

January 9, 2026

New Mexico Oil Conservation Division

New Mexico Energy, Minerals, and Natural Resources Department
1220 South St. Francis Drive
Santa Fe, New Mexico 87505

Re: Fourth Quarter 2025 – Remediation System Quarterly Report

Federal 18 #1T
San Juan County, New Mexico
Hilcorp Energy Company
NMOCD Incident Number: NCS2103335776

To Whom it May Concern:

Ensolum, LLC (Ensolum), on behalf of Hilcorp Energy Company (Hilcorp), presents this *Fourth Quarter 2025 – Remediation System Quarterly Report* summarizing fourth quarter 2025 activities at the former Federal 18 #1T coalbed methane gas well (Site), located in Unit M, Section 18, Township 30 North, Range 12 West in the City of Farmington, New Mexico. The casing of the original gas well has been modified to vent gas and purge water from the Ojo Alamo and Nacimiento Formations. Since initiation of the remediation system in 2010, quarterly reports have been submitted to the New Mexico Oil Conservation Division (NMOCD) to record activities performed at the Site, as well as document well-casing pressures from nearby domestic water well SJ-01737, the volume of gas vented from the Site's well, and groundwater analytical results collected from the Site's well.

SITE BACKGROUND

As part of an ongoing effort between the NMOCD and Hilcorp (Site was originally owned and operated by XTO Energy, Inc. [XTO]), the agreed upon remedial option for the Site was to install a vacuum system at the Site to vent gas from the Nacimiento formation, which overlies the Ojo Alamo Formation. Gas found in the Nacimiento formation could have originated from several contributing sources in the area including existing and/or abandoned gas wells near the Site. In agreement with the NMOCD, XTO modified the Site's production well to vent gas and recover contaminated groundwater by setting a plug at a depth of approximately 513 feet below ground surface (bgs). Perforations were made in the casing at 437 feet to 452 feet bgs and 457 feet to 473 feet bgs in order to monitor groundwater and vent gas from the Nacimiento Formation. Based on initial groundwater sampling results, XTO recommended pumping the aquifer until groundwater results were below the New Mexico Water Quality Control Commission (NMWQCC) standards for applicable chemicals of concern (COCs).

A submersible water pump was installed in the Site's well in November 2010 at a depth of approximately 485 feet bgs in order to recover impacted groundwater. Based on aquifer tests performed by XTO, the water pump was set to maintain a static water level of approximately 473 feet bgs. The water pump is plumbed into the existing water lines and stored in the on-Site 210-barrel (bbl) water tank, which is regularly emptied for off-Site disposal. A vacuum pump was

subsequently installed at the Site's well to also remove gas entrained in the formation. A portable generator was originally placed at the Site to power both the vacuum and water pumps. Generator maintenance issues led to the system being electrified on February 3, 2011.

Operation and maintenance (O&M) inspections are conducted by Hilcorp personnel regularly to check the system and verify proper water and vacuum pump operation, record water meter volumes, and verify no other Site conditions dictate system maintenance and/or adjustment. Possible pressure variations in the subsurface due to the vacuum pump are monitored using nearby water well SJ-01737. Casing pressure measurements from well SJ-01737 are included in Table 1.

FOURTH QUARTER 2025 SITE ACTIVITIES AND RESULTS

Approximately 47,721 gallons (1,136 bbls) of water were removed from the Site's well between the third quarter and fourth quarter of 2025 sampling events. To date, approximately 1,555,067 gallons (37,025 bbls) of impacted water have been removed from the Site. A water sample from the well was collected on November 11, 2025, and submitted to Eurofins Environment Testing for laboratory analysis. Specifically, the water sample was analyzed for the following COCs: volatile organic compounds (VOCs), including benzene, toluene, ethylbenzene, and xylenes (BTEX), following Environmental Protection Agency (EPA) Method 8260B, specific conductance (or electrical conductivity) following Standard Method (SM) 2510B, pH following Method SM4500-H+B, and total dissolved solids (TDS) following Method SM2540C.

Based on results from the November 2025 sampling event, benzene and TDS remain at concentrations exceeding the applicable NMWQCC standards and appear to be similar to historical results. Analytical results are summarized in Table 2, with complete laboratory reports attached as Appendix A.

The Site vacuum pump operated during the fourth quarter based on a setting of 690 minutes on and 30 minutes off (totaling 23 hours runtime per day). During a routine site visit on December 16, 2025, Hilcorp personnel discovered that the vacuum pump had seized. A replacement blower was immediately purchased and was received and replaced on December 29, 2025. During the fourth quarter of 2025, the pump operated through at least December 11, 2025 (the last site visit prior to the vacuum pump breaking) at an average flow rate of 3.3 actual cubic feet per minute (ACFM). Approximately 37,436 thousand cubic feet (MCF) of gas/air have been emitted from the Site's well since the system began operating in 2010. There were no deviations from the regular operation and maintenance activities for the system during the fourth quarter of 2025. Gas/air volumes vented by the system are summarized in Table 3.

RECOMMENDATIONS

O&M visits will continue to be performed by Hilcorp personnel to verify the system is operating as designed. Deviations from regular operations will be noted on field logs and included in the following quarterly report. Hilcorp will continue to remove and monitor water from the Site until benzene and TDS concentrations are compliant with NMWQCC standards for eight consecutive quarters.

We appreciate the opportunity to provide this report to the NMOCD. If you should have any questions or comments regarding this proposal, please contact the undersigned.

Ensolum, LLC

Stuart Hyde
Senior Managing Geologist
(970) 903-1607
shyde@ensolum.com

Attachments:

Table 1	Well SJ-01737 Casing Pressure Readings
Table 2	Water Analytical Results
Table 3	Gas and Air Vented
Appendix A	Laboratory Analytical Reports

TABLES

TABLE 1
WELL SJ-01737 CASING PRESSURE READINGS
Federal 18 #1T
Hilcorp Energy Company
San Juan County, New Mexico

Sample Date	Casing Pressure (ounces)	Average
1/9/2024	0	0.000
1/18/2024	0	0.000
1/25/2024	0	0.000
1/31/2024	0	0.000
2/22/2024	0	0.000
3/7/2024	0	0.000
3/26/2024	0	0.000
6/10/2024	0	0.000
9/18/2024	0	0.000
10/10/2024	0	0.000
10/23/2024	0	0.000
11/11/2024	0	0.000
12/4/2024	0	0.000
12/19/2024	0	0.000
1/11/2025	0	0.000
1/16/2025	0	0.000
2/7/2025	0	0.000
2/20/2025	0	0.000
3/10/2025	0	0.000
3/29/2025	0	0.000
4/14/2025	0	0.000
4/24/2025	0	0.000
5/15/2025	0	0.000
5/20/2025	0	0.000
6/9/2025	0	0.000
6/27/2025	0	0.000
7/7/2025	0	0.000
7/31/2025	0	0.000
8/8/2025	0	0.000
8/25/2025	0	0.000
9/9/2025	0	0.000
9/27/2025	0	0.000
10/20/2025	0	0.000
10/30/2025	0	0.000
11/11/2025	0	0.000
11/18/2025	0	0.000
12/11/2025	0	0.000
12/27/2025	0	0.000

TABLE 2
WATER ANALYTICAL RESULTS
 Federal 18 #1T
 Hilcorp Energy Company
 San Juan County, New Mexico

Sample Date	Benzene ($\mu\text{g/L}$)	Toluene ($\mu\text{g/L}$)	Ethylbenzene ($\mu\text{g/L}$)	Xylene ($\mu\text{g/L}$)	TDS (mg/L)	Electrical Conductivity (umhos/cm)	pH	Purge Water Volume (gallons)
NMWQCC Standards	5.0	1,000	700	620	1,000	--	6 thru 9	--
11/5/2010	ND	5.2	ND	ND	1,400	2,600	7.2	NM
9/24/2010	150	ND	76	670	--	--	--	NM
9/24/2010	190	170	24	210	13,000	18,000	6.1	NM
9/24/2010	143	221	63.6	950	--	--	--	NM
9/24/2010	320	377	31.8	568	11,100	16,000	5.84	NM
12/10/2011	--	--	--	--	7,610	8,900	6.36	3,033
1/5/2011	67	93	7.9	25	--	--	--	7,798
1/5/2011	73	99	10	39	4,800	6,000	6.6	7,798
1/29/2011	60	93	10	33	--	4,900	6.4	10,791
2/28/2011	42	60	6.1	20	3,400	4,000	6.7	14,795
4/1/2011	23	27	1.8	6.8	2,700	3,100	6.8	31,238
4/29/2011	29	28	2.4	7.3	2,600	2,900	6.9	50,217
5/31/2011	14	19	1.4	4.9	2,500	2,800	6.7	76,513
6/14/2011	55	81	2.8	15	2,500	2,700	6.7	88,120
6/30/2011	52	67	2.6	12	2,500	2,700	6.9	101,209
8/15/2011	21	25	1.2	5.8	2,500	2,600	6.8	140,267
9/2/2011	10	12	0.64	3.2	2,500	2,600	7.2	155,801
9/16/2011	9.6	11	0.64	3	2,400	2,500	7.2	168,040
9/30/2011	7.2	8.7	0.64	2.5	2,500	2,600	7	180,393
10/28/2011	5.1	ND	1.8	2.7	2,300	2,600	6.9	205,220
11/30/2011	4	ND	3.9	2	2,500	2,600	7.1	233,488
12/30/2011	3.4	ND	ND	2.9	2,500	2,500	7.5	261,391
4/3/2012	6	ND	ND	1.6	--	--	--	351,300
4/9/2012	--	--	--	--	2,400	2,400	7.4	NM
7/3/2012	5.3	ND	ND	ND	2,300	2,400	7.4	NM
7/6/2012	--	--	--	--	--	--	--	441,053
9/19/2012	--	--	--	--	--	--	--	521,271
9/27/2012	6.2	ND	ND	ND	2,300	2,500	7.1	NM
12/14/2012	--	--	--	--	--	--	--	598,540
12/31/2012	13.9	1.1	ND	3.3	2,690	2,440	7.05	604,689
1/23/2013	160	190	ND	26	2,400	2,500	8	NM
2/22/2013	7.1	77	ND	1.8	2,100	2,500	7.1	605,860
5/2/2013	9	6.9	ND	ND	2,400	2,600	7.5	612,601
8/19/2013	20	11	ND	2.3	2,200	2,600	7.2	NM
9/23/2013	13	11	ND	2.2	2,300	2,500	7.1	621,744
11/25/2013	4.6	5.2	ND	ND	2,200	2,700	7.7	631,430
2/4/2014	15	17	0.72	3.1	2,200	2,500	7.3	636,120
10/1/2015	54.2	57	1.37	9.77	2,260	2,640	6.98	639,410
10/20/2015	42.3	39.9	0.964	7.06	2,330	1,460	7.09	642,650
3/28/2016	38	34.1	0.835	4.82	2,230	2,570	6.86	650,850
6/14/2016	78.3	58.4	1.16	7.22	2,890	2,600	6.89	704,371
8/29/2016	19	ND	ND	2.18	2,410	2,590	7.02	763,261
11/18/2016	13.2	5.61	ND	2.33	2,470	2,580	7.03	842,610
3/31/2017	9.61	7.87	ND	ND	2,300	2,570	7.28	858,190
6/16/2017	64.6	29.2	0.781	5.4	2,360	2,570	7.05	927,854
9/7/2017	4.61	1.73	ND	ND	2,030	2,450	7.14	997,330
12/5/2017	138	51.5	1.65	9.378	2,230	2,590	7.2	1,080,550
3/6/2018	19.9	14.8	0.543	2.71	2,290	2,620	7.13	1,080,840
8/7/2018	7.9	8.06	<0.5	<1.5	2,200	2,300	7.19	1,082,751
1/3/2019	7.07	3.29	0.177	1.08	2,080	6,750	6.35	1,120,220
2/22/2019	19.8	11.1	<0.5	3.97	2,270	2,710	7.46	1,120,366
5/24/2019	11.9	10.8	ND	ND	2,380	2,760	7.15	1,123,853
9/10/2019	23.2	18.8	ND	ND	2,260	2,600	7.37	1,125,478
10/29/2019	5.41	5.68	ND	ND	2,300	2,530	7.09	1,127,076
2/27/2020	20.7	19.3	ND	ND	2,280	2,580	7.06	1,128,506
5/15/2020	10.3	8.91	ND	ND	2,460	2,570	7.27	1,131,033
8/25/2020	3.9	3.5	ND	ND	2,190	2,640	7.62	1,131,100
10/27/2020	31.1	24.4	ND	ND	2,240	2,530	7.43	1,131,119
2/17/2021	73	<1	<1	<1.5	2,200	2,400	7.42	1,131,123
6/29/2021 (2)	--	--	--	--	--	--	--	1,134,031
9/30/2021	130	87	<5.0	8.1	2,300	2,500	7.20	1,134,167
12/6/2021	33	20	<1.0	6.0	2,430	2,500	7.15	1,143,239
2/17/2022	25	3.1	<1.0	2.7	2,380	2,600	7.17	1,156,355
4/12/2022	27	4.3	<1.0	2.0	2,360	2,500	7.13	1,169,456
7/15/2022	33	4.3	<1.0	1.3	2,480	2,600	7.13	1,191,754
10/11/2022	47	4.6	<1.0	2.0	2,320	2,600	7.24	1,210,479
1/12/2023	40	1.7	<1.0	<1.5	2,330	2,600	7.17	1,229,525
5/10/2023	32	1.7	<1.0	<1.5	2,320	2,600	6.73	1,253,497
7/24/2023	34	1.3	<1.0	<1.5	2,360	2,600	7.18	1,269,880
10/27/2023	31	<1.0	<1.0	<1.5	2,360	2,600	7.17	1,288,677
1/18/2024	47	<1.0	<1.0	<1.5	2,330	2,600	7.19	1,304,447
4/11/2024	42	<1.0	<1.0	<1.5	2,300	2,600	7.20	1,316,350
7/15/2024	46	1.1	<1.0	<1.5	2,400	2,500	7.40	1,331,838
10/24/2024	22	7.5	<1.0	<1.5	2,400	2,600	7.30	1,368,720
1/16/2025	12	1.2	<1.0	<1.5	2,400	2,500	7.3 HF	1,397,222
4/14/2025	7.9	<1.0	<1.0	<1.5	2,300	2,500	7.2 HF	1,449,826
7/31/2025	12	3.4	<1.0	<1.5	2,400	2,600	7.6 HF	1,507,346
11/11/2025	71	23	<1.0	2.5	2,300	2,600	7.2 HF	1,555,067

Notes:

(1): initial water sample
 (2): water pump not functioning
 $\mu\text{g/L}$: micrograms per liter
 $\mu\text{mhos/cm}$: micromhos per centimeter
 mg/L : milligrams per liter
 ND: not detected, practical quantitation limit unknown
 NMWQCC: New Mexico Water Quality Control Commission
 --: not analyzed
 <: indicates result less than the stated laboratory reporting limit (RL)
 HF: Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample analyzed outside of hold time.

Concentrations in **bold** and shaded exceed the New Mexico Water Quality Control Commission Standards, 20.6.2 of the New Mexico Administrative Code

TABLE 3 GAS AND AIR VENTED Federal 18 #1T Hilcorp Energy Company San Juan County, New Mexico			
Date	SCFM	ACFM	Total Vented Gas and Air (MCF)
1/7/2020	3	6	27,954
1/17/2020	3	6	28,040
1/30/2020	3	6	28,153
2/12/2020	3	6	28,265
2/25/2020	3	6	28,377
4/3/2020	3	6	28,705
4/9/2020	3	6	28,756
4/15/2020	3	6	28,808
4/23/2020	3	6	28,877
4/30/2020	3	6	28,937
5/15/2020	3	6	29,067
5/21/2020	3	6	29,118
5/29/2020	3	6	29,179
6/5/2020	3	6	29,239
6/29/2020	0	0	Hot, not running
7/8/2020	0	0	Unit Down
8/11/2020	0	0	Unit Down
8/25/2020	0	0	Unit Down
9/16/2020	0	0	Unit Down
9/22/2020	0	0	Unit Down
10/26/2020	0	0	Unit Down
11/9/2020	0	0	Unit Down
12/8/2020	0	0	Unit Down
1/5/2021	0	0	Unit Down
1/20/2021	0	0	Unit Down
2/11/2021	0	0	Unit Down
2/17/2021	0	0	Unit Down
3/22/2021	0	0	Unit Down
*3/31/2021	5.6	7	29,241
6/29/2021	5.6	7	29,262
9/30/2021	5.6	7	29,281
12/31/2021	5.6	7	29,320
1/19/2022	5.6	7	29,328
1/24/2022	5.6	7	29,353
3/31/2022	5.6	7	29,991
6/14/2022	5.6	7	30,715
9/30/2022	5.6	7	31,759
12/31/2022	5.6	7	32,647
3/31/2023	3.1	3.9	33,132
6/30/2023	2.5	3.1	33,527
9/27/2023	2.25	2.8	33,874
12/27/2023	2.05	2.6	34,198
3/26/2024	2.75	3.5	34,628
6/10/2024	2.5	3.1	34,958
9/18/2024	2.25	2.8	35,348
12/19/2024	1.75	2.2	35,628
3/29/2025	3.25	4.1	36,192
6/27/2025	3.3	4.2	36,708
9/27/2025	2.4	3.0	37,091
12/11/2025	2.65	3.3	37,436

Notes:

ACFM - flow rate in actual cubic feet per minute

MCF - thousand cubic feet

SCFM - flow rate in standard cubic feet per minute

* - Pump operated from 3/23 - 3/31/2021.

Pump was non-operational from 12/16/2025 to 12/29/2025

SCFM per day based on manufacture specifications.

ACFM is estimated based on site elevation and/or observed vacuum

APPENDIX A

Laboratory Analytical Reports

Environment Testing

1

2

3

4

5

6

7

8

9

10

11

ANALYTICAL REPORT

PREPARED FOR

Attn: Mitch Killough
Hilcorp Energy
PO BOX 4700
Farmington, New Mexico 87499

Generated 11/21/2025 12:42:49 PM

JOB DESCRIPTION

Federal 18 1 T

JOB NUMBER

885-37621-1

Eurofins Albuquerque
4901 Hawkins NE
Albuquerque NM 87109

See page two for job notes and contact information.

Released to Imaging: 1/23/2026 7:29:15 AM

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Authorized for release by
Michelle Garcia, Project Manager
michelle.garcia@et.eurofinsus.com
(505)345-3975

Generated
11/21/2025 12:42:49 PM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	8
QC Association Summary	11
Lab Chronicle	12
Certification Summary	13
Chain of Custody	15
Receipt Checklists	16

Definitions/Glossary

Client: Hilcorp Energy
 Project/Site: Federal 18 1 T

Job ID: 885-37621-1

Qualifiers**General Chemistry**

Qualifier	Qualifier Description
HF	Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
☀	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Case Narrative

Client: Hilcorp Energy
Project: Federal 18 1 T

Job ID: 885-37621-1

Job ID: 885-37621-1**Eurofins Albuquerque****Job Narrative
885-37621-1**

The analytical test results presented in this report meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page, unless otherwise noted. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable. Regulated compliance samples (e.g. SDWA, NPDES) must comply with associated agency requirements/permits.

- Matrix-specific batch QC (e.g., MS, MSD, SD) may not be reported when insufficient sample volume is available or when site-specific QC samples are not submitted. In such cases, a Laboratory Control Sample Duplicate (LCSD) may be analyzed to provide precision data for the batch.
- For samples analyzed using surrogate and/or isotope dilution analytes, any recoveries falling outside of established acceptance criteria are re-prepared and/or re-analyzed to confirm results, unless the deviation is due to sample dilution or otherwise explained in the case narrative.

Receipt

The sample was received on 11/13/2025 6:10 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.6°C.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Albuquerque

Client Sample Results

Client: Hilcorp Energy
Project/Site: Federal 18 1 T

Job ID: 885-37621-1

Client Sample ID: MW-1
Date Collected: 11/11/25 13:15
Date Received: 11/13/25 06:10Lab Sample ID: 885-37621-1
Matrix: Water

Method: SW846 8260B - Volatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L		11/21/25 03:51		1
1,1,1-Trichloroethane	ND		1.0	ug/L		11/21/25 03:51		1
1,1,2,2-Tetrachloroethane	ND		2.0	ug/L		11/21/25 03:51		1
1,1,2-Trichloroethane	ND		1.0	ug/L		11/21/25 03:51		1
1,1-Dichloroethane	ND		1.0	ug/L		11/21/25 03:51		1
1,1-Dichloroethene	ND		1.0	ug/L		11/21/25 03:51		1
1,1-Dichloropropene	ND		1.0	ug/L		11/21/25 03:51		1
1,2,3-Trichlorobenzene	ND		1.0	ug/L		11/21/25 03:51		1
1,2,3-Trichloropropane	ND		2.0	ug/L		11/21/25 03:51		1
1,2,4-Trichlorobenzene	ND		1.0	ug/L		11/21/25 03:51		1
1,2,4-Trimethylbenzene	ND		1.0	ug/L		11/21/25 03:51		1
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L		11/21/25 03:51		1
1,2-Dibromoethane (EDB)	ND		1.0	ug/L		11/21/25 03:51		1
1,2-Dichlorobenzene	ND		1.0	ug/L		11/21/25 03:51		1
1,2-Dichloroethane (EDC)	ND		1.0	ug/L		11/21/25 03:51		1
1,2-Dichloropropene	ND		1.0	ug/L		11/21/25 03:51		1
1,3,5-Trimethylbenzene	ND		1.0	ug/L		11/21/25 03:51		1
1,3-Dichlorobenzene	ND		1.0	ug/L		11/21/25 03:51		1
1,3-Dichloropropane	ND		1.0	ug/L		11/21/25 03:51		1
1,4-Dichlorobenzene	ND		1.0	ug/L		11/21/25 03:51		1
1-Methylnaphthalene	ND		4.0	ug/L		11/21/25 03:51		1
2,2-Dichloropropane	ND		2.0	ug/L		11/21/25 03:51		1
2-Butanone	ND		10	ug/L		11/21/25 03:51		1
2-Chlorotoluene	ND		1.0	ug/L		11/21/25 03:51		1
2-Hexanone	ND		10	ug/L		11/21/25 03:51		1
2-Methylnaphthalene	ND		4.0	ug/L		11/21/25 03:51		1
4-Chlorotoluene	ND		1.0	ug/L		11/21/25 03:51		1
4-Isopropyltoluene	ND		1.0	ug/L		11/21/25 03:51		1
4-Methyl-2-pentanone	ND		10	ug/L		11/21/25 03:51		1
Acetone	ND		10	ug/L		11/21/25 03:51		1
Benzene	71		1.0	ug/L		11/21/25 03:51		1
Bromobenzene	ND		1.0	ug/L		11/21/25 03:51		1
Bromodichloromethane	ND		1.0	ug/L		11/21/25 03:51		1
Dibromochloromethane	ND		1.0	ug/L		11/21/25 03:51		1
Bromoform	ND		1.0	ug/L		11/21/25 03:51		1
Bromomethane	ND		3.0	ug/L		11/21/25 03:51		1
Carbon disulfide	ND		10	ug/L		11/21/25 03:51		1
Carbon tetrachloride	ND		1.0	ug/L		11/21/25 03:51		1
Chlorobenzene	ND		1.0	ug/L		11/21/25 03:51		1
Chloroethane	ND		2.0	ug/L		11/21/25 03:51		1
Chloroform	ND		1.0	ug/L		11/21/25 03:51		1
Chloromethane	ND		3.0	ug/L		11/21/25 03:51		1
cis-1,2-Dichloroethene	ND		1.0	ug/L		11/21/25 03:51		1
cis-1,3-Dichloropropene	ND		1.0	ug/L		11/21/25 03:51		1
Dibromomethane	ND		1.0	ug/L		11/21/25 03:51		1
Dichlorodifluoromethane	ND		1.0	ug/L		11/21/25 03:51		1
Ethylbenzene	ND		1.0	ug/L		11/21/25 03:51		1
Hexachlorobutadiene	ND		1.0	ug/L		11/21/25 03:51		1
Isopropylbenzene	ND		1.0	ug/L		11/21/25 03:51		1

Eurofins Albuquerque

Client Sample Results

Client: Hilcorp Energy
Project/Site: Federal 18 1 T

Job ID: 885-37621-1

Client Sample ID: MW-1
Date Collected: 11/11/25 13:15
Date Received: 11/13/25 06:10Lab Sample ID: 885-37621-1
Matrix: Water

Method: SW846 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			11/21/25 03:51	1
Methylene Chloride	ND		2.5	ug/L			11/21/25 03:51	1
n-Butylbenzene	ND		3.0	ug/L			11/21/25 03:51	1
N-Propylbenzene	ND		1.0	ug/L			11/21/25 03:51	1
Naphthalene	ND		2.0	ug/L			11/21/25 03:51	1
sec-Butylbenzene	ND		1.0	ug/L			11/21/25 03:51	1
Styrene	ND		1.0	ug/L			11/21/25 03:51	1
tert-Butylbenzene	ND		1.0	ug/L			11/21/25 03:51	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			11/21/25 03:51	1
Toluene	23		1.0	ug/L			11/21/25 03:51	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			11/21/25 03:51	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			11/21/25 03:51	1
Trichloroethene (TCE)	ND		1.0	ug/L			11/21/25 03:51	1
Trichlorofluoromethane	ND		1.0	ug/L			11/21/25 03:51	1
Vinyl chloride	ND		1.0	ug/L			11/21/25 03:51	1
Xylenes, Total	2.5		1.5	ug/L			11/21/25 03:51	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Sur)	102		70 - 130		11/21/25 03:51	1
Toluene-d8 (Sur)	117		70 - 130		11/21/25 03:51	1
4-Bromofluorobenzene (Sur)	106		70 - 130		11/21/25 03:51	1
Dibromofluoromethane (Sur)	106		70 - 130		11/21/25 03:51	1

General Chemistry

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	2300		100	mg/L			11/15/25 11:33	1
Specific Conductance (SM 2510B)	2600		10	umhos/cm			11/18/25 10:20	1
pH (SM 4500 H+ B)	7.2	HF	0.1	SU			11/18/25 10:20	1

Eurofins Albuquerque

QC Sample Results

Client: Hilcorp Energy
Project/Site: Federal 18 1 T

Job ID: 885-37621-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 885-38807/5

Client Sample ID: Method Blank

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 38807

Analyte	MB	MB	D	Prepared	Analyzed	Dil Fac
	Result	Qualifier				
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L	11/20/25 17:57	1
1,1,1-Trichloroethane	ND		1.0	ug/L	11/20/25 17:57	1
1,1,2,2-Tetrachloroethane	ND		2.0	ug/L	11/20/25 17:57	1
1,1,2-Trichloroethane	ND		1.0	ug/L	11/20/25 17:57	1
1,1-Dichloroethane	ND		1.0	ug/L	11/20/25 17:57	1
1,1-Dichloroethene	ND		1.0	ug/L	11/20/25 17:57	1
1,1-Dichloropropene	ND		1.0	ug/L	11/20/25 17:57	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L	11/20/25 17:57	1
1,2,3-Trichloropropane	ND		2.0	ug/L	11/20/25 17:57	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L	11/20/25 17:57	1
1,2,4-Trimethylbenzene	ND		1.0	ug/L	11/20/25 17:57	1
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L	11/20/25 17:57	1
1,2-Dibromoethane (EDB)	ND		1.0	ug/L	11/20/25 17:57	1
1,2-Dichlorobenzene	ND		1.0	ug/L	11/20/25 17:57	1
1,2-Dichloroethane (EDC)	ND		1.0	ug/L	11/20/25 17:57	1
1,2-Dichloropropane	ND		1.0	ug/L	11/20/25 17:57	1
1,3,5-Trimethylbenzene	ND		1.0	ug/L	11/20/25 17:57	1
1,3-Dichlorobenzene	ND		1.0	ug/L	11/20/25 17:57	1
1,3-Dichloropropane	ND		1.0	ug/L	11/20/25 17:57	1
1,4-Dichlorobenzene	ND		1.0	ug/L	11/20/25 17:57	1
1-Methylnaphthalene	ND		4.0	ug/L	11/20/25 17:57	1
2,2-Dichloropropane	ND		2.0	ug/L	11/20/25 17:57	1
2-Butanone	ND		10	ug/L	11/20/25 17:57	1
2-Chlorotoluene	ND		1.0	ug/L	11/20/25 17:57	1
2-Hexanone	ND		10	ug/L	11/20/25 17:57	1
2-Methylnaphthalene	ND		4.0	ug/L	11/20/25 17:57	1
4-Chlorotoluene	ND		1.0	ug/L	11/20/25 17:57	1
4-Isopropyltoluene	ND		1.0	ug/L	11/20/25 17:57	1
4-Methyl-2-pentanone	ND		10	ug/L	11/20/25 17:57	1
Acetone	12.6		10	ug/L	11/20/25 17:57	1
Benzene	ND		1.0	ug/L	11/20/25 17:57	1
Bromobenzene	ND		1.0	ug/L	11/20/25 17:57	1
Bromodichloromethane	ND		1.0	ug/L	11/20/25 17:57	1
Dibromochloromethane	ND		1.0	ug/L	11/20/25 17:57	1
Bromoform	ND		1.0	ug/L	11/20/25 17:57	1
Bromomethane	ND		3.0	ug/L	11/20/25 17:57	1
Carbon disulfide	ND		10	ug/L	11/20/25 17:57	1
Carbon tetrachloride	ND		1.0	ug/L	11/20/25 17:57	1
Chlorobenzene	ND		1.0	ug/L	11/20/25 17:57	1
Chloroethane	ND		2.0	ug/L	11/20/25 17:57	1
Chloroform	ND		1.0	ug/L	11/20/25 17:57	1
Chloromethane	ND		3.0	ug/L	11/20/25 17:57	1
cis-1,2-Dichloroethene	ND		1.0	ug/L	11/20/25 17:57	1
cis-1,3-Dichloropropene	ND		1.0	ug/L	11/20/25 17:57	1
Dibromomethane	ND		1.0	ug/L	11/20/25 17:57	1
Dichlorodifluoromethane	ND		1.0	ug/L	11/20/25 17:57	1
Ethylbenzene	ND		1.0	ug/L	11/20/25 17:57	1
Hexachlorobutadiene	ND		1.0	ug/L	11/20/25 17:57	1

Eurofins Albuquerque

QC Sample Results

Client: Hilcorp Energy
Project/Site: Federal 18 1 T

Job ID: 885-37621-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 885-38807/5

Client Sample ID: Method Blank
Prep Type: Total/NA

Matrix: Water

Analysis Batch: 38807

Analyte	MB		RL	Unit	D	Prepared	Analyzed	Dil Fac
	Result	Qualifier						
Isopropylbenzene	ND		1.0	ug/L			11/20/25 17:57	1
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			11/20/25 17:57	1
Methylene Chloride	ND		2.5	ug/L			11/20/25 17:57	1
n-Butylbenzene	ND		3.0	ug/L			11/20/25 17:57	1
N-Propylbenzene	ND		1.0	ug/L			11/20/25 17:57	1
Naphthalene	ND		2.0	ug/L			11/20/25 17:57	1
sec-Butylbenzene	ND		1.0	ug/L			11/20/25 17:57	1
Styrene	ND		1.0	ug/L			11/20/25 17:57	1
tert-Butylbenzene	ND		1.0	ug/L			11/20/25 17:57	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			11/20/25 17:57	1
Toluene	ND		1.0	ug/L			11/20/25 17:57	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			11/20/25 17:57	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			11/20/25 17:57	1
Trichloroethene (TCE)	ND		1.0	ug/L			11/20/25 17:57	1
Trichlorofluoromethane	ND		1.0	ug/L			11/20/25 17:57	1
Vinyl chloride	ND		1.0	ug/L			11/20/25 17:57	1
Xylenes, Total	ND		1.5	ug/L			11/20/25 17:57	1

Surrogate	MB		Limits	Prepared	Analyzed	Dil Fac
	%Recovery	Qualifier				
1,2-Dichloroethane-d4 (Surr)	102		70 - 130		11/20/25 17:57	1
Toluene-d8 (Surr)	115		70 - 130		11/20/25 17:57	1
4-Bromofluorobenzene (Surr)	106		70 - 130		11/20/25 17:57	1
Dibromofluoromethane (Surr)	105		70 - 130		11/20/25 17:57	1

Lab Sample ID: LCS 885-38807/4

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Matrix: Water

Analysis Batch: 38807

Analyte	Spike		Unit	D	%Rec	Limits
	Added	Result				
1,1-Dichloroethene	20.0	18.9	ug/L		94	70 - 130
Benzene	20.0	19.4	ug/L		97	70 - 130
Chlorobenzene	20.0	21.3	ug/L		107	70 - 130
Toluene	20.0	21.9	ug/L		109	70 - 130
Trichloroethene (TCE)	20.0	20.3	ug/L		101	70 - 130

Surrogate	LCS		Limits
	%Recovery	Qualifier	
1,2-Dichloroethane-d4 (Surr)	101		70 - 130
Toluene-d8 (Surr)	116		70 - 130
4-Bromofluorobenzene (Surr)	105		70 - 130
Dibromofluoromethane (Surr)	106		70 - 130

Lab Sample ID: 885-37621-1 MS

Client Sample ID: MW-1
Prep Type: Total/NA

Matrix: Water

Analysis Batch: 38807

Analyte	Sample Result	Sample Qualifier	Spike		Unit	D	%Rec	Limits
			Added	Result				
1,1-Dichloroethene	ND		20.0	17.9	ug/L		90	70 - 130
Benzene	71		20.0	94.0	ug/L		114	70 - 130

Eurofins Albuquerque

QC Sample Results

Client: Hilcorp Energy
 Project/Site: Federal 18 1 T

Job ID: 885-37621-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 885-37621-1 MS

Matrix: Water

Analysis Batch: 38807

 Client Sample ID: MW-1
 Prep Type: Total/NA

Analyte	Sample	Sample	Spike	MS	MS	Unit	D	%Rec	%Rec
	Result	Qualifier	Added	Result	Qualifier				
Chlorobenzene	ND		20.0	22.9		ug/L	114	70 - 130	
Toluene	23		20.0	47.3		ug/L	119	70 - 130	
Trichloroethene (TCE)	ND		20.0	22.0		ug/L	110	70 - 130	
Surrogate									
1,2-Dichloroethane-d4 (Surr)	102			70 - 130					
Toluene-d8 (Surr)	115			70 - 130					
4-Bromofluorobenzene (Surr)	104			70 - 130					
Dibromofluoromethane (Surr)	106			70 - 130					

Lab Sample ID: 885-37621-1 MSD

Matrix: Water

Analysis Batch: 38807

 Client Sample ID: MW-1
 Prep Type: Total/NA

Analyte	Sample	Sample	Spike	MSD	MSD	Unit	D	%Rec	%Rec	RPD	Limit
	Result	Qualifier	Added	Result	Qualifier						
1,1-Dichloroethene	ND		20.0	16.1		ug/L	81	70 - 130		11	20
Benzene	71		20.0	86.4		ug/L	76	70 - 130		8	20
Chlorobenzene	ND		20.0	21.4		ug/L	107	70 - 130		7	20
Toluene	23		20.0	43.7		ug/L	101	70 - 130		8	20
Trichloroethene (TCE)	ND		20.0	19.8		ug/L	99	70 - 130		11	20
Surrogate											
1,2-Dichloroethane-d4 (Surr)	102			70 - 130							
Toluene-d8 (Surr)	116			70 - 130							
4-Bromofluorobenzene (Surr)	107			70 - 130							
Dibromofluoromethane (Surr)	106			70 - 130							

Method: 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 885-38531/1

 Client Sample ID: Method Blank
 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 38531

Analyte	MB	MB	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Result	Qualifier						
Total Dissolved Solids	ND		50	mg/L			11/15/25 11:33	1

Lab Sample ID: LCS 885-38531/2

 Client Sample ID: Lab Control Sample
 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 38531

Analyte	Spike	LCS	LCS	Unit	D	%Rec	%Rec
	Added	Result	Qualifier				
Total Dissolved Solids	1000	995		mg/L	99	80 - 120	

Eurofins Albuquerque

QC Association Summary

Client: Hilcorp Energy
 Project/Site: Federal 18 1 T

Job ID: 885-37621-1

GC/MS VOA**Analysis Batch: 38807**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-37621-1	MW-1	Total/NA	Water	8260B	
MB 885-38807/5	Method Blank	Total/NA	Water	8260B	
LCS 885-38807/4	Lab Control Sample	Total/NA	Water	8260B	
885-37621-1 MS	MW-1	Total/NA	Water	8260B	
885-37621-1 MSD	MW-1	Total/NA	Water	8260B	

General Chemistry**Analysis Batch: 38531**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-37621-1	MW-1	Total/NA	Water	2540C	
MB 885-38531/1	Method Blank	Total/NA	Water	2540C	
LCS 885-38531/2	Lab Control Sample	Total/NA	Water	2540C	

Analysis Batch: 38693

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-37621-1	MW-1	Total/NA	Water	SM 2510B	

Analysis Batch: 38694

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-37621-1	MW-1	Total/NA	Water	SM 4500 H+ B	

Eurofins Albuquerque

Lab Chronicle

Client: Hilcorp Energy
 Project/Site: Federal 18 1 T

Job ID: 885-37621-1

Client Sample ID: MW-1

Date Collected: 11/11/25 13:15

Lab Sample ID: 885-37621-1

Matrix: Water

Date Received: 11/13/25 06:10

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Analyst	Lab	Prepared or Analyzed
Total/NA	Analysis	8260B		1	38807	ES	EET ALB	11/21/25 03:51
Total/NA	Analysis	2540C		1	38531	HR	EET ALB	11/15/25 11:33
Total/NA	Analysis	SM 2510B		1	38693	JR	EET ALB	11/18/25 10:20
Total/NA	Analysis	SM 4500 H+ B		1	38694	JR	EET ALB	11/18/25 10:20

Laboratory References:

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

1

2

3

4

5

6

7

8

9

10

11

Eurofins Albuquerque

Accreditation/Certification Summary

Client: Hilcorp Energy
 Project/Site: Federal 18 1 T

Job ID: 885-37621-1

Laboratory: Eurofins Albuquerque

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program	Identification Number	Expiration Date
New Mexico	State	NM9425, NM0901	02-27-26
The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.			
Analysis Method	Prep Method	Matrix	Analyte
2540C		Water	Total Dissolved Solids
8260B		Water	1,1,1,2-Tetrachloroethane
8260B		Water	1,1,1-Trichloroethane
8260B		Water	1,1,2,2-Tetrachloroethane
8260B		Water	1,1,2-Trichloroethane
8260B		Water	1,1-Dichloroethane
8260B		Water	1,1-Dichloroethene
8260B		Water	1,1-Dichloropropene
8260B		Water	1,2,3-Trichlorobenzene
8260B		Water	1,2,3-Trichloropropane
8260B		Water	1,2,4-Trichlorobenzene
8260B		Water	1,2,4-Trimethylbenzene
8260B		Water	1,2-Dibromo-3-Chloropropane
8260B		Water	1,2-Dibromoethane (EDB)
8260B		Water	1,2-Dichlorobenzene
8260B		Water	1,2-Dichloroethane (EDC)
8260B		Water	1,2-Dichloropropane
8260B		Water	1,3,5-Trimethylbenzene
8260B		Water	1,3-Dichlorobenzene
8260B		Water	1,3-Dichloropropane
8260B		Water	1,4-Dichlorobenzene
8260B		Water	1-Methylnaphthalene
8260B		Water	2,2-Dichloropropane
8260B		Water	2-Butanone
8260B		Water	2-Chlorotoluene
8260B		Water	2-Hexanone
8260B		Water	2-Methylnaphthalene
8260B		Water	4-Chlorotoluene
8260B		Water	4-Isopropyltoluene
8260B		Water	4-Methyl-2-pentanone
8260B		Water	Acetone
8260B		Water	Benzene
8260B		Water	Bromobenzene
8260B		Water	Bromodichloromethane
8260B		Water	Bromoform
8260B		Water	Bromomethane
8260B		Water	Carbon disulfide
8260B		Water	Carbon tetrachloride
8260B		Water	Chlorobenzene
8260B		Water	Chloroethane
8260B		Water	Chloroform
8260B		Water	Chloromethane
8260B		Water	cis-1,2-Dichloroethene
8260B		Water	cis-1,3-Dichloropropene
8260B		Water	Dibromochloromethane

Eurofins Albuquerque

Accreditation/Certification Summary

Client: Hilcorp Energy
 Project/Site: Federal 18 1 T

Job ID: 885-37621-1

Laboratory: Eurofins Albuquerque (Continued)

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program	Identification Number	Expiration Date
The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.			
Analysis Method	Prep Method	Matrix	Analyte
8260B		Water	Dibromomethane
8260B		Water	Dichlorodifluoromethane
8260B		Water	Ethylbenzene
8260B		Water	Hexachlorobutadiene
8260B		Water	Isopropylbenzene
8260B		Water	Methylene Chloride
8260B		Water	Methyl-tert-butyl Ether (MTBE)
8260B		Water	Naphthalene
8260B		Water	n-Butylbenzene
8260B		Water	N-Propylbenzene
8260B		Water	sec-Butylbenzene
8260B		Water	Styrene
8260B		Water	tert-Butylbenzene
8260B		Water	Tetrachloroethene (PCE)
8260B		Water	Toluene
8260B		Water	trans-1,2-Dichloroethene
8260B		Water	trans-1,3-Dichloropropene
8260B		Water	Trichloroethene (TCE)
8260B		Water	Trichlorofluoromethane
8260B		Water	Vinyl chloride
8260B		Water	Xylenes, Total
SM 2510B		Water	Specific Conductance
SM 4500 H+ B		Water	pH
Oregon	NELAP	NM100001	02-26-26

Eurofins Albuquerque

Login Sample Receipt Checklist

Client: Hilcorp Energy

Job Number: 885-37621-1

Login Number: 37621**List Source: Eurofins Albuquerque****List Number: 1****Creator: Casarrubias, Tracy**

Question	Answer	Comment
Radioactivity wasn't checked or is </= background as measured by a survey meter.	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Sante Fe Main Office
Phone: (505) 476-3441

General Information
Phone: (505) 629-6116

Online Phone Directory
<https://www.emnrd.nm.gov/ocd/contact-us>

State of New Mexico
Energy, Minerals and Natural Resources
Oil Conservation Division
1220 S. St Francis Dr.
Santa Fe, NM 87505

CONDITIONS

Action 541672

CONDITIONS

Operator: HILCORP ENERGY COMPANY 1111 Travis Street Houston, TX 77002	OGRID: 372171
	Action Number: 541672
	Action Type: [REPORT] Alternative Remediation Report (C-141AR)

CONDITIONS

Created By	Condition	Condition Date
nvelez	1. Continue with O & M schedule. 2. Submit next quarterly report by April 15, 2026.	1/23/2026