| eceined by Och 1/4/2021 8:39:21 A | State of New Me | xico | | Form E-103 of 30 | |--|--|---------------------|---|-----------------------| | Office
<u>District I</u> – (575) 393-6161 | Energy, Minerals and Natur | ral Resources | WELL ADINO | Revised July 18, 2013 | | 1625 N. French Dr., Hobbs, NM 88240
District II – (575) 748-1283 | | | WELL API NO. 30-025-46167 | | | 811 S. First St., Artesia, NM 88210 | OIL CONSERVATION | | 5. Indicate Type of L | ease | | <u>District III</u> – (505) 334-6178
1000 Rio Brazos Rd., Aztec, NM 87410 | 1220 South St. Fran | | STATE X | FEE | | <u>District IV</u> – (505) 476-3460 | Santa Fe, NM 87 | 505 | 6. State Oil & Gas Le | ease No. | | 1220 S. St. Francis Dr., Santa Fe, NM
87505 | | | | | | SUNDRY NOTI
(DO NOT USE THIS FORM FOR PROPOS
DIFFERENT RESERVOIR. USE "APPLIC | CES AND REPORTS ON WELLS
SALS TO DRILL OR TO DEEPEN OR PLU
CATION FOR PERMIT" (FORM C-101) FO | JG BACK TO A | 7. Lease Name or Un
Estancia SED State | it Agreement Name | | PROPOSALS.) 1. Type of Well: Oil Well X | Gas Well Other | | 8. Well Number 1011 | H | | 2. Name of Operator | Gas Well Guller | | 9. OGRID Number | | | XTO Energy, Inc. | | | 005380 | | | 3. Address of Operator | | | 10. Pool name or Wil | dcat | | 6401 Holiday Hill Road, Bldg 5 Midla | and, Texas 79707 | | WC-025 G-09 S243 | 310P; Upper Wolfcamp | | 4. Well Location | | | | | | Unit Letter M :_ | feet from theSouth | line and | feet from th | eline | | Section 31 | | nge 33E | | ounty Eddy | | | 11. Elevation (Show whether DR, | RKB, RT, GR, etc. | .) | | | | 3644' GL | | | | | of starting any proposed wo
proposed completion or reco
XTO Energy, Inc. respectfully reques | CHANGE PLANS MULTIPLE COMPL Letted operations. (Clearly state all pork). SEE RULE 19.15.7.14 NMAC completion. sts to change the associated drillign programmed circulation system. An updated direction | C. For Multiple Co | and give pertinent dates, in the attached. This will update | oore diagram of | | Spud Date: I hereby certify that the information a | Rig Release Da | | ge and belief. | | | SIGNATURE Stephanie Ra | rkadueTITLE_Regulat | ory Coordinator | DATE | 01/04/2020 | | Type or print name Stephanie Rabac For State Use Only | due E-mail address | : stephanie_rabadue | e@xtoenergy.com PHON | E: 432-620-6714 | | APPROVED BY: Conditions of Approval (if any): | TITLE | | DATE_ | 01/31/2021 | DRILLING PLAN: NMOCD COMPLIANCE Lea County, NM XTO Energy Inc. Estancia Sed 102H Projected TD: 17956' MD / 12456' TVD SHL: 409' FSL & 1204' FWL , Section 31, T23S, R33E BHL: 50' FNL & 990' FWL , Section 31, T23S, R33E #### 1. Geologic Name of Surface Formation Ä. Permian #### 2. Estimated Tops of Geological Markers & Depths of Anticipated Fresh Water, Oil or Gas | Formation | Well Depth (TVD) | Water/Oil/Gas | |--------------------|------------------|---------------| | Rustler | 1196' | Water | | Top of Salt | 1646' | Water | | Base of Salt | 4546' | Water | | Delaware | 4996' | Water | | Brushy Canyon | 7403' | Water/Oil/Gas | | Bone Spring | 8896' | Water | | 1st Bone Spring Ss | 10046' | Water/Oil/Gas | | 2nd Bone Spring Ss | 10671' | Water/Oil/Gas | | 3rd Bone Spring Ss | 11896' | Water/Oil/Gas | | Wolfcamp | 12271' | Water/Oil/Gas | | Wolfcamp X | 12326' | Water/Oil/Gas | | Wolfcamp Y | 12436' | Water/Oil/Gas | | Target/Land Curve | 12456' | Water/Oil/Gas | ^{***} Hydrocarbons @ Brushy Canyon No other formations are expected to yield oil, gas or fresh water in measurable volumes. The surface fresh water sands will be protected by setting 11-3/4" casing @ 1546' (100' above the salt) and circulating cement back to surface. The 7-5/8" intermediate casing will be set at 11673' and bring TOC back to surface. A 6-3/4 inch curve and lateral hole will be drilled to MD/TD and 5-1/2" x 5" casing will be set at TD and cemented back 300' into the 7-5/8" casing shoe. #### 3. Casing Design | Hole Size | Depth | OD Csg | Weight | Collar | Grade | New/Used | SF
Burst | SF
Collapse | SF
Tension | |-----------|-----------------|---------|--------|--------------|---------|----------|-------------|----------------|---------------| | 14-3/4" | 0' – 1546' | 11-3/4" | 54 | BTC | J-55 | New | 1.18 | 2.96 | 10.18 | | 8-3/4" | 0' – 4000' | 7-5/8" | 29.7 | Liberty FJ | CYP-110 | New | 2.07 | 2.80 | 1.61 | | 8-3/4" | 4000' – 11673' | 7-5/8" | 29.7 | Liberty FJ | HCL-80 | New | 1.50 | 1.89 | 1.78 | | 6-3/4" | 0' – 11573' | 5-1/2" | 23 | Semi-Premium | P-110 | New | 1.21 | 2.14 | 2.25 | | 6-3/4" | 11573' – 12250' | 5-1/2" | 23 | Semi-Flush | P-110 | New | 1.21 | 2.02 | 10.40 | | 6-3/4" | 12250' - 17956' | 5" | 18 | Semi-Premium | P-110 | New | 1.16 | 1.84 | 13.59 | [·] XTO requests to not utilize centralizers in the curve and lateral Request to use 5" BTC Float equipment for the the production casing #### Wellhead: Permanent Wellhead - Multibowl System A. Starting Head: 13-5/8" 10M top flange x 11-3/4" SOW bottom ^{***} Groundwater depth 40' (per NM State Engineers Office). ^{·7-5/8&}quot; Collapse analyzed using 50% evacuation based on regional experience ^{5-1/2&}quot; Tension calculated using vertical hanging weight plus the lateral weight multiplied by a friction factor of 0.3 [·] Test on Casing will be limited to 70% burst of the casing or 1500 psi, whichever is less B. Tubing Head: 13-5/8" 10M bottom flange x 7-1/16" 15M top flange - · Wellhead will be installed by manufacturer's representatives. - Manufacturer will monitor welding process to ensure appropriate temperature of seal. - · Operator will test the 7-5/8" casing per BLM Onshore Order 2 - Wellhead Manufacturer representative will not be present for BOP test plug installation #### 4. Cement Program #### Surface Casing: 11-3/4", 54 New J-55, BTC casing to be set at +/- 1546' Lead: 570 sxs Halcem-C + 2% CaCl (mixed at 12.8 ppg, 1.87 ft3/sx, 10.13 gal/sx water) Tail: 190 sxs Halcem-C + 2% CaCl (mixed at 14.8 ppg, 1.35 ft3/sx, 6.39 gal/sx water Compressives: 12-hr = 900 psi 24 hr = 1500 psi TOC: Surface #### Intermediate Casing: 7-5/8", 29.7 New casing to be set at +/- 11673 Lead: 600 sxs NeoCem (mixed at 10.5 ppg, 2.77 ft3/sx, 15.59 gal/sx water) Tail: 40 sxs Halcem - Class C (mixed at 14.8 ppg, 1.35 ft3/sx, 6.39 gal/sx water Compressives: 12-hr = 900 psi 24 hr = 1150psi TOC: Surface In the event cement is not circulated to surface on the first stage, whether intentionally or unintentionally, XTO requests the option to conduct the bradenhead squeeze and TOC verification offline as per standard approval from BLM when unplanned remediation is needed and batch drilling is approved. In the event the bradenhead is conducted, we will ensure first stage cement job is cemented properly and the well is static with floats holding and no pressure on the csg annulus as with all other casing strings where batch drilling operations occur before moving off the rig. If cement is not visually confirmed to circulate to surface, the final cement top after the second stage job will be verified by Echo-meter. If necessary, a top out consisting of 1,500 sack of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (2.30 yld, 12.91 ppg) will be executed as a contingency. If cement is still unable to circulate to surface, another Echo-meter run will be performed for cement top verification. #### Production Casing: 5-1/2", 23 x 5", 18 New casing to be set at +/- 17956' Lead: 20 sxs VersaCem (mixed at 11.5 ppg, 2.69 ft3/sx, 15.00 gal/sx water) Tail: 580 sxs VersaCem (mixed at 13.2 ppg, 1.51 ft3/sx, 7.20 gal/sx water) Compressives 12-hr = 800 psi 24 hr = 1500 psi TOC: 300' inside previous shoe #### 5. Pressure Control Equipment Once the permanent WH is installed on the 11-3/4" casing, the blow out preventer equipment (BOP) will consist of a 13-5/8" minimum 5M Hydril and a 13-5/8" minimum 5M 3-Ram BOP. MASP should not exceed 4579 psi. In any instance where 10M BOP is required by BLM, XTO requests a variance to utilize 5M annular with 10M ram preventers (a common BOP configuration, which allows use of 10M rams in unlikely event that pressures exceed 5M). Also a variance is requested to test the 5M annular to 70% of working pressure at 3500 psi. All BOP testing will be done by an independent service company. Annular pressure tests will be limited to 70% of the working pressure. When nippling up on the 11-3/4", 5M bradenhead and flange, the BOP test will be limited to 5000 psi. All BOP tests will include a low pressure test as per BLM regulations. The 5M BOP diagrams are attached. Blind rams will be functioned tested each trip, pipe rams will be functioned tested each day. A variance is requested to allow use of a flex hose as the choke line from the BOP to the Choke Manifold. If this hose is used, a copy of the manufacturer's certification and pressure test chart will be kept on the rig. Attached is an example of a certification and pressure test chart. The manufacturer does not require anchors. XTO requests a variance to be able to batch drill this well if necessary. In doing so, XTO will set each casing string and ensure that the well is cemented properly and the well is static. With floats holding, no pressure on the csg annulus, and the installation of a 10K TA cap as per GE recommendations, XTO will contact the BLM on each rig skid on the pad. Once surface and intermediate strings are all completed, XTO will begin drilling the production hole on each of the wells. A variance is requested to **ONLY** test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API standard 53 states, that for pad
drilling operation, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken. Based on discussions with the BLM on February 27th 2020, we will request permission to **ONLY** retest broken pressure seals if the following conditions are met: 1. After a full BOP test is conducted on the first well on the pad (First well will be the deepest Intermediate) 2. When skidding to drill an intermediate section does not penetrate into the Wolfcamp 3. Full BOP test will be required prior to drilling the production hole. A variance is requested to cement offline for the surface and intermediate casing strings according to attached offline cementing supporting documentation. #### 6. Proposed Mud Circulation System | INTERVAL | Hole Size | Mud Type | MW
(ppg) | Viscosity
(sec/qt) | Fluid Loss
(cc) | |------------------|-----------|---|-------------|-----------------------|--------------------| | 0' - 1546' | 14-3/4" | FW / Native | 8.4-8.8 | 35-40 | NC | | 1546' - 11673' | 8-3/4" | Brine / Cut
Brine /
Direct
Emusion | 8.5-9.7 | 30-32 | NC | | 11673' to 17956' | 6-3/4" | Cut Brine /
WBM / | 10.8-11.8 | 32-36 | NC | The necessary mud products for weight addition and fluid loss control will be on location at all times. Spud with fresh water/native mud and set 11-3/4" surface casing, isolating the fresh water aquifer. Drill out from under 11-3/4" surface casing with a brine/oil direct emulsion mud system. Use fibrous materials as needed to control seepage and lost circulation. Pump viscous sweeps as needed for hole cleaning. Pump speed will be recorded on a daily drilling report after mudding up. A Pason or Totco will be used to detect changes in loss or gain of mud volume. A mud test will be performed every 24 hours to determine: density, viscosity, strength, filtration and pH as necessary. Use available solids controls equipment to help keep mud weight down after mud up. Rig up solids control equipment to operate as a closed loop system. #### 7. Auxiliary Well Control and Monitoring Equipment - A. A Kelly cock will be in the drill string at all times. - B. A full opening drill pipe stabbing valve having appropriate connections will be on the rig floor at all times. - C. H2S monitors will be on location when drilling below the 11-3/4" casing. #### 8. Logging, Coring and Testing Program Mud Logger: Mud Logging Unit (2 man) below intermediate casing. Open hole logging will not be done on this well. #### 9. Abnormal Pressures and Temperatures / Potential Hazards None Anticipated. BHT of 170 to 190 F is anticipated. No H2S is expected but monitors will be in place to detect any H2S occurrences. Should these circumstances be encountered the operator and drilling contractor are prepared to take all necessary steps to ensure safety of all personnel and environment. Lost circulation could occur but is not expected to be a serious problem in this area and hole seepage will be compensated for by additions of small amounts of LCM in the drilling fluid. The maximum anticipated bottom hole pressure for this well is 7319 psi. #### 10. Anticipated Starting Date and Duration of Operations ## **XTO Energy** Lea County, NM (NAD-27) Estancia Sed #101H OH Plan: PERMIT v2 # **Standard Planning Report** 08 December, 2020 Northing 457155.00 +E/-W 0.00 Project: Lea County, NM (NAD-27) Site: Estancia Sed Well: #101H Wellbore: OH Design: PERMIT v2 PROJECT DETAILS: Lea County, NM (NAD-27) Geodetic System: US State Plane 1927 (Exact solution) Datum: NAD 1927 (NADCON CONUS) Ellipsoid: Clarke 1866 Zone: New Mexico East 3001 System Datum: Mean Sea Level #### DESIGN TARGET DETAILS Longitude 103.6175578- | Name
ES 101H: SHL (347' FSL & 536' FWL)
ES 101H: FTP
ES 101H: LTP | TVD
0.00
12364.00
12364.00 | +N/-S
0.00
-247.70
4832.00 | +E/-W
0.00
-184.30
-210.80 | Northing
457155.00
456907.30
461987.00 | Easting
721273.30
721089.00
721062.50 | Latitude
32.2548082
32.2541308
32.2680941 | -103.6175578 Pe
-103.6181593 Pe | Shape
Point
Point
Point | |--|-------------------------------------|-------------------------------------|-------------------------------------|---|--|--|------------------------------------|----------------------------------| | ES 101H: PBHL (50' FNL & 350' FWL) | 12364.00 | 4882.00 | -211.30 | 462037.00 | 721062.00 | 32.2682316 | | Point | ### WELL DETAILS: #101H Rig Name: Ref GL @ 3644.00usft Ground Level: 3644.00 Easting 721273.30 SECTION DETAILS TVD 0.00 2070.00 2319.89 11742.27 12364.00 12364.00 12364.00 +N/-S 0.00 0.00 -10.69 -818.50 -247.70 4832.00 +E/-W 0.00 0.00 -2.22 -169.95 -184.30 -211.04 -211.30 VSect 0.00 0.00 -10.68 -817.60 -246.73 4833.04 4883.04 MD 0.00 2070.00 2320.21 11778.64 12727.58 17807.34 Azi 0.00 0.00 191.73 191.73 359.70 359.70 359.70 TFace 0.00 0.00 191.73 0.00 167.92 0.00 0.00 Inc 0.00 0.00 5.00 5.00 90.00 90.00 90.00 Dleg 0.00 0.00 2.00 0.00 10.00 0.00 0.00 Latittude 32.2548082 3rd Bone Spring Ss Wolfcamp Wolfcamp X 12000 TD at 17857.35 Wolfcamp Y LP ES 101H: LTP 12750 Wolfcamp A ES 101H: FTP ES 101H: PBHL (50' FNL & 350' FWL) -750 750 1500 2250 3750 4500 5250 Vertical Section at 359.70° (1500 usft/in) The customer should only rely on this document after independently verifying all paths, targets, coordinates, lease and hard lines represented Released to Imaging the stilled stilling this or any other information 9750 10500 11250 1st Bone Spring Ss 2nd Bone Spring Ss 3rd Bone Spring Lm Start DLS 10.00 Plan: PERMIT v2 (#101H/OH) Created By: Matthew May Date: 10:50, December 08 2020 District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 <u>District III</u> 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 <u>District IV</u> 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462 # State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office ■ AMENDED REPORT #### WELL LOCATION AND ACREAGE DEDICATION PLAT | | ¹ API Number 30-025- | er | ² Pool Code | ³ Pool Name | | |---|---------------------------------|----|------------------------|--------------------------|------------------------| | | ⁴ Property Code | | ⁵ Pr | ⁶ Well Number | | | | | | EST | 101H | | | Ī | ⁷ OGRID No. | | 8 O _l | perator Name | ⁹ Elevation | | | 005380 | | XTO I | ENERGY, INC. | 3,644' | #### ¹⁰ Surface Location | UL or lot no. | Section | Township | Range | Lot Idn | Feet from the | North/South line | Feet from the | East/West line | County | |---------------|---------|----------|-------|---------|---------------|------------------|---------------|----------------|--------| | 4 | 31 | 23 S | 33 E | | 347 | SOUTH | 536 | WEST | LEA | #### ¹¹ Bottom Hole Location If Different From Surface | UL or lot no. | Section | Township | Range | Lot Idn | Feet from the | North/South line | Feet from the | East/West line | County | |--------------------|------------------------|---------------|---------------|------------|---------------|------------------|---------------|----------------|--------| | 1 | 31 | 23 S | 33 E | | 50 | NORTH | 350 | WEST | LEA | | 12 Dedicated Acres | ¹³ Joint or | · Infill 14 (| Consolidation | Code 15 Or | der No. | | INAL C-102 | | 12 | No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division. Database: EDM 5000.1.13 Single User Db Company: XTO Energy Project: Lea County, NM (NAD-27) Site: Estancia Sed Well: #101H Wellbore: OH Design: PERMIT v2 Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Well #101H Ref GL @ 3644.00usft Ref GL @ 3644.00usft Grid Minimum Curvature Project Lea County, NM (NAD-27) Map System: US State Plane 1927 (Exact solution) Geo Datum: NAD 1927 (NADCON CONUS) Map Zone: New Mexico East 3001 System Datum: Mean Sea Level Site Estancia Sed Site Position: Northing: 457,155.00 usft Latitude: 32.2548083 From: Мар Easting: 721,273.30 usft Longitude: -103.6175578 **Position Uncertainty:** 0.00 usft Slot Radius: 13-3/16 " **Grid Convergence:** 0.38° Well #101H Well Position +N/-S 0.00 usft Northing: 457,155.00 usft Latitude: 32.2548083 +E/-W 0.00 usft Easting: 721,273.30 usft Longitude: -103.6175578 Position Uncertainty0.00 usftWellhead Elevation:0.00 usftGround Level:3,644.00 usft Wellbore OH Magnetics Model Name Sample Date Declination (°) Dip Angle (°) Field Strength (nT) IGRF2015 06/11/19 6.76 60.06 47,746 Design PERMIT v2 **Audit Notes:** Version: Phase: PLAN Tie On Depth: 0.00 Vertical Section: Depth From (TVD) (usft) +N/-S (usft) +E/-W (usft) Direction (°) 0.00 0.00 0.00 359.70 | Plan Section | s | | | | | | | | | | |-----------------------------|--------------------|----------------|-----------------------------|-----------------|-----------------|-------------------------------|------------------------------|-----------------------------|------------|-------------------| | Measured
Depth
(usft) | Inclination
(°) | Azimuth
(°) | Vertical
Depth
(usft) | +N/-S
(usft) | +E/-W
(usft) | Dogleg
Rate
(°/100usft) | Build
Rate
(°/100usft) | Turn
Rate
(°/100usft) | TFO
(°) | Target | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 2,070.00 | 0.00 | 0.00 | 2,070.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | | | 2,320.21 | 5.00 | 191.73 | 2,319.89 | -10.69 | -2.22 | 2.00 | 2.00 | 0.00 | 191.73 | | | 11,778.64 | 5.00 | 191.73 | 11,742.27 | -818.50 | -169.95 | 0.00 | 0.00 | 0.00 | 0.00 | | | 12,727.58 | 90.00 | 359.70 | 12,364.00 | -247.70 | -184.30 | 10.00 | 8.96 | 17.70 | 167.92 | ES 101H: FTP | | 17,807.34 | 90.00 | 359.70 | 12,364.00 | 4,832.00 | -211.04 | 0.00 | 0.00 | 0.00 | 0.00 | ES 101H: LTP | | 17,857.35 | 90.00 | 359.70 | 12,364.00 | 4,882.00 | -211.30 | 0.00 | 0.00 | 0.00 | 0.00 | ES 101H: PBHL (50 | Database: EDM 5000.1.13 Single User Db Company: XTO Energy Project: Lea County, NM (NAD-27) Site: Estancia Sed Well: #101H Wellbore: OH Design: PERMIT v2 Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Well #101H Ref GL @ 3644.00usft Ref GL @ 3644.00usft Grid | Design: | PERMIT v2 | | | | | | | | | |--|--------------------------------------|----------------------------------|--|---|---|---|--------------------------------------|--------------------------------------|--------------------------------------| | Planned Survey | | | | | | | | | | | Measured
Depth
(usft) | Inclination (°) | Azimuth
(°) | Vertical
Depth
(usft) | +N/-S
(usft) | +E/-W
(usft) | Vertical
Section
(usft) | Dogleg
Rate
(°/100usft) | Build
Rate
(°/100usft) | Turn
Rate
(°/100usft) | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 100.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 200.00 | 0.00 | 0.00 | 200.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 300.00 | 0.00 | 0.00 | 300.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 400.00 | 0.00 | 0.00 | 400.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 500.00 | 0.00 | 0.00 | 500.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 600.00 | 0.00 | 0.00 | 600.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 700.00 | 0.00 | 0.00 | 700.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 800.00 | 0.00 | 0.00 | 800.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 900.00 | 0.00 | 0.00 | 900.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1,000.00 | 0.00 | 0.00 | 1,000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1,100.00 | 0.00 | 0.00 | 1,100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1,200.00 | 0.00 | 0.00 | 1,200.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1,300.00 | 0.00 | 0.00 | 1,300.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1,400.00 | 0.00 | 0.00 | 1,400.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1,500.00 | 0.00 | 0.00 | 1,500.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1,600.00 | 0.00 | 0.00 | 1,600.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1,700.00 | 0.00 | 0.00 | 1,700.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1,800.00 | 0.00 | 0.00 | 1,800.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1,900.00 | 0.00 | 0.00 | 1,900.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 2,000.00
2,070.00
2,100.00
2,200.00
2,300.00 | 0.00
0.00
0.60
2.60
4.60 | 0.00
0.00
191.73
191.73 | 2,000.00
2,070.00
2,100.00
2,199.96
2,299.75 | 0.00
0.00
-0.15
-2.89
-9.04 | 0.00
0.00
-0.03
-0.60
-1.88 | 0.00
0.00
-0.15
-2.88
-9.03 | 0.00
0.00
2.00
2.00
2.00 | 0.00
0.00
2.00
2.00
2.00 | 0.00
0.00
0.00
0.00
0.00 | | 2,320.21 | 5.00 | 191.73 | 2,319.89 | -10.69 | -2.22 | -10.68 | 2.00 | 2.00 | 0.00 | | 2,400.00 | 5.00 | 191.73 | 2,399.38 | -17.51 | -3.63 | -17.49 | 0.00 | 0.00 | 0.00 | | 2,500.00 | 5.00 | 191.73 | 2,499.00 | -26.05 | -5.41 | -26.02 | 0.00 | 0.00 | 0.00 | | 2,600.00 | 5.00 | 191.73 | 2,598.62 | -34.59 | -7.18 | -34.55 | 0.00 | 0.00 | 0.00 | | 2,700.00 | 5.00 | 191.73 | 2,698.23 | -43.13 | -8.95 | -43.08 | 0.00 | 0.00 | 0.00 | | 2,800.00 | 5.00 | 191.73 | 2,797.85 | -51.67 | -10.73 | -51.61 | 0.00 | 0.00 | 0.00 | | 2,900.00 | 5.00 | 191.73 | 2,897.47 | -60.21 | -12.50 | -60.14 | 0.00 | 0.00 | 0.00 | | 3,000.00 | 5.00 | 191.73 | 2,997.09 | -68.75 | -14.27 | -68.67 | 0.00 | 0.00 | 0.00 | | 3,100.00 | 5.00 | 191.73 | 3,096.71 | -77.29 | -16.05 | -77.21 | 0.00 | 0.00 | 0.00 | | 3,200.00 | 5.00 | 191.73 | 3,196.33 | -85.83 | -17.82 | -85.74 | 0.00 | 0.00 | 0.00 | | 3,300.00 | 5.00 | 191.73 | 3,295.95 | -94.37 | -19.59 | -94.27 | 0.00 | 0.00 | 0.00 | | 3,400.00 | 5.00 | 191.73 | 3,395.57 | -102.91 | -21.37 | -102.80 | 0.00 | 0.00 | 0.00 | | 3,500.00 | 5.00 | 191.73 | 3,495.19 | -111.45 | -23.14 | -111.33 | 0.00 | 0.00 | 0.00 | | 3,600.00 | 5.00 | 191.73 | 3,594.80 | -119.99 | -24.91 | -119.86 | 0.00 | 0.00 | 0.00 | | 3,700.00 | 5.00 | 191.73 | 3,694.42 | -128.53 | -26.69 | -128.39 | 0.00 | 0.00 | 0.00 | | 3,800.00 | 5.00 | 191.73 | 3,794.04 | -137.08 | -28.46 | -136.92 | 0.00 | 0.00 | 0.00 | | 3,900.00 | 5.00 | 191.73 | 3,893.66 | -145.62 | -30.23 | -145.46 | 0.00 | 0.00 | 0.00 | | 4,000.00 | 5.00 | 191.73 | 3,993.28 | -154.16 | -32.01 | -153.99 | 0.00 | 0.00 | 0.00 | | 4,100.00 | 5.00 | 191.73 | 4,092.90 | -162.70 | -33.78 | -162.52 | 0.00 | 0.00 | 0.00 | | 4,200.00 | 5.00 | 191.73 | 4,192.52 | -171.24 | -35.55 | -171.05 | 0.00 | 0.00 | 0.00 | | 4,300.00 | 5.00 | 191.73 | 4,292.14 | -179.78 | -37.33 | -179.58 | 0.00 | 0.00 | 0.00 | | 4,400.00 | 5.00 | 191.73 | 4,391.75 | -188.32 | -39.10 | -188.11 | 0.00 | 0.00 | 0.00 | | 4,500.00 | 5.00 | 191.73 | 4,491.37 | -196.86 | -40.87 | -196.64 | 0.00 | 0.00 | 0.00 | | 4,600.00 | 5.00 | 191.73 | 4,590.99 | -205.40 | -42.65 | -205.17 | 0.00 | 0.00 | 0.00 | | 4,700.00 | 5.00 | 191.73 | 4,690.61 | -213.94 | -44.42 | -213.71 | 0.00 | 0.00 | 0.00 | | 4,800.00 | 5.00 | 191.73 | 4,790.23 | -222.48 | -46.19 | -222.24 | 0.00 | 0.00 | 0.00 | | 4,900.00 | 5.00 | 191.73 | 4,889.85 | -231.02 | -47.97 | -230.77 | 0.00 | 0.00 | 0.00 | | 5,000.00 | 5.00 | 191.73 | 4,989.47 | -239.56 | -49.74 | -239.30 | 0.00 | 0.00 | 0.00 | | 5,100.00 | 5.00 | 191.73 | 5,089.09 | -248.10 | -51.51 | -247.83 | 0.00 | 0.00 | 0.00 | Database: EDM 5000.1.13 Single User Db Company: XTO Energy Project: Lea County, NM (NAD-27) Site: Estancia Sed Well: #101H Wellbore: OH Design: PERMIT v2 Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Well #101H Ref GL @ 3644.00usft Ref GL @ 3644.00usft Grid | Design. | FLIXIVIII VZ | | | | | | | | | |-----------------------------|--------------------|----------------|-----------------------------|-----------------|-----------------|-------------------------------|-------------------------------|------------------------------|-----------------------------| | Planned Survey | | | | | | | | | | | Measured
Depth
(usft) | Inclination
(°) | Azimuth
(°) | Vertical
Depth
(usft) | +N/-S
(usft) | +E/-W
(usft) | Vertical
Section
(usft) | Dogleg
Rate
(°/100usft) | Build
Rate
(°/100usft) | Turn
Rate
(°/100usft) | | 5,200.00 | 5.00 | 191.73 | 5,188.71 | -256.64 | -53.29 | -256.36 | 0.00 | 0.00 | 0.00 | | 5,300.00 | 5.00 | 191.73 | 5,288.32 | -265.18 | -55.06 | -264.89 | 0.00 | 0.00 | 0.00 | | 5,400.00 | 5.00 | 191.73 | 5,387.94 | -273.73 | -56.83 | -273.42 | 0.00 | 0.00 | 0.00 | | 5,500.00 | 5.00 | 191.73 | 5,487.56 | -282.27 | -58.61 | -281.96 | 0.00 | 0.00 | 0.00 | | 5,600.00 | 5.00 | 191.73 | 5,587.18 | -290.81 | -60.38 | -290.49 | 0.00 | 0.00 | 0.00 | | 5,700.00 | 5.00 | 191.73 | 5,686.80 | -299.35 | -62.15 | -299.02 | 0.00 | 0.00 | 0.00 | | 5,800.00 | 5.00 | 191.73 | 5,786.42 | -307.89 | -63.93 | -307.55 | 0.00 | 0.00 | 0.00 | | 5,900.00 | 5.00 | 191.73 | 5,886.04 | -316.43 | -65.70 | -316.08 | 0.00 | 0.00 | 0.00 | | 6,000.00 | 5.00 | 191.73 | 5,985.66 | -324.97 | -67.47 | -324.61 | 0.00 | 0.00 | 0.00 | | 6,100.00 | 5.00 | 191.73 | 6,085.28 | -333.51 | -69.25 | -333.14 | 0.00 | 0.00 | 0.00 | | 6,200.00 | 5.00 | 191.73 | 6,184.89 | -342.05 | -71.02 | -341.67 | 0.00 | 0.00 | 0.00 | | 6,300.00 | 5.00 | 191.73 | 6,284.51 | -350.59 | -72.79 | -350.21 | 0.00 | 0.00 | 0.00 | | 6,400.00 | 5.00 | 191.73 | 6,384.13 | -359.13 | -74.57 | -358.74 | 0.00 | 0.00 | 0.00 | | 6,500.00 | 5.00 | 191.73 | 6,483.75 | -367.67 | -76.34 | -367.27 | 0.00 | 0.00 | 0.00 | | 6,600.00 | 5.00 | 191.73 | 6,583.37 | -376.21 | -78.11 | -375.80 | 0.00 | 0.00 | 0.00 | | 6,700.00 | 5.00 | 191.73 | 6,682.99 | -384.75 | -79.89 | -384.33 | 0.00 | 0.00 | 0.00 | | 6,800.00 | 5.00 | 191.73 | 6,782.61 | -393.29 | -81.66 | -392.86 | 0.00 | 0.00 | 0.00 | | 6,900.00 | 5.00 | 191.73 | 6,882.23 | -401.83 | -83.43 | -401.39 | 0.00 | 0.00 | 0.00 | | 7,000.00 | 5.00 | 191.73 | 6,981.84 | -410.38 | -85.21 | -409.92 | 0.00 | 0.00 | 0.00 | | 7,100.00 | 5.00 | 191.73 | 7,081.46 | -418.92 | -86.98 | -418.45 | 0.00 | 0.00 | 0.00 | | 7,200.00 | 5.00 | 191.73 | 7,181.08 | -427.46 | -88.75 | -426.99 | 0.00 | 0.00 | 0.00 | | 7,300.00 | 5.00 | 191.73 | 7,280.70 | -436.00 | -90.53 | -435.52 | 0.00 | 0.00 | 0.00 | | 7,400.00 | 5.00 | 191.73 | 7,380.32 | -444.54 | -92.30 | -444.05 | 0.00 | 0.00 | 0.00 | | 7,500.00 | 5.00 | 191.73 | 7,479.94 | -453.08 | -94.07 | -452.58 | 0.00 | 0.00 | 0.00 | | 7,600.00 | 5.00 | 191.73 | 7,579.56 | -461.62 | -95.85 | -461.11 | 0.00 | 0.00 | 0.00 | | 7,700.00 | 5.00 | 191.73 | 7,679.18 | -470.16 | -97.62 | -469.64 | 0.00 | 0.00 | 0.00 | | 7,800.00 | 5.00 | 191.73 | 7,778.80 | -478.70 | -99.39 | -478.17 | 0.00 | 0.00 | 0.00 | | 7,900.00 | 5.00 | 191.73 | 7,878.41 | -487.24 | -101.17 | -486.70 | 0.00 | 0.00 | 0.00 | | 8,000.00 | 5.00 | 191.73 | 7,978.03 | -495.78 | -102.94 | -495.24 | 0.00 | 0.00 | 0.00 | | 8,100.00 | 5.00 | 191.73 | 8,077.65 | -504.32 | -104.71 | -503.77 | 0.00 | 0.00 | 0.00 | | 8,200.00 | 5.00 | 191.73 | 8,177.27 | -512.86 | -106.49 | -512.30 | 0.00 | 0.00 | 0.00 | | 8,300.00 | 5.00 | 191.73 | 8,276.89 | -521.40 | -108.26 | -520.83 | 0.00 | 0.00 |
0.00 | | 8,400.00 | 5.00 | 191.73 | 8,376.51 | -529.94 | -110.03 | -529.36 | 0.00 | 0.00 | 0.00 | | 8,500.00 | 5.00 | 191.73 | 8,476.13 | -538.49 | -111.81 | -537.89 | 0.00 | 0.00 | 0.00 | | 8,600.00 | 5.00 | 191.73 | 8,575.75 | -547.03 | -113.58 | -546.42 | 0.00 | 0.00 | 0.00 | | 8,700.00 | 5.00 | 191.73 | 8,675.36 | -555.57 | -115.35 | -554.95 | 0.00 | 0.00 | 0.00 | | 8,800.00 | 5.00 | 191.73 | 8,774.98 | -564.11 | -117.13 | -563.49 | 0.00 | 0.00 | 0.00 | | 8,900.00 | 5.00 | 191.73 | 8,874.60 | -572.65 | -118.90 | -572.02 | 0.00 | 0.00 | 0.00 | | 9,000.00 | 5.00 | 191.73 | 8,974.22 | -581.19 | -120.67 | -580.55 | 0.00 | 0.00 | 0.00 | | 9,100.00 | 5.00 | 191.73 | 9,073.84 | -589.73 | -122.45 | -589.08 | 0.00 | 0.00 | 0.00 | | 9,200.00 | 5.00 | 191.73 | 9,173.46 | -598.27 | -124.22 | -597.61 | 0.00 | 0.00 | 0.00 | | 9,300.00 | 5.00 | 191.73 | 9,273.08 | -606.81 | -125.99 | -606.14 | 0.00 | 0.00 | 0.00 | | 9,400.00 | 5.00 | 191.73 | 9,372.70 | -615.35 | -127.77 | -614.67 | 0.00 | 0.00 | 0.00 | | 9,500.00 | 5.00 | 191.73 | 9,472.32 | -623.89 | -129.54 | -623.20 | 0.00 | 0.00 | 0.00 | | 9,600.00 | 5.00 | 191.73 | 9,571.93 | -632.43 | -131.31 | -631.74 | 0.00 | 0.00 | 0.00 | | 9,700.00 | 5.00 | 191.73 | 9,671.55 | -640.97 | -133.09 | -640.27 | 0.00 | 0.00 | 0.00 | | 9,800.00 | 5.00 | 191.73 | 9,771.17 | -649.51 | -134.86 | -648.80 | 0.00 | 0.00 | 0.00 | | 9,900.00 | 5.00 | 191.73 | 9,870.79 | -658.05 | -136.63 | -657.33 | 0.00 | 0.00 | 0.00 | | 10,000.00 | 5.00 | 191.73 | 9,970.41 | -666.59 | -138.41 | -665.86 | 0.00 | 0.00 | 0.00 | | 10,100.00 | 5.00 | 191.73 | 10,070.03 | -675.14 | -140.18 | -674.39 | 0.00 | 0.00 | 0.00 | | 10,200.00 | 5.00 | 191.73 | 10,169.65 | -683.68 | -141.95 | -682.92 | 0.00 | 0.00 | 0.00 | | 10,300.00 | 5.00 | 191.73 | 10,269.27 | -692.22 | -143.73 | -691.45 | 0.00 | 0.00 | 0.00 | | 10,400.00 | 5.00 | 191.73 | 10,368.89 | -700.76 | -145.50 | -699.99 | 0.00 | 0.00 | 0.00 | | 10,500.00 | 5.00 | 191.73 | 10,468.50 | -709.30 | -147.27 | -708.52 | 0.00 | 0.00 | 0.00 | Database: EDM 5000.1.13 Single User Db Company: XTO Energy Project: Lea County, NM (NAD-27) Site: Estancia Sed Well: #101H Well: #101H Wellbore: OH Design: PERMIT v2 **Local Co-ordinate Reference:** TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Well #101H Ref GL @ 3644.00usft Ref GL @ 3644.00usft Grid | Jesigii. | FLINIIII VZ | | | | | | | | | |-----------------------------|--------------------|----------------|-----------------------------|-----------------|-----------------|-------------------------------|-------------------------------|------------------------------|-----------------------------| | Planned Survey | | | | | | | | | | | Measured
Depth
(usft) | Inclination
(°) | Azimuth
(°) | Vertical
Depth
(usft) | +N/-S
(usft) | +E/-W
(usft) | Vertical
Section
(usft) | Dogleg
Rate
(°/100usft) | Build
Rate
(°/100usft) | Turn
Rate
(°/100usft) | | 10,600.00 | 5.00 | 191.73 | 10,568.12 | -717.84 | -149.05 | -717.05 | 0.00 | 0.00 | 0.00 | | 10,700.00 | 5.00 | 191.73 | 10,667.74 | -726.38 | -150.82 | -725.58 | 0.00 | 0.00 | 0.00 | | 10,800.00 | 5.00 | 191.73 | 10,767.36 | -734.92 | -152.59 | -734.11 | 0.00 | 0.00 | 0.00 | | 10,900.00 | 5.00 | 191.73 | 10,866.98 | -743.46 | -154.37 | -742.64 | 0.00 | 0.00 | 0.00 | | 11,000.00 | 5.00 | 191.73 | 10,966.60 | -752.00 | -156.14 | -751.17 | 0.00 | 0.00 | 0.00 | | 11,100.00 | 5.00 | 191.73 | 11,066.22 | -760.54 | -157.91 | -759.70 | 0.00 | 0.00 | 0.00 | | 11,200.00 | 5.00 | 191.73 | 11,165.84 | -769.08 | -159.69 | -768.24 | 0.00 | 0.00 | 0.00 | | 11,300.00 | 5.00 | 191.73 | 11,265.45 | -777.62 | -161.46 | -776.77 | 0.00 | 0.00 | 0.00 | | 11,400.00 | 5.00 | 191.73 | 11,365.07 | -786.16 | -163.23 | -785.30 | 0.00 | 0.00 | 0.00 | | 11,500.00 | 5.00 | 191.73 | 11,464.69 | -794.70 | -165.01 | -793.83 | 0.00 | 0.00 | 0.00 | | 11,600.00 | 5.00 | 191.73 | 11,564.31 | -803.24 | -166.78 | -802.36 | 0.00 | 0.00 | 0.00 | | 11,700.00 | 5.00 | 191.73 | 11,663.93 | -811.79 | -168.55 | -810.89 | 0.00 | 0.00 | 0.00 | | 11,778.64 | 5.00 | 191.73 | 11,742.27 | -818.50 | -169.95 | -817.60 | 0.00 | 0.00 | 0.00 | | 11,800.00 | 2.95 | 200.45 | 11,763.58 | -819.93 | -170.33 | -819.03 | 10.00 | -9.62 | 40.81 | | 11,850.00 | 2.47 | 334.71 | 11,813.55 | -820.16 | -171.24 | -819.25 | 10.00 | -0.95 | 268.52 | | 11,900.00 | 7.32 | 351.53 | 11,863.36 | -816.03 | -172.17 | -815.12 | 10.00 | 9.69 | 33.63 | | 11,950.00 | 12.29 | 354.89 | 11,912.61 | -807.58 | -173.11 | -806.66 | 10.00 | 9.94 | 6.73 | | 12,000.00 | 17.27 | 356.33 | 11,960.94 | -794.86 | -174.06 | -793.94 | 10.00 | 9.97 | 2.88 | | 12,050.00 | 22.27 | 357.14 | 12,007.98 | -777.98 | -175.01 | -777.06 | 10.00 | 9.99 | 1.62 | | 12,100.00 | 27.26 | 357.67 | 12,053.37 | -757.07 | -175.95 | -756.14 | 10.00 | 9.99 | 1.05 | | 12,150.00 | 32.26 | 358.04 | 12,096.76 | -732.27 | -176.87 | -731.34 | 10.00 | 9.99 | 0.75 | | 12,200.00 | 37.26 | 358.32 | 12,137.83 | -703.79 | -177.77 | -702.85 | 10.00 | 9.99 | 0.56 | | 12,250.00 | 42.25 | 358.55 | 12,176.26 | -671.84 | -178.64 | -670.90 | 10.00 | 10.00 | 0.45 | | 12,300.00 | 47.25 | 358.73 | 12,211.75 | -636.66 | -179.47 | -635.71 | 10.00 | 10.00 | 0.37 | | 12,350.00 | 52.25 | 358.89 | 12,244.05 | -598.52 | -180.26 | -597.57 | 10.00 | 10.00 | 0.31 | | 12,400.00 | 57.25 | 359.03 | 12,272.90 | -557.71 | -181.01 | -556.75 | 10.00 | 10.00 | 0.27 | | 12,450.00 | 62.25 | 359.15 | 12,298.08 | -514.53 | -181.69 | -513.58 | 10.00 | 10.00 | 0.24 | | 12,500.00 | 67.25 | 359.26 | 12,319.40 | -469.33 | -182.32 | -468.37 | 10.00 | 10.00 | 0.22 | | 12,550.00 | 72.25 | 359.36 | 12,336.71 | -422.44 | -182.88 | -421.48 | 10.00 | 10.00 | 0.21 | | 12,600.00 | 77.24 | 359.46 | 12,349.86 | -374.22 | -183.38 | -373.26 | 10.00 | 10.00 | 0.20 | | 12,650.00 | 82.24 | 359.56 | 12,358.76 | -325.04 | -183.80 | -324.07 | 10.00 | 10.00 | 0.19 | | 12,700.00 | 87.24 | 359.65 | 12,363.34 | -275.26 | -184.14 | -274.30 | 10.00 | 10.00 | 0.18 | | 12,727.58 | 90.00 | 359.70 | 12,364.00 | -247.70 | -184.30 | -246.73 | 10.00 | 10.00 | 0.18 | | 12,800.00 | 90.00 | 359.70 | 12,364.00 | -175.28 | -184.68 | -174.31 | 0.00 | 0.00 | 0.00 | | 12,900.00 | 90.00 | 359.70 | 12,364.00 | -75.28 | -185.21 | -74.31 | 0.00 | 0.00 | 0.00 | | 13,000.00 | 90.00 | 359.70 | 12,364.00 | 24.72 | -185.73 | 25.69 | 0.00 | 0.00 | 0.00 | | 13,100.00 | 90.00 | 359.70 | 12,364.00 | 124.72 | -186.26 | 125.69 | 0.00 | 0.00 | 0.00 | | 13,200.00 | 90.00 | 359.70 | 12,364.00 | 224.72 | -186.79 | 225.69 | 0.00 | 0.00 | 0.00 | | 13,300.00 | 90.00 | 359.70 | 12,364.00 | 324.72 | -187.31 | 325.69 | 0.00 | 0.00 | 0.00 | | 13,400.00 | 90.00 | 359.70 | 12,364.00 | 424.72 | -187.84 | 425.69 | 0.00 | 0.00 | 0.00 | | 13,500.00 | 90.00 | 359.70 | 12,364.00 | 524.71 | -188.37 | 525.69 | 0.00 | 0.00 | 0.00 | | 13,600.00 | 90.00 | 359.70 | 12,364.00 | 624.71 | -188.89 | 625.69 | 0.00 | 0.00 | 0.00 | | 13,700.00 | 90.00 | 359.70 | 12,364.00 | 724.71 | -189.42 | 725.69 | 0.00 | 0.00 | 0.00 | | 13,800.00 | 90.00 | 359.70 | 12,364.00 | 824.71 | -189.94 | 825.69 | 0.00 | 0.00 | 0.00 | | 13,900.00 | 90.00 | 359.70 | 12,364.00 | 924.71 | -190.47 | 925.69 | 0.00 | 0.00 | 0.00 | | 14,000.00 | 90.00 | 359.70 | 12,364.00 | 1,024.71 | -191.00 | 1,025.69 | 0.00 | 0.00 | 0.00 | | 14,100.00 | 90.00 | 359.70 | 12,364.00 | 1,124.71 | -191.52 | 1,125.69 | 0.00 | 0.00 | 0.00 | | 14,200.00 | 90.00 | 359.70 | 12,364.00 | 1,224.70 | -192.05 | 1,225.69 | 0.00 | 0.00 | 0.00 | | 14,300.00 | 90.00 | 359.70 | 12,364.00 | 1,324.70 | -192.58 | 1,325.69 | 0.00 | 0.00 | 0.00 | | 14,400.00 | 90.00 | 359.70 | 12,364.00 | 1,424.70 | -193.10 | 1,425.69 | 0.00 | 0.00 | 0.00 | | 14,500.00 | 90.00 | 359.70 | 12,364.00 | 1,524.70 | -193.63 | 1,525.69 | 0.00 | 0.00 | 0.00 | | 14,600.00 | 90.00 | 359.70 | 12,364.00 | 1,624.70 | -194.16 | 1,625.69 | 0.00 | 0.00 | 0.00 | | 14,700.00 | 90.00 | 359.70 | 12,364.00 | 1,724.70 | -194.68 | 1,725.69 | 0.00 | 0.00 | 0.00 | | 14,800.00 | 90.00 | 359.70 | 12,364.00 | 1,824.70 | -195.21 | 1,825.69 | 0.00 | 0.00 | 0.00 | Database: EDM 5000.1.13 Single User Db Company: XTO Energy Project: Lea County, NM (NAD-27) Site: Estancia Sed Well: #101H Wellbore: OH Design: PERMIT v2 Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Well #101H Ref GL @ 3644.00usft Ref GL @ 3644.00usft Grid | Planned Survey | | | | | | | | | | |-----------------------------|-----------------|----------------|-----------------------------|-----------------|-----------------|-------------------------------|-------------------------------|------------------------------|-----------------------------| | Measured
Depth
(usft) | Inclination (°) | Azimuth
(°) | Vertical
Depth
(usft) | +N/-S
(usft) | +E/-W
(usft) | Vertical
Section
(usft) | Dogleg
Rate
(°/100usft) | Build
Rate
(°/100usft) | Turn
Rate
(°/100usft) | | 14,900.00 | 90.00 | 359.70 | 12,364.00 | 1,924.69 | -195.73 | 1,925.69 | 0.00 | 0.00 | 0.00 | | 15,000.00 | 90.00 | 359.70 | 12,364.00 | 2,024.69 | -196.26 | 2,025.69 | 0.00 | 0.00 | 0.00 | | 15,100.00 | 90.00 | 359.70 | 12,364.00 | 2,124.69 | -196.79 | 2,125.69 | 0.00 | 0.00 | 0.00 | | 15,200.00 | 90.00 | 359.70 | 12,364.00 | 2,224.69 | -197.31 | 2,225.69 | 0.00 | 0.00 | 0.00 | | 15,300.00 | 90.00 | 359.70 | 12,364.00 | 2,324.69 | -197.84 | 2,325.69 | 0.00 | 0.00 | 0.00 | | 15,400.00 | 90.00 | 359.70 | 12,364.00 | 2,424.69 | -198.37 | 2,425.69 | 0.00 | 0.00 | 0.00 | | 15,500.00 | 90.00 | 359.70 | 12,364.00 | 2,524.69 | -198.89 | 2,525.69 | 0.00 | 0.00 | 0.00 | | 15,600.00 | 90.00 | 359.70 | 12,364.00 | 2,624.69 | -199.42 | 2,625.69 | 0.00 | 0.00 | 0.00 | | 15,700.00 | 90.00 | 359.70 | 12,364.00 | 2,724.68 | -199.95 | 2,725.69 | 0.00 | 0.00 | 0.00 | | 15,800.00 | 90.00 | 359.70 | 12,364.00 | 2,824.68 | -200.47 | 2,825.69 | 0.00 | 0.00 | 0.00 | | 15,900.00 | 90.00 | 359.70 | 12,364.00 | 2,924.68 | -201.00 | 2,925.69 | 0.00 | 0.00 | 0.00 | | 16,000.00 | 90.00 |
359.70 | 12,364.00 | 3,024.68 | -201.52 | 3,025.69 | 0.00 | 0.00 | 0.00 | | 16,100.00 | 90.00 | 359.70 | 12,364.00 | 3,124.68 | -202.05 | 3,125.69 | 0.00 | 0.00 | 0.00 | | 16,200.00 | 90.00 | 359.70 | 12,364.00 | 3,224.68 | -202.58 | 3,225.69 | 0.00 | 0.00 | 0.00 | | 16,300.00 | 90.00 | 359.70 | 12,364.00 | 3,324.68 | -203.10 | 3,325.69 | 0.00 | 0.00 | 0.00 | | 16,400.00 | 90.00 | 359.70 | 12,364.00 | 3,424.67 | -203.63 | 3,425.69 | 0.00 | 0.00 | 0.00 | | 16,500.00 | 90.00 | 359.70 | 12,364.00 | 3,524.67 | -204.16 | 3,525.69 | 0.00 | 0.00 | 0.00 | | 16,600.00 | 90.00 | 359.70 | 12,364.00 | 3,624.67 | -204.68 | 3,625.69 | 0.00 | 0.00 | 0.00 | | 16,700.00 | 90.00 | 359.70 | 12,364.00 | 3,724.67 | -205.21 | 3,725.69 | 0.00 | 0.00 | 0.00 | | 16,800.00 | 90.00 | 359.70 | 12,364.00 | 3,824.67 | -205.73 | 3,825.69 | 0.00 | 0.00 | 0.00 | | 16,900.00 | 90.00 | 359.70 | 12,364.00 | 3,924.67 | -206.26 | 3,925.69 | 0.00 | 0.00 | 0.00 | | 17,000.00 | 90.00 | 359.70 | 12,364.00 | 4,024.67 | -206.79 | 4,025.69 | 0.00 | 0.00 | 0.00 | | 17,100.00 | 90.00 | 359.70 | 12,364.00 | 4,124.66 | -207.31 | 4,125.69 | 0.00 | 0.00 | 0.00 | | 17,200.00 | 90.00 | 359.70 | 12,364.00 | 4,224.66 | -207.84 | 4,225.69 | 0.00 | 0.00 | 0.00 | | 17,300.00 | 90.00 | 359.70 | 12,364.00 | 4,324.66 | -208.37 | 4,325.69 | 0.00 | 0.00 | 0.00 | | 17,400.00 | 90.00 | 359.70 | 12,364.00 | 4,424.66 | -208.89 | 4,425.69 | 0.00 | 0.00 | 0.00 | | 17,500.00 | 90.00 | 359.70 | 12,364.00 | 4,524.66 | -209.42 | 4,525.69 | 0.00 | 0.00 | 0.00 | | 17,600.00 | 90.00 | 359.70 | 12,364.00 | 4,624.66 | -209.95 | 4,625.69 | 0.00 | 0.00 | 0.00 | | 17,700.00 | 90.00 | 359.70 | 12,364.00 | 4,724.66 | -210.47 | 4,725.69 | 0.00 | 0.00 | 0.00 | | 17,807.34 | 90.00 | 359.70 | 12,364.00 | 4,832.00 | -211.04 | 4,833.04 | 0.00 | 0.00 | 0.00 | | 17,857.35 | 90.00 | 359.70 | 12,364.00 | 4,882.00 | -211.30 | 4,883.04 | 0.00 | 0.00 | 0.00 | | Design Targets | | | | | | | | | | |--|----------------------|-----------------|------------------------|--------------------------|------------------------|--------------------------------|--------------------|------------|--------------| | Target Name - hit/miss target - Shape | Dip Angle
(°) | Dip Dir.
(°) | TVD
(usft) | +N/-S
(usft) | +E/-W
(usft) | Northing
(usft) | Easting
(usft) | Latitude | Longitude | | ES 101H: SHL (347' F
- plan hits target ce
- Point | 0.00
enter | 0.00 | 0.00 | 0.00 | 0.00 | 457,155.00 | 721,273.30 | 32.2548083 | -103.6175578 | | ES 101H: FTP - plan hits target ce - Point | 0.00
enter | 0.00 | 12,364.00 | -247.70 | -184.30 | 456,907.30 | 721,089.00 | 32.2541308 | -103.6181593 | | ES 101H: PBHL (50' F
- plan hits target ce
- Point | 0.00
enter | 0.00 | 12,364.00 | 4,882.00 | -211.30 | 462,037.00 | 721,062.00 | 32.2682316 | -103.6181361 | | ES 101H: LTP - plan misses targe - Point | 0.00
et center by | | 12,364.00
17807.34u | 4,832.00
sft MD (1236 | -210.80
4.00 TVD, 4 | 461,987.00
832.00 N, -211.0 | 721,062.50
4 E) | 32.2680942 | -103.6181355 | Database: EDM 5000.1.13 Single User Db Company: XTO Energy Project: Lea County, NM (NAD-27) Site: Estancia Sed Well: #101H Wellbore: OH Design: PERMIT v2 Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Well #101H Ref GL @ 3644.00usft Ref GL @ 3644.00usft Grid | mations | | | | | | | |---------|-----------------------------|-----------------------------|--------------------|-----------|------------|-------------------------| | | Measured
Depth
(usft) | Vertical
Depth
(usft) | Name | Lithology | Dip
(°) | Dip
Direction
(°) | | | 1,194.00 | -2,294.90 | Rustler | | | | | | 1,644.00 | -1,844.90 | Top Salt | | | | | | 2,489.90 | 0.00 | Wolfcamp Y | | | | | | 2,489.90 | 0.00 | Wolfcamp A | | | | | | 4,552.83 | 1,055.10 | Base Salt | | | | | | 5,004.55 | 1,505.10 | Delaware | | | | | | 8,919.47 | 5,405.10 | Bone Spring | | | | | | 9,029.89 | 5,515.10 | Upper Avalon | | | | | | 10,048.78 | 6,530.10 | 1st Bone Spring Ss | | | | | | 10,701.26 | 7,180.10 | 2nd Bone Spring Ss | | | | | | 11,178.08 | 7,655.10 | 3rd Bone Spring Lm | | | | | | 11,931.02 | 8,405.10 | 3rd Bone Spring Ss | | | | | | 12,392.87 | 8,780.10 | Wolfcamp | | | | | | 12,486.41 | 8,825.10 | Wolfcamp X | | | | | | 12,727.58 | 8,875.10 | LP | | | | GATES E & S NORTH AMERICA, INC **DU-TEX** 134 44TH STREET CORPUS CHRISTI, TEXAS 78405 PHONE: 361-887-9807 FAX: 361-887-0812 EMAIL: crpe&s@gates.com WEB: www.gates.com ## GRADE D PRESSURE TEST CERTIFICATE Customer: Customer Ref. : Invoice No.: AUSTIN DISTRIBUTING PENDING 201709 Test Date: Hose Senal No.: Created By: 6/8/2014 D-060814-1 NORMA Product Description: FD3.042.0R41/16.5KFLGE/E LE End Filting 1: Gates Part No. : Working Pressure: 4 1/16 in.5K FLG 4774-6001 5,000 PSI End Fitting 2: Assembly Code: Test Pressure: 4 1/16 in.5K FLG L33090011513D-060814-1 7,500 PSI Gates E & S North America, Inc. certifies that the following hose assembly has been tested to the Gates Oilfield Roughneck Agreement/Specification requirements and passed the 15 minute hydrostatic test per API Spec 7K/Q1, Fifth Edition, June 2010, Test pressure 9.6.7 and per Table 9 to 7,500 psi in accordance with this product number. Hose burst pressure 9.6.7.2 exceeds the minimum of 2.5 times the working pressure per Table 9. Quality: Date: Signature: QUALITY 6/8/2014 Technical Supervisor: Date: Signature: **PRODUCTION** 6/8/2014 Form PTC - 01 Rev.0 2 त Received by OCD: 1/4/2021 8:39:21 AM XTO respectfully requests approval to utilize a spudder rig to pre-set surface casing. #### Description of Operations: - 1. Spudder rig will move in to drill the surface hole and pre-set surface casing on the well. - a. After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations). - b. The spudder rig will utilize fresh water-based mud to drill the surface hole to TD. Solids control will be handled entirely on a closed loop basis. No earth pits will be used. - 2. The wellhead will be installed and tested as soon as the surface casing is cut off and WOC time has been reached. - 3. A blind flange at the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wing valves. - a. A means for intervention will be maintained while the drilling rig is not over the well. - 4. Spudder rig operations are expected to take 2-3 days per well on the pad. - 5. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations. - 6. Drilling Operations will begin with a larger rig and a BOP stack equal to or greater than the pressure rating that was permitted will be nippled up and tested on the wellhead before drilling operations resume on each well. - a. The larger rig will move back onto the location within 180 days from the point at which the wells are secured and the spudder rig is moved off location. - b. The BLM will be notified 24 hours before the larger rig moves back on the pre-set locations - 7. XTO will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations. - 8. Once the rig is removed, XTO will secure the wellhead area by placing a guard rail around the cellar area. **<u>Subject:</u>** Request for a Variance Allowing break Testing of the Blowout Preventer Equipment (BOPE) XTO Energy requests a variance to ONLY test broken pressure seals on the BOPE and function test BOP when skidding a drilling rig between multiple wells on a pad. #### **Background** Onshore Oil and Gas Order (OOGO) No. 2, Drilling Operations, Sections III.A.2.i.iv.B states that the BOP test must be performed whenever any seal subject to test pressure is broken. The current interpretation of the Bureau of Land Management (BLM) requires a complete BOP test and not just a test of the affected component. OOGO No. 2, Section I.D.2 states, "Some situation may exist either on a well-by-well basis or field-wide basis whereby it is commonly accepted practice to vary a particular minimum standard(s) established in this order. This situation can be resolved by requesting a variance...". XTO Energy feels the break testing the BOPE is such a situation. Therefore, as per OOGO No. 2, Section IV., XTO Energy submits this request for the variance. #### **Supporting Documentation** OOGO No. 2 became effective on December 19, 1988 and has remained the standard for regulating BLM onshore drilling operations for over 30 years. During this time there have been significant changes in drilling technology. BLM continues to use the variance request process to allow for the use of modern technology and acceptable engineering practices that have arisen since OOGO No. 2 was originally released. The XTO Energy drilling rig fleet has many modern upgrades that allow the intact BOP stack to be moved between well slots on a multi-well pad, as well as, wellhead designs that incorporate quick connects facilitating release of the BOP from the wellhead without breaking any BOP stack components apart. These technologies have been used extensively offshore, and other regulators, API, and many operators around the world have endorsed break testing as safe and reliable. Figure 1: Winch System attached to BOP Stack Figure 2: BOP Winch System American Petroleum Institute (API) standards, specification and recommended practices are considered the industry standard and are consistently utilized and referenced by the industry. OOGO No. 2 recognizes API recommended Practices (RP) 53 in its original development. API Standard 53, *Well Control Equipment Systems for Drilling Wells* (Fifth Edition, December 2018, Annex C, Table C.4) recognizes break testing as an acceptable practice. Specifically, API Standard 53, Section 5.3.7.1 states "A
pressure test of the pressure containing component shall be performed following the disconnection or repair, limited to the affected component." See Table C.4 below for reference. | Tak | ole C.4—Initial Pressure Te | esting, Surface BOP Stacks | | | | | |---|---|--|---|--|--|--| | | Pressure Test—Low | Pressure Test—High Pressureac | | | | | | Component to be Pressure
Tested | Pressure ^{ac}
psig (MPa) | Change Out of
Component, Elastomer,
or Ring Gasket | No Change Out of
Component, Elastomer,
or Ring Gasket | | | | | Annular preventer ^b | 250 to 350 (1.72 to 2.41) | RWP of annular preventer | MASP or 70% annular
RWP, whichever is lower. | | | | | Fixed pipe, variable bore,
blind, and BSR preventers ^{bd} | 250 to 350 (1.72 to 2.41) | RWP of ram preventer or
wellhead system,
whichever is lower | ITP | | | | | Choke and kill line and BOP
side outlet valves below ram
preventers (both sides) | 250 to 350 (1.72 to 2.41) | RWP of side outlet valve or
wellhead system,
whichever is lower | ITP | | | | | Choke manifold—upstream of chokes ^e | 250 to 350 (1.72 to 2.41) | RWP of ram preventers or
wellhead system,
whichever is lower | ITP | | | | | Choke manifold—downstream
of chokese | 250 to 350 (1.72 to 2.41) | RWP of valve(s), line(s), or M
whichever is lower | MASP for the well program, | | | | | Kelly, kelly valves, drill pipe safety valves, IBOPs 250 to 350 (1.72 to 2.41) MASP for the well program | | | | | | | | Annular(s) and VBR(s) shall be pre
For pad drilling operations, moving
pressure-controlling connections | during the evaluation period. The pssure tested on the largest and sm from one wellhead to another within when the integrity of a pressure se | oressure shall not decrease below the
allest OD drill pipe to be used in well
n the 21 days, pressure testing is req | program.
uired for pressure-containing an | | | | The Bureau of Safety and Environmental Enforcement (BSEE), Department of Interior, has also utilized the API standards, specification and best practices in the development of its offshore oil and gas regulations and incorporates them by reference within its regulations. Break testing has been approved by the BLM in the past with other operators based on the detailed information provided in this document. XTO Energy feels break testing and our current procedures meet the intent of OOGO No. 2 and often exceed it. There has been no evidence that break testing results in more components failing than seen on full BOP tests. XTO Energy's internal standards requires complete BOPE tests more often than that of OOGO No. 2 (Every 21 days). In addition to function testing the annular, pipe rams and blind rams after each BOP nipple up, XTO Energy performs a choke drill with the rig crew prior to drilling out every casing shoe. This is additional training for the rig crew that exceeds the requirements of the OOGO No. 2. #### **Procedures** - XTO Energy will use this document for our break testing plan for New Mexico Delaware basin. The summary below will be referenced in the APD or Sundry Notice and receive approval prior to implementing this variance. - 2. XTO Energy will perform BOP break testing on multi-wells pads where multiple intermediate sections can be drilled and cased within the 21-day BOP test window. - a. A full BOP test will be conducted on the first well on the pad. - b. The first intermediate hole section drilled on the pad will be the deepest. All of the remaining hole sections will be the same depth or shallower. - i. Our Lower WC targets set the intermediate casing shoe no deeper than the Wolfcamp B. - ii. Our Upper WC targets set the intermediate casing shoe shallower than the Wolfcamp B. - c. A Full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M. - d. A full BOP test will be required prior to drilling any production hole. - 3. After performing a complete BOP test on the first well, the intermediate hole section will be drilled and cased, two breaks would be made on the BOP equipment. - a. Between the HCV valve and choke line connection - b. Between the BOP quick connect and the wellhead - 4. The BOP is then lifted and removed from the wellhead by a hydraulic system. - 5. After skidding to the next well, the BOP is moved to the wellhead by the same hydraulic system and installed. - 6. The connections mentioned in 3a and 3b will then be reconnected. - 7. Install test plug into the wellhead using test joint or drill pipe. - 8. A shell test is performed against the upper pipe rams testing the two breaks. - 9. The shell test will consist of a 250 psi low test and a high test to the value submitted in the APD or Sundry (e.g. 5,000 psi or 10,000psi). - 10. Function test will be performed on the following components: lower pipe rams, blind rams, and annular. - 11. For a multi-well pad the same two breaks on the BOP would be made and on the next wells and steps 4 through 10 would be repeated. - 12. A second break test would only be done if the intermediate hole section being drilled could not be completed within the 21 day BOP test window. Note: Picture below highlights BOP components that will be tested during batch operations #### **Summary** A variance is requested to **ONLY** test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API Standard 53 states, that for pad drilling operation, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken. The BOP will be secured by a hydraulic carrier or cradle. The BLM will be contacted if a Well Control event occurs prior to the commencement of a BOPE Break Testing operation. Based on discussions with the BLM on February 27th 2020 and the supporting documentation submitted to the BLM, we will request permission to ONLY retest broken pressure seals if the following conditions are met: - 1. After a full BOP test is conducted on the first well on the pad. - 2. The first intermediate hole section drilled on the pad will be the deepest. All of the remaining hole sections will be the same depth or shallower. - 3. Full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M. - 4. Full BOP test will be required prior to drilling the production hole. XTO requests the option to cement the surface and intermediate casing strings offline as a prudent batch drilling efficiency of acreage development. #### 1. Cement Program No changes to the cement program will take place for offline cementing. #### 2. Offline Cementing Procedure The operational sequence will be as follows. If a well control event occurs, the BLM will be contacted for approval prior to conducting offline cementing operations. - 1. Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment (float collar and shoe) - 2. Land casing with mandrel - 3. Fill pipe with kill weight fluid, do not circulate through floats and confirm well is static - 4. Set annular packoff shown below and pressure test to confirm integrity of the seal. Pressure ratings of wellhead components and valves is 5,000 psi. - 5. After confirmation of both annular barriers and internal barriers, nipple down BOP and install cap flange. - a. If any barrier fails to test, the BOP stack will not be nippled down until after the cement job is completed with cement 500ft above the highest formation capable of flow with kill weight mud above or after it has achieved 50-psi compressive strength if kill weight fluid cannot be verified. Annular packoff with both external and internal seals Wellhead diagram during skidding operations - 6. Skid rig to next well on pad. - 7. Confirm well is static before removing cap flange, flange will not be removed and offline cementing operations will not commence until well is under control. If well is not static, casing outlet valves will provide access to both the casing ID and annulus. Rig or third party pump truck will kill well prior to cementing or nippling up for further remediation. - a. Well Control Plan - i. The Drillers Method will be the primary well control method to regain control of the wellbore prior to cementing, if wellbore conditions do not permit the drillers method other methods of well control may be used - ii. Rig pumps or a 3rd party pump will be tied into the upper casing valve to pump down the casing ID - iii. A high pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure - iv. Once influx is circulated out of the hole, kill weight mud will be circulated - v. Well will be confirmed static - vi. Once confirmed static, cap flange will be removed to allow for offline cementing operations to commence - 8. Install offline cement tool - 9. Rig up cement equipment Wellhead diagram during offline cementing operations - 10. Circulate bottoms up with cement truck - a. If gas is present on bottoms up, well will be shut in and returns rerouted through gas buster to handle entrained gas - b. Max anticipated time before circulating with cement truck is 6 hrs - 11. Perform cement job taking returns from the annulus wellhead valve - 12. Confirm well is static and floats are holding after cement job - 13. Remove cement equipment, offline cement tools and install night cap with pressure gauge
for monitoring. XTO requests the option to cement the production casing string offline as a prudent batch drilling efficiency of acreage development. #### 1. Cement Program No changes to the cement program will take place for offline cementing. #### 2. Offline Cementing Procedure The operational sequence will be as follows: If a well control event occurs, the NMOCD will be contacted for approval prior to conducting offline cementing operations. - 1. Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment (float collar and shoe). - 2. Land casing with mandrel. - 3. Fill pipe with kill weight fluid, do not circulate through floats and confirm well is static. - 4. Set annular packoff shown below and pressure test to confirm integrity of the seal. Pressure ratings of wellhead components and valves is 10,000 psi. After a satisfactory test is achieved, bleed off all test pressure, remove the test pump, and re-install the fitting. - 5. Lay down the landing joint/running tool and install a back-pressure valve (BPV) in the hanger. - 6. After confirmation of both annular barriers and internal barriers, nipple down BOP and install cap flange. - a. If any barrier fails to test, the BOP stack will not be nippled down until after the cement job is completed with cement 500 ft. above the highest formation capable of flow with kill weight mud above, or after it has achieved 50 psi compressive strength if kill weight fluid cannot be verified. Annular packoff with both external and internal seals Wellhead diagram during skidding operations with BPV - 7. Skid rig to next well on pad. - 8. Confirm well is static before removing cap flange. Flange will not be removed and offline cementing operations will not commence until well is under control. - 9. Remove the cover and install the flange with gate valve and cement head adapter. Re-test between the upper seal on the 5-1/2" and the lower seal on the cement adapter / inbetween the seals of the cement adapter. Proceed to confirm no pressure behind the BPV by unseating the poppet and pull the same. If well is not static, casing outlet valves will provide access to both the casing ID and annulus. Rig or third party pump truck will kill well prior to cementing or nippling up for further remediation. - a. Well Control Plan: - i. The Drillers Method will be the primary well control method to regain control of the wellbore prior to cementing. If wellbore conditions do not permit the Drillers Method, other methods of well control may be used. - ii. Rig pumps or a 3rd party pump will be tied into the upper casing valve to pump down the casing ID. - iii. A high pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure. - iv. Once influx is circulated out of the hole, kill weight mud will be circulated. - v. Well will be confirmed static. - vi. Once confirmed static, cap flange will be removed to allow for offline cementing operations to commence. - 10. Install offline cement tool. - 11. Rig up cement equipment. Wellhead diagram during offline cementing operations - 12. Circulate bottoms up with cement truck. - a. If gas is present on bottoms up, well will be shut in and returns rerouted through gas buster to handle entrained gas. - b. Max anticipated time before circulating with cement truck is 6 hrs. - 13. Perform cement job taking returns from the annulus wellhead valve. - 14. Confirm well is static and floats are holding after cement job. - 15. Install BPV and remove cement equipment, offline cement tools, and install night cap with pressure gauge for monitoring. <u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462 **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505** CONDITIONS Action 11831 #### **CONDITIONS OF APPROVAL** | Operator: | OGRID: | Action Number: | Action Type: | |--|--------|----------------|--------------| | XTO ENERGY, INC 6401 Holiday Hill Road | 5380 | 11831 | C-103A | | Building #5 Midland, TX79707 | | | | | OCD Reviewer | Condition | |--------------|-----------| | pkautz | None |