Con Received InterSCApe into a series of rectangles	/ <i>10/202</i> Length (ft.)	5 <i>10:42.</i> Width (ft.)	34veHyde Depth (in.)	On/Off Pad (dropdow n)	Soil Spilled-Fluid Saturation (%.)	Estimated volume of each area (bbl.)	Total 2986 110 Volume of Spill (bbl.)
Rectangle A	25.0	18.0	0.5	On-Pad	10.50%	3.34	0.35
Rectangle B				~		0.00	
Rectangle C		10		~		0.00	
Rectangle D				~		0.00	
Rectangle E			(~		0.00	
Rectangle F				~		0.00	
Rectangle G		() ()	· · · · · · · · · · · · · · · · · · ·	~		0.00	
Rectangle H		21 - E	î î	~	19. 	0.00	
Rectangle I		3 3		~		0.00	
Rectangle J				~	12	0.00	
Released to Imaging	;: 7/10/ 2	025 4:2	2:50 PM		Total Sub	surface Volume Released:	0.3504

SITE INFORMATION

Closure Report Lusk Deep Unit A #25 (03.05.2025) Incident # nAPP2506541672 Lea County, New Mexico Unit E Sec 20 T19S R32E 32.6482697°, -103.7958755°

Crude Oil Release Point of Release: Flare Fire Release Date: 03.05.2025 Volume Released: 0.35 barrels of Crude Oil Volume Recovered: 0.0 barrels of Crude Oil

CARMONA RESOURCES

Prepared for: Concho Operating, LLC 15 West London Road Loving, New Mexico 88256

Prepared by: Carmona Resources, LLC 310 West Wall Street Suite 500 Midland, Texas 79701

> 310 West Wall Street, Suite 500 Midland TX, 79701 432.813.1992

TABLE OF CONTENTS

1.0 SITE INFORMATION AND BACKGROUND

2.0 SITE CHARACTERIZATION AND GROUNDWATER

3.0 NMAC REGULATORY CRITERIA

4.0 SITE ASSESSMENT ACTIVITIES

5.0 REMEDIATION ACTIVITIES

6.0 CONCLUSIONS

FIGURES

FIGURE 1	OVERVIEW	FIGURE 2	TOPOGRAPHIC
FIGURE 3	SAMPLE LOCATION	FIGURE 4	EXCAVATION
		<u>APPENDICES</u>	
APPENDIX A	TABLES		
	DUOTOG		

- APPENDIX B PHOTOS
- APPENDIX C N.O.R. AND FINAL C-141/NMOCD CORRESPONDENCE
- APPENDIX D SITE CHARACTERIZATION AND GROUNDWATER
- APPENDIX E LABORATORY REPORTS

May 30, 2025

New Mexico Oil Conservation Division 1220 South St, Francis Drive Santa Fe, NM 87505

Re: Closure Report Lusk Deep Unit A #25 (03.05.2025) Concho Operating, LLC Site Location: Unit E, S20, T19S, R32E (Lat 32.6482697, Long -103.7958755) Lea County, New Mexico

To whom it may concern:

On behalf of Concho Operating, LLC (COG), Carmona Resources, LLC has prepared this letter to document site assessment activities for the Lusk Deep Unit A #25 (03.05.2025) The site is located at 32.6482697, -103.7958755 within Unit E, S20, T19S, R32E, in Lea County, New Mexico (Figures 1 and 2).

1.0 Site Information and Background

Based on the Notice of Release obtained from the New Mexico Oil Conservation Division (NMOCD), the release was discovered on March 05, 2025, due to a Flare Fire. The incident released approximately zero point three five (0.35) barrels of crude oil with zero (0) barrels recovered. The impacted area occurred in the pad, as shown in Figure 3. The Notice of Release is attached in Appendix C.

2.0 Site Characterization and Groundwater

The site is located within a low karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases two known water sources are within a 0.50-mile radius of the location, the nearest identified well is located approximately 0.07 miles Southeast of the site in S20, T19S, R32E and was drilled in 1982. The well has a reported depth to groundwater of 345' below ground surface (ft bgs). The second identified well is located approximately 0.29 miles Northeast of the site in S19, T19S, R32E and was drilled in 1982. The well has a reported depth to groundwater of 102' below ground surface (ft bgs). A copy of the associated Summary report is attached in Appendix D.

3.0 NMAC Regulatory Criteria

Per the NMOCD regulatory criteria established in 19.15.29.12 NMAC, the following criteria was utilized in assessing the site.

- Benzene: 10 milligrams per kilogram (mg/kg).
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg.
- TPH: 100 mg/kg (GRO + DRO + MRO).
- Chloride: 600 mg/kg.

4.0 Site Assessment Activities

Initial Assessment

On March 21, 2025, Carmona Resources, LLC performed site assessment activities to evaluate soil impacts stemming from the release. A total of two (2) sample points (S-1 through S-2) and five (5)

horizontal sample points (H-1 through H-5) were installed to total depths ranging from surface to 1.5' bgs inside and surrounding the release area to evaluate the vertical and horizontal extent. See Figure 3 for the sample locations. For chemical analysis, the soil samples were collected and placed directly into laboratory-provided sample containers, stored on ice, and transported under the proper chain-of-custody protocol to Cardinal Laboratories in Hobbs, New Mexico. The samples were analyzed for total petroleum hydrocarbons (TPH) by EPA method 8015, modified benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B, and chloride by EPA method 4500. The laboratory reports, including analytical methods, results, and chain-of-custody documents, are attached in Appendix D.

5.0 Remediation Activities

Carmona Resources personnel were on site to guide the remediation activities, collect confirmation samples, and document backfill activities. Before collecting composite confirmation samples, the NMOCD division office was notified via NMOCD portal on May 07, 2025, per Subsection D of 19.15.29.12 NMAC. See Appendix C for the sampling notification. The areas of S-1 and S-2 were excavated to a depth of 0.5' to ensure the removal of all impacted material. A total of six (6) confirmation floor samples were collected (CS-1 through CS-6), and four (4) sidewall samples (SW-1 through SW-4) were collected every 200 square feet to ensure the proper removal of the contaminated soils. All collected samples were transported to Eurofins Laboratories in Midland, Texas and analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix D. The excavation depths and confirmation sample locations are shown in Figure 4.

All final confirmation samples were below the regulatory requirements for TPH, BTEX, and chloride. Prior to backfilling, the material that was used was sampled to ensure it was clean and non-waste containing material. Refer to Table 2 for the analytical results.

Once the remediation activities were completed, the excavated areas were backfilled with clean material to surface grade. Approximately 20 cubic yards of material were excavated and transported offsite for proper disposal.

6.0 Conclusions

Based on the assessment results and the analytical data, no further actions are required at the site. COG formally requests the closure of this incident. If you have any questions regarding this report or need additional information, please get in touch with us at 432-813-1992.

Sincerely, Carmona Resources, LLC

Conner Moehring Environmental Manager

ten her

Stephen Reyes Sr. Project Manager

APPENDIX A

CARMONA RESOURCES

Table 1 ConocoPhillips Lusk Deep Unit A #25 (03.05.2025) Lea County, New Mexico

						-						
Sample ID	Date	Depth			l (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
		(in & ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	3/21/2025	0-3"	<10.0	1,140	377	1,517	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
S-1	"	6"	<10.0	53.5	<10.0	53.5	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
3-1	"	1.0'	<10.0	31.0	<10.0	31.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
	II	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
	3/21/2025	0-3"	<10.0	1,510	498	2,008	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
S-2	"	6"	<10.0	54.2	<10.0	54.2	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
3-2	"	1.0'	<10.0	37.8	<10.0	37.8	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
	"	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
H-1	3/21/2025	0-3"	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
H-2	3/21/2025	0-3"	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
H-3	3/21/2025	0-3"	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
H-4	3/21/2025	0-3"	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
H-5	3/21/2025	0-3"	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
Regula	tory Criteria ^A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/k
(-) N	ot Analyzed											

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram TPH - Total Petroleum Hydrocarbons

ft - feet (S) Sample Point (H) Horizontal Sample

Removed

Released to Imaging: 7/10/2025 4:22:50 PM

•

Table 2 **Conoco Phillips** Lusk Deep Unit A #25 (03.05.2025) Lea County, New Mexico

				TPH	l (mg/kg)	-	Benzene	Toluene	Ethlybenzene	Xylene	Total	Chloride
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	BTEX (mg/kg)	(mg/kg)
CS-1	5/9/2025	0.5'	<50.2	<50.2	<50.2	<50.2	0.00253	0.00316	<0.00200	0.00411	0.0098	95.9
CS-2	5/9/2025	0.5'	<50.4	<50.4	<50.4	<50.4	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	88.4
CS-3	5/9/2025	0.5'	<49.7	<49.7	<49.7	<49.7	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	88.2
CS-4	5/9/2025	0.5'	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	136
CS-5	5/9/2025	0.5'	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	151
CS-6	5/9/2025	0.5'	<50.0	<50.0	<50.0	<50.0	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	135
SW-1	5/9/2025	0.5'	<50.1	<50.1	<50.1	<50.1	0.00882	<0.00201	<0.00201	0.00427	0.00131	120
SW-2	5/9/2025	0.5'	<50.3	<50.3	<50.3	<50.3	0.00929	0.00347	0.00268	<0.00396	0.0176	99.9
SW-3	5/9/2025	0.5'	<49.9	<49.9	<49.9	<49.9	<0.00199	0.0021	<0.00199	<0.00398	<0.00398	114
SW-4	5/9/2025	0.5'	<50.1	<50.1	<50.1	<50.1	<0.00200	0.00228	<0.00200	<0.00399	<0.00399	127
Backfill Sample	5/16/2025	-	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	138
	ory Criteria ^A Manalyzed					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram TPH - Total Petroleum Hydrocarbons

ft - feet

(CS) Confirmation Sample

(SW) Sidewall Sample

APPENDIX B

CARMONA RESOURCES

•

PHOTOGRAPHIC LOG

COG Operating, LLC

Photograph	No. 1	NE E SE S 30 NE E 120 150 180 22 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1
Facility:	Lusk Deep Unit A #25 (03.05.2025)	© 117°SE (T) LAT: 32.648024 LON: -103.796039 ±13ft ▲ 3579ft
County:	Lea County, New Mexico	
Description: View West, of	the excavation CS-3 - CS-6.	Excavation CCOP 2679 Lusk Deep 25 Flare Fire 09 May 2025, 12:08:52
Photograph	No. 2	
Facility:	Lusk Deep Unit A #25 (03.05.2025)	© 59°NE (T) LAT: 32.648012 LON: -103.796037 ±13ft ▲ 3578ft
County:	Lea County, New Mexico	
Description: View West, of	the area of the excavation CS-1 - CS-4.	Excavation COP 2679 Lusk Deep 25 Flare Fire 09 May 2025, 12:08:50
Photograph	No. 3	SE S S SW W - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
Facility:	Lusk Deep Unit A #25 (03.05.2025)	© 218°SW (T) LAT: 32.648103 LON: -103.795916 ±13ft ▲ 3577ft
County:	Lea County, New Mexico	
Description: View South, o	f the excavation CS-1 - CS-6.	Backfill Backfill

APPENDIX C

CARMONA RESOURCES

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Operator:	UGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	439837
	Action Type:
	[NOTIFY] Notification Of Release (NOR)

QUESTIONS

Location of Release Source				
Please answer all the questions in this group.				
Site Name	Lusk Deep Unit A #25			
Date Release Discovered	03/05/2025			
Surface Owner State				

Incident Details

Please answer all the questions in this group.				
Incident Type	Fire			
Did this release result in a fire or is the result of a fire	Yes			
Did this release result in any injuries	No			
Has this release reached or does it have a reasonable probability of reaching a watercourse	No			
Has this release endangered or does it have a reasonable probability of endangering public health	No			
Has this release substantially damaged or will it substantially damage property or the environment	No			
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No			

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.					
Crude Oil Released (bbls) Details	Cause: Fire Other (Specify) Crude Oil Released: 0 BBL (Unknown Released Amount) Recovered: 0 BBL Lost: 0 BBL.				
Produced Water Released (bbls) Details	Not answered.				
Is the concentration of chloride in the produced water >10,000 mg/l	Not answered.				
Condensate Released (bbls) Details	Not answered.				
Natural Gas Vented (Mcf) Details	Not answered.				
Natural Gas Flared (Mcf) Details	Not answered.				
Other Released Details	Not answered.				
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.				

QUESTIONS

Action 439837

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 439837

QUESTIONS (continued)

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	439837
	Action Type:
	[NOTIFY] Notification Of Release (NOR)

QUESTIONS

...

ature and Volume of Release (continued)					
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.				
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes				
Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (1) an unauthorized release of a volume, excluding gases, of 25 barrels or more; (2) an unauthorized release of a volume that: (a) results in a fire or is the result of a fire.				

With the implementation of the 19.15.27 NMAC (05/25/202), venting and/or flaring of natural gas (i.e	e. gas only) are to be submitted on the C-129 form.
---	---	---

Initial Response				
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.				
The source of the release has been stopped	True			
The impacted area has been secured to protect human health and the environment	True			
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True			
All free liquids and recoverable materials have been removed and managed appropriately	True			
If all the actions described above have not been undertaken, explain why	Not answered.			
	tion immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of			

actions to date in the follow-up C-141 submission. If remedia forts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please prepared attach all information needed for closure evaluation in the follow-up C-141 submission.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

ACKNOWLEDGMENTS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	439837
	Action Type:
	[NOTIFY] Notification Of Release (NOR)

ACKNOWLEDGMENTS

1	I acknowledge that I am authorized to submit notification of a release on behalf of my operator.
<u>v</u>	I acknowledge that upon submitting this application, I will be creating a new incident file (assigned to my operator) to track the notification(s) and corrective action(s) for a release, pursuant to NMAC 19.15.29.
R	l acknowledge that creating a new incident file will require my operator to file subsequent submission(s) of form "C-141, Application for administrative approval of a release notification and corrective action", pursuant to NMAC 19.15.29.
2	I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment.
V	I acknowledge the fact that the acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment.
V	I acknowledge the fact that, in addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

ACKNOWLEDGMENTS

Action 439837

General Information Phone: (505) 629-6116

CONDITIONS

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	439837
	Action Type:
	[NOTIFY] Notification Of Release (NOR)

Created By	Condition	Condition Date
jacquih	When submitting future reports regarding this release, please submit the calculations used or specific justification for the volumes reported on the initial C- 141.	3/6/2025

CONDITIONS

Page 20eof 116

Action 439837

Cc <u>Received by OCD</u> ; 6 into a series of rectangles	5/10/2023 Length (ft.)	5 10342 Width (ft.)	3414Mge Depth (in.)	On/Off Pad (dropdow n)	Soil Spilled-Fluid Saturation (%.)	Estimated volume of each area (bbl.)	Tota Pase 21 of 110 Volume of Spill (bbl.)
Rectangle A	25.0	18.0	0.5	On-Pad	10.50%	3.34	0.35
Rectangle B			1	~		0.00	
Rectangle C				~		0.00	
Rectangle D			(~		0.00	
Rectangle E				~		0.00	
Rectangle F				~		0.00	
Rectangle G		() ()	· · · · · · · · · · · · · · · · · · ·	~		0.00	
Rectangle H		2	i i	~		0.00	
Rectangle I		9		~		0.00	
Rectangle J				~		0.00	
Released to Imaging	g: 7/10/2	025 4:2	2:50(PM)	f	Total Sub	surface Volume Released:	0.3504

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Page 22:0f 116

Action 444836

QUESTIONS

Operator:	OGRID:	
COG OPERATING LLC	229137	
600 W Illinois Ave	Action Number:	
Midland, TX 79701	444836	
	Action Type:	
	[C-141] Initial C-141 (C-141-v-Initial)	

QUESTIONS

Prerequisites		
Incident ID (n#)	nAPP2506541672	
Incident Name	NAPP2506541672 LUSK DEEP UNIT A #25 @ 30-025-40193	
Incident Type	Fire	
Incident Status	Initial C-141 Received	
Incident Well	[30-025-40193] LUSK DEEP UNIT A #025H	

Location of Release Source

Please	answer	all the	questions	in this	group.

Site Name	Lusk Deep Unit A #25
Date Release Discovered	03/05/2025
Surface Owner	State

Incident Details

Please answer all the questions in this group.		
Incident Type	Fire	
Did this release result in a fire or is the result of a fire	Yes	
Did this release result in any injuries	No	
Has this release reached or does it have a reasonable probability of reaching a watercourse	No	
Has this release endangered or does it have a reasonable probability of endangering public health	No	
Has this release substantially damaged or will it substantially damage property or the environment	No	
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No	

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.		
Crude Oil Released (bbls) Details	Cause: Fire Other (Specify) Crude Oil Released: 0 BBL (Unknown Released Amount) Recovered: 0 BBL Lost: 0 BBL.	
Produced Water Released (bbls) Details	Not answered.	
Is the concentration of chloride in the produced water >10,000 mg/l	No	
Condensate Released (bbls) Details	Not answered.	
Natural Gas Vented (Mcf) Details	Not answered.	
Natural Gas Flared (Mcf) Details	Not answered.	
Other Released Details	Not answered.	
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 444836

QUESTIONS (continued)		
Operator:	OGRID:	
COG OPERATING LLC	229137	
600 W Illinois Ave	Action Number:	
Midland, TX 79701	444836	
	Action Type:	
	[C-141] Initial C-141 (C-141-v-Initial)	

QUESTIONS

ľ	Nature and Volume of Release (continued)		
I	Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.	
	Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes	
	Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (1) an unauthorized release of a volume, excluding gases, of 25 barrels or more; (2) an unauthorized release of a volume that: (a) results in a fire or is the result of a fire.	
		(a) results in a fire or is the result of a fire.	

with the implementation of the 10.10.27	

Initial Response		
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.		
The source of the release has been stopped	True	
The impacted area has been secured to protect human health and the environment	True	
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True	
All free liquids and recoverable materials have been removed and managed appropriately	True	
If all the actions described above have not been undertaken, explain why	Not answered.	
	ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission.	
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
I hereby agree and sign off to the above statement	Name: Brittany Esparza Title: Environmental Technician Email: brittany.Esparza@ConocoPhillips.com Date: 03/24/2025	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Action 444836

Page 24cof 116

QUESTIONS (continued)

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	444836
	Action Type:
	[C-141] Initial C-141 (C-141-v-Initial)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Not answered.
What method was used to determine the depth to ground water	Not answered.
Did this release impact groundwater or surface water	Not answered.
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:	
A continuously flowing watercourse or any other significant watercourse	Not answered.
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Not answered.
An occupied permanent residence, school, hospital, institution, or church	Not answered.
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Not answered.
Any other fresh water well or spring	Not answered.
Incorporated municipal boundaries or a defined municipal fresh water well field	Not answered.
A wetland	Not answered.
A subsurface mine	Not answered.
An (non-karst) unstable area	Not answered.
Categorize the risk of this well / site being in a karst geology	Not answered.
A 100-year floodplain	Not answered.
Did the release impact areas not on an exploration, development, production, or storage site	Not answered.

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

Requesting a remediation plan approval with this submission

No The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	444836
	Action Type:
	[C-141] Initial C-141 (C-141-v-Initial)

CONDITIONS

Created By		Condition Date
scott.rodgers	None	3/24/2025

Page 25cof 116

Action 444836

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 26:0f 116

Action 459637

QUESTIONS

C	Dperator:	OGRID:
	COG OPERATING LLC	229137
	600 W Illinois Ave	Action Number:
	Midland, TX 79701	459637
		Action Type:
		[NOTIEV] Notification Of Sampling (C-141N)

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2506541672
Incident Name	NAPP2506541672 LUSK DEEP UNIT A #25 @ 30-025-40193
Incident Type	Fire
Incident Status	Initial C-141 Approved
Incident Well	[30-025-40193] LUSK DEEP UNIT A #025H

Location of Release Source Site Name Lusk Deep Unit A #25 Date Release Discovered 03/05/2025 Surface Owner State

Sampling Event General Information									
Please answer all the questions in this group.									
What is the sampling surface area in square feet	1,390								
What is the estimated number of samples that will be gathered	11								
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	05/09/2025								
Time sampling will commence	10:00 AM								
Please provide any information necessary for observers to contact samplers	Carmona Resources – 432-813-6823								
Please provide any information necessary for navigation to sampling site	32.647949, -103.795972								

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS	
------------	--

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	459637
	Action Type:
	[NOTIFY] Notification Of Sampling (C-141N)

CONDITIO	NS	
Created By	Condition	Condition Date
jacquih	Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted.	5/7/2025

Page 27cof 116 CONDITIONS

Action 459637

APPENDIX D

CARMONA RESOURCES

- 🍰 0.29 Miles
- 🕹 0.50 Mile Radius
- 🍰 0.53 Miles
- Groundwater Determination Bore

Page 29 of 116

- Lusk Deep Unit A #25 (03.05.2025)
- NMSEO Water Well

N

Lusk Deep Unit A #25 (03.05.2025) •

New Mexico Office of the State Engineer Water Column/Average Depth to Water

 (A CLW##### in

 the POD suffix
 (R=POD has

 indicates
 been

 the POD has been
 replaced,

 replaced
 O=orphaned

 & no longer serves
 C=the file is

 a water right file.)
 closed)

replaced & no longer serves a water right file.)	O=orphaned, C=the file is closed)			(quart smalle larges									(meters)		(In feet)	I
POD Number	Code	Sub basin	County	Q64	Q16	Q4	Sec	Tws	Range	x	Y	Мар	Distance	Well Depth	Depth Water	Water Column
<u>CP 00639 POD1</u>		СР	LE		SW	NW	20	19S	32E	613029.0	3612880.0 *	٩	111	350	345	5
<u>CP 00640 POD1</u>		СР	LE		NE	NE	19	19S	32E	612621.0	3613280.0 *	۹	464	260	102	158
<u>CP 01656 POD3</u>		СР	LE	SW	SE	SW	17	19S	32E	613373.6	3613633.4	۹	825	30		
<u>CP 01656 POD2</u>		СР	LE	SW	SE	SW	17	19S	32E	613363.5	3613648.1	۹	833	70		
<u>CP 01656 POD1</u>		СР	LE	SW	SE	SW	17	19S	32E	613368.2	3613646.6	۹	834	70		
<u>CP 00563 POD1</u>		СР	LE	NW	NW	NE	19	19S	32E	612118.0	3613376.0 *	۹	925	300		
<u>CP 00642 POD1</u>		СР	ED		NE	NE	25	19S	31E	611025.0	3611657.0 *	۹	2295	250		
<u>CP 01939 POD1</u>		СР	ED	NE	SE	NE	26	19S	31E	609488.4	3611347.2	٠	3792			
<u>CP 02015 POD1</u>		СР	LE	SW	SW	SW	05	19S	32E	612911.8	3616830.4	٠	3895	55		
<u>CP 02015 POD1</u>	С	СР	LE	SW	SW	SW	05	19S	32E	612911.8	3616830.4	٩	3895	55		
<u>CP 02017 POD1</u>		СР	LE	SW	SE	NW	15	19S	32E	616593.8	3614503.4	٩	3983	105		

.....

Average Depth to Water: 223 feet

Minimum Depth: 102 feet

Maximum Depth: 345 feet

Record Count: 11

UTM Filters (in meters): Easting: 612931.99 **Northing:** 3612935.44 **Radius:** 4000

* UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

.,

Page 32 of 116

SANTA FE

Revised June 1972

STATE	ENGINEER	OFFICE

WELL RECORD

				Section 1.	GENERAL IN	FORMATION			
(A)	Owner of y	well	Phillips P	etroleum				ner's Well No	CP-639-Exp.
()	Street or P	ost Office Ad	dress P.O. Hobb	BOX 2150	<u>20</u>				
	City and S	tate	13672.92	O' HALL DOT	+0	The walk of		<u> </u>	
Well	was drilled (under Permit	_{No.} Test h C	le for ep	<u>A</u> <u>'</u>	and is located	in the: 2400	FNL & 12	00'FWL
	a	1/4 1/4	<u>SW</u> 4 N	W_ ¼ of Sect	ion 20	Township	195 R	ange <u>52E</u>	N.M.P.M.
	b. Tract N	0	of Map No.	······································	of the	<u> </u>			·····
	c. Lot No. Subdivi	sion, recorded	of Block No 1 in	Lea	of the Co	ounty.			<u></u>
					feet, N.M	M. Coordinate S	ystem		Zone in
	the		Larry	's Dritli	na			WD882	Grant.
(B)	Drilling Co	ontractor	2601	W. Bender	. Hobbs	, NM 88240	License No		
Addı	ess	2-9-82		2-10			tri-cone		4 3/4
									10le in. 350
Eleva	ation of land	l surface or			at well	is	_ ft. Total dep	th of well	<i>390</i>
			nallow 🔲 an						ft.
.		- David		ion 2. PRINC	IPAL WATER	-BEARING ST	RATA		
	Depth ir From	To	Thickness in Feet	De	escription of W	ater-Bearing F	ormation		ated Yield per minute)
	· · ·								
						- <u></u> .	<u> </u>		
					da Par -				
					<u> </u>	·····	<u></u>		
<u> </u>									
	iameter	Pounds	Threads	Section Depth ir	3. RECORD (DF CASING Length		· · · ·	Perforations
	inches)	per foot	per in.	Top	Bottom	(feet)	Type of S	hoe Fro	
							·		
						•	<u>.</u>		
			1					I	
		······			<u>,</u> I				
_	<u>_</u>	·····	r	T	····	NG AND CEM	ENTING		····
	Depth ir From	1 Feet To	Hole Diameter	on 4. RECOR Sacks of Muc	Cu	NG AND CEM bic Feet Cement		hod of Placem	ent
			Hole	Sacks	Cu	bic Feet		hod of Placem	ent
			Hole Diameter	Sacks	Cu	bic Feet		hod of Placem	ent
			Hole Diameter	Sacks	Cu	bic Feet		hod of Placem	ent
		To	Hole Diameter	Sacks of Muc	l Cu of	bic Feet Cement		hod of Placem	ent
		To	Hole Diameter	Sacks of Muc	Cu	bic Feet Cement		hod of Placem	ent
Plugg	From ging Contractions	To	Hole Diameter	Sacks of Muc Section	l Cu of	bic Feet Cement	Met	in Feet	Cubic Feet
Plugg Addi Plugg	From ging Contractions	To	Hole Diameter	Sacks of Muc Section	l Cu of	bic Feet Cement G RECORD	Met		
Plugg Adda Plugg Date	ging Contractions Sector Secto	To	Hole Diameter	Sacks of Muc Section	l Cu of	bic Feet Cement G RECORD	Met	in Feet	Cubic Feet
Plugg Adda Plugg Date	ging Contractions Generation Statements Generation Statements Stat	To	Hole Diameter	Sacks of Muc Section	i Cu of 5. PLUGGIN(bic Feet Cement G RECORD	Met	in Feet	Cubic Feet

File No. CP-639-Exploratory Released to Imaging: 7/10/2025 4:22:50 PM _Use___EXP.

Quad ____

__ Location No.____**19.32.20.___134423**

_ FWL _____ FSL__

Received by OCD: 6/10/2025 10:42:34 AM Section 6. LOG OF HOLE

<u>Page 33</u> of 116 Depth in Feet Thickness Color and Type of Material Encountered in Feet From Тο blow sand 10 10 0 20 10 caliche 10 50 red sand 20 50 80 30 red clay -50 35 5 gray clay - 80 red, gray, green clay 100 15 -55 - 35 red dirt 100 135 170 35 gray hard clay 135 4 red clay & rock 174 170 61 gray hand clay 174 235 235 237 2 ned clay gray clay 13 250 237 30 60me gravel 280 ned bed 250 30 gray rock 310 280 red bed white nock 310 335 25 15 ned bed 335 350

Section 7. REMARKS AND ADDITIONAL INFORMATION

	65
r-us Caus	RDS SON
(, , ,)	171 C 17
n Un	
	۲۹ کی <u>ڈ</u> ۲۰۱۰
	لي. م

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

Y	1.	
arry	Telkins	
	Deiller AV	
U	\mathcal{F}	

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, except Section 5, shall be answered as completely and scurately as possible when any well is used as a plugging record, only Section 1(a) drilled, repaired or deepened. When this fo ection 5 need be completed.

Released to Imaging: 7/10/2025 4:22:50 PM

Received by OCD: 6/10/2025 10:42:34 AM

STATE ENGINEER OFFICE

WELL RECORD

A) Owner o Street or	f well Post Office A	ddress	P. C.	lox 2130			Ow	ner's Well No	CP-640-Ex
City and	State		llobb.	6 <u>, NH 882</u> 4	lø				. · ·
	d under Permit	NO	40-Exp10			located in		1200'N 3	4
a	141	4 <u>NE ¼</u>	<u>NE</u> ¼ of S	ection	Tow	nship	193 R	ange	<mark>2-Е</mark> N.M.P
b. Tract	No	of Map No.		of th	ie				
c. Lot N Subdi	o vision, recorde	of Block No d in	Lea	of th	ie County.				
d. X=		feet, Y=		feet, 1	I.M. Coo	rdinate Sy	stem		Zone
B) Drilling (Contractor	<u></u>	La	ury's orl	Wag		License No.	wo ses	
ddress		5	26	01 S. Ben	den	Hobbs,	NN 88240	1	
rilling Began	2-8-82	Čomj	pleted	-9-82	_ Туре	tools	thi-cone	Size of 1	nole 4 3/.
		hallow 🗆 a	2	est hole				on of well	
		Sec	tion 2. PRIN	ICIPAL WATE	ER-BEAR	RING STR.	ATA		
Depth From	in Feet	Thickness in Feet		Description of	Water-B	earing For	mation		ated Yield per minute)
			· · · · · · · · · · · · · · · · · · ·	<u>,</u>			· ·	-	
· · · · · ·				<u> </u>					
· · · · · · · · · · · · · · · · · · ·									
	· · · · · · · · · · · · · · · · · · ·			····· ··· ···					<u>, 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 </u>
<u>· ·</u>	<u></u>	<u></u>	Section	on 3. RECORI		SINC			
Diameter	Pounds	Threads		in Feet	Ler	ngth	Type of S	hoe	Perforations
(inches)	per foot	per in.	Тор	Bottom	(fe	eet)		Fre	om To
		· .					<u>.</u>		
						· · · · ·	-		
									<u></u> .
		T		RD OF MUDI		· · · · · · · · · · · · · · · · · · ·	ITING		
From	in Feet To	Hole	Sac of M		Cubic Fee of Cemen		Met	hod of Placem	ent
· · · · · · · · · · · · · ·								•	N 4
		а						· · ·	· ·
		ಹಾಗ್ರೆಸ್ಕಾ ಕ್ಲಾ ವೆ ಆಗಾಪಾಡಿಗೆ							· ·
			Sectio	on 5. PLUGGI	NG REC	ORD			
	actor	μ μ μ μ μ μ μ μ μ μ μ μ μ μ		······	r			n Fost	
						No.	Depth i Top	n Feet Bottom	Cubic Feet of Cement
ldress ugging Metho			· .						
ddress ugging Methc ate Well Plugg	od ged		· · · · · · · · · · · · · · · · · · ·		[-	1			
ddress ugging Metho	od ged		ineer Repres	entative		$ \begin{array}{c} 1\\ 2\\ 3\\ 4 \end{array} $			

Revised June 1972

EXP. Location No.

Use.

CP-640-Exploratory

File No._

Released to Imaging: 7/10/2025 4:22:50 PM

o. 19.32.19.224431

Depth	6/10/2025 10: in Feet	Thickness	Section 6. LOG OF HOLE	
From	То	in Feet	Color and Type of Material Encountered	
0	4 5	4	blow sand	
4	10	<u> </u>	raliche	
10	30	20	sand	
3 0	52	22	sand & gravel	
52	60	8	red bed	
60	61	1	clay gray	· <u> </u>
51	105	44	ned bed	۰
105	115	10	gray clay s nock	
115	117	2	sand black rock	
117	158	35	gray clay s rock	
152	162	10	red clay	·
162	230	68	red clay layers of gray 5 brown dry clay	
230	240	10	ned clay	
240	244	4	gray green clay	
244	260	16	ned bed	
	-			
· · · · · · · · · · · · · · · · · · ·				
	· · · · · ·		·	
		-	·	
].			

Section 7. REMARKS AND ADDITIONAL INFORMATION

CO ro N ŝ

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

Driller \mathcal{A}

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this are used as a plugging record, only Section 1 (completed) for the completed.

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

	1		LL NUMBER)				OSE FILE NU	MBER(S)				
NOL.	(POD 2)		EP UNIT A #19 SB-2	2	×							
CA1	TETRA TI)		PHONE (OPTIONAL)							
GENERAL AND WELL LOCATION	WELL OWN	ER MAILING	G ADDRESS IG ST, STE 401		CITY STATE 2 Midland Tx 79705							
M QI		<u></u>	DEGREES	MINUTES	l	<u> </u>						
LAN	WELL		32	39	16.7	N	* ACCURACY	REQUIRED: ONE TEN	TH OF A SECOND	1		
ERAI	(FROM G		NGITUDE 103	47	28.1	W	* DATUM RE	QUIRED: WGS 84				
I. GEN	ļ		WELL LOCATION TO STREE					SE) WHERE AVAILABLE				
<u> </u>	LICENSE NU	·	NAME OF LICENSED	DRILLER	······································			NAME OF WELL DRI				
}	WD1711		EDWARD BRYAN	_				STRAUB CORPO	:			
	DRILLING S 3-28-17			DEPTH OF COMPLETI	ED WELL (FT)	BORE HOI	LE DEPTH (FT)	DEPTH WATER FIRS	IT ENCOUNTERED (FT)			
7	COMPLETE	D WELL IS:	C ARTESIAN	• DRY HOLE	SHALLOW (UNC	ONFINED)		STATIC WATER LEV	EL IN COMPLETED WELL (FT)			
ATIO	DRILLING F	LUID:	(AIR			<u> </u>						
DRM	DRILLING N	IETHOD:	• ROTARY	C HAMMER C	CABLE TOOL	С отне	R - SPECIFY:					
INFC	DEPTH	(feet bgl)	BORE HOLE	CASING MATERIAL AND/OR GRADE CA			ASING	CASING	M. CASING WALL SLO THICKNESS SIZE (inches) (inche			
CASING INFORMATION	FROM	ТО	DIAM (inches)	(include each casing string, and note sections of screen)		CONNECTION TYPE		INSIDE DIAM. (inches)				
& C	0	70'	6"	N/A N/A			······································	N/A	N/A N/A			
DRILLING &	 	} 		· · · · · · · · · · · · · · · · · · ·								
RILI						<u> </u>						
2. DI	<u> </u>			·		{						
										-		
				· · · · · · · · · · · · · · · · · · ·				<u> </u>		-		
	DEPTH	(feet bgl)	BORE HOLE	LIST AN	NULAR SEAL MA	ATERIAL A		AMOUNT	METHOD OF	=		
IAL	FROM	TO	DIAM. (inches)	GRAVEL PA	ACK SIZE-RANG	E BY INTE	RVAL	(cubic feet)	PLACEMENT			
FER	0	2'	6"	.5 CEMENT	<u> </u>				TOPLOAD			
MAT	2	70'	6"	21 BAGS OF 3/	BHOLEPLUG				TOPLOAD			
LAR								 				
ANNULAR MATERIAL		<u> </u>						<u> </u>		\neg		
3. Al									- 24.57	\neg		
FOR	OSE INTER	NAL USE				<u> </u>	WR-2	0 WELL RECORD 8	LOG (Version 06/08/2012)	1		
FILE	NUMBER	CP-	1656		POD NUMBER	2		NUMBER 600		7		
LOC	ATION			195.32	E.17.2	345			PAGE 1 OF 2	1		
•

	DEPTH FROM	(feet bgl) TO	THICKNESS (feet)	INCLUDE WATE	ID TYPE OF MATER ER-BEARING CAVIT oplemental sheets to f	IES OR FRAC	TURE ZONES	BE	/ATER ARING? ES / NO)	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
	0	1'	1'	TAN FINE SAND				CY	(N	N/A
	1'	8'	7'	RED FINE SAND -	SANDSTONE			CY	● N	N/A
	8'	22'	14'	TAN FINE SAND -	SANDSTONE CEN	IENT		СУ	(• N	N/A
	22'	23'	1'	RED VERY FINE SA	ND - SANDSTON	IE CEMENT		CY	(N	N/A
	23'	41'	18'	RED VERY FINE SA	AND - SANDSTON	IE CEMENT		СҮ		N/A
ų.	41'	48'	7'	RED SANDY CLAY	/			CY	● N	N/A
4. HYDROGEOLOGIC LOG OF WELL	48'	63'	15'	RED VERY FINE SA	AND - SANDSTON	E		СҮ	(● N	N/A
0E)	63'	70'	7'	RED SILTY CLAY		···		СҮ	• N	N/A
0C	TD	70'			····				C ^N	
ICE					<u></u>			CY	C N	
001								CY	C ^N	
GEO								C Y	€ N	
NO NO		1	1					C Y	C N	
HYB								CY	C ^N	
4.								СҮ	C ^N	
								СҮ	C ^N	
								С	C ^N	
								СҮ	C ^N	
								C ^{_ Y}	<u>C</u> N	
									<u> </u>	
								С	<u> </u>	
								TAL ESTIMATED ELL YIELD (gpm):		
NOI	WELL TEST TEST RESULTS - ATTACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDING DISCHARGE METHOD, START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.									
/ISIC	MISCELLANEOUS INFORMATION:									
TEST; RIG SUPERVIS	SOIL BORING ONLY - SOIL BORING WAS PLUGGED AND ABANDONED UPON COMPLETION OF SAMPLING. LEA COUNTY, NM									
5. TEST	PRINT NAME(S) OF DRILL RIG SUPERVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTRUCTION OTHER THAN LICENSEE:									
6. SIGNATURE	CORRECT	RECORD C	OF THE ABOVE I	FIES THAT, TO THE B DESCRIBED HOLE AN 20 DAYS AFTER COM	ID THAT HE OR SHI	E WILL FILE T	E AND BELIEI HIS WELL RE	CORD WIT	H THE ST	IS A TRUE AND ATE ENGINEER
6.5		SIGNA	TURE OF DRILL	ER / PRINT SIGNEE	NAME		e 1: " <u>A</u> e		DATE	
	R OSE INTE	RNAL USE	<u>. </u>					A REAL PROPERTY OF A REAL PROPER	& LOG (V	/ersion 06/08/2012)
	E NUMBER			······	POD NUMBER		TRN NUMBE	K (, (,))		BACE 2 OF 2
LO	CATION								·	PAGE 2 OF 2

Lusk Deep Unit A #25 (03.05.2025)

Lusk Deep Unit A #25 (03.05.2025)

New Mexico Oil Conservation Division

APPENDIX E

CARMONA RESOURCES

March 27, 2025

CONNER MOEHRING CARMONA RESOURCES 310 W WALL ST, SUITE 500 MIDLAND, TX 79701

RE: LUSK DEEP #25 BATTERY (03.05.25)

Enclosed are the results of analyses for samples received by the laboratory on 03/21/25 11:10.

Cardinal Laboratories is accredited through Texas NELAP under certificate number TX-C24-00112. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/21/2025	Sampling Date:	03/21/2025
Reported:	03/27/2025	Sampling Type:	Soil
Project Name:	LUSK DEEP #25 BATTERY (03.05.25)	Sampling Condition:	Cool & Intact
Project Number:	2679	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: S - 1 (0-3") (H251670-01)

BTEX 8021B	mg/kg		Analyzed By: JH					S-04	
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2025	ND	1.74	87.1	2.00	12.0	
Toluene*	<0.050	0.050	03/25/2025	ND	2.02	101	2.00	10.7	
Ethylbenzene*	<0.050	0.050	03/25/2025	ND	2.25	113	2.00	8.84	
Total Xylenes*	<0.150	0.150	03/25/2025	ND	6.90	115	6.00	8.70	
Total BTEX	<0.300	0.300	03/25/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	136	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: KV						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	03/24/2025	ND	432	108	400	3.64	
TPH 8015M	mg,	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2025	ND	221	110	200	4.02	
DRO >C10-C28*	1140	10.0	03/24/2025	ND	202	101	200	5.45	
EXT DRO >C28-C36	377	10.0	03/24/2025	ND					
Surrogate: 1-Chlorooctane	88.6	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	91.3	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/21/2025	Sampling Date:	03/21/2025
Reported:	03/27/2025	Sampling Type:	Soil
Project Name:	LUSK DEEP #25 BATTERY (03.05.25)	Sampling Condition:	Cool & Intact
Project Number:	2679	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: S - 1 (6") (H251670-02)

BTEX 8021B	mg/kg		Analyzed By: JH					S-04	
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2025	ND	1.74	87.1	2.00	12.0	
Toluene*	<0.050	0.050	03/25/2025	ND	2.02	101	2.00	10.7	
Ethylbenzene*	<0.050	0.050	03/25/2025	ND	2.25	113	2.00	8.84	
Total Xylenes*	<0.150	0.150	03/25/2025	ND	6.90	115	6.00	8.70	
Total BTEX	<0.300	0.300	03/25/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	139	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: KV						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	03/24/2025	ND	432	108	400	3.64	
TPH 8015M	mg	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2025	ND	221	110	200	4.02	
DRO >C10-C28*	53.5	10.0	03/24/2025	ND	202	101	200	5.45	
EXT DRO >C28-C36	<10.0	10.0	03/24/2025	ND					
Surrogate: 1-Chlorooctane	97.6	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	99.4	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/21/2025	Sampling Date:	03/21/2025
Reported:	03/27/2025	Sampling Type:	Soil
Project Name:	LUSK DEEP #25 BATTERY (03.05.25)	Sampling Condition:	Cool & Intact
Project Number:	2679	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: S - 1 (1') (H251670-03)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2025	ND	1.74	87.1	2.00	12.0	
Toluene*	<0.050	0.050	03/25/2025	ND	2.02	101	2.00	10.7	
Ethylbenzene*	<0.050	0.050	03/25/2025	ND	2.25	113	2.00	8.84	
Total Xylenes*	<0.150	0.150	03/25/2025	ND	6.90	115	6.00	8.70	
Total BTEX	<0.300	0.300	03/25/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	132	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: KV						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	03/24/2025	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2025	ND	221	110	200	4.02	
DRO >C10-C28*	31.0	10.0	03/24/2025	ND	202	101	200	5.45	
EXT DRO >C28-C36	<10.0	10.0	03/24/2025	ND					
Surrogate: 1-Chlorooctane	95.8	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	96.8	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/21/2025	Sampling Date:	03/21/2025
Reported:	03/27/2025	Sampling Type:	Soil
Project Name:	LUSK DEEP #25 BATTERY (03.05.25)	Sampling Condition:	Cool & Intact
Project Number:	2679	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: S - 1 (1.5') (H251670-04)

BTEX 8021B	mg/kg		Analyzed By: JH					S-04	
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2025	ND	1.74	87.1	2.00	12.0	
Toluene*	<0.050	0.050	03/25/2025	ND	2.02	101	2.00	10.7	
Ethylbenzene*	<0.050	0.050	03/25/2025	ND	2.25	113	2.00	8.84	
Total Xylenes*	<0.150	0.150	03/25/2025	ND	6.90	115	6.00	8.70	
Total BTEX	<0.300	0.300	03/25/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	135	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: KV						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	03/24/2025	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2025	ND	221	110	200	4.02	
DRO >C10-C28*	<10.0	10.0	03/24/2025	ND	202	101	200	5.45	
EXT DRO >C28-C36	<10.0	10.0	03/24/2025	ND					
Surrogate: 1-Chlorooctane	94.4	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	93.9	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/21/2025	Sampling Date:	03/21/2025
Reported:	03/27/2025	Sampling Type:	Soil
Project Name:	LUSK DEEP #25 BATTERY (03.05.25)	Sampling Condition:	Cool & Intact
Project Number:	2679	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: S - 2 (0-3") (H251670-05)

BTEX 8021B	mg/kg		Analyzed By: JH					S-04	
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2025	ND	1.74	87.1	2.00	12.0	
Toluene*	<0.050	0.050	03/25/2025	ND	2.02	101	2.00	10.7	
Ethylbenzene*	<0.050	0.050	03/25/2025	ND	2.25	113	2.00	8.84	
Total Xylenes*	<0.150	0.150	03/25/2025	ND	6.90	115	6.00	8.70	
Total BTEX	<0.300	0.300	03/25/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	142 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: KV						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	03/24/2025	ND	432	108	400	3.64	
TPH 8015M	mg/	′kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2025	ND	221	110	200	4.02	
DRO >C10-C28*	1510	10.0	03/24/2025	ND	202	101	200	5.45	
EXT DRO >C28-C36	498	10.0	03/24/2025	ND					
Surrogate: 1-Chlorooctane	97.6	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	99.8	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/21/2025	Sampling Date:	03/21/2025
Reported:	03/27/2025	Sampling Type:	Soil
Project Name:	LUSK DEEP #25 BATTERY (03.05.25)	Sampling Condition:	Cool & Intact
Project Number:	2679	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: S - 2 (6") (H251670-06)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2025	ND	1.74	87.1	2.00	12.0	
Toluene*	<0.050	0.050	03/25/2025	ND	2.02	101	2.00	10.7	
Ethylbenzene*	<0.050	0.050	03/25/2025	ND	2.25	113	2.00	8.84	
Total Xylenes*	<0.150	0.150	03/25/2025	ND	6.90	115	6.00	8.70	
Total BTEX	<0.300	0.300	03/25/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	132	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: KV					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	03/24/2025	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2025	ND	204	102	200	7.17	
DRO >C10-C28*	54.2	10.0	03/24/2025	ND	203	102	200	11.6	
EXT DRO >C28-C36	<10.0	10.0	03/24/2025	ND					
Surrogate: 1-Chlorooctane	86.0	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	79.7	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/21/2025	Sampling Date:	03/21/2025
Reported:	03/27/2025	Sampling Type:	Soil
Project Name:	LUSK DEEP #25 BATTERY (03.05.25)	Sampling Condition:	Cool & Intact
Project Number:	2679	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: S - 2 (1') (H251670-07)

BTEX 8021B	mg/	kg	Analyze	d By: JH					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2025	ND	1.74	87.1	2.00	12.0	
Toluene*	<0.050	0.050	03/25/2025	ND	2.02	101	2.00	10.7	
Ethylbenzene*	<0.050	0.050	03/25/2025	ND	2.25	113	2.00	8.84	
Total Xylenes*	<0.150	0.150	03/25/2025	ND	6.90	115	6.00	8.70	
Total BTEX	<0.300	0.300	03/25/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	139 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: KV					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	03/24/2025	ND	432	108	400	3.64	
TPH 8015M	mg/	kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2025	ND	204	102	200	7.17	
DRO >C10-C28*	37.8	10.0	03/24/2025	ND	203	102	200	11.6	
EXT DRO >C28-C36	<10.0	10.0	03/24/2025	ND					
Surrogate: 1-Chlorooctane	75.8	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	69.7	40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/21/2025	Sampling Date:	03/21/2025
Reported:	03/27/2025	Sampling Type:	Soil
Project Name:	LUSK DEEP #25 BATTERY (03.05.25)	Sampling Condition:	Cool & Intact
Project Number:	2679	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: S - 2 (1.5') (H251670-08)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2025	ND	1.74	87.1	2.00	12.0	
Toluene*	<0.050	0.050	03/25/2025	ND	2.02	101	2.00	10.7	
Ethylbenzene*	<0.050	0.050	03/25/2025	ND	2.25	113	2.00	8.84	
Total Xylenes*	<0.150	0.150	03/25/2025	ND	6.90	115	6.00	8.70	
Total BTEX	<0.300	0.300	03/25/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	134	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: KV					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	03/24/2025	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2025	ND	204	102	200	7.17	
DRO >C10-C28*	<10.0	10.0	03/24/2025	ND	203	102	200	11.6	
EXT DRO >C28-C36	<10.0	10.0	03/24/2025	ND					
Surrogate: 1-Chlorooctane	83.4	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	73.5	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
BS-3	Blank spike recovery outside of lab established statistical limits, but still within method limits. Data is not adversely affected.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

												l				Page_		of _ 1
	Conner Moehring	5			Bill to: (if different)		Carmona Resources	Resourc	es					5	lork Ord	Work Order Comments	S	
	ormono Daeni				Company Name							Pro	gram: US	T/PST	PRP B	Program: UST/PST PRP Brownfields RRC		Superfund
Address: 31	310 W Wall St Ste 500	Ste 500			Address:							Sta	State of Project:	ect:]
e ZIP:	Midland, TX 79701	701			City, State ZIP:							Rep	porting:Le		evel III	Reporting:Level II Level III PST/UST TRRP		
	432-813-6823			Email:	mcarmona@carmonaresources.com	irmonares	ources.c	moc				Del	Deliverables: EDD	EDD		ADaPT LL 0	Other:	
		Luck Deen #25 Rattery (03 05 25)	(03 05 25)	Turn	Turn Around					ANA	LYSIS F	ANALYSIS REQUEST	-			Pres	Preservative Codes	Codes
Project Number:		2679		Routine	Rush	Pres. Code						-				None: NO		DI Water: H ₂ O
Project Location	Eddy	Eddy County, New Mexico	Mexico	Due Date:	Standard TAT			,								Cool: Cool		MeOH: Me
Sampler's Name:		JM				/	MPO	and o								HCL: HC		HNO3: HN
PO#						ers	0.4.1						_		_	H ₂ SO ₄ : H ₂		NaOH: Na
SAMPLE RECEIPT		Temp Blank:	Yes No	Wet Ice:	Yes No	met		4500				_				H ₃ PO ₄ : HP	P	
Received Intact:	(Yes	No	Thermometer ID:		uhl uhl	Para	X 80									NanShon: NaSOn	NaSO,	
Cooler Custody Seals:	Yes	NIA		dina.	H LUS		-									Zn Acetate	Zn Acetate+NaOH: Zn	Zn
Total Containers:			Corrected Temperature	rature:	4.4		0.04	801						_		NaOH+As	NaOH+Ascorbic Acid: SAPC	id: SAPC
Sample Identification	fication	Date	Time	Soil	Water Comp	# of Cont		TP1								San	Sample Comments	nments
S-1 (0-3")	"	3/21/2025		×	G	-								-		>-		
S-1 (6")		3/21/2025		×	G	1	×	××								9.		
S-1 (1')		3/21/2025		×	G	1	+	+			\vdash	-		╞	t	-W		
S-1 (1.5')		3/21/2025		×	G	-	×	-						+		12		
S-2 (0-3")	")	3/21/2025		×	G	1	×	××						-		U		
S-2 (6"))	3/21/2025		×	G	1	×	×						-		6		
S-2 (1')		3/21/2025		×	G	1	×	×								2		
S-2 (1.5')	5)	3/21/2025		×	G	-	×	×								X		
								$\left \right $						$\left \right $				
Comments: Email to Mike Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmonaresou	o Mike Carmo	ona / Mcarmo	na@carmonare	sources.com ar	nd Conner Moe	shring / C	moehrin	ıg@carr	nonares	ources.com	com							
		Relinquished	Relinquished by: (Signature)				Date/Time	ne				Received	Received by: (Signature)	nature)			Dat	Date/Time
X	1		V			Saras	Se	5		X	1001	address	as	Ţ				

Released to Imaging: 7/10/2025 4:22:50 PM

Page 11 of 11

Page 51 of 116

Chain of Custody

March 27, 2025

CONNER MOEHRING CARMONA RESOURCES 310 W WALL ST, SUITE 500 MIDLAND, TX 79701

RE: LUSK DEEP #25 BATTERY (03.05.25)

Enclosed are the results of analyses for samples received by the laboratory on 03/21/25 11:10.

Cardinal Laboratories is accredited through Texas NELAP under certificate number TX-C24-00112. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/21/2025	Sampling Date:	03/21/2025
Reported:	03/27/2025	Sampling Type:	Soil
Project Name:	LUSK DEEP #25 BATTERY (03.05.25)	Sampling Condition:	Cool & Intact
Project Number:	2679	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: H - 1 (0-3") (H251671-01)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2025	ND	1.74	87.1	2.00	12.0	
Toluene*	<0.050	0.050	03/25/2025	ND	2.02	101	2.00	10.7	
Ethylbenzene*	<0.050	0.050	03/25/2025	ND	2.25	113	2.00	8.84	
Total Xylenes*	<0.150	0.150	03/25/2025	ND	6.90	115	6.00	8.70	
Total BTEX	<0.300	0.300	03/25/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	137	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: KV					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	03/24/2025	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2025	ND	204	102	200	7.17	
DRO >C10-C28*	<10.0	10.0	03/24/2025	ND	203	102	200	11.6	
EXT DRO >C28-C36	<10.0	10.0	03/24/2025	ND					
Surrogate: 1-Chlorooctane	66.3	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	56.5	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/21/2025	Sampling Date:	03/21/2025
Reported:	03/27/2025	Sampling Type:	Soil
Project Name:	LUSK DEEP #25 BATTERY (03.05.25)	Sampling Condition:	Cool & Intact
Project Number:	2679	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: H - 2 (0-3") (H251671-02)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2025	ND	1.74	87.1	2.00	12.0	
Toluene*	<0.050	0.050	03/25/2025	ND	2.02	101	2.00	10.7	
Ethylbenzene*	<0.050	0.050	03/25/2025	ND	2.25	113	2.00	8.84	
Total Xylenes*	<0.150	0.150	03/25/2025	ND	6.90	115	6.00	8.70	
Total BTEX	<0.300	0.300	03/25/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	130 \$	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	03/24/2025	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2025	ND	204	102	200	7.17	
DRO >C10-C28*	<10.0	10.0	03/24/2025	ND	203	102	200	11.6	
EXT DRO >C28-C36	<10.0	10.0	03/24/2025	ND					
Surrogate: 1-Chlorooctane	62.9	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	pgate: 1-Chlorooctadecane 53.3 % 40.6-153		3						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/21/2025	Sampling Date:	03/21/2025
Reported:	03/27/2025	Sampling Type:	Soil
Project Name:	LUSK DEEP #25 BATTERY (03.05.25)	Sampling Condition:	Cool & Intact
Project Number:	2679	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: H - 3 (0-3") (H251671-03)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2025	ND	1.92	96.1	2.00	17.8	
Toluene*	<0.050	0.050	03/25/2025	ND	2.10	105	2.00	19.6	
Ethylbenzene*	<0.050	0.050	03/25/2025	ND	2.33	117	2.00	17.0	
Total Xylenes*	<0.150	0.150	03/25/2025	ND	7.00	117	6.00	17.5	
Total BTEX	<0.300	0.300	03/25/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	03/24/2025	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2025	ND	204	102	200	7.17	
DRO >C10-C28*	<10.0	10.0	03/24/2025	ND	203	102	200	11.6	
EXT DRO >C28-C36	<10.0	10.0	03/24/2025	ND					
Surrogate: 1-Chlorooctane	69.8	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	rogate: 1-Chlorooctadecane 60.1 % 40.6-153		3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/21/2025	Sampling Date:	03/21/2025
Reported:	03/27/2025	Sampling Type:	Soil
Project Name:	LUSK DEEP #25 BATTERY (03.05.25)	Sampling Condition:	Cool & Intact
Project Number:	2679	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: H - 4 (0-3") (H251671-04)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2025	ND	1.92	96.1	2.00	17.8	
Toluene*	<0.050	0.050	03/25/2025	ND	2.10	105	2.00	19.6	
Ethylbenzene*	<0.050	0.050	03/25/2025	ND	2.33	117	2.00	17.0	
Total Xylenes*	<0.150	0.150	03/25/2025	ND	7.00	117	6.00	17.5	
Total BTEX	<0.300	0.300	03/25/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	03/24/2025	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2025	ND	204	102	200	7.17	
DRO >C10-C28*	<10.0	10.0	03/24/2025	ND	203	102	200	11.6	
EXT DRO >C28-C36	<10.0	10.0	03/24/2025	ND					
Surrogate: 1-Chlorooctane	71.8	% 44.4-14	5						
urrogate: 1-Chlorooctadecane		61.7 % 40.6-153							

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/21/2025	Sampling Date:	03/21/2025
Reported:	03/27/2025	Sampling Type:	Soil
Project Name:	LUSK DEEP #25 BATTERY (03.05.25)	Sampling Condition:	Cool & Intact
Project Number:	2679	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: H - 5 (0-3") (H251671-05)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2025	ND	1.92	96.1	2.00	17.8	
Toluene*	<0.050	0.050	03/25/2025	ND	2.10	105	2.00	19.6	
Ethylbenzene*	<0.050	0.050	03/25/2025	ND	2.33	117	2.00	17.0	
Total Xylenes*	<0.150	0.150	03/25/2025	ND	7.00	117	6.00	17.5	
Total BTEX	<0.300	0.300	03/25/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	03/24/2025	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2025	ND	204	102	200	7.17	
DRO >C10-C28*	<10.0	10.0	03/24/2025	ND	203	102	200	11.6	
EXT DRO >C28-C36	<10.0	10.0	03/24/2025	ND					
Surrogate: 1-Chlorooctane	73.1	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	rogate: 1-Chlorooctadecane 63.0 % 40.6-153		3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QR-04	The RPD for the BS/BSD was outside of historical limits.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
BS-3	Blank spike recovery outside of lab established statistical limits, but still within method limits. Data is not adversely affected.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Comments: Email to Mike Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmonaresources.com and Conner Moehring / Cmoehring@carmonaresources				H-5 (0-3")	H-4 (0-3")	H-3 (0-3")	H-2 (0-3")	H-1 (0-3")	Sample Ideitulication		Total Containers:	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIPT	PO #	Sampler's Name:	Project Location	Project Number:	Project Name:	1 1101101		e ZIP:		Company Name: C:			
A		il to Mike Carm				-3")	-3")	-3")	-3")	-3")	Ulicanon	tification		s: Yes No	Yes					Eddy		Lusk Deel		432-813-6823	Midland, TX 79701	310 W Wall St Ste 500	Carmona Resources	Conner Moenning	Hashing	
Relinquished		iona / Mcarmo				3/21/2025	3/21/2025	3/21/2025	3/21/2025	3/21/2025		Date		NIA	N/A	No	Temp Blank:		JM	Eddy County, New Mexico	2679	Lusk Deep #25 Battery (03.05.25)			01	te 500	ces			
Relinquished by: (Signature)		na@carmona										Time	Corrected Temperature:	Temperature Reading:	Correction Factor:	Thermometer ID:	Yes No			lexico		03.05.25)								
		resources.com				>	< >	< >	× >	× ×	4	Soil	srature:	iding:			Wet Ice:			Due Date:	12 Koutine		1	Email						
		and Conner M						G	G	G		Water Comp		4.10	TU:SI	141	Tes No	1		Standard IAI			Around	Email: mcarmona(u),calilionalesouroesoen	טווץ, טומוט בוו .	City State 710-	Addiness:	Company Name	Bill to: (if different)	
0,0		loehring /			+	+	+	+	+		+	np Cont	+			Par	rame	eter	s	T-	Code	Pres.		alliolaica						
Salvas		Cmoet				+	×	×	×	×	×				вт	EX 8	021	в							IN ITOPS				Carmona Resources	
Date/Time		nring@					×	×	×	×	×	1	PH 8	3015	M (9	GRC) + D	RO	+ MI	RO)	+	_			B				a Resou	
0		carmo				-	×	×	×	×	×				Chl	orid	e 45	00			+	_							Irces	
		lareso		\square		_	-			-	_	-				-					-	-								
0		ources.com			+	-	-	_			_												ANAL							
AM		om																					ANALYSIS REQUEST							
R	Receiv											-						_					EQUES		Deli	Rep	Stat	Pro	1	
Les .	Received by:		-	+	+		-	-	\vdash		_	+	_				-				-	\vdash	-		Deliverables: EDD	orting:L	State of Project.	gram: L		
7	(Signature)			+				T	t	\square															s: EDD	evel II L		innt-	CTIDC	
	ure)																				_					Level			WORK	
				-				-	-	-	-	+		_		-						+			ADa				Ring	Dialor
				+	$\left \right $	+	(5	C	- / A	0				Nac	ZnA	Na ₂ S	NaH	H ₃ PC	H ₂ S0 ₄ : H ₂	HCL: HC	Cool: Cool	None: NO			ADaP1 L	Reporting:Level II Level III Level III Level III Control	THICT	Program: US I/PS I _ FKF _ PIONINGING	Dep Brownfields R	Pa
							S	T	-0	1			Samp	NaUntrascoluic Acia: 0/11 0	Zn Acetate+NaUH: Zn	Na2S2U3: NASU3	NaHSO4: NABIS	H ₃ PO ₄ : HP	4: H2	H	Cool	NO	Preservative Codes		Other.		TOP		RR	Page
	Da												Sample Comments		NaUH: 4	SU3	BIS	5	Na	HN	Me		vative		1					1 of
	Date/Time												ments	4. 07		1			NaOn. Na	HNO3: HN	MeOH: Me	DI Water. n20	Codes	-					Superfund	

Received by OCD: 6/10/2025 10:42:34 AM

Chain of Custody

Page 8 of 8

Received by OCD: 6/10/2025 10:42:34 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Conner Moehring Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 5/14/2025 4:54:19 PM

JOB DESCRIPTION

Lusk Deep #25 Battery (03.05.25) Eddy County, New Mexico

JOB NUMBER

880-58042-1

ED FO Moehri Resourc W Wall Ste 5 xas 797 25 4:54:19

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

See page two for job notos and contact information

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 5/14/2025 4:54:19 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Page 62 of 116

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
	6
Surrogate Summary	14
QC Sample Results	15
QC Association Summary	19
Lab Chronicle	22
Certification Summary	26
Method Summary	27
Sample Summary	28
	29
Receipt Checklists	30
-	

Client: Carmona Resources Project/Site: Lusk Deep #25 Battery (03.05.25) Page 63 of 116

Job ID: 880-58042-1
SDG: Eddy County, New Mexico

Qualifiers

Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	5
GC Semi VOA		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	8
U	Indicates the analyte was analyzed for but not detected.	
Glossary		9
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¢	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	40
Dil Fac	Dilution Factor	13
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

- MDC Minimum Detectable Concentration (Radiochemistry)
- MDLMethod Detection LimitMLMinimum Level (Dioxin)
- MPN
 Most Probable Number

 MQL
 Method Quantitation Limit

 NC
 Not Calculated
- ND Not Detected at the reporting limit (or MDL or EDL if shown)
- NEG Negative / Absent
- POS Positive / Present
- PQL Practical Quantitation Limit
- PRES Presumptive
- QC Quality Control
- RER Relative Error Ratio (Radiochemistry)
- RL Reporting Limit or Requested Limit (Radiochemistry)
- RPD Relative Percent Difference, a measure of the relative difference between two points
- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

Case Narrative

Client: Carmona Resources Project: Lusk Deep #25 Battery (03.05.25) Job ID: 880-58042-1

Job ID: 880-58042-1

Eurofins Midland

Page 64 of 116

·1

Job Narrative 880-58042-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 5/13/2025 10:25 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.8°C.

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: SW-2 (0.5') (880-58042-8) and (880-58042-A-1-B MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for the following sample associated with preparation batch 880-109952 and analytical batch 880-110067 were outside control limits: (890-8144-A-47-D MSD). The associated laboratory control sample (LCS) recovery met acceptance criteria.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Carmona Resources Project/Site: Lusk Deep #25 Battery (03.05.25)

Client Sample ID: CS-1 (0.5') Date Collected: 05/09/25 00:00

Date Received: 05/13/25 10:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00253		0.00200		mg/Kg		05/13/25 11:14	05/13/25 15:18	
Foluene	0.00316		0.00200		mg/Kg		05/13/25 11:14	05/13/25 15:18	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		05/13/25 11:14	05/13/25 15:18	1
n,p-Xylenes	0.00411		0.00399		mg/Kg		05/13/25 11:14	05/13/25 15:18	1
-Xylene	<0.00200	U	0.00200		mg/Kg		05/13/25 11:14	05/13/25 15:18	1
Kylenes, Total	0.00411		0.00399		mg/Kg		05/13/25 11:14	05/13/25 15:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Bromofluorobenzene (Surr)	110		70 - 130				05/13/25 11:14	05/13/25 15:18	1
1,4-Difluorobenzene (Surr)	117		70 - 130				05/13/25 11:14	05/13/25 15:18	î
Method: TAL SOP Total BTEX - T	otal BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.00980		0.00399		mg/Kg			05/13/25 15:18	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.2	U	50.2		mg/Kg			05/13/25 16:33	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics GRO)-C6-C10	<50.2	U	50.2		mg/Kg		05/12/25 11:04	05/13/25 16:33	1
Diesel Range Organics (Over C10-C28)	<50.2	U	50.2		mg/Kg		05/12/25 11:04	05/13/25 16:33	1
Dil Range Organics (Over C28-C36)	<50.2	U	50.2		mg/Kg		05/12/25 11:04	05/13/25 16:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	79		70 - 130				05/12/25 11:04	05/13/25 16:33	1
o-Terphenyl (Surr)	80		70 - 130				05/12/25 11:04	05/13/25 16:33	î
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	95.9		9.96		mg/Kg			05/13/25 20:02	1
lient Sample ID: CS-2 (0.5')							Lab Sam	ple ID: 880-5	8042-2
ate Collected: 05/09/25 00:00								Matri	x: Solid
ate Received: 05/13/25 10:25									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))						
		o	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier	KL	INDL			riepaieu	Analyzeu	Dirrac
	Result <0.00200	U	0.00200	WIDL	mg/Kg		05/13/25 11:14	05/13/25 15:39	1
Analyte Benzene Toluene		U		MDL					

Eurofins Midland

Page 65 of 116

Job ID: 880-58042-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-58042-1

Matrix: Solid

5

Matrix: Solid

5

Client Sample Results

Client: Carmona Resources Project/Site: Lusk Deep #25 Battery (03.05.25)

Job ID: 880-58042-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-58042-2

Client Sample ID: CS-2 (0.5')

Date Collected: 05/09/25 00:00 Date Received: 05/13/25 10:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			05/13/25 15:39	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.4	U	50.4		mg/Kg			05/13/25 16:49	1
Method: SW846 8015B NM - Diese	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.4	U	50.4		mg/Kg		05/12/25 11:04	05/13/25 16:49	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.4	U	50.4		mg/Kg		05/12/25 11:04	05/13/25 16:49	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.4	U	50.4		mg/Kg		05/12/25 11:04	05/13/25 16:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	85		70 - 130				05/12/25 11:04	05/13/25 16:49	1
o-Terphenyl (Surr)	86		70 - 130				05/12/25 11:04	05/13/25 16:49	1
Method: EPA 300.0 - Anions, Ion (Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	88.4		9.96		mg/Kg			05/13/25 20:23	1

Date Collected: 05/09/25 00:00 Date Received: 05/13/25 10:25 Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		05/13/25 11:14	05/13/25 15:59	1
Toluene	<0.00199	U	0.00199		mg/Kg		05/13/25 11:14	05/13/25 15:59	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		05/13/25 11:14	05/13/25 15:59	1
m,p-Xylenes	<0.00398	U	0.00398		mg/Kg		05/13/25 11:14	05/13/25 15:59	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		05/13/25 11:14	05/13/25 15:59	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		05/13/25 11:14	05/13/25 15:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		70 - 130				05/13/25 11:14	05/13/25 15:59	1
1,4-Difluorobenzene (Surr)	101		70 - 130				05/13/25 11:14	05/13/25 15:59	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			05/13/25 15:59	1
- Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (C	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7		mg/Kg			05/13/25 17:06	1
	esel Range Orga	nics (DRO)	(GC)						
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result								
Analyte Gasoline Range Organics	<49.7	U	49.7		mg/Kg		05/12/25 11:04	05/13/25 17:06	1
		U	49.7		mg/Kg		05/12/25 11:04	05/13/25 17:06	1

Eurofins Midland

C10-C28)

Client Sample ID: CS-3 (0.5') Date Collected: 05/09/25 00:00

Date Received: 05/13/25 10:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Oil Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		05/12/25 11:04	05/13/25 17:06	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane (Surr)	88		70 - 130				05/12/25 11:04	05/13/25 17:06	
o-Terphenyl (Surr)	87		70 - 130				05/12/25 11:04	05/13/25 17:06	
Method: EPA 300.0 - Anions, Ion Cl	hromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	88.2		9.98		mg/Kg			05/13/25 20:30	
lient Sample ID: CS-4 (0.5')							Lab Sam	ple ID: 880-5	8042-
ate Collected: 05/09/25 00:00								Matri	x: Sol
ate Received: 05/13/25 10:25									
Method: SW846 8021B - Volatile Or	ganic Comp	ounds (GC))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199		mg/Kg		05/13/25 11:14	05/13/25 16:20	
Toluene	<0.00199	U	0.00199		mg/Kg		05/13/25 11:14	05/13/25 16:20	
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		05/13/25 11:14	05/13/25 16:20	
m,p-Xylenes	<0.00398	U	0.00398		mg/Kg		05/13/25 11:14	05/13/25 16:20	
o-Xylene	<0.00199	U	0.00199		mg/Kg		05/13/25 11:14	05/13/25 16:20	
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		05/13/25 11:14	05/13/25 16:20	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	94		70 - 130				05/13/25 11:14	05/13/25 16:20	
	101		70 - 130				05/13/25 11:14	05/13/25 16:20	
	101								
1,4-Difluorobenzene (Surr)		culation							
1,4-Difluorobenzene (Surr)	al BTEX Cal	culation Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX - Tota Analyte	al BTEX Cal	Qualifier	RL	MDL	Unit mg/Kg	D	Prepared	Analyzed 05/13/25 16:20	Dil F
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX - Tota Analyte Total BTEX	al BTEX Calo Result <0.00398	Qualifier U	0.00398	MDL		<u> </u>	Prepared		Dil F
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX - Tota Analyte	al BTEX Calo Result <0.00398	Qualifier U	0.00398			<u>D</u>	Prepared Prepared		Dil Fa

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		05/12/25 11:04	05/13/25 17:22	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		05/12/25 11:04	05/13/25 17:22	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		05/12/25 11:04	05/13/25 17:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	84		70 - 130				05/12/25 11:04	05/13/25 17:22	1
o-Terphenyl (Surr)	89		70 - 130				05/12/25 11:04	05/13/25 17:22	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	136		10.0		mg/Kg			05/13/25 20:37	1

Page 67 of 116

5

Job ID: 880-58042-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-58042-3 Matrix: Solid

Released to Imaging: 7/10/2025 4:22:50 PM

Client Sample Results

Client: Carmona Resources Project/Site: Lusk Deep #25 Battery (03.05.25)

Client Sample ID: CS-5 (0.5') Date Collected: 05/09/25 00:00

Date Received: 05/13/25 10:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		05/13/25 11:14	05/13/25 16:40	1
Toluene	<0.00199	U	0.00199		mg/Kg		05/13/25 11:14	05/13/25 16:40	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		05/13/25 11:14	05/13/25 16:40	1
n,p-Xylenes	<0.00398	U	0.00398		mg/Kg		05/13/25 11:14	05/13/25 16:40	1
o-Xylene	0.00208		0.00199		mg/Kg		05/13/25 11:14	05/13/25 16:40	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		05/13/25 11:14	05/13/25 16:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Bromofluorobenzene (Surr)	97		70 - 130				05/13/25 11:14	05/13/25 16:40	1
1,4-Difluorobenzene (Surr)	107		70 - 130				05/13/25 11:14	05/13/25 16:40	1
Method: TAL SOP Total BTEX - T									
analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fotal BTEX	<0.00398	U	0.00398		mg/Kg			05/13/25 16:40	1
Method: SW846 8015 NM - Diese									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
otal TPH	<49.8	U	49.8		mg/Kg			05/13/25 17:38	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Gasoline Range Organics GRO)-C6-C10	<49.8	U	49.8		mg/Kg		05/12/25 11:04	05/13/25 17:38	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		05/12/25 11:04	05/13/25 17:38	1
Dil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		05/12/25 11:04	05/13/25 17:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
I-Chlorooctane (Surr)	90		70 - 130				05/12/25 11:04	05/13/25 17:38	1
p-Terphenyl (Surr)	96		70 - 130				05/12/25 11:04	05/13/25 17:38	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	151		9.90		mg/Kg			05/13/25 20:44	1
lient Sample ID: CS-6 (0.5')							Lab Sam	ple ID: 880-5	8042-6
ate Collected: 05/09/25 00:00								Matri	x: Solid
ate Received: 05/13/25 10:25									
	Organic Comp	ounds (GC))						
Method: SW846 8021B - Volatile	organic comp								
	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	• •	Qualifier U	RL 0.00198	MDL	Unit mg/Kg	<u> </u>	Prepared 05/13/25 11:14	Analyzed 05/13/25 17:01	Dil Fac
Method: SW846 8021B - Volatile Analyte Benzene Toluene	Result	U		MDL		D			-

m,p-Xylenes	<0.00397	U	0.00397	mg/Kg	05/13/25 11:14	05/13/25 17:01	1
o-Xylene	<0.00198	U	0.00198	mg/Kg	05/13/25 11:14	05/13/25 17:01	1
Xylenes, Total	<0.00397	U	0.00397	mg/Kg	05/13/25 11:14	05/13/25 17:01	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Surrogate 4-Bromofluorobenzene (Surr)	%Recovery 109	Qualifier	Limits		Prepared 05/13/25 11:14	Analyzed	Dil Fac

Page 68 of 116

Job ID: 880-58042-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-58042-5

Matrix: Solid

5

Released to Imaging: 7/10/2025 4:22:50 PM

Matrix: Solid

5

Client Sample Results

Client: Carmona Resources Project/Site: Lusk Deep #25 Battery (03.05.25) Job ID: 880-58042-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-58042-6

Client Sample ID: CS-6 (0.5')

Date Collected: 05/09/25 00:00 Date Received: 05/13/25 10:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	U	0.00397		mg/Kg			05/13/25 17:01	
- Method: SW846 8015 NM - Diesel R	ange Organ	ics (DRO) ((GC)						
Analyte	•••	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0		mg/Kg			05/13/25 17:55	·
Method: SW846 8015B NM - Diesel	Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		05/12/25 11:04	05/13/25 17:55	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		05/12/25 11:04	05/13/25 17:55	
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		05/12/25 11:04	05/13/25 17:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane (Surr)	84		70 - 130				05/12/25 11:04	05/13/25 17:55	
o-Terphenyl (Surr)	89		70 - 130				05/12/25 11:04	05/13/25 17:55	1
Method: EPA 300.0 - Anions, Ion Ch	romatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	135		9.90		mg/Kg			05/13/25 21:05	
Client Sample ID: SW-1 (0.5')							Lab Sam	ple ID: 880-5	8042-7
ate Collected: 05/09/25 00:00								Matri	x: Solic
Date Received: 05/13/25 10:25									

MDL Unit Analyte **Result Qualifier** RL D Prepared Analyzed Dil Fac 0.00201 05/13/25 11:14 05/13/25 17:21 Benzene 0.00882 mg/Kg 1 <0.00201 U Toluene 0.00201 05/13/25 11:14 05/13/25 17:21 mg/Kg 1 Ethylbenzene <0.00201 U 0.00201 05/13/25 11:14 05/13/25 17:21 mg/Kg 1 m,p-Xylenes 0.00427 0.00402 mg/Kg 05/13/25 11:14 05/13/25 17:21 1 o-Xylene <0.00201 U 0.00201 mg/Kg 05/13/25 11:14 05/13/25 17:21 1 0.00402 05/13/25 11:14 05/13/25 17:21 **Xylenes**, Total 0.00427 mg/Kg 1 %Recovery Qualifier Limits Dil Fac Prepared Surrogate Analyzed 70 - 130 05/13/25 11:14 05/13/25 17:21 4-Bromofluorobenzene (Surr) 105 1 1,4-Difluorobenzene (Surr) 110 70 - 130 05/13/25 11:14 05/13/25 17:21 1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.0131		0.00402		mg/Kg			05/13/25 17:21	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (G	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.1	U	50.1		mg/Kg			05/13/25 18:11	1
Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)						
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte									
	<50.1	U	50.1		mg/Kg		05/12/25 11:04	05/13/25 18:11	1
Gasoline Range Organics	<50.1	U	50.1		mg/Kg		05/12/25 11:04	05/13/25 18:11	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<50.1		50.1		mg/Kg mg/Kg		05/12/25 11:04 05/12/25 11:04	05/13/25 18:11 05/13/25 18:11	1 1

Eurofins Midland

Released to Imaging: 7/10/2025 4:22:50 PM

Client Sample ID: SW-1 (0.5') Date Collected: 05/09/25 00:00

Date Received: 05/13/25 10:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Oil Range Organics (Over C28-C36)	<50.1	U	50.1		mg/Kg		05/12/25 11:04	05/13/25 18:11	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane (Surr)	83		70 - 130				05/12/25 11:04	05/13/25 18:11	
o-Terphenyl (Surr)	89		70 - 130				05/12/25 11:04	05/13/25 18:11	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	120		10.1		mg/Kg			05/13/25 21:13	
lient Sample ID: SW-2 (0.5)						Lab Sam	ple ID: 880-5	8042-
ate Collected: 05/09/25 00:00								Matri	x: Soli
ate Received: 05/13/25 10:25									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Benzene	0.00929		0.00198		mg/Kg		05/13/25 11:14	05/13/25 17:42	
Toluene	0.00347		0.00198		mg/Kg		05/13/25 11:14	05/13/25 17:42	
Ethylbenzene	0.00268		0.00198		mg/Kg		05/13/25 11:14	05/13/25 17:42	
n,p-Xylenes	<0.00396	U	0.00396		mg/Kg		05/13/25 11:14	05/13/25 17:42	
o-Xylene	0.00212		0.00198		mg/Kg		05/13/25 11:14	05/13/25 17:42	
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		05/13/25 11:14	05/13/25 17:42	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	105		70 - 130				05/13/25 11:14	05/13/25 17:42	
1,4-Difluorobenzene (Surr)	136	S1+	70 - 130				05/13/25 11:14	05/13/25 17:42	
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Total BTEX	0.0176		0.00396		mg/Kg			05/13/25 17:42	
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil F
Total TPH	<50.3	U	50.3		mg/Kg			05/13/25 18:27	
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Gasoline Range Organics (GRO)-C6-C10	<50.3	U	50.3		mg/Kg		05/12/25 11:04	05/13/25 18:27	
Diesel Range Organics (Over	<50.3	U	50.3		mg/Kg		05/12/25 11:04	05/13/25 18:27	
(210-(228)							05/40/05 44.04	05/40/05 40:07	
	<50.3	U	50.3		mg/Kg		05/12/25 11:04	05/13/25 18:27	
C10-C28) Oil Range Organics (Over C28-C36) <i>Surrogate</i>	<50.3 %Recovery		50.3 <i>Limits</i>		mg/Kg		05/12/25 11:04 Prepared	05/13/25 18:27 Analyzed	Dil F

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble											
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
	Chloride	99.9		9.98		mg/Kg			05/13/25 21:20	1	

70 - 130

86

05/13/25 18:27

05/12/25 11:04

Page 70 of 116

5

Job ID: 880-58042-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-58042-7 Matrix: Solid

Released to Imaging: 7/10/2025 4:22:50 PM

o-Terphenyl (Surr)

1

Client Sample Results

Client: Carmona Resources Project/Site: Lusk Deep #25 Battery (03.05.25)

Client Sample ID: SW-3 (0.5') Date Collected: 05/09/25 00:00

Date Received: 05/13/25 10:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		05/13/25 11:14	05/13/25 18:02	
oluene	0.00210		0.00199		mg/Kg		05/13/25 11:14	05/13/25 18:02	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		05/13/25 11:14	05/13/25 18:02	1
n,p-Xylenes	<0.00398	U	0.00398		mg/Kg		05/13/25 11:14	05/13/25 18:02	
p-Xylene	<0.00199	U	0.00199		mg/Kg		05/13/25 11:14	05/13/25 18:02	
Kylenes, Total	<0.00398	U	0.00398		mg/Kg		05/13/25 11:14	05/13/25 18:02	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130				05/13/25 11:14	05/13/25 18:02	1
1,4-Difluorobenzene (Surr)	95		70 - 130				05/13/25 11:14	05/13/25 18:02	1
Method: TAL SOP Total BTEX - 1	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			05/13/25 18:02	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (G	C)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			05/13/25 18:43	1
Aethod: SW846 8015B NM - Dies malyte		Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte	Result		RL	MDL		D	•	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		ma/Ka		05/12/25 11:04	05/13/25 18:43	
GRO)-C6-C10	<49.9		49.9		mg/Kg		05/12/25 11:04	05/13/25 18:43	
(GRO)-C6-C10 Diesel Range Organics (Over	<49.9 <49.9		49.9 49.9		mg/Kg mg/Kg		05/12/25 11:04 05/12/25 11:04	05/13/25 18:43 05/13/25 18:43	1
GRO)-C6-C10 Diesel Range Organics (Over C10-C28)		U							1
GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Dil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		05/12/25 11:04	05/13/25 18:43	
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate	<49.9 <49.9	U U	49.9 49.9		mg/Kg		05/12/25 11:04 05/12/25 11:04	05/13/25 18:43 05/13/25 18:43	
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr) o-Terphenyl (Surr)	<49.9 <49.9 %Recovery	U U	49.9 49.9 <i>Limits</i>		mg/Kg		05/12/25 11:04 05/12/25 11:04 Prepared	05/13/25 18:43 05/13/25 18:43 Analyzed	Dil Fac
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr) p-Terphenyl (Surr)	<49.9 <49.9 <u>%Recovery</u> 84 88	U U Qualifier	49.9 49.9 <u>Limits</u> 70 - 130 70 - 130		mg/Kg		05/12/25 11:04 05/12/25 11:04 Prepared 05/12/25 11:04	05/13/25 18:43 05/13/25 18:43 <u>Analyzed</u> 05/13/25 18:43	Dil Fac
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr) o-Terphenyl (Surr) Method: EPA 300.0 - Anions, Ion	<49.9 <49.9 <u>%Recovery</u> 84 88 Chromatograp	U U Qualifier	49.9 49.9 <u>Limits</u> 70 - 130 70 - 130	MDL	mg/Kg	D	05/12/25 11:04 05/12/25 11:04 Prepared 05/12/25 11:04	05/13/25 18:43 05/13/25 18:43 <u>Analyzed</u> 05/13/25 18:43	Dil Fac
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr)	<49.9 <49.9 <u>%Recovery</u> 84 88 Chromatograp	U U <u>Qualifier</u>	49.9 49.9 <u>Limits</u> 70 - 130 70 - 130	MDL	mg/Kg mg/Kg	<u>D</u>	05/12/25 11:04 05/12/25 11:04 Prepared 05/12/25 11:04 05/12/25 11:04	05/13/25 18:43 05/13/25 18:43 Analyzed 05/13/25 18:43 05/13/25 18:43	1 Dil Fac
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Dil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr) o-Terphenyl (Surr) Method: EPA 300.0 - Anions, Ion Analyte Chloride	<49.9 <49.9 %Recovery 84 88 Chromatograp Result 114	U U <u>Qualifier</u>	49.9 49.9 <u>Limits</u> 70 - 130 70 - 130 RL	MDL	mg/Kg mg/Kg Unit	<u>D</u>	05/12/25 11:04 05/12/25 11:04 Prepared 05/12/25 11:04 05/12/25 11:04 Prepared	05/13/25 18:43 05/13/25 18:43 Analyzed 05/13/25 18:43 05/13/25 18:43 Analyzed	Dil Fac
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Dil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr) p-Terphenyl (Surr) Method: EPA 300.0 - Anions, Ion Analyte Chloride lient Sample ID: SW-4 (0.5' ate Collected: 05/09/25 00:00	<49.9 <49.9 %Recovery 84 88 Chromatograp Result 114	U U <u>Qualifier</u>	49.9 49.9 <u>Limits</u> 70 - 130 70 - 130 RL	MDL	mg/Kg mg/Kg Unit	<u>D</u>	05/12/25 11:04 05/12/25 11:04 Prepared 05/12/25 11:04 05/12/25 11:04 Prepared	05/13/25 18:43 05/13/25 18:43 Analyzed 05/13/25 18:43 05/13/25 18:43 Analyzed 05/13/25 21:27 Ie ID: 880-58	Dil Fac
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr) o-Terphenyl (Surr) Method: EPA 300.0 - Anions, Ion Analyte Chloride lient Sample ID: SW-4 (0.5' ate Collected: 05/09/25 00:00 ate Received: 05/13/25 10:25	<49.9 <49.9 <i>%Recovery</i> 84 88 Chromatograp Result 114	U Qualifier ohy - Soluble Qualifier	49.9 49.9 <u>Limits</u> 70 - 130 70 - 130 RL	MDL	mg/Kg mg/Kg Unit	<u> </u>	05/12/25 11:04 05/12/25 11:04 Prepared 05/12/25 11:04 05/12/25 11:04 Prepared	05/13/25 18:43 05/13/25 18:43 Analyzed 05/13/25 18:43 05/13/25 18:43 Analyzed 05/13/25 21:27 Ie ID: 880-58	Dil Far Dil Far 042-10
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Dil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr) p-Terphenyl (Surr) Method: EPA 300.0 - Anions, Ion Analyte Chloride lient Sample ID: SW-4 (0.5' ate Collected: 05/09/25 00:00 ate Received: 05/13/25 10:25 Method: SW846 8021B - Volatile	<49.9 <49.9 %Recovery 84 88 Chromatograp Result 114) Organic Comp	U U Qualifier ohy - Soluble Qualifier ounds (GC)	49.9 49.9 <u>Limits</u> 70 - 130 70 - 130 RL 10.1		mg/Kg mg/Kg Unit mg/Kg	D	05/12/25 11:04 05/12/25 11:04 Prepared 05/12/25 11:04 05/12/25 11:04 Prepared Lab Samp	05/13/25 18:43 05/13/25 18:43 Analyzed 05/13/25 18:43 05/13/25 18:43 Analyzed 05/13/25 21:27 Ie ID: 880-58 Matri	Dil Far Dil Far 042-10
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr) o-Terphenyl (Surr) Method: EPA 300.0 - Anions, Ion Analyte	<49.9 <49.9 %Recovery 84 88 Chromatograp Result 114) Organic Comp	U Qualifier Ohy - Soluble Qualifier	49.9 49.9 <u>Limits</u> 70 - 130 70 - 130 RL		mg/Kg mg/Kg Unit		05/12/25 11:04 05/12/25 11:04 Prepared 05/12/25 11:04 05/12/25 11:04 Prepared	05/13/25 18:43 05/13/25 18:43 Analyzed 05/13/25 18:43 05/13/25 18:43 Analyzed 05/13/25 21:27 Ie ID: 880-58	Dil Fa Dil Fa 042-10 x: Solic

Ethylbenzene	<0.00200	U	0.00200	mg/Kg	05/13/25 11:14	05/13/25 18:23	1
m,p-Xylenes	<0.00399	U	0.00399	mg/Kg	05/13/25 11:14	05/13/25 18:23	1
o-Xylene	<0.00200	U	0.00200	mg/Kg	05/13/25 11:14	05/13/25 18:23	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg	05/13/25 11:14	05/13/25 18:23	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Surrogate 4-Bromofluorobenzene (Surr)	%Recovery 115	Qualifier	Limits		Prepared 05/13/25 11:14	Analyzed 05/13/25 18:23	Dil Fac

Eurofins Midland

Page 71 of 116

Job ID: 880-58042-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-58042-9

Matrix: Solid

5

Released to Imaging: 7/10/2025 4:22:50 PM

Matrix: Solid

Client Sample Results

Client: Carmona Resources Project/Site: Lusk Deep #25 Battery (03.05.25) Job ID: 880-58042-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-58042-10

Client Sample ID: SW-4 (0.5')

Date Collected: 05/09/25 00:00 Date Received: 05/13/25 10:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total BTEX	<0.00399	U	0.00399		mg/Kg			05/13/25 18:23	1	
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total TPH	<50.1	U	50.1		mg/Kg			05/13/25 19:15	1	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Organics	<50.1	U	50.1		mg/Kg		05/12/25 11:04	05/13/25 19:15	1	
(GRO)-C6-C10										
Diesel Range Organics (Over	<50.1	U	50.1		mg/Kg		05/12/25 11:04	05/13/25 19:15	1	
C10-C28)										
Oil Range Organics (Over C28-C36)	<50.1	U	50.1		mg/Kg		05/12/25 11:04	05/13/25 19:15	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1-Chlorooctane (Surr)	88		70 - 130				05/12/25 11:04	05/13/25 19:15	1	
o-Terphenyl (Surr)	90		70 - 130				05/12/25 11:04	05/13/25 19:15	1	-
Mothod: EDA 200.0 Aniono Ion	Chromotograp	by Colub	•							
Method: EPA 300.0 - Anions, Ion Analyte	• •	Qualifier	RL	MDI	Unit	D	Bronarad	Applyzed	Dil Fac	
		Quaimer		NIDL			Prepared	Analyzed		
Chloride	127		10.0		mg/Kg			05/13/25 21:34	1	
Project/Site: Lusk Deep #25 Battery (03.05.25)

Client: Carmona Resources

Job ID: 880-58042-1 SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

		5554	55574	Percent Surrogate Recovery (Acceptance Limits)	
Lab Sample ID	Client Sample ID	BFB1 (70-130)	DFBZ1 (70-130)		5
880-58042-1	CS-1 (0.5')	<u> </u>	117		
880-58042-1 MS	CS-1 (0.5')	96	108		6
880-58042-1 MSD	CS-1 (0.5')	92	134 S1+		
880-58042-2	CS-2 (0.5')	102	104		
880-58042-3	CS-3 (0.5')	89	101		
880-58042-4	CS-4 (0.5')	94	101		8
880-58042-5	CS-5 (0.5')	97	107		U
380-58042-6	CS-6 (0.5')	109	101		6
880-58042-7	SW-1 (0.5')	105	110		2
880-58042-8	SW-2 (0.5')	105	136 S1+		
880-58042-9	SW-3 (0.5')	99	95		
880-58042-10	SW-4 (0.5')	115	101		
LCS 880-110026/1-A	Lab Control Sample	91	102		
LCSD 880-110026/2-A	Lab Control Sample Dup	105	101		
MB 880-110026/5-A	Method Blank	95	94		
Surrogate Legend					1
BFB = 4-Bromofluorober					
DFBZ = 1,4-Difluorobenz	zene (Surr)				

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

Prep Type: Total/NA Percent Surrogate Recovery (Acceptance Limits) 1CO1 OTPH1 (70-130) (70-130) Lab Sample ID **Client Sample ID** 880-58042-1 CS-1 (0.5') 79 80 880-58042-2 CS-2 (0.5') 85 86 880-58042-3 CS-3 (0.5') 88 87 880-58042-4 CS-4 (0.5') 84 89 880-58042-5 90 96 CS-5 (0.5') 880-58042-6 CS-6 (0.5') 84 89 880-58042-7 SW-1 (0.5') 83 89 880-58042-8 SW-2 (0.5') 81 86 880-58042-9 SW-3 (0.5') 84 88 880-58042-10 SW-4 (0.5') 88 90 890-8144-A-47-C MS Matrix Spike 103 94 890-8144-A-47-D MSD Matrix Spike Duplicate 90 94 LCS 880-109952/2-A 102 Lab Control Sample 114 LCSD 880-109952/3-A 101 Lab Control Sample Dup 112 MB 880-109952/1-A Method Blank 97 92

Surrogate Legend

1CO = 1-Chlorooctane (Surr)

OTPH = o-Terphenyl (Surr)

Page 73 of 116

Prep Type: Total/NA

Lab Sample ID: MB 880-110026/5-A

QC Sample Results

Client: Carmona Resources Project/Site: Lusk Deep #25 Battery (03.05.25)

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Analysis Batch: 110048								Prep Type: 1 Prep Batch:	
-	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		05/13/25 11:14	05/13/25 14:56	1
Toluene	<0.00200	U	0.00200		mg/Kg		05/13/25 11:14	05/13/25 14:56	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		05/13/25 11:14	05/13/25 14:56	1
m,p-Xylenes	<0.00400	U	0.00400		mg/Kg		05/13/25 11:14	05/13/25 14:56	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		05/13/25 11:14	05/13/25 14:56	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		05/13/25 11:14	05/13/25 14:56	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130				05/13/25 11:14	05/13/25 14:56	1
1,4-Difluorobenzene (Surr)	94		70 - 130				05/13/25 11:14	05/13/25 14:56	1

Lab Sample ID: LCS 880-110026/1-A Matrix: Solid

Analysis Batch: 110048

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1090		mg/Kg		109	70 - 130	
Toluene	0.100	0.08509		mg/Kg		85	70 - 130	
Ethylbenzene	0.100	0.08590		mg/Kg		86	70 - 130	
m,p-Xylenes	0.200	0.1699		mg/Kg		85	70 - 130	
o-Xylene	0.100	0.08891		mg/Kg		89	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	91		70 - 130
1,4-Difluorobenzene (Surr)	102		70 - 130

Lab Sample ID: LCSD 880-110026/2-A

Matrix: Solid Local Destail

Analysis Batch: 110048							Prep I	Batch: 1	10026
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1015		mg/Kg		102	70 - 130	7	35
Toluene	0.100	0.09080		mg/Kg		91	70 - 130	6	35
Ethylbenzene	0.100	0.09622		mg/Kg		96	70 - 130	11	35
m,p-Xylenes	0.200	0.2072		mg/Kg		104	70 - 130	20	35
o-Xylene	0.100	0.09823		mg/Kg		98	70 - 130	10	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	105		70 - 130
1,4-Difluorobenzene (Surr)	101		70 - 130

Lab Sample ID: 880-58042-1 MS

Matrix: Solid Analysis Bataby 110049

Analysis Batch: 110048									Prep	Batch: 110026
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.00253		0.100	0.1065		mg/Kg		104	70 - 130	
Toluene	0.00316		0.100	0.08576		mg/Kg		83	70 - 130	

Eurofins Midland

Client Sample ID: CS-1 (0.5')

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

SDG: Eddy County, New Mexico

Job ID: 880-58042-1

Job ID: 880-58042-1 SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-58042-1 Matrix: Solid	1 MS							Clie	nt Sample	ID: CS-1 Type: To	· · ·
Analysis Batch: 110048										Batch: 1	
Analysis Datch. 110040	Sample	Sample	Spike	MS	MS				%Rec	Datch. I	10020
Analyte	•	Qualifier	Added	Result		Unit	D	%Rec	Limits		
Ethylbenzene	<0.00200		0.100	0.08484		mg/Kg		84	70 - 130		
m,p-Xylenes	0.00411		0.200	0.1638		mg/Kg		80	70 - 130		
o-Xylene	<0.00200	U	0.100	0.08168		mg/Kg		82	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	96		70 - 130								
1,4-Difluorobenzene (Surr)	108		70 - 130								
Lab Sample ID: 880-58042-1								Clie	nt Sample		1 (0 5')
Matrix: Solid								one		Type: To	
Analysis Batch: 110048										Batch: 1	
,	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.00253		0.100	0.09403		mg/Kg		91	70 - 130	12	35
Toluene	0.00316		0.100	0.08462		mg/Kg		81	70 - 130	1	35
Ethylbenzene	<0.00200	U	0.100	0.09405		mg/Kg		93	70 - 130	10	35
m,p-Xylenes	0.00411		0.200	0.1594		mg/Kg		78	70 - 130	3	35
o-Xylene	<0.00200	U	0.100	0.07919		mg/Kg		79	70 - 130	3	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	92		70 - 130								
1,4-Difluorobenzene (Surr)	134	S1+	70 - 130								
/ /ethod: 8015B NM - Die	sel Range O	rganics (E	DRO) (GC)								
Lab Sample ID: MB 880-109		<u>g</u> co (-						Client	Sample ID:	Mothod	Blank
Matrix: Solid	1552/1-A							chent a		метлоа Гуре: То	
Archesia Dataha 440007										lype. Io	

Analysis Batch: 110067								Prep Batch:	
	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		05/12/25 11:04	05/13/25 04:27	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		05/12/25 11:04	05/13/25 04:27	1
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		05/12/25 11:04	05/13/25 04:27	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	97		70 - 130				05/12/25 11:04	05/13/25 04:27	1

Lab Sample ID: LCS 880-109952/2-A Matrix: Solid					Client	t Sample		ontrol Sample ype: Total/NA
Analysis Batch: 110067							Prep E	Batch: 109952
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	845.2		mg/Kg		85	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	815.4		mg/Kg		82	70 - 130	

70 - 130

92

Eurofins Midland

05/12/25 11:04 05/13/25 04:27

o-Terphenyl (Surr)

C10-C28)

QC Sample Results

Client: Carmona Resources Project/Site: Lusk Deep #25 Battery (03.05.25)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Job ID: 880-58042-1 SDG: Eddy County, New Mexico

Lab Sample ID: LCS 880-10	9952/2-A						Client	Sample	ID: Lab C	ontrol Sa	ample
Matrix: Solid									Prep 1	Type: Tot	tal/NA
Analysis Batch: 110067									Prep	Batch: 1	09952
	LCS	LCS									
Surrogate	%Recovery		Limits								
1-Chlorooctane (Surr)			70 - 130								
o-Terphenyl (Surr)	102		70 - 130								
											_
Lab Sample ID: LCSD 880-1	09952/3-A					Clier	nt Sam	ple ID:	Lab Contro		
Matrix: Solid										Type: To	
Analysis Batch: 110067										Batch: 1	
			Spike	LCSD			_	~ -	%Rec		RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10			1000	804.1		mg/Kg		80	70 - 130	5	20
Diesel Range Organics (Over			1000	795.7		mg/Kg		80	70 - 130	2	20
C10-C28)			1000	100.1		mgring		00	10 - 100	2	20
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane (Surr)			70 - 130								
o-Terphenyl (Surr)	101		70 - 130								
-											
Lab Sample ID: 890-8144-A-	47-C MS							Client	Sample ID		
Matrix: Solid										Type: To	
Analysis Batch: 110067										Batch: 1	09952
	•	Sample	Spike		MS				%Rec		
Analyte		Qualifier	Added		Qualifier	Unit	<u>D</u>	%Rec	Limits		
Gasoline Range Organics	<50.1	U F1	998	696.2		mg/Kg		70	70 - 130		
(GRO)-C6-C10 Diesel Range Organics (Over	<50.1	ш	998	718.1		mg/Kg		72	70 - 130		
C10-C28)	\$30.1	0	330	710.1		iiig/itg		12	70 - 130		
	MS	MS									
Surrogate	%Recovery		Limits								
1-Chlorooctane (Surr)			70 - 130								
o-Terphenyl (Surr)	94		70 - 130								
-											
Lab Sample ID: 890-8144-A-	47-D MSD					CI	ient Sa	ample IC): Matrix S		
Matrix: Solid										Type: To	
Analysis Batch: 110067										Batch: 1	
	-	Sample	Spike	MSD					%Rec		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<50.1	U F1	998	691.1	F1	mg/Kg		69	70 - 130	1	20
Diesel Range Organics (Over	<50.1	U	998	763.7		mg/Kg		77	70 _ 130	6	20
C10-C28)											
	MSD	MSD									
	MSD %Recovery		Limits								

	11.50	1030	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane (Surr)	90		70 - 130
o-Terphenyl (Surr)	94		70 - 130

Client: Carmona Resources Project/Site: Lusk Deep #25 Battery (03.05.25)

Job ID: 880-58042-1 SDG: Eddy County, New Mexico

Method: 300.0 - Anions, Ion Chromatography

															Disale
Lab Sample ID: MB 880-110041/1-	A											Client S	Sample ID		
Matrix: Solid													Prep	o Type: S	oluble
Analysis Batch: 110065															
	_		MB							_	_				
Analyte			Qualifier		RL		MDL			D	Pr	repared	Analy		Dil Fac
Chloride	<	<10.0 l	U		10.0			mg/Kg					05/13/25	5 19:41	1
Lab Sample ID: LCS 880-110041/2	2-A									Clie	ent	Sample	ID: Lab C	Control S	Sample
Matrix: Solid													Prep	o Type: S	Soluble
Analysis Batch: 110065													-		
-				Spike		LCS	LCS						%Rec		
Analyte				Added		Result	Quali	ifier	Unit		D	%Rec	Limits		
Chloride				250		252.6			mg/Kg			101	90 - 110		
Lab Sample ID: LCSD 880-110041	/3-A								Cli	ient S	am	ple ID:	Lab Contr	ol Samo	le Dup
Matrix: Solid														o Type: S	
Analysis Batch: 110065														.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
····· ·				Spike		LCSD	LCSE)					%Rec		RPD
Analyte				Added		Result	Quali	ifier	Unit		D	%Rec	Limits	RPD	Limit
Chloride				250		241.2			mg/Kg			96	90 - 110	5	20
Lab Sample ID: 880-58042-1 MS												Clie	nt Sample	D: CS-	1 (0.5')
Matrix: Solid													Prep	o Type: S	Soluble
Analysis Batch: 110065															
-	Sample	Sampl	le	Spike		MS	MS						%Rec		
Analyte	Result	Qualif	ier	Added		Result	Quali	ifier	Unit		D	%Rec	Limits		
Chloride	95.9			249		363.9			mg/Kg			108	90 _ 110		
Lab Sample ID: 880-58042-1 MSD												Clie	nt Sample	D: CS-	1 (0.5')
Matrix: Solid														o Type: S	
Analysis Batch: 110065														2 10 00 0	
	Sample	Sampl	le	Spike		MSD	MSD						%Rec		RPD
Analyte	Result	Qualif	ier	Added		Result	Quali	ifier	Unit		D	%Rec	Limits	RPD	Limit

Eurofins Midland

Client: Carmona Resources Project/Site: Lusk Deep #25 Battery (03.05.25)

Eurofins Midland

```
GC VOA
```

Prep Batch: 110026

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-58042-1	CS-1 (0.5')	Total/NA	Solid	5035	
880-58042-2	CS-2 (0.5')	Total/NA	Solid	5035	
880-58042-3	CS-3 (0.5')	Total/NA	Solid	5035	
880-58042-4	CS-4 (0.5')	Total/NA	Solid	5035	
880-58042-5	CS-5 (0.5')	Total/NA	Solid	5035	
880-58042-6	CS-6 (0.5')	Total/NA	Solid	5035	
880-58042-7	SW-1 (0.5')	Total/NA	Solid	5035	
880-58042-8	SW-2 (0.5')	Total/NA	Solid	5035	
880-58042-9	SW-3 (0.5')	Total/NA	Solid	5035	
880-58042-10	SW-4 (0.5')	Total/NA	Solid	5035	
MB 880-110026/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-110026/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-110026/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-58042-1 MS	CS-1 (0.5')	Total/NA	Solid	5035	
880-58042-1 MSD	CS-1 (0.5')	Total/NA	Solid	5035	

Analysis Batch: 110048

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-58042-1	CS-1 (0.5')	Total/NA	Solid	8021B	110026
880-58042-2	CS-2 (0.5')	Total/NA	Solid	8021B	110026
880-58042-3	CS-3 (0.5')	Total/NA	Solid	8021B	110026
880-58042-4	CS-4 (0.5')	Total/NA	Solid	8021B	110026
880-58042-5	CS-5 (0.5')	Total/NA	Solid	8021B	110026
880-58042-6	CS-6 (0.5')	Total/NA	Solid	8021B	110026
880-58042-7	SW-1 (0.5')	Total/NA	Solid	8021B	110026
880-58042-8	SW-2 (0.5')	Total/NA	Solid	8021B	110026
880-58042-9	SW-3 (0.5')	Total/NA	Solid	8021B	110026
880-58042-10	SW-4 (0.5')	Total/NA	Solid	8021B	110026
MB 880-110026/5-A	Method Blank	Total/NA	Solid	8021B	110026
LCS 880-110026/1-A	Lab Control Sample	Total/NA	Solid	8021B	110026
LCSD 880-110026/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	110026
880-58042-1 MS	CS-1 (0.5')	Total/NA	Solid	8021B	110026
880-58042-1 MSD	CS-1 (0.5')	Total/NA	Solid	8021B	110026

Analysis Batch: 110159

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-58042-1	CS-1 (0.5')	Total/NA	Solid	Total BTEX	
880-58042-2	CS-2 (0.5')	Total/NA	Solid	Total BTEX	
880-58042-3	CS-3 (0.5')	Total/NA	Solid	Total BTEX	
880-58042-4	CS-4 (0.5')	Total/NA	Solid	Total BTEX	
880-58042-5	CS-5 (0.5')	Total/NA	Solid	Total BTEX	
880-58042-6	CS-6 (0.5')	Total/NA	Solid	Total BTEX	
880-58042-7	SW-1 (0.5')	Total/NA	Solid	Total BTEX	
880-58042-8	SW-2 (0.5')	Total/NA	Solid	Total BTEX	
880-58042-9	SW-3 (0.5')	Total/NA	Solid	Total BTEX	
880-58042-10	SW-4 (0.5')	Total/NA	Solid	Total BTEX	

Page 78 of 116

Job ID: 880-58042-1 SDG: Eddy County, New Mexico

exico 2

5

Client: Carmona Resources Project/Site: Lusk Deep #25 Battery (03.05.25)

Job ID: 880-58042-1 SDG: Eddy County, New Mexico

GC Semi VOA

Prep Batch: 109952

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-58042-1	CS-1 (0.5')	Total/NA	Solid	8015NM Prep	
880-58042-2	CS-2 (0.5')	Total/NA	Solid	8015NM Prep	
880-58042-3	CS-3 (0.5')	Total/NA	Solid	8015NM Prep	
880-58042-4	CS-4 (0.5')	Total/NA	Solid	8015NM Prep	
880-58042-5	CS-5 (0.5')	Total/NA	Solid	8015NM Prep	
880-58042-6	CS-6 (0.5')	Total/NA	Solid	8015NM Prep	
880-58042-7	SW-1 (0.5')	Total/NA	Solid	8015NM Prep	
880-58042-8	SW-2 (0.5')	Total/NA	Solid	8015NM Prep	
880-58042-9	SW-3 (0.5')	Total/NA	Solid	8015NM Prep	
880-58042-10	SW-4 (0.5')	Total/NA	Solid	8015NM Prep	
MB 880-109952/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-109952/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-109952/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-8144-A-47-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-8144-A-47-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 110067

880-58042-7	SW-1 (0.5')	Total/NA	Solid	8015NM Prep		
880-58042-8	SW-2 (0.5')	Total/NA	Solid	8015NM Prep		8
880-58042-9	SW-3 (0.5')	Total/NA	Solid	8015NM Prep		
880-58042-10	SW-4 (0.5')	Total/NA	Solid	8015NM Prep		9
MB 880-109952/1-A	Method Blank	Total/NA	Solid	8015NM Prep		
LCS 880-109952/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep		10
LCSD 880-109952/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep		
890-8144-A-47-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep		111
890-8144-A-47-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep		
Analysis Batch: 110067	,					12
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	4.0
880-58042-1	CS-1 (0.5')	Total/NA	Solid	8015B NM	109952	13
880-58042-2	CS-2 (0.5')	Total/NA	Solid	8015B NM	109952	
880-58042-3	CS-3 (0.5')	Total/NA	Solid	8015B NM	109952	14
880-58042-4	CS-4 (0.5')	Total/NA	Solid	8015B NM	109952	
880-58042-5	CS-5 (0.5')	Total/NA	Solid	8015B NM	109952	
880-58042-6	CS-6 (0.5')	Total/NA	Solid	8015B NM	109952	
880-58042-7	SW-1 (0.5')	Total/NA	Solid	8015B NM	109952	
880-58042-8	SW-2 (0.5')	Total/NA	Solid	8015B NM	109952	
880-58042-9	SW-3 (0.5')	Total/NA	Solid	8015B NM	109952	
880-58042-10	SW-4 (0.5')	Total/NA	Solid	8015B NM	109952	
MB 880-109952/1-A	Method Blank	Total/NA	Solid	8015B NM	109952	
LCS 880-109952/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	109952	
LCSD 880-109952/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	109952	
890-8144-A-47-C MS	Matrix Spike	Total/NA	Solid	8015B NM	109952	
890-8144-A-47-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	109952	

Analysis Batch: 110132

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-58042-1	CS-1 (0.5')	Total/NA	Solid	8015 NM	
880-58042-2	CS-2 (0.5')	Total/NA	Solid	8015 NM	
880-58042-3	CS-3 (0.5')	Total/NA	Solid	8015 NM	
880-58042-4	CS-4 (0.5')	Total/NA	Solid	8015 NM	
880-58042-5	CS-5 (0.5')	Total/NA	Solid	8015 NM	
880-58042-6	CS-6 (0.5')	Total/NA	Solid	8015 NM	
880-58042-7	SW-1 (0.5')	Total/NA	Solid	8015 NM	
880-58042-8	SW-2 (0.5')	Total/NA	Solid	8015 NM	
880-58042-9	SW-3 (0.5')	Total/NA	Solid	8015 NM	
880-58042-10	SW-4 (0.5')	Total/NA	Solid	8015 NM	

Client: Carmona Resources Project/Site: Lusk Deep #25 Battery (03.05.25)

SDG:	Eddy	County,	New	Mexico

Job ID: 880-58042-1

HPLC/IC

Leach Batch: 110041

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-58042-1	CS-1 (0.5')	Soluble	Solid	DI Leach	
880-58042-2	CS-2 (0.5')	Soluble	Solid	DI Leach	
880-58042-3	CS-3 (0.5')	Soluble	Solid	DI Leach	
880-58042-4	CS-4 (0.5')	Soluble	Solid	DI Leach	
880-58042-5	CS-5 (0.5')	Soluble	Solid	DI Leach	
880-58042-6	CS-6 (0.5')	Soluble	Solid	DI Leach	
880-58042-7	SW-1 (0.5')	Soluble	Solid	DI Leach	
880-58042-8	SW-2 (0.5')	Soluble	Solid	DI Leach	
380-58042-9	SW-3 (0.5')	Soluble	Solid	DI Leach	
380-58042-10	SW-4 (0.5')	Soluble	Solid	DI Leach	
MB 880-110041/1-A	Method Blank	Soluble	Solid	DI Leach	
CS 880-110041/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
CSD 880-110041/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
80-58042-1 MS	CS-1 (0.5')	Soluble	Solid	DI Leach	
880-58042-1 MSD	CS-1 (0.5')	Soluble	Solid	DI Leach	
nalysis Batch: 110065	;				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-58042-1	CS-1 (0.5')	Soluble	Solid	300.0	110041
380-58042-2	CS-2 (0.5')	Soluble	Solid	300.0	110041
880-58042-3	CS-3 (0 5')	Soluble	Solid	300.0	110041

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-58042-1	CS-1 (0.5')	Soluble	Solid	300.0	110041
880-58042-2	CS-2 (0.5')	Soluble	Solid	300.0	110041
880-58042-3	CS-3 (0.5')	Soluble	Solid	300.0	110041
880-58042-4	CS-4 (0.5')	Soluble	Solid	300.0	110041
880-58042-5	CS-5 (0.5')	Soluble	Solid	300.0	110041
880-58042-6	CS-6 (0.5')	Soluble	Solid	300.0	110041
880-58042-7	SW-1 (0.5')	Soluble	Solid	300.0	110041
880-58042-8	SW-2 (0.5')	Soluble	Solid	300.0	110041
880-58042-9	SW-3 (0.5')	Soluble	Solid	300.0	110041
880-58042-10	SW-4 (0.5')	Soluble	Solid	300.0	110041
MB 880-110041/1-A	Method Blank	Soluble	Solid	300.0	110041
LCS 880-110041/2-A	Lab Control Sample	Soluble	Solid	300.0	110041
LCSD 880-110041/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	110041
880-58042-1 MS	CS-1 (0.5')	Soluble	Solid	300.0	110041
880-58042-1 MSD	CS-1 (0.5')	Soluble	Solid	300.0	110041

5/14/2025

Project/Site: Lusk Deep #25 Battery (03.05.25)

5

9

Job ID: 880-58042-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-58042-1 Matrix: Solid

Date Collected: 05/09/25 00:00 Date Received: 05/13/25 10:25

Client Sample ID: CS-1 (0.5')

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	110026	05/13/25 11:14	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	110048	05/13/25 15:18	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			110159	05/13/25 15:18	SM	EET MID
Total/NA	Analysis	8015 NM		1			110132	05/13/25 16:33	SM	EET MID
Total/NA	Prep	8015NM Prep			9.97 g	10 mL	109952	05/12/25 11:04	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	110067	05/13/25 16:33	ТКС	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	110041	05/13/25 11:43	SA	EET MID
Soluble	Analysis	300.0		1			110065	05/13/25 20:02	СН	EET MID

Lab Sample ID: 880-58042-2

Lab Sample ID: 880-58042-3

Lab Sample ID: 880-58042-4

Matrix: Solid

Matrix: Solid

Date Collected: 05/09/25 00:00 Date Received: 05/13/25 10:25

Client Sample ID: CS-2 (0.5')

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	110026	05/13/25 11:14	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	110048	05/13/25 15:39	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			110159	05/13/25 15:39	SM	EET MID
Total/NA	Analysis	8015 NM		1			110132	05/13/25 16:49	SM	EET MID
Total/NA	Prep	8015NM Prep			9.92 g	10 mL	109952	05/12/25 11:04	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	110067	05/13/25 16:49	TKC	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	110041	05/13/25 11:43	SA	EET MID
Soluble	Analysis	300.0		1			110065	05/13/25 20:23	СН	EET MID

Client Sample ID: CS-3 (0.5') Date Collected: 05/09/25 00:00

Date Received: 05/13/25 10:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	110026	05/13/25 11:14	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	110048	05/13/25 15:59	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			110159	05/13/25 15:59	SM	EET MID
Total/NA	Analysis	8015 NM		1			110132	05/13/25 17:06	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	109952	05/12/25 11:04	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	110067	05/13/25 17:06	ткс	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	110041	05/13/25 11:43	SA	EET MID
Soluble	Analysis	300.0		1			110065	05/13/25 20:30	CH	EET MID

Client Sample ID: CS-4 (0.5') Date Collected: 05/09/25 00:00 Date Received: 05/13/25 10:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	110026	05/13/25 11:14	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	110048	05/13/25 16:20	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			110159	05/13/25 16:20	SM	EET MID

Eurofins Midland

Matrix: Solid

Released to Imaging: 7/10/2025 4:22:50 PM

Date Received: 05/13/25 10:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			110132	05/13/25 17:22	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	109952	05/12/25 11:04	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	110067	05/13/25 17:22	TKC	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	110041	05/13/25 11:43	SA	EET MID
Soluble	Analysis	300.0		1			110065	05/13/25 20:37	СН	EET MID

Client Sample ID: CS-5 (0.5') Date Collected: 05/09/25 00:00 Date Received: 05/13/25 10:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	110026	05/13/25 11:14	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	110048	05/13/25 16:40	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			110159	05/13/25 16:40	SM	EET MID
Total/NA	Analysis	8015 NM		1			110132	05/13/25 17:38	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	109952	05/12/25 11:04	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	110067	05/13/25 17:38	TKC	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	110041	05/13/25 11:43	SA	EET MID
Soluble	Analysis	300.0		1			110065	05/13/25 20:44	СН	EET MID

Client Sample ID: CS-6 (0.5')

Date Collected: 05/09/25 00:00 Date Received: 05/13/25 10:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	110026	05/13/25 11:14	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	110048	05/13/25 17:01	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			110159	05/13/25 17:01	SM	EET MID
Total/NA	Analysis	8015 NM		1			110132	05/13/25 17:55	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	109952	05/12/25 11:04	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	110067	05/13/25 17:55	ТКС	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	110041	05/13/25 11:43	SA	EET MID
Soluble	Analysis	300.0		1			110065	05/13/25 21:05	СН	EET MID

Client Sample ID: SW-1 (0.5') Date Collected: 05/09/25 00:00 Date Received: 05/13/25 10:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	110026	05/13/25 11:14	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	110048	05/13/25 17:21	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			110159	05/13/25 17:21	SM	EET MID
Total/NA	Analysis	8015 NM		1			110132	05/13/25 18:11	SM	EET MID
Total/NA	Prep	8015NM Prep			9.99 g	10 mL	109952	05/12/25 11:04	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	110067	05/13/25 18:11	TKC	EET MID

Eurofins Midland

Matrix: Solid

Page 82 of 116

Job ID: 880-58042-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-58042-4 Matrix: Solid

Lab Sample ID: 880-58042-5

5 9

Lab Sample ID: 880-58042-6

Lab Sample ID: 880-58042-7

Matrix: Solid

Matrix: Solid

Project/Site: Lusk Deep #25 Battery (03.05.25)

Job ID: 880-58042-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-58042-7

Lab Sample ID: 880-58042-8

Lab Sample ID: 880-58042-9

Client Sample ID: SW-1 (0.5') Date Collected: 05/09/25 00:00

Date Received: 05/13/25 10:25

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.96 g	50 mL	110041	05/13/25 11:43	SA	EET MID
Soluble	Analysis	300.0		1			110065	05/13/25 21:13	СН	EET MID

Client Sample ID: SW-2 (0.5') Date Collected: 05/09/25 00:00 Date Received: 05/13/25 10:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	110026	05/13/25 11:14	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	110048	05/13/25 17:42	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			110159	05/13/25 17:42	SM	EET MID
Total/NA	Analysis	8015 NM		1			110132	05/13/25 18:27	SM	EET MID
Total/NA	Prep	8015NM Prep			9.95 g	10 mL	109952	05/12/25 11:04	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	110067	05/13/25 18:27	TKC	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	110041	05/13/25 11:43	SA	EET MID
Soluble	Analysis	300.0		1			110065	05/13/25 21:20	СН	EET MID

Client Sample ID: SW-3 (0.5') Date Collected: 05/09/25 00:00 Date Received: 05/13/25 10:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	110026	05/13/25 11:14	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	110048	05/13/25 18:02	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			110159	05/13/25 18:02	SM	EET MID
Total/NA	Analysis	8015 NM		1			110132	05/13/25 18:43	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	109952	05/12/25 11:04	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	110067	05/13/25 18:43	TKC	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	110041	05/13/25 11:43	SA	EET MID
Soluble	Analysis	300.0		1			110065	05/13/25 21:27	СН	EET MID

Client Sample ID: SW-4 (0.5') Date Collected: 05/09/25 00:00 Date Received: 05/13/25 10:25

Prep Type

Batch

Туре

Batch

Method

Lab Sample ID: 880-58042-10 Matrix: Solid

Number or Analyzed Analyst Lab 110026 05/13/25 11:14 MNR EET MID

Total/NA	Prep	5035		5.01 g	5 mL	110026	05/13/25 11:14	MNR	EET MID
Total/NA	Analysis	8021B	1	5 mL	5 mL	110048	05/13/25 18:23	MNR	EET MID
Total/NA	Analysis	Total BTEX	1			110159	05/13/25 18:23	SM	EET MID
Total/NA	Analysis	8015 NM	1			110132	05/13/25 19:15	SM	EET MID
Total/NA	Prep	8015NM Prep		9.98 g	10 mL	109952	05/12/25 11:04	FC	EET MID
Total/NA	Analysis	8015B NM	1	1 uL	1 uL	110067	05/13/25 19:15	TKC	EET MID
Soluble	Leach	DI Leach		4.99 g	50 mL	110041	05/13/25 11:43	SA	EET MID
Soluble	Analysis	300.0	1			110065	05/13/25 21:34	СН	EET MID

Initial

Amount

Dil

Factor

Run

Eurofins Midland

Matrix: Solid

Matrix: Solid

Matrix: Solid

9

Final Batch Prepared Amount

Released to Imaging: 7/10/2025 4:22:50 PM

Lab Chronicle

Client: Carmona Resources Project/Site: Lusk Deep #25 Battery (03.05.25)

Laboratory References: EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440 Job ID: 880-58042-1 SDG: Eddy County, New Mexico

Eurofins Midland

Accreditation/Certification Summary

Client: Carmona Resources Project/Site: Lusk Deep #25 Battery (03.05.25) Job ID: 880-58042-1 SDG: Eddy County, New Mexico

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Program	Identification Number	Expiration Date
exas	NELAP	T104704400	06-30-25
		A second discrete base of the second se	t may include analytee
for which the agency of	are included in this report, but the laboratory is r bes not offer certification. Pren Method Matrix		a may include analytes
• ,		Analyte	

Eurofins Midland

Page 85 of 116

Job ID: 880-58042-1 SDG: Eddy County, New Mexico

lethod	Method Description	Protocol	Laboratory
021B	Volatile Organic Compounds (GC)	SW846	EET MID
otal BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
800.0	Anions, Ion Chromatography	EPA	EET MID
6035	Closed System Purge and Trap	SW846	EET MID
015NM Prep	Microextraction	SW846	EET MID
01 Leach	Deionized Water Leaching Procedure	ASTM	EET MID

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Carmona Resources Project/Site: Lusk Deep #25 Battery (03.05.25) Job ID: 880-58042-1 SDG: Eddy County, New Mexico

.ab Sample ID	Client Sample ID	Matrix	Collected	Received	
380-58042-1	CS-1 (0.5')	Solid	05/09/25 00:00	05/13/25 10:25	
380-58042-2	CS-2 (0.5')	Solid	05/09/25 00:00	05/13/25 10:25	
380-58042-3	CS-3 (0.5')	Solid	05/09/25 00:00	05/13/25 10:25	
380-58042-4	CS-4 (0.5')	Solid	05/09/25 00:00	05/13/25 10:25	
80-58042-5	CS-5 (0.5')	Solid	05/09/25 00:00	05/13/25 10:25	
380-58042-6	CS-6 (0.5')	Solid	05/09/25 00:00	05/13/25 10:25	
380-58042-7	SW-1 (0.5')	Solid	05/09/25 00:00	05/13/25 10:25	
380-58042-8	SW-2 (0.5')	Solid	05/09/25 00:00	05/13/25 10:25	
380-58042-9	SW-3 (0.5')	Solid	05/09/25 00:00	05/13/25 10:25	
80-58042-10	SW-4 (0.5')	Solid	05/09/25 00:00	05/13/25 10:25	

5/14/2025

Page 88 of 116

Job Number: 880-58042-1

List Source: Eurofins Midland

SDG Number: Eddy County, New Mexico

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 58042 List Number: 1

<6mm (1/4").

Creator: Vasquez, Julisa

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Received by OCD: 6/10/2025 10:42:34 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mike Carmona Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 5/21/2025 12:04:33 PM

JOB DESCRIPTION

Black Pearl 1 Federal 1H 2698

JOB NUMBER

880-58332-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

5/21/2025 12:04:33 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Generated

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	7
	8
	12
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
	18
Receipt Checklists	19

EDL

LOD

LOQ

MCL MDA

MDC

MDL

MPN

MQL

NC

ND

NEG

POS

PQL PRES

QC

RER

RPD

TEF

TEQ TNTC

RL

ML

	Definitions/Glossary	
Client: Carmona Project/Site: Bla	a Resources Job ID: 880-58332- ack Pearl 1 Federal 1H SDG: 269	
Qualifiers		
GC VOA		- 3
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	-
F2	MS/MSD RPD exceeds control limits	5
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA		
Qualifier	Qualifier Description	-
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	8
F1	MS and/or MSD recovery exceeds control limits.	-
U	Indicates the analyte was analyzed for but not detected.	9
Glossary		-
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
ф.	Listed under the "D" column to designate that the result is reported on a dry weight basis	- 44
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	

Estimated Detection Limit (Dioxin)

Limit of Detection (DoD/DOE)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Negative / Absent

Positive / Present Practical Quantitation Limit

Presumptive

Quality Control

Method Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry)

Case Narrative

Client: Carmona Resources Project: Black Pearl 1 Federal 1H Job ID: 880-58332-1

Job ID: 880-58332-1

Eurofins Midland

Job Narrative 880-58332-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 5/20/2025 10:15 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.7°C.

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-110499 and analytical batch 880-110543 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D - Soluble: The Chloride matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-110545 and analytical batch 880-110549 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

The associated samples are: Backfill Material (880-58332-1), (880-58313-A-1-E), (880-58313-A-1-F MS) and (880-58313-A-1-G MSD).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Project/Site: Black Pearl 1 Federal 1H

Client: Carmona Resources

Client Sample Results

5

Job ID: 880-58332-1 SDG: 2698

Lab Sample ID: 880-58332-1

Client Sample ID: Backfill Material Date Collected: 05/16/25 00:00 Date Received: 05/20/25 10:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199		mg/Kg		05/20/25 11:00	05/20/25 19:31	
Toluene	<0.00199	U	0.00199		mg/Kg		05/20/25 11:00	05/20/25 19:31	
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		05/20/25 11:00	05/20/25 19:31	
m,p-Xylenes	<0.00398	U	0.00398		mg/Kg		05/20/25 11:00	05/20/25 19:31	
o-Xylene	<0.00199	U	0.00199		mg/Kg		05/20/25 11:00	05/20/25 19:31	
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		05/20/25 11:00	05/20/25 19:31	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	90		70 - 130				05/20/25 11:00	05/20/25 19:31	
1,4-Difluorobenzene (Surr)	97		70 - 130				05/20/25 11:00	05/20/25 19:31	
Method: TAL SOP Total BTEX -	Total BTEX Cale	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg			05/20/25 19:31	
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.8	U	49.8		mg/Kg			05/20/25 21:49	
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		05/20/25 08:15	05/20/25 21:49	
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		05/20/25 08:15	05/20/25 21:49	
Diesel Range Organics (Over C10-C28)	<49.8 <49.8		49.8 49.8		mg/Kg mg/Kg		05/20/25 08:15 05/20/25 08:15	05/20/25 21:49 05/20/25 21:49	
Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36)	<49.8	U						05/20/25 21:49	
Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate		U	49.8				05/20/25 08:15		
Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr)	<49.8 %Recovery	U	49.8 Limits				05/20/25 08:15 Prepared	05/20/25 21:49 Analyzed	Dil Fa
Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr) o-Terphenyl (Surr)	<49.8 <u>%Recovery</u> 108 112	U Qualifier	49.8 <u>Limits</u> 70 - 130 70 - 130				05/20/25 08:15 Prepared 05/20/25 08:15	05/20/25 21:49 Analyzed 05/20/25 21:49	Dil Fa
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr) o-Terphenyl (Surr) Method: EPA 300.0 - Anions, Ior Analyte	<49.8 <u>%Recovery</u> 108 112 Chromatograp	U Qualifier	49.8 <u>Limits</u> 70 - 130 70 - 130	MDL	mg/Kg	D	05/20/25 08:15 Prepared 05/20/25 08:15	05/20/25 21:49 Analyzed 05/20/25 21:49	Dil Fa

Eurofins Midland

Matrix: Solid

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) BFB1 DFBZ1 Client Sample ID (70-130) (70-130) Lab Sample ID 90 880-58332-1 Backfill Material 97 890-8178-A-1-C MS Matrix Spike 98 107 Matrix Spike Duplicate 890-8178-A-1-D MSD 102 99 LCS 880-110499/1-A Lab Control Sample 103 110 LCSD 880-110499/2-A Lab Control Sample Dup 110 101 MB 880-110499/5-A Method Blank 95 86 Surrogate Legend BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA Percent Surrogate Recovery (Acceptance Limits) 1CO1 OTPH1 Lab Sample ID **Client Sample ID** (70-130) (70-130) 880-58332-1 **Backfill Material** 108 112 890-8183-A-1-B MS Matrix Spike 118 120 890-8183-A-1-C MSD Matrix Spike Duplicate 119 120 LCS 880-110486/2-A Lab Control Sample 116 117 LCSD 880-110486/3-A Lab Control Sample Dup 103 105 MB 880-110486/1-A Method Blank 106 113

Surrogate Legend

1CO = 1-Chlorooctane (Surr)

OTPH = o-Terphenyl (Surr)

Job ID: 880-58332-1

Page 96 of 116

SDG: 2698

Prep Type: Total/NA

Eurofins Midland

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-110499/5-A Matrix: Solid Analysis Batch: 110543							Client Sa	mple ID: Metho Prep Type: 1 Prep Batch:	Total/NA
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		05/20/25 09:03	05/20/25 17:26	1
Toluene	<0.00200	U	0.00200		mg/Kg		05/20/25 09:03	05/20/25 17:26	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		05/20/25 09:03	05/20/25 17:26	1
m,p-Xylenes	<0.00400	U	0.00400		mg/Kg		05/20/25 09:03	05/20/25 17:26	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		05/20/25 09:03	05/20/25 17:26	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		05/20/25 09:03	05/20/25 17:26	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		70 - 130				05/20/25 09:03	05/20/25 17:26	1
1,4-Difluorobenzene (Surr)	95		70 - 130				05/20/25 09:03	05/20/25 17:26	1
 Lab Sample ID: LCS 880-110499/1-A	L .					с	lient Sample I	D: Lab Control	Sample
Matrix: Solid								Prep Type: 1	Total/NA
Analysis Batch: 110543								Prep Batch:	110499

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1095		mg/Kg		109	70 - 130	
Toluene	0.100	0.09614		mg/Kg		96	70 - 130	
Ethylbenzene	0.100	0.1226		mg/Kg		123	70 - 130	
m,p-Xylenes	0.200	0.2287		mg/Kg		114	70 - 130	
o-Xylene	0.100	0.1147		mg/Kg		115	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	103		70 - 130
1,4-Difluorobenzene (Surr)	110		70 - 130

Lab Sample ID: LCSD 880-110499/2-A

Matrix: Solid

					Prep I	Batch: 1	10499
Spike	LCSD LCSI	D			%Rec		RPD
Added	Result Qual	ifier Unit	D	%Rec	Limits	RPD	Limit
0.100	0.1089	mg/Kg		109	70 - 130	1	35
0.100	0.1072	mg/Kg		107	70 - 130	11	35
0.100	0.1245	mg/Kg		125	70 - 130	2	35
0.200	0.2317	mg/Kg		116	70 - 130	1	35
0.100	0.1160	mg/Kg		116	70 - 130	1	35
	Added 0.100 0.100 0.100 0.200	Added Result Qual 0.100 0.1089 - 0.100 0.1072 - 0.100 0.1245 - 0.200 0.2317 -	Added Result Qualifier Unit 0.100 0.1089 mg/Kg 0.100 0.1072 mg/Kg 0.100 0.1245 mg/Kg 0.200 0.2317 mg/Kg	Added Result Qualifier Unit D 0.100 0.1089 mg/Kg 0.100 0.1072 mg/Kg 0.100 0.1245 mg/Kg 0.200 0.2317 mg/Kg	Added Result Qualifier Unit D %Rec 0.100 0.1089 mg/Kg 109 0.100 0.1072 mg/Kg 107 0.100 0.1245 mg/Kg 125 0.200 0.2317 mg/Kg 116	Spike LCSD LCSD %Rec Added Result Qualifier Unit D %Rec Limits 0.100 0.1089 mg/Kg 109 70 - 130 0.100 0.1072 mg/Kg 107 70 - 130 0.100 0.1245 mg/Kg 125 70 - 130 0.200 0.2317 mg/Kg 116 70 - 130	Added Result Qualifier Unit D %Rec Limits RPD 0.100 0.1089 mg/Kg 109 70 - 130 1 0.100 0.1072 mg/Kg 107 70 - 130 11 0.100 0.1245 mg/Kg 125 70 - 130 2 0.200 0.2317 mg/Kg 116 70 - 130 1

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)			70 - 130
1,4-Difluorobenzene (Surr)	101		70 - 130

Lab Sample ID: 890-8178-A-1-C MS

Matrix: Solid alvoia Rotaby 110542

Analysis Batch: 110543									Prep	Batch: 110499
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U F1 F2	0.100	0.05475	F1	mg/Kg		55	70 - 130	
Toluene	<0.00200	U F1 F2	0.100	0.04949	F1	mg/Kg		49	70 - 130	

Eurofins Midland

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

13

Job ID: 880-58332-1

Released to Imaging: 7/10.	/2025 4:22:50 P	M
----------------------------	-----------------	---

MS MS

Result Qualifier

Unit

D

%Rec

Spike

Added

Client: Carmona Resources Project/Site: Black Pearl 1 Federal 1H

Lab Sample ID: 890-8178-A-1-C MS

Matrix: Solid

Analyte

Analysis Batch: 110543

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Sample Sample

Result Qualifier

Prep Type: Total/NA

Prep Batch: 110499

Client Sample ID: Matrix Spike

%Rec

Limits

-											
Ethylbenzene	<0.00200	U F1 F2	0.100	0.05134	F1	mg/Kg		51	70 - 130		
m,p-Xylenes	<0.00399	U F1 F2	0.200	0.09951	F1	mg/Kg		50	70 - 130		
o-Xylene	<0.00200	U F1 F2	0.100	0.05097	F1	mg/Kg		51	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	98		70 - 130								
1,4-Difluorobenzene (Surr)	107		70 - 130								
Lab Sample ID: 890-8178-A-	1-D MSD					Cli	ient Sa	ample ID): Matrix Sp	oike Dup	olicate
Matrix: Solid									Prep 1	ype: To	tal/NA
Analysis Batch: 110543									Prep I	Batch: 1	10499
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U F1 F2	0.100	0.07968	F2	mg/Kg		80	70 - 130	37	35
Toluene	<0.00200	U F1 F2	0.100	0.07790	F2	mg/Kg		78	70 - 130	45	35
Ethylbenzene	<0.00200	U F1 F2	0.100	0.08442	F2	mg/Kg		84	70 - 130	49	35
m,p-Xylenes	<0.00399	U F1 F2	0.200	0.1573	F2	mg/Kg		79	70 - 130	45	35
o-Xylene	<0.00200	U F1 F2	0.100	0.07796	F2	mg/Kg		78	70 - 130	42	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
	/intecovery										
4-Bromofluorobenzene (Surr)			70 - 130								

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-110486/1 Matrix: Solid Analysis Batch: 110523	I-A						Client Sa	mple ID: Metho Prep Type: 1 Prep Batch:	otal/NA
	MB								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		05/20/25 07:55	05/20/25 17:17	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		05/20/25 07:55	05/20/25 17:17	1
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		05/20/25 07:55	05/20/25 17:17	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	106		70 - 130				05/20/25 07:55	05/20/25 17:17	1
o-Terphenyl (Surr)	113		70 - 130				05/20/25 07:55	05/20/25 17:17	1
Lab Sample ID: LCS 880-110486	/2-A					C	lient Sample I	D: Lab Control	Sample

Matrix: Solid Prep Type: Total/NA Analysis Batch: 110523 Prep Batch: 110486 Spike LCS LCS %Rec Analyte Added Result Qualifier Limits Unit D %Rec 1000 1010 101 70 - 130 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 849.8 mg/Kg 85 70 - 130 C10-C28)

Eurofins Midland

Client: Carmona Resources Project/Site: Black Pearl 1 Federal 1H

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-1104 Matrix: Solid Analysis Batch: 110523	86/2-A						Clien	t Sample		ontrol Sa ype: Tot Batch: 1 [/]	al/NA
····· ·											
		LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane (Surr)	116		70 - 130 70 - 130								
o-Terphenyl (Surr)	117		70 - 130								
Lab Sample ID: LCSD 880-110	486/3-A					Clie	nt San	nole ID:	Lab Contro	I Sample	e Dup
Matrix: Solid										ype: Tot	
Analysis Batch: 110523										Batch: 1	
·····,····			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics			1000	886.7		mg/Kg		89	70 - 130	13	20
(GRO)-C6-C10											
Diesel Range Organics (Over			1000	755.0		mg/Kg		75	70 - 130	12	20
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane (Surr)	103		70 - 130								
o-Terphenyl (Surr)	105		70 - 130								
Matrix: Solid Analysis Batch: 110523 Analyte	-	Sample Qualifier	Spike Added		MS Qualifier	Unit	D	%Rec		ype: Tot Batch: 1	
Gasoline Range Organics	<49.9	U	997	898.0		mg/Kg		90	70 - 130		
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<49.9	U	997	818.0		mg/Kg		79	70 - 130		
	MS	MS									
Surrogate	%Recovery		Limits								
1-Chlorooctane (Surr)	118	quamer	70 - 130								
o-Terphenyl (Surr)	120		70 - 130								
Lab Sample ID: 890-8183-A-1-	C MSD					CI	ient S	ample IC): Matrix Sp	oike Dup	licate
Matrix: Solid										· ype: Tot	
Analysis Batch: 110523										Batch: 1	
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	997	903.4		mg/Kg		91	70 - 130	1	20
	10.0	U	997	816.9		mg/Kg		78	70 - 130	0	20
Diesel Range Organics (Over C10-C28)	<49.9								101100	0	
									101100	0	
		MSD	Limits						101100	Ū	

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane (Surr)	119		70 - 130
o-Terphenyl (Surr)	120		70 - 130

5

Job ID: 880-58332-1 SDG: 2698

QC Sample Results

Client: Carmona Resources Project/Site: Black Pearl 1 Federal 1H Job ID: 880-58332-1 SDG: 2698

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-110545/	' 1- Δ									(Client S	ample ID:	Method	Blank
Matrix: Solid													Type: S	
Analysis Batch: 110549													.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	010010
·		MB MB												
Analyte	R	esult Qualifie	r	RL		MDL	Unit		D	Pre	epared	Analy	zed	Dil Fac
Chloride	<	:10.0 U		10.0			mg/Kg]				05/20/25	22:23	1
Lab Sample ID: LCS 880-110545	5/2-A								Clie	ent	Sample	ID: Lab C	ontrol S	ample
Matrix: Solid												Prep	Type: S	oluble
Analysis Batch: 110549														
			Spike		LCS	LCS						%Rec		
Analyte			Added	I	Result	Qual	ifier	Unit		D	%Rec	Limits		
Chloride			250		260.5			mg/Kg			104	90 - 110		
Lab Sample ID: LCSD 880-11054	45/3-A							Cli	ent S	amı	ole ID:	Lab Contr	ol Sampl	e Dup
Matrix: Solid													Type: S	
Analysis Batch: 110549														
-			Spike		LCSD	LCS	C					%Rec		RPD
Analyte			Added	I	Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Limit
Chloride			250		260.4			mg/Kg			104	90 - 110	0	20
Lab Sample ID: 880-58313-A-1-F	- MS										Client	Sample II	D: Matrix	Spike
Matrix: Solid													Type: S	
Analysis Batch: 110549														
-	Sample	Sample	Spike		MS	MS						%Rec		
Analyte	Result	Qualifier	Added	I	Result	Qual	ifier	Unit		D	%Rec	Limits		
Chloride	432	F1	252		739.5	F1		mg/Kg			122	90 - 110		
Lab Sample ID: 880-58313-A-1-0	G MSD								Client	Sa	mple IC): Matrix S	pike Dur	olicate
Matrix: Solid													Type: S	
Analysis Batch: 110549														
-	Sample	Sample	Spike		MSD	MSD						%Rec		RPD
Analyte	Result	Qualifier	Added	I	Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Limit
Chloride	432	F1	252	-	738.6	F1		mg/Kg			122	90 - 110	0	20

Eurofins Midland

Released to Imaging: 7/10/2025 4:22:50 PM

Client: Carmona Resources Project/Site: Black Pearl 1 Federal 1H

4 5 6

Job ID: 880-58332-1 SDG: 2698

GC VOA

Prep Batch: 110499

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
80-58332-1	Backfill Material	Total/NA	Solid	5035	
/IB 880-110499/5-A	Method Blank	Total/NA	Solid	5035	
CS 880-110499/1-A	Lab Control Sample	Total/NA	Solid	5035	
CSD 880-110499/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-8178-A-1-C MS	Matrix Spike	Total/NA	Solid	5035	
390-8178-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	
nalysis Batch: 110543	3				
ab Sample ID.	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
80-58332-1	Backfill Material	Total/NA	Solid	8021B	11049
/IB 880-110499/5-A	Method Blank	Total/NA	Solid	8021B	11049
.CS 880-110499/1-A	Lab Control Sample	Total/NA	Solid	8021B	11049
.CSD 880-110499/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	11049
90-8178-A-1-C MS	Matrix Spike	Total/NA	Solid	8021B	11049
90-8178-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	11049
nalysis Batch: 110623	3				
ab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Bato
380-58332-1	Backfill Material	Total/NA	Solid	Total BTEX	

Prep Batch: 110486

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-58332-1	Backfill Material	Total/NA	Solid	8015NM Prep	
MB 880-110486/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-110486/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-110486/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-8183-A-1-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-8183-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 110523

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-58332-1	Backfill Material	Total/NA	Solid	8015B NM	110486
MB 880-110486/1-A	Method Blank	Total/NA	Solid	8015B NM	110486
LCS 880-110486/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	110486
LCSD 880-110486/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	110486
890-8183-A-1-B MS	Matrix Spike	Total/NA	Solid	8015B NM	110486
890-8183-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	110486
Analysis Batch: 11061		Tota//NA	Solid		I
- I ah Sampla ID	Client Semple ID	Bron Tuno	Motrix	Mathad	Bron Bot

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-58332-1	Backfill Material	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 110545

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-58332-1	Backfill Material	Soluble	Solid	DI Leach	
MB 880-110545/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-110545/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-110545/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Eurofins Midland

Job ID: 880-58332-1 SDG: 2698

HPLC/IC (Continued)

LCS 880-110545/2-A

LCSD 880-110545/3-A

880-58313-A-1-F MS

880-58313-A-1-G MSD

Leach Batch: 110545 (Continued)

Lab Control Sample

Matrix Spike

Lab Control Sample Dup

Matrix Spike Duplicate

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-58313-A-1-F MS	Matrix Spike	Soluble	Solid	DI Leach	
880-58313-A-1-G MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
nalysis Batch: 11054	9				
		Pren Tyne	Matrix	Method	Pron Batch
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
nalysis Batch: 11054 Lab Sample ID 880-58332-1		Prep Type Soluble	Matrix Solid	Method 300.0	Prep Batch 110545

Soluble

Soluble

Soluble

Soluble

Solid

Solid

Solid

Solid

300.0

300.0

300.0

300.0

Eurofins Midland

110545

110545

110545

Project/Site: Black Pearl 1 Federal 1H

Client: Carmona Resources

Job ID: 880-58332-1 SDG: 2698

Lab Sample ID: 880-58332-1

Client Sample ID: Backfill Material Date Collected: 05/16/25 00:00 Date Received: 05/20/25 10:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	110499	05/20/25 11:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	110543	05/20/25 19:31	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			110623	05/20/25 19:31	SM	EET MID
Total/NA	Analysis	8015 NM		1			110615	05/20/25 21:49	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	110486	05/20/25 08:15	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	110523	05/20/25 21:49	TKC	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	110545	05/20/25 12:58	SA	EET MID
Soluble	Analysis	300.0		1			110549	05/21/25 00:09	SMC	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Released to Imaging: 7/10/2025 4:22:50 PM

Matrix: Solid

boratory: Eurofins				
ess otherwise noted, all analy	ytes for this laboratory were co	overed under each accredit	tation/certification below.	
uthority	Progra	ım	Identification Number	Expiration Date
exas	NELAF)	T104704400	06-30-25
• •		t the laboratory is not certifi	ied by the governing authority. This lis	t may include analytes
	oes not offer certification.			
Analysis Method 8015 NM	Prep Method	Matrix Solid	Analyte Total TPH	
Total BTEX		Solid	Total BTEX	

Eurofins Midland

Method Summary

Client: Carmona Resources Project/Site: Black Pearl 1 Federal 1H

Job ID: 880-58332-1 SDG: 2698

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
	erences: STM International Environmental Protection Agency		
	"Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Editi	on November 1986 And Its Updates	
	= TestAmerica Laboratories, Standard Operating Procedure	····	
Laboratory R			
EET MID	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Laboratory References:

Eurofins Midland

Sample Summary

Job ID: 880-58332-1 SDG: 2698

Client: Carmona Resources Project/Site: Black Pearl 1 Federal 1H

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-58332-1	Backfill Material	Solid	05/16/25 00:00	05/20/25 10:15

od0-56332 Chain of Custody Page 1 of 1	Work Order Comments	Program: UST/PST 🗌 PRP 🛛 brownfields 🗌 RRC 🛛 uperfund		Level III	Deliverables: EDD 🗌 ADaPT 🗌 Other:	Preservative Codes	None: NO DI Water: H ₂ O	_	HCL: HC HNO ₃ : HN H-S0.2: H5 NaOH: Na		NaHSO4: NABIS	Na ₂ S ₂ O ₃ : NaSO ₃	Zn Acetate+NaOH: Zn	NaOH+Ascorbic Acid: SAPC	Sample Comments							by: (Signature) Date/Time	Xap 3720/25-1013
	Ges	Progr	State	Repor	Delive	ANALYSIS REQUEST															10naresources.com	A Received by	Tallon Ranfoll
	Carmona Resources				naresources.com		Pres.		мио	080	1208	ева EX I) WS	108	# of Cont	1 X X X					g / Cmoehring@cam	Date/Time	Stulca wir
	Bill to: (if different)	Company Name:	Address:	City, State ZIP:	Email: mcarmona@carmonaresources.com	Turn Around		24 HR TAT		Ked No	X-X	1.0-	5.8	6-2	Water Grab/ #	Comp					nd Conner Moehring		
					Email:	Tum	Routine	Due Date:	_	Wet Ice:			iding:	rature:	Soil	×					sources.com ar		
						deral 1H		Mexico		Yes No	Thermometer ID:	Correction Factor:	Temperature Reading:	Corrected Temperature:	Time						ona@carmonare	Relinquished by: (Signature)	
	oehring	Carmona Resources	310 W Wall St Ste 500	TX 79701	823	Black Pearl 1 Federal 1H	2698	Lea County, New Mexico	CMM	Temp Blank:	CAS NO		Yes No (NIA))	Date	5/16/2025	-				Carmona / Mcarm	Relinquished	K
	Project Manager: Conner Moehring	Company Name: Carmona	Address: 310 W Wa	City, State ZIP: Midfand, TX 79701	Phone: 432-813-6823	Project Name:	Project Number:	Project Location	Sampler's Name: PO #:	SAMPLE RECEIPT	Received Intact:	Seals:		Total Containers:	Sample Identification	Backfill Material					Comments: Email to Mike Carmona / Mcarmona@carmonaresources.com and Conner Moehring/ Cmoehring@carmonaresources.com		N

5/21/2025

Page 107 of 116

Login Sample Receipt Checklist

				1
Login Sample Rec	eipt Checklis	st		2
Client: Carmona Resources			Job Number: 880-58332-1	3
			SDG Number: 2698	Δ
Login Number: 58332			List Source: Eurofins Midland	
List Number: 1				5
Creator: Lee, Randell				
Question	Answer	Comment		
The cooler's custody seal, if present, is intact.				
Sample custody seals, if present, are intact.				
The cooler or samples do not appear to have been compromised or tampered with.				8
Samples were received on ice.				
Cooler Temperature is acceptable.				9
Cooler Temperature is recorded.				
COC is present.				
COC is filled out in ink and legible.				
COC is filled out with all pertinent information.				
Is the Field Sampler's name present on COC?				
There are no discrepancies between the containers received and the COC.				
Samples are received within Holding Time (excluding tests with immediate HTs)				13
Sample containers have legible labels.				14
Containers are not broken or leaking.				
Sample collection date/times are provided.				
Appropriate sample containers are used.				
Sample bottles are completely filled.				
Sample Preservation Verified.				
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs				
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").				

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 109 of 116

QUESTIONS

Action 472666

QUESTIONS					
Operator:	OGRID:				
COG OPERATING LLC	229137				
600 W Illinois Ave	Action Number:				
Midland, TX 79701	472666				
	Action Type:				
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)				

QUESTIONS

nAPP2506541672
NAPP2506541672 LUSK DEEP UNIT A #25 @ 30-025-40193
Fire
Remediation Closure Report Received
[30-025-40193] LUSK DEEP UNIT A #025H

Location of Release Source

Please answer all the	questions in	this group.
-----------------------	--------------	-------------

Site Name	LUSK DEEP UNIT A #25
Date Release Discovered	03/05/2025
Surface Owner	State

Incident Details

Please answer all the questions in this group.					
Incident Type	Fire				
Did this release result in a fire or is the result of a fire	Yes				
Did this release result in any injuries	No				
Has this release reached or does it have a reasonable probability of reaching a watercourse	No				
Has this release endangered or does it have a reasonable probability of endangering public health	No				
Has this release substantially damaged or will it substantially damage property or the environment	No				
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No				

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications fo	r the volumes provided should be attached to the follow-up C-141 submission.
Crude Oil Released (bbls) Details	Cause: Fire Other (Specify) Crude Oil Released: 0 BBL (Unknown Released Amount) Recovered: 0 BBL Lost: 0 BBL.
Produced Water Released (bbls) Details	Not answered.
Is the concentration of chloride in the produced water >10,000 mg/l	Not answered.
Condensate Released (bbls) Details	Not answered.
Natural Gas Vented (Mcf) Details	Not answered.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 110 of 116

QUESTIONS, Page 2

Action 472666

QUESTIONS (continued)					
Operator:	OGRID:				
COG OPERATING LLC	229137				
600 W Illinois Ave	Action Number:				
Midland, TX 79701	472666				
	Action Type:				
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)				

QUESTIONS

Nature and Volume of Release (continued)		
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.	
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes	
Reasons why this would be considered a submission for a notification of a major release With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e.	From paragraph A. "Major release" determine using: (1) an unauthorized release of a volume, excluding gases, of 25 barrels or more; (2) an unauthorized release of a volume that: (a) results in a fire or is the result of a fire.	

Initial Response	
The responsible party must undertake the following actions immediately unless they could create a s	afety hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or
I baraby agree and sign off to the above statement	Name: Brittany Esparza Title: Environmental Technician

Email: brittany.Esparza@ConocoPhillips.com Date: 06/10/2025

I hereby agree and sign off to the above statement

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	472666
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 100 and 500 (ft.)
What method was used to determine the depth to ground water	NM OSE iWaters Database Search
Did this release impact groundwater or surface water	Νο
What is the minimum distance, between the closest lateral extents of the release ar	id the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Between 1 and 5 (mi.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between 1 and 5 (mi.)
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Greater than 5 (mi.)
Any other fresh water well or spring	Between 1 and 5 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Between 1 and 5 (mi.)
A subsurface mine	Greater than 5 (mi.)
An (non-karst) unstable area	Greater than 5 (mi.)
Categorize the risk of this well / site being in a karst geology	Low
A 100-year floodplain	Greater than 5 (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	No

Remediation Plan

e appropriate district office no later than 90 days after the release discovery date.
Yes
ssociated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.
Yes
No
grams per kilograms.)
151
2008
1510
0
0
fforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,
05/09/2025
05/09/2025
05/27/2025
0
0
1390
20
ime of submission and may (be) change(d) over time as more remediation efforts are completed.

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Action 472666

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 11	1 2 o j	f 1	<i>16</i>	
---------	----------------	-----	-----------	--

QUESTIONS, Page 4

Action 472666

QUESTIONS (continued)		
Operator:	OGRID:	
COG OPERATING LLC	229137	
600 W Illinois Ave	Action Number:	
Midland, TX 79701	472666	
	Action Type:	
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)	
QUESTIONS		
Remediation Plan (continued)		
Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		

rease answer an the questions that apply of are indicated. This information must be provided to the	s appropriate district onice no later than 30 days after the release discovery date.
This remediation will (or is expected to) utilize the following processes to remediate	e / reduce contaminants:
(Select all answers below that apply.)	
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes
Which OCD approved facility will be used for off-site disposal	LEA LAND LANDFILL [fEEM0112342028]
OR which OCD approved well (API) will be used for off-site disposal	Not answered.
OR is the off-site disposal site, to be used, out-of-state	Not answered.
OR is the off-site disposal site, to be used, an NMED facility	Not answered.
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.
(In Situ) Soil Vapor Extraction	Not answered.
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.
OTHER (Non-listed remedial process)	Not answered.
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed ef which includes the anticipated timelines for beginning and completing the remediation.	fforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Brittany Esparza Title: Environmental Technician Email: brittany.Esparza@ConocoPhillips.com

Date: 06/10/2025 The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 113 of 116

QUESTIONS, Page 5

Action 472666

QUESTIONS (continued)	
Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	472666
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Deferral Requests Only		
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.		
Requesting a deferral of the remediation closure due date with the approval of this submission	Νο	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Page 114 of 116

Action 472666

QUESTIONS	(continued)

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	472666
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	459637
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	05/09/2025
What was the (estimated) number of samples that were to be gathered	11
What was the sampling surface area in square feet	1390

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all r	remediation steps have been completed.
Requesting a remediation closure approval with this submission	Yes
Have the lateral and vertical extents of contamination been fully delineated	Yes
Was this release entirely contained within a lined containment area	No
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes
What was the total surface area (in square feet) remediated	1390
What was the total volume (cubic yards) remediated	20
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes
What was the total surface area (in square feet) reclaimed	0
What was the total volume (in cubic yards) reclaimed	0
Summarize any additional remediation activities not included by answers (above)	N/A
	closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of
to report and/or file certain release notifications and perform corrective actions for release the OCD does not relieve the operator of liability should their operations have failed to water, human health or the environment. In addition, OCD acceptance of a C-141 report	
	Name: Brittany Esparza

	Name: Brittany Esparza
I hereby agree and sign off to the above statement	Title: Environmental Technician
Thereby agree and sign on to the above statement	Email: brittany.Esparza@ConocoPhillips.com
	Date: 06/10/2025

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Page 115 of 116

Action 472666

Operator: OGRID: COG OPERATING LLC 229137 600 W Illinois Ave Action Number: Midland, TX 79701 472666 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Reclamation Report	
Only answer the questions in this group if all reclamation steps have been completed.	
Requesting a reclamation approval with this submission	No

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS	

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	472666
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

CONDITIONS		
Created By	Condition	Condition Date
scott.rodgers	This Remediation Closure Report is approved. Areas reasonably needed for production or subsequent drilling operations will need to be reclaimed and revegetated as soon as they are no longer reasonably needed. A report for reclamation and revegetation will need to be submitted and approved prior to this incident receiving the final status of "Restoration Complete".	7/10/2025

Page 116 of 116

CONDITIONS

Action 472666