<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

Depth to Ground water

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Form C-101 August 1, 2011

Permit 304071

12/1/2021

Distance to nearest surface water

		APPLIC/	ATION FOR PE	RMIT TO	DRILL, RE	ENTER, DEE	PEN	I, PLUGBACI	K, OR A	DD A ZO	NE		
	lame and Address ATADOR PRODUCTION	ON COMPANY	,							2. OGF	RID Number 228937		
	ne Lincoln Centre allas, TX 75240									3. API	Number 30-015-4910	9	
4. Property Co	ode 28503		5. Property Name Ace Ste	rn Vegas	Fee 22 21					6. Wel	l No. 124H		
					7. Sur	face Location							
UL - Lot	Section	Township	Range		Lot Idn	Feet From		N/S Line	Feet Fro	om	E/W Line	County	
M	21	22	2S	28E		1160		S		350	W		Eddy
					8. Proposed E	Bottom Hole Loc	cation	1					
UL - Lot	Section	Township	Range		Lot Idn	Feet From		N/S Line	Feet I	rom	E/W Line	County	
Р	22	2:	2S	28E	Р	67	7	S		60	E		Eddy
					9. Poc	Information							
CULEBRA E	BLUFF;BONE SPRIN	G, SOUTH									150)11	
					Additiona	Well Information	on						
11. Work Type	е	12. Well Type)	13. Cabl	e/Rotary		14. L	ease Type		15. Ground	Level Elevation		
Ne	ew Well	OI	L					Private		3	3067		
16. Multiple		17. Proposed	Depth	18. Form	nation	•	19. C	Contractor		20. Spud Da	ate		•

We will be using a closed-loop system in lieu of lined pits

18259

21. Proposed Casing and Cement Program

Bone Spring

Distance from nearest fresh water well

Type	Hole Size	Casing Size	Casing Weight/ft	Setting Depth	Sacks of Cement	Estimated TOC
Surf	17.5	13.375	54.5	385	380	0
Int1	9.875	7.625	29.7	7325	1064	0
Prod	6.75	5.5	20	18259	684	7125

Casing/Cement Program: Additional Comments

22. Proposed Blowout Prevention Program Working Pressure Test Pressure Manufacturer Type 5000 3000 Annular Cameron Double Ram 10000 5000 Cameron Pipe 10000 5000 Cameron

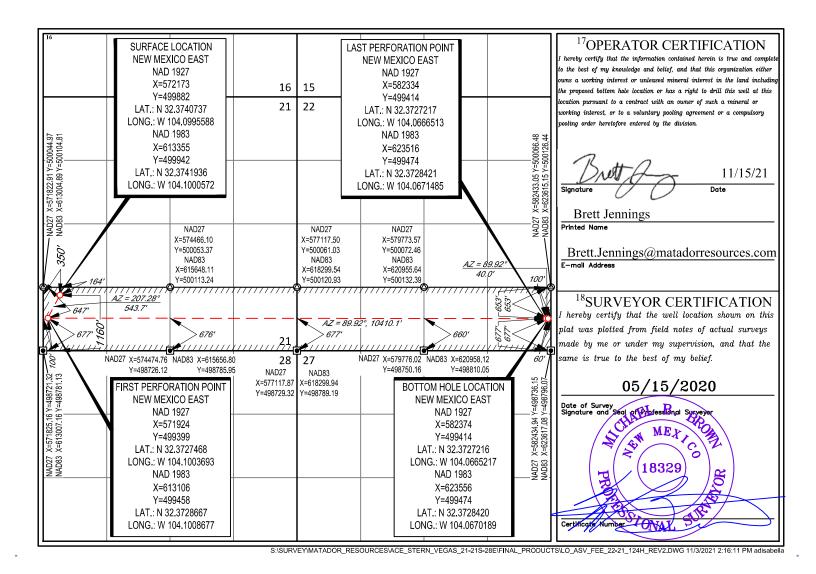
knowledge and be	er certify I have complied with 19.15.14.9 (A) NMAC and/or 19.15.14.9 (B) NMAC oplicable.			OIL CONSERVATION	ON DIVISION	
Signature:						
Printed Name:	Electronically filed by Brett A Jenn	ings	Approved By:	Katherine Pickford		
Title:	Regulatory Analyst		Title:	Geoscientist		
Email Address:	Email Address: brett.jennings@matadorresources.com		Approved Date:	11/22/2021	Expiration Date: 11/22/2023	
Date:	11/15/2021	Phone: 972-629-2160	Conditions of Approval Attached			

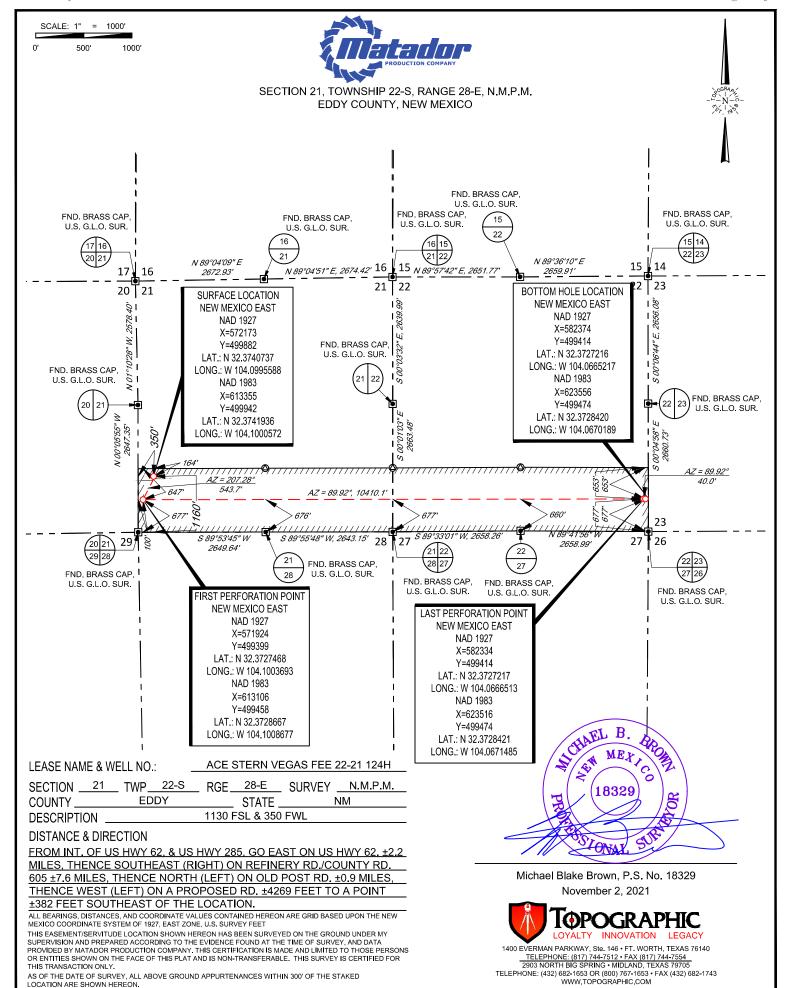
1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department **OIL CONSERVATION DIVISION** 1220 South St. Francis Dr. Santa Fe, NM 87505

FORM C-102 Revised August 1, 2011 Submit one copy to appropriate **District Office**

AMENDED REPORT

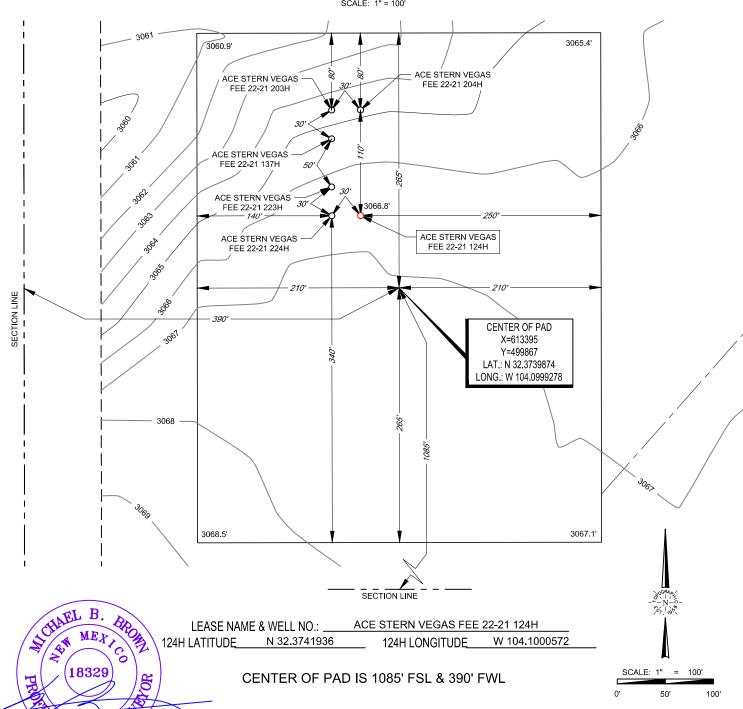

WELL LOCATION AND ACREAGE DEDICATION PLAT


¹ API Number	² Pool Code	³ Pool Name				
30-015-49109	15011	Culebra Bluff; Bone Spring, S	outh			
⁴ Property Code	⁵ Pr	⁶ Well Number				
328503	ACE STERN	VEGAS FEE 22-21	124H			
⁷ OGRID No.	⁸ O _I	perator Name	⁹ Elevation			
228937	MATADOR PRO	DUCTION COMPANY	3067'			
	10 Curt	face Location				

Surface Location

UL or lot no. M	Section Township 22-S		Range 28-E	l		North/South line SOUTH	Feet from the 350'	East/West line WEST	County EDDY
			¹¹ F	Bottom Ho	le Location If D	Different From Su	rface		
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
P	22	22-S	28-E	-	677'	SOUTH	60'	EAST	EDDY
¹² Dedicated Acres	¹³ Joint or I	nfill ¹⁴ Co	nsolidation Cod	le ¹⁵ Ord	er No.				
320									

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.



WWW.TOPOGRAPHIC.COM

SECTION 21, TOWNSHIP 22-S, RANGE 28-E, N.M.P.M. EDDY COUNTY, NEW MEXICO

DETAIL VIEW SCALE: 1" = 100'

Michael Blake Brown, P.S. No. 18329

ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO COORDINATE SYSTEM OF 1983, EAST ZONE, U.S. SURVEY FEET. ELEVATIONS USED ARE NAVD88, OBTAINED THROUGH AN OPUS SOLUTION.

THIS PROPOSED PAD SITE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY MATADOR PRODUCTION COMPANY. ONLY THE DATA SHOWN ABOVE IS BEING CERTIFIED TO, ALL OTHER INFORMATION WAS INTENTIONALLY OMITTED. THIS PLAT IS ONLY INTENDED TO BE USED FOR A PERMIT AND IS NOT A BOUNDARY SURVEY. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE, THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

1400 EVERMAN PARKWAY, Ste. 196 • FT. WORTH, TEXAS 76140 TELEPHONE: (817) 744-7512 • FAX (817) 744-75588 2903 NORTH BIG SPRING • MIDLAND, TEXAS 79705 TELEPHONE: (432) 682-1653 OR (800) 767-1653 • FAX (432) 682-1743 WWW.TOPOGRAPHIC.COM kpickford Cement is required to circulate on both surface and intermediate1 strings of casing

drilling fluids and solids must be contained in a steel closed loop system

Form APD Conditions

Permit 304071

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

PERMIT CONDITIONS OF APPROVAL

	ame and Address:	API Number:				
	MATADOR PRODUCTION COMPANY [228937] One Lincoln Centre	30-015-49109 Well:				
	Dallas, TX 75240	Ace Stern Vegas Fee 22 21 #124H				
1						
OCD Reviewer	Condition					
kpickford	Surface casing must be set 25' below top of Rustler Anhydrite or other competent layer in order to seal off pro	tectable water				
kpickford	Notify OCD 24 hours prior to casing & cement					
kpickford	Will require a File As Drilled C-102 and a Directional Survey with the C-104					
kpickford	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surfa water zone or zones and shall immediately set in cement the water protection string	ice, the operator shall drill without interruption through the fresh				

kpickford Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud,

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically
Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator: Matador	Production C	Company	OGRID: 22	8937		Date:_	1	1/03/2021
II. Type: ⊠Original □] Amendment	due to ☐ 19.15.27.9.	D(6)(a) NMAC	C □ 19.15.27.9.D(6	6)(b) NI	МАС 🗆 С	Other.	
If Other, please describ	e:							
III. Well(s): Provide the recompleted from a sin					wells pr	oposed to	be drill	led or proposed to be
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D		icipated MCF/D		Anticipated Produced Water BBL/D
Ace Stern Vegas Fee 22-21 223H	TBD	UL-M Sec 21 T22S R28	E 1,160' FSL 350' FWL	826	12,165		4,687	
Ace Stern Vegas Fee 22-21 224H	TBD	UL-D Sec 21 T22S R281		826	12,165		4,687	
Ace Stern Vegas Fee 22-21 124H	TBD	UL-D Sec 21 T22S R281	E 1,160' FSL 350' FWL	1,200	2,300		3,000	
IV. Central Delivery l V. Anticipated Schedo proposed to be recomp	ule: Provide th	e following informatingle well pad or conn	nected to a cent	ral delivery point.		et of wells	s propos	
Well Name	API	Spud Date	TD Reached Date	Completion Commencement		Initial Back		First Production Date
Ace Stern Vegas Fee 22-21 223H	TBD	12/17/2021	01/11/2022	03/01/2022		04//22/2022	!	04//22/2022
Ace Stern Vegas Fee 22-21 224H	TBD	01/02/2021	02/06/2021	03/01/2022		04/26/2022		04/26/2022
Ace Stern Vegas Fee 22-21 124H	TBD	TBD 7	ГВD	TBD		TBD		TBD
	1	1						

- VI. Separation Equipment:

 Attach a complete description of how Operator will size separation equipment to optimize gas capture.
- VII. Operational Practices:
 ☐ Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

		<u>EFFECTIV</u>	<u>E APRIL 1, 2022</u>		
Beginning April 1, 2 reporting area must of			ith its statewide natural gas o	capture 1	requirement for the applicable
☐ Operator certifies capture requirement			on because Operator is in co	mplianc	ee with its statewide natural gas
IX. Anticipated Nat	tural Gas Producti	on:			
We	ell	API	Anticipated Average Natural Gas Rate MCF/I)	Anticipated Volume of Natural Gas for the First Year MCF
X. Natural Gas Gat	thering System (NO	GGS):			
Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date		lable Maximum Daily Capacity of System Segment Tie-in
production operation the segment or portion XII. Line Capacity. production volume fixIII. Line Pressure	s to the existing or join of the natural gas. The natural gas garom the well prior to the comparison of the comparison	planned interconnect of to gathering system(s) to wathering system will to the date of first product does not anticipate that	he natural gas gathering syst which the well(s) will be con will not have capacity to gitton.	em(s), a nected. gather 10	and pipeline route(s) connecting the and the maximum daily capacity of 200% of the anticipated natural gas e same segment, or portion, of the essure caused by the new well(s).
XIV. Confidentialit Section 2 as provided	ty: □Operator assed in Paragraph (2) o	rts confidentiality pursu	27.9 NMAC, and attaches a		8 for the information provided in cription of the specific information

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

⊠Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

□Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In. ☐ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. □ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- **(b)** power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Omar Enriquez Omar Enriq
Printed Name: Omar Enriquez
Title: Senior Production Engineer
E-mail Address: oenriquez@matadorresources.com
Date: 9/17/2021
Phone: (972) 587-4638
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

Addendum to Natural Gas Management Plan for Matador's Ace Stern Vegas Fee 223H,224H and 124H

VI. Separation Equipment

Flow from the wells will be routed via a flowline to a 48"x15" three phase separator dedicated to the well. The first stage separators are sized with input from BRE ProMax and API 12J. Expected production from the 223H and 224H wells is approximately 12,000 mcfd, 800 bopd, and 4,600 bwpd per well. Expected production from the 124H is approximately 2,300 mcfd, 1,200 bopd and 3,000 bwpd. Liquid retention times at expected maximum rates will be >3 minutes. Gas will be routed from the first stage separator to sales. Hydrocarbon liquids are dumped from the first stage separator and commingled to one or more heater treaters. The flash gas from the heater treater(s) could either be sent to sales or routed to a compressor if the sales line pressure is higher than the MAWP of the heater treater (125 psi). From the heater treaters, hydrocarbon liquid will be routed to the tanks where vapor is compressed by a VRU if technically feasible to either sales or a compressor if the sales line pressure is higher than the VRU's maximum discharge pressure (~150 psi). Therefore, Matador has sized our separation equipment to optimize gas capture and our separation equipment is of sufficient size to handle the expected volumes of gas.

VII. Operation Practices

Although not a complete recitation of all our efforts to comply with a subsection A through F of 19.15.27.8 NMAC, a summary is as follows. During drilling, Matador will have a properly sized flare stack at least 100 feet from the nearest surface hole. During initial flowback we will route the flowback fluids into completion or storage tanks and, to the extent possible, flare rather than vent any gas. We will commence operation of a separator as soon as technically feasible, and have instructed our team that we want to connect the gas to sales as soon as possible but not later than 30 days after initial flowback.

Regarding production operations, we have designed our production facilities to be compliant with the requirements of Part E of 19.15.27.8 NMAC. We will instruct our team to perform the AVOs on the frequency required under the rules. While the well is producing, we will take steps to minimize flaring during maintenance, as set forth below, and we have a process in place for the measuring of any flared gas and the reporting of any reportable flaring events.

VII. Best Management Practices

Steps are taken to minimize venting during active or planned maintenance when technically feasible including:

- Isolating the affected component and reducing pressure through process piping
- Blowing down the equipment being maintained to a control device
- Performing preventative maintenance and minimizing the duration of maintenance activities
- Shutting in sources of supply as possible
- Other steps that are available depending on the maintenance being performed

Matador Production Company

Rustler Breaks Ace Stern Vegas Ace Stern Vegas #124H

Wellbore #1

Plan: BLM Plan #1

Standard Planning Report

03 November, 2021

Database: Company:

EDM 5000.14 Server

Matador Production Company

Project: Rustler Breaks Site: Ace Stern Vegas Well: Ace Stern Vegas #124H

Wellbore: Wellbore #1 Design: BLM Plan #1 Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Ace Stern Vegas#124H

KB @ 3095.5usft KB @ 3095.5usft

Grid

Minimum Curvature

Project

Rustler Breaks,

Map System: Geo Datum:

Map Zone:

Site

US State Plane 1927 (Exact solution) NAD 1927 (NADCON CONUS)

New Mexico East 3001

System Datum:

Mean Sea Level

Using geodetic scale factor

89.92

Ace Stern Vegas

Northing: 499,867.00 usft Site Position: Latitude: 32° 22' 25.372 N From: Мар Easting: 613,395.00 usft Longitude: 103° 57' 57.745 W 0.20°

Position Uncertainty: 0.0 usft **Slot Radius:** 13-3/16 " Grid Convergence:

Well Ace Stern Vegas #124H

Well Position +N/-S 14.9 usft Northing: 499,881.92 usft Latitude: 32° 22' 26.665 N

+F/-W -41,224.9 usft Easting: 572,173.20 usft Longitude: 104° 5' 58.412 W **Position Uncertainty** 0.0 usft Wellhead Elevation: **Ground Level:** 3,067.0 usft

Wellbore Wellbore #1 Declination Field Strength Magnetics **Model Name** Sample Date **Dip Angle** (°) (°) (nT) 47,523.80241093 IGRF2015 11/3/2021 6.74 60.06

Design BLM Plan #1 **Audit Notes:** Version: Phase: **PROTOTYPE** Tie On Depth: 0.0 Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (usft) (°)

0.0

0.0

Remarks

Plan Survey Tool Program Date 11/3/2021

Depth From Depth To

0.0

(usft)

1

(usft)

Survey (Wellbore) 18,258.9 BLM Plan #1 (Wellbore #1)

0.0

Tool Name

MWD

OWSG MWD - Standard

Plan Sections Vertical Build Measured **Dogleg** Turn Depth Inclination **Azimuth** Depth +N/-S +E/-W Rate Rate Rate **TFO** (usft) (usft) (°/100usft) (°/100usft) (°/100usft) (usft) (usft) (°) (°) (°) **Target** 0.00 0.00 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.0 1.500.0 0.00 0.00 1.500.0 0.0 0.0 0.00 0.00 0.00 0.00 2,300.0 8.00 -49.6 -25.5 1.00 0.00 207.17 207.17 2,297.4 1.00 0.00 6.340.7 8.00 207.17 6.298.7 -549.9 -282.3 0.00 0.00 0.00 0.00 -583 0 -299 2 1.50 -1 50 0.00 6,874.0 0.00 6.830.3 180 00 -299.2 0.00 0.00 7,425.7 0.00 0.00 7,382.0 -583.0 0.00 0.00 VP - Ace Stern Veg 8,325.7 90.00 82.40 7,955.0 -507.2268.7 10.00 10.00 0.00 82.40 8,701.4 90.00 89.92 7,955.0 -482.0 643.4 2.00 0.00 2.00 90.00 18.258.9 90.00 89.92 7.955.0 -468.0 10.200.8 0.00 0.00 0.00 0.00 BHL - Ace Stern Ve

Database: EDM 5000.14 Server Company:

Matador Production Company

Project: Rustler Breaks Ace Stern Vegas Site: Well: Ace Stern Vegas #124H

Wellbore: Wellbore #1 BLM Plan #1 Design:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Ace Stern Vegas#124H

KB @ 3095.5usft KB @ 3095.5usft

Grid

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0 100.0 200.0 300.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.0 100.0 200.0 300.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
400.0 478.0	0.00	0.00	400.0 478.0	0.0 0.0	0.0	0.0	0.00	0.00	0.00 0.00
Salado (To		0.00	470.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0 600.0 700.0 800.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	500.0 600.0 700.0 800.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
900.0 947.0	0.00 0.00	0.00 0.00	900.0 947.0	0.0 0.0	0.0 0.0	0.0 0.0	0.00 0.00	0.00 0.00	0.00 0.00
Castile (T) 1.000.0		0.00	4 000 0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0 1,100.0 1,200.0	0.00 0.00 0.00	0.00 0.00 0.00	1,000.0 1,100.0 1,200.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
1,300.0 1,400.0 1,500.0	0.00 0.00 0.00	0.00 0.00 0.00	1,300.0 1,400.0 1.500.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
Start Build	1 1.00		,						
1,600.0 1,700.0	1.00 2.00	207.17 207.17	1,600.0 1,700.0	-0.8 -3.1	-0.4 -1.6	-0.4 -1.6	1.00 1.00	1.00 1.00	0.00 0.00
1,800.0 1,900.0 2,000.0 2,100.0 2,200.0	3.00 4.00 5.00 6.00 7.00	207.17 207.17 207.17 207.17 207.17	1,799.9 1,899.7 1,999.4 2,098.9 2,198.3	-7.0 -12.4 -19.4 -27.9 -38.0	-3.6 -6.4 -10.0 -14.3 -19.5	-3.6 -6.4 -10.0 -14.4 -19.6	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00
2,300.0	8.00	207.17	2,297.4	-49.6	-25.5	-25.5	1.00	1.00	0.00
2,400.0	.7 hold at 2300 8.00	207.17	2,396.4	-62.0	-31.8	-31.9	0.00	0.00	0.00
2,500.0 2,554.1	8.00 8.00	207.17 207.17	2,495.5 2,549.0	-74.4 -81.1	-38.2 -41.6	-38.3 -41.7	0.00 0.00	0.00 0.00	0.00 0.00
G30:CS14 2,591.4	-CSB (BASE S 8.00	ALT) 207.17	2,586.0	-85.7	-44.0	-44.1	0.00	0.00	0.00
·	Cyn (T. Delawa		2,000.0	00.1	11.0		0.00	0.00	0.00
2,600.0 2,700.0 2,800.0 2,900.0 3,000.0	8.00 8.00 8.00 8.00 8.00	207.17 207.17 207.17 207.17 207.17	2,594.5 2,693.5 2,792.5 2,891.6 2,990.6	-86.8 -99.1 -111.5 -123.9 -136.3	-44.5 -50.9 -57.2 -63.6 -69.9	-44.6 -51.0 -57.4 -63.8 -70.1	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
3,100.0 3,200.0 3,300.0 3,400.0 3,423.5	8.00 8.00 8.00 8.00 8.00	207.17 207.17 207.17 207.17 207.17	3,089.6 3,188.6 3,287.7 3,386.7 3,410.0	-148.7 -161.0 -173.4 -185.8 -188.7	-76.3 -82.7 -89.0 -95.4 -96.9	-76.5 -82.9 -89.3 -95.6 -97.1	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
	nerry Cyn.)	201.11	0,410.0	-100.7	-30.8	-31.1	0.00	0.00	0.00
3,500.0 3,600.0 3,700.0 3,800.0 3,900.0	8.00 8.00 8.00 8.00 8.00	207.17 207.17 207.17 207.17 207.17	3,485.7 3,584.8 3,683.8 3,782.8 3,881.8	-198.2 -210.6 -222.9 -235.3 -247.7	-101.7 -108.1 -114.4 -120.8 -127.1	-102.0 -108.4 -114.7 -121.1 -127.5	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
4,000.0	8.00	207.17	3,980.9	-260.1	-133.5	-133.9	0.00	0.00	0.00

Database: EDM 5000.14 Server Company:

Matador Production Company

Project: Rustler Breaks Ace Stern Vegas Site: Well: Ace Stern Vegas #124H

Wellbore: Wellbore #1 BLM Plan #1 Design:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Ace Stern Vegas#124H

KB @ 3095.5usft KB @ 3095.5usft

Grid

anned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
4,100.0 4,200.0 4,300.0 4,400.0	8.00 8.00 8.00 8.00	207.17 207.17 207.17 207.17	4,079.9 4,178.9 4,277.9 4,377.0	-272.5 -284.9 -297.2 -309.6	-139.9 -146.2 -152.6 -158.9	-140.2 -146.6 -153.0 -159.4	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
4,500.0 4,600.0 4,643.4	8.00 8.00 8.00	207.17 207.17 207.17	4,476.0 4,575.0 4,618.0	-322.0 -334.4 -339.8	-165.3 -171.6 -174.4	-165.7 -172.1 -174.9	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
Z (G7: Bru 4,700.0 4,800.0	8.00 8.00	207.17 207.17	4,674.0 4,773.1	-346.8 -359.1	-178.0 -184.3	-178.5 -184.8	0.00 0.00	0.00 0.00	0.00 0.00
4,900.0 5,000.0 5,100.0 5,200.0 5,300.0	8.00 8.00 8.00 8.00 8.00	207.17 207.17 207.17 207.17 207.17	4,872.1 4,971.1 5,070.2 5,169.2 5,268.2	-371.5 -383.9 -396.3 -408.7 -421.1	-190.7 -197.1 -203.4 -209.8 -216.1	-191.2 -197.6 -204.0 -210.3 -216.7	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
5,400.0 5,500.0 5,600.0 5,700.0 5,768.4	8.00 8.00 8.00 8.00 8.00	207.17 207.17 207.17 207.17 207.17	5,367.2 5,466.3 5,565.3 5,664.3 5,732.0	-433.4 -445.8 -458.2 -470.6 -479.0	-222.5 -228.8 -235.2 -241.5 -245.9	-223.1 -229.4 -235.8 -242.2 -246.5	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
Z (G5: L. E	Brushy Cyn.)								
5,800.0 5,900.0 6,000.0 6,014.7	8.00 8.00 8.00 8.00	207.17 207.17 207.17 207.17	5,763.3 5,862.4 5,961.4 5,976.0	-483.0 -495.3 -507.7 -509.6	-247.9 -254.2 -260.6 -261.5	-248.6 -254.9 -261.3 -262.3	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
Z (G4: BS0	` ''								
6,100.0 6,200.0 6,300.0 6,340.7	8.00 8.00 8.00 8.00	207.17 207.17 207.17 207.17	6,060.4 6,159.4 6,258.5 6,298.7	-520.1 -532.5 -544.9 -549.9	-267.0 -273.3 -279.7 -282.3	-267.7 -274.1 -280.4 -283.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
Start Drop 6,400.0 6,475.9	7.11 5.97	207.17 207.17	6,357.6 6,433.0	-556.8 -564.5	-285.8 -289.8	-286.6 -290.6	1.50 1.50	-1.50 -1.50	0.00 0.00
Z (L8.2: U.	Avalon Shale								
6,500.0 6,589.4	5.61 4.27 valon Carb)	207.17 207.17	6,456.9 6,546.0	-566.7 -573.5	-290.9 -294.4	-291.7 -295.2	1.50 1.50	-1.50 -1.50	0.00 0.00
6,600.0 6,654.5	4.11 3.29	207.17 207.17	6,556.6 6,611.0	-574.2 -577.4	-294.7 -296.3	-295.5 -297.2	1.50 1.50	-1.50 -1.50	0.00 0.00
	Avalon Shale)					000.0	4.50		0.00
6,700.0 6,745.6	2.61 1.93	207.17 207.17	6,656.4 6,702.0	-579.5 -581.1	-297.4 -298.2	-298.2 -299.1	1.50 1.50	-1.50 -1.50	0.00 0.00
Z (L5.3: FE 6,800.0 6,874.0	1.11 0.00	207.17	6,756.4 6,830.3	-582.3 -583.0	-298.9 -299.2	-299.7 -300.0	1.50 1.50	-1.50 -1.50	0.00 0.00
Start 551.7 6,900.0	7 hold at 6874.0	0 MD 0.00	6,856.3	-583.0	-299.2	-300.0	0.00	0.00	0.00
7,000.0	0.00	0.00	6,956.3	-583.0	-299.2	-300.0	0.00	0.00	0.00
7,071.7 Z (L5.1: FE	0.00 BSG)	0.00	7,028.0	-583.0	-299.2	-300.0	0.00	0.00	0.00
7,100.0 7,200.0 7,300.0	0.00 0.00 0.00	0.00 0.00 0.00	7,056.3 7,156.3 7,256.3	-583.0 -583.0 -583.0	-299.2 -299.2 -299.2	-300.0 -300.0 -300.0	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00

Database: EDM 5000.14 Server
Company: Matador Production Company

Project: Rustler Breaks
Site: Ace Stern Vegas #124H
Well: Ace Stern Vegas #124H

Wellbore: Wellbore #1

Design: BLM Plan #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Ace Stern Vegas#124H

KB @ 3095.5usft KB @ 3095.5usft

Grid

lanned Survey	<i>'</i>								
Measure Depth (usft)	d Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
7,349 Z (L4.3 :		0.00	7,306.0	-583.0	-299.2	-300.0	0.00	0.00	0.00
7,400 7,425		0.00 0.00	7,356.3 7,382.0	-583.0 -583.0	-299.2 -299.2	-300.0 -300.0	0.00 0.00	0.00 0.00	0.00 0.00
	uild 10.00 - VP - A								
7,500 7,600 7,700	0.0 17.43	82.40 82.40 82.40	7,456.1 7,553.7 7,646.0	-582.3 -579.5 -574.5	-294.5 -273.1 -235.4	-295.3 -273.9 -236.2	10.00 10.00 10.00	10.00 10.00 10.00	0.00 0.00 0.00
7,799	37.40	82.40	7,730.0	-567.4	-182.5	-183.3	10.00	10.00	0.00
Z (L4.1 : 7,800 7,900 8,000	0.0 47.43	82.40 82.40 82.40	7,730.3 7,804.0 7,864.9	-567.4 -558.5 -548.0	-182.3 -115.5 -37.0	-183.1 -116.2 -37.8	10.00 10.00 10.00	10.00 10.00 10.00	0.00 0.00 0.00
8,100 8,200	0.0 67.43 0.0 77.43	82.40 82.40	7,911.1 7,941.2	-536.3 -523.7	50.8 145.1	50.0 144.4	10.00	10.00	0.00
8,300 8,325 Start D		82.40 82.40 0	7,954.4 7,955.0	-510.6 -507.2	243.3 268.7	242.6 268.0	10.00 10.00	10.00 10.00	0.00 0.00
8,400 8,500	90.00	83.89 85.89	7,955.0 7,955.0	-498.3 -489.4	342.5 442.1	341.8 441.4	2.00 2.00	0.00 0.00	2.00 2.00
8,600 8,700 8,701	0.0 90.00 .4 90.00	87.89 89.89 89.92	7,955.0 7,955.0 7,955.0	-484.0 -482.0 -482.0	542.0 641.9 643.4	541.3 641.3 642.7	2.00 2.00 2.00	0.00 0.00 0.00	2.00 2.00 2.00
	557.4 hold at 870								
8,800 8,900		89.92 89.92	7,955.0 7,955.0	-481.9 -481.7	741.9 841.9	741.3 841.3	0.00 0.00	0.00 0.00	0.00 0.00
9,000 9,100 9,200 9,300 9,400	0.0 90.00 0.0 90.00 0.0 90.00	89.92 89.92 89.92 89.92 89.92	7,955.0 7,955.0 7,955.0 7,955.0 7,955.0	-481.6 -481.5 -481.3 -481.2 -481.0	941.9 1,041.9 1,141.9 1,241.9 1,341.9	941.3 1,041.3 1,141.3 1,241.3 1,341.3	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
9,500 9,600 9,700 9,800 9,900	0.0 90.00 0.0 90.00 0.0 90.00	89.92 89.92 89.92 89.92 89.92	7,955.0 7,955.0 7,955.0 7,955.0 7,955.0	-480.9 -480.7 -480.6 -480.4 -480.3	1,441.9 1,541.9 1,641.9 1,741.9 1,841.9	1,441.3 1,541.3 1,641.3 1,741.3 1,841.3	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
10,000 10,100 10,200 10,300 10,400	0.0 90.00 0.0 90.00 0.0 90.00 0.0 90.00	89.92 89.92 89.92 89.92 89.92	7,955.0 7,955.0 7,955.0 7,955.0 7,955.0	-480.1 -480.0 -479.8 -479.7 -479.5	1,941.9 2,041.9 2,141.9 2,241.9 2,341.9	1,941.3 2,041.3 2,141.3 2,241.3 2,341.3	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
10,500 10,600 10,700 10,800 10,900	0.0 90.00 0.0 90.00 0.0 90.00	89.92 89.92 89.92 89.92 89.92	7,955.0 7,955.0 7,955.0 7,955.0 7,955.0	-479.4 -479.2 -479.1 -479.0 -478.8	2,441.9 2,541.9 2,641.9 2,741.9 2,841.9	2,441.3 2,541.3 2,641.3 2,741.3 2,841.3	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
11,000 11,100 11,200 11,300 11,400	0.0 90.00 0.0 90.00 0.0 90.00	89.92 89.92 89.92 89.92 89.92	7,955.0 7,955.0 7,955.0 7,955.0 7,955.0	-478.7 -478.5 -478.4 -478.2 -478.1	2,941.9 3,041.9 3,141.9 3,241.9 3,341.9	2,941.3 3,041.3 3,141.3 3,241.3 3,341.3	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
11,500 11,600	90.00	89.92 89.92	7,955.0 7,955.0	-477.9 -477.8	3,441.9 3,541.9	3,441.3 3,541.3	0.00 0.00	0.00 0.00	0.00 0.00

Database: EDM 5000.14 Server Company:

Matador Production Company

Project: Rustler Breaks Ace Stern Vegas Site: Well: Ace Stern Vegas #124H

Wellbore: Wellbore #1 BLM Plan #1 Design:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Ace Stern Vegas#124H

KB @ 3095.5usft KB @ 3095.5usft

Grid

Design.	DLIVI FIAIT#1								
Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
11,700.0	90.00	89.92	7,955.0	-477.6	3,641.9	3,641.3	0.00	0.00	0.00
11,800.0	90.00	89.92	7,955.0	-477.5	3,741.9	3,741.3	0.00	0.00	0.00
11,900.0	90.00	89.92	7,955.0	-477.3	3,841.9	3,841.3	0.00	0.00	0.00
12,000.0	90.00	89.92	7,955.0	-477.2	3,941.9	3,941.3	0.00	0.00	0.00
12,100.0	90.00	89.92	7,955.0	-477.0	4,041.9	4,041.3	0.00	0.00	0.00
12,200.0	90.00	89.92	7,955.0	-476.9	4,141.9	4,141.3	0.00	0.00	0.00
12,300.0	90.00	89.92	7,955.0	-476.8	4,241.9	4,241.3	0.00	0.00	0.00
12,400.0	90.00	89.92	7,955.0	-476.6	4,341.9	4,341.3	0.00	0.00	0.00
12,500.0	90.00	89.92	7,955.0	-476.5	4,441.9	4,441.3	0.00	0.00	0.00
12,600.0	90.00	89.92	7,955.0	-476.3	4,541.9	4,541.3	0.00	0.00	0.00
12,700.0	90.00	89.92	7,955.0	-476.2	4,641.9	4,641.3	0.00	0.00	0.00
12,800.0	90.00	89.92	7,955.0	-476.0	4,741.9	4,741.3	0.00	0.00	0.00
12,900.0	90.00	89.92	7,955.0	-475.9	4,841.9	4,841.3	0.00	0.00	0.00
13,000.0	90.00	89.92	7,955.0	-475.7	4,941.9	4,941.3	0.00	0.00	0.00
13,100.0	90.00	89.92	7,955.0	-475.6	5,041.9	5,041.3	0.00	0.00	0.00
13,200.0	90.00	89.92	7,955.0	-475.4	5,141.9	5,141.3	0.00	0.00	0.00
13,300.0	90.00	89.92	7,955.0	-475.3	5,241.9	5,241.3	0.00	0.00	0.00
13,400.0	90.00	89.92	7,955.0	-475.1	5,341.9	5,341.3	0.00	0.00	0.00
13,500.0	90.00	89.92	7,955.0	-475.0	5,441.9	5,441.3	0.00	0.00	0.00
13,600.0	90.00	89.92	7,955.0	-474.8	5,541.9	5,541.3	0.00	0.00	0.00
13,700.0	90.00	89.92	7,955.0	-474.7	5,641.9	5,641.3	0.00	0.00	0.00
13,800.0	90.00	89.92	7,955.0	-474.6	5,741.9	5,741.3	0.00	0.00	0.00
13,900.0	90.00	89.92	7,955.0	-474.4	5,841.9	5,841.3	0.00	0.00	0.00
14,000.0 14,100.0 14,200.0 14,300.0 14,400.0	90.00 90.00 90.00 90.00 90.00	89.92 89.92 89.92 89.92	7,955.0 7,955.0 7,955.0 7,955.0 7,955.0	-474.3 -474.1 -474.0 -473.8 -473.7	5,941.9 6,041.9 6,141.9 6,241.9 6,341.9	5,941.3 6,041.3 6,141.3 6,241.3 6,341.3	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
14,500.0 14,600.0 14,700.0 14,800.0 14,900.0	90.00 90.00 90.00 90.00 90.00	89.92 89.92 89.92 89.92	7,955.0 7,955.0 7,955.0 7,955.0 7,955.0	-473.5 -473.4 -473.2 -473.1 -472.9	6,441.9 6,541.9 6,641.9 6,741.9 6,841.9	6,441.3 6,541.3 6,641.3 6,741.3 6,841.3	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
15,000.0	90.00	89.92	7,955.0	-472.8	6,941.9	6,941.3	0.00	0.00	0.00
15,100.0	90.00	89.92	7,955.0	-472.6	7,041.9	7,041.3	0.00	0.00	0.00
15,200.0	90.00	89.92	7,955.0	-472.5	7,141.9	7,141.3	0.00	0.00	0.00
15,300.0	90.00	89.92	7,955.0	-472.4	7,241.9	7,241.3	0.00	0.00	0.00
15,400.0	90.00	89.92	7,955.0	-472.2	7,341.9	7,341.3	0.00	0.00	0.00
15,500.0	90.00	89.92	7,955.0	-472.1	7,441.9	7,441.3	0.00	0.00	0.00
15,600.0	90.00	89.92	7,955.0	-471.9	7,541.9	7,541.3	0.00	0.00	0.00
15,700.0	90.00	89.92	7,955.0	-471.8	7,641.9	7,641.3	0.00	0.00	0.00
15,800.0	90.00	89.92	7,955.0	-471.6	7,741.9	7,741.3	0.00	0.00	0.00
15,900.0	90.00	89.92	7,955.0	-471.5	7,841.9	7,841.3	0.00	0.00	0.00
16,000.0	90.00	89.92	7,955.0	-471.3	7,941.9	7,941.3	0.00	0.00	0.00
16,100.0	90.00	89.92	7,955.0	-471.2	8,041.9	8,041.3	0.00	0.00	0.00
16,200.0	90.00	89.92	7,955.0	-471.0	8,141.9	8,141.3	0.00	0.00	0.00
16,300.0	90.00	89.92	7,955.0	-470.9	8,241.9	8,241.3	0.00	0.00	0.00
16,400.0	90.00	89.92	7,955.0	-470.7	8,341.9	8,341.3	0.00	0.00	0.00
16,500.0	90.00	89.92	7,955.0	-470.6	8,441.9	8,441.3	0.00	0.00	0.00
16,600.0	90.00	89.92	7,955.0	-470.4	8,541.9	8,541.3	0.00	0.00	0.00
16,700.0	90.00	89.92	7,955.0	-470.3	8,641.9	8,641.3	0.00	0.00	0.00
16,800.0	90.00	89.92	7,955.0	-470.1	8,741.9	8,741.3	0.00	0.00	0.00
16,900.0	90.00	89.92	7,955.0	-470.0	8,841.9	8,841.3	0.00	0.00	0.00
17,000.0	90.00	89.92	7,955.0	-469.9	8,941.9	8,941.3	0.00	0.00	0.00

Database: EDM 5000.14 Server
Company: Matador Production Company

Project: Rustler Breaks
Site: Ace Stern Vegas
Well: Ace Stern Vegas #124H

Wellbore: Wellbore #1

Design: BLM Plan #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Ace Stern Vegas#124H

KB @ 3095.5usft KB @ 3095.5usft

Grid

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
17,100.0	90.00	89.92	7,955.0	-469.7	9,041.9	9,041.3	0.00	0.00	0.00
17,200.0	90.00	89.92	7,955.0	-469.6	9,141.9	9,141.3	0.00	0.00	0.00
17,300.0	90.00	89.92	7,955.0	-469.4	9,241.9	9,241.3	0.00	0.00	0.00
17,400.0	90.00	89.92	7,955.0	-469.3	9,341.9	9,341.3	0.00	0.00	0.00
17,500.0	90.00	89.92	7,955.0	-469.1	9,441.9	9,441.3	0.00	0.00	0.00
17,600.0	90.00	89.92	7,955.0	-469.0	9,541.9	9,541.3	0.00	0.00	0.00
17,700.0	90.00	89.92	7,955.0	-468.8	9,641.9	9,641.3	0.00	0.00	0.00
17,800.0	90.00	89.92	7,955.0	-468.7	9,741.9	9,741.3	0.00	0.00	0.00
17,900.0	90.00	89.92	7,955.0	-468.5	9,841.9	9,841.3	0.00	0.00	0.00
18,000.0	90.00	89.92	7,955.0	-468.4	9,941.9	9,941.3	0.00	0.00	0.00
18,100.0	90.00	89.92	7,955.0	-468.2	10,041.9	10,041.3	0.00	0.00	0.00
18,200.0	90.00	89.92	7,955.0	-468.1	10,141.9	10,141.3	0.00	0.00	0.00
18,258.9	90.00	89.92	7,955.0	-468.0	10,200.8	10,200.1	0.00	0.00	0.00
TD at 1825	8.9 - BHL - Ac	e Stern Vegas	#124H						

Design Targets									
Target Name - hit/miss target D - Shape	ip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
VP - Ace Stern Vegas - plan hits target cen - Point	0.00 iter	0.00	7,382.0	-583.0	-299.2	499,299.00	571,874.00	32° 22' 20.903 N	104° 6' 1.915 W
BHL - Ace Stern Vega - plan hits target cen - Point	0.00 iter	0.00	7,955.0	-468.0	10,200.8	499,413.91	582,374.00	32° 22' 21.798 N	104° 3' 59.478 W

Formations						
	Measured Depth (usft)	Vertical Depth (usft)	Name	Lithology	Dip (°)	Dip Direction (°)
	478.0	478.0	Salado (Top SALT)			
	947.0	947.0	Castile (T)			
	2,554.1	2,549.0	G30:CS14-CSB (BASE SALT)			
	2,591.4	2,586.0	G26: Bell Cyn (T. Delaware)			
	3,423.5	3,410.0	Z (G13: Cherry Cyn.)			
	4,643.4	4,618.0	Z (G7: Brushy Cyn.)			
	5,768.4	5,732.0	Z (G5: L. Brushy Cyn.)			
	6,014.7	5,976.0	Z (G4: BSGL (CS9))			
	6,475.9	6,433.0	Z (L8.2: U. Avalon Shale)			
	6,589.4	6,546.0	Z (L6.3: Avalon Carb)			
	6,654.5	6,611.0	Z (L6.2: L. Avalon Shale)			
	6,745.6	6,702.0	Z (L5.3: FBSC)			
	7,071.7	7,028.0	Z (L5.1: FBSG)			
	7,349.7	7,306.0	Z (L4.3: SBSC)			
	7,799.7	7,730.0	Z (L4.1: SBSG)			

Database: EDM 5000.14 Server
Company: Matador Production Company

Project: Rustler Breaks
Site: Ace Stern Vegas
Well: Ace Stern Vegas #124H

Wellbore: Wellbore #1

Design: BLM Plan #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Ace Stern Vegas#124H

KB @ 3095.5usft KB @ 3095.5usft

Grid

lan Annotations				
Measured	Vertical	Local Coor	dinates	
Depth (usft)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Comment
1,500.0	1,500.0	0.0	0.0	Start Build 1.00
2,300.0	2,297.4	-49.6	- 25.5	Start 4040.7 hold at 2300.0 MD
6,340.7	6,298.7	-549.9	-282.3	Start Drop -1.50
6,874.0	6,830.3	-583.0	-299.2	Start 551.7 hold at 6874.0 MD
7,425.7	7,382.0	-583.0	-299.2	Start Build 10.00
8,325.7	7,955.0	-507.2	268.7	Start DLS 2.00 TFO 90.00
8,701.4	7,955.0	-482.0	643.4	Start 9557.4 hold at 8701.4 MD
18,258.9	7,955.0	-468.0	10,200.8	TD at 18258.9