REVIEWED

By NVelez at 9:42 am, Oct 21, 2025

- 1. Continue with O & M schedule.
- 2. Submit next quarterly report by January 15, 2026.

October 14, 2025

New Mexico Oil Conservation Division

New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Third Quarter 2025 - Remediation System Quarterly Report

Federal 18 #1T
San Juan County, New Mexico
Hilcorp Energy Company
NMOCD Incident Number: NCS2103335776

To Whom it May Concern:

Ensolum, LLC (Ensolum), on behalf of Hilcorp Energy Company (Hilcorp), presents this *Third Quarter 2025 – Remediation System Quarterly Report* summarizing third quarter 2025 activities at the former Federal 18 #1T coalbed methane gas well (Site), located in Unit M, Section 18, Township 30 North, Range 12 West in the City of Farmington, New Mexico. The casing of the original gas well has been modified to vent gas and purge water from the Ojo Alamo and Nacimiento Formations. Since initiation of the remediation system in 2010, quarterly reports have been submitted to the New Mexico Oil Conservation Division (NMOCD) to record activities performed at the Site, as well as document well-casing pressures from nearby domestic water well SJ-01737, the volume of gas vented from the Site's well, and groundwater analytical results collected from the Site's well.

SITE BACKGROUND

As part of an ongoing effort between the NMOCD and Hilcorp (Site originally owned and operated by XTO Energy, Inc. [XTO]), the agreed upon remedial option for the Site was to install a vacuum system at the Site to vent gas from the Nacimiento formation, which overlies the Ojo Alamo Formation. Gas found in the Nacimiento formation could have originated from several contributing sources in the area including existing and/or abandoned gas wells near the Site. In agreement with the NMOCD, XTO modified the Site's production well to vent gas and recover contaminated groundwater by setting a plug at a depth of approximately 513 feet below ground surface (bgs). Perforations were made in the casing at 437 feet to 452 feet bgs and 457 feet to 473 feet bgs in order to monitor groundwater and vent gas from the Nacimiento Formation. Based on initial groundwater sampling results, XTO recommended pumping the aquifer until groundwater results were below the New Mexico Water Quality Control Commission (NMWQCC) standards for applicable chemicals of concern (COCs).

A submersible water pump was installed in the Site's well in November 2010 at a depth of approximately 485 feet bgs in order to recover impacted groundwater. Based on aquifer tests performed by XTO, the water pump was set to maintain a static water level of approximately 473 feet bgs. The water pump is plumbed into the existing water lines and stored in the on-Site 210-barrel (bbl) water tank, which is regularly emptied for off-Site disposal. A vacuum pump was

Page 2

subsequently installed at the Site's well to also remove gas entrained in the formation. A portable generator was originally placed at the Site to power both the vacuum and water pumps. Generator maintenance issues led to the system being electrified on February 3, 2011.

Operation and maintenance (O&M) inspections are conducted by Hilcorp personnel regularly to check the system and verify proper water and vacuum pump operation, record water meter volumes, and verify no other Site conditions dictate system maintenance and/or adjustment. Possible pressure variations in the subsurface due to the vacuum pump are monitored using nearby water well SJ-01737. Casing pressure measurements from well SJ-01737 are included in Table 1.

THIRD QUARTER 2025 SITE ACTIVITIES AND RESULTS

Approximately 57,520 gallons (1,369 bbls) of water were removed from the Site's well between the second quarter and third quarter of 2025 sampling events. To date, approximately 1,507,346 gallons (35,889 bbls) of impacted water have been removed from the Site. A water sample from the well was collected on July 31, 2025, and submitted to Eurofins Environment Testing for laboratory analysis. Specifically, the water sample was analyzed for the following COCs: volatile organic compounds (VOCs), including benzene, toluene, ethylbenzene, and xylenes (BTEX), following Environmental Protection Agency (EPA) Method 8260B, specific conductance (or electrical conductivity) following Standard Method (SM) 2510B, pH following Method SM4500-H+B, and total dissolved solids (TDS) following Method SM2540C.

Based on results from the July 2025 sampling event, benzene and TDS remain at concentrations exceeding the applicable NMWQCC standards and appear to be similar to historical results. Analytical results are summarized in Table 2, with complete laboratory reports attached as Appendix A.

The Site vacuum pump has been operating based on a setting of 690 minutes on and 30 minutes off (totaling 23 hours runtime per day). During the third quarter of 2025, the pump operated at an average flow rate of 3.0 actual cubic feet per minute (ACFM). Approximately 37,091 thousand cubic feet (MCF) of gas/air have been emitted from the Site's well since the system began operating in 2010. There were no deviations from the regular operation and maintenance activities for the system during the third quarter of 2025. Gas/air volumes vented by the system are summarized in Table 3.

RECOMMENDATIONS

O&M visits will continue to be performed by Hilcorp personnel to verify the system is operating as designed. Deviations from regular operations will be noted on field logs and included in the following quarterly report. Hilcorp will continue to remove and monitor water from the Site until benzene and TDS concentrations are compliant with NMWQCC standards for eight consecutive quarters.

Page 3

We appreciate the opportunity to provide this report to the NMOCD. If you should have any questions or comments regarding this proposal, please contact the undersigned.

Ensolum, LLC

Stuart Hyde Senior Managing Geologist (970) 903-1607 shyde@ensolum.com

Attachments:

Table 1 Well SJ-01737 Casing Pressure Readings

Table 2 Water Analytical Results
Table 3 Gas and Air Vented

Appendix A Laboratory Analytical Reports

TABLES

TABLE 1 WELL SJ-01737 CASING PRESSURE READINGS

Federal 18 #1T Hilcorp Energy Company San Juan County, New Mexico

Sample Date	Casing Pressure (ounces)	Average
1/9/2024	0	0.000
1/18/2024	0	0.000
1/25/2024	0	0.000
1/31/2024	0	0.000
2/22/2024	0	0.000
3/7/2024	0	0.000
3/26/2024	0	0.000
6/10/2024	0	0.000
9/18/2024	0	0.000
10/10/2024	0	0.000
10/23/2024	0	0.000
11/11/2024	0	0.000
12/4/2024	0	0.000
12/19/2024	0	0.000
1/11/2025	0	0.000
1/16/2025	0	0.000
2/7/2025	0	0.000
2/20/2025	0	0.000
3/10/2025	0	0.000
3/29/2025	0	0.000
4/14/2025	0	0.000
4/24/2025	0	0.000
5/15/2025	0	0.000
5/20/2025	0	0.000
6/9/2025	0	0.000
6/27/2025	0	0.000
7/7/2025	0	0.000
7/31/2025	0	0.000
8/8/2025	0	0.000
8/25/2025	0	0.000
9/9/2025	0	0.000
9/27/2025	0	0.000

Ensolum 1 of 1

ENSOLUM

TABLE 2 WATER ANALYTICAL RESULTS Federal 18 #11 Hilcorp Energy Company San Juan County, New Mexico								
Sample Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (μg/L)	Xylene (μg/L)	TDS (mg/L)	Electrical Conductivity (umhos/cm)	рН	Purge Water Volume (gallons)
NMWQCC Standards	5.0	1,000	700	620	1,000		6 thru 9	
11/5/2010	ND 450	5.2	ND	ND	1,400	2,600	7.2	NM
9/24/2010 9/24/2010	150 190	ND 170	76 24	670 210	13,000	18,000	6.1	NM NM
9/24/2010	143	221	63.6	950	13,000	10,000		NM
9/24/2010	320	377	31.8	568	11,100	16,000	5.84	NM
12/10/2011			-		7,610	8,900	6.36	3,033
1/5/2011	67	93	7.9	25		-		7,798
1/5/2011	73	99	10	39	4,800	6,000	6.6	7,798
1/29/2011	60	93	10	33		4,900	6.4	10,791
2/28/2011	42	60	6.1	20	3,400	4,000	6.7	14,795
4/1/2011 4/29/2011	23 29	27	1.8 2.4	6.8	2,700	3,100	6.8	31,238
5/31/2011	14	28 19	1.4	7.3 4.9	2,600 2,500	2,900 2,800	6.9	50,217 76,513
6/14/2011	55	81	2.8	15	2,500	2,700	6.7	88,120
6/30/2011	52	67	2.6	12	2,500	2,700	6.9	101,209
8/15/2011	21	25	1.2	5.8	2,500	2,600	6.8	140,267
9/2/2011	10	12	0.64	3.2	2,500	2,600	7.2	155,801
9/16/2011	9.6	11	0.64	3	2,400	2,500	7.2	168,040
9/30/2011	7.2	8.7	0.64	2.5	2,500	2,600	7	180,393
10/28/2011	5.1 4	ND	1.8	2.7	2,300	2,600	6.9	205,220 233,488
11/30/2011		ND	3.9	2.9	2,500	2,600	7.1	,
12/30/2011 4/3/2012	3.4 6	ND ND	ND ND	1.6	2,500	2,500	7.5	261,391 351,300
4/9/2012			ND		2.400	2,400	7.4	331,300 NM
7/3/2012	5.3	ND	ND	ND	2,300	2,400	7.4	NM
7/6/2012						-		441,053
9/19/2012		-	-					521,271
9/27/2012	6.2	ND	ND	ND	2,300	2,500	7.1	NM
12/14/2012								598,540
12/31/2012	13.9	1.1	ND	3.3	2,690	2,440	7.05	604,689
1/23/2013 2/22/2013	160	190 77	ND ND	26 1.8	2,400	2,500 2,500	7.1	NM 605,860
5/2/2013	7.1 9	6.9	ND ND	ND	2,100 2,400	2,600	7.5	612,601
8/19/2013	20	11	ND ND	2.3	2,200	2,600	7.2	NM
9/23/2013	13	11	ND	2.2	2,300	2,500	7.1	621,744
11/25/2013	4.6	5.2	ND	ND	2,200	2,700	7.7	631,430
2/4/2014	15	17	0.72	3.1	2,200	2,500	7.3	636,120
10/1/2015	54.2	57	1.37	9.77	2,260	2,640	6.98	639,410
10/20/2015	42.3	39.9	0.964	7.06	2,330	1,460	7.09	642,650
3/28/2016	38	34.1	0.835	4.82	2,230	2,570	6.86	650,850
6/14/2016 8/29/2016	78.3 19	58.4 ND	1.16 ND	7.22 2.18	2,890 2,410	2,600 2,590	6.89 7.02	704,371 763,261
11/18/2016	13.2	5.61	ND ND	2.33	2,470	2,580	7.03	842.610
3/31/2017	9.61	7.87	ND	ND	2,300	2,570	7.28	858,190
6/16/2017	64.6	29.2	0.781	5.4	2,360	2,570	7.05	927,854
9/7/2017	4.61	1.73	ND	ND	2,030	2,450	7.14	997,330
12/5/2017	138	51.5	1.65	9.378	2,230	2,590	7.2	1,080,550
3/6/2018	19.9	14.8	0.543	2.71	2,290	2,620	7.13	1,080,840
8/7/2018	7.9	8.06	<0.5	<1.5	2,200	2,300	7.19	1,082,751
1/3/2019 2/22/2019	7.07 19.8	3.29 11.1	0.177 <0.5	1.08 3.97	2,080 2,270	6,750 2,710	6.35 7.46	1,120,220 1,120,366
2/22/2019 5/24/2019	19.8	11.1	<0.5 ND	3.97 ND	2,270	2,710	7.46	1,120,366
9/10/2019	23.2	18.8	ND ND	ND ND	2,260	2,600	7.15	1,125,478
10/29/2019	5.41	5.68	ND	ND	2,300	2,530	7.09	1,127,076
2/27/2020	20.7	19.3	ND	ND	2,280	2,580	7.06	1,128,506
5/15/2020	10.3	8.91	ND	ND	2,460	2,570	7.27	1,131,033
8/25/2020	3.9	3.5	ND	ND	2,190	2,640	7.62	1,131,100
10/27/2020	31.1	24.4	ND	ND	2,240	2,530	7.43	1,131,119
2/17/2021	73	<1	<1	<1.5	2,200	2,400	7.42	1,131,123
6/29/2021 (2) 9/30/2021	130	87	<5.0	8.1	2 200	2,500	7.20	1,134,031 1,134,167
12/6/2021	33	20	<1.0	6.0	2,300 2,430	2,500	7.20	1,134,167
2/17/2022	25	3.1	<1.0	2.7	2,380	2,600	7.17	1,156,355
4/12/2022	27	4.3	<1.0	2.0	2,360	2,500	7.13	1,169,456
7/15/2022	33	4.3	<1.0	1.3	2,480	2,600	7.13	1,191,754
10/11/2022	47	4.6	<1.0	2.0	2,320	2,600	7.24	1,210,479
1/12/2023	40	1.7	<1.0	<1.5	2,330	2,600	7.17	1,229,525
5/10/2023	32	1.7	<1.0	<1.5	2,320	2,600	6.73	1,253,497
7/24/2023	34	1.3	<1.0	<1.5	2,360	2,600	7.18	1,269,880
10/27/2023	31	<1.0 <1.0	<1.0 <1.0	<1.5 <1.5	2,360	2,600	7.17	1,288,677
1/18/2024	47				2,330	2,600	7.19 7.20	1,304,447
4/11/2024 7/15/2024	42 46	<1.0 1.1	<1.0 <1.0	<1.5 <1.5	2,300 2,400	2,600 2,500	7.20	1,316,350 1,331,838
10/24/2024	22	7.5	<1.0	<1.5	2,400	2,600	7.30	1,368,720
1/16/2025	12	1.2	<1.0	<1.5	2,400	2,500	7.3 HF	1,397,222
4/14/2025	7.9	<1.0	<1.0	<1.5	2,300	2,500	7.2 HF	1,449,826
	12	3.4	<1.0	<1.5	2,400	2,600	7.6 HF	1,507,346

- Notes:
 (1): initial water sample
 (2): water pump not functioning
 µg/L: micrograms per liter

 - huge. Indegrains per inter
 purhos/cm: micromhos per centimeter
 mg/L: milligrams per liter
 ND: not detected, practical quantitation limit unknown
 NMWQCC: New Mexico Water Quality Control Commission
 - -: not analyzed
- -- , not analyzed

 < indicates result less than the stated laboratory reporting limit (RL)</p>
 HF: Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample analyzed outside of hold time.
 Concentrations in bold and shaded exceed the New Mexico Water Quality Control Commission Standards, 20.6.2 of the New Mexico Administrative Code

ENSOLUM

TABLE 3 **GAS AND AIR VENTED** Federal 18 #1T **Hilcorp Energy Company** San Juan County, New Mexico Total Vented Gas Date SCFM **ACFM** and Air (MCF) 1/7/2020 3 6 27,954 1/17/2020 3 6 28,040 1/30/2020 3 6 28,153 2/12/2020 3 6 28.265 2/25/2020 6 28,377 4/3/2020 3 6 28,705 3 28.756 4/9/2020 6 3 6 28,808 4/15/2020 4/23/2020 3 6 28,877 4/30/2020 3 6 28,937 5/15/2020 3 6 29.067 5/21/2020 3 6 29,118 3 6 29,179 3 6 6/5/2020 29,239 6/29/2020 0 0 Hot, not running 7/8/2020 0 0 Unit Down 0 0 8/11/2020 Unit Down 0 0 8/25/2020 Unit Down 9/16/2020 0 0 Unit Down 0 0 9/22/2020 Unit Down 0 0 Unit Down 10/26/2020 11/9/2020 0 0 Unit Down 12/8/2020 0 0 Unit Down 0 Unit Down 1/5/2021 0 1/20/2021 0 0 Unit Down 2/11/2021 0 0 Unit Down 2/17/2021 0 0 Unit Down 3/22/2021 0 0 Unit Down 5.6 7 *3/31/2021 29,241 5.6 29,262 6/29/2021 9/30/2021 5.6 7 29,281 7 12/31/2021 5.6 29,320 1/19/2022 5.6 29.328 1/24/2022 5.6 7 29,353 3/31/2022 5.6 7 29,991 6/14/2022 5.6 30.715 9/30/2022 5.6 31,759 5.6 32,647 3/31/2023 3.1 3.9 33,132 2.5 3.1 6/30/2023 33,527 9/27/2023 2.25 2.8 33,874 2.05 2.6 34,198 12/27/2023 3/26/2024 2.75 3.5 34,628 6/10/2024 2.5 3.1 34,958 2.25 9/18/2024 2.8 35,348 1.75 2.2 12/19/2024 35,628 3/29/2025 3.25 4.1 36,192 6/27/2025 3.3 4.2 36,708 9/27/2025

Notes:

ACFM - flow rate in actual cubic feet per minute

MCF - thousand cubic feet

SCFM - flow rate in standard cubic feet per minute

* - Pump operated from 3/23 - 3/31/2021.

SCFM per day based on manufacture specifications.

ACFM is estimated based on site elevation and/or observed vacuum

Ensolum 1 of 1

APPENDIX A

Laboratory Analytical Reports

ANALYTICAL REPORT

PREPARED FOR

Attn: Mitch Killough Hilcorp Energy PO BOX 4700 Farmington, New Mexico 87499

Generated 8/12/2025 1:03:36 PM

JOB DESCRIPTION

Federal 18 1T

JOB NUMBER

885-30126-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Page 2 of 16

Generated 8/12/2025 1:03:36 PM

Authorized for release by Michelle Garcia, Project Manager michelle.garcia@et.eurofinsus.com (505)345-3975

8/12/2025

Client: Hilcorp Energy
Laboratory Job ID: 885-30126-1
Project/Site: Federal 18 1T

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	8
QC Association Summary	11
Lab Chronicle	12
Certification Summary	13
Chain of Custody	15
Receipt Checklists	16

2

3

4

6

8

9

10

. .

Definitions/Glossary

Client: Hilcorp Energy Job ID: 885-30126-1

Project/Site: Federal 18 1T

Qualifiers

General Chemistry

Qualifier **Qualifier Description**

Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
‡	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Case Narrative

Client: Hilcorp Energy

Job ID: 885-30126-1

Project: Federal 18 1T

Job ID: 885-30126-1 Eurofins Albuquerque

Job Narrative 885-30126-1

The analytical test results presented in this report meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page, unless otherwise noted. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable. Regulated compliance samples (e.g. SDWA, NPDES) must comply with associated agency requirements/permits.

- Matrix-specific batch QC (e.g., MS, MSD, SD) may not be reported when insufficient sample volume is available or when site-specific QC samples are not submitted. In such cases, a Laboratory Control Sample Duplicate (LCSD) may be analyzed to provide precision data for the batch.
- For samples analyzed using surrogate and/or isotope dilution analytes, any recoveries falling outside of established acceptance criteria are re-prepared and/or re-analyzed to confirm results, unless the deviation is due to sample dilution or otherwise explained in the case narrative.

Receipt

The sample was received on 8/2/2025 8:15 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.4°C.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Albuquerque

6

4

5

7

8

9

10

Client Sample Results

Client: Hilcorp Energy Job ID: 885-30126-1

Project/Site: Federal 18 1T

Client Sample ID: MW-1 Date Collected: 07/31/25 12:20

Date Received: 08/02/25 08:15

Lab Sample ID: 885-30126-1

Matrix: Water

	Prepared	Analyzed	Dil Fac
_		08/08/25 22:50	

Analyte	Result	Qualifier F	RL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND	1	1.0	ug/L			08/08/25 22:50	
1,1,1-Trichloroethane	ND	2	2.0	ug/L			08/08/25 22:50	
1,1,2,2-Tetrachloroethane	ND	2	2.0	ug/L			08/08/25 22:50	
1,1,2-Trichloroethane	ND	1	1.0	ug/L			08/08/25 22:50	
1,1-Dichloroethane	ND	1	1.0	ug/L			08/08/25 22:50	
1,1-Dichloroethene	ND	1	1.0	ug/L			08/08/25 22:50	
1,1-Dichloropropene	ND	1	1.0	ug/L			08/08/25 22:50	
1,2,3-Trichlorobenzene	ND	1	1.0	ug/L			08/08/25 22:50	
1,2,3-Trichloropropane	ND	2	2.0	ug/L			08/08/25 22:50	
1,2,4-Trichlorobenzene	ND	1	1.0	ug/L			08/08/25 22:50	
1,2,4-Trimethylbenzene	ND	1	1.0	ug/L			08/08/25 22:50	
1,2-Dibromo-3-Chloropropane	ND	2	2.0	ug/L			08/08/25 22:50	
1,2-Dibromoethane (EDB)	ND		1.0	ug/L			08/08/25 22:50	
1,2-Dichlorobenzene	ND	1	1.0	ug/L			08/08/25 22:50	
1,2-Dichloroethane (EDC)	ND		1.0	ug/L			08/08/25 22:50	
1,2-Dichloropropane	ND		1.0	ug/L			08/08/25 22:50	
1,3,5-Trimethylbenzene	ND		1.0	ug/L			08/08/25 22:50	
1,3-Dichlorobenzene	ND		1.0	ug/L			08/08/25 22:50	
1,3-Dichloropropane	ND		1.0	ug/L			08/08/25 22:50	
1,4-Dichlorobenzene	ND		1.0	ug/L			08/08/25 22:50	
1-Methylnaphthalene	ND		1.0	ug/L			08/08/25 22:50	
2,2-Dichloropropane	ND		2.0	ug/L			08/08/25 22:50	
2-Butanone	ND		10	ug/L			08/08/25 22:50	
2-Chlorotoluene	ND		1.0	ug/L ug/L			08/08/25 22:50	
2-Hexanone	ND		1.0 10	ug/L ug/L			08/08/25 22:50	
2-Methylnaphthalene	ND		1.0	ug/L			08/08/25 22:50	
4-Chlorotoluene	ND		1.0	ug/L ug/L			08/08/25 22:50	
4-Isopropyltoluene	ND						08/08/25 22:50	
			1.0	ug/L				
4-Methyl-2-pentanone	ND ND		10 10	ug/L			08/08/25 22:50	
Acetone				ug/L			08/08/25 22:50	
Benzene	12		1.0	ug/L			08/08/25 22:50	
Bromobenzene	ND		1.0	ug/L			08/08/25 22:50	
Bromodichloromethane	ND		1.0	ug/L			08/08/25 22:50	
Dibromochloromethane	ND		1.0	ug/L			08/08/25 22:50	
Bromoform	ND		1.0	ug/L			08/08/25 22:50	
Bromomethane	ND		3.0	ug/L			08/08/25 22:50	
Carbon disulfide	ND		10	ug/L			08/08/25 22:50	
Carbon tetrachloride	ND		1.0	ug/L			08/08/25 22:50	
Chlorobenzene	ND		1.0	ug/L			08/08/25 22:50	
Chloroethane	ND		2.0	ug/L			08/08/25 22:50	
Chloroform	ND		1.0	ug/L			08/08/25 22:50	
Chloromethane	ND	3	3.0	ug/L			08/08/25 22:50	
cis-1,2-Dichloroethene	ND		1.0	ug/L			08/08/25 22:50	
cis-1,3-Dichloropropene	ND		1.0	ug/L			08/08/25 22:50	
Dibromomethane	ND		1.0	ug/L			08/08/25 22:50	
Dichlorodifluoromethane	ND	1	1.0	ug/L			08/08/25 22:50	
Ethylbenzene	ND	1	1.0	ug/L			08/08/25 22:50	
Hexachlorobutadiene	ND	1	1.0	ug/L			08/08/25 22:50	
Isopropylbenzene	ND	1	1.0	ug/L			08/08/25 22:50	

Job ID: 885-30126-1

Client: Hilcorp Energy Project/Site: Federal 18 1T

Client Sample ID: MW-1 Lab Sample ID: 885-30126-1

Date Collected: 07/31/25 12:20 Matrix: Water

Date Received: 08/02/25 08:15

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	MD		2.0	ug/L			08/08/25 22:50	1
Methylene Chloride	ND		2.5	ug/L			08/08/25 22:50	1
n-Butylbenzene	ND		3.0	ug/L			08/08/25 22:50	1
N-Propylbenzene	ND		1.0	ug/L			08/08/25 22:50	1
Naphthalene	ND		2.0	ug/L			08/08/25 22:50	1
sec-Butylbenzene	ND		1.0	ug/L			08/08/25 22:50	1
Styrene	ND		1.0	ug/L			08/08/25 22:50	1
tert-Butylbenzene	ND		1.0	ug/L			08/08/25 22:50	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			08/08/25 22:50	1
Toluene	3.4		1.0	ug/L			08/08/25 22:50	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			08/08/25 22:50	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			08/08/25 22:50	1
Trichloroethene (TCE)	ND		1.0	ug/L			08/08/25 22:50	1
Trichlorofluoromethane	ND		1.0	ug/L			08/08/25 22:50	1
Vinyl chloride	ND		1.0	ug/L			08/08/25 22:50	1
Xylenes, Total	ND		1.5	ug/L			08/08/25 22:50	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		70 - 130		-		08/08/25 22:50	1
Toluene-d8 (Surr)	99		70 - 130				08/08/25 22:50	1
4-Bromofluorobenzene (Surr)	92		70 - 130				08/08/25 22:50	1
Dibromofluoromethane (Surr)	93		70 - 130				08/08/25 22:50	1

(General Chemistry								
1	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
١ī	Total Dissolved Solids (SM 2540C)	2400		100	mg/L	:		08/06/25 14:20	1
5	Specific Conductance (SM 2510B)	2600		10	umhos/cm			08/07/25 16:40	1
F	oH (SM 4500 H+ B)	7.6	HF	0.1	SU			08/07/25 16:40	1

Eurofins Albuquerque

2

3

5

9

10

QC Sample Results

Client: Hilcorp Energy Job ID: 885-30126-1

Project/Site: Federal 18 1T

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 885-31924/5 **Matrix: Water**

Client Sample ID: Method Blank **Prep Type: Total/NA**

6	
O	
	6

	МВ					_	_	
Analyte		Qualifier	RL	Unit	<u>D</u> _	Prepared	Analyzed	Dil Fa
I,1,1,2-Tetrachloroethane	ND		1.0	ug/L			08/08/25 15:24	
1,1,1-Trichloroethane	ND		2.0	ug/L			08/08/25 15:24	
I,1,2,2-Tetrachloroethane	ND		2.0	ug/L			08/08/25 15:24	
,1,2-Trichloroethane	ND		1.0	ug/L			08/08/25 15:24	
,1-Dichloroethane	ND		1.0	ug/L			08/08/25 15:24	
I,1-Dichloroethene	ND		1.0	ug/L			08/08/25 15:24	
1,1-Dichloropropene	ND		1.0	ug/L			08/08/25 15:24	
1,2,3-Trichlorobenzene	ND		1.0	ug/L			08/08/25 15:24	
,2,3-Trichloropropane	ND		2.0	ug/L			08/08/25 15:24	
1,2,4-Trichlorobenzene	ND		1.0	ug/L			08/08/25 15:24	
1,2,4-Trimethylbenzene	ND		1.0	ug/L			08/08/25 15:24	
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L			08/08/25 15:24	
1,2-Dibromoethane (EDB)	ND		1.0	ug/L			08/08/25 15:24	
1,2-Dichlorobenzene	ND		1.0	ug/L			08/08/25 15:24	
1,2-Dichloroethane (EDC)	ND		1.0	ug/L			08/08/25 15:24	
,2-Dichloropropane	ND		1.0	ug/L			08/08/25 15:24	
1,3,5-Trimethylbenzene	ND		1.0	ug/L			08/08/25 15:24	
1,3-Dichlorobenzene	ND		1.0	ug/L			08/08/25 15:24	
I,3-Dichloropropane	ND		1.0	ug/L			08/08/25 15:24	
I,4-Dichlorobenzene	ND		1.0	ug/L			08/08/25 15:24	
-Methylnaphthalene	ND		4.0	ug/L			08/08/25 15:24	
2,2-Dichloropropane	ND		2.0	ug/L			08/08/25 15:24	
-Butanone	ND		10	ug/L			08/08/25 15:24	
-Chlorotoluene	ND		1.0	ug/L			08/08/25 15:24	
?-Hexanone	ND		10	ug/L			08/08/25 15:24	
2-Methylnaphthalene	ND		4.0	ug/L			08/08/25 15:24	
-Chlorotoluene	ND		1.0	ug/L			08/08/25 15:24	
l-Isopropyltoluene	ND		1.0	ug/L			08/08/25 15:24	
1-Methyl-2-pentanone	ND		10	ug/L			08/08/25 15:24	
Acetone	ND		10	ug/L			08/08/25 15:24	
Benzene	ND		1.0	ug/L			08/08/25 15:24	
Bromobenzene	ND		1.0	ug/L			08/08/25 15:24	
Bromodichloromethane	ND		1.0	ug/L			08/08/25 15:24	
Dibromochloromethane	ND		1.0	ug/L			08/08/25 15:24	
Bromoform	ND		1.0	ug/L			08/08/25 15:24	
Bromomethane	ND		3.0	ug/L			08/08/25 15:24	
Carbon disulfide	ND		10	ug/L			08/08/25 15:24	
Carbon tetrachloride	ND		1.0	ug/L			08/08/25 15:24	
Chlorobenzene	ND		1.0	ug/L			08/08/25 15:24	
Chloroethane	ND		2.0	ug/L ug/L			08/08/25 15:24	
Chloroform	ND		1.0	ug/L			08/08/25 15:24	
Chloromethane	ND		3.0	ug/L			08/08/25 15:24	
cis-1,2-Dichloroethene	ND			.			08/08/25 15:24	
	ND ND		1.0 1.0	ug/L			08/08/25 15:24	
cis-1,3-Dichloropropene Dibromomethane	ND ND			ug/L				
			1.0	ug/L			08/08/25 15:24	
Dichlorodifluoromethane	ND		1.0	ug/L			08/08/25 15:24	
Ethylbenzene	ND		1.0	ug/L			08/08/25 15:24	
Hexachlorobutadiene	ND		1.0	ug/L			08/08/25 15:24	

Job ID: 885-30126-1

Client: Hilcorp Energy Project/Site: Federal 18 1T

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

мв мв

Lab Sample ID: MB 885-31924/5

Matrix: Water Analysis Batch: 31924 Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Isopropylbenzene	ND		1.0	ug/L			08/08/25 15:24	1	
Methyl-tert-butyl Ether (MTBE)	ND		2.0	ug/L			08/08/25 15:24	1	
Methylene Chloride	ND		2.5	ug/L			08/08/25 15:24	1	
n-Butylbenzene	ND		3.0	ug/L			08/08/25 15:24	1	
N-Propylbenzene	ND		1.0	ug/L			08/08/25 15:24	1	
Naphthalene	ND		2.0	ug/L			08/08/25 15:24	1	
sec-Butylbenzene	ND		1.0	ug/L			08/08/25 15:24	1	
Styrene	ND		1.0	ug/L			08/08/25 15:24	1	
tert-Butylbenzene	ND		1.0	ug/L			08/08/25 15:24	1	
Tetrachloroethene (PCE)	ND		1.0	ug/L			08/08/25 15:24	1	
Toluene	ND		1.0	ug/L			08/08/25 15:24	1	
trans-1,2-Dichloroethene	ND		1.0	ug/L			08/08/25 15:24	1	
trans-1,3-Dichloropropene	ND		1.0	ug/L			08/08/25 15:24	1	
Trichloroethene (TCE)	ND		1.0	ug/L			08/08/25 15:24	1	
Trichlorofluoromethane	ND		1.0	ug/L			08/08/25 15:24	1	
Vinyl chloride	ND		1.0	ug/L			08/08/25 15:24	1	

MB MB

ND

		·· ·			
Surrogate	%Recovery Q	Qualifier Limits	Prepare	d Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109	70 - 130		08/08/25 15:24	1
Toluene-d8 (Surr)	98	70 - 130		08/08/25 15:24	1
4-Bromofluorobenzene (Surr)	92	70 - 130		08/08/25 15:24	1
Dibromofluoromethane (Surr)	100	70 - 130		08/08/25 15:24	1

1.5

ug/L

Lab Sample ID: LCS 885-31924/4

Released to Imaging: 10/21/2025 10:21:00 AM

Matrix: Water

Xylenes, Total

Analysis Batch: 31924

Client Sample ID: Lab Control Sample Prep Type: Total/NA

08/08/25 15:24

Spike	LCS	LCS				%Rec	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
20.0	17.5		ug/L		88	70 - 130	
20.0	19.4		ug/L		97	70 - 130	
20.0	19.4		ug/L		97	70 - 130	
20.0	19.7		ug/L		99	70 - 130	
20.0	17.6		ug/L		88	70 - 130	
	20.0 20.0 20.0 20.0 20.0	Added Result 20.0 17.5 20.0 19.4 20.0 19.4 20.0 19.7	Added Result Qualifier 20.0 17.5 20.0 19.4 20.0 19.4 20.0 19.7	Added Result Qualifier Unit 20.0 17.5 ug/L 20.0 19.4 ug/L 20.0 19.4 ug/L 20.0 19.7 ug/L	Added Result Qualifier Unit D 20.0 17.5 ug/L 20.0 19.4 ug/L 20.0 19.4 ug/L 20.0 19.7 ug/L	Added Result Qualifier Unit D %Rec 20.0 17.5 ug/L 88 20.0 19.4 ug/L 97 20.0 19.4 ug/L 97 20.0 19.7 ug/L 99	Added Result Qualifier Unit D %Rec Limits 20.0 17.5 ug/L 88 70 - 130 20.0 19.4 ug/L 97 70 - 130 20.0 19.4 ug/L 97 70 - 130 20.0 19.7 ug/L 99 70 - 130

LCS	LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		70 - 130
Toluene-d8 (Surr)	97		70 - 130
4-Bromofluorobenzene (Surr)	94		70 - 130
Dibromofluoromethane (Surr)	97		70 - 130

Job ID: 885-30126-1

Client: Hilcorp Energy Project/Site: Federal 18 1T

Method: 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 885-31720/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 31720

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	ND		50	mg/L			08/06/25 14:20	1

Lab Sample ID: LCS 885-31720/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 31720

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Dissolved Solids	1000	1010		mg/L		101	80 - 120	

Method: SM 2510B - Conductivity, Specific Conductance

Lab Sample ID: LCS 885-31869/44 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 31869

		Spike	LCS	LCS				%Rec	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Specific Conductance		100	107		umhos/cm		107	85 - 115	

Lab Sample ID: MRL 885-31869/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 31869

	Spike	MRL MRL			%Rec
Analyte	Added	Result Qualifier	Unit	D %Rec	Limits
Specific Conductance	9.52	ND ND	umhos/cm	101	50 - 150

Lab Sample ID: 885-30126-1 DU Client Sample ID: MW-1 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 31869

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Specific Conductance	2600		 2620		umhos/cm	_	1	20

Method: SM 4500 H+ B - pH

Lab Sample ID: 885-30126-1 DU Client Sample ID: MW-1 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 31870

	Sample	Sample	טט	טע				KPD	
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit	
pH	7.6	HF	7.7		SU		2	20	

QC Association Summary

Client: Hilcorp Energy Job ID: 885-30126-1

Project/Site: Federal 18 1T

GC/MS VOA

Analysis Batch: 31924

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-30126-1	MW-1	Total/NA	Water	8260B	
MB 885-31924/5	Method Blank	Total/NA	Water	8260B	
LCS 885-31924/4	Lab Control Sample	Total/NA	Water	8260B	

General Chemistry

Analysis Batch: 31720

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-30126-1	MW-1	Total/NA	Water	2540C	
MB 885-31720/1	Method Blank	Total/NA	Water	2540C	
LCS 885-31720/2	Lab Control Sample	Total/NA	Water	2540C	

Analysis Batch: 31869

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-30126-1	MW-1	Total/NA	Water	SM 2510B	
LCS 885-31869/44	Lab Control Sample	Total/NA	Water	SM 2510B	
MRL 885-31869/3	Lab Control Sample	Total/NA	Water	SM 2510B	
885-30126-1 DU	MW-1	Total/NA	Water	SM 2510B	

Analysis Batch: 31870

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-30126-1	MW-1	Total/NA	Water	SM 4500 H+ B	
885-30126-1 DU	MW-1	Total/NA	Water	SM 4500 H+ B	

Eurofins Albuquerque

2

3

4

6

9

10

Lab Chronicle

Client: Hilcorp Energy Job ID: 885-30126-1

Project/Site: Federal 18 1T

Date Received: 08/02/25 08:15

Client Sample ID: MW-1 Lab Sample ID: 885-30126-1 Date Collected: 07/31/25 12:20

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	31924	СМ	EET ALB	08/08/25 22:50
Total/NA	Analysis	2540C		1	31720	HR	EET ALB	08/06/25 14:20
Total/NA	Analysis	SM 2510B		1	31869	DL	EET ALB	08/07/25 16:40
Total/NA	Analysis	SM 4500 H+ B		1	31870	DL	EET ALB	08/07/25 16:40

Laboratory References:

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Accreditation/Certification Summary

Client: Hilcorp Energy Job ID: 885-30126-1

Project/Site: Federal 18 1T

Laboratory: Eurofins Albuquerque

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progr	am	Identification Number	Expiration Date
New Mexico	State	um	NM9425, NM0901	02-27-26
THOW MOXICO	Oldio		1400 120, 1400001	02 27 20
- ·	ire included in this report, bu es not offer certification .	ut the laboratory is not certi	fied by the governing authority. This lis	t may include analytes
Analysis Method	Prep Method	Matrix	Analyte	
2540C		Water	Total Dissolved Solids	
8260B		Water	1,1,1,2-Tetrachloroethane	
8260B		Water	1,1,1-Trichloroethane	
8260B		Water	1,1,2,2-Tetrachloroethane	
8260B		Water	1,1,2-Trichloroethane	
8260B		Water	1,1-Dichloroethane	
8260B		Water	1,1-Dichloroethene	
8260B		Water	1,1-Dichloropropene	
8260B		Water	1,2,3-Trichlorobenzene	
8260B		Water	1,2,3-Trichloropropane	
8260B		Water	1,2,4-Trichlorobenzene	
8260B		Water	1,2,4-Trimethylbenzene	
8260B		Water	1,2-Dibromo-3-Chloroprop	ane
8260B		Water	1,2-Dibromoethane (EDB)	
8260B		Water	1,2-Dichlorobenzene	
8260B		Water	1,2-Dichloroethane (EDC)	
8260B		Water	1,2-Dichloropropane	
8260B		Water	1,3,5-Trimethylbenzene	
8260B		Water	1,3-Dichlorobenzene	
8260B		Water	1,3-Dichloropropane	
8260B		Water	1,4-Dichlorobenzene	
8260B		Water	1-Methylnaphthalene	
8260B		Water	2,2-Dichloropropane	
8260B		Water	2-Butanone	
8260B		Water	2-Chlorotoluene	
8260B		Water	2-Hexanone	
8260B		Water	2-Methylnaphthalene	
8260B		Water	4-Chlorotoluene	
8260B		Water	4-Isopropyltoluene	
8260B		Water	4-Methyl-2-pentanone	
8260B		Water	Acetone	
8260B		Water	Benzene	
8260B		Water	Bromobenzene	
8260B		Water	Bromodichloromethane	
8260B		Water	Bromoform	
8260B		Water	Bromomethane	
8260B		Water	Carbon disulfide	
8260B		Water	Carbon tetrachloride	
8260B		Water	Chlorobenzene	
8260B		Water	Chloroethane	
8260B		Water	Chloroform	
8260B		Water	Chloromethane	
8260B		Water	cis-1,2-Dichloroethene	
8260B		Water	cis-1,3-Dichloropropene	
8260B		Water	Dibromochloromethane	

Eurofins Albuquerque

3

4

8

10

Accreditation/Certification Summary

Client: Hilcorp Energy Job ID: 885-30126-1

Project/Site: Federal 18 1T

Laboratory: Eurofins Albuquerque (Continued)

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

ority	Progra	nm	Identification Number	Expiration Date
The following analytes	are included in this report, bu	t the laboratory is not certif	ied by the governing authority. This	list may include analyte
for which the agency do	oes not offer certification.			
Analysis Method	Prep Method	Matrix	Analyte	
8260B		Water	Dibromomethane	
8260B		Water	Dichlorodifluoromethan	е
8260B		Water	Ethylbenzene	
8260B		Water	Hexachlorobutadiene	
8260B		Water	Isopropylbenzene	
8260B		Water	Methylene Chloride	
8260B		Water	Methyl-tert-butyl Ether (MTBE)
8260B		Water	Naphthalene	
8260B		Water	n-Butylbenzene	
8260B		Water	N-Propylbenzene	
8260B		Water	sec-Butylbenzene	
8260B		Water	Styrene	
8260B		Water	tert-Butylbenzene	
8260B		Water	Tetrachloroethene (PCE	Ξ)
8260B		Water	Toluene	
8260B		Water	trans-1,2-Dichloroethen	е
8260B		Water	trans-1,3-Dichloroprope	ne
8260B		Water	Trichloroethene (TCE)	
8260B		Water	Trichlorofluoromethane	
8260B		Water	Vinyl chloride	
8260B		Water	Xylenes, Total	
SM 2510B		Water	Specific Conductance	
SM 4500 H+ B		Water	pH	
on	NELAF	o	NM100001	02-26-26

Eurofins Albuquerque

3

А

5

7

q

10

Page 15 of 16

8/12/2025

(6)
a
-
-
5
<u></u>
~
\sim
_
200
-
9
\sim
-
w
~~
1.5
20
9
12
~
Ch.
2
- 7
N
-
00
4
S
1
-
-
_

Chain-of-Custody Record	Turn-Around Ti	me:	- HALL ENVIRONMENTAL
Client: Hilcorp Farmington NM	X Standard	□ Rush_	HALL ENVIRONMENTAL ANALYSIS LABORATORY
	Project Name:	- Tradii	
Mailing Address: 382 Road 3100 Aztec, NM 87410			www.hallenvironmental.com
Mailing Address. 562 Road 5100 Aztec, NW 87410		Federal 18 1T	4901 Hawkins NE - Albuquerque, NM 87109
Billing Address: PO Box 61529 Houston, TX 77208	Project #:		Tel. 505-345-3975 Fax 505-345-4107
Phone #: 505-486-9543			Analysis Request
email or Fax#: Brandon.Sinclair@hilcorp.com	Project Manage	er:	
QA/QC Package:		,	
□ Standard □ Level 4 (Full Validation)	Mitch	Killough	
Accreditation: Az Compliance	Sampler:	Brandon Sinclair	_
□ NELAC □ Other	On Ice:	Yes No Abby	
□ EDD (Type)	# of Coolers:		
	Cooler Temp(Incl	uding CF): 5.4 - 0.2 - 5.4 -	
Date Time Matrix Sample Name	Container Type and #	Preservativ HEAL No.	pH, Specific Conductance, TDS 8260B Full Suite
7-31 /220 Water MW-1	(3) 40ml VOA (1) 500ml Plastic	HCI Cool	
7 71 72-5 Training	Flasuc		XX
			
Date: Time: Relinquished by:	Received by:	/ia: Date Time 8/1/28 /54x	Remarks: Special Pricing See Andy
Daté: Time: Relinquished by:	Received by:	la: Course Date Time	1
8/1/25 1704 Cence	6	> 8/2/25 8:15	
If necessary, samples submitted to Hall Environmental m	ay be subcontracted to other a	accredited laboratories. This serves as notice of the	his possibility. Any sub-contracted data will be clearly notated on the analytical report,

Page 23 of 25

10

л

_

N

, S

Login Sample Receipt Checklist

Client: Hilcorp Energy Job Number: 885-30126-1

Login Number: 30126 List Source: Eurofins Albuquerque

List Number: 1

Creator: Casarrubias, Tracy

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 514732

CONDITIONS

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	514732
	Action Type:
	[REPORT] Alternative Remediation Report (C-141AR)

CONDITIONS

Created	Condition	Condition Date
Ву		
nvelez	1. Continue with O & M schedule. 2. Submit next quarterly report by January 15, 2026.	10/21/2025