

75 Suttle Street Durango, CO 81303 970.247.4220 Phone jeremy.allen@greenanalytical.com

11 April 2024

Kyle Siesser Cottonwood Consulting PO Box 1653 Durango, CO 81302

RE: Mudge LS #006

Enclosed are the results of analyses for samples received by the laboratory on 03/27/24 15:45. The data to follow was performed, in whole or in part, by Green Analytical Laboratories. Any data that was performed by a subcontract laboratory is included within the GAL report, or with an additional report attached.

If you need any further assistance, please feel free to contact me.

Sincerely,

Veronica Wells

Project Manager

Neronica & Wells

All accredited analytes contained in this report are denoted by an asterisk (*). For a complete list of accredited analytes please do not hesitate to contact us via any of the contact information contained in this report. All of our certifications can be viewed at http://greenanalytical.com/certifications/

Green Analytical Laboratories is NELAP accredited through the Texas Commission on Environmental Quality. Accreditation applies to drinking water and non-potable water matrices for trace metals and a variety of inorganic parameters. Green Analytical Laboratories is also accredited through the Colorado Department of Public Health and Environment and EPA region 8 for trace metals, Cyanide, Fluoride, Nitrate, and Nitrite in drinking water. TNI Certificate Number: TX-C24-00019

Our affiliate laboratory, Cardinal Laboratories, is also NELAP accredited through the Texas Commission on Environmental Quality for a variety of organic constituents in drinking water, non-potable water and solid matrices. Cardinal is also accredited for regulated VOCs, TTHM, and HAA-5 in drinking water through the Colorado Department of Public Health and Environment and EPA region 8. TNI Certificate Number: T104704398-23-16

Table of Contents

Samples in Report	3
Sample Results	4
2403227-01: MW #1	4
Quality Assurance Results	7
Notes and Definitions	13
Qualifier Summary	14
Chain of Custody & Attachments	15

Durango CO, 81302

Project: VOC 8260

Project Name / Number: Mudge LS #006
Project Manager: Kyle Siesser

Reported:

04/11/24 08:23

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
MW #1	2403227-01	Water	03/27/24 09:20	03/27/24 15:45	

Green Analytical Laboratories

Veronica Wells, Project Manager

Neronica J Wells

Released to Imaging: 1/9/2025 2:07:54 PM

Durango CO, 81302

Project: VOC 8260
Project Name / Number: Mudge LS #006
Project Manager: Kyle Siesser

Reported: 04/11/24 08:23

MW #1 2403227-01 (Ground Water)

Sampled Date: 03/27/24 09:20

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst

Subcontracted -- Cardinal Laboratories 101 East Marland Hobbs, NM 88240

VOLATILES BY GC/MS								
1,1,1,2-Tetrachloroethane*	< 0.010	0.010	0.001	mg/L	20	04/08/24 13:30	8260B	MS
1,1,1-Trichloroethane*	< 0.010	0.010	0.001	mg/L	20	04/08/24 13:30	8260B	MS
1,1,2,2-Tetrachloroethane*	< 0.010	0.010	0.001	mg/L	20	04/08/24 13:30	8260B	MS
1,1,2-Trichloroethane*	< 0.010	0.010	0.001	mg/L	20	04/08/24 13:30	8260B	MS
1,1-Dichloroethane*	< 0.010	0.010	0.003	mg/L	20	04/08/24 13:30	8260B	MS
1,1-Dichloroethene*	< 0.010	0.010	0.004	mg/L	20	04/08/24 13:30	8260B	MS
1,1-Dichloropropene*	< 0.010	0.010	0.003	mg/L	20	04/08/24 13:30	8260B	MS
1,2,3-Trichlorobenzene*	< 0.010	0.010	0.005	mg/L	20	04/08/24 13:30	8260B	MS
1,2,4-Trichlorobenzene*	< 0.010	0.010	0.003	mg/L	20	04/08/24 13:30	8260B	MS
1,2,4-Trimethylbenzene*	1.08	0.010	0.0009	mg/L	20	04/08/24 13:30	8260B	MS
1,2-Dibromo-3-chloropropane*	< 0.010	0.010	0.010	mg/L	20	04/08/24 13:30	8260B	MS
1,2-Dibromoethane*	< 0.010	0.010	0.002	mg/L	20	04/08/24 13:30	8260B	MS
1,2-Dichlorobenzene*	< 0.010	0.010	0.001	mg/L	20	04/08/24 13:30	8260B	MS
1,2-Dichloroethane*	< 0.010	0.010	0.001	mg/L	20	04/08/24 13:30	8260B	MS
1,2-Dichloropropane*	< 0.010	0.010	0.002	mg/L	20	04/08/24 13:30	8260B	MS
1,3,5-Trimethylbenzene*	0.426	0.010	0.0009	mg/L	20	04/08/24 13:30	8260B	MS
1,3-Dichlorobenzene*	< 0.010	0.010	0.001	mg/L	20	04/08/24 13:30	8260B	MS
1,3-Dichloropropane*	< 0.010	0.010	0.003	mg/L	20	04/08/24 13:30	8260B	MS
1,4-Dichlorobenzene	< 0.010	0.010	0.0007	mg/L	20	04/08/24 13:30	8260B	MS
1,4-Dioxane	< 0.200	0.200	0.200	mg/L	20	04/08/24 13:30	8260B	MS
1.2.3-trichloropropane*	< 0.010	0.010	0.002	mg/L	20	04/08/24 13:30	8260B	MS
2,2-Dichloropropane*	< 0.010	0.010	0.010	mg/L	20	04/08/24 13:30	8260B	MS
2-Butanone*	< 0.040	0.040	0.040	mg/L	20	04/08/24 13:30	8260B	MS
2-Chlorotoluene*	< 0.010	0.010	0.0008	mg/L	20	04/08/24 13:30	8260B	MS
2-Hexanone*	0.042	0.020	0.006	mg/L	20	04/08/24 13:30	8260B	MS
4-Chlorotoluene*	< 0.010	0.010	0.0009	mg/L	20	04/08/24 13:30	8260B	MS
4-Methyl-2-pentanone*	< 0.020	0.020	0.002	mg/L	20	04/08/24 13:30	8260B	MS
Acetone*	< 0.200	0.200	0.017	mg/L	20	04/08/24 13:30	8260B	MS
Acrolein*	< 0.100	0.100	0.022	mg/L	20	04/08/24 13:30	8260B	MS
Acrylonitrile*	< 0.040	0.040	0.016	mg/L	20	04/08/24 13:30	8260B	MS

Green Analytical Laboratories

Neronica J Wells

Durango CO, 81302

Project: VOC 8260 Project Name / Number: Mudge LS #006

Reported: 04/11/24 08:23

MW #1

Project Manager: Kyle Siesser

2403227-01 (Ground Water) Sampled Date: 03/27/24 09:20

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst

Subcontracted -- Cardinal Laboratories 101 East Marland Hobbs, NM 88240

VOLATILES BY GC/MS								
Benzene*	0.952	0.010	0.0009	mg/L	20	04/08/24 13:30	8260B	MS
Bromobenzene*	< 0.010	0.010	0.001	mg/L	20	04/08/24 13:30	8260B	MS
Bromochloromethane*	< 0.010	0.010	0.003	mg/L	20	04/08/24 13:30	8260B	MS
Bromodichloromethane*	< 0.010	0.010	0.0008	mg/L	20	04/08/24 13:30	8260B	MS
Bromoform*	< 0.010	0.010	0.002	mg/L	20	04/08/24 13:30	8260B	MS
Bromomethane*	< 0.010	0.010	0.010	mg/L	20	04/08/24 13:30	8260B	MS
Carbon disulfide*	< 0.100	0.100	0.003	mg/L	20	04/08/24 13:30	8260B	MS
Carbon tetrachloride*	< 0.010	0.010	0.003	mg/L	20	04/08/24 13:30	8260B	MS
Chlorobenzene*	< 0.010	0.010	0.0008	mg/L	20	04/08/24 13:30	8260B	MS
Chloroethane*	< 0.010	0.010	0.010	mg/L	20	04/08/24 13:30	8260B	MS
Chloroform*	< 0.010	0.010	0.0003	mg/L	20	04/08/24 13:30	8260B	MS
Chloromethane*	< 0.010	0.010	0.010	mg/L	20	04/08/24 13:30	8260B	MS
cis-1,2-Dichloroethene*	< 0.010	0.010	0.005	mg/L	20	04/08/24 13:30	8260B	MS
cis-1,3-Dichloropropene*	< 0.010	0.010	0.002	mg/L	20	04/08/24 13:30	8260B	MS
Dibromochloromethane*	< 0.010	0.010	0.002	mg/L	20	04/08/24 13:30	8260B	MS
Dibromomethane*	< 0.010	0.010	0.003	mg/L	20	04/08/24 13:30	8260B	MS
Dichlorodifluoromethane*	< 0.010	0.010	0.010	mg/L	20	04/08/24 13:30	8260B	MS
Ethylbenzene*	0.867	0.010	0.0006	mg/L	20	04/08/24 13:30	8260B	MS
Hexachlorobutadiene*	< 0.010	0.010	0.010	mg/L	20	04/08/24 13:30	8260B	MS
Iodomethane	< 0.020	0.020	0.001	mg/L	20	04/08/24 13:30	8260B	MS
Isopropylbenzene*	0.111	0.010	0.0004	mg/L	20	04/08/24 13:30	8260B	MS
m+p - Xylene*	3.60	0.020	0.002	mg/L	20	04/08/24 13:30	8260B	MS
Methyl tert-butyl ether	< 0.020	0.020	0.005	mg/L	20	04/08/24 13:30	8260B	MS
Methylene chloride*	< 0.040	0.040	0.010	mg/L	20	04/08/24 13:30	8260B	MS
Naphthalene*	0.096	0.010	0.002	mg/L	20	04/08/24 13:30	8260B	MS
n-Butylbenzene*	< 0.010	0.010	0.001	mg/L	20	04/08/24 13:30	8260B	MS
n-Propylbenzene*	0.134	0.010	0.001	mg/L	20	04/08/24 13:30	8260B	MS
o-Xylene*	1.40	0.010	0.003	mg/L	20	04/08/24 13:30	8260B	MS
p-Isopropyltoluene*	0.066	0.010	0.0009	mg/L	20	04/08/24 13:30	8260B	MS
sec-Butylbenzene*	0.027	0.010	0.0009	mg/L	20	04/08/24 13:30	8260B	MS
Styrene*	< 0.010	0.010	0.002	mg/L	20	04/08/24 13:30	8260B	MS
tert-Butylbenzene*	< 0.010	0.010	0.001	mg/L	20	04/08/24 13:30	8260B	MS

Green Analytical Laboratories

Neronica J Wells

Cottonwood Consulting

Project: VOC 8260 PO Box 1653 Project Name / Number: Mudge LS #006 Durango CO, 81302 Project Manager: Kyle Siesser

Reported:

04/11/24 08:23

MW #1

2403227-01 (Ground Water) Sampled Date: 03/27/24 09:20

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst	l
---------	--------	----	-----	-------	----------	----------	--------	-------	---------	---

Subcontracted -- Cardinal Laboratories 101 East Marland Hobbs, NM 88240

VOLATILES BY GC/MS								
Tetrachloroethene*	< 0.010	0.010	0.002	mg/L	20	04/08/24 13:30	8260B	MS
Toluene*	2.68	0.010	0.002	mg/L	20	04/08/24 13:30	8260B	MS
Total Xylenes*	5.00	0.020	0.004	mg/L	20	04/08/24 13:30	8260B	MS
trans-1,2-Dichloroethene*	< 0.010	0.010	0.003	mg/L	20	04/08/24 13:30	8260B	MS
trans-1,3-Dichloropropene*	< 0.010	0.010	0.001	mg/L	20	04/08/24 13:30	8260B	MS
trans-1,4-Dichloro-2-butene	< 0.200	0.200	0.006	mg/L	20	04/08/24 13:30	8260B	MS
Trichloroethene*	< 0.010	0.010	0.003	mg/L	20	04/08/24 13:30	8260B	MS
Trichlorofluoromethane*	< 0.010	0.010	0.003	mg/L	20	04/08/24 13:30	8260B	MS
Vinyl acetate*	< 0.010	0.010	0.010	mg/L	20	04/08/24 13:30	8260B	MS
Vinyl chloride*	< 0.010	0.010	0.010	mg/L	20	04/08/24 13:30	8260B	MS
Surrogate: 4-Bromofluorobenzene			100 %	76.4-114		04/08/24	8260B	MS
						13:30		
Surrogate: Dibromofluoromethane			94.8 %	82.4-141		04/08/24	8260B	MS
Surrogate: Toluene-d8			102 %	87.1-110		13:30 04/08/24	8260B	MS
Surroguie. 10iuene-uo			102 %	0/.1-110		13:30	0200B	WIS

Green Analytical Laboratories

Neronica J Wells

Durango CO, 81302

Project: VOC 8260 Project Name / Number: Mudge LS #006

Reported: 04/11/24 08:23

VOLATILES BY GC/MS - Quality Control

Project Manager: Kyle Siesser

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 4040332 - Volatiles

Blank (4040332-BLK1)			Prepare	ed: 04/03/24 A	nalyzed: 04/04	/24	
1,1,1,2-Tetrachloroethane	ND	0.0005	mg/L				
1,1,1-Trichloroethane	ND	0.0005	mg/L				
1,1,2,2-Tetrachloroethane	ND	0.0005	mg/L				
1,1,2-Trichloroethane	ND	0.0005	mg/L				
1,1-Dichloroethane	ND	0.0005	mg/L				
1,1-Dichloroethene	ND	0.0005	mg/L				
1,1-Dichloropropene	ND	0.0005	mg/L				
1,2,3-Trichlorobenzene	ND	0.0005	mg/L				
1,2,4-Trichlorobenzene	ND	0.0005	mg/L				
1,2,4-Trimethylbenzene	ND	0.0005	mg/L				
1,2-Dibromo-3-chloropropane	ND	0.0005	mg/L				
1,2-Dibromoethane	ND	0.0005	mg/L				
1,2-Dichlorobenzene	ND	0.0005	mg/L				
1,2-Dichloroethane	ND	0.0005	mg/L				
1,2-Dichloropropane	ND	0.0005	mg/L				
1,3,5-Trimethylbenzene	ND	0.0005	mg/L				
1,3-Dichlorobenzene	ND	0.0005	mg/L				
1,3-Dichloropropane	ND	0.0005	mg/L				
1,4-Dichlorobenzene	ND	0.0005	mg/L				
1,4-Dioxane	ND	0.010	mg/L				
1.2.3-trichloropropane	ND	0.0005	mg/L				
2,2-Dichloropropane	ND	0.0005	mg/L				
2-Butanone	ND	0.002	mg/L				
2-Chlorotoluene	ND	0.0005	mg/L				
2-Hexanone	ND	0.001	mg/L				
Surrogate: 4-Bromofluorobenzene	0.0523		mg/L	0.0500	105	76.4-114	
4-Chlorotoluene	ND	0.0005	mg/L				
4-Methyl-2-pentanone	ND	0.001	mg/L				
Acetone	ND	0.010	mg/L				
Acrolein	ND	0.005	mg/L				
Acrylonitrile	ND	0.002	mg/L				
Benzene	ND	0.0005	mg/L				
Bromobenzene	ND	0.0005	mg/L				
Bromochloromethane	ND	0.0005	mg/L				
Bromodichloromethane	ND	0.0005	mg/L				
Bromoform	ND	0.0005	mg/L				

Green Analytical Laboratories

Neronica J Wills

Cottonwood Consulting

Project: VOC 8260

PO Box 1653 Durango CO, 81302 Project Name / Number: Mudge LS #006
Project Manager: Kyle Siesser

Reported:

04/11/24 08:23

VOLATILES BY GC/MS - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 4040332 - Volatiles (Continued)

Blank (4040332-BLK1) (Continued)			Prep	pared: 04/03/24 Ar	nalyzed: 04/04/2	4	
Bromomethane	ND	0.0005	mg/L				
Carbon disulfide	0.001	0.001	mg/L				
Carbon tetrachloride	ND	0.0005	mg/L				
Chlorobenzene	ND	0.0005	mg/L				
Chloroethane	ND	0.0005	mg/L				
Chloroform	ND	0.0005	mg/L				
Chloromethane	ND	0.0005	mg/L				
cis-1,2-Dichloroethene	ND	0.0005	mg/L				
cis-1,3-Dichloropropene	ND	0.0005	mg/L				
Dibromochloromethane	ND	0.0005	mg/L				
Surrogate: Dibromofluoromethane	0.0473		mg/L	0.0500	94.5	82.4-141	
Dibromomethane	ND	0.0005	mg/L				
Dichlorodifluoromethane	ND	0.0005	mg/L				
Ethylbenzene	ND	0.0005	mg/L				
Hexachlorobutadiene	ND	0.0005	mg/L				
Iodomethane	ND	0.001	mg/L				
Isopropylbenzene	ND	0.0005	mg/L				
m+p - Xylene	ND	0.001	mg/L				
Methyl tert-butyl ether	ND	0.001	mg/L				
Methylene chloride	0.0007	0.0005	mg/L				
Naphthalene	ND	0.0005	mg/L				
n-Butylbenzene	ND	0.0005	mg/L				
n-Propylbenzene	ND	0.0005	mg/L				
o-Xylene	ND	0.0005	mg/L				
p-Isopropyltoluene	ND	0.0005	mg/L				
sec-Butylbenzene	ND	0.0005	mg/L				
Styrene	ND	0.0005	mg/L				
tert-Butylbenzene	ND	0.0005	mg/L				
Tetrachloroethene	ND	0.0005	mg/L				
Toluene	ND	0.0005	mg/L				
Surrogate: Toluene-d8	0.0511		mg/L	0.0500	102	87.1-110	
Total Xylenes	ND	0.001	mg/L				
trans-1,2-Dichloroethene	ND	0.0005	mg/L				
trans-1,3-Dichloropropene	ND	0.0005	mg/L				
trans-1,4-Dichloro-2-butene	ND	0.010	mg/L				
Trichloroethene	ND	0.0005	mg/L				
Trichlorofluoromethane	ND	0.0005	mg/L				
Vinyl acetate	ND	0.0005	mg/L				
Vinyl chloride	ND	0.0005	mg/L				

Green Analytical Laboratories

Neronica J Wells

Durango CO, 81302

Project: VOC 8260

Project Name / Number: Mudge LS #006

Reported:

Project Manager: Kyle Siesser

04/11/24 08:23

VOLATILES BY GC/MS - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
D + 1 4040222 1/1 (C) +: 1)										

Batch 4040332 - Volatiles (Continued)

LCS (4040332-BS1)			Prep	pared: 04/03/24 A	Analyzed: 04/04/2	4	
1,1,1,2-Tetrachloroethane	0.022	0.0005	mg/L	0.0200	108	82.4-120	
1,1,1-Trichloroethane	0.019	0.0005	mg/L	0.0200	93.4	80.7-121	
1,1,2,2-Tetrachloroethane	0.020	0.0005	mg/L	0.0200	99.8	76.5-121	
1,1,2-Trichloroethane	0.021	0.0005	mg/L	0.0200	104	81.7-118	
1,1-Dichloroethane	0.019	0.0005	mg/L	0.0200	94.7	74.8-123	
1,1-Dichloroethene	0.021	0.0005	mg/L	0.0200	103	53.9-149	
1,1-Dichloropropene	0.018	0.0005	mg/L	0.0200	92.4	85.9-115	
1,2,3-Trichlorobenzene	0.019	0.0005	mg/L	0.0200	92.8	76.1-134	
1,2,4-Trichlorobenzene	0.020	0.0005	mg/L	0.0200	100	72.4-136	
1,2,4-Trimethylbenzene	0.022	0.0005	mg/L	0.0200	109	67.4-138	
1,2-Dibromo-3-chloropropane	0.018	0.0005	mg/L	0.0200	89.6	71.7-124	
1,2-Dibromoethane	0.020	0.0005	mg/L	0.0200	100	84.9-116	
1,2-Dichlorobenzene	0.020	0.0005	mg/L	0.0200	98.9	82.5-119	
1,2-Dichloroethane	0.018	0.0005	mg/L	0.0200	89.2	72.5-123	
1,2-Dichloropropane	0.020	0.0005	mg/L	0.0200	97.8	79.4-117	
1,3,5-Trimethylbenzene	0.021	0.0005	mg/L	0.0200	106	69-137	
1,3-Dichlorobenzene	0.020	0.0005	mg/L	0.0200	101	84.4-120	
1,3-Dichloropropane	0.022	0.0005	mg/L	0.0200	108	82.6-117	
1,4-Dichlorobenzene	0.020	0.0005	mg/L	0.0200	101	81.7-118	
1,4-Dioxane	0.594	0.010	mg/L	0.400	149	-34.6-193	
1.2.3-trichloropropane	0.019	0.0005	mg/L	0.0200	94.1	44.7-168	
2,2-Dichloropropane	0.019	0.0005	mg/L	0.0200	93.4	62.9-136	
2-Butanone	0.037	0.002	mg/L	0.0400	91.4	24.1-159	
2-Chlorotoluene	0.021	0.0005	mg/L	0.0200	105	80.2-121	
2-Hexanone	0.034	0.001	mg/L	0.0400	84.5	56.3-139	
Surrogate: 4-Bromofluorobenzene	0.0506		mg/L	0.0500	101	76.4-114	
4-Chlorotoluene	0.021	0.0005	mg/L	0.0200	103	82.2-125	
4-Methyl-2-pentanone	0.035	0.001	mg/L	0.0400	87.2	60.7-139	
Acetone	0.037	0.010	mg/L	0.0400	92.8	39.1-168	
Acrolein	0.183	0.005	mg/L	0.200	91.4	26.6-161	
Acrylonitrile	0.034	0.002	mg/L	0.0400	84.7	64.9-135	
Benzene	0.020	0.0005	mg/L	0.0200	97.7	69.4-129	
Bromobenzene	0.026	0.0005	mg/L	0.0200	131	83.5-115	В
Bromochloromethane	0.023	0.0005	mg/L	0.0200	113	70.7-123	
Bromodichloromethane	0.020	0.0005	mg/L	0.0200	99.6	80.3-119	
Bromoform	0.022	0.0005	mg/L	0.0200	111	71.1-141	
Bromomethane	0.017	0.0005	mg/L	0.0200	84.7	55.1-143	
Carbon disulfide	0.039	0.001	mg/L	0.0400	98.6	53.6-147	
Carbon tetrachloride	0.020	0.0005	mg/L	0.0200	101	79.5-125	

Green Analytical Laboratories

Neronica J Wells

Durango CO, 81302

Project: VOC 8260

Project Name / Number: Mudge LS #006

Reported: 04/11/24 08:23

Project Manager: Kyle Siesser

VOLATILES BY GC/MS - Quality Control (Continued)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4040332 - Volatiles (Continued)										
LCS (4040332-BS1) (Continued)			Prep	pared: 04/03/2	4 Analyze	ed: 04/04/2	4			
Chlorobenzene	0.020	0.0005	mg/L	0.0200		101	85.1-115			
Chloroethane	0.018	0.0005	mg/L	0.0200		88.4	36.9-159			
Chloroform	0.018	0.0005	mg/L	0.0200		92.0	80.9-119			
Chloromethane	0.017	0.0005	mg/L	0.0200		85.4	54.2-142			
cis-1,2-Dichloroethene	0.019	0.0005	mg/L	0.0200		94.6	73.8-128			
cis-1,3-Dichloropropene	0.023	0.0005	mg/L	0.0200		115	82.5-122			
Dibromochloromethane	0.023	0.0005	mg/L	0.0200		114	83.1-124			
Surrogate: Dibromofluoromethane	0.0483		mg/L	0.0500		96.6	82.4-141			
Dibromomethane	0.018	0.0005	mg/L	0.0200		88.8	77-118			
Dichlorodifluoromethane	0.018	0.0005	mg/L	0.0200		92.0	38.7-147			
Ethylbenzene	0.021	0.0005	mg/L	0.0200		104	70.2-130			
Hexachlorobutadiene	0.022	0.0005	mg/L	0.0200		108	78.9-148			
Iodomethane	0.036	0.001	mg/L	0.0400		89.2	63.5-135			
Isopropylbenzene	0.022	0.0005	mg/L	0.0200		109	85-124			
m+p - Xylene	0.043	0.001	mg/L	0.0400		108	71.9-133			
Methyl tert-butyl ether	0.035	0.001	mg/L	0.0400		86.7	57.7-137			
Methylene chloride	0.019	0.0005	mg/L	0.0200		97.2	49.3-163			
Naphthalene	0.016	0.0005	mg/L	0.0200		82.4	62.1-141			
n-Butylbenzene	0.023	0.0005	mg/L	0.0200		113	75.4-132			
n-Propylbenzene	0.021	0.0005	mg/L	0.0200		106	79.6-124			
o-Xylene	0.022	0.0005	mg/L	0.0200		109	69.4-132			
p-Isopropyltoluene	0.021	0.0005	mg/L	0.0200		107	79.8-131			
sec-Butylbenzene	0.021	0.0005	mg/L	0.0200		104	77.6-133			
Styrene	0.022	0.0005	mg/L	0.0200		110	71.7-128			
tert-Butylbenzene	0.021	0.0005	mg/L	0.0200		106	78.8-128			
Tetrachloroethene	0.019	0.0005	mg/L	0.0200		94.8	74.2-128			
Toluene	0.022	0.0005	mg/L	0.0200		109	68.1-127			
Surrogate: Toluene-d8	0.0530		mg/L	0.0500		106	87.1-110			
Total Xylenes	0.065	0.001	mg/L	0.0600		108	71.6-132			
trans-1,2-Dichloroethene	0.018	0.0005	mg/L	0.0200		89.5	65.2-133			
trans-1,3-Dichloropropene	0.022	0.0005	mg/L	0.0200		111	84-123			
trans-1,4-Dichloro-2-butene	0.138	0.010	mg/L	0.0400		345	9.3-235			1
Trichloroethene	0.018	0.0005	mg/L	0.0200		90.6	79.3-114			
Trichlorofluoromethane	0.018	0.0005	mg/L	0.0200		91.1	28.6-162			
Vinyl acetate	0.019	0.0005	mg/L	0.0200		93.9	50.9-135			
Vinyl chloride	0.019	0.0005	mg/L	0.0200		93.9	61.6-133			
.CS Dup (4040332-BSD1)			Prep	pared: 04/03/2	4 Analyze	ed: 04/04/2	4			
1,1,1,2-Tetrachloroethane	0.021	0.0005	mg/L	0.0200	•	103	82.4-120	5.22	6.88	

Green Analytical Laboratories

Neronica J Wells

Durango CO, 81302

Project: VOC 8260

Project Name / Number: Mudge LS #006

Reported:

Table of page 151 of 69

Project Manager: Kyle Siesser 04/11/24 08:23

VOLATILES BY GC/MS - Quality Control (Continued)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4040332 - Volatiles (Continued)				<u> </u>						
LCS Dup (4040332-BSD1) (Continued)			Prep	pared: 04/03/	24 Analyz	ed: 04/04/2	4			
1,1,1-Trichloroethane	0.018	0.0005	mg/L	0.0200		90.4	80.7-121	3.26	7.43	
1,1,2,2-Tetrachloroethane	0.022	0.0005	mg/L	0.0200		108	76.5-121	8.03	8.68	
1,1,2-Trichloroethane	0.021	0.0005	mg/L	0.0200		106	81.7-118	2.53	6.82	
1,1-Dichloroethane	0.018	0.0005	mg/L	0.0200		90.2	74.8-123	4.87	4.3	QR-0
1,1-Dichloroethene	0.020	0.0005	mg/L	0.0200		98.9	53.9-149	3.87	16.5	
1,1-Dichloropropene	0.018	0.0005	mg/L	0.0200		91.8	85.9-115	0.706	5.47	
1,2,3-Trichlorobenzene	0.019	0.0005	mg/L	0.0200		96.6	76.1-134	3.91	43	
1,2,4-Trichlorobenzene	0.020	0.0005	mg/L	0.0200		101	72.4-136	1.04	22.3	
1,2,4-Trimethylbenzene	0.021	0.0005	mg/L	0.0200		105	67.4-138	3.68	8.94	
1,2-Dibromo-3-chloropropane	0.018	0.0005	mg/L	0.0200		89.0	71.7-124	0.672	15.1	
1,2-Dibromoethane	0.021	0.0005	mg/L	0.0200		103	84.9-116	2.22	5.83	
1,2-Dichlorobenzene	0.019	0.0005	mg/L	0.0200		95.4	82.5-119	3.60	8.72	
1,2-Dichloroethane	0.018	0.0005	mg/L	0.0200		88.0	72.5-123	1.47	8.94	
1,2-Dichloropropane	0.020	0.0005	mg/L	0.0200		99.0	79.4-117	1.27	5.51	
1,3,5-Trimethylbenzene	0.021	0.0005	mg/L	0.0200		103	69-137	2.82	16.5	
1,3-Dichlorobenzene	0.020	0.0005	mg/L	0.0200		97.8	84.4-120	3.67	9	
1,3-Dichloropropane	0.021	0.0005	mg/L	0.0200		105	82.6-117	2.81	6.06	
1,4-Dichlorobenzene	0.020	0.0005	mg/L	0.0200		97.7	81.7-118	3.62	7.71	
1,4-Dioxane	0.535	0.010	mg/L	0.400		134	-34.6-193	10.6	35.2	
1.2.3-trichloropropane	0.020	0.0005	mg/L	0.0200		99.9	44.7-168	5.98	49.2	
2,2-Dichloropropane	0.018	0.0005	mg/L	0.0200		90.6	62.9-136	2.99	9.62	
2-Butanone	0.040	0.002	mg/L	0.0400		101	24.1-159	9.64	14.2	
2-Chlorotoluene	0.020	0.0005	mg/L	0.0200		101	80.2-121	3.16	8.62	
2-Hexanone	0.040	0.001	mg/L	0.0400		100	56.3-139	16.8	7.28	QR-0
Surrogate: 4-Bromofluorobenzene	0.0515		mg/L	0.0500		103	76.4-114			
4-Chlorotoluene	0.020	0.0005	mg/L	0.0200		101	82.2-125	1.42	15.5	
4-Methyl-2-pentanone	0.040	0.001	mg/L	0.0400		99.8	60.7-139	13.5	7.57	QR-0
Acetone	0.040	0.010	mg/L	0.0400		101	39.1-168	8.64	30.5	
Acrolein	0.197	0.005	mg/L	0.200		98.3	26.6-161	7.24	22.4	
Acrylonitrile	0.038	0.002	mg/L	0.0400		95.7	64.9-135	12.2	7.62	QR-0
Benzene	0.019	0.0005	mg/L	0.0200		96.1	69.4-129	1.65	4.16	
Bromobenzene	0.022	0.0005	mg/L	0.0200		109	83.5-115	18.7	8.41	QR-0
Bromochloromethane	0.017	0.0005	mg/L	0.0200		85.5	70.7-123	27.4	5.16	QR-0
Bromodichloromethane	0.019	0.0005	mg/L	0.0200		96.9	80.3-119	2.75	5.36	
Bromoform	0.024	0.0005	mg/L	0.0200		118	71.1-141	6.14	14.1	
Bromomethane	0.017	0.0005	mg/L	0.0200		83.8	55.1-143	1.13	21.5	
Carbon disulfide	0.037	0.001	mg/L	0.0400		93.5	53.6-147	5.33	20.3	
Carbon tetrachloride	0.019	0.0005	mg/L	0.0200		94.9	79.5-125	6.57	11.4	
Chlorobenzene	0.020	0.0005	mg/L	0.0200		98.0	85.1-115	3.16	5.18	

Green Analytical Laboratories

Neronica J Wells

Durango CO, 81302

Project: VOC 8260

Project Name / Number: Mudge LS #006

Reported:

Table of page 1/2 of 69

Project Manager: Kyle Siesser

04/11/24 08:23

VOLATILES BY GC/MS - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4040332 - Volatiles (Continued)										
LCS Dup (4040332-BSD1) (Continued)			Prep	pared: 04/03/	24 Analyz	ed: 04/04/2	4			
Chloroethane	0.017	0.0005	mg/L	0.0200		86.1	36.9-159	2.58	24.1	
Chloroform	0.017	0.0005	mg/L	0.0200		86.3	80.9-119	6.39	5.15	QR-0
Chloromethane	0.016	0.0005	mg/L	0.0200		82.1	54.2-142	3.88	27	
cis-1,2-Dichloroethene	0.019	0.0005	mg/L	0.0200		93.9	73.8-128	0.796	5.73	
cis-1,3-Dichloropropene	0.022	0.0005	mg/L	0.0200		112	82.5-122	2.78	6.09	
Dibromochloromethane	0.021	0.0005	mg/L	0.0200		106	83.1-124	7.87	7.24	QR-0
Surrogate: Dibromofluoromethane	0.0481		mg/L	0.0500		96.1	82.4-141			
Dibromomethane	0.018	0.0005	mg/L	0.0200		87.8	77-118	1.19	5.75	
Dichlorodifluoromethane	0.018	0.0005	mg/L	0.0200		90.0	38.7-147	2.14	22.6	
Ethylbenzene	0.020	0.0005	mg/L	0.0200		102	70.2-130	2.27	4.83	
Hexachlorobutadiene	0.023	0.0005	mg/L	0.0200		114	78.9-148	5.52	18.4	
Iodomethane	0.035	0.001	mg/L	0.0400		88.3	63.5-135	1.01	24.3	
Isopropylbenzene	0.021	0.0005	mg/L	0.0200		107	85-124	1.80	6.25	
m+p - Xylene	0.043	0.001	mg/L	0.0400		107	71.9-133	0.697	5.77	
Methyl tert-butyl ether	0.036	0.001	mg/L	0.0400		89.1	57.7-137	2.67	12.8	
Methylene chloride	0.019	0.0005	mg/L	0.0200		94.4	49.3-163	2.97	19.7	
Naphthalene	0.018	0.0005	mg/L	0.0200		87.8	62.1-141	6.28	33.5	
n-Butylbenzene	0.022	0.0005	mg/L	0.0200		111	75.4-132	1.74	10.1	
n-Propylbenzene	0.021	0.0005	mg/L	0.0200		105	79.6-124	0.332	9.09	
o-Xylene	0.021	0.0005	mg/L	0.0200		103	69.4-132	5.70	6.29	
p-Isopropyltoluene	0.021	0.0005	mg/L	0.0200		106	79.8-131	1.46	9.26	
sec-Butylbenzene	0.021	0.0005	mg/L	0.0200		106	77.6-133	1.66	9.85	
Styrene	0.022	0.0005	mg/L	0.0200		108	71.7-128	2.15	7.55	
tert-Butylbenzene	0.021	0.0005	mg/L	0.0200		103	78.8-128	2.49	18.6	
Tetrachloroethene	0.019	0.0005	mg/L	0.0200		96.2	74.2-128	1.36	6.38	
Toluene	0.021	0.0005	mg/L	0.0200		105	68.1-127	3.36	5.67	
Surrogate: Toluene-d8	0.0525		mg/L	0.0500		105	87.1-110			
Total Xylenes	0.064	0.001	mg/L	0.0600		106	71.6-132	2.35	5.83	
trans-1,2-Dichloroethene	0.017	0.0005	mg/L	0.0200		87.0	65.2-133	2.89	19.1	
trans-1,3-Dichloropropene	0.022	0.0005	mg/L	0.0200		108	84-123	2.10	6.26	
trans-1,4-Dichloro-2-butene	0.126	0.010	mg/L	0.0400		315	9.3-235	8.88	92.8	BS
Trichloroethene	0.018	0.0005	mg/L	0.0200		89.6	79.3-114	1.17	4.92	
Trichlorofluoromethane	0.018	0.0005	mg/L	0.0200		89.8	28.6-162	1.44	19.8	
Vinyl acetate	0.020	0.0005	mg/L	0.0200		97.7	50.9-135	3.97	7.84	
Vinyl chloride	0.019	0.0005	mg/L	0.0200		92.9	61.6-133	1.07	23	

Green Analytical Laboratories

Neronica J Wells

Cottonwood Consulting Project: VOC 8260

PO Box 1653 Project Name / Number: Mudge LS #006 Reported:

Durango CO, 81302 Project Manager: Kyle Siesser 04/11/24 08:23

Notes and Definitions

QR-04 The RPD for the BS/BSD was outside of historical limits.

BS1 Blank spike recovery above laboratory acceptance criteria. Results for analyte potentially biased high.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

*Results reported on as received basis unless designated as dry.

RPD Relative Percent Difference

LCS Laboratory Control Sample (Blank Spike)

RL Report Limit

MDL Method Detection Limit

Green Analytical Laboratories

Veronica Wells, Project Manager

Neronica J Wells

Released to Imaging: 1/9/2025 2:07:54 PM

Cottonwood Consulting Project: VOC 8260

PO Box 1653 Project Name / Number: Mudge LS #006

Durango CO, 81302 Project Manager: Kyle Siesser

Reported: 04/11/24 08:23

Qualifier Summary

<u>LabNumber</u>	Analysis	<u>Analyte</u>	Qualifier	<u>TextBody</u>
4040332-BS1	Volatile 8260	Bromobenzene	BS1	Blank spike recovery above laboratory acceptance criteria. Results for analyte potentially biased high.
4040332-BS1	Volatile 8260	trans-1,4-Dichloro-2-butene	BS1	Blank spike recovery above laboratory acceptance criteria. Results for analyte potentially biased high.
4040332-BSD1	Volatile 8260	1,1-Dichloroethane	QR-04	The RPD for the BS/BSD was outside of historical limits.
4040332-BSD1	Volatile 8260	2-Hexanone	QR-04	The RPD for the BS/BSD was outside of historical limits.
4040332-BSD1	Volatile 8260	4-Methyl-2-pentanone	QR-04	The RPD for the BS/BSD was outside of historical limits.
4040332-BSD1	Volatile 8260	Acrylonitrile	QR-04	The RPD for the BS/BSD was outside of historical limits.
4040332-BSD1	Volatile 8260	Bromobenzene	QR-04	The RPD for the BS/BSD was outside of historical limits.
4040332-BSD1	Volatile 8260	Bromochloromethane	QR-04	The RPD for the BS/BSD was outside of historical limits.
4040332-BSD1	Volatile 8260	Chloroform	QR-04	The RPD for the BS/BSD was outside of historical limits.
4040332-BSD1	Volatile 8260	Dibromochloromethane	QR-04	The RPD for the BS/BSD was outside of historical limits.
4040332-BSD1	Volatile 8260	trans-1,4-Dichloro-2-butene	BS1	Blank spike recovery above laboratory acceptance criteria. Results for analyte potentially biased high.

Green Analytical Laboratories

Neronica J NULLS

† GAL cannot accept verbal changes. Please email changes to receiving@greenanalytical.com * Chain of Custody must be signed in "Relinquished By:" as an acceptance of services and all applicable charges.

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST FORM-006, R 8.0

75 Suttle Street Durango, CO 81303 (970) 247-4220

Laboratories		or similar produc	ts cannot be u	Note: Wite-Out TM or similar products cannot be used on the Chain of Custody	stody			
ompany or Client: C	Company or Client: Cottonwood Consulting LLC			Bill to (if di	to (if different):		ANALYSIS	REQUEST
	3							
ity: Durango	State: CO Zip: 81302	02						
Phone #: 970-764-7356						3)		
Contact Person: Kyle Siesser	iesser					OCs		
Email Report to: ksiess	Email Report to: ksiesser@cottonwoodconsulting.com					(V(
Project Name(optional):	- 1			P.O. #:		60		
	Mudge LS #006			Rush? TAT		82		
Sampler Name (Print):	Wish O. Sien			Y Needed	2	hod		
		Collected	ted	Matrix (check one) #	# of containers	/let		
Lab I.D.	Sample Name or Location			DWATER CE WATER WATER CED WATER NG WATER	eservation Acid chloric Acid c Acid Hydroxide	EPA N		
Lab Use Only		Date	Time	SURFA WASTI PRODI DRINK SOIL OTHER	Nitric Hydro Sulfu			
ं हो	1) MW#1	3/27/24	0920	•	4	<		
	2)							
	3)					n.		
	4)							
	5)							
	6)							
	7)							
	8)							
	9)							
	10)							
PLEASE NOTE: GAL's liability waived unless made in writing a cli	PLEASE NOTE: GAL's liability and client's exclusive remedy for any claim arising whether based in contract or tort, shall be limited to the amount paid by the client for the analyses. All claims including those for negligence and any orner clause wild be remarked in writing and received by GAL within 30 days after completion of the applicable service. In no event shall GAL be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred waived unless made in writing and received by GAL within 30 days after completion of the applicable service. In no event shall GAL be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred waived unless that the profit is a service of the profit is a service of the profit incurred by GAL, regardless of whether such claim is based upon any of the above stated reasons or otherwise.	ntract or tort, shall be limi ervice. In no event shall of he performance of service	ted to the amount page to the liable for in serious for income the serious forms and the serious forms to the serious forms to the serious forms the serious forms and the serious forms to the serious forms the	paid by the client for the analys cidental or consequental damag AL, regardless of whether such o	es. All claims including tes, including without limicles, including without limicles, including without limicles, including to any claim is based upon any	those for negliger itation, business i of the above state	nce and any other of nterruptions, loss of the reasons or other	ause wriatsoever sing of use, or loss of profit nwise.
Relinquished By:	Date: 3 /17/14	Received By:		Date:3.1	17-14 ADDITIONAL REMARKS:	MARKS:		
The or	{	, the	n	Time: (5	9			
Relinquished By:	1 1	Received By:		Date:				
		7		Data:	Temperature at receipt:		Checked by:	On Ice? Therm. used:
Relinquished By:	Time:	Received By:		Time:	13	()	way.	
		-			-			1

SAMPLE CONDITION RECEIPT FORM

Client Name: Costonwood Consulton	15		Wor	k Order #	
Courier: □Fed Ex □UPS □USPS ☑	Client Kang	aroo 🗆		Other	
Custody Seals on Box/Cooler Present: ☐ Yes ☑ No	No	Seals Intac	ct: 🗆 Yes 🗆		
Thermometer Used: # Samples on ice	, cooling process h	nas begun:	☑ Yes □ No	Date/Initials of person examining contents:	7
Type of Ice: ☐ Wet ☐ Blue ☐ None				Labeled by initials:	
Cooler Temp: Observed Temp: 12.3°C Corr	ection Factor:	_°C Final	Temp: (2.3°	(if different than above)	
*Temp should be above freezing to 6°C		1.			٦
Chain of Custody Present:	☑Yes □No				
Chain of Custody Filled Out:	☑Yes □No	2.			
Chain of Custody Relinquished:	☑Yes □No	3.			
Sampler Name and Signature on COC:	☐Yes ☐No	4.			
Samples arrived within hold time:	☑Yes □No	5.			
Short Hold Time Analysis (<72hr):	□Yes ☑No	6.			
Rush Turn Around Time Requested:	□Yes ☑No	7.			
Sufficient Volume:	ØÝes □No	8.		8	
Correct Containers Used:	□Yes □No	9.			
Containers Intact:	☐Yes ☐No	10.			
Dissolved Testing Needed:	□Yes ☑No	11.			
Field Filtered: □Yes □No		12.			1
Sample Labels match COC:	□Yes □No	12.			
-Includes Date/Time/ID Matrix:	SI OT				+
Trip Blank Present:	JYes □No ☑N/A	13.			
Trip Blank Custody Seals Present:	□Yes □No □N/A				
Client Notification/Resolution:					
Person Contacted:			Date/Time:		
Comments/Resolution:					-
					_
					-
FORM-039, Rev 2	Page 1 of 1				

75 Suttle Street Durango, CO 81303 970.247.4220 Phone jeremy.allen@greenanalytical.com

27 June 2024

Kyle Siesser Cottonwood Consulting PO Box 1653 Durango, CO 81302

RE: Mudge LS #006

Enclosed are the results of analyses for samples received by the laboratory on 06/13/24 15:00. The data to follow was performed, in whole or in part, by Green Analytical Laboratories. Any data that was performed by a subcontract laboratory is included within the GAL report, or with an additional report attached.

If you need any further assistance, please feel free to contact me.

Sincerely,

Veronica Wells

Project Manager

Neronica & Wells

All accredited analytes contained in this report are denoted by an asterisk (*). For a complete list of accredited analytes please do not hesitate to contact us via any of the contact information contained in this report. All of our certifications can be viewed at http://greenanalytical.com/certifications/

Green Analytical Laboratories is NELAP accredited through the Texas Commission on Environmental Quality. Accreditation applies to drinking water and non-potable water matrices for trace metals and a variety of inorganic parameters. Green Analytical Laboratories is also accredited through the Colorado Department of Public Health and Environment and EPA region 8 for trace metals, Cyanide, Fluoride, Nitrate, and Nitrite in drinking water. TNI Certificate Number: TX-C24-00019

Our affiliate laboratory, Cardinal Laboratories, is also NELAP accredited through the Texas Commission on Environmental Quality for a variety of organic constituents in drinking water, non-potable water and solid matrices. Cardinal is also accredited for regulated VOCs, TTHM, and HAA-5 in drinking water through the Colorado Department of Public Health and Environment and EPA region 8. TNI Certificate Number: TX-C24-00112

Table of Contents

Samples in Report	3
Sample Results	4
2406192-01: MW #1	4
Quality Assurance Results	7
Notes and Definitions	13
Qualifier Summary	14
Chain of Custody & Attachments	15

Durango CO, 81302

Project: VOC 8260

Project Name / Number: Mudge LS #006
Project Manager: Kyle Siesser

Reported: 06/27/24 17:43

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
MW #1	2406192-01	Water	06/13/24 09:25	06/13/24 15:00	

Green Analytical Laboratories

Neronica J Wells

Durango CO, 81302

Project: VOC 8260

Project Name / Number: Mudge LS #006

Project Manager: Kyle Siesser

Reported:

06/27/24 17:43

MW #1 2406192-01 (Ground Water) Sampled Date: 06/13/24 09:25

Analyte Result RL MDL Units Dilution Analyzed Method	Notes	Analyst
--	-------	---------

Subcontracted -- Cardinal Laboratories 101 East Marland Hobbs, NM 88240

VOLATILES BY GC/MS								
1,1,1,2-Tetrachloroethane*	< 0.100	0.100	0.012	mg/L	200	06/27/24 13:02	8260B	CK
1,1,1-Trichloroethane*	< 0.100	0.100	0.012	mg/L	200	06/27/24 13:02	8260B	CK
1,1,2,2-Tetrachloroethane*	< 0.100	0.100	0.013	mg/L	200	06/27/24 13:02	8260B	CK
1,1,2-Trichloroethane*	< 0.100	0.100	0.011	mg/L	200	06/27/24 13:02	8260B	CK
1,1-Dichloroethane*	< 0.100	0.100	0.030	mg/L	200	06/27/24 13:02	8260B	CK
1,1-Dichloroethene*	< 0.100	0.100	0.038	mg/L	200	06/27/24 13:02	8260B	CK
1,1-Dichloropropene*	< 0.100	0.100	0.031	mg/L	200	06/27/24 13:02	8260B	CK
1,2,3-Trichlorobenzene*	< 0.100	0.100	0.046	mg/L	200	06/27/24 13:02	8260B	CK
1,2,4-Trichlorobenzene*	< 0.100	0.100	0.026	mg/L	200	06/27/24 13:02	8260B	CK
1,2,4-Trimethylbenzene*	0.718	0.100	0.009	mg/L	200	06/27/24 13:02	8260B	CK
1,2-Dibromo-3-chloropropane*	< 0.100	0.100	0.100	mg/L	200	06/27/24 13:02	8260B	CK
1,2-Dibromoethane*	< 0.100	0.100	0.018	mg/L	200	06/27/24 13:02	8260B	CK
1,2-Dichlorobenzene*	< 0.100	0.100	0.014	mg/L	200	06/27/24 13:02	8260B	CK
1,2-Dichloroethane*	< 0.100	0.100	0.013	mg/L	200	06/27/24 13:02	8260B	CK
1,2-Dichloropropane*	< 0.100	0.100	0.017	mg/L	200	06/27/24 13:02	8260B	CK
1,3,5-Trimethylbenzene*	0.323	0.100	0.009	mg/L	200	06/27/24 13:02	8260B	CK
1,3-Dichlorobenzene*	< 0.100	0.100	0.010	mg/L	200	06/27/24 13:02	8260B	CK
1,3-Dichloropropane*	< 0.100	0.100	0.027	mg/L	200	06/27/24 13:02	8260B	CK
1,4-Dichlorobenzene	< 0.100	0.100	0.007	mg/L	200	06/27/24 13:02	8260B	CK
1,4-Dioxane	< 2.00	2.00	2.00	mg/L	200	06/27/24 13:02	8260B	CK
1.2.3-trichloropropane*	< 0.100	0.100	0.024	mg/L	200	06/27/24 13:02	8260B	CK
2,2-Dichloropropane*	< 0.100	0.100	0.100	mg/L	200	06/27/24 13:02	8260B	CK
2-Butanone*	< 0.400	0.400	0.400	mg/L	200	06/27/24 13:02	8260B	CK
2-Chlorotoluene*	< 0.100	0.100	0.008	mg/L	200	06/27/24 13:02	8260B	CK
2-Hexanone*	< 0.200	0.200	0.064	mg/L	200	06/27/24 13:02	8260B	CK
4-Chlorotoluene*	< 0.100	0.100	0.009	mg/L	200	06/27/24 13:02	8260B	CK
4-Methyl-2-pentanone*	< 0.200	0.200	0.023	mg/L	200	06/27/24 13:02	8260B	CK
Acetone*	< 2.00	2.00	0.171	mg/L	200	06/27/24 13:02	8260B	CK
Acrolein*	<1.00	1.00	0.216	mg/L	200	06/27/24 13:02	8260B	CK
Acrylonitrile*	< 0.400	0.400	0.161	mg/L	200	06/27/24 13:02	8260B	CK

Green Analytical Laboratories

Neronica J Wills

Durango CO, 81302

Project: VOC 8260
Project Name / Number: Mudge LS #006
Project Manager: Kyle Siesser

Reported:

06/27/24 17:43

MW #1

2406192-01 (Ground Water) Sampled Date: 06/13/24 09:25

Analyte Result RL MDL Units Dilution Analyzed Method Notes Analyst
--

Subcontracted -- Cardinal Laboratories 101 East Marland Hobbs, NM 88240

VOLATILES BY GC/MS								
Benzene*	0.837	0.100	0.009	mg/L	200	06/27/24 13:02	8260B	CK
Bromobenzene*	< 0.100	0.100	0.012	mg/L	200	06/27/24 13:02	8260B	CK
Bromochloromethane*	< 0.100	0.100	0.028	mg/L	200	06/27/24 13:02	8260B	CK
Bromodichloromethane*	< 0.100	0.100	0.008	mg/L	200	06/27/24 13:02	8260B	CK
Bromoform*	< 0.100	0.100	0.018	mg/L	200	06/27/24 13:02	8260B	CK
Bromomethane*	< 0.100	0.100	0.100	mg/L	200	06/27/24 13:02	8260B	CK
Carbon disulfide*	< 0.200	0.200	0.027	mg/L	200	06/27/24 13:02	8260B	CK
Carbon tetrachloride*	< 0.100	0.100	0.032	mg/L	200	06/27/24 13:02	8260B	CK
Chlorobenzene*	< 0.100	0.100	0.008	mg/L	200	06/27/24 13:02	8260B	CK
Chloroethane*	< 0.100	0.100	0.100	mg/L	200	06/27/24 13:02	8260B	CK
Chloroform*	< 0.100	0.100	0.003	mg/L	200	06/27/24 13:02	8260B	CK
Chloromethane*	< 0.100	0.100	0.100	mg/L	200	06/27/24 13:02	8260B	CK
cis-1,2-Dichloroethene*	< 0.100	0.100	0.049	mg/L	200	06/27/24 13:02	8260B	CK
cis-1,3-Dichloropropene*	< 0.100	0.100	0.018	mg/L	200	06/27/24 13:02	8260B	CK
Dibromochloromethane*	< 0.100	0.100	0.016	mg/L	200	06/27/24 13:02	8260B	CK
Dibromomethane*	< 0.100	0.100	0.033	mg/L	200	06/27/24 13:02	8260B	CK
Dichlorodifluoromethane*	< 0.100	0.100	0.100	mg/L	200	06/27/24 13:02	8260B	CK
Ethylbenzene*	0.681	0.100	0.006	mg/L	200	06/27/24 13:02	8260B	CK
Hexachlorobutadiene*	< 0.200	0.200	0.100	mg/L	200	06/27/24 13:02	8260B	CK
Iodomethane	< 0.200	0.200	0.013	mg/L	200	06/27/24 13:02	8260B	CK
Isopropylbenzene*	< 0.100	0.100	0.004	mg/L	200	06/27/24 13:02	8260B	CK
m+p - Xylene*	4.71	0.200	0.016	mg/L	200	06/27/24 13:02	8260B	CK
Methyl tert-butyl ether	< 0.200	0.200	0.049	mg/L	200	06/27/24 13:02	8260B	CK
Methylene chloride*	< 0.100	0.100	0.100	mg/L	200	06/27/24 13:02	8260B	CK
Naphthalene*	0.135	0.100	0.015	mg/L	200	06/27/24 13:02	8260B	CK
n-Butylbenzene*	< 0.100	0.100	0.014	mg/L	200	06/27/24 13:02	8260B	CK
n-Propylbenzene*	0.111	0.100	0.011	mg/L	200	06/27/24 13:02	8260B	CK
o-Xylene*	1.29	0.100	0.025	mg/L	200	06/27/24 13:02	8260B	CK
p-Isopropyltoluene*	< 0.100	0.100	0.009	mg/L	200	06/27/24 13:02	8260B	CK
sec-Butylbenzene*	< 0.100	0.100	0.009	mg/L	200	06/27/24 13:02	8260B	CK
Styrene*	< 0.100	0.100	0.024	mg/L	200	06/27/24 13:02	8260B	CK
tert-Butylbenzene*	< 0.100	0.100	0.014	mg/L	200	06/27/24 13:02	8260B	CK

Green Analytical Laboratories

Neronica J Wells

Durango CO, 81302

Project: VOC 8260

Project Name / Number: Mudge LS #006 Project Manager: Kyle Siesser

Reported: 06/27/24 17:43

MW #1

2406192-01 (Ground Water) Sampled Date: 06/13/24 09:25

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst	١
---------	--------	----	-----	-------	----------	----------	--------	-------	---------	---

Subcontracted -- Cardinal Laboratories 101 East Marland Hobbs, NM 88240

VOLATILES BY GC/MS								
Tetrachloroethene*	< 0.100	0.100	0.019	mg/L	200	06/27/24 13:02	8260B	CK
Toluene*	3.55	0.100	0.017	mg/L	200	06/27/24 13:02	8260B	CK
Total Xylenes*	6.00	0.200	0.041	mg/L	200	06/27/24 13:02	8260B	CK
trans-1,2-Dichloroethene*	< 0.100	0.100	0.029	mg/L	200	06/27/24 13:02	8260B	CK
trans-1,3-Dichloropropene*	< 0.100	0.100	0.010	mg/L	200	06/27/24 13:02	8260B	CK
trans-1,4-Dichloro-2-butene	< 2.00	2.00	0.058	mg/L	200	06/27/24 13:02	8260B	CK
Trichloroethene*	< 0.100	0.100	0.034	mg/L	200	06/27/24 13:02	8260B	CK
Trichlorofluoromethane*	< 0.100	0.100	0.026	mg/L	200	06/27/24 13:02	8260B	CK
Vinyl acetate*	< 0.100	0.100	0.100	mg/L	200	06/27/24 13:02	8260B	CK
Vinyl chloride*	< 0.100	0.100	0.100	mg/L	200	06/27/24 13:02	8260B	CK
Surrogate: 4-Bromofluorobenzene			107 %	76.4-114		06/27/24	8260B	CK
Surrogate: Dibromofluoromethane			108 %	82.4-141		13:02 06/27/24 13:02	8260B	СК
Surrogate: Toluene-d8			98.7 %	87.1-110		06/27/24 13:02	8260B	CK

Green Analytical Laboratories

Neronica & nulls

Reported:

Cottonwood Consulting Project: VOC 8260
PO Box 1653 Project Name / Number: Mudge LS #006

Project Manager: Kyle Siesser 06/27/24 17:43

VOLATILES BY GC/MS - Quality Control

		eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 4061928 - Volatiles

Durango CO, 81302

Blank (4061928-BLK1)			Prepa	ared: 06/19/24 A	nalyzed: 06/2	26/24	.	
1,1,1,2-Tetrachloroethane	ND	0.0005	mg/L					
1,1,1-Trichloroethane	ND	0.0005	mg/L					
1,1,2,2-Tetrachloroethane	ND	0.0005	mg/L					
1,1,2-Trichloroethane	ND	0.0005	mg/L					
1,1-Dichloroethane	ND	0.0005	mg/L					
1,1-Dichloroethene	ND	0.0005	mg/L					
1,1-Dichloropropene	ND	0.0005	mg/L					
1,2,3-Trichlorobenzene	ND	0.0005	mg/L					
1,2,4-Trichlorobenzene	ND	0.0005	mg/L					
1,2,4-Trimethylbenzene	ND	0.0005	mg/L					
1,2-Dibromo-3-chloropropane	ND	0.0005	mg/L					
1,2-Dibromoethane	ND	0.0005	mg/L					
1,2-Dichlorobenzene	ND	0.0005	mg/L					
1,2-Dichloroethane	ND	0.0005	mg/L					
1,2-Dichloropropane	ND	0.0005	mg/L					
1,3,5-Trimethylbenzene	ND	0.0005	mg/L					
1,3-Dichlorobenzene	ND	0.0005	mg/L					
1,3-Dichloropropane	ND	0.0005	mg/L					
1,4-Dichlorobenzene	ND	0.0005	mg/L					
1,4-Dioxane	ND	0.010	mg/L					
1.2.3-trichloropropane	ND	0.0005	mg/L					
2,2-Dichloropropane	ND	0.0005	mg/L					
2-Butanone	ND	0.002	mg/L					
2-Chlorotoluene	ND	0.0005	mg/L					
2-Hexanone	ND	0.001	mg/L					
Surrogate: 4-Bromofluorobenzene	0.0233		mg/L	0.0250	93	2	76.4-114	
4-Chlorotoluene	ND	0.0005	mg/L					
4-Methyl-2-pentanone	ND	0.001	mg/L					
Acetone	ND	0.010	mg/L					
Acrolein	ND	0.005	mg/L					
Acrylonitrile	ND	0.002	mg/L					
Benzene	ND	0.0005	mg/L					
Bromobenzene	ND	0.0005	mg/L					
Bromochloromethane	ND	0.0005	mg/L					
Bromodichloromethane	ND	0.0005	mg/L					
Bromoform	ND	0.0005	mg/L					

Green Analytical Laboratories

Neronica 9 nulls

Cottonwood Consulting

Project: VOC 8260

PO Box 1653 Durango CO, 81302 Project Name / Number: Mudge LS #006
Project Manager: Kyle Siesser

Reported:

06/27/24 17:43

VOLATILES BY GC/MS - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 4061928 - Volatiles (Continued)

Blank (4061928-BLK1) (Continued)			Prep	pared: 06/19/24 Ar	nalyzed: 06/26/2	4	
Bromomethane	ND	0.0005	mg/L				
Carbon disulfide	ND	0.001	mg/L				
Carbon tetrachloride	ND	0.0005	mg/L				
Chlorobenzene	ND	0.0005	mg/L				
Chloroethane	ND	0.0005	mg/L				
Chloroform	ND	0.0005	mg/L				
Chloromethane	ND	0.0005	mg/L				
cis-1,2-Dichloroethene	ND	0.0005	mg/L				
cis-1,3-Dichloropropene	ND	0.0005	mg/L				
Dibromochloromethane	ND	0.0005	mg/L				
Surrogate: Dibromofluoromethane	0.0294		mg/L	0.0250	118	82.4-141	
Dibromomethane	ND	0.0005	mg/L				
Dichlorodifluoromethane	ND	0.0005	mg/L				
Ethylbenzene	ND	0.0005	mg/L				
Hexachlorobutadiene	0.0006	0.0005	mg/L				
Iodomethane	ND	0.001	mg/L				
Isopropylbenzene	ND	0.0005	mg/L				
m+p - Xylene	ND	0.001	mg/L				
Methyl tert-butyl ether	ND	0.001	mg/L				
Methylene chloride	ND	0.0005	mg/L				
Naphthalene	ND	0.0005	mg/L				
n-Butylbenzene	ND	0.0005	mg/L				
n-Propylbenzene	ND	0.0005	mg/L				
o-Xylene	ND	0.0005	mg/L				
p-Isopropyltoluene	ND	0.0005	mg/L				
sec-Butylbenzene	ND	0.0005	mg/L				
Styrene	ND	0.0005	mg/L				
tert-Butylbenzene	ND	0.0005	mg/L				
Tetrachloroethene	ND	0.0005	mg/L				
Toluene	ND	0.0005	mg/L				
Surrogate: Toluene-d8	0.0252		mg/L	0.0250	101	87.1-110	
Total Xylenes	ND	0.001	mg/L				
trans-1,2-Dichloroethene	ND	0.0005	mg/L				
trans-1,3-Dichloropropene	ND	0.0005	mg/L				
trans-1,4-Dichloro-2-butene	ND	0.010	mg/L				
Trichloroethene	ND	0.0005	mg/L				
Trichlorofluoromethane	ND	0.0005	mg/L				
Vinyl acetate	ND	0.0005	mg/L				
Vinyl chloride	ND	0.0005	mg/L				

Green Analytical Laboratories

Neronica J Wells

Durango CO, 81302

Project: VOC 8260

Project Name / Number: Mudge LS #006 Project Manager: Kyle Siesser

Reported:

06/27/24 17:43

VOLATILES BY GC/MS - Quality Control (Continued)

	- ·	Reporting		Spike	Source	ave e	%REC	222	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4061928 - Volatiles (Continued)										_

LCS (4061928-BS1)			Prep	oared: 06/19/24 A	nalyzed: 06/26/2	24	
1,1,1,2-Tetrachloroethane	0.020	0.0005	mg/L	0.0200	102	82.4-120	
1,1,1-Trichloroethane	0.023	0.0005	mg/L	0.0200	113	80.7-121	
1,1,2,2-Tetrachloroethane	0.021	0.0005	mg/L	0.0200	105	76.5-121	
1,1,2-Trichloroethane	0.020	0.0005	mg/L	0.0200	101	81.7-118	
1,1-Dichloroethane	0.016	0.0005	mg/L	0.0200	77.6	74.8-123	
1,1-Dichloroethene	0.020	0.0005	mg/L	0.0200	100	53.9-149	
1,1-Dichloropropene	0.022	0.0005	mg/L	0.0200	111	85.9-115	
1,2,3-Trichlorobenzene	0.021	0.0005	mg/L	0.0200	107	76.1-134	
1,2,4-Trichlorobenzene	0.020	0.0005	mg/L	0.0200	98.6	72.4-136	
1,2,4-Trimethylbenzene	0.020	0.0005	mg/L	0.0200	100	67.4-138	
1,2-Dibromo-3-chloropropane	0.023	0.0005	mg/L	0.0200	115	71.7-124	
1,2-Dibromoethane	0.021	0.0005	mg/L	0.0200	103	84.9-116	
1,2-Dichlorobenzene	0.020	0.0005	mg/L	0.0200	102	82.5-119	
1,2-Dichloroethane	0.021	0.0005	mg/L	0.0200	104	72.5-123	
1,2-Dichloropropane	0.020	0.0005	mg/L	0.0200	101	79.4-117	
1,3,5-Trimethylbenzene	0.020	0.0005	mg/L	0.0200	102	69-137	
1,3-Dichlorobenzene	0.021	0.0005	mg/L	0.0200	106	84.4-120	
1,3-Dichloropropane	0.021	0.0005	mg/L	0.0200	107	82.6-117	
1,4-Dichlorobenzene	0.019	0.0005	mg/L	0.0200	95.2	81.7-118	
1,4-Dioxane	0.361	0.010	mg/L	0.400	90.3	-34.6-193	
1.2.3-trichloropropane	0.022	0.0005	mg/L	0.0200	112	44.7-168	
2,2-Dichloropropane	0.015	0.0005	mg/L	0.0200	74.2	62.9-136	
2-Butanone	0.042	0.002	mg/L	0.0400	105	24.1-159	
2-Chlorotoluene	0.021	0.0005	mg/L	0.0200	105	80.2-121	
2-Hexanone	0.047	0.001	mg/L	0.0400	117	56.3-139	
Surrogate: 4-Bromofluorobenzene	0.0252		mg/L	0.0250	101	76.4-114	
4-Chlorotoluene	0.022	0.0005	mg/L	0.0200	110	82.2-125	
4-Methyl-2-pentanone	0.044	0.001	mg/L	0.0400	111	60.7-139	
Acetone	0.038	0.010	mg/L	0.0400	96.0	39.1-168	
Acrolein	0.251	0.005	mg/L	0.200	126	26.6-161	
Acrylonitrile	0.022	0.002	mg/L	0.0400	55.9	64.9-135	BS
Benzene	0.020	0.0005	mg/L	0.0200	102	69.4-129	
Bromobenzene	0.020	0.0005	mg/L	0.0200	98.2	83.5-115	
Bromochloromethane	0.020	0.0005	mg/L	0.0200	97.6	70.7-123	
Bromodichloromethane	0.020	0.0005	mg/L	0.0200	102	80.3-119	
Bromoform	0.020	0.0005	mg/L	0.0200	98.4	71.1-141	
Bromomethane	0.018	0.0005	mg/L	0.0200	90.8	55.1-143	
Carbon disulfide	0.045	0.001	mg/L	0.0400	113	53.6-147	
Carbon tetrachloride	0.026	0.0005	mg/L	0.0200	128	79.5-125	BS

Green Analytical Laboratories

Nerovica J Wells

Cottonwood Consulting

Project: VOC 8260

PO Box 1653 Durango CO, 81302 Project Name / Number: Mudge LS #006
Project Manager: Kyle Siesser

Reported:

06/27/24 17:43

VOLATILES BY GC/MS - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4061928 - Volatiles (Continued)										
LCS (4061928-BS1) (Continued)			Prep	pared: 06/19/	24 Analyz	ed: 06/26/2	4			
Chlorobenzene	0.021	0.0005	mg/L	0.0200		103	85.1-115			
Chloroethane	0.018	0.0005	mg/L	0.0200		92.2	36.9-159			
Chloroform	0.024	0.0005	mg/L	0.0200		122	80.9-119			BS
Chloromethane	0.018	0.0005	mg/L	0.0200		88.7	54.2-142			
cis-1,2-Dichloroethene	0.018	0.0005	mg/L	0.0200		89.0	73.8-128			
cis-1,3-Dichloropropene	0.021	0.0005	mg/L	0.0200		107	82.5-122			
Dibromochloromethane	0.021	0.0005	mg/L	0.0200		103	83.1-124			
Surrogate: Dibromofluoromethane	0.0272		mg/L	0.0250		109	82.4-141			
Dibromomethane	0.020	0.0005	mg/L	0.0200		100	77-118			
Dichlorodifluoromethane	0.021	0.0005	mg/L	0.0200		106	38.7-147			
Ethylbenzene	0.021	0.0005	mg/L	0.0200		104	70.2-130			
Hexachlorobutadiene	0.022	0.0005	mg/L	0.0200		112	78.9-148			
Iodomethane	0.037	0.001	mg/L	0.0400		93.6	63.5-135			
Isopropylbenzene	0.020	0.0005	mg/L	0.0200		101	85-124			
m+p - Xylene	0.041	0.001	mg/L	0.0400		103	71.9-133			
Methyl tert-butyl ether	0.035	0.001	mg/L	0.0400		86.6	57.7-137			
Methylene chloride	0.019	0.0005	mg/L	0.0200		95.2	49.3-163			
Naphthalene	0.023	0.0005	mg/L	0.0200		114	62.1-141			
n-Butylbenzene	0.020	0.0005	mg/L	0.0200		102	75.4-132			
n-Propylbenzene	0.021	0.0005	mg/L	0.0200		106	79.6-124			
o-Xylene	0.021	0.0005	mg/L	0.0200		103	69.4-132			
p-Isopropyltoluene	0.016	0.0005	mg/L	0.0200		81.8	79.8-131			
sec-Butylbenzene	0.020	0.0005	mg/L	0.0200		98.5	77.6-133			
Styrene	0.020	0.0005	mg/L	0.0200		99.0	71.7-128			
tert-Butylbenzene	0.022	0.0005	mg/L	0.0200		109	78.8-128			
Tetrachloroethene	0.021	0.0005	mg/L	0.0200		105	74.2-128			
Toluene	0.021	0.0005	mg/L	0.0200		104	68.1-127			
Surrogate: Toluene-d8	0.0250		mg/L	0.0250		100	87.1-110			
Total Xylenes	0.062	0.001	mg/L	0.0600		103	71.6-132			
trans-1,2-Dichloroethene	0.019	0.0005	mg/L	0.0200		95.6	65.2-133			
trans-1,3-Dichloropropene	0.022	0.0005	mg/L	0.0200		109	84-123			
trans-1,4-Dichloro-2-butene	0.031	0.010	mg/L	0.0400		76.4	9.3-235			
Trichloroethene	0.020	0.0005	mg/L	0.0200		102	79.3-114			
Trichlorofluoromethane	0.021	0.0005	mg/L	0.0200		103	28.6-162			
Vinyl acetate	0.011	0.0005	mg/L	0.0200		57.0	50.9-135			
Vinyl chloride	0.020	0.0005	mg/L	0.0200		99.8	61.6-133			
LCS Dup (4061928-BSD1)			Prep	oared: 06/19/	24 Analyz	ed: 06/26/2	4			
1,1,1,2-Tetrachloroethane	0.020	0.0005	mg/L	0.0200	-	101	82.4-120	0.786	6.88	

Green Analytical Laboratories

Neronica J Wells

Durango CO, 81302

Project: VOC 8260

Project Name / Number: Mudge LS #006 Project Manager: Kyle Siesser

Reported:

06/27/24 17:43

VOLATILES BY GC/MS - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4061928 - Volatiles (Continued)										
LCS Dup (4061928-BSD1) (Continued)			Prep	pared: 06/19/	24 Analyz	ed: 06/26/2	.4			
1,1,1-Trichloroethane	0.022	0.0005	mg/L	0.0200		111	80.7-121	2.01	7.43	
1,1,2,2-Tetrachloroethane	0.021	0.0005	mg/L	0.0200		106	76.5-121	0.332	8.68	
1,1,2-Trichloroethane	0.020	0.0005	mg/L	0.0200		98.8	81.7-118	2.35	6.82	
1,1-Dichloroethane	0.016	0.0005	mg/L	0.0200		78.3	74.8-123	0.962	4.3	
1,1-Dichloroethene	0.020	0.0005	mg/L	0.0200		101	53.9-149	0.993	16.5	
1,1-Dichloropropene	0.022	0.0005	mg/L	0.0200		108	85.9-115	3.06	5.47	
1,2,3-Trichlorobenzene	0.021	0.0005	mg/L	0.0200		104	76.1-134	2.33	43	
1,2,4-Trichlorobenzene	0.019	0.0005	mg/L	0.0200		94.3	72.4-136	4.46	22.3	
1,2,4-Trimethylbenzene	0.020	0.0005	mg/L	0.0200		100	67.4-138	0.0498	8.94	
1,2-Dibromo-3-chloropropane	0.022	0.0005	mg/L	0.0200		111	71.7-124	3.37	15.1	
1,2-Dibromoethane	0.021	0.0005	mg/L	0.0200		103	84.9-116	0.388	5.83	
1,2-Dichlorobenzene	0.020	0.0005	mg/L	0.0200		99.8	82.5-119	1.69	8.72	
1,2-Dichloroethane	0.021	0.0005	mg/L	0.0200		103	72.5-123	0.922	8.94	
1,2-Dichloropropane	0.020	0.0005	mg/L	0.0200		99.8	79.4-117	0.798	5.51	
1,3,5-Trimethylbenzene	0.021	0.0005	mg/L	0.0200		103	69-137	0.975	16.5	
1,3-Dichlorobenzene	0.021	0.0005	mg/L	0.0200		104	84.4-120	2.00	9	
1,3-Dichloropropane	0.021	0.0005	mg/L	0.0200		107	82.6-117	0.468	6.06	
1,4-Dichlorobenzene	0.019	0.0005	mg/L	0.0200		94.5	81.7-118	0.685	7.71	
1,4-Dioxane	0.361	0.010	mg/L	0.400		90.3	-34.6-193	0.0692	35.2	
1.2.3-trichloropropane	0.022	0.0005	mg/L	0.0200		112	44.7-168	0.224	49.2	
2,2-Dichloropropane	0.021	0.0005	mg/L	0.0200		106	62.9-136	35.0	9.62	QR-0
2-Butanone	0.042	0.002	mg/L	0.0400		104	24.1-159	1.31	14.2	
2-Chlorotoluene	0.021	0.0005	mg/L	0.0200		104	80.2-121	0.575	8.62	
2-Hexanone	0.045	0.001	mg/L	0.0400		111	56.3-139	5.20	7.28	
Surrogate: 4-Bromofluorobenzene	0.0249		mg/L	0.0250		99.8	76.4-114			
4-Chlorotoluene	0.022	0.0005	mg/L	0.0200		110	82.2-125	0.273	15.5	
4-Methyl-2-pentanone	0.042	0.001	mg/L	0.0400		106	60.7-139	4.20	7.57	
Acetone	0.033	0.010	mg/L	0.0400		81.8	39.1-168	15.9	30.5	
Acrolein	0.205	0.005	mg/L	0.200		102	26.6-161	20.4	22.4	
Acrylonitrile	0.022	0.002	mg/L	0.0400		54.2	64.9-135	3.18	7.62	BS
Benzene	0.020	0.0005	mg/L	0.0200		102	69.4-129	0.735	4.16	
Bromobenzene	0.020	0.0005	mg/L	0.0200		98.4	83.5-115	0.254	8.41	
Bromochloromethane	0.024	0.0005	mg/L	0.0200		122	70.7-123	22.0	5.16	QR-0
Bromodichloromethane	0.020	0.0005	mg/L	0.0200		101	80.3-119	1.08	5.36	
Bromoform	0.019	0.0005	mg/L	0.0200		95.4	71.1-141	3.04	14.1	
Bromomethane	0.019	0.0005	mg/L	0.0200		96.3	55.1-143	5.88	21.5	
Carbon disulfide	0.044	0.001	mg/L	0.0400		109	53.6-147	3.00	20.3	
Carbon tetrachloride	0.025	0.0005	mg/L	0.0200		126	79.5-125	0.827	11.4	BS
Chlorobenzene	0.020	0.0005	mg/L	0.0200		102	85.1-115	1.46	5.18	

Green Analytical Laboratories

Nerovica J Wells

Durango CO, 81302

Project: VOC 8260

Project Name / Number: Mudge LS #006 Project Manager: Kyle Siesser Reported:

06/27/24 17:43

VOLATILES BY GC/MS - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4061928 - Volatiles (Continued)										
LCS Dup (4061928-BSD1) (Continued)			Prep	oared: 06/19/	24 Analyz	ed: 06/26/2	4			
Chloroethane	0.018	0.0005	mg/L	0.0200		91.9	36.9-159	0.272	24.1	
Chloroform	0.024	0.0005	mg/L	0.0200		122	80.9-119	0.123	5.15	B
Chloromethane	0.020	0.0005	mg/L	0.0200		99.2	54.2-142	11.2	27	
cis-1,2-Dichloroethene	0.023	0.0005	mg/L	0.0200		113	73.8-128	23.3	5.73	QR-0
cis-1,3-Dichloropropene	0.021	0.0005	mg/L	0.0200		105	82.5-122	1.79	6.09	
Dibromochloromethane	0.020	0.0005	mg/L	0.0200		101	83.1-124	1.62	7.24	
Surrogate: Dibromofluoromethane	0.0277		mg/L	0.0250		111	82.4-141			
Dibromomethane	0.020	0.0005	mg/L	0.0200		98.6	77-118	1.56	5.75	
Dichlorodifluoromethane	0.021	0.0005	mg/L	0.0200		106	38.7-147	0.282	22.6	
Ethylbenzene	0.020	0.0005	mg/L	0.0200		102	70.2-130	1.84	4.83	
Hexachlorobutadiene	0.023	0.0005	mg/L	0.0200		113	78.9-148	0.842	18.4	
Iodomethane	0.036	0.001	mg/L	0.0400		89.1	63.5-135	4.90	24.3	
Isopropylbenzene	0.020	0.0005	mg/L	0.0200		98.9	85-124	1.90	6.25	
m+p - Xylene	0.040	0.001	mg/L	0.0400		99.7	71.9-133	2.87	5.77	
Methyl tert-butyl ether	0.034	0.001	mg/L	0.0400		85.3	57.7-137	1.54	12.8	
Methylene chloride	0.015	0.0005	mg/L	0.0200		76.6	49.3-163	21.6	19.7	QR-0
Naphthalene	0.022	0.0005	mg/L	0.0200		109	62.1-141	4.27	33.5	
n-Butylbenzene	0.020	0.0005	mg/L	0.0200		99.6	75.4-132	2.67	10.1	
n-Propylbenzene	0.021	0.0005	mg/L	0.0200		106	79.6-124	0.520	9.09	
o-Xylene	0.020	0.0005	mg/L	0.0200		99.1	69.4-132	3.76	6.29	
p-Isopropyltoluene	0.016	0.0005	mg/L	0.0200		81.0	79.8-131	0.983	9.26	
sec-Butylbenzene	0.019	0.0005	mg/L	0.0200		97.2	77.6-133	1.33	9.85	
Styrene	0.019	0.0005	mg/L	0.0200		96.0	71.7-128	2.97	7.55	
tert-Butylbenzene	0.022	0.0005	mg/L	0.0200		109	78.8-128	0.183	18.6	
Tetrachloroethene	0.021	0.0005	mg/L	0.0200		104	74.2-128	0.668	6.38	
Toluene	0.020	0.0005	mg/L	0.0200		102	68.1-127	1.36	5.67	
Surrogate: Toluene-d8	0.0247		mg/L	0.0250		98.8	87.1-110			
Total Xylenes	0.060	0.001	mg/L	0.0600		99.5	71.6-132	3.16	5.83	
trans-1,2-Dichloroethene	0.017	0.0005	mg/L	0.0200		84.5	65.2-133	12.3	19.1	
trans-1,3-Dichloropropene	0.021	0.0005	mg/L	0.0200		106	84-123	2.78	6.26	
trans-1,4-Dichloro-2-butene	0.029	0.010	mg/L	0.0400		72.3	9.3-235	5.51	92.8	
Trichloroethene	0.020	0.0005	mg/L	0.0200		101	79.3-114	0.888	4.92	
Trichlorofluoromethane	0.020	0.0005	mg/L	0.0200		102	28.6-162	1.22	19.8	
Vinyl acetate	0.011	0.0005	mg/L	0.0200		55.4	50.9-135	2.76	7.84	
Vinyl chloride	0.021	0.0005	mg/L	0.0200		106	61.6-133	6.31	23	

Green Analytical Laboratories

Neronica J Wells

Cottonwood Consulting Project: VOC 8260

PO Box 1653 Project Name / Number: Mudge LS #006 Reported:

Durango CO, 81302 Project Manager: Kyle Siesser 06/27/24 17:43

Notes and Definitions

QR-04 The RPD for the BS/BSD was outside of historical limits.

BS2 Blank spike recovery below laboratory acceptance criteria. Results for analyte potentially biased low.

Blank spike recovery above laboratory acceptance criteria. Results for analyte potentially biased high.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

BS1

dry Sample results reported on a dry weight basis

*Results reported on as received basis unless designated as dry.

RPD Relative Percent Difference

LCS Laboratory Control Sample (Blank Spike)

RL Report Limit

MDL Method Detection Limit

Green Analytical Laboratories

Neronica J Wills

Cottonwood Consulting Project: VOC 8260

PO Box 1653 Project Name / Number: Mudge LS #006 Reported:

Durango CO, 81302 Project Manager: Kyle Siesser 06/27/24 17:43

Qualifier Summary

LabNumber	<u>Analysis</u>	<u>Analyte</u>	Qualifier	<u>TextBody</u>
4061928-BS1	Volatile 8260	Acrylonitrile	BS2	Blank spike recovery below laboratory acceptance criteria. Results for analyte potentially biased low.
4061928-BS1	Volatile 8260	Carbon tetrachloride	BS1	Blank spike recovery above laboratory acceptance criteria. Results for analyte potentially biased high.
4061928-BS1	Volatile 8260	Chloroform	BS1	Blank spike recovery above laboratory acceptance criteria. Results for analyte potentially biased high.
4061928-BSD1	Volatile 8260	2,2-Dichloropropane	QR-04	The RPD for the BS/BSD was outside of historical limits.
4061928-BSD1	Volatile 8260	Acrylonitrile	BS2	Blank spike recovery below laboratory acceptance criteria. Results for analyte potentially biased low.
4061928-BSD1	Volatile 8260	Bromochloromethane	QR-04	The RPD for the BS/BSD was outside of historical limits.
4061928-BSD1	Volatile 8260	Carbon tetrachloride	BS1	Blank spike recovery above laboratory acceptance criteria. Results for analyte potentially biased high.
4061928-BSD1	Volatile 8260	Chloroform	BS1	Blank spike recovery above laboratory acceptance criteria. Results for analyte potentially biased high.
4061928-BSD1	Volatile 8260	cis-1,2-Dichloroethene	QR-04	The RPD for the BS/BSD was outside of historical limits.
4061928-BSD1	Volatile 8260	Methylene chloride	QR-04	The RPD for the BS/BSD was outside of historical limits.

Green Analytical Laboratories

Neronica J Wells

Relinquished By:

Time: 1500

Received By:

Time: Date:

Relinquished By:

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST FORM-006, R 8.0

75 Suttle Street Durango, CO 81303 (970) 247-4220

Note: Wite-Out TM or similar products cannot be used on the Chair	used on the Chain of Custody						
Company or Client: Cottonwood Consulting LLC	Bill to (if different):		ANAL	YSIS R	VALYSIS REQUES	ĭ	
Address: PO Box 1653		9)					
City: Durango State: CO Zip: 81302		-					
Phone #: 970-764-7356		s)					
Contact Person: Kyle Siesser		ОС					
Email Report to: ksiesser@cottonwoodconsulting.com		V					

Relinquished By:	PLEASE NOTE: GAL's liability a waived unless made in writing a clie	• ,	9)	8)	7)	6)	5)	4)	3)	2)	Q 1	Lab I.D. Mole 197 Lab Use Only		Sampler Name (Print):		Project Name(optional):	Email Report to: ksiesse	Contact Person: Kyle Siesser	1 113112 11: 9/0-/64-/330
Date: 6113/24 Received By:	PLEASE NOTE: GAL's liability and client's exclusive remedy for any claim arising whether based in contract or fort, shall be limited to the amount paid by the client for the analyses. All claims including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by GAL within 30 days after completion of the applicable service. In no event shall GAL be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by GAL, regardless of whether such claim is based upon any of the above stated reasons or otherwise.	10)	9	9))	9)	9)		9)	9	1) MW #1	Sample Name or Location		Jusen O'Brien	Mudge Lo #000	2004 S 1 5 #000	Email Report to: ksiesser@cottonwoodconsulting.com	esser	18
Received By:	Itract or tort, shall be limit rvice. In no event shall G e performance of service								0	•	6113124 0	Date	Collected						
	ed to the amount pa AL be liable for incions s hereunder by GAL							6.14.34	200	205	0925 po	Time GROUNDWATER	ted						
Date:	aid by the client for the dental or consequental or consequental , regardless of whether.											SURFACE WATER WASTEWATER PRODUCED WATER DRINKING WATER SOIL	Matrix (check one)	Z N	Rush?	P.O. #:			
122	the analyses. All claims including those for negligence and any other cause whatsoever shall be deemed intal damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by ether such claim is based upon any of the above stated reasons or otherwise.										4	OTHER: No preservation Nitric Acid Hydrochloric Acid Sulfuric Acid	# of containers	Needed?	TAT				
ADDITIONAL REMARKS:	ncluding those for neg thout limitation, busing the above										<u> </u>	Sodium Hydroxide OTHER: EPA Me		od	826	60B	(V	ОС	s)
	gligence and any oth ess interruptions, lo stated reasons or c																		
	er cause whatsoeve ss of use, or loss of otherwise.																		
	profits in																		
	ncurre																		
	d by																		

GAL cannot accept verbal changes. Please email changes to receiving@greenanalytical.com Chain of Custody must be signed in "Relinquished By:" as an acceptance of services and all applicable charges.

Time: Date: Time:

Temperature at receipt:

Checked by:

On Ice?

Therm, used:

Page z

. 으

റ്

Received By:

Time: Date: Time: Date:

Page 15 of 16 2406192 GAL FINAL 06 27 24 1743 06/27/24 17:43:48

SAMPLE CONDITION RECEIPT FORM

Client Name: Cottonwood Consulting Work On	rder # 2406-192
Courier: □Fed Ex □UPS □USPS □Client □ Kangaroo □ Third Party □Othe	r
Custody Seals on Box/Cooler Present: ☐ Yes ☐ No Seals Intact: ☐ Yes ☐ No	
	ate/Initials of person xamining contents:
Type of Ice: ☑Wet ☐ Blue ☐ None	abeled by initials:
Cooler Temp: Observed Temp: 33.0 °C Correction Factor: C Final Temp: 33.0 °C *Temp should be above freezing to 6°C	different than above)
Chain of Custody Present:	
Chain of Custody Filled Out:	•
Chain of Custody Relinquished:	
Sampler Name and Signature on COC:	
Samples arrived within hold time:	
Short Hold Time Analysis (<72hr): □Yes ☑No ⁶ .	
Rush Turn Around Time Requested: □Yes ☑No 7.	
Sufficient Volume:	
Correct Containers Used:	
Containers Intact: DYES DNO 10. Air bubbles and roas	
Dissolved Testing Needed: □Yes ☑No 11.	
Field Filtered: □Yes □No	Con ICV marset when sould
Sample Labels match COC: -Includes Date/Time/ID Sample Labels match COC: -Includes Date/Time/ID Sample Labels match COC: -Includes Date/Time/ID	Last, con stropped by
Matrix: VOT SL OT	
Trip Blank Present: □Yes □No □N/A Trip Blank Custody Seals Present: □Yes □No □N/A	
Client Notification/Resolution:	-74 1138
Person Contacted: Date/Time: Date/Time:	41 1100
Person Contacted: Kelsey Comments/Resolution: VIW Spoke w/K.O. Sho Verified The correct of Sont an emoul	ct date/time
- Sent an email	

FORM-039, Rev 2

Page 1 of 1

75 Suttle Street Durango, CO 81303 970.247.4220 Phone jeremy.allen@greenanalytical.com

26 September 2024

Kyle Siesser Cottonwood Consulting PO Box 1653 Durango, CO 81302

RE: Mudge LS #006

Enclosed are the results of analyses for samples received by the laboratory on 09/18/24 15:27. The data to follow was performed, in whole or in part, by Green Analytical Laboratories. Any data that was performed by a subcontract laboratory is included within the GAL report, or with an additional report attached.

If you need any further assistance, please feel free to contact me.

Sincerely,

Veronica Wells

Project Manager

Neronica & Wells

All accredited analytes contained in this report are denoted by an asterisk (*). For a complete list of accredited analytes please do not hesitate to contact us via any of the contact information contained in this report. All of our certifications can be viewed at http://greenanalytical.com/certifications/

Green Analytical Laboratories is NELAP accredited through the Texas Commission on Environmental Quality. Accreditation applies to drinking water and non-potable water matrices for trace metals and a variety of inorganic parameters. Green Analytical Laboratories is also accredited through the Colorado Department of Public Health and Environment and EPA region 8 for trace metals, Cyanide, Fluoride, Nitrate, and Nitrite in drinking water. TNI Certificate Number: TX-C24-00019

Our affiliate laboratory, Cardinal Laboratories, is also NELAP accredited through the Texas Commission on Environmental Quality for a variety of organic constituents in drinking water, non-potable water and solid matrices. Cardinal is also accredited for regulated VOCs, TTHM, and HAA-5 in drinking water through the Colorado Department of Public Health and Environment and EPA region 8. TNI Certificate Number: TX-C24-00112

Table of Contents

Samples in Report	3
Sample Results	4
2409218-01: MW #1	4
Quality Assurance Results	7
Notes and Definitions	13
Qualifier Summary	14
Chain of Custody & Attachments	15

Durango CO, 81302

Project: VOC 8260

Project Name / Number: Mudge LS #006

Reported:

Project Manager: Kyle Siesser 09/26/24 10:16

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
MW #1	2409218-01	Water	09/18/24 09:20	09/18/24 15:27	

Green Analytical Laboratories

Veronica Wells, Project Manager

Neronica J Wells

Released to Imaging: 1/9/2025 2:07:54 PM

Durango CO, 81302

Project: VOC 8260
Project Name / Number: Mudge LS #006
Project Manager: Kyle Siesser

Reported: 09/26/24 10:16

MW #1

2409218-01 (Ground Water) Sampled Date: 09/18/24 09:20

Analyte Result RL MDL Units Dilution Analyzed Method	Notes	Analyst
--	-------	---------

Subcontracted -- Cardinal Laboratories 101 East Marland Hobbs, NM 88240

VOLATILES BY GC/MS								
1,1,1,2-Tetrachloroethane*	< 0.025	0.025	0.003	mg/L	50	09/24/24 18:58	8260B	MS
1,1,1-Trichloroethane*	< 0.025	0.025	0.003	mg/L	50	09/24/24 18:58	8260B	MS
1,1,2,2-Tetrachloroethane*	< 0.025	0.025	0.003	mg/L	50	09/24/24 18:58	8260B	MS
1,1,2-Trichloroethane*	< 0.025	0.025	0.003	mg/L	50	09/24/24 18:58	8260B	MS
1,1-Dichloroethane*	< 0.025	0.025	0.008	mg/L	50	09/24/24 18:58	8260B	MS
1,1-Dichloroethene*	< 0.025	0.025	0.009	mg/L	50	09/24/24 18:58	8260B	MS
1,1-Dichloropropene*	< 0.025	0.025	0.008	mg/L	50	09/24/24 18:58	8260B	MS
1,2,3-Trichlorobenzene*	< 0.025	0.025	0.012	mg/L	50	09/24/24 18:58	8260B	MS
1,2,4-Trichlorobenzene*	< 0.025	0.025	0.006	mg/L	50	09/24/24 18:58	8260B	MS
1,2,4-Trimethylbenzene*	0.887	0.025	0.002	mg/L	50	09/24/24 18:58	8260B	MS
1,2-Dibromo-3-chloropropane*	< 0.025	0.025	0.025	mg/L	50	09/24/24 18:58	8260B	MS
1,2-Dibromoethane*	< 0.025	0.025	0.005	mg/L	50	09/24/24 18:58	8260B	MS
1,2-Dichlorobenzene*	< 0.025	0.025	0.003	mg/L	50	09/24/24 18:58	8260B	MS
1,2-Dichloroethane*	< 0.025	0.025	0.003	mg/L	50	09/24/24 18:58	8260B	MS
1,2-Dichloropropane*	< 0.025	0.025	0.004	mg/L	50	09/24/24 18:58	8260B	MS
1,3,5-Trimethylbenzene*	0.391	0.025	0.002	mg/L	50	09/24/24 18:58	8260B	MS
1,3-Dichlorobenzene*	< 0.025	0.025	0.002	mg/L	50	09/24/24 18:58	8260B	MS
1,3-Dichloropropane*	< 0.025	0.025	0.007	mg/L	50	09/24/24 18:58	8260B	MS
1,4-Dichlorobenzene	< 0.025	0.025	0.002	mg/L	50	09/24/24 18:58	8260B	MS
1,4-Dioxane	< 0.500	0.500	0.500	mg/L	50	09/24/24 18:58	8260B	MS
1.2.3-trichloropropane*	< 0.025	0.025	0.006	mg/L	50	09/24/24 18:58	8260B	MS
2,2-Dichloropropane*	< 0.025	0.025	0.025	mg/L	50	09/24/24 18:58	8260B	MS
2-Butanone*	< 0.100	0.100	0.100	mg/L	50	09/24/24 18:58	8260B	MS
2-Chlorotoluene*	< 0.025	0.025	0.002	mg/L	50	09/24/24 18:58	8260B	MS
2-Hexanone*	< 0.050	0.050	0.016	mg/L	50	09/24/24 18:58	8260B	MS
4-Chlorotoluene*	< 0.025	0.025	0.002	mg/L	50	09/24/24 18:58	8260B	MS
4-Methyl-2-pentanone*	< 0.050	0.050	0.006	mg/L	50	09/24/24 18:58	8260B	MS
Acetone*	< 0.500	0.500	0.043	mg/L	50	09/24/24 18:58	8260B	MS
Acrolein*	< 0.250	0.250	0.054	mg/L	50	09/24/24 18:58	8260B	MS
Acrylonitrile*	< 0.100	0.100	0.040	mg/L	50	09/24/24 18:58	8260B	MS

Green Analytical Laboratories

Neronica J Wills

Durango CO, 81302

Project: VOC 8260
Project Name / Number: Mudge LS #006
Project Manager: Kyle Siesser

Reported: 09/26/24 10:16

MW #1

2409218-01 (Ground Water) Sampled Date: 09/18/24 09:20

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst	ĺ
---------	--------	----	-----	-------	----------	----------	--------	-------	---------	---

Subcontracted -- Cardinal Laboratories 101 East Marland Hobbs, NM 88240

Benzene*	0.570	0.025	0.002	mg/L	50	09/24/24 18:58	8260B	MS
Bromobenzene*	< 0.025	0.025	0.003	mg/L	50	09/24/24 18:58	8260B	MS
Bromochloromethane*	< 0.025	0.025	0.007	mg/L	50	09/24/24 18:58	8260B	MS
Bromodichloromethane*	< 0.025	0.025	0.002	mg/L	50	09/24/24 18:58	8260B	MS
Bromoform*	< 0.025	0.025	0.004	mg/L	50	09/24/24 18:58	8260B	MS
Bromomethane*	< 0.025	0.025	0.025	mg/L	50	09/24/24 18:58	8260B	MS
Carbon disulfide*	< 0.050	0.050	0.007	mg/L	50	09/24/24 18:58	8260B	MS
Carbon tetrachloride*	< 0.025	0.025	0.008	mg/L	50	09/24/24 18:58	8260B	MS
Chlorobenzene*	< 0.025	0.025	0.002	mg/L	50	09/24/24 18:58	8260B	MS
Chloroethane*	< 0.025	0.025	0.025	mg/L	50	09/24/24 18:58	8260B	MS
Chloroform*	< 0.025	0.025	0.0008	mg/L	50	09/24/24 18:58	8260B	MS
Chloromethane*	< 0.025	0.025	0.025	mg/L	50	09/24/24 18:58	8260B	MS
cis-1,2-Dichloroethene*	< 0.025	0.025	0.012	mg/L	50	09/24/24 18:58	8260B	MS
cis-1,3-Dichloropropene*	< 0.025	0.025	0.004	mg/L	50	09/24/24 18:58	8260B	MS
Dibromochloromethane*	< 0.025	0.025	0.004	mg/L	50	09/24/24 18:58	8260B	MS
Dibromomethane*	< 0.025	0.025	0.008	mg/L	50	09/24/24 18:58	8260B	M
Dichlorodifluoromethane*	< 0.025	0.025	0.025	mg/L	50	09/24/24 18:58	8260B	M
Ethylbenzene*	0.656	0.025	0.002	mg/L	50	09/24/24 18:58	8260B	MS
Hexachlorobutadiene*	< 0.025	0.025	0.025	mg/L	50	09/24/24 18:58	8260B	MS
odomethane	< 0.050	0.050	0.003	mg/L	50	09/24/24 18:58	8260B	MS
sopropylbenzene*	0.098	0.025	0.001	mg/L	50	09/24/24 18:58	8260B	MS
n+p - Xylene*	3.85	0.050	0.004	mg/L	50	09/24/24 18:58	8260B	MS
Methyl tert-butyl ether	< 0.050	0.050	0.012	mg/L	50	09/24/24 18:58	8260B	MS
Methylene chloride*	0.051	0.025	0.025	mg/L	50	09/24/24 18:58	8260B	MS
Naphthalene*	0.075	0.025	0.004	mg/L	50	09/24/24 18:58	8260B	MS
1-Butylbenzene*	< 0.025	0.025	0.003	mg/L	50	09/24/24 18:58	8260B	MS
n-Propylbenzene*	0.104	0.025	0.003	mg/L	50	09/24/24 18:58	8260B	MS
o-Xylene*	1.19	0.025	0.006	mg/L	50	09/24/24 18:58	8260B	MS
p-Isopropyltoluene*	0.092	0.025	0.002	mg/L	50	09/24/24 18:58	8260B	MS
sec-Butylbenzene*	< 0.025	0.025	0.002	mg/L	50	09/24/24 18:58	8260B	MS
Styrene*	< 0.025	0.025	0.006	mg/L	50	09/24/24 18:58	8260B	MS
ert-Butylbenzene*	< 0.025	0.025	0.004	mg/L	50	09/24/24 18:58	8260B	MS

Green Analytical Laboratories

Neronica J Wells

Durango CO, 81302

Project: VOC 8260

Project Name / Number: Mudge LS #006 Project Manager: Kyle Siesser

Reported: 09/26/24 10:16

MW #1

2409218-01 (Ground Water) Sampled Date: 09/18/24 09:20

Analyte Result RL MDL Units	Dilution Analyzed Method Notes Analyst
-----------------------------	--

Subcontracted -- Cardinal Laboratories 101 East Marland Hobbs, NM 88240

VOLATILES BY GC/MS								
Tetrachloroethene*	< 0.025	0.025	0.005	mg/L	50	09/24/24 18:58	8260B	MS
Toluene*	1.88	0.025	0.004	mg/L	50	09/24/24 18:58	8260B	MS
Total Xylenes*	5.04	0.050	0.010	mg/L	50	09/24/24 18:58	8260B	MS
trans-1,2-Dichloroethene*	< 0.025	0.025	0.007	mg/L	50	09/24/24 18:58	8260B	MS
trans-1,3-Dichloropropene*	< 0.025	0.025	0.002	mg/L	50	09/24/24 18:58	8260B	MS
trans-1,4-Dichloro-2-butene	< 0.500	0.500	0.014	mg/L	50	09/24/24 18:58	8260B	MS
Trichloroethene*	< 0.025	0.025	0.009	mg/L	50	09/24/24 18:58	8260B	MS
Trichlorofluoromethane*	< 0.025	0.025	0.007	mg/L	50	09/24/24 18:58	8260B	MS
Vinyl acetate*	< 0.025	0.025	0.025	mg/L	50	09/24/24 18:58	8260B	MS
Vinyl chloride*	< 0.025	0.025	0.025	mg/L	50	09/24/24 18:58	8260B	MS
Surrogate: 4-Bromofluorobenzene			102 %	76.4-114		09/24/24	8260B	MS
Comment of Dilamond and an address			105.0/	02 / 1/1		18:58	8260B	MS
Surrogate: Dibromofluoromethane			105 %	82.4-141		09/24/24 18:58	0200B	MIS
Surrogate: Toluene-d8			101 %	87.1-110		09/24/24 18:58	8260B	MS

Green Analytical Laboratories

Neronica J NULLS

Durango CO, 81302

Project: VOC 8260

Project Name / Number: Mudge LS #006

Project Manager: Kyle Siesser

Reported: 09/26/24 10:16

VOLATILES BY GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 4091935 - Volatiles

Blank (4091935-BLK1)			Prepar	red: 09/19/24 A	nalyzed: 09/24	/24	
1,1,1,2-Tetrachloroethane	ND	0.0005	mg/L				
1,1,1-Trichloroethane	ND	0.0005	mg/L				
1,1,2,2-Tetrachloroethane	ND	0.0005	mg/L				
1,1,2-Trichloroethane	ND	0.0005	mg/L				
1,1-Dichloroethane	ND	0.0005	mg/L				
1,1-Dichloroethene	ND	0.0005	mg/L				
1,1-Dichloropropene	ND	0.0005	mg/L				
1,2,3-Trichlorobenzene	ND	0.0005	mg/L				
1,2,4-Trichlorobenzene	ND	0.0005	mg/L				
1,2,4-Trimethylbenzene	ND	0.0005	mg/L				
1,2-Dibromo-3-chloropropane	ND	0.0005	mg/L				
1,2-Dibromoethane	ND	0.0005	mg/L				
1,2-Dichlorobenzene	ND	0.0005	mg/L				
1,2-Dichloroethane	ND	0.0005	mg/L				
1,2-Dichloropropane	ND	0.0005	mg/L				
1,3,5-Trimethylbenzene	ND	0.0005	mg/L				
1,3-Dichlorobenzene	ND	0.0005	mg/L				
1,3-Dichloropropane	ND	0.0005	mg/L				
1,4-Dichlorobenzene	ND	0.0005	mg/L				
1,4-Dioxane	ND	0.010	mg/L				
1.2.3-trichloropropane	ND	0.0005	mg/L				
2,2-Dichloropropane	ND	0.0005	mg/L				
2-Butanone	ND	0.002	mg/L				
2-Chlorotoluene	ND	0.0005	mg/L				
2-Hexanone	ND	0.001	mg/L				
Surrogate: 4-Bromofluorobenzene	0.0246		mg/L	0.0250	98.4	76.4-114	
4-Chlorotoluene	ND	0.0005	mg/L				
4-Methyl-2-pentanone	ND	0.001	mg/L				
Acetone	ND	0.010	mg/L				
Acrolein	ND	0.005	mg/L				
Acrylonitrile	ND	0.002	mg/L				
Benzene	ND	0.0005	mg/L				
Bromobenzene	ND	0.0005	mg/L				
Bromochloromethane	ND	0.0005	mg/L				
Bromodichloromethane	ND	0.0005	mg/L				
Bromoform	ND	0.0005	mg/L				

Green Analytical Laboratories

Neronica J Wills

Cottonwood Consulting

Project: VOC 8260

PO Box 1653

Project Name / Number: Mudge LS #006

Reported: 09/26/24 10:16

Durango CO, 81302

Project Manager: Kyle Siesser

VOLATILES BY GC/MS - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 4091935 - Volatiles (Continued)

Blank (4091935-BLK1) (Continued)			Prep	pared: 09/19/24 Ar	nalyzed: 09/24/2	4	
Bromomethane	ND	0.0005	mg/L				
Carbon disulfide	ND	0.001	mg/L				
Carbon tetrachloride	ND	0.0005	mg/L				
Chlorobenzene	ND	0.0005	mg/L				
Chloroethane	ND	0.0005	mg/L				
Chloroform	ND	0.0005	mg/L				
Chloromethane	ND	0.0005	mg/L				
cis-1,2-Dichloroethene	ND	0.0005	mg/L				
cis-1,3-Dichloropropene	ND	0.0005	mg/L				
Dibromochloromethane	ND	0.0005	mg/L				
Surrogate: Dibromofluoromethane	0.0254		mg/L	0.0250	102	82.4-141	
Dibromomethane	ND	0.0005	mg/L				
Dichlorodifluoromethane	ND	0.0005	mg/L				
Ethylbenzene	ND	0.0005	mg/L				
Hexachlorobutadiene	ND	0.0005	mg/L				
Iodomethane	ND	0.001	mg/L				
Isopropylbenzene	ND	0.0005	mg/L				
m+p - Xylene	ND	0.001	mg/L				
Methyl tert-butyl ether	ND	0.001	mg/L				
Methylene chloride	ND	0.0005	mg/L				
Naphthalene	ND	0.0005	mg/L				
n-Butylbenzene	ND	0.0005	mg/L				
n-Propylbenzene	ND	0.0005	mg/L				
o-Xylene	ND	0.0005	mg/L				
p-Isopropyltoluene	ND	0.0005	mg/L				
sec-Butylbenzene	ND	0.0005	mg/L				
Styrene	ND	0.0005	mg/L				
tert-Butylbenzene	ND	0.0005	mg/L				
Tetrachloroethene	ND	0.0005	mg/L				
Toluene	ND	0.0005	mg/L				
Surrogate: Toluene-d8	0.0249		mg/L	0.0250	99.7	87.1-110	
Total Xylenes	ND	0.001	mg/L				
trans-1,2-Dichloroethene	ND	0.0005	mg/L				
trans-1,3-Dichloropropene	ND	0.0005	mg/L				
trans-1,4-Dichloro-2-butene	ND	0.010	mg/L				
Trichloroethene	ND	0.0005	mg/L				
Trichlorofluoromethane	ND	0.0005	mg/L				
Vinyl acetate	ND	0.0005	mg/L				
Vinyl chloride	ND	0.0005	mg/L				

Green Analytical Laboratories

Neronica J Wills

Durango CO, 81302

Project: VOC 8260

Project Name / Number: Mudge LS #006

Reported:

Project Manager: Kyle Siesser

09/26/24 10:16

VOLATILES BY GC/MS - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4091935 - Volatiles (Continued)										

LCS (4091935-BS1)			Prej	pared: 09/19/24 A	Analyzed: 09/24/2	4	
1,1,1,2-Tetrachloroethane	0.017	0.0005	mg/L	0.0200	87.2	82.4-120	
1,1,1-Trichloroethane	0.019	0.0005	mg/L	0.0200	95.6	80.7-121	
1,1,2,2-Tetrachloroethane	0.021	0.0005	mg/L	0.0200	105	76.5-121	
1,1,2-Trichloroethane	0.019	0.0005	mg/L	0.0200	93.4	81.7-118	
1,1-Dichloroethane	0.020	0.0005	mg/L	0.0200	100	74.8-123	
1,1-Dichloroethene	0.021	0.0005	mg/L	0.0200	105	53.9-149	
1,1-Dichloropropene	0.020	0.0005	mg/L	0.0200	100	85.9-115	
1,2,3-Trichlorobenzene	0.023	0.0005	mg/L	0.0200	114	76.1-134	
1,2,4-Trichlorobenzene	0.023	0.0005	mg/L	0.0200	117	72.4-136	
1,2,4-Trimethylbenzene	0.022	0.0005	mg/L	0.0200	112	67.4-138	
1,2-Dibromo-3-chloropropane	0.021	0.0005	mg/L	0.0200	106	71.7-124	
1,2-Dibromoethane	0.020	0.0005	mg/L	0.0200	100	84.9-116	
1,2-Dichlorobenzene	0.020	0.0005	mg/L	0.0200	97.8	82.5-119	
1,2-Dichloroethane	0.018	0.0005	mg/L	0.0200	87.8	72.5-123	
1,2-Dichloropropane	0.021	0.0005	mg/L	0.0200	105	79.4-117	
1,3,5-Trimethylbenzene	0.022	0.0005	mg/L	0.0200	110	69-137	
1,3-Dichlorobenzene	0.020	0.0005	mg/L	0.0200	97.6	84.4-120	
1,3-Dichloropropane	0.020	0.0005	mg/L	0.0200	101	82.6-117	
1,4-Dichlorobenzene	0.019	0.0005	mg/L	0.0200	96.4	81.7-118	
1,4-Dioxane	0.350	0.010	mg/L	0.400	87.4	-34.6-193	
1.2.3-trichloropropane	0.023	0.0005	mg/L	0.0200	116	44.7-168	
2,2-Dichloropropane	0.015	0.0005	mg/L	0.0200	73.0	62.9-136	
2-Butanone	0.036	0.002	mg/L	0.0400	89.1	24.1-159	
2-Chlorotoluene	0.021	0.0005	mg/L	0.0200	107	80.2-121	
2-Hexanone	0.036	0.001	mg/L	0.0400	90.8	56.3-139	
Surrogate: 4-Bromofluorobenzene	0.0251		mg/L	0.0250	101	76.4-114	
4-Chlorotoluene	0.022	0.0005	mg/L	0.0200	111	82.2-125	
4-Methyl-2-pentanone	0.041	0.001	mg/L	0.0400	103	60.7-139	
Acetone	0.045	0.010	mg/L	0.0400	112	39.1-168	
Acrolein	0.185	0.005	mg/L	0.200	92.7	26.6-161	
Acrylonitrile	0.041	0.002	mg/L	0.0400	103	64.9-135	
Benzene	0.020	0.0005	mg/L	0.0200	98.6	69.4-129	
Bromobenzene	0.020	0.0005	mg/L	0.0200	98.4	83.5-115	
Bromochloromethane	0.020	0.0005	mg/L	0.0200	101	70.7-123	
Bromodichloromethane	0.020	0.0005	mg/L	0.0200	97.7	80.3-119	
Bromoform	0.019	0.0005	mg/L	0.0200	96.8	71.1-141	

Green Analytical Laboratories

Bromomethane

Carbon disulfide

Carbon tetrachloride

Neronica J Wells

0.017

0.042

0.019

0.0005

0.001

0.0005

mg/L

mg/L

mg/L

0.0200

0.0400

0.0200

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. In no event shall Green Analytical Laboratories be liable for incidental or consequential damages. GALs liability, and clients exclusive remedy for any claim arising, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever, shall be deemed waived unless made in writing and received within thirty days after completion of the applicable service.

87.4

104

93.9

55.1-143

53.6-147

79.5-125

Cottonwood Consulting

Project: VOC 8260

PO Box 1653 Durango CO, 81302 Project Name / Number: Mudge LS #006 Project Manager: Kyle Siesser

Reported: 09/26/24 10:16

VOLATILES BY GC/MS - Quality Control (Continued)

A 1.0	D 1:	Reporting	TT 1.	Spike	Source	0/855	%REC	DPD	RPD	N 7 ·
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Satch 4091935 - Volatiles (Continued)										
CS (4091935-BS1) (Continued)			Prep	ared: 09/19/	24 Analyz	ed: 09/24/2	4			
Chlorobenzene	0.019	0.0005	mg/L	0.0200		95.4	85.1-115			
Chloroethane	0.019	0.0005	mg/L	0.0200		94.1	36.9-159			
Chloroform	0.018	0.0005	mg/L	0.0200		92.2	80.9-119			
Chloromethane	0.020	0.0005	mg/L	0.0200		102	54.2-142			
cis-1,2-Dichloroethene	0.020	0.0005	mg/L	0.0200		101	73.8-128			
cis-1,3-Dichloropropene	0.020	0.0005	mg/L	0.0200		102	82.5-122			
Dibromochloromethane	0.019	0.0005	mg/L	0.0200		96.8	83.1-124			
Surrogate: Dibromofluoromethane	0.0241		mg/L	0.0250		96.4	82.4-141			
Dibromomethane	0.019	0.0005	mg/L	0.0200		94.0	77-118			
Dichlorodifluoromethane	0.021	0.0005	mg/L	0.0200		104	38.7-147			
Ethylbenzene	0.020	0.0005	mg/L	0.0200		100	70.2-130			
Hexachlorobutadiene	0.025	0.0005	mg/L	0.0200		123	78.9-148			
Iodomethane	0.036	0.001	mg/L	0.0400		90.3	63.5-135			
Isopropylbenzene	0.020	0.0005	mg/L	0.0200		100	85-124			
m+p - Xylene	0.040	0.001	mg/L	0.0400		101	71.9-133			
Methyl tert-butyl ether	0.037	0.001	mg/L	0.0400		93.6	57.7-137			
Methylene chloride	0.021	0.0005	mg/L	0.0200		103	49.3-163			
Naphthalene	0.021	0.0005	mg/L	0.0200		105	62.1-141			
n-Butylbenzene	0.022	0.0005	mg/L	0.0200		108	75.4-132			
n-Propylbenzene	0.022	0.0005	mg/L	0.0200		111	79.6-124			
o-Xylene	0.021	0.0005	mg/L	0.0200		104	69.4-132			
p-Isopropyltoluene	0.021	0.0005	mg/L	0.0200		107	79.8-131			
sec-Butylbenzene	0.023	0.0005	mg/L	0.0200		117	77.6-133			
Styrene	0.020	0.0005	mg/L	0.0200		98.8	71.7-128			
tert-Butylbenzene	0.021	0.0005	mg/L	0.0200		106	78.8-128			
Tetrachloroethene	0.018	0.0005	mg/L	0.0200		89.8	74.2-128			
Toluene	0.018	0.0005	mg/L	0.0200		92.0	68.1-127			
Surrogate: Toluene-d8	0.0254		mg/L	0.0250		101	87.1-110			
Total Xylenes	0.061	0.001	mg/L	0.0600		102	71.6-132			
trans-1,2-Dichloroethene	0.020	0.0005	mg/L	0.0200		98.6	65.2-133			
trans-1,3-Dichloropropene	0.021	0.0005	mg/L	0.0200		104	84-123			
trans-1,4-Dichloro-2-butene	0.069	0.010	mg/L	0.0400		172	9.3-235			
Trichloroethene	0.019	0.0005	mg/L	0.0200		95.2	79.3-114			
Trichlorofluoromethane	0.018	0.0005	mg/L	0.0200		89.2	28.6-162			
Vinyl acetate	0.013	0.0005	mg/L	0.0200		66.4	50.9-135			
Vinyl chloride	0.021	0.0005	mg/L	0.0200		106	61.6-133			
CS Dup (4091935-BSD1)			Prep	ared: 09/19/	24 Analyzo	ed: 09/24/2	4			
1,1,1,2-Tetrachloroethane	0.017	0.0005	mg/L	0.0200		85.5	82.4-120	1.97	6.88	

Green Analytical Laboratories

Neronica J Wells

Durango CO, 81302

Project: VOC 8260

Project Name / Number: Mudge LS #006 Project Manager: Kyle Siesser **Reported:** 09/26/24 10:16

VOLATILES BY GC/MS - Quality Control (Continued)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4091935 - Volatiles (Continued)	-100011	Ziiiit						2		2.3000
LCS Dup (4091935-BSD1) (Continued)			Prep	pared: 09/19/	24 Analyz	ed: 09/24/2	4			
1,1,1-Trichloroethane	0.020	0.0005	mg/L	0.0200		97.9	80.7-121	2.38	7.43	
1,1,2,2-Tetrachloroethane	0.022	0.0005	mg/L	0.0200		109	76.5-121	4.21	8.68	
1,1,2-Trichloroethane	0.019	0.0005	mg/L	0.0200		96.2	81.7-118	2.95	6.82	
1,1-Dichloroethane	0.020	0.0005	mg/L	0.0200		102	74.8-123	1.98	4.3	
1,1-Dichloroethene	0.021	0.0005	mg/L	0.0200		103	53.9-149	2.31	16.5	
1,1-Dichloropropene	0.020	0.0005	mg/L	0.0200		99.4	85.9-115	0.602	5.47	
1,2,3-Trichlorobenzene	0.022	0.0005	mg/L	0.0200		111	76.1-134	2.89	43	
1,2,4-Trichlorobenzene	0.022	0.0005	mg/L	0.0200		112	72.4-136	4.68	22.3	
1,2,4-Trimethylbenzene	0.022	0.0005	mg/L	0.0200		111	67.4-138	1.30	8.94	
1,2-Dibromo-3-chloropropane	0.020	0.0005	mg/L	0.0200		101	71.7-124	4.68	15.1	
1,2-Dibromoethane	0.020	0.0005	mg/L	0.0200		101	84.9-116	0.299	5.83	
1,2-Dichlorobenzene	0.019	0.0005	mg/L	0.0200		96.0	82.5-119	1.86	8.72	
1,2-Dichloroethane	0.018	0.0005	mg/L	0.0200		92.4	72.5-123	5.05	8.94	
1,2-Dichloropropane	0.021	0.0005	mg/L	0.0200		107	79.4-117	1.42	5.51	
1,3,5-Trimethylbenzene	0.023	0.0005	mg/L	0.0200		113	69-137	2.33	16.5	
1,3-Dichlorobenzene	0.020	0.0005	mg/L	0.0200		100	84.4-120	2.73	9	
1,3-Dichloropropane	0.020	0.0005	mg/L	0.0200		98.6	82.6-117	2.50	6.06	
1,4-Dichlorobenzene	0.020	0.0005	mg/L	0.0200		98.6	81.7-118	2.26	7.71	
1,4-Dioxane	0.372	0.010	mg/L	0.400		93.1	-34.6-193	6.28	35.2	
1.2.3-trichloropropane	0.024	0.0005	mg/L	0.0200		118	44.7-168	1.97	49.2	
2,2-Dichloropropane	0.015	0.0005	mg/L	0.0200		73.0	62.9-136	0.137	9.62	
2-Butanone	0.043	0.002	mg/L mg/L	0.0400		109	24.1-159	19.6	14.2	OR-0
2-Chlorotoluene	0.043	0.002	mg/L mg/L	0.0200		104	80.2-121	2.23	8.62	QIC-0
2-Hexanone	0.021	0.0003	mg/L mg/L	0.0400		99.3	56.3-139	8.92	7.28	QR-0
Surrogate: 4-Bromofluorobenzene	0.0251		mg/L	0.0250		100	76.4-114			
4-Chlorotoluene	0.022	0.0005	mg/L	0.0200		110	82.2-125	0.902	15.5	
4-Methyl-2-pentanone	0.043	0.001	mg/L	0.0400		107	60.7-139	3.63	7.57	
Acetone	0.047	0.010	mg/L	0.0400		119	39.1-168	5.43	30.5	
Acrolein	0.196	0.005	mg/L	0.200		98.2	26.6-161	5.72	22.4	
Acrylonitrile	0.043	0.002	mg/L	0.0400		107	64.9-135	4.13	7.62	
Benzene	0.020	0.0005	mg/L	0.0200		101	69.4-129	2.31	4.16	
Bromobenzene	0.020	0.0005	mg/L	0.0200		98.3	83.5-115	0.102	8.41	
Bromochloromethane	0.019	0.0005	mg/L	0.0200		97.4	70.7-123	3.23	5.16	
Bromodichloromethane	0.020	0.0005	mg/L	0.0200		99.7	80.3-119	2.03	5.36	
Bromoform	0.020	0.0005	mg/L	0.0200		101	71.1-141	4.64	14.1	
Bromomethane	0.017	0.0005	mg/L	0.0200		85.0	55.1-143	2.79	21.5	
Carbon disulfide	0.042	0.001	mg/L	0.0400		105	53.6-147	0.671	20.3	
Carbon tetrachloride	0.042	0.0005	mg/L mg/L	0.0200		94.6	79.5-125	0.690	11.4	
Chlorobenzene	0.019	0.0005	mg/L	0.0200		97.6	85.1-115	2.23	5.18	

Green Analytical Laboratories

Neronica J Wells

Durango CO, 81302

Project Name / Number: Mudge LS #006
Project Manager: Kyle Siesser

Reported:

09/26/24 10:16

VOLATILES BY GC/MS - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4091935 - Volatiles (Continued)										
LCS Dup (4091935-BSD1) (Continued)			Prep	oared: 09/19/	24 Analyzo	ed: 09/24/2	4			
Chloroethane	0.019	0.0005	mg/L	0.0200		95.9	36.9-159	1.89	24.1	
Chloroform	0.018	0.0005	mg/L	0.0200		90.8	80.9-119	1.48	5.15	
Chloromethane	0.020	0.0005	mg/L	0.0200		101	54.2-142	0.785	27	
cis-1,2-Dichloroethene	0.021	0.0005	mg/L	0.0200		105	73.8-128	3.15	5.73	
cis-1,3-Dichloropropene	0.021	0.0005	mg/L	0.0200		106	82.5-122	3.93	6.09	
Dibromochloromethane	0.020	0.0005	mg/L	0.0200		98.6	83.1-124	1.84	7.24	
Surrogate: Dibromofluoromethane	0.0244		mg/L	0.0250		97.5	82.4-141			
Dibromomethane	0.019	0.0005	mg/L	0.0200		96.8	77-118	2.88	5.75	
Dichlorodifluoromethane	0.020	0.0005	mg/L	0.0200		102	38.7-147	1.02	22.6	
Ethylbenzene	0.020	0.0005	mg/L	0.0200		99.8	70.2-130	0.200	4.83	
Hexachlorobutadiene	0.025	0.0005	mg/L	0.0200		124	78.9-148	0.731	18.4	
Iodomethane	0.036	0.001	mg/L	0.0400		90.5	63.5-135	0.249	24.3	
Isopropylbenzene	0.020	0.0005	mg/L	0.0200		100	85-124	0.0499	6.25	
m+p - Xylene	0.040	0.001	mg/L	0.0400		101	71.9-133	0.447	5.77	
Methyl tert-butyl ether	0.039	0.001	mg/L	0.0400		97.0	57.7-137	3.57	12.8	
Methylene chloride	0.021	0.0005	mg/L	0.0200		104	49.3-163	1.21	19.7	
Naphthalene	0.021	0.0005	mg/L	0.0200		105	62.1-141	0.476	33.5	
n-Butylbenzene	0.021	0.0005	mg/L	0.0200		106	75.4-132	1.35	10.1	
n-Propylbenzene	0.022	0.0005	mg/L	0.0200		112	79.6-124	0.850	9.09	
o-Xylene	0.021	0.0005	mg/L	0.0200		103	69.4-132	0.727	6.29	
p-Isopropyltoluene	0.023	0.0005	mg/L	0.0200		114	79.8-131	5.65	9.26	
sec-Butylbenzene	0.023	0.0005	mg/L	0.0200		117	77.6-133	0.384	9.85	
Styrene	0.020	0.0005	mg/L	0.0200		99.4	71.7-128	0.606	7.55	
tert-Butylbenzene	0.021	0.0005	mg/L	0.0200		106	78.8-128	0.283	18.6	
Tetrachloroethene	0.018	0.0005	mg/L	0.0200		89.1	74.2-128	0.783	6.38	
Toluene	0.019	0.0005	mg/L	0.0200		93.3	68.1-127	1.40	5.67	
Surrogate: Toluene-d8	0.0253		mg/L	0.0250		101	87.1-110			
Total Xylenes	0.061	0.001	mg/L	0.0600		101	71.6-132	0.541	5.83	
trans-1,2-Dichloroethene	0.019	0.0005	mg/L	0.0200		95.4	65.2-133	3.25	19.1	
trans-1,3-Dichloropropene	0.021	0.0005	mg/L	0.0200		104	84-123	0.672	6.26	
trans-1,4-Dichloro-2-butene	0.069	0.010	mg/L	0.0400		172	9.3-235	0.218	92.8	
Trichloroethene	0.020	0.0005	mg/L	0.0200		99.8	79.3-114	4.62	4.92	
Trichlorofluoromethane	0.018	0.0005	mg/L	0.0200		89.0	28.6-162	0.224	19.8	
Vinyl acetate	0.014	0.0005	mg/L	0.0200		70.6	50.9-135	6.13	7.84	
Vinyl chloride	0.021	0.0005	mg/L	0.0200		105	61.6-133	1.14	23	

Green Analytical Laboratories

Neronica J Wells

Cottonwood Consulting
Project: VOC 8260

PO Box 1653
Project Name / Number: Mudge LS #006

Project Manager: Kyle Siesser

09/26/24 10:16

Notes and Definitions

QR-04 The RPD for the BS/BSD was outside of historical limits.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

*Results reported on as received basis unless designated as dry.

RPD Relative Percent Difference

LCS Laboratory Control Sample (Blank Spike)

RL Report Limit

MDL Method Detection Limit

Green Analytical Laboratories

Veronica Wells, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. In no event shall Green Analytical Laboratories be liable for incidental or consequential damages. GALs liability, and clients exclusive remedy for any claim arising, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever, shall be deemed waived unless made in writing and received within thirty days after completion of the applicable service.

Neronica J Wells

Cottonwood Consulting Project: VOC 8260

PO Box 1653 Project Name / Number: Mudge LS #006 Reported:
Durango CO, 81302 Project Manager: Kyle Siesser 09/26/24 10:16

Qualifier Summary

<u>LabNumber</u> <u>Analysis</u> <u>Analyte</u> <u>Qualifier</u> <u>TextBody</u>

4091935-BSD1Volatile 82602-ButanoneQR-04The RPD for the BS/BSD was outside of historical limits.4091935-BSD1Volatile 82602-HexanoneQR-04The RPD for the BS/BSD was outside of historical limits.

Green Analytical Laboratories

Neronica J Wells

† GAL cannot accept verbal changes. Please email changes to receiving@greenanalytical.com * Chain of Custody must be signed in "Relinquished By:" as an acceptance of services and all applicable charges.

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST FORM-006, R 8.0

75 Suttle Street Durango, CO 81303 (970) 247-4220

Y N (asc)	Checked by:	oc Street	Temperature at receipt:		Date:			Received By:	Date: Time:		Relinquished By:	
4					Time:				Time:		C	
					Date:			Received By:	Date:		Relinquished By:	
				527	Time:	, , , a	1	m	Time: 15 25		30	
		MARKS:	ADDITIONAL REMARKS	E	Date: 916-		1	Received By:	Date: 9/18/24	The second of th	Relinquished By:	
of use, or loss of profits incurred invise.	ess interruptions, loss stated reasons or othe	tation, busine of the above :	ling without limit ased upon any o	nages, includ ich claim is ba	nsequental dan of whether su	idental or cor L, regardless	GAL be liable for inc es hereunder by GA	rice. In no event shall of performance of services	pletion of the applicable servising out of or related to the	waived unless made in writing and received by GAL within 30 days after completion of the applicable service. In no event shall GAL be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurrence waived unless made in writing and received by GAL within 30 days after completion of the applicable service. In no event shall GAL be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurrence waived unless made in writing and received by GAL within 30 days after completion of the applicable service. In no event shall GAL be liable for incidental or consequential damages, including without limitation, business interruptions, loss of use, or loss of profits incurrence waived unless made in writing and received by GAL within 30 days after completion of the applicable service. In no event shall GAL be liable for incidental or consequential damages, including without limitation, business interruptions, loss of use, or loss of profits incurrence waive and the profits incurrence waive waive and the profits incurrence waive wa	waived unless made in writing a	
analyses. All claims including those for negligence and any other cause whatsoever shall be deen	ligence and any other of	nose for negli	ims including the	alyses. All cla	ent for the ana	aid by the cli	ited to the amount p	act or tort, shall be lim	ising whether based in contri	10) In page NOTE: GAL's liability and client's exclusive remedy for any claim arising whether based in contract or tort, shall be limited to the amount paid by the client for the	DI EASE NOTE: GAL's liability	
				F						9)		_
		-		F		F				8)		
		1			-					7)		
										6)		
						E				5)		
		-		F						4)		_
		-			F					3)		
				F						2)		
		<		4	F		0920 1	4/18/24		1) MW#1	01	_
		-	Su	Nit	DRI	SUF	Time	Date			Lab Use Only	
			lfuric	ric Ac	INKIN	RFAC	OLINE				915-hon-C	_
		EPA N	Acid Hydroxide	servation cid nloric Acid	G WATER	E WATER VATER CED WATER	OWATER		ocation	Sample Name or Location	Lab I.D.	
		/leth	1	# of containers	ack one)	Matrix (check one)	ted	Collected	_	C		
		nod		led?	Needed	L _N		Brize	/Kelsen O'B	Dulan Sonage /	Sampler Name (Print):	
		8260		3	-	الد)6	Mudge LS #006		
)B (P.O. #:					Email Report to: ksiesse	
		VO								lesser	Contact Person: Kyle Siesser	
		Cs)									Phone #: 970-764-7356	T
									CO Zip: 81302	State:	ity: Durango	
								8		3	ddress: PO Box 1653	
REQUEST	ANALYSIS			(if different):	Bill to (if					Cottonwood Consulting LLC	company or Client: Co	
				ustody	Chain of C	ed on the	ts cannot be us	or similar produc	Note: Wite-Out TM or similar products cannot be used on the Chain of Custody		Laboratories	

읔

SAMPLE CONDITION RECEIPT FORM

Client Name: Lotter wood Corsul	tony	Worl	k Order # <u> 218</u>
Courier: □Fed Ex □UPS □USPS □	Client Kanga	aroo □ Third Party □0	Other
Custody Seals on Box/Cooler Present: ☐ Yes I	No	Seals Intact: ☐ Yes ☐ No	
	e, cooling process h	as begun: ☐Yes ☐ No	Date/Initials of person examining contents:
Type of Ice: ☐ Wet ☐ Blue ☐ None	Ø		Labeled by initials:
Cooler Temp: Observed Temp: 178°C Co	rrection Factor:	°C Final Temp://7.8 °C	(ii different triali above)
*Temp should be above freezing to 6°C		1,	
Chain of Custody Present:	□Yes □No		
Chain of Custody Filled Out:	⊒Yes □No	2.	
Chain of Custody Relinquished:	⊠Yes □No	3.	
Sampler Name and Signature on COC:	⊠Yes □No	4.	
Samples arrived within hold time:	⊠Yes □No	5.	,
Short Hold Time Analysis (<72hr):	□Yes ☑No	6.	
Rush Turn Around Time Requested:	□Yes ☑No	7.	
Sufficient Volume:	⊠Yes □No	8. Was of headspr	ie 76mm
Correct Containers Used:	☑Yes □No	9.	
Containers Intact:	☑Yes □No	10.	
Dissolved Testing Needed:	□Yes ☑No	11.	
Field Filtered: □Yes □No		12.	
Sample Labels match COC:	☑Yes □No	12.	
-Includes Date/Time/ID	M SL OT		
Matrix: Trip Blank Present:	□Yes □No □N/A	13.	
Trip Blank Custody Seals Present:	□Yes □No ☑N/A		
Client Notification/Resolution:			
Person Contacted:		Date/Time:	
Comments/Resolution:			

FORM-039, Rev 2

Page 1 of 1

75 Suttle Street Durango, CO 81303 970.247.4220 Phone jeremy.allen@greenanalytical.com

26 December 2024

Kyle Siesser Cottonwood Consulting PO Box 1653 Durango, CO 81302

RE: Mudge LS #006

Enclosed are the results of analyses for samples received by the laboratory on 12/11/24 16:15. The data to follow was performed, in whole or in part, by Green Analytical Laboratories. Any data that was performed by a subcontract laboratory is included within the GAL report, or with an additional report attached.

If you need any further assistance, please feel free to contact me.

Sincerely,

Veronica Wells

Project Manager

Neronica & Wells

All accredited analytes contained in this report are denoted by an asterisk (*). For a complete list of accredited analytes please do not hesitate to contact us via any of the contact information contained in this report. All of our certifications can be viewed at http://greenanalytical.com/certifications/

Green Analytical Laboratories is NELAP accredited through the Texas Commission on Environmental Quality. Accreditation applies to drinking water and non-potable water matrices for trace metals and a variety of inorganic parameters. Green Analytical Laboratories is also accredited through the Colorado Department of Public Health and Environment and EPA region 8 for trace metals, Cyanide, Fluoride, Nitrate, and Nitrite in drinking water. TNI Certificate Number: TX-C24-00019

Our affiliate laboratory, Cardinal Laboratories, is also NELAP accredited through the Texas Commission on Environmental Quality for a variety of organic constituents in drinking water, non-potable water and solid matrices. Cardinal is also accredited for regulated VOCs, TTHM, and HAA-5 in drinking water through the Colorado Department of Public Health and Environment and EPA region 8. TNI Certificate Number: TX-C24-00112

Table of Contents

Samples in Report	3
Sample Results	4
2412123-01: MW #1	4
Quality Assurance Results	7
Notes and Definitions	13
Qualifier Summary	14
Chain of Custody & Attachments	15

Durango CO, 81302

Project: VOC 8260

Project Name / Number: Mudge LS #006
Project Manager: Kyle Siesser

Reported: 12/26/24 15:23

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
MW #1	2412123-01	Water	12/11/24 09:25	12/11/24 16:15	

Green Analytical Laboratories

Veronica Wells, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. In no event shall Green Analytical Laboratories be liable for incidental or consequential damages. GALs liability, and clients exclusive remedy for any claim arising, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever, shall be deemed waived unless made in writing and received within thirty days after completion of the applicable service.

Page 3 of 16 2412123 GAL FINAL 12 26 24 1523 12/26/24 15:23:30

Neronica J Wells

Durango CO, 81302

Project: VOC 8260
Project Name / Number: Mudge LS #006
Project Manager: Kyle Siesser

Reported:

12/26/24 15:23

MW #1

2412123-01 (Ground Water) Sampled Date: 12/11/24 09:25 Sampled By: Kelsey O'brien

Analyte Result RL MDL Units Dilution Analyzed Method Notes Analyst

Subcontracted -- Cardinal Laboratories 101 East Marland Hobbs, NM 88240

VOLATILES BY GC/MS								
1,1,1,2-Tetrachloroethane	< 0.0005	0.0005	0.00006	mg/L	1	12/17/24 16:38	8260B	SK
1,1,1-Trichloroethane	< 0.0005	0.0005	0.00006	mg/L	1	12/17/24 16:38	8260B	SK
1,1,2,2-Tetrachloroethane	< 0.0005	0.0005	0.00006	mg/L	1	12/17/24 16:38	8260B	SK
1,1,2-Trichloroethane	< 0.0005	0.0005	0.00006	mg/L	1	12/17/24 16:38	8260B	SK
1,1-Dichloroethane	< 0.0005	0.0005	0.0002	mg/L	1	12/17/24 16:38	8260B	SK
1,1-Dichloroethene	< 0.0005	0.0005	0.0002	mg/L	1	12/17/24 16:38	8260B	SK
1,1-Dichloropropene	< 0.0005	0.0005	0.0002	mg/L	1	12/17/24 16:38	8260B	SK
1,2,3-Trichlorobenzene	< 0.0005	0.0005	0.0002	mg/L	1	12/17/24 16:38	8260B	SK
1,2,4-Trichlorobenzene	< 0.0005	0.0005	0.0001	mg/L	1	12/17/24 16:38	8260B	SK
1,2,4-Trimethylbenzene	0.909	0.010	0.0009	mg/L	20	12/23/24 15:33	8260B	SK
1,2-Dibromo-3-chloropropane	< 0.0005	0.0005	0.0005	mg/L	1	12/17/24 16:38	8260B	SK
1,2-Dibromoethane	< 0.0005	0.0005	0.00009	mg/L	1	12/17/24 16:38	8260B	SK
1,2-Dichlorobenzene	< 0.0005	0.0005	0.00007	mg/L	1	12/17/24 16:38	8260B	SK
1,2-Dichloroethane	< 0.0005	0.0005	0.00006	mg/L	1	12/17/24 16:38	8260B	SK
1,2-Dichloropropane	< 0.0005	0.0005	0.00008	mg/L	1	12/17/24 16:38	8260B	SK
1,3,5-Trimethylbenzene	0.421	0.010	0.0009	mg/L	20	12/23/24 15:33	8260B	SK
1,3-Dichlorobenzene	< 0.0005	0.0005	0.00005	mg/L	1	12/17/24 16:38	8260B	SK
1,3-Dichloropropane	< 0.0005	0.0005	0.0001	mg/L	1	12/17/24 16:38	8260B	SK
1,4-Dichlorobenzene	< 0.0005	0.0005	0.00004	mg/L	1	12/17/24 16:38	8260B	SK
1,4-Dioxane	< 0.020	0.020	0.020	mg/L	1	12/17/24 16:38	8260B	SK
1.2.3-trichloropropane	< 0.0005	0.0005	0.0001	mg/L	1	12/17/24 16:38	8260B	SK
2,2-Dichloropropane	< 0.0005	0.0005	0.0005	mg/L	1	12/17/24 16:38	8260B	SK
2-Butanone	< 0.002	0.002	0.002	mg/L	1	12/17/24 16:38	8260B	SK
2-Chlorotoluene	< 0.0005	0.0005	0.00004	mg/L	1	12/17/24 16:38	8260B	SK
2-Hexanone	< 0.001	0.001	0.0003	mg/L	1	12/17/24 16:38	8260B	SK
4-Chlorotoluene	< 0.0005	0.0005	0.00004	mg/L	1	12/17/24 16:38	8260B	SK
4-Methyl-2-pentanone	< 0.001	0.001	0.0001	mg/L	1	12/17/24 16:38	8260B	SK
Acetone	< 0.010	0.010	0.0009	mg/L	1	12/17/24 16:38	8260B	SK

Green Analytical Laboratories

Neronica J Wells

Durango CO, 81302

Project: VOC 8260
Project Name / Number: Mudge LS #006
Project Manager: Kyle Siesser

Reported: 12/26/24 15:23

MW #1

2412123-01 (Ground Water) Sampled Date: 12/11/24 09:25 Sampled By: Kelsey O'brien

Analyte Result RL MDL Units Dilution Analyzed Method Notes Analyst

Subcontracted -- Cardinal Laboratories 101 East Marland Hobbs, NM 88240

Second S	VOLATILES BY GC/MS	< 0.005	0.005	0.001	mg/L	1	12/17/24 16:38	8260B	SK
Semzene	Acrolein				-				
Semobenzene	·				-				
Semonchiromethane									
Semodichloromethane 0.0006 0.0005 0.00004 mg/L 1 12/17/24 16:38 8260B SR					-				
Semonform \$0,0005 0,0005 0,00009 mg/L 1 12/17/24 16:38 8260B \$88					-				
Second S	Bromodichloromethane				-				
Carbon disulfide	Bromoform				-	1			
Carbon tetrachloride <0.0005 0.0005 0.0002 mg/L 1 12/17/24 16:38 8260B SR Chlorobenzene <0.0005 0.0005 0.0000 0.0000 mg/L 1 12/17/24 16:38 8260B SR Chloroethane <0.0005 0.0005 0.0005 0.0005 mg/L 1 12/17/24 16:38 8260B SR Chloromethane <0.0005 0.0005 0.0005 0.0005 mg/L 1 12/17/24 16:38 8260B SR Chloromethane <0.0005 0.0005 0.0005 0.0005 mg/L 1 12/17/24 16:38 8260B SR Chloromethane <0.0005 0.0005 0.0005 mg/L 1 12/17/24 16:38 8260B SR Sis-1,3-Dichloroptopene <0.0005 0.0005 0.0000 mg/L 1 12/17/24 16:38 8260B SR Dibromomethane <0.0005 0.0005 0.0000 mg/L 1 12/17/24 16:38 8260B SR <t< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td></t<>						1			
Chlorobenzene	Carbon disulfide	0.002	0.001	0.0001	mg/L	1	12/17/24 16:38		SK
Chloroethane	Carbon tetrachloride	< 0.0005	0.0005	0.0002	mg/L	1	12/17/24 16:38	8260B	Sk
Chloroform	Chlorobenzene	< 0.0005	0.0005	0.00004	mg/L	1	12/17/24 16:38	8260B	Sk
Chloromethane	Chloroethane	< 0.0005	0.0005	0.0005	mg/L	1	12/17/24 16:38	8260B	Sk
Sis-1,2-Dichloroethene <0.0005 0.0005 0.0002 mg/L 1 12/17/24 16:38 8260B Sk	Chloroform	< 0.0005	0.0005	0.00002	mg/L	1	12/17/24 16:38	8260B	Sk
Color Colo	Chloromethane	< 0.0005	0.0005	0.0005	mg/L	1	12/17/24 16:38	8260B	Sk
Dibromochloromethane	cis-1,2-Dichloroethene	< 0.0005	0.0005	0.0002	mg/L	1	12/17/24 16:38	8260B	Sk
Dibromomethane	cis-1,3-Dichloropropene	< 0.0005	0.0005	0.00009	mg/L	1	12/17/24 16:38	8260B	Sk
Dichlorodifluoromethane	Dibromochloromethane	< 0.0005	0.0005	0.00008	mg/L	1	12/17/24 16:38	8260B	Sk
Ethylbenzene 0.592 0.010 0.0006 mg/L 20 12/23/24 15:33 8260B Sk Hexachlorobutadiene <0.0005 0.0005 0.0005 0.0005 mg/L 1 12/17/24 16:38 8260B Sk Iodomethane <0.001 0.001 0.0006 mg/L 1 12/17/24 16:38 8260B Sk Isopropylbenzene 0.107 0.010 0.0004 mg/L 20 12/23/24 15:33 8260B Sk Methyl tert-butyl ether <0.001 0.020 0.002 mg/L 1 12/17/24 16:38 8260B Sk Methylene chloride <0.0015 0.0005 0.0005 0.0005 mg/L 1 12/17/24 16:38 8260B Sk Naphthalene 0.070 0.010 0.002 mg/L 2 12/23/24 15:33 8260B Sk n-Propylbenzene <0.0005 0.0005 0.00007 mg/L 1 12/17/24 16:38 8260B Sk	Dibromomethane	< 0.0005	0.0005	0.0002	mg/L	1	12/17/24 16:38	8260B	Sk
Hexachlorobutadiene	Dichlorodifluoromethane	< 0.0005	0.0005	0.0005	mg/L	1	12/17/24 16:38	8260B	Sk
	Ethylbenzene	0.592	0.010	0.0006	mg/L	20	12/23/24 15:33	8260B	Sk
Sepropy Sepropy	Hexachlorobutadiene	< 0.0005	0.0005	0.0005	mg/L	1	12/17/24 16:38	8260B	Sk
Methyl tert-butyl ether	Iodomethane	< 0.001	0.001	0.00006	mg/L	1	12/17/24 16:38	8260B	Sk
Methyl tert-butyl ether <0.001 0.001 0.0002 mg/L 1 12/17/24 16:38 8260B Sk Methylene chloride <0.0005 0.0005 0.0005 mg/L 1 12/17/24 16:38 8260B Sk Naphthalene 0.070 0.010 0.002 mg/L 20 12/23/24 15:33 8260B Sk n-Butylbenzene <0.0005 0.0005 0.0007 mg/L 1 12/17/24 16:38 8260B Sk n-Propylbenzene <0.095 0.0005 0.0005 mg/L 1 12/17/24 16:38 8260B Sk D-Xylene 1.06 0.010 0.003 mg/L 20 12/23/24 15:33 8260B Sk	Isopropylbenzene	0.107	0.010	0.0004	mg/L	20	12/23/24 15:33	8260B	SK
Methyl tert-butyl ether <0.001 0.001 0.0002 mg/L 1 12/17/24 16:38 8260B Sk Methylene chloride <0.0005 0.0005 0.0005 mg/L 1 12/17/24 16:38 8260B Sk Naphthalene 0.070 0.010 0.002 mg/L 20 12/23/24 15:33 8260B Sk n-Butylbenzene <0.0005 0.0005 0.0007 mg/L 1 12/17/24 16:38 8260B Sk n-Propylbenzene 0.095 0.0005 0.0005 mg/L 1 12/17/24 16:38 8260B Sk x-Xylene 1.06 0.010 0.003 mg/L 20 12/23/24 15:33 8260B Sk	m+p - Xylene	2.91	0.020	0.002	mg/L	20	12/23/24 15:33	8260B	SK
Naphthalene 0.070 0.010 0.002 mg/L 20 12/23/24 15:33 8260B Sk n-Butylbenzene <0.0005 0.0005 0.00007 mg/L 1 12/17/24 16:38 8260B Sk n-Propylbenzene 0.095 0.0005 0.0005 mg/L 1 12/17/24 16:38 8260B Sk o-Xylene 1.06 0.010 0.003 mg/L 20 12/23/24 15:33 8260B Sk	Methyl tert-butyl ether	< 0.001	0.001	0.0002	mg/L	1	12/17/24 16:38	8260B	SK
Naphthalene 0.070 0.010 0.002 mg/L 20 12/23/24 15:33 8260B SF n-Butylbenzene <0.0005 0.0005 0.00007 mg/L 1 12/17/24 16:38 8260B SF n-Propylbenzene 0.095 0.0005 0.0005 mg/L 1 12/17/24 16:38 8260B SF o-Xylene 1.06 0.010 0.003 mg/L 20 12/23/24 15:33 8260B SF	Methylene chloride	< 0.0005	0.0005	0.0005	mg/L	1	12/17/24 16:38	8260B	SI
n-Butylbenzene <0.0005 0.0005 0.00007 mg/L 1 12/17/24 16:38 8260B SF n-Propylbenzene 0.095 0.0005 0.0005 mg/L 1 12/17/24 16:38 8260B SF p-Xylene 1.06 0.010 0.003 mg/L 20 12/23/24 15:33 8260B SF	Naphthalene	0.070	0.010	0.002	mg/L	20	12/23/24 15:33	8260B	SI
n-Propylbenzene 0.095 0.0005 0.00005 mg/L 1 12/17/24 16:38 8260B Sk 0-Xylene 1.06 0.010 0.003 mg/L 20 12/23/24 15:33 8260B Sk	•	< 0.0005	0.0005		mg/L	1	12/17/24 16:38	8260B	Sk
1.06 0.010 0.003 mg/L 20 12/23/24 15:33 8260B SF					mg/L	1	12/17/24 16:38	8260B	SI
• • • • • • • • • • • • • • • • • • • •			0.010			20	12/23/24 15:33	8260B	Sk
	•					20	12/23/24 15:33	8260B	SK

Green Analytical Laboratories

Neronica J Wells

Durango CO, 81302

Project: VOC 8260
Project Name / Number: Mudge LS #006
Project Manager: Kyle Siesser

Reported: 12/26/24 15:23

MW #1

2412123-01 (Ground Water) Sampled Date: 12/11/24 09:25

Sampled By: Kelsey O'brien

Analyte Result RL MDL Units Dilution Analyzed Method Notes Analyst

Subcontracted -- Cardinal Laboratories 101 East Marland Hobbs, NM 88240

VOLATILES BY GC/MS									
sec-Butylbenzene	0.022	0.010	0.0009	mg/L	20	12/23/24 15:33	8260B		SK
Styrene	< 0.0005	0.0005	0.0001	mg/L	1	12/17/24 16:38	8260B		SK
tert-Butylbenzene	< 0.0005	0.0005	0.00007	mg/L	1	12/17/24 16:38	8260B		SK
Tetrachloroethene	< 0.0005	0.0005	0.00009	mg/L	1	12/17/24 16:38	8260B		SK
Toluene	2.07	0.010	0.002	mg/L	20	12/23/24 15:33	8260B	E	SK
Total Xylenes	3.98	0.020	0.004	mg/L	20	12/23/24 15:33	8260B		SK
trans-1,2-Dichloroethene	< 0.0005	0.0005	0.0001	mg/L	1	12/17/24 16:38	8260B		SK
trans-1,3-Dichloropropene	< 0.0005	0.0005	0.00005	mg/L	1	12/17/24 16:38	8260B		SK
trans-1,4-Dichloro-2-butene	< 0.010	0.010	0.0003	mg/L	1	12/17/24 16:38	8260B		SK
Trichloroethene	< 0.0005	0.0005	0.0002	mg/L	1	12/17/24 16:38	8260B		SK
Trichlorofluoromethane	< 0.0005	0.0005	0.0001	mg/L	1	12/17/24 16:38	8260B		SK
Vinyl acetate	< 0.0005	0.0005	0.0005	mg/L	1	12/17/24 16:38	8260B		SK
Vinyl chloride	< 0.0005	0.0005	0.0005	mg/L	1	12/17/24 16:38	8260B		SK
Surrogate: 4-Bromofluorobenzene			99.2 %	76.4-114		12/23/24 15:33	8260B		SK
Surrogate: Dibromofluoromethane			106 %	82.4-141		12/23/24 15:33	8260B		SK
Surrogate: Toluene-d8			96.6 %	87.1-110		12/23/24 15:33	8260B		SK

Green Analytical Laboratories

Neronica & nulls

Cottonwood Consulting Project: VOC 8260

PO Box 1653 Project Name / Number: Mudge LS #006

Durango CO, 81302 Project Manager: Kyle Siesser

Reported: 12/26/24 15:23

VOLATILES BY GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 4121709 - Volatiles

Blank (4121709-BLK1)			Prep	ared & Analyzed:	12/17/24		
1,1,1,2-Tetrachloroethane	ND	0.0005	mg/L				
1,1,1-Trichloroethane	ND	0.0005	mg/L				
1,1,2,2-Tetrachloroethane	ND	0.0005	mg/L				
1,1,2-Trichloroethane	ND	0.0005	mg/L				
1,1-Dichloroethane	ND	0.0005	mg/L				
1,1-Dichloroethene	ND	0.0005	mg/L				
1,1-Dichloropropene	ND	0.0005	mg/L				
1,2,3-Trichlorobenzene	ND	0.0005	mg/L				
1,2,4-Trichlorobenzene	ND	0.0005	mg/L				
1,2,4-Trimethylbenzene	ND	0.0005	mg/L				
1,2-Dibromo-3-chloropropane	ND	0.0005	mg/L				
1,2-Dibromoethane	ND	0.0005	mg/L				
1,2-Dichlorobenzene	ND	0.0005	mg/L				
1,2-Dichloroethane	ND	0.0005	mg/L				
1,2-Dichloropropane	ND	0.0005	mg/L				
1,3,5-Trimethylbenzene	ND	0.0005	mg/L				
1,3-Dichlorobenzene	ND	0.0005	mg/L				
1,3-Dichloropropane	ND	0.0005	mg/L				
1,4-Dichlorobenzene	ND	0.0005	mg/L				
1,4-Dioxane	ND	0.020	mg/L				
1.2.3-trichloropropane	ND	0.0005	mg/L				
2,2-Dichloropropane	ND	0.0005	mg/L				
2-Butanone	ND	0.002	mg/L				
2-Chlorotoluene	ND	0.0005	mg/L				
2-Hexanone	ND	0.001	mg/L				
Surrogate: 4-Bromofluorobenzene	0.0466		mg/L	0.0500	93.3	76.4-114	
4-Chlorotoluene	ND	0.0005	mg/L				
4-Methyl-2-pentanone	ND	0.001	mg/L				
Acetone	ND	0.010	mg/L				
Acrolein	ND	0.005	mg/L				
Acrylonitrile	ND	0.002	mg/L				
Benzene	ND	0.0005	mg/L				
Bromobenzene	ND	0.0005	mg/L				
Bromochloromethane	ND	0.0005	mg/L				
Bromodichloromethane	ND	0.0005	mg/L				
Bromoform	ND	0.0005	mg/L				

Green Analytical Laboratories

Neronica J Wills

Cottonwood Consulting

Project: VOC 8260

PO Box 1653 Durango CO, 81302 Project Name / Number: Mudge LS #006
Project Manager: Kyle Siesser

Reported:

12/26/24 15:23

VOLATILES BY GC/MS - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 4121709 - Volatiles (Continued)

Blank (4121709-BLK1) (Continued)			Prep	pared & Analyzed:	12/17/24		
Bromomethane	ND	0.0005	mg/L				
Carbon disulfide	ND	0.001	mg/L				
Carbon tetrachloride	ND	0.0005	mg/L				
Chlorobenzene	ND	0.0005	mg/L				
Chloroethane	ND	0.0005	mg/L				
Chloroform	ND	0.0005	mg/L				
Chloromethane	ND	0.0005	mg/L				
cis-1,2-Dichloroethene	ND	0.0005	mg/L				
cis-1,3-Dichloropropene	ND	0.0005	mg/L				
Dibromochloromethane	ND	0.0005	mg/L				
Surrogate: Dibromofluoromethane	0.0528		mg/L	0.0500	106	82.4-141	
Dibromomethane	ND	0.0005	mg/L				
Dichlorodifluoromethane	ND	0.0005	mg/L				
Ethylbenzene	ND	0.0005	mg/L				
Hexachlorobutadiene	ND	0.0005	mg/L				
Iodomethane	ND	0.001	mg/L				
Isopropylbenzene	ND	0.0005	mg/L				
m+p - Xylene	ND	0.001	mg/L				
Methyl tert-butyl ether	ND	0.001	mg/L				
Methylene chloride	ND	0.0005	mg/L				
Naphthalene	ND	0.0005	mg/L				
n-Butylbenzene	ND	0.0005	mg/L				
n-Propylbenzene	ND	0.0005	mg/L				
o-Xylene	ND	0.0005	mg/L				
p-Isopropyltoluene	ND	0.0005	mg/L				
sec-Butylbenzene	ND	0.0005	mg/L				
Styrene	ND	0.0005	mg/L				
tert-Butylbenzene	ND	0.0005	mg/L				
Tetrachloroethene	ND	0.0005	mg/L				
Toluene	ND	0.0005	mg/L				
Surrogate: Toluene-d8	0.0489		mg/L	0.0500	97.7	87.1-110	
Total Xylenes	ND	0.001	mg/L				
trans-1,2-Dichloroethene	ND	0.0005	mg/L				
trans-1,3-Dichloropropene	ND	0.0005	mg/L				
trans-1,4-Dichloro-2-butene	ND	0.010	mg/L				
Trichloroethene	ND	0.0005	mg/L				
Trichlorofluoromethane	ND	0.0005	mg/L				
Vinyl acetate	ND	0.0005	mg/L				
Vinyl chloride	ND	0.0005	mg/L				

Green Analytical Laboratories

Neronica J Wells

Project: VOC 8260

Project Name / Number: Mudge LS #006

Reported:

Durango CO, 81302

Project Manager: Kyle Siesser 12/26/24 15:23

VOLATILES BY GC/MS - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4121709 - Volatiles (Continued)										

LCS (4121709-BS1)		_	Prej	pared & Analyzed	d: 12/17/24		
1,1,1,2-Tetrachloroethane	0.020	0.0005	mg/L	0.0200	99.0	82.4-120	
1,1,1-Trichloroethane	0.021	0.0005	mg/L	0.0200	107	80.7-121	
1,1,2,2-Tetrachloroethane	0.014	0.0005	mg/L	0.0200	69.8	76.5-121	BSZ
1,1,2-Trichloroethane	0.020	0.0005	mg/L	0.0200	98.6	81.7-118	
1,1-Dichloroethane	0.021	0.0005	mg/L	0.0200	103	74.8-123	
1,1-Dichloroethene	0.022	0.0005	mg/L	0.0200	109	53.9-149	
1,1-Dichloropropene	0.020	0.0005	mg/L	0.0200	98.4	85.9-115	
1,2,3-Trichlorobenzene	0.022	0.0005	mg/L	0.0200	112	76.1-134	
1,2,4-Trichlorobenzene	0.024	0.0005	mg/L	0.0200	118	72.4-136	
1,2,4-Trimethylbenzene	0.021	0.0005	mg/L	0.0200	106	67.4-138	
1,2-Dibromo-3-chloropropane	0.013	0.0005	mg/L	0.0200	66.0	71.7-124	BS2
1,2-Dibromoethane	0.017	0.0005	mg/L	0.0200	85.2	84.9-116	
1,2-Dichlorobenzene	0.019	0.0005	mg/L	0.0200	97.2	82.5-119	
1,2-Dichloroethane	0.022	0.0005	mg/L	0.0200	108	72.5-123	
1,2-Dichloropropane	0.019	0.0005	mg/L	0.0200	93.6	79.4-117	
1,3,5-Trimethylbenzene	0.021	0.0005	mg/L	0.0200	106	69-137	
1,3-Dichlorobenzene	0.022	0.0005	mg/L	0.0200	108	84.4-120	
1,3-Dichloropropane	0.017	0.0005	mg/L	0.0200	85.0	82.6-117	
1,4-Dichlorobenzene	0.020	0.0005	mg/L	0.0200	102	81.7-118	
1,4-Dioxane	1.15	0.020	mg/L	2.00	57.4	-34.6-193	
1.2.3-trichloropropane	0.015	0.0005	mg/L	0.0200	73.8	44.7-168	
2,2-Dichloropropane	0.023	0.0005	mg/L	0.0200	114	62.9-136	
2-Butanone	0.040	0.002	mg/L	0.0400	99.1	24.1-159	
2-Chlorotoluene	0.019	0.0005	mg/L	0.0200	96.4	80.2-121	
2-Hexanone	0.022	0.001	mg/L	0.0400	56.0	56.3-139	BS
Surrogate: 4-Bromofluorobenzene	0.0474		mg/L	0.0500	94.8	76.4-114	
4-Chlorotoluene	0.020	0.0005	mg/L	0.0200	99.7	82.2-125	
4-Methyl-2-pentanone	0.026	0.001	mg/L	0.0400	64.0	60.7-139	
Acetone	0.071	0.010	mg/L	0.0400	178	39.1-168	BS
Acrolein	0.243	0.005	mg/L	0.200	121	26.6-161	
Acrylonitrile	0.040	0.002	mg/L	0.0400	99.8	64.9-135	
Benzene	0.019	0.0005	mg/L	0.0200	95.5	69.4-129	
Bromobenzene	0.020	0.0005	mg/L	0.0200	101	83.5-115	
Bromochloromethane	0.020	0.0005	mg/L	0.0200	97.5	70.7-123	
Bromodichloromethane	0.020	0.0005	mg/L	0.0200	102	80.3-119	
Bromoform	0.018	0.0005	mg/L	0.0200	91.9	71.1-141	
Bromomethane	0.021	0.0005	mg/L	0.0200	106	55.1-143	
Carbon disulfide	0.061	0.001	mg/L	0.0400	153	53.6-147	BS
Carbon tetrachloride	0.022	0.0005	mg/L	0.0200	108	79.5-125	

Green Analytical Laboratories

Neronica J. Wells

Durango CO, 81302

Project: VOC 8260

Project Name / Number: Mudge LS #006 Project Manager: Kyle Siesser **Reported:** 12/26/24 15:23

VOLATILES BY GC/MS - Quality Control (Continued)

			Continu	cu)						
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4121709 - Volatiles (Continued)										
.CS (4121709-BS1) (Continued)			Prep	ared & Anal	yzed: 12/17	7/24				
Chlorobenzene	0.020	0.0005	mg/L	0.0200	-	100	85.1-115			
Chloroethane	0.021	0.0005	mg/L	0.0200		103	36.9-159			
Chloroform	0.019	0.0005	mg/L	0.0200		93.6	80.9-119			
Chloromethane	0.018	0.0005	mg/L	0.0200		89.8	54.2-142			
cis-1,2-Dichloroethene	0.021	0.0005	mg/L	0.0200		103	73.8-128			
cis-1,3-Dichloropropene	0.020	0.0005	mg/L	0.0200		102	82.5-122			
Dibromochloromethane	0.020	0.0005	mg/L	0.0200		98.8	83.1-124			
Surrogate: Dibromofluoromethane	0.0514		mg/L	0.0500		103	82.4-141			
Dibromomethane	0.019	0.0005	mg/L	0.0200		96.2	77-118			
Dichlorodifluoromethane	0.022	0.0005	mg/L	0.0200		108	38.7-147			
Ethylbenzene	0.019	0.0005	mg/L	0.0200		95.2	70.2-130			
Hexachlorobutadiene	0.024	0.0005	mg/L	0.0200		122	78.9-148			
Iodomethane	0.043	0.001	mg/L	0.0400		108	63.5-135			
Isopropylbenzene	0.020	0.0005	mg/L	0.0200		102	85-124			
m+p - Xylene	0.039	0.001	mg/L	0.0400		98.7	71.9-133			
Methyl tert-butyl ether	0.037	0.001	mg/L	0.0400		93.3	57.7-137			
Methylene chloride	0.024	0.0005	mg/L	0.0200		122	49.3-163			
Naphthalene	0.017	0.0005	mg/L	0.0200		84.4	62.1-141			
n-Butylbenzene	0.024	0.0005	mg/L	0.0200		118	75.4-132			
n-Propylbenzene	0.021	0.0005	mg/L	0.0200		105	79.6-124			
o-Xylene	0.019	0.0005	mg/L	0.0200		97.2	69.4-132			
p-Isopropyltoluene	0.022	0.0005	mg/L	0.0200		109	79.8-131			
sec-Butylbenzene	0.022	0.0005	mg/L	0.0200		108	77.6-133			
Styrene	0.019	0.0005	mg/L	0.0200		93.1	71.7-128			
tert-Butylbenzene	0.021	0.0005	mg/L	0.0200		103	78.8-128			
Tetrachloroethene	0.019	0.0005	mg/L	0.0200		96.2	74.2-128			
Toluene	0.018	0.0005	mg/L	0.0200		91.4	68.1-127			
Surrogate: Toluene-d8	0.0500		mg/L	0.0500		100	87.1-110			
Total Xylenes	0.059	0.001	mg/L	0.0600		98.2	71.6-132			
trans-1,2-Dichloroethene	0.021	0.0005	mg/L	0.0200		103	65.2-133			
trans-1,3-Dichloropropene	0.020	0.0005	mg/L	0.0200		98.8	84-123			
trans-1,4-Dichloro-2-butene	0.044	0.010	mg/L	0.0400		111	9.3-235			
Trichloroethene	0.019	0.0005	mg/L	0.0200		92.6	79.3-114			
Trichlorofluoromethane	0.023	0.0005	mg/L	0.0200		114	28.6-162			
Vinyl acetate	0.019	0.0005	mg/L	0.0200		93.4	50.9-135			
Vinyl chloride	0.021	0.0005	mg/L	0.0200		106	61.6-133			
.CS Dup (4121709-BSD1)			Pren	ared & Anal	yzed: 12/17	7/24				
1,1,1,2-Tetrachloroethane	0.020	0.0005	mg/L	0.0200	•	97.9	82.4-120	1.07	6.88	

Green Analytical Laboratories

Neronica J Wells

Durango CO, 81302

Project: VOC 8260

Project Name / Number: Mudge LS #006 Project Manager: Kyle Siesser **Reported:** 12/26/24 15:23

VOLATILES BY GC/MS - Quality Control (Continued)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4121709 - Volatiles (Continued)	Result	Limit	Cints	Level	Result	70KEC	Limits	МЪ	Limit	riotes
LCS Dup (4121709-BSD1) (Continued)			Drer	pared & Anal	lyzed: 12/1	7/24				
1,1,1-Trichloroethane	0.020	0.0005	mg/L	0.0200	1y2ca. 12/1	101	80.7-121	5.40	7.43	
1,1,2,2-Tetrachloroethane	0.020	0.0005	mg/L mg/L	0.0200		87.6	76.5-121	22.7	8.68	QR-0
1,1,2-Trichloroethane	0.020	0.0005	mg/L	0.0200		99.6	81.7-118	1.11	6.82	QIC 0
1,1-Dichloroethane	0.020	0.0005	mg/L	0.0200		98.0	74.8-123	4.68	4.3	QR-0
1,1-Dichloroethene	0.020	0.0005	mg/L	0.0200		101	53.9-149	8.38	16.5	QIC 0
1,1-Dichloropropene	0.019	0.0005	mg/L	0.0200		94.4	85.9-115	4.15	5.47	
1,2,3-Trichlorobenzene	0.025	0.0005	mg/L	0.0200		124	76.1-134	9.45	43	
1,2,4-Trichlorobenzene	0.022	0.0005	mg/L	0.0200		112	72.4-136	4.86	22.3	
1,2,4-Trimethylbenzene	0.022	0.0005	mg/L mg/L	0.0200		101	67.4-138	5.51	8.94	
1,2-Dibromo-3-chloropropane	0.021	0.0005	mg/L	0.0200		104	71.7-124	44.3	15.1	OR-0
1,2-Dibromoethane	0.021	0.0005	mg/L mg/L	0.0200		96.8	84.9-116	12.8	5.83	QR-0 QR-0
1.2-Dichlorobenzene	0.019	0.0005	mg/L mg/L	0.0200		92.5	82.5-119	4.96	8.72	QIC-0
1,2-Dichloroethane	0.022	0.0005	mg/L mg/L	0.0200		112	72.5-123	3.59	8.94	
1,2-Dichloropropane	0.022	0.0005	mg/L	0.0200		89.4	79.4-117	4.65	5.51	
1,3,5-Trimethylbenzene	0.018	0.0005	mg/L mg/L	0.0200		104	69-137	1.95	16.5	
1,3-Dichlorobenzene	0.021	0.0005	mg/L mg/L	0.0200		103	84.4-120	4.26	9	
1,3-Dichloropropane	0.021	0.0005	mg/L	0.0200		89.8	82.6-117	5.55	6.06	
1,4-Dichlorobenzene	0.018	0.0005	mg/L	0.0200		100	81.7-118	1.53	7.71	
1,4-Dioxane	1.30	0.0003	mg/L mg/L	2.00		64.9	-34.6-193	12.3	35.2	
1.2.3-trichloropropane	0.018	0.020	mg/L	0.0200		90.2	44.7-168	19.9	49.2	
2,2-Dichloropropane	0.018	0.0005	mg/L mg/L	0.0200		107	62.9-136	6.92	9.62	
2-Butanone	0.021	0.0003	-	0.0200		123	24.1-159	21.5	14.2	QR-0
			mg/L							QR-0
2-Chlorotoluene	0.018 0.038	0.0005	mg/L	0.0200		88.8	80.2-121	8.26	8.62	OD 0
2-Hexanone		0.001	mg/L	0.0400		94.6	56.3-139	51.3	7.28	QR-0
Surrogate: 4-Bromofluorobenzene	0.0473		mg/L	0.0500		94.6	76.4-114			
4-Chlorotoluene	0.019	0.0005	mg/L	0.0200		93.8	82.2-125	6.15	15.5	
4-Methyl-2-pentanone	0.041	0.001	mg/L	0.0400		103	60.7-139	46.6	7.57	QR-0
Acetone	0.073	0.010	mg/L	0.0400		181	39.1-168	2.13	30.5	BS
Acrolein	0.278	0.005	mg/L	0.200		139	26.6-161	13.4	22.4	
Acrylonitrile	0.050	0.002	mg/L	0.0400		126	64.9-135	23.2	7.62	QR-0
Benzene	0.020	0.0005	mg/L	0.0200		97.9	69.4-129	2.48	4.16	
Bromobenzene	0.021	0.0005	mg/L	0.0200		104	83.5-115	2.97	8.41	
Bromochloromethane	0.019	0.0005	mg/L	0.0200		97.0	70.7-123	0.463	5.16	
Bromodichloromethane	0.020	0.0005	mg/L	0.0200		98.1	80.3-119	3.41	5.36	
Bromoform	0.020	0.0005	mg/L	0.0200		102	71.1-141	10.9	14.1	
Bromomethane	0.020	0.0005	mg/L	0.0200		97.6	55.1-143	8.53	21.5	
Carbon disulfide	0.051	0.001	mg/L	0.0400		128	53.6-147	18.2	20.3	
Carbon tetrachloride	0.020	0.0005	mg/L	0.0200		99.6	79.5-125	8.13	11.4	
Chlorobenzene	0.019	0.0005	mg/L	0.0200		95.8	85.1-115	4.69	5.18	

Green Analytical Laboratories

Neronica J Wells

Durango CO, 81302

Project: VOC 8260

Project Name / Number: Mudge LS #006
Project Manager: Kyle Siesser

Reported:

12/26/24 15:23

VOLATILES BY GC/MS - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4121709 - Volatiles (Continued)										
LCS Dup (4121709-BSD1) (Continued)			Prep	pared & Anal	lyzed: 12/1	7/24				
Chloroethane	0.018	0.0005	mg/L	0.0200		88.8	36.9-159	14.5	24.1	
Chloroform	0.019	0.0005	mg/L	0.0200		97.2	80.9-119	3.83	5.15	
Chloromethane	0.018	0.0005	mg/L	0.0200		90.6	54.2-142	0.776	27	
cis-1,2-Dichloroethene	0.021	0.0005	mg/L	0.0200		105	73.8-128	1.98	5.73	
cis-1,3-Dichloropropene	0.019	0.0005	mg/L	0.0200		96.9	82.5-122	5.67	6.09	
Dibromochloromethane	0.020	0.0005	mg/L	0.0200		101	83.1-124	2.40	7.24	
Surrogate: Dibromofluoromethane	0.0529		mg/L	0.0500		106	82.4-141			
Dibromomethane	0.021	0.0005	mg/L	0.0200		104	77-118	7.65	5.75	QR-
Dichlorodifluoromethane	0.020	0.0005	mg/L	0.0200		101	38.7-147	6.83	22.6	
Ethylbenzene	0.018	0.0005	mg/L	0.0200		92.3	70.2-130	3.09	4.83	
Hexachlorobutadiene	0.023	0.0005	mg/L	0.0200		115	78.9-148	6.17	18.4	
Iodomethane	0.041	0.001	mg/L	0.0400		103	63.5-135	4.77	24.3	
Isopropylbenzene	0.020	0.0005	mg/L	0.0200		101	85-124	0.591	6.25	
m+p - Xylene	0.039	0.001	mg/L	0.0400		97.7	71.9-133	1.02	5.77	
Methyl tert-butyl ether	0.042	0.001	mg/L	0.0400		105	57.7-137	12.1	12.8	
Methylene chloride	0.022	0.0005	mg/L	0.0200		111	49.3-163	9.04	19.7	
Naphthalene	0.021	0.0005	mg/L	0.0200		106	62.1-141	23.1	33.5	
n-Butylbenzene	0.024	0.0005	mg/L	0.0200		118	75.4-132	0.0424	10.1	
n-Propylbenzene	0.020	0.0005	mg/L	0.0200		99.4	79.6-124	5.62	9.09	
o-Xylene	0.019	0.0005	mg/L	0.0200		96.7	69.4-132	0.464	6.29	
p-Isopropyltoluene	0.021	0.0005	mg/L	0.0200		105	79.8-131	4.35	9.26	
sec-Butylbenzene	0.019	0.0005	mg/L	0.0200		97.2	77.6-133	11.0	9.85	QR-
Styrene	0.018	0.0005	mg/L	0.0200		87.6	71.7-128	6.03	7.55	
tert-Butylbenzene	0.020	0.0005	mg/L	0.0200		97.5	78.8-128	5.29	18.6	
Tetrachloroethene	0.020	0.0005	mg/L	0.0200		98.3	74.2-128	2.16	6.38	
Toluene	0.018	0.0005	mg/L	0.0200		89.1	68.1-127	2.60	5.67	
Surrogate: Toluene-d8	0.0501		mg/L	0.0500		100	87.1-110			
Total Xylenes	0.058	0.001	mg/L	0.0600		97.4	71.6-132	0.835	5.83	
trans-1,2-Dichloroethene	0.019	0.0005	mg/L	0.0200		93.9	65.2-133	8.81	19.1	
trans-1,3-Dichloropropene	0.021	0.0005	mg/L	0.0200		103	84-123	4.21	6.26	
trans-1,4-Dichloro-2-butene	0.045	0.010	mg/L	0.0400		112	9.3-235	0.808	92.8	
Trichloroethene	0.020	0.0005	mg/L	0.0200		99.8	79.3-114	7.43	4.92	QR-
Trichlorofluoromethane	0.020	0.0005	mg/L	0.0200		101	28.6-162	11.9	19.8	
Vinyl acetate	0.023	0.0005	mg/L	0.0200		113	50.9-135	18.7	7.84	QR-
Vinyl chloride	0.019	0.0005	mg/L	0.0200		94.6	61.6-133	11.8	23	

Green Analytical Laboratories

Neronica J Wells

Reported:

Durango CO, 81302

Cottonwood Consulting Project: VOC 8260
PO Box 1653 Project Name / Number: Mudge LS #006

Project Manager: Kyle Siesser 12/26/24 15:23

Notes and Definitions

QR-04 The RPD for the BS/BSD was outside of historical limits.

E The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered

an estimate (CLP E-flag).

BS2 Blank spike recovery below laboratory acceptance criteria. Results for analyte potentially biased low.

BS1 Blank spike recovery above laboratory acceptance criteria. Results for analyte potentially biased high.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

*Results reported on as received basis unless designated as dry.

RPD Relative Percent Difference

LCS Laboratory Control Sample (Blank Spike)

RL Report Limit

MDL Method Detection Limit

Green Analytical Laboratories

Veronica Wells, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. In no event shall Green Analytical Laboratories be liable for incidental or consequential damages. GALs liability, and clients exclusive remedy for any claim arising, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever, shall be deemed waived unless made in writing and received within thirty days after completion of the applicable service.

Neronica J Wells

Cottonwood Consulting
Project: VOC 8260
PO Box 1653
Project Name / Number: Mudge LS #006
Durango CO, 81302
Project Manager: Kyle Siesser

Reported: 12/26/24 15:23

Qualifier Summary

LabNumber	Analysis	Analyte	Qualifier	<u>TextBody</u>
4121709-BS1	Volatile 8260	1,1,2,2-Tetrachloroethane	BS2	Blank spike recovery below laboratory acceptance criteria. Results for analyte potentially biased low.
4121709-BS1	Volatile 8260	1,2-Dibromo-3-chloropropane	BS2	Blank spike recovery below laboratory acceptance criteria. Results for analyte potentially biased low.
4121709-BS1	Volatile 8260	2-Hexanone	BS2	Blank spike recovery below laboratory acceptance criteria. Results for analyte potentially biased low.
4121709-BS1	Volatile 8260	Acetone	BS1	Blank spike recovery above laboratory acceptance criteria. Results for analyte potentially biased high.
4121709-BS1	Volatile 8260	Carbon disulfide	BS1	Blank spike recovery above laboratory acceptance criteria. Results for analyte potentially biased high.
4121709-BSD1	Volatile 8260	1,1,2,2-Tetrachloroethane	QR-04	The RPD for the BS/BSD was outside of historical limits.
4121709-BSD1	Volatile 8260	1,1-Dichloroethane	QR-04	The RPD for the BS/BSD was outside of historical limits.
4121709-BSD1	Volatile 8260	1,2-Dibromo-3-chloropropane	QR-04	The RPD for the BS/BSD was outside of historical limits.
4121709-BSD1	Volatile 8260	1,2-Dibromoethane	QR-04	The RPD for the BS/BSD was outside of historical limits.
4121709-BSD1	Volatile 8260	2-Butanone	QR-04	The RPD for the BS/BSD was outside of historical limits.
4121709-BSD1	Volatile 8260	2-Hexanone	QR-04	The RPD for the BS/BSD was outside of historical limits.
4121709-BSD1	Volatile 8260	4-Methyl-2-pentanone	QR-04	The RPD for the BS/BSD was outside of historical limits.
4121709-BSD1	Volatile 8260	Acetone	BS1	Blank spike recovery above laboratory acceptance criteria. Results for analyte potentially biased high.
4121709-BSD1	Volatile 8260	Acrylonitrile	QR-04	The RPD for the BS/BSD was outside of historical limits.
4121709-BSD1	Volatile 8260	Dibromomethane	QR-04	The RPD for the BS/BSD was outside of historical limits.
4121709-BSD1	Volatile 8260	sec-Butylbenzene	QR-04	The RPD for the BS/BSD was outside of historical limits.
4121709-BSD1	Volatile 8260	Trichloroethene	QR-04	The RPD for the BS/BSD was outside of historical limits.
4121709-BSD1	Volatile 8260	Vinyl acetate	QR-04	The RPD for the BS/BSD was outside of historical limits.
2412123-01	Volatile 8260	Toluene	Е	The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered an estimate (CLP E-flag).

Green Analytical Laboratories

Neronica J Wells

† GAL cannot accept verbal changes. Please email changes to receiving@greenanalytical.com
* Chain of Custody must be signed in "Relinquished By:" as an acceptance of services and all applicable charges.

Page __

+ of

75 Suttle Street Durango, CO 81303 (970) 247-4220

	Relinguished By:		Relinquished By:	1.0 m	Relinquished By:	waived unless made in writing c	PLEASE NOTE: GAL's liability									10	Lab Use Only	2412-123	Lab I.D.		Sampler Name (Print): Kelsey O'Brien		Project Name(optional):	Email Report to: ksies	Contact Person: Kyle Siesser	Phone #: 970-764-7356	l lity: Durango	Address: PO Box 1653	company or Client:	Laboratories
				}		waived unless made in writing and received by GAL within 30 days after completion of the applicable service. In no event shall GAL be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred unless made in writing and received by GAL, regardless of whether such claim is based upon any of the above stated reasons or otherwise.	10) PLEASE NOTE: GAL's liability and client's exclusive remedy for any claim arising whether based in contract or tort, shall be limited to the amount paid by the client for the	9)	8)	7)	6)	5)	4)	3)	2)	1) MW #1			Sample Name or Location	. Maring graphs	Kelsey O'Brien	Mudge Lo #000	10# 5 5 Pring 4	Email Report to: ksiesser@cottonwoodconsulting.com	Siesser	6	State:	53	Cottonwood Consulting LLC	
Time:	Date:	Time:	Date:	Time: 1615	Date: 12/ 11/24	letion of the applicable serv sing out of or related to the	sing whether based in contr					3							ocation			0	20				CO Zip: 81302			Note: Wite-Out™
	Received By:		Received By:	200	Received By:	ice. In no event shall GAL be liable performance of services hereunder	act or tort, shall be limited to the am									12/11/24 0925	Date Time			Collected							2			Note: Wite-Out TM or similar products cannot be used on the Chain of Custody
			`	101	1	for incidental or consector by GAL, regardless of	ount paid by the client									<	SUR WAS PRO	RFACE STEW DDUCI	ED WATE	0	Y L	77	P.O.#:							be used on the C
	Date: Te	Time:	Date:	Time:/6:/5	Date: Kil A D	quental damages, includi whether such claim is ba	for the analyses. All clair										SOIL OTHI No Nitri	ER: pres	ervation	1 # of co	Neede	TAT							Bill to (if different):	hain of Custody
2° 4.8°	Temperature at receipt:				ADDITIONAL REMARKS:	ng without limitation, busing sed upon any of the above	ns including those for neg									\ \	Sulf	uric A				82	60	(VC)Cs)				
(100)	Checked by:					ness interruptions, loss of unstated reasons or otherwi	ligence and any other cau																						ANALYSIS	
N SENT	On Ice? Therm, used					se, or loss of profits incurn	analyses. All claims including those for negligence and any other cause whatsoever shall be deem																						REQUEST	
	*					ed	em T	T						-				-	-	-	-	-	-	-	-		***********	_		

Page 15 of 16 2412123 GAL FINAL 12 26 24 1523 12/26/24 15:23:30

SAMPLE CONDITION RECEIPT FORM

Date/Initials of person examining contents:	12.11.21
Labeled by initials:	

Client Name: Cottonwood Consu	1ting Work Order # 7412 - 123
Courier: □Fed Ex □UPS □USPS □Client □	Kangaroo □ Third Party □ Other
Custody Seals on Box/Cooler Present: ☐ Yes ☐ No Se	als Intact: ☐ Yes ☐ No GAL Cooler #:
Thermometer Used: # Samples on ice, cooling prod	ess has begun: ✓ Yes □ No
	oserved Temp: 8.4°C Correction Factor: 8.4°C Final Temp: 8.4°C
	*Temp should be above freezing 6°C
Compliance: ☐ Yes ☑ No	
Chain of Custody Filled Out:	ΣΝο 1.
COC Signed when Relinquished and Received:	□No ^{2.}
Sampler Name and Signature on COC: *Required for compliance	□No 3.
Samples arrived within hold time:	□No ^{4.}
Correct Containers Used & Intact:	No 5.
Short Hold Time Analysis (<72hr): □Yes □	JNO 6.
Rush Turn Around Time Requested: *3 day TAT or less requires supervisor approval	7. Approved By:
Sufficient Volume:	□No 8.
pH's acceptable upon receipt, where applicable: *Not including metals bottles	NAA 9.
Dissolved Testing Needed:	DNO 10.
Field Filtered: ☐Yes ☐No Sample Labels match COC: ☐Yes ☐	¬No. 11.
-Includes Date/Time/ID Matrix:	
Matrix: WT(\$) Trip Blank Present: □Yes □No □	
Trip Blank Custody Seals Present: □Yes □No □	
VOA's meet headspace requirement (<6mm bubbles) ✓Yes □No □	JN/A - 1 von w/ Headspace >66mm
Non-Conformance(s): □Yes □	No 13.
Client Notification/Resolution:	
Person Contacted:	Date/Time:
Comments/Resolution:	

FORM-039, Rev 3

Page 1 of 1

CLIENT :	SIMCOE	LLC							
MUDGE LS	#6 1 T31N R11W	ı			LABORATOF	RY(S) USED) :	GAL	
Date :	05	3/27/	24		С	DEVELOPER	/ SAMPLER :	DS/k	0
WELL #	WELL ELEV. (ft)	WATER ELEV. (ft)	DEPTH TO WATER (ft)	TOTAL DEPTH (ft)	SAMPLING TIME	рН	CONDUCT (umhos)	TEMP. (celcius)	VOLUME PURGED (gal.)
1	l -		23.21	26.30	0000	7.29	4.216	12.7	3
2	100.50	-	23,92	32.36	Screened interv		naged approx 20.		<u> </u>
9	-	-	13.10	21.65	-	-		-	-
NOTES:					r = (2/12) ft.		X 7.48 gal./ft3	3) X 3 (wellbo	ores).
	Ideally a mir	nimum of thr	ee (3) wellboi	re volumes:		1.50" well d		0.28 gal./ft.	
Comments	or note wel	I diameter i	f not standa	rd 2".		2.00" well d	iameter =	0.49 gal./ft.	or water.
9				11	162				
- Smorre	Mansu	14 00	or whe	NSW N	#2 wa	S OPEN	20		
					and the second second				
I make a distribution of the second of the s					****				
Top of casi	na MW #1 ~	2.20 ft MV	V #2 ~ 2.40 f	t. MW #9	~ 2.00 ft. abov	ve grade.			
				, , , , , , , , , , , , , , , , , , , ,		, g			
on-site	0445	temp	40°F						
off-site	0930	temp	400 =						
sky cond. wind speed	5-10	direct.							
wind speed	5-10	direct. 📞							

CLIENT:	SIMCOE	LLC		:					
MUDGE LS : Unit M Sec 1	#6 1 T31 N R11W	I			LABORATOR	Y(S) USED	(:	GAL	
Date :	6/13	124			С	EVELOPER	/SAMPLER:	D5/k	70
WELL #	WELL ELEV. (ft)	WATER ELEV. (ft)	DEPTH TO WATER (ft)	TOTAL DEPTH (ft)	SAMPLING TIME	рН	CONDUCT (umhos)	TEMP. (celcius)	VOLUME PURGED (gal.)
1 2	100.50	-	22.40	26.30 32.36	 		3730 naged approx 20		1.9
NOTES:					mpling; V = r = (2/12) ft.		 X 7.48 gal./ft	3) X 3 (wellb	ores).
Comments	Ideally a mir		ee (3) wellbo			1.50" well d 2.00" well d		0.28 gal./ft. 0.49 gal./ft.	
Top of casin	ng MW #1 ~	2.20 ft. , MV	V #2 ~2.40 f	ft. , MW #9	~ 2.00 ft. abo	ve grade.			
on-site off-site		temp temp							
sky cond. wind speed		direct.							

			7					111	
MUDGE LS a Unit M Sec 1	#6 1 T31N R11W	1			LABORATOR	RY (S) USEI	D;	GAL	
Date :	9/19	8/24				EVELOPER	R/SAMPLER:	VO 10	S
WELL #	WELL ELEV. (ft)	WATER ELEV. (ft)	DEPTH TO WATER (ft)	TOTAL DEPTH (ft)	SAMPLING TIME	pН	CONDUCT (umhos)	TEMP. (celcius)	VOLUME PURGED (gal.)
1	-	12	22.32	26.30	0920	7,10	4.35	14.7	2
2	100.50	- 230	4-22.37	32.36			maged approx 20.		
9		-	13.77	21.65	-				-
Comments	or note wel	I diameter	if not standa	rd 2".		2.00" well o	diameter = diameter =	0.28 gal./ft. 0.49 gal./ft.	
Comments	or note wel	I diameter	if not standa	rd 2".		2.00" well o			
Top of casir	ng MW #1 ~	2.20 ft. , MV							
Top of casir	ng MW #1 ~								
	ng MW #1 ~	2.20 ft. , MV							

MUDGE LS #6 Unit M Sec 11 T31N R11W					LABORATORY (S) USED:			GAL	
Date :	12/11/24				DEVELOPER / SAMPLER :		05/40		
WELL #	WELL ELEV. (ft)	WATER ELEV. (ft)	DEPTH TO WATER (ft)	TOTAL DEPTH (ft)	SAMPLING TIME	pН	CONDUCT (umhos)	TEMP. (celcius)	VOLUME PURGED (gal.)
1		-	22.22	26.30	0925	7,98	4.18	12.1	1.99
2	100.50	-	23.01	32.36	Screened interv	al crimped/dan	naged approx 20.	80 ft from top	
9			13.81	21.65	-		-		100
Comments			ee (3) wellboo			1.50" well o 2.00" well o		0.28 gal./ft. 0.49 gal./ft.	
Comments									
	or note wel	I diameter	if not standa	rd 2".		2.00" well o			
	or note wel	I diameter	if not standa	rd 2".		2.00" well o			
	or note wel	I diameter	if not standa	rd 2".		2.00" well o			
Top of casi	or note wel	I diameter	if not standa	rd 2".		2.00" well o			
Top of casi	or note wel	diameter 2.20 ft., MV	if not standa	rd 2".		2.00" well o			
Top of casi	or note wel	2.20 ft., MV	if not standa	rd 2".		2.00" well o			

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 415791

CONDITIONS

Operator:	OGRID:
SIMCOE LLC	329736
1199 Main Ave., Suite 101	Action Number:
Durango, CO 81301	415791
	Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created By		Condition Date
michael.buchanan	Mudge LS #006 Groundwater Monitoring Lab Results and associated field forms for the site are accepted for the incident record. App ID: 415791	1/9/2025