (Surr)	91	70 - 130	11/01/24 17:00	11/02/24 16:05	1
Mothod: TAL SOR Total PTEV To	tel PTEV Coloulet	ion			

moundar mar our rotal Branch	a. D. Ez. Gai	Jaiation						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			11/02/24 16:05	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)									
	Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
l	Total TPH	<50.1	U	50.1	mg/Kg			11/02/24 02:42	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.1	U	50.1		mg/Kg		11/01/24 17:08	11/02/24 02:42	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.1	U	50.1		mg/Kg		11/01/24 17:08	11/02/24 02:42	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.1	U	50.1		mg/Kg		11/01/24 17:08	11/02/24 02:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	104	· 	70 - 130				11/01/24 17:08	11/02/24 02:42	

Method: EPA 300.0 - Anions, Ion C	hromatograp	hy - Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	23.0		10.0		mg/Kg			11/02/24 04:40	1

70 - 130

80

Eurofins Midland

11/02/24 02:42

11/01/24 17:08

o-Terphenyl

Client Sample ID: SW-1 (1.5')

Date Collected: 11/01/24 00:00

Date Received: 11/01/24 15:53

Client Sample Results

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212021

Job ID: 880-50594-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-50594-9

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/01/24 17:00	11/02/24 16:25	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/01/24 17:00	11/02/24 16:25	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/01/24 17:00	11/02/24 16:25	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/01/24 17:00	11/02/24 16:25	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/01/24 17:00	11/02/24 16:25	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/01/24 17:00	11/02/24 16:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130				11/01/24 17:00	11/02/24 16:25	1
1,4-Difluorobenzene (Surr)	91		70 - 130				11/01/24 17:00	11/02/24 16:25	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg		-	11/02/24 16:25	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.4	U	50.4	mg/Kg			11/02/24 02:59	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL U	nit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.4	U	50.4	m	ng/Kg		11/01/24 17:08	11/02/24 02:59	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.4	U	50.4	m	ng/Kg		11/01/24 17:08	11/02/24 02:59	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.4	U	50.4	m	ng/Kg		11/01/24 17:08	11/02/24 02:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Quaimer	Limits	Prep	oarea	Anaryzea	DII Fac
1-Chlorooctane	104		70 - 130	11/01/2	24 17:08	11/02/24 02:59	1
o-Terphenyl	81		70 - 130	11/01/2	24 17:08	11/02/24 02:59	1
_							

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Chloride	33.7		9.94		mg/Kg				11/02/24 04:45	1

Client Sample ID: SW-2 (1.5')

Date Collected: 11/01/24 00:00 Date Received: 11/01/24 15:53

Lab Samp	le ID: 8	80-5059	4-10
----------	----------	---------	------

11/02/24 16:46

11/02/24 16:46

11/01/24 17:00

11/01/24 17:00

Matrix: Solid

Mothod: SW846 8021B - Volatila Organic Compounds (GC

97

91

Method: SW846 8021B - Vo	olatile Organic Comp	ounds (GC))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 16:46	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 16:46	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 16:46	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/01/24 17:00	11/02/24 16:46	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 16:46	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/01/24 17:00	11/02/24 16:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Eurofins Midland

70 - 130

70 - 130

2

3

6

8

10

12

13

4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212021

Job ID: 880-50594-1

SDG: Lea County, New Mexico

Client Sample ID: SW-2 (1.5')

Date Collected: 11/01/24 00:00 Date Received: 11/01/24 15:53

Lab Sample ID: 880-50594-10

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			11/02/24 16:46	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.5	U	50.5		mg/Kg			11/02/24 03:15	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.5	U	50.5		mg/Kg		11/01/24 17:08	11/02/24 03:15	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.5	U	50.5		mg/Kg		11/01/24 17:08	11/02/24 03:15	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.5	U	50.5		mg/Kg		11/01/24 17:08	11/02/24 03:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	105		70 - 130				11/01/24 17:08	11/02/24 03:15	1
o-Terphenyl	80		70 - 130				11/01/24 17:08	11/02/24 03:15	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	21.5		9.96		mg/Kg			11/02/24 04:51	

Client Sample ID: SW-3 (1.5') Lab Sample ID: 880-50594-11

Date Collected: 11/01/24 00:00

Date Received: 11/01/24 15:53

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		11/01/24 17:00	11/02/24 18:10	1
Toluene	<0.00202	U	0.00202		mg/Kg		11/01/24 17:00	11/02/24 18:10	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		11/01/24 17:00	11/02/24 18:10	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		11/01/24 17:00	11/02/24 18:10	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		11/01/24 17:00	11/02/24 18:10	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		11/01/24 17:00	11/02/24 18:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	81		70 - 130				11/01/24 17:00	11/02/24 18:10	1
							44/04/04 47 00	11/00/01/10/10	
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX Analyte		culation Qualifier	70 ₋ 130 RL	MDL	Unit	D	11/01/24 17:00 Prepared	11/02/24 18:10 Analyzed	
		culation	70 - 130				11/01/24 17:00	11/02/24 18:10	7
Method: TAL SOP Total BTEX	- Total BTEX Cald	Qualifier		MDL	Unit mg/Kg	<u>D</u>			Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX	- Total BTEX Cald Result <0.00404	Qualifier U	RL 0.00404	MDL		<u>D</u>		Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte	- Total BTEX Calc Result <0.00404 essel Range Organ	Qualifier U	RL 0.00404	MDL	mg/Kg	<u>D</u>		Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Did	- Total BTEX Calc Result <0.00404 essel Range Organ	Qualifier U ics (DRO) (Qualifier	RL 0.00404		mg/Kg		Prepared	Analyzed 11/02/24 18:10	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Did Analyte	- Total BTEX Calc Result <0.00404 esel Range Organ Result <50.0	Qualifier U ics (DRO) (Qualifier U	RL 0.00404 GC) RL 50.0		mg/Kg		Prepared	Analyzed 11/02/24 18:10 Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Did Analyte Total TPH	- Total BTEX Calc Result <0.00404 esel Range Organ Result <50.0	Qualifier U ics (DRO) (Qualifier U	RL 0.00404 GC) RL 50.0		mg/Kg Unit mg/Kg		Prepared	Analyzed 11/02/24 18:10 Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Did Analyte Total TPH Method: SW846 8015B NM - Did Method: S	- Total BTEX Calc Result <0.00404 esel Range Organ Result <50.0	Qualifier U ics (DRO) (Qualifier U nics (DRO) Qualifier	RL 0.00404 GC) RL 50.0	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed 11/02/24 18:10 Analyzed 11/02/24 03:48	Dil Fac

Eurofins Midland

Matrix: Solid

Project/Site: M-Maljamar Suction Line-12-S-09212021

Job ID: 880-50594-1

SDG: Lea County, New Mexico

Lab Sample ID: 880-50594-11

Matrix: Solid

Client Sample ID: SW-3 (1.5')
Date Collected: 11/01/24 00:00

Date Received: 11/01/24 15:53

Method: SW846 8015B NM -	Diesel Range Organics (DRO) (GC)	(Continued	l)	
Analyte	Result Qualifier	RL	MDL	Unit

Allalyte	Result	Qualifier	NL.	MIDL	UIIIL	U	riepaieu	Allalyzeu	DII Fac
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/01/24 17:08	11/02/24 03:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	108		70 - 130				11/01/24 17:08	11/02/24 03:48	1
o-Terphenyl	85		70 - 130				11/01/24 17:08	11/02/24 03:48	1

Method: EPA 300.0 - Anions,	lon Chromatography - Soluble
Amalusta	Desuit Ouslities

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	27.7		10.0		mg/Kg			11/02/24 04:56	1

Client Sample ID: SW-4 (1.5')

Date Collected: 11/01/24 00:00 Date Received: 11/01/24 15:53

1,4-Difluorobenzene (Surr)

Lab Sample ID: 880-50594-12

11/01/24 17:00 11/02/24 18:31

Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 18:31	1		
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 18:31	1		
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 18:31	1		
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/01/24 17:00	11/02/24 18:31	1		
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 18:31	1		
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/01/24 17:00	11/02/24 18:31	1		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac		
4-Bromofluorobenzene (Surr)	96		70 - 130				11/01/24 17:00	11/02/24 18:31	1		

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total BTEX	< 0.00400	U	0.00400		ma/Ka			11/02/24 18:31	1	

70 - 130

Method: SW846 8015 NM - Diesel Range Organics	(DRO)	(GC)	
Method. 544040 0013 MM - Dieser Kange Organics	(DIXO)	(00)	ı,

	•	, , ,	,						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Total TPH	<49.8	П	49.8	ma/Ka			11/02/24 04:04	1	

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		11/01/24 17:08	11/02/24 04:04	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		11/01/24 17:08	11/02/24 04:04	1
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		11/01/24 17:08	11/02/24 04:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

- carrogate	, or 1000 to 1			, ,	
1-Chlorooctane	106	70 - 130	11/01/24 17:08	11/02/24 04:04	1
o-Terphenyl	87	70 - 130	11/01/24 17:08	11/02/24 04:04	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	25.7		10.1		mg/Kg			11/02/24 05:11	1

Project/Site: M-Maljamar Suction Line-12-S-09212021

Job ID: 880-50594-1

SDG: Lea County, New Mexico

Client Sample ID: SW-5 (4')

Date Collected: 11/01/24 00:00 Date Received: 11/01/24 15:53 Lab Sample ID: 880-50594-13

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/01/24 17:00	11/02/24 18:51	
Toluene	< 0.00199	U	0.00199		mg/Kg		11/01/24 17:00	11/02/24 18:51	
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		11/01/24 17:00	11/02/24 18:51	
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/01/24 17:00	11/02/24 18:51	
o-Xylene	< 0.00199	U	0.00199		mg/Kg		11/01/24 17:00	11/02/24 18:51	
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/01/24 17:00	11/02/24 18:51	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	93		70 - 130				11/01/24 17:00	11/02/24 18:51	
1,4-Difluorobenzene (Surr)	87		70 - 130				11/01/24 17:00	11/02/24 18:51	
Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg			11/02/24 18:51	
Method: SW846 8015 NM - Diese	•	, ,,	•						
Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9		mg/Kg			11/02/24 04:20	
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/01/24 17:08	11/02/24 04:20	
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/01/24 17:08	11/02/24 04:20	
Oil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/01/24 17:08	11/02/24 04:20	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	113		70 - 130				11/01/24 17:08	11/02/24 04:20	
o-Terphenyl	90		70 - 130				11/01/24 17:08	11/02/24 04:20	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	<10.0	U	10.0		mg/Kg			11/02/24 05:16	

Client Sample ID: SW-6 (5.5')

Lab Sample ID: 880-50594-14

Matrix: Solid

Date Received: 11/01/24 15:53

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/01/24 17:00	11/02/24 19:12	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/01/24 17:00	11/02/24 19:12	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/01/24 17:00	11/02/24 19:12	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/01/24 17:00	11/02/24 19:12	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/01/24 17:00	11/02/24 19:12	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/01/24 17:00	11/02/24 19:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130				11/01/24 17:00	11/02/24 19:12	1
1,4-Difluorobenzene (Surr)	91		70 - 130				11/01/24 17:00	11/02/24 19:12	1

Eurofins Midland

3

5

7

9

11

12

1 4

Project/Site: M-Maljamar Suction Line-12-S-09212021

SDG: Lea County, New Mexico

11/02/24 05:32

Matrix: Solid

Client Sample ID: SW-6 (5.5')

Lab Sample ID: 880-50594-14

Date Collected: 11/01/24 00:00 Date Received: 11/01/24 15:53 Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			11/02/24 19:12	1
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7		mg/Kg			11/02/24 04:36	1
- Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7		mg/Kg		11/01/24 17:08	11/02/24 04:36	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.7	U	49.7		mg/Kg		11/01/24 17:08	11/02/24 04:36	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		11/01/24 17:08	11/02/24 04:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	214	S1+	70 - 130				11/01/24 17:08	11/02/24 04:36	1
o-Terphenyl	171	S1+	70 - 130				11/01/24 17:08	11/02/24 04:36	1
							11/01/24 17:08	11/02/24 04:36	
Method: EPA 300.0 - Anions, Ion Analyte	• .	Ony - Solubi Qualifier	e RL	MDL		D	Prepared		Dil Fa

Client Sample ID: SW-7 (5.5')

Lab Sample ID: 880-50594-15

9.96

mg/Kg

40.5

Date Collected: 11/01/24 00:00

Chloride

Date Received: 11/01/24 15:53

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 19:32	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 19:32	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 19:32	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/01/24 17:00	11/02/24 19:32	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 19:32	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/01/24 17:00	11/02/24 19:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130				11/01/24 17:00	11/02/24 19:32	1
	0.4		70 400				11/01/24 17:00	11/02/24 19:32	1
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX Analyte			70 ₋ 130	MDL	Unit	D			
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation Qualifier	70 <u>-</u> 130	MDL	Unit	D	Prepared	Analyzed	
• ′ ′ ′	- Total BTEX Cald	Qualifier		MDL	Unit mg/Kg	<u>D</u>			Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX	- Total BTEX Cald Result <0.00400	Qualifier U	RL 0.00400	MDL		<u>D</u>		Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die	- Total BTEX Cald Result <0.00400 essel Range Organ	Qualifier U	RL 0.00400	MDL MDL	mg/Kg	<u>D</u>		Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte	- Total BTEX Cald Result <0.00400 essel Range Organ	Qualifier U ics (DRO) (Qualifier	RL 0.00400		mg/Kg	=	Prepared	Analyzed 11/02/24 19:32	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte	- Total BTEX Cald Result <0.00400 esel Range Organ Result <50.3	Qualifier U ics (DRO) (Qualifier U	RL 0.00400 ———————————————————————————————		mg/Kg	=	Prepared	Analyzed 11/02/24 19:32 Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH	- Total BTEX Calc Result <0.00400 esel Range Organ Result <50.3	Qualifier U ics (DRO) (Qualifier U	RL 0.00400 ———————————————————————————————		mg/Kg Unit mg/Kg	=	Prepared	Analyzed 11/02/24 19:32 Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH Method: SW846 8015B NM - D	- Total BTEX Calc Result <0.00400 esel Range Organ Result <50.3	Qualifier U ics (DRO) (Qualifier U inics (DRO) Qualifier	RL 0.00400 GC) RL 50.3	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed 11/02/24 19:32 Analyzed 11/02/24 04:52	Dil Fac

Project/Site: M-Maljamar Suction Line-12-S-09212021

Job ID: 880-50594-1

SDG: Lea County, New Mexico

Client Sample ID: SW-7 (5.5')

Date Collected: 11/01/24 00:00 Date Received: 11/01/24 15:53

Lab Sample ID: 880-50594-15

Matrix: Solid

Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC) (Continu	ıed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<50.3	U	50.3		mg/Kg		11/01/24 17:08	11/02/24 04:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	103		70 - 130				11/01/24 17:08	11/02/24 04:52	1
o-Terphenyl	84		70 - 130				11/01/24 17:08	11/02/24 04:52	1

Method: EPA 300.0 - Anions, Ion Ch	romatography - Solub	ole					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	28.2	9.96	mg/Kg			11/02/24 05:37	1

Client Sample ID: SW-8 (5.5')

Date Collected: 11/01/24 00:00 Date Received: 11/01/24 15:53

Lab Sample ID: 880-50594-16

Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier MDL Unit Prepared Analyzed Dil Fac Benzene <0.00199 U 0.00199 11/01/24 17:00 11/02/24 19:53 mg/Kg Toluene <0.00199 U 0.00199 11/01/24 17:00 11/02/24 19:53 mg/Kg Ethylbenzene <0.00199 U 0.00199 mg/Kg 11/01/24 17:00 11/02/24 19:53 m-Xylene & p-Xylene <0.00398 U 11/01/24 17:00 11/02/24 19:53 0.00398 mg/Kg o-Xylene <0.00199 U 0.00199 mg/Kg 11/01/24 17:00 11/02/24 19:53 Xylenes, Total <0.00398 U 0.00398 mg/Kg 11/01/24 17:00 11/02/24 19:53 %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed 100 70 - 130 11/01/24 17:00 11/02/24 19:53 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 90 70 - 130 11/01/24 17:00 11/02/24 19:53

Method: TAL SOP Total BTEX - To	tal BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			11/02/24 19:53	1

Method: SW846 8015 NM - Diesel Rai	nge Organ	ics (DRO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.1	U	50.1		mg/Kg			11/02/24 05:09	1
Method: SW846 8015B NM - Diesel R	ange Orga	nics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.1	U	50.1		mg/Kg		11/01/24 17:08	11/02/24 05:09	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.1	U	50.1		mg/Kg		11/01/24 17:08	11/02/24 05:09	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.1	U	50.1		mg/Kg		11/01/24 17:08	11/02/24 05:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	107		70 - 130				11/01/24 17:08	11/02/24 05:09	1
o-Terphenyl	85		70 - 130				11/01/24 17:08	11/02/24 05:09	1

Method: EPA 300.0 - Anions, Ion C	hromatograp	hy - Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	25.9		9.92		mg/Kg			11/02/24 05:42	1

Project/Site: M-Maljamar Suction Line-12-S-09212021

Job ID: 880-50594-1

SDG: Lea County, New Mexico

Client Sample ID: SW-9 (5.5')

Date Collected: 11/01/24 00:00 Date Received: 11/01/24 15:53

Lab Sample ID: 880-50594-17

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/01/24 17:00	11/02/24 20:14	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/01/24 17:00	11/02/24 20:14	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/01/24 17:00	11/02/24 20:14	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/01/24 17:00	11/02/24 20:14	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/01/24 17:00	11/02/24 20:14	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/01/24 17:00	11/02/24 20:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	96		70 - 130				11/01/24 17:00	11/02/24 20:14	1
1,4-Difluorobenzene (Surr)	87		70 - 130				11/01/24 17:00	11/02/24 20:14	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	< 0.00402				mg/Kg			11/02/24 20:14	1
-		· ·	0.00402					,02,2 . 20	'
Method: SW846 8015 NM - Diese								. 1, 92, 2 . 20	•
Method: SW846 8015 NM - Diese Analyte	el Range Organ			MDL		D	Prepared		
Method: SW846 8015 NM - Diese Analyte Total TPH	el Range Organ	ics (DRO) (C	GC)	MDL		<u>D</u>	Prepared	Analyzed 11/02/24 05:25	Dil Fac
Analyte	el Range Organ Result	ics (DRO) (C	GC)	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte	Result <50.4	ics (DRO) (0 Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte Total TPH	el Range Organ Result <50.4 sel Range Organ	ics (DRO) (0 Qualifier	RL	MDL	Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	el Range Organ Result <50.4 sel Range Organ	ics (DRO) (OQualifier Unics (DRO) Qualifier	RL 50.4 (GC)		Unit mg/Kg			Analyzed 11/02/24 05:25	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10	el Range Organ Result <50.4 sel Range Orga Result <50.4	ics (DRO) (Outline Qualifier Unics (DRO) Qualifier Unics (DRO)	GC) RL 50.4 (GC) RL 50.4		Unit mg/Kg Unit mg/Kg		Prepared 11/01/24 17:08	Analyzed 11/02/24 05:25 Analyzed 11/02/24 05:25	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	el Range Organ Result <50.4 sel Range Orga Result	ics (DRO) (Outline Qualifier Unics (DRO) Qualifier Unics (DRO)	GC) RL 50.4 (GC) RL		Unit mg/Kg		Prepared	Analyzed 11/02/24 05:25 Analyzed	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10	el Range Organ Result <50.4 sel Range Orga Result <50.4	ics (DRO) (Control of the control of	GC) RL 50.4 (GC) RL 50.4		Unit mg/Kg Unit mg/Kg		Prepared 11/01/24 17:08	Analyzed 11/02/24 05:25 Analyzed 11/02/24 05:25	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36)	el Range Organ Result <50.4 Seel Range Orga Result <50.4 <50.4	ics (DRO) (COMPANIES (DRO)) Qualifier U Qualifier U U U U	GC) RL 50.4 (GC) RL 50.4 50.4 50.4		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/24 17:08 11/01/24 17:08 11/01/24 17:08	Analyzed 11/02/24 05:25 Analyzed 11/02/24 05:25 11/02/24 05:25 11/02/24 05:25	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate	el Range Organ Result <50.4 sel Range Orga Result <50.4 <50.4 <50.4 %Recovery	ics (DRO) (COMPANIES (DRO)) Qualifier U Qualifier U U U U	GC) RL 50.4 (GC) RL 50.4 50.4 50.4 Limits		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/24 17:08 11/01/24 17:08 11/01/24 17:08 Prepared	Analyzed 11/02/24 05:25 Analyzed 11/02/24 05:25 11/02/24 05:25 11/02/24 05:25 Analyzed	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	el Range Organ Result <50.4 sel Range Orga Result <50.4 <50.4 <50.4 %Recovery 107	ics (DRO) (COMPANIES (DRO)) Qualifier U Qualifier U U U U	GC) RL 50.4 (GC) RL 50.4 50.4 50.4 Limits 70-130		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/24 17:08 11/01/24 17:08 11/01/24 17:08 Prepared 11/01/24 17:08	Analyzed 11/02/24 05:25 Analyzed 11/02/24 05:25 11/02/24 05:25 11/02/24 05:25 Analyzed 11/02/24 05:25	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate	el Range Organ Result <50.4 sel Range Orga Result <50.4 <50.4 <50.4 %Recovery	ics (DRO) (COMPANIES (DRO)) Qualifier U Qualifier U U U U	GC) RL 50.4 (GC) RL 50.4 50.4 50.4 Limits		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/24 17:08 11/01/24 17:08 11/01/24 17:08 Prepared	Analyzed 11/02/24 05:25 Analyzed 11/02/24 05:25 11/02/24 05:25 11/02/24 05:25 Analyzed	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion	el Range Organ Result <50.4 sel Range Orga Result <50.4 <50.4 <50.4 %Recovery 107 86 Chromatograp	ics (DRO) (Control of the control of	GC) RL 50.4 (GC) RL 50.4 50.4 50.4 Limits 70 - 130 70 - 130	MDL	Unit mg/Kg Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 11/01/24 17:08 11/01/24 17:08 11/01/24 17:08 Prepared 11/01/24 17:08 11/01/24 17:08	Analyzed 11/02/24 05:25 Analyzed 11/02/24 05:25 11/02/24 05:25 11/02/24 05:25 Analyzed 11/02/24 05:25 11/02/24 05:25	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	el Range Organ Result <50.4 sel Range Orga Result <50.4 <50.4 <50.4 %Recovery 107 86 Chromatograp	ics (DRO) (Control of the control of	GC) RL 50.4 (GC) RL 50.4 50.4 50.4 £imits 70 - 130 70 - 130		Unit mg/Kg Unit mg/Kg mg/Kg mg/Kg		Prepared 11/01/24 17:08 11/01/24 17:08 11/01/24 17:08 Prepared 11/01/24 17:08	Analyzed 11/02/24 05:25 Analyzed 11/02/24 05:25 11/02/24 05:25 11/02/24 05:25 Analyzed 11/02/24 05:25	Dil Fac

Client Sample ID: SW-10 (5.5') Lab Sample ID: 880-50594-18 Date Collected: 11/01/24 00:00 **Matrix: Solid**

Date Received: 11/01/24 15:53

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/01/24 17:00	11/02/24 20:34	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/01/24 17:00	11/02/24 20:34	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/01/24 17:00	11/02/24 20:34	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/01/24 17:00	11/02/24 20:34	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/01/24 17:00	11/02/24 20:34	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/01/24 17:00	11/02/24 20:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130				11/01/24 17:00	11/02/24 20:34	1
1.4-Difluorobenzene (Surr)	91		70 - 130				11/01/24 17:00	11/02/24 20:34	1

Date Received: 11/01/24 15:53

Project/Site: M-Maljamar Suction Line-12-S-09212021

Job ID: 880-50594-1

SDG: Lea County, New Mexico

Lab Sample ID: 880-50594-18 Client Sample ID: SW-10 (5.5')

Date Collected: 11/01/24 00:00

Matrix: Solid

Method: TAL SOP Total BTEX - Tot	tal BTEX Calc	culation						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	D
Total BTEX	<0.00398	U	0.00398	mg/Kg			11/02/24 20:34	

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Result Qualifier RLMDL Unit Prepared Dil Fac D Analyzed Total TPH <50.5 U 50.5 11/02/24 05:41 mg/Kg

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

١	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Gasoline Range Organics	<50.5	U	50.5		mg/Kg		11/01/24 17:08	11/02/24 05:41	1
	(GRO)-C6-C10									
	Diesel Range Organics (Over	<50.5	U	50.5		mg/Kg		11/01/24 17:08	11/02/24 05:41	1
	C10-C28)									
	Oil Range Organics (Over C28-C36)	<50.5	U	50.5		mg/Kg		11/01/24 17:08	11/02/24 05:41	1
۱	Surrogate	%Recovery	Qualifier	l imits				Prenared	Analyzed	Dil Fac

1-Chlorooctane 108 70 - 130 11/01/24 17:08 11/02/24 05:41 o-Terphenyl 87 70 - 130 11/01/24 17:08 11/02/24 05:41

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Result Qualifier Analyte RL MDL Unit D Prepared Analyzed Dil Fac Chloride 36.6 9.94 mg/Kg 11/02/24 05:52

Client Sample ID: SW-11 (1.5') Lab Sample ID: 880-50594-19

Date Collected: 11/01/24 00:00 **Matrix: Solid**

Date Received: 11/01/24 15:53

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 20:55	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 20:55	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 20:55	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/01/24 17:00	11/02/24 20:55	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 20:55	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/01/24 17:00	11/02/24 20:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130				11/01/24 17:00	11/02/24 20:55	1
1,4-Difluorobenzene (Surr)	88		70 - 130				11/01/24 17:00	11/02/24 20:55	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			11/02/24 20:55	

Method: TAL SOP Total BTEX - Total	I B I EX Calci	uiation						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400	mg/k	(g		11/02/24 20:55	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Total TPH	<49.9	U	49.9		mg/Kg			11/02/24 05:58	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)											
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac				
Gasoline Range Organics	<49.9 U	49.9	mg/Kg		11/01/24 17:08	11/02/24 05:58	1				
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.9 U	49.9	mg/Kg		11/01/24 17:08	11/02/24 05:58	1				

Eurofins Midland

C10-C28)

Released to Imaging: 12/26/2024 12:33:16 PM

Project/Site: M-Maljamar Suction Line-12-S-09212021

Job ID: 880-50594-1

SDG: Lea County, New Mexico

Client Sample ID: SW-11 (1.5') Date Collected: 11/01/24 00:00

Lab Sample ID: 880-50594-19 Matrix: Solid

Date Received: 11/01/24 15:53

Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC) (Continu	ued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/01/24 17:08	11/02/24 05:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	105		70 - 130				11/01/24 17:08	11/02/24 05:58	1
o-Terphenyl	82		70 - 130				11/01/24 17:08	11/02/24 05:58	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble									
	Analyte	Result Qua	alifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
	Chloride	21.4	9.96	mg/k	(g		11/02/24 05:57	1	

Client Sample ID: SW-12 (1.5') Lab Sample ID: 880-50594-20 **Matrix: Solid**

Date Collected: 11/01/24 00:00

Date Received: 11/01/24 15:53

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		11/01/24 17:00	11/02/24 21:15	1
Toluene	<0.00202	U	0.00202		mg/Kg		11/01/24 17:00	11/02/24 21:15	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		11/01/24 17:00	11/02/24 21:15	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		11/01/24 17:00	11/02/24 21:15	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		11/01/24 17:00	11/02/24 21:15	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		11/01/24 17:00	11/02/24 21:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130				11/01/24 17:00	11/02/24 21:15	1
1,4-Difluorobenzene (Surr)	92		70 - 130				11/01/24 17:00	11/02/24 21:15	1

	Method: IAL SOP Total BTEX - Total	ai BIEX Caici	ulation							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Total BTEX	<0.00404	U	0.00404		mg/Kg			11/02/24 21:15	1
٠,	_									

Method: SW846 8015 NM - Diesel Range	Organ	ics (DRO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7		mg/Kg			11/02/24 06:14	1
Method: SW846 8015B NM - Diesel Rang	je Orga	nics (DRO) (GC)							
Analyta	Posult	Qualifier	DI	MDI	Unit	D	Droparod	Analyzod	Dil Eac

		(=:::=)	()						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7		mg/Kg		11/01/24 17:08	11/02/24 06:14	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.7	U	49.7		mg/Kg		11/01/24 17:08	11/02/24 06:14	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		11/01/24 17:08	11/02/24 06:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	108		70 - 130				11/01/24 17:08	11/02/24 06:14	1
o-Terphenyl	86		70 - 130				11/01/24 17:08	11/02/24 06:14	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble										
Analyte	Result Qualifier	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Chloride	10.4	9.90		mg/Kg			11/02/24 06:03	1		

Eurofins Midland

Surrogate Summary

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212021

Job ID: 880-50594-1

SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		BFB1	DFBZ1	Percent Surrogate Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-50594-1	CS-1 (1.5')	81	88	
880-50594-1 MS	CS-1 (1.5')	102	100	
880-50594-1 MSD	CS-1 (1.5')	98	89	
880-50594-2	CS-2 (1.5')	83	90	
880-50594-3	CS-3 (1.5')	98	94	
880-50594-4	CS-4 (5.5')	101	89	
880-50594-5	CS-5 (5.5')	100	92	
880-50594-6	CS-6 (5.5')	93	89	
880-50594-7	CS-7 (5.5')	97	92	
880-50594-8	CS-8 (5.5')	96	91	
880-50594-9	SW-1 (1.5')	96	91	
880-50594-10	SW-2 (1.5')	97	91	
880-50594-11	SW-3 (1.5')	81	93	
880-50594-12	SW-4 (1.5')	96	93	
880-50594-13	SW-5 (4')	93	87	
880-50594-14	SW-6 (5.5')	92	91	
880-50594-15	SW-7 (5.5')	97	91	
880-50594-16	SW-8 (5.5')	100	90	
880-50594-17	SW-9 (5.5')	96	87	
880-50594-18	SW-10 (5.5')	101	91	
880-50594-19	SW-11 (1.5')	95	88	
880-50594-20	SW-12 (1.5')	95	92	
LCS 880-94649/1-A	Lab Control Sample	119	86	
LCSD 880-94649/2-A	Lab Control Sample Dup	114	103	
MB 880-94649/5-A	Method Blank	88	87	

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-50594-1	CS-1 (1.5')	106	82	
880-50594-1 MS	CS-1 (1.5')	96	85	
880-50594-1 MSD	CS-1 (1.5')	96	85	
880-50594-2	CS-2 (1.5')	203 S1+	161 S1+	
880-50594-3	CS-3 (1.5')	113	93	
880-50594-4	CS-4 (5.5')	109	86	
880-50594-5	CS-5 (5.5')	106	84	
880-50594-6	CS-6 (5.5')	103	80	
880-50594-7	CS-7 (5.5')	109	84	
880-50594-8	CS-8 (5.5')	104	80	
880-50594-9	SW-1 (1.5')	104	81	
880-50594-10	SW-2 (1.5')	105	80	
880-50594-11	SW-3 (1.5')	108	85	
880-50594-12	SW-4 (1.5')	106	87	

Surrogate Summary

Client: Carmona Resources Job ID: 880-50594-1 Project/Site: M-Maljamar Suction Line-12-S-09212021 SDG: Lea County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-50594-13	SW-5 (4')	113	90	
880-50594-14	SW-6 (5.5')	214 S1+	171 S1+	
880-50594-15	SW-7 (5.5')	103	84	
880-50594-16	SW-8 (5.5')	107	85	
880-50594-17	SW-9 (5.5')	107	86	
880-50594-18	SW-10 (5.5')	108	87	
880-50594-19	SW-11 (1.5')	105	82	
880-50594-20	SW-12 (1.5')	108	86	
LCS 880-94654/2-A	Lab Control Sample	123	107	
LCSD 880-94654/3-A	Lab Control Sample Dup	125	108	
MB 880-94654/1-A	Method Blank	147 S1+	118	
Surrogate Legend				

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

QC Sample Results

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212021

Job ID: 880-50594-1

SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-94649/5-A

Matrix: Solid

Analysis Batch: 94688

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 94649

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 13:19	
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 13:19	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 13:19	
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/01/24 17:00	11/02/24 13:19	
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/24 17:00	11/02/24 13:19	
Xylenes, Total	< 0.00400	U	0.00400		mg/Kg		11/01/24 17:00	11/02/24 13:19	

мв мв

	Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
	4-Bromofluorobenzene (Surr)	88		70 - 130	-	11/01/24 17:00	11/02/24 13:19	1
ı	1,4-Difluorobenzene (Surr)	87		70 - 130		11/01/24 17:00	11/02/24 13:19	1

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 880-94649/1-A

Matrix: Solid

Analysis Batch: 94688

Prep Type: Total/NA Prep Batch: 94649

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09516	-	mg/Kg		95	70 - 130	
Toluene	0.100	0.1094		mg/Kg		109	70 - 130	
Ethylbenzene	0.100	0.1185		mg/Kg		119	70 - 130	
m-Xylene & p-Xylene	0.200	0.2413		mg/Kg		121	70 - 130	
o-Xylene	0.100	0.1196		mg/Kg		120	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	119	70 - 130
1,4-Difluorobenzene (Surr)	86	70 - 130

Lab Sample ID: LCSD 880-94649/2-A

Matrix: Solid

Analysis Batch: 94688

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 94649

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.08978		mg/Kg		90	70 - 130	6	35
Toluene	0.100	0.09928		mg/Kg		99	70 - 130	10	35
Ethylbenzene	0.100	0.1077		mg/Kg		108	70 - 130	10	35
m-Xylene & p-Xylene	0.200	0.2166		mg/Kg		108	70 - 130	11	35
o-Xylene	0.100	0.1070		mg/Kg		107	70 - 130	11	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	114		70 - 130
1.4-Difluorobenzene (Surr)	103		70 - 130

Lab Sample ID: 880-50594-1 MS

Matrix: Solid

Analysis Batch: 94688

Client Sample ID: CS-1 (1.5')

Prep Type: Total/NA

Prep Batch: 94649

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U	0.100	0.08665		mg/Kg		87	70 - 130	
Toluene	<0.00200	U	0.100	0.08655		mg/Kg		87	70 - 130	

Eurofins Midland

Released to Imaging: 12/26/2024 12:33:16 PM

Project/Site: M-Maljamar Suction Line-12-S-09212021

Job ID: 880-50594-1

SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-50594-1 MS

Lab Sample ID: 880-50594-1 MSD

Matrix: Solid

Matrix: Solid

Analysis Batch: 94688

Client Sample ID: CS-1 (1.5')

Prep Type: Total/NA Prep Batch: 94649

Sample	Sample	Spike	MS	MS				%Rec	
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
<0.00200	U	0.100	0.08469		mg/Kg		85	70 - 130	
<0.00399	U	0.200	0.1722		mg/Kg		86	70 - 130	
<0.00200	U	0.100	0.08569		mg/Kg		86	70 - 130	
	Result <0.00200 <0.00399	Result Qualifier U	Result Qualifier Added <0.00200	Result Qualifier Added Result <0.00200	Result Qualifier Added Result Qualifier <0.00200	Result Qualifier Added Added Result Qualifier Unit Unit Unit Unit Unit Unit Unit Unit	Result Qualifier Added Result Qualifier Unit Unit Unit Major D <0.00200	Result Qualifier Added Result Qualifier Qualifier Unit Discrete Discrete %Rec <0.00200	Result Qualifier Added Added Result Qualifier Unit Unit Unit Unit Unit Unit Unit Unit

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Client Sample ID: CS-1 (1.5')

Prep Type: Total/NA

Prep Batch: 94649

Analysis Batch: 94688 Sample Sample Spike MSD MSD Result Qualifier Added Result Qualifier %Rec Limits RPD Limit Analyte Unit 0.100 0.07586 Benzene <0.00200 U mg/Kg 76 70 - 130 13 35 Toluene <0.00200 U 0.100 0.08712 87 70 - 130 mg/Kg 35 Ethylbenzene <0.00200 U 0.100 0.08546 mg/Kg 85 70 - 130 35 <0.00399 U 0.200 0.1710 86 70 - 130 35 m-Xylene & p-Xylene mg/Kg <0.00200 U 0.100 o-Xylene 0.08544 85 70 - 130 mg/Kg

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	98		70 - 130
1,4-Difluorobenzene (Surr)	89		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-94654/1-A

Matrix: Solid

Analysis Batch: 94553

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 94654

	MB								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/01/24 17:08	11/01/24 23:22	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		11/01/24 17:08	11/01/24 23:22	1
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/01/24 17:08	11/01/24 23:22	1
	MB	MB							

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	147	S1+	70 - 130	11/01/24 17:08	11/01/24 23:22	1
o-Terphenyl	118		70 - 130	11/01/24 17:08	11/01/24 23:22	1

Lab Sample ID: LCS 880-94654/2-A

Matrix: Solid

Analysis Batch: 94553

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 94654

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics	1000	1125		mg/Kg		113	70 - 130
(GRO)-C6-C10							
Diesel Range Organics (Over	1000	840.0		mg/Kg		84	70 - 130
C10-C28)							

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212021

Job ID: 880-50594-1

SDG: Lea County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-94654/2-A Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 94553

Prep Type: Total/NA Prep Batch: 94654

LCS LCS Surrogate %Recovery Qualifier Limits 1-Chlorooctane 123 70 - 130 o-Terphenyl 107 70 - 130

Lab Sample ID: LCSD 880-94654/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

C10-C28)

Analysis Batch: 94553

Prep Type: Total/NA Prep Batch: 94654

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit 1000 1133 113 70 - 13020 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 871.8 mg/Kg 87 70 - 13020

LCSD LCSD

Surrogate %Recovery Qualifier Limits 125 70 - 130 1-Chlorooctane 108 70 - 130 o-Terphenyl

Lab Sample ID: 880-50594-1 MS

Matrix: Solid

Analysis Batch: 94553

Client Sample ID: CS-1 (1.5') Prep Type: Total/NA

Prep Batch: 94654

Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Gasoline Range Organics <49.8 U 1010 970.0 mg/Kg 96 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over <49.8 U 1010 868.4 mg/Kg 86 70 - 130

C10-C28)

MS MS Surrogate %Recovery Qualifier Limits 70 - 130 1-Chlorooctane 96 70 - 130 o-Terphenyl 85

Lab Sample ID: 880-50594-1 MSD Client Sample ID: CS-1 (1.5')

Matrix: Solid

Analysis Batch: 94553

Prep Type: Total/NA

Prep Batch: 94654

Sample Sample MSD MSD %Rec RPD Spike Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits RPD Limit U 1010 969.2 96 Gasoline Range Organics <49.8 mg/Kg 70 - 130 n 20 (GRO)-C6-C10 Diesel Range Organics (Over <49.8 U 1010 843.0 mg/Kg 84 70 - 130 3 20 C10-C28)

MSD MSD

%Recovery Qualifier Surrogate Limits 1-Chlorooctane 96 70 - 130 85 70 - 130 o-Terphenyl

Client: Carmona Resources

Job ID: 880-50594-1 Project/Site: M-Maljamar Suction Line-12-S-09212021 SDG: Lea County, New Mexico

Client Sample ID: Method Blank

Prep Type: Soluble

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-94647/1-A

Matrix: Solid

Analysis Batch: 94650

MB MB

Dil Fac Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Chloride <10.0 U 10.0 mg/Kg 11/02/24 03:28

Lab Sample ID: LCS 880-94647/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 94650

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Chloride 250 233.1 mg/Kg 93 90 - 110

Lab Sample ID: LCSD 880-94647/3-A Client Sample ID: Lab Control Sample Dup **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 94650

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Chloride 250 255.1 mg/Kg 102 90 - 110

Lab Sample ID: 880-50594-1 MS Client Sample ID: CS-1 (1.5') **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 94650

Spike MS MS Sample Sample %Rec Analyte Added %Rec Result Qualifier Result Qualifier Unit D Limits Chloride 27.8 252 268.1 90 - 110 mg/Kg

Lab Sample ID: 880-50594-1 MSD Client Sample ID: CS-1 (1.5') **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 94650

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit 252 Chloride 27.8 287.8 mg/Kg 103 90 - 110

Lab Sample ID: 880-50594-11 MS Client Sample ID: SW-3 (1.5') **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 94650

Sample Sample Spike MS MS %Rec Result Qualifier Added Analyte Result Qualifier Unit D %Rec Limits Chloride 27.7 250 264 4 mg/Kg 90 - 110

Lab Sample ID: 880-50594-11 MSD Client Sample ID: SW-3 (1.5') **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 94650

MSD MSD %Rec RPD Sample Sample Spike Result Qualifier Added Analyte Result Qualifier %Rec Limits RPD Limit Unit Chloride 27.7 250 283.4 mg/Kg 102 90 - 110 20

Client: Carmona Resources

Job ID: 880-50594-1

Project/Site: M-Maljamar Suction Line-12-S-09212021

SDG: Lea County, New Mexico

GC VOA

Prep Batch: 94649

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
880-50594-1	CS-1 (1.5')	Total/NA	Solid	5035	
880-50594-2	CS-2 (1.5')	Total/NA	Solid	5035	
880-50594-3	CS-3 (1.5')	Total/NA	Solid	5035	
880-50594-4	CS-4 (5.5')	Total/NA	Solid	5035	
880-50594-5	CS-5 (5.5')	Total/NA	Solid	5035	
880-50594-6	CS-6 (5.5')	Total/NA	Solid	5035	
880-50594-7	CS-7 (5.5')	Total/NA	Solid	5035	
880-50594-8	CS-8 (5.5')	Total/NA	Solid	5035	
880-50594-9	SW-1 (1.5')	Total/NA	Solid	5035	
880-50594-10	SW-2 (1.5')	Total/NA	Solid	5035	
880-50594-11	SW-3 (1.5')	Total/NA	Solid	5035	
880-50594-12	SW-4 (1.5')	Total/NA	Solid	5035	
880-50594-13	SW-5 (4')	Total/NA	Solid	5035	
880-50594-14	SW-6 (5.5')	Total/NA	Solid	5035	
880-50594-15	SW-7 (5.5')	Total/NA	Solid	5035	
880-50594-16	SW-8 (5.5')	Total/NA	Solid	5035	
880-50594-17	SW-9 (5.5')	Total/NA	Solid	5035	
880-50594-18	SW-10 (5.5')	Total/NA	Solid	5035	
880-50594-19	SW-11 (1.5')	Total/NA	Solid	5035	
880-50594-20	SW-12 (1.5')	Total/NA	Solid	5035	
MB 880-94649/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-94649/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-94649/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-50594-1 MS	CS-1 (1.5')	Total/NA	Solid	5035	
880-50594-1 MSD	CS-1 (1.5')	Total/NA	Solid	5035	

Analysis Batch: 94688

Released to Imaging: 12/26/2024 12:33:16 PM

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-50594-1	CS-1 (1.5')	Total/NA	Solid	8021B	94649
880-50594-2	CS-2 (1.5')	Total/NA	Solid	8021B	94649
880-50594-3	CS-3 (1.5')	Total/NA	Solid	8021B	94649
880-50594-4	CS-4 (5.5')	Total/NA	Solid	8021B	94649
880-50594-5	CS-5 (5.5')	Total/NA	Solid	8021B	94649
880-50594-6	CS-6 (5.5')	Total/NA	Solid	8021B	94649
880-50594-7	CS-7 (5.5')	Total/NA	Solid	8021B	94649
880-50594-8	CS-8 (5.5')	Total/NA	Solid	8021B	94649
880-50594-9	SW-1 (1.5')	Total/NA	Solid	8021B	94649
880-50594-10	SW-2 (1.5')	Total/NA	Solid	8021B	94649
880-50594-11	SW-3 (1.5')	Total/NA	Solid	8021B	94649
880-50594-12	SW-4 (1.5')	Total/NA	Solid	8021B	94649
880-50594-13	SW-5 (4')	Total/NA	Solid	8021B	94649
880-50594-14	SW-6 (5.5')	Total/NA	Solid	8021B	94649
880-50594-15	SW-7 (5.5')	Total/NA	Solid	8021B	94649
880-50594-16	SW-8 (5.5')	Total/NA	Solid	8021B	94649
880-50594-17	SW-9 (5.5')	Total/NA	Solid	8021B	94649
880-50594-18	SW-10 (5.5')	Total/NA	Solid	8021B	94649
880-50594-19	SW-11 (1.5')	Total/NA	Solid	8021B	94649
880-50594-20	SW-12 (1.5')	Total/NA	Solid	8021B	94649
MB 880-94649/5-A	Method Blank	Total/NA	Solid	8021B	94649
LCS 880-94649/1-A	Lab Control Sample	Total/NA	Solid	8021B	94649
LCSD 880-94649/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	94649

Eurofins Midland

_

3

4

7

9

11

13

1 4

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212021

Job ID: 880-50594-1

SDG: Lea County, New Mexico

GC VOA (Continued)

Analysis Batch: 94688 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-50594-1 MS	CS-1 (1.5')	Total/NA	Solid	8021B	94649
880-50594-1 MSD	CS-1 (1.5')	Total/NA	Solid	8021B	94649

Analysis Batch: 94795

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-50594-1	CS-1 (1.5')	Total/NA	Solid	Total BTEX	
880-50594-2	CS-2 (1.5')	Total/NA	Solid	Total BTEX	
880-50594-3	CS-3 (1.5')	Total/NA	Solid	Total BTEX	
880-50594-4	CS-4 (5.5')	Total/NA	Solid	Total BTEX	
880-50594-5	CS-5 (5.5')	Total/NA	Solid	Total BTEX	
880-50594-6	CS-6 (5.5')	Total/NA	Solid	Total BTEX	
880-50594-7	CS-7 (5.5')	Total/NA	Solid	Total BTEX	
880-50594-8	CS-8 (5.5')	Total/NA	Solid	Total BTEX	
880-50594-9	SW-1 (1.5')	Total/NA	Solid	Total BTEX	
880-50594-10	SW-2 (1.5')	Total/NA	Solid	Total BTEX	
880-50594-11	SW-3 (1.5')	Total/NA	Solid	Total BTEX	
880-50594-12	SW-4 (1.5')	Total/NA	Solid	Total BTEX	
880-50594-13	SW-5 (4')	Total/NA	Solid	Total BTEX	
880-50594-14	SW-6 (5.5')	Total/NA	Solid	Total BTEX	
880-50594-15	SW-7 (5.5')	Total/NA	Solid	Total BTEX	
880-50594-16	SW-8 (5.5')	Total/NA	Solid	Total BTEX	
880-50594-17	SW-9 (5.5')	Total/NA	Solid	Total BTEX	
880-50594-18	SW-10 (5.5')	Total/NA	Solid	Total BTEX	
880-50594-19	SW-11 (1.5')	Total/NA	Solid	Total BTEX	
880-50594-20	SW-12 (1.5')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 94553

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-50594-1	CS-1 (1.5')	Total/NA	Solid	8015B NM	94654
880-50594-2	CS-2 (1.5')	Total/NA	Solid	8015B NM	94654
880-50594-3	CS-3 (1.5')	Total/NA	Solid	8015B NM	94654
880-50594-4	CS-4 (5.5')	Total/NA	Solid	8015B NM	94654
880-50594-5	CS-5 (5.5')	Total/NA	Solid	8015B NM	94654
880-50594-6	CS-6 (5.5')	Total/NA	Solid	8015B NM	94654
880-50594-7	CS-7 (5.5')	Total/NA	Solid	8015B NM	94654
880-50594-8	CS-8 (5.5')	Total/NA	Solid	8015B NM	94654
880-50594-9	SW-1 (1.5')	Total/NA	Solid	8015B NM	94654
880-50594-10	SW-2 (1.5')	Total/NA	Solid	8015B NM	94654
880-50594-11	SW-3 (1.5')	Total/NA	Solid	8015B NM	94654
880-50594-12	SW-4 (1.5')	Total/NA	Solid	8015B NM	94654
880-50594-13	SW-5 (4')	Total/NA	Solid	8015B NM	94654
880-50594-14	SW-6 (5.5')	Total/NA	Solid	8015B NM	94654
880-50594-15	SW-7 (5.5')	Total/NA	Solid	8015B NM	94654
880-50594-16	SW-8 (5.5')	Total/NA	Solid	8015B NM	94654
880-50594-17	SW-9 (5.5')	Total/NA	Solid	8015B NM	94654
880-50594-18	SW-10 (5.5')	Total/NA	Solid	8015B NM	94654
380-50594-19	SW-11 (1.5')	Total/NA	Solid	8015B NM	94654
880-50594-20	SW-12 (1.5')	Total/NA	Solid	8015B NM	94654
MB 880-94654/1-A	Method Blank	Total/NA	Solid	8015B NM	94654

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212021

Job ID: 880-50594-1

SDG: Lea County, New Mexico

GC Semi VOA (Continued)

Analysis Batch: 94553 (Continued)

Lab Sampl	e ID Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 880-94	1654/2-A Lab Control Sample	Total/NA	Solid	8015B NM	94654
LCSD 880-	94654/3-A Lab Control Sample Dup	Total/NA	Solid	8015B NM	94654
880-50594-	1 MS CS-1 (1.5')	Total/NA	Solid	8015B NM	94654
880-50594-	1 MSD CS-1 (1.5')	Total/NA	Solid	8015B NM	94654

Prep Batch: 94654

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-50594-1	CS-1 (1.5')	Total/NA	Solid	8015NM Prep	
880-50594-2	CS-2 (1.5')	Total/NA	Solid	8015NM Prep	
880-50594-3	CS-3 (1.5')	Total/NA	Solid	8015NM Prep	
880-50594-4	CS-4 (5.5')	Total/NA	Solid	8015NM Prep	
880-50594-5	CS-5 (5.5')	Total/NA	Solid	8015NM Prep	
880-50594-6	CS-6 (5.5')	Total/NA	Solid	8015NM Prep	
880-50594-7	CS-7 (5.5')	Total/NA	Solid	8015NM Prep	
880-50594-8	CS-8 (5.5')	Total/NA	Solid	8015NM Prep	
880-50594-9	SW-1 (1.5')	Total/NA	Solid	8015NM Prep	
880-50594-10	SW-2 (1.5')	Total/NA	Solid	8015NM Prep	
880-50594-11	SW-3 (1.5')	Total/NA	Solid	8015NM Prep	
880-50594-12	SW-4 (1.5')	Total/NA	Solid	8015NM Prep	
880-50594-13	SW-5 (4')	Total/NA	Solid	8015NM Prep	
880-50594-14	SW-6 (5.5')	Total/NA	Solid	8015NM Prep	
880-50594-15	SW-7 (5.5')	Total/NA	Solid	8015NM Prep	
880-50594-16	SW-8 (5.5')	Total/NA	Solid	8015NM Prep	
880-50594-17	SW-9 (5.5')	Total/NA	Solid	8015NM Prep	
880-50594-18	SW-10 (5.5')	Total/NA	Solid	8015NM Prep	
880-50594-19	SW-11 (1.5')	Total/NA	Solid	8015NM Prep	
880-50594-20	SW-12 (1.5')	Total/NA	Solid	8015NM Prep	
MB 880-94654/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-94654/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-94654/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-50594-1 MS	CS-1 (1.5')	Total/NA	Solid	8015NM Prep	
880-50594-1 MSD	CS-1 (1.5')	Total/NA	Solid	8015NM Prep	

Analysis Batch: 94771

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
880-50594-1	CS-1 (1.5')	Total/NA	Solid	8015 NM	
880-50594-2	CS-2 (1.5')	Total/NA	Solid	8015 NM	
880-50594-3	CS-3 (1.5')	Total/NA	Solid	8015 NM	
880-50594-4	CS-4 (5.5')	Total/NA	Solid	8015 NM	
880-50594-5	CS-5 (5.5')	Total/NA	Solid	8015 NM	
880-50594-6	CS-6 (5.5')	Total/NA	Solid	8015 NM	
880-50594-7	CS-7 (5.5')	Total/NA	Solid	8015 NM	
880-50594-8	CS-8 (5.5')	Total/NA	Solid	8015 NM	
880-50594-9	SW-1 (1.5')	Total/NA	Solid	8015 NM	
880-50594-10	SW-2 (1.5')	Total/NA	Solid	8015 NM	
880-50594-11	SW-3 (1.5')	Total/NA	Solid	8015 NM	
880-50594-12	SW-4 (1.5')	Total/NA	Solid	8015 NM	
880-50594-13	SW-5 (4')	Total/NA	Solid	8015 NM	
880-50594-14	SW-6 (5.5')	Total/NA	Solid	8015 NM	
880-50594-15	SW-7 (5.5')	Total/NA	Solid	8015 NM	
880-50594-16	SW-8 (5.5')	Total/NA	Solid	8015 NM	

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212021

Job ID: 880-50594-1

SDG: Lea County, New Mexico

GC Semi VOA (Continued)

Analysis Batch: 94771 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-50594-17	SW-9 (5.5')	Total/NA	Solid	8015 NM	
880-50594-18	SW-10 (5.5')	Total/NA	Solid	8015 NM	
880-50594-19	SW-11 (1.5')	Total/NA	Solid	8015 NM	
880-50594-20	SW-12 (1.5')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 94647

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-50594-1	CS-1 (1.5')	Soluble	Solid	DI Leach	
880-50594-2	CS-2 (1.5')	Soluble	Solid	DI Leach	
880-50594-3	CS-3 (1.5')	Soluble	Solid	DI Leach	
880-50594-4	CS-4 (5.5')	Soluble	Solid	DI Leach	
880-50594-5	CS-5 (5.5')	Soluble	Solid	DI Leach	
880-50594-6	CS-6 (5.5')	Soluble	Solid	DI Leach	
880-50594-7	CS-7 (5.5')	Soluble	Solid	DI Leach	
880-50594-8	CS-8 (5.5')	Soluble	Solid	DI Leach	
880-50594-9	SW-1 (1.5')	Soluble	Solid	DI Leach	
880-50594-10	SW-2 (1.5')	Soluble	Solid	DI Leach	
880-50594-11	SW-3 (1.5')	Soluble	Solid	DI Leach	
880-50594-12	SW-4 (1.5')	Soluble	Solid	DI Leach	
880-50594-13	SW-5 (4')	Soluble	Solid	DI Leach	
880-50594-14	SW-6 (5.5')	Soluble	Solid	DI Leach	
880-50594-15	SW-7 (5.5')	Soluble	Solid	DI Leach	
880-50594-16	SW-8 (5.5')	Soluble	Solid	DI Leach	
880-50594-17	SW-9 (5.5')	Soluble	Solid	DI Leach	
880-50594-18	SW-10 (5.5')	Soluble	Solid	DI Leach	
880-50594-19	SW-11 (1.5')	Soluble	Solid	DI Leach	
880-50594-20	SW-12 (1.5')	Soluble	Solid	DI Leach	
MB 880-94647/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-94647/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-94647/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-50594-1 MS	CS-1 (1.5')	Soluble	Solid	DI Leach	
880-50594-1 MSD	CS-1 (1.5')	Soluble	Solid	DI Leach	
880-50594-11 MS	SW-3 (1.5')	Soluble	Solid	DI Leach	
880-50594-11 MSD	SW-3 (1.5')	Soluble	Solid	DI Leach	

Analysis Batch: 94650

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-50594-1	CS-1 (1.5')	Soluble	Solid	300.0	94647
880-50594-2	CS-2 (1.5')	Soluble	Solid	300.0	94647
880-50594-3	CS-3 (1.5')	Soluble	Solid	300.0	94647
880-50594-4	CS-4 (5.5')	Soluble	Solid	300.0	94647
880-50594-5	CS-5 (5.5')	Soluble	Solid	300.0	94647
880-50594-6	CS-6 (5.5')	Soluble	Solid	300.0	94647
880-50594-7	CS-7 (5.5')	Soluble	Solid	300.0	94647
880-50594-8	CS-8 (5.5')	Soluble	Solid	300.0	94647
880-50594-9	SW-1 (1.5')	Soluble	Solid	300.0	94647
880-50594-10	SW-2 (1.5')	Soluble	Solid	300.0	94647
880-50594-11	SW-3 (1.5')	Soluble	Solid	300.0	94647
880-50594-12	SW-4 (1.5')	Soluble	Solid	300.0	94647

Client: Carmona Resources

Job ID: 880-50594-1

Project/Site: M-Maljamar Suction Line-12-S-09212021

SDG: Lea County, New Mexico

HPLC/IC (Continued)

Analysis Batch: 94650 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-50594-13	SW-5 (4')	Soluble	Solid	300.0	94647
880-50594-14	SW-6 (5.5')	Soluble	Solid	300.0	94647
880-50594-15	SW-7 (5.5')	Soluble	Solid	300.0	94647
880-50594-16	SW-8 (5.5')	Soluble	Solid	300.0	94647
880-50594-17	SW-9 (5.5')	Soluble	Solid	300.0	94647
880-50594-18	SW-10 (5.5')	Soluble	Solid	300.0	94647
880-50594-19	SW-11 (1.5')	Soluble	Solid	300.0	94647
880-50594-20	SW-12 (1.5')	Soluble	Solid	300.0	94647
MB 880-94647/1-A	Method Blank	Soluble	Solid	300.0	94647
LCS 880-94647/2-A	Lab Control Sample	Soluble	Solid	300.0	94647
LCSD 880-94647/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	94647
880-50594-1 MS	CS-1 (1.5')	Soluble	Solid	300.0	94647
880-50594-1 MSD	CS-1 (1.5')	Soluble	Solid	300.0	94647
880-50594-11 MS	SW-3 (1.5')	Soluble	Solid	300.0	94647
880-50594-11 MSD	SW-3 (1.5')	Soluble	Solid	300.0	94647

Eurofins Midland

6

3

4

6

9

10

13

Job ID: 880-50594-1 SDG: Lea County, New Mexico

Client Sample ID: CS-1 (1.5')

Date Collected: 11/01/24 00:00 Date Received: 11/01/24 15:53 Lab Sample ID: 880-50594-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	94649	11/01/24 17:00	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	94688	11/02/24 13:41	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			94795	11/02/24 13:41	SM	EET MID
Total/NA	Analysis	8015 NM		1			94771	11/02/24 00:13	SM	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	94654	11/01/24 17:08	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	94553	11/02/24 00:13	TKC	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	94647	11/01/24 16:16	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	94650	11/02/24 03:44	CH	EET MID

Client Sample ID: CS-2 (1.5')

Date Collected: 11/01/24 00:00 Date Received: 11/01/24 15:53 Lab Sample ID: 880-50594-2

Matrix: Solid

Batch Dil Initial Final Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Prep 5035 Total/NA 4.98 g 5 mL 94649 11/01/24 17:00 AA EET MID Total/NA 8021B 5 mL 11/02/24 14:01 **EET MID** Analysis 1 5 mL 94688 MNR Total/NA Total BTEX 94795 11/02/24 14:01 SM Analysis **EET MID** 1 Total/NA Analysis 8015 NM 94771 11/02/24 01:02 SM **EET MID** Total/NA 9.90 g 94654 11/01/24 17:08 TKC Prep 8015NM Prep 10 mL EET MID Total/NA Analysis 8015B NM 1 uL 1 uL 94553 11/02/24 01:02 TKC **EET MID** 11/01/24 16:16 Soluble Leach DI Leach 4.99 g 50 mL 94647 SA EET MID Soluble Analysis 300.0 50 mL 50 mL 94650 11/02/24 03:59 СН **EET MID**

Client Sample ID: CS-3 (1.5')

Date Collected: 11/01/24 00:00

Date Received: 11/01/24 15:53

Lab Sample ID: 880-50594-3

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	94649	11/01/24 17:00	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	94688	11/02/24 14:22	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			94795	11/02/24 14:22	SM	EET MID
Total/NA	Analysis	8015 NM		1			94771	11/02/24 01:20	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	94654	11/01/24 17:08	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	94553	11/02/24 01:20	TKC	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	94647	11/01/24 16:16	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	94650	11/02/24 04:04	CH	EET MID

Client Sample ID: CS-4 (5.5')

Date Collected: 11/01/24 00:00

Date Received: 11/01/24 15:53

Lab Sample	ID: 880-50594-4
------------	-----------------

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	94649	11/01/24 17:00	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	94688	11/02/24 14:42	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			94795	11/02/24 14:42	SM	EET MID

Eurofins Midland

3

4

6

8

10

12

۱

Jiili S Wildiana

Lab Chronicle

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212021

SDG: Lea County, New Mexico

Job ID: 880-50594-1

Client Sample ID: CS-4 (5.5')

Date Collected: 11/01/24 00:00 Date Received: 11/01/24 15:53

Lab Sample ID: 880-50594-4

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			94771	11/02/24 01:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	94654	11/01/24 17:08	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	94553	11/02/24 01:36	TKC	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	94647	11/01/24 16:16	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	94650	11/02/24 04:09	CH	EET MID

Lab Sample ID: 880-50594-5 Client Sample ID: CS-5 (5.5') Date Collected: 11/01/24 00:00

Date Received: 11/01/24 15:53

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	94649	11/01/24 17:00	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	94688	11/02/24 15:03	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			94795	11/02/24 15:03	SM	EET MID
Total/NA	Analysis	8015 NM		1			94771	11/02/24 01:54	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	94654	11/01/24 17:08	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	94553	11/02/24 01:54	TKC	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	94647	11/01/24 16:16	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	94650	11/02/24 04:15	CH	EET MID

Client Sample ID: CS-6 (5.5') Lab Sample ID: 880-50594-6 Date Collected: 11/01/24 00:00 **Matrix: Solid**

Date Received: 11/01/24 15:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	94649	11/01/24 17:00	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	94688	11/02/24 15:24	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			94795	11/02/24 15:24	SM	EET MID
Total/NA	Analysis	8015 NM		1			94771	11/02/24 02:10	SM	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	94654	11/01/24 17:08	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	94553	11/02/24 02:10	TKC	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	94647	11/01/24 16:16	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	94650	11/02/24 04:30	CH	EET MID

Lab Sample ID: 880-50594-7 Client Sample ID: CS-7 (5.5')

Date Collected: 11/01/24 00:00 Date Received: 11/01/24 15:53

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	94649	11/01/24 17:00	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	94688	11/02/24 15:44	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			94795	11/02/24 15:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			94771	11/02/24 02:26	SM	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	9.99 g 1 uL	10 mL 1 uL	94654 94553	11/01/24 17:08 11/02/24 02:26	TKC TKC	EET MID EET MID

Eurofins Midland

Matrix: Solid

Page 33 of 44

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212021 SDG: Lea County, New Mexico

Lab Sample ID: 880-50594-7

Client Sample ID: CS-7 (5.5') Date Collected: 11/01/24 00:00

Matrix: Solid

Job ID: 880-50594-1

Date Received: 11/01/24 15:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.04 g	50 mL	94647	11/01/24 16:16	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	94650	11/02/24 04:35	CH	EET MID

Client Sample ID: CS-8 (5.5') Lab Sample ID: 880-50594-8

Date Collected: 11/01/24 00:00 **Matrix: Solid**

Date Received: 11/01/24 15:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	94649	11/01/24 17:00	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	94688	11/02/24 16:05	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			94795	11/02/24 16:05	SM	EET MID
Total/NA	Analysis	8015 NM		1			94771	11/02/24 02:42	SM	EET MID
Total/NA	Prep	8015NM Prep			9.98 g	10 mL	94654	11/01/24 17:08	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	94553	11/02/24 02:42	TKC	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	94647	11/01/24 16:16	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	94650	11/02/24 04:40	CH	EET MID

Client Sample ID: SW-1 (1.5') Lab Sample ID: 880-50594-9

Date Collected: 11/01/24 00:00

Date Received: 11/01/24 15:53

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	94649	11/01/24 17:00	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	94688	11/02/24 16:25	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			94795	11/02/24 16:25	SM	EET MID
Total/NA	Analysis	8015 NM		1			94771	11/02/24 02:59	SM	EET MID
Total/NA	Prep	8015NM Prep			9.92 g	10 mL	94654	11/01/24 17:08	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	94553	11/02/24 02:59	TKC	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	94647	11/01/24 16:16	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	94650	11/02/24 04:45	CH	EET MID

Client Sample ID: SW-2 (1.5') Lab Sample ID: 880-50594-10

Date Collected: 11/01/24 00:00 Date Received: 11/01/24 15:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	94649	11/01/24 17:00	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	94688	11/02/24 16:46	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			94795	11/02/24 16:46	SM	EET MID
Total/NA	Analysis	8015 NM		1			94771	11/02/24 03:15	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	94654	11/01/24 17:08	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	94553	11/02/24 03:15	TKC	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	94647	11/01/24 16:16	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	94650	11/02/24 04:51	CH	EET MID

Eurofins Midland

Matrix: Solid

Matrix: Solid

Client Sample ID: SW-3 (1.5')

Date Collected: 11/01/24 00:00 Date Received: 11/01/24 15:53

Lab Sample ID: 880-50594-11

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	94649	11/01/24 17:00	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	94688	11/02/24 18:10	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			94795	11/02/24 18:10	SM	EET MID
Total/NA	Analysis	8015 NM		1			94771	11/02/24 03:48	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	94654	11/01/24 17:08	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	94553	11/02/24 03:48	TKC	EET MID
Soluble	Leach	DI Leach			5.00 g	50 mL	94647	11/01/24 16:16	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	94650	11/02/24 04:56	CH	EET MID

Client Sample ID: SW-4 (1.5') Lab Sample ID: 880-50594-12

Date Collected: 11/01/24 00:00 Date Received: 11/01/24 15:53

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 5035 Total/NA Prep 5.00 g 5 mL 94649 11/01/24 17:00 AA EET MID Total/NA 8021B 5 mL 94688 11/02/24 18:31 **EET MID** Analysis 1 5 mL MNR Total/NA Total BTEX 94795 11/02/24 18:31 SM Analysis **EET MID** 1 Total/NA Analysis 8015 NM 94771 11/02/24 04:04 SM **EET MID** Total/NA 94654 11/01/24 17:08 TKC Prep 8015NM Prep 10.05 g 10 mL **EET MID** Total/NA Analysis 8015B NM 1 uL 1 uL 94553 11/02/24 04:04 TKC **EET MID** 11/01/24 16:16 Soluble Leach DI Leach 4.97 g 50 mL 94647 SA EET MID Soluble Analysis 300.0 50 mL 50 mL 94650 11/02/24 05:11 СН **EET MID**

Client Sample ID: SW-5 (4') Lab Sample ID: 880-50594-13 Date Collected: 11/01/24 00:00 **Matrix: Solid**

Date Received: 11/01/24 15:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	94649	11/01/24 17:00	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	94688	11/02/24 18:51	MNR	EET MIC
Total/NA	Analysis	Total BTEX		1			94795	11/02/24 18:51	SM	EET MID
Total/NA	Analysis	8015 NM		1			94771	11/02/24 04:20	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	94654	11/01/24 17:08	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	94553	11/02/24 04:20	TKC	EET MIC
Soluble	Leach	DI Leach			4.98 g	50 mL	94647	11/01/24 16:16	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	94650	11/02/24 05:16	CH	EET MID

Lab Sample ID: 880-50594-14 Client Sample ID: SW-6 (5.5')

Date Collected: 11/01/24 00:00 Date Received: 11/01/24 15:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	94649	11/01/24 17:00	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	94688	11/02/24 19:12	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			94795	11/02/24 19:12	SM	EET MID

Eurofins Midland

Matrix: Solid

Page 35 of 44

Job ID: 880-50594-1 SDG: Lea County, New Mexico

Client Sample ID: SW-6 (5.5')

Date Collected: 11/01/24 00:00 Date Received: 11/01/24 15:53

Lab Sample ID: 880-50594-14

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			94771	11/02/24 04:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	94654	11/01/24 17:08	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	94553	11/02/24 04:36	TKC	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	94647	11/01/24 16:16	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	94650	11/02/24 05:32	CH	EET MID

Lab Sample ID: 880-50594-15

Client Sample ID: SW-7 (5.5') Date Collected: 11/01/24 00:00 **Matrix: Solid**

Date Received: 11/01/24 15:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	94649	11/01/24 17:00	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	94688	11/02/24 19:32	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			94795	11/02/24 19:32	SM	EET MID
Total/NA	Analysis	8015 NM		1			94771	11/02/24 04:52	SM	EET MID
Total/NA	Prep	8015NM Prep			9.94 g	10 mL	94654	11/01/24 17:08	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	94553	11/02/24 04:52	TKC	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	94647	11/01/24 16:16	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	94650	11/02/24 05:37	CH	EET MID

Client Sample ID: SW-8 (5.5') Lab Sample ID: 880-50594-16

Date Collected: 11/01/24 00:00 Date Received: 11/01/24 15:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	94649	11/01/24 17:00	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	94688	11/02/24 19:53	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			94795	11/02/24 19:53	SM	EET MID
Total/NA	Analysis	8015 NM		1			94771	11/02/24 05:09	SM	EET MID
Total/NA	Prep	8015NM Prep			9.98 g	10 mL	94654	11/01/24 17:08	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	94553	11/02/24 05:09	TKC	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	94647	11/01/24 16:16	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	94650	11/02/24 05:42	CH	EET MID

Lab Sample ID: 880-50594-17 Client Sample ID: SW-9 (5.5')

Date Collected: 11/01/24 00:00 Date Received: 11/01/24 15:53

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	94649	11/01/24 17:00	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	94688	11/02/24 20:14	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			94795	11/02/24 20:14	SM	EET MID
Total/NA	Analysis	8015 NM		1			94771	11/02/24 05:25	SM	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	9.92 g 1 uL	10 mL 1 uL	94654 94553	11/01/24 17:08 11/02/24 05:25	TKC TKC	EET MID EET MID

Eurofins Midland

Matrix: Solid

Page 36 of 44

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Lab Sample ID: 880-50594-19

Lab Sample ID: 880-50594-20

Client: Carmona Resources

Job ID: 880-50594-1 Project/Site: M-Maljamar Suction Line-12-S-09212021 SDG: Lea County, New Mexico

Client Sample ID: SW-9 (5.5') Lab Sample ID: 880-50594-17

Date Collected: 11/01/24 00:00 Date Received: 11/01/24 15:53

Batch Batch Dil Initial Final Batch Prepared Method Prep Type Туре Run Factor Amount Amount Number or Analyzed Analyst Lab Soluble DI Leach 4.95 g 94647 Leach 50 mL 11/01/24 16:16 SA **EET MID** 300.0 11/02/24 05:47 Soluble Analysis 1 50 mL 50 mL 94650 СН **EET MID**

Client Sample ID: SW-10 (5.5') Lab Sample ID: 880-50594-18

Date Collected: 11/01/24 00:00 Date Received: 11/01/24 15:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	94649	11/01/24 17:00	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	94688	11/02/24 20:34	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			94795	11/02/24 20:34	SM	EET MID
Total/NA	Analysis	8015 NM		1			94771	11/02/24 05:41	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	94654	11/01/24 17:08	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	94553	11/02/24 05:41	TKC	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	94647	11/01/24 16:16	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	94650	11/02/24 05:52	CH	EET MID

Client Sample ID: SW-11 (1.5')

Date Collected: 11/01/24 00:00

Date Received: 11/01/24 15:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	94649	11/01/24 17:00	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	94688	11/02/24 20:55	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			94795	11/02/24 20:55	SM	EET MID
Total/NA	Analysis	8015 NM		1			94771	11/02/24 05:58	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	94654	11/01/24 17:08	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	94553	11/02/24 05:58	TKC	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	94647	11/01/24 16:16	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	94650	11/02/24 05:57	CH	EET MID

Client Sample ID: SW-12 (1.5')

Date Collected: 11/01/24 00:00

Date Received: 11/01/24 15:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	94649	11/01/24 17:00	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	94688	11/02/24 21:15	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			94795	11/02/24 21:15	SM	EET MID
Total/NA	Analysis	8015 NM		1			94771	11/02/24 06:14	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	94654	11/01/24 17:08	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	94553	11/02/24 06:14	TKC	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	94647	11/01/24 16:16	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	94650	11/02/24 06:03	CH	EET MID

Eurofins Midland

Matrix: Solid

Lab Chronicle

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212021

Job ID: 880-50594-1 SDG: Lea County, New Mexico

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Carmona Resources

Job ID: 880-50594-1 SDG: Lea County, New Mexico

Project/Site: M-Maljamar Suction Line-12-S-09212021

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	ım	Identification Number	Expiration Date	
Texas	NELAF)	T104704400	06-30-25	
0 ,	are included in this report, bu	t the laboratory is not certif	fied by the governing authority. This lis	t may include analytes	
Analysis Method	Prep Method	Matrix	Analyte		
8015 NM		Solid	Total TPH		
Total BTEX		Solid	Total BTEX		

A

_

6

7

0

10

111

13

14

Method Summary

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212021

Job ID: 880-50594-1

SDG: Lea County, New Mexico

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Carmona Resources

Project/Site: M-Maljamar Suction Line-12-S-09212021

Job ID: 880-50594-1 SDG: Lea County, New Mexico

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-50594-1	CS-1 (1.5')	Solid	11/01/24 00:00	11/01/24 15:53
880-50594-2	CS-2 (1.5')	Solid	11/01/24 00:00	11/01/24 15:53
880-50594-3	CS-3 (1.5')	Solid	11/01/24 00:00	11/01/24 15:53
880-50594-4	CS-4 (5.5')	Solid	11/01/24 00:00	11/01/24 15:53
880-50594-5	CS-5 (5.5')	Solid	11/01/24 00:00	11/01/24 15:53
880-50594-6	CS-6 (5.5')	Solid	11/01/24 00:00	11/01/24 15:53
380-50594-7	CS-7 (5.5')	Solid	11/01/24 00:00	11/01/24 15:53
880-50594-8	CS-8 (5.5')	Solid	11/01/24 00:00	11/01/24 15:53
80-50594-9	SW-1 (1.5')	Solid	11/01/24 00:00	11/01/24 15:53
880-50594-10	SW-2 (1.5')	Solid	11/01/24 00:00	11/01/24 15:53
80-50594-11	SW-3 (1.5')	Solid	11/01/24 00:00	11/01/24 15:53
80-50594-12	SW-4 (1.5')	Solid	11/01/24 00:00	11/01/24 15:53
80-50594-13	SW-5 (4')	Solid	11/01/24 00:00	11/01/24 15:53
80-50594-14	SW-6 (5.5')	Solid	11/01/24 00:00	11/01/24 15:53
880-50594-15	SW-7 (5.5')	Solid	11/01/24 00:00	11/01/24 15:53
880-50594-16	SW-8 (5.5')	Solid	11/01/24 00:00	11/01/24 15:53
380-50594-17	SW-9 (5.5')	Solid	11/01/24 00:00	11/01/24 15:53
880-50594-18	SW-10 (5.5')	Solid	11/01/24 00:00	11/01/24 15:53
880-50594-19	SW-11 (1.5')	Solid	11/01/24 00:00	11/01/24 15:53
880-50594-20	SW-12 (1.5')	Solid	11/01/24 00:00	11/01/24 15:53

3

4

_

0

10

11

12

12

0
<u>a</u>
3
9
0
S
6
~

															١٥	00-00	24 (1)	880-0009# Cilalli di Custouy	Story		1
Project Manager:	Conner Moehring				Bill to: (if different))	Cam	nona R	Carmona Resources							Work	Order	Work Order Comments	nts		
Company Name:	Carmona Resources				Company Name:	e:							Prog	Program: UST/PST PRP	T/PST	뮻	□ro _M	□rownfields	尺	_perfund	
Address:	310 W Wall St Ste 500	00			Address:								State	State of Project:	3						
City, State ZIP:	Midland, TX 79701				City, State ZIP:								Repo	Reporting:Level II Level III	e	Level III		□ST/UST	묫	□evel IV □	
Phone:	432-813-6823			Email:									Delive	Deliverables: EDD	B		ADal	ADaPT 🗆	Other:	7	
Project Name:	M-Maljamar Suction Line -12-S-09212021	n Line -12-S-09	9212021	Turn.	Turn Around						ANALY	SIS RE	ANALYSIS REQUEST					P	reserva	Preservative Codes	
Project Number:	2	2556		□ Routine	Rush	Pres. Code											-	None: NO	ð	DI Water: H ₂ O	20
Project Location	Lea Count	Lea County, New Mexico	D	Due Date:	24 hrs)										Cool: Cool	00	MeOH: Me	
Sampler's Name:		GPJ						MRO										HCL: HC	C	HNO ₃ : HN	
PO #						ers		D + I									_	H ₂ S0 ₄ : H ₂	∓	NaOH: Na	
SAMPLE RECEIPT	IPT Terpp Blank		Yes No	Wet loe:	Yes) No	nete	1B	DRO	00.0			_			_			H ₃ PO ₄ : HP	H		
Received Intact:	S No		Thermometer ID:		7109	araı	802	२० +	de 3									NaHSO	NaHSO4: NABIS	S	
Cooler Custody Seals:	Yes	NA Correc	Correction Factor:		01:10	P	STEX	(GF	hlori									Na ₂ S ₂ O	Na ₂ S ₂ O ₃ : NaSO ₃	03	
Sample Custody Seals:	Yes No	(N/A Tempe	Temperature Reading:	ing:	nin	L	E	15N	С									Zn Ace	Zn Acetate+NaOH: Zn	OH: Zn	
l otal Containers:		Сопес	Corrected Lemperature:	iture:	1.6			H 80										Nacht	ASCOLD	NaUn*Ascorbic Acid: SAPC	
Sample Identification		Date	Time	Soil	Water Comp	np Cont		TP										S	ample	Sample Comments	
CS-1 (1.5')		11/1/2024		×	Comp	np 1	×	×	×							H					Ш
CS-2 (1.5')		11/1/2024		×	Comp	np 1	×	×	×			-	┝			┝	\vdash				
CS-3 (1.5')		11/1/2024		×	Comp	np 1	×	×	×	_						-	H				<u>_</u>
CS-4 (5.5')		11/1/2024		×	Comp	np 1	×	×	×							-					
CS-5 (5.5')		11/1/2024		×	Comp	np 1	×	×	×				-		L	-	-				
CS-6 (5.5')		11/1/2024		×	Comp	np 1	×	×	×							-					
CS-7 (5.5')		11/1/2024		×	Comp	np 1	×	×	×	L					_	\vdash	H				
CS-8 (5.5')		11/1/2024		×	Comp	np 1	×	×	×			_									
SW-1 (1.5')		11/1/2024		×	Comp	np 1	×	×	×			_			_						
SW-2 (1.5')		11/1/2024		×	Comp	np 1	×	×	×	_		\vdash	\vdash		<u></u>	L					
Comments: Ema	Comments: Email to Mike Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmonare	Mcarmona@c	carmonares	sources.com	and Conner	Moehring	/ Cm	oehri	ng@car		sources.com	om									
	Relino	Relinquished by: (Signature)	gnature)				Date	Date/Time				R	Received by; (Signature)	Sign Sta	nature)					Date/Time	
A						=	0	7											r		
X						+	ts.	0				1	-								\perp

_	,
H	-
D	
7	
9	L
c	5
È	
50	-
2	

Wo
Work Order No:
305
100
11/4/20

							3		Campan Bassiman			Work Or	Work Order Comments
Company Name:	Carmona Resources	Solifoes			Company Name	.e.						Program: UST/PST PRP rownfields]rownfields
Address:	310 W Wall St Ste 500	St Ste 500			Address:							State of Project:	
City, State ZIP:	Midland, TX 79701	79701			City, State ZIP:							Reporting:Level III Level III	□ST/UST □RRP □Level IV □
Phone:	432-813-6823	.3		Email:								Deliverables: EDD	ADaPT Other:
Project Name:	M-Maliama	M-Maliamar Suction I ine -12-S-09212021	12-5-09212021	Tun	Turn Around					ANAL	YSIS RE	ANALYSIS REQUEST	Preservative Codes
Project Number:		2556		Routine	№ Rush	Pres. Code							None: NO DI Water: H ₂ O
Project Location	Le	Lea County, New Mexico	Mexico	Due Date:	24 Nes)					Cool: Cool MeOH: Me
Sampler's Name:		GPJ		<u> </u>				MRC					
PO#:					-	ers) + C					H ₂ SO ₄ : H ₂ NaOH: Na
SAMPLE RECEIPT		Temp Blank:	Yes No	Wet Ice:	Yes No	nete	21B	DR	00.0				H ₃ PO ₄ ; HP
Received Intact:		Yes No	Thermometer ID:	D.		arai	(802	RO 4	ide 3				NaHSO4: NABIS
Cooler Custody Seals:	Υ.	S No N/A	Correction Factor:	tor:		P	STEX	(GF	hlori				Na ₂ S ₂ O ₃ : NaSO ₃
Sample Custody Seals:	ls: Yes	S No N/A	Temperature Reading:	eading:		L	В	15M	CI				Zn Acetate+NaOH: Zn
Total Containers:	-		Corrected Temperature:	perature:		L		H 80					NaOH+Ascorbic Acid: SAPC
Sample Identification	tification	Date	Time	Soil	Water Comp	mp Cont		TP					Sample Comments
SW-3 (1.5')	1.5')	11/1/2024		×	င	Comp 1	×	Н	×				
SW-4 (1.5)	1.5')	11/1/2024		×	Comp	mp 1	×		×				
SW-5 (4')	(4')	11/1/2024		×	Co	Comp 1	×	H	×				
SW-6 (5.5')	5.5')	11/1/2024		×	လ	Comp 1	×	\vdash	×				
SW-7 (5.5')	5.5')	11/1/2024		×	လ	Comp 1	×		×				
SW-8 (5.5')	5.5')	11/1/2024		×	င၀	Comp 1	×	×	×				
SW-9 (5.5')	5.5')	11/1/2024		×	င	Comp 1	×		×		_		
SW-10 (5.5')	(5.5')	11/1/2024		×	င္ပ	Comp 1	×	H	×				
SW-11 (1.5')	(1.5')	11/1/2024		×	င္ပ	Comp 1	×	\vdash	×				
SW-12 (1.5')	(1.5')	11/1/2024		×	င	Comp 1	×	×	×				
Comments: Email to Mike Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmonaresources.com	to Mike Ca	rmona / Mcarn	nona@carmon	aresources.co	m and Conne	r Moehrin	ng / Cm	noehri	ng@cai	monaresources.	com		
U U		Relinquished	Relinquished by: (Signature)			_	Dat	Date/Time			Z	Received by: (Signature)	Date/Time
) ; ;						-	1	100			1		
*						+	1	0	0				
<u></u>													

Login Sample Receipt Checklist

Client: Carmona Resources Job Number: 880-50594-1 SDG Number: Lea County, New Mexico

Login Number: 50594 List Source: Eurofins Midland List Number: 1

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Sante Fe Main Office Phone: (505) 476-3441 General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 407467

QUESTIONS

Operator:	OGRID:
FRONTIER FIELD SERVICES, LLC	221115
303 Veterans Airpark Lane	Action Number:
Midland, TX 79705	407467
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2426848904
Incident Name	NAPP2426848904 M-MALJAMAR SUCTION LINE - 12"-09212024 @ 0
Incident Type	Natural Gas Release
Incident Status	Remediation Closure Report Received
Incident Facility	[fAPP2123229442] Frontier Field Services Gathering System

Location of Release Source	
Please answer all the questions in this group.	
Site Name	M-Maljamar Suction Line - 12"-09212024
Date Release Discovered	09/21/2024
Surface Owner	Private

Incident Details	
Please answer all the questions in this group.	
Incident Type	Natural Gas Release
Did this release result in a fire or is the result of a fire	No
Did this release result in any injuries	No
Has this release reached or does it have a reasonable probability of reaching a watercourse	No
Has this release endangered or does it have a reasonable probability of endangering public health	No
Has this release substantially damaged or will it substantially damage property or the environment	No
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No

Nature and Volume of Release	
Material(s) released, please answer all that apply below. Any calculations or specific justifications f	or the volumes provided should be attached to the follow-up C-141 submission.
Crude Oil Released (bbls) Details	Not answered.
Produced Water Released (bbls) Details	Not answered.
Is the concentration of chloride in the produced water >10,000 mg/l	No
Condensate Released (bbls) Details	Cause: High Line Pressure Pipeline (Any) Condensate Released: 8 BBL Recovered: 6 BBL Lost: 2 BBL.
Natural Gas Vented (Mcf) Details	Cause: High Line Pressure Pipeline (Any) Natural Gas Vented Released: 143 MCF Recovered: 0 MCF Lost: 143 MCF.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 2

Action 407467

(QUESTIONS	(continued)

Q02011	orto (continuou)
Operator: FRONTIER FIELD SERVICES, LLC	OGRID: 221115
303 Veterans Airpark Lane	Action Number:
Midland, TX 79705	407467
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)
QUESTIONS	[0-141] Telliculation closure Request 0-141 (0-141-4-olosure)
Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No
Reasons why this would be considered a submission for a notification of a major release	Unavailable.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e.	e. gas only) are to be submitted on the C-129 form.
Initial Response	
The responsible party must undertake the following actions immediately unless they could create a s	afety hazard that would result in injury. T
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for releathe OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required asses which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Sebastian Orozco Title: Sr. Environmental Specialist Email: sorozco@kinetik.com Date: 09/24/2024

Sante Fe Main Office Phone: (505) 476-3441 General Information

Phone: (505) 629-6116

Online Phone Directory
https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico
Energy, Minerals and Natural Resources
Oil Conservation Division
1220 S. St Francis Dr.
Santa Fe, NM 87505

QUESTIONS, Page 3

Action 407467

QUESTIONS (continued)

Operator:	OGRID:
FRONTIER FIELD SERVICES, LLC	221115
303 Veterans Airpark Lane	Action Number:
Midland, TX 79705	407467
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Site Characterization		
Please answer all the questions in this group (only required when seeking remediation plan approva release discovery date.	l and beyond). This information must be provided to the appropriate district office no later than 90 days after the	
What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 100 and 500 (ft.)	
What method was used to determine the depth to ground water	NM OSE iWaters Database Search	
Did this release impact groundwater or surface water	No	
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:		
A continuously flowing watercourse or any other significant watercourse	Greater than 5 (mi.)	
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Greater than 5 (mi.)	
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)	
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Greater than 5 (mi.)	
Any other fresh water well or spring	Greater than 5 (mi.)	
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)	
A wetland	Greater than 5 (mi.)	
A subsurface mine	Greater than 5 (mi.)	
An (non-karst) unstable area	Greater than 5 (mi.)	
Categorize the risk of this well / site being in a karst geology	Low	
A 100-year floodplain	Greater than 5 (mi.)	
Did the release impact areas not on an exploration, development, production, or storage site	No	

Remediation Plan		
Please answer all the questions that apply or are indicated. This information must be provide	ded to the appropriate district office no later than 90 days after the release discovery date.	
Requesting a remediation plan approval with this submission Yes		
Attach a comprehensive report demonstrating the lateral and vertical extents of soil contam	ination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	No	
Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.)		
Chloride (EPA 300.0 or SM4500 CI B)	177	
TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M)	117	
GRO+DRO (EPA SW-846 Method 8015M)	117	
BTEX (EPA SW-846 Method 8021B or 8260B)	0	
Benzene (EPA SW-846 Method 8021B or 8260B)	0	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA which includes the anticipated timelines for beginning and completing the remediation.		
On what estimated date will the remediation commence 11/01/2024		
On what date will (or did) the final sampling or liner inspection occur	11/01/2024	
On what date will (or was) the remediation complete(d)	11/01/2024	
What is the estimated surface area (in square feet) that will be reclaimed	3500	
What is the estimated volume (in cubic yards) that will be reclaimed	130	
What is the estimated surface area (in square feet) that will be remediated	3500	
What is the estimated volume (in cubic yards) that will be remediated 130		
	These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed.	

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 407467

QUESTIONS (continued)

Operator:	OGRID:
FRONTIER FIELD SERVICES, LLC	221115
303 Veterans Airpark Lane	Action Number:
Midland, TX 79705	407467
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Remediation Plan (continued)	
Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.	
This remediation will (or is expected to) utilize the following processes to remediate	/ reduce contaminants:
(Select all answers below that apply.)	
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes
Which OCD approved facility will be used for off-site disposal	LEA LAND LANDFILL [fEEM0112342028]
OR which OCD approved well (API) will be used for off-site disposal	Not answered.
OR is the off-site disposal site, to be used, out-of-state	Not answered.
OR is the off-site disposal site, to be used, an NMED facility	Not answered.
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.
(In Situ) Soil Vapor Extraction	Not answered.
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.
OTHER (Non-listed remedial process)	Not answered.

Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Name: Sebastian Orozco
Title: Sr. Environmental Specialist
Email: sorozco@kinetik.com
Date: 12/02/2024

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 407467

QUESTIONS (continued)

Operator:	OGRID:
FRONTIER FIELD SERVICES, LLC	221115
303 Veterans Airpark Lane	Action Number:
Midland, TX 79705	407467
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Deferral Requests Only	
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.	
Requesting a deferral of the remediation closure due date with the approval of this submission	No

Sante Fe Main Office Phone: (505) 476-3441 General Information

Phone: (505) 629-6116

Online Phone Directory
https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 407467

QUESTIONS (continued)

Operator:	OGRID:
FRONTIER FIELD SERVICES, LLC	221115
303 Veterans Airpark Lane	Action Number:
Midland, TX 79705	407467
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	397409
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	11/01/2024
What was the (estimated) number of samples that were to be gathered	20
What was the sampling surface area in square feet	1623

Remediation Closure Request	
Only answer the questions in this group if seeking remediation closure for this release because all re	emediation steps have been completed.
Requesting a remediation closure approval with this submission	Yes
Have the lateral and vertical extents of contamination been fully delineated	Yes
Was this release entirely contained within a lined containment area	No
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes
What was the total surface area (in square feet) remediated	3500
What was the total volume (cubic yards) remediated	130
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes
What was the total surface area (in square feet) reclaimed	3500
What was the total volume (in cubic yards) reclaimed	130
Summarize any additional remediation activities not included by answers (above)	N/A

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (in .pdf format) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Name: Sebastian Orozco
Title: Sr. Environmental Specialist
Email: sorozco@kinetik.com
Date: 12/02/2024

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Action 407467

QUESTIONS (continued)

Operator:	OGRID:
FRONTIER FIELD SERVICES, LLC	221115
303 Veterans Airpark Lane	Action Number:
Midland, TX 79705	407467
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Reclamation Report		
Only answer the questions in this group if all reclamation steps have been completed.		
Requesting a reclamation approval with this submission	No	

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 407467

CONDITIONS

Operator:	OGRID:
FRONTIER FIELD SERVICES, LLC	221115
303 Veterans Airpark Lane	Action Number:
Midland, TX 79705	407467
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

CONDITIONS

Created By	Condition	Condition Date
bhall	Remediation closure report approved.	12/26/2024
bhall	A reclamation report will not be accepted until reclamation of the release area, including areas reasonably needed for production or drilling activities, is complete and meet the requirements of 19.15.29.13 NMAC. Areas not reasonably needed for production or drilling activities will still need to be reclaimed and revegetated as early as practicable.	12/26/2024
bhall	The reclamation report will need to include: Executive Summary of the reclamation activities; Scaled Site Map including sampling locations; Analytical results including, but not limited to, results showing that any remaining impacts meet the reclamation standards and results to prove the backfill is non-waste containing; At least one (1) representative 5-point composite sample will need to be collected from the backfill material that will be used for the reclamation of the top four feet of the excavation. The OCD reserves the right to request additional sampling if needed; pictures of the backfilled areas showing that the area is back, as nearly as practical, to the original condition or the final land use and maintain those areas to control dust and minimize erosion to the extent practical; pictures of the top layer, which is either the background thickness of topsoil or one foot of suitable material to establish vegetation at the site, whichever is greater; and a revegetation plan.	12/26/2024
bhall	A revegetation report will not be accepted until revegetation of the release area, including areas reasonably needed for production or drilling activities, is complete and meet the requirements of 19.15.29.13 NMAC. Areas not reasonably needed for production or drilling activities will still need to be reclaimed and revegetated as early as practicable.	12/26/2024
bhall	All revegetation activities will need to be documented and included in the revegetation report. The revegetation report will need to include: An executive summary of the revegetation activities including: Seed mix, Method of seeding, dates of when the release area was reseeded, information pertinent to inspections, information about any amendments added to the soil, information on how the vegetative cover established meets the life-form ratio of plus or minus fifty percent of pre-disturbance levels and a total percent plant cover of at least seventy percent of pre-disturbance levels, excluding noxious weeds per 19.15.29.13 D.(3) NMAC, and any additional information; a scaled Site Map including area that was revegetated in square feet; and pictures of the revegetated areas during reseeding activities, inspections, and final pictures when revegetation is achieved.	12/26/2024